
Lehigh University
Lehigh Preserve

Theses and Dissertations

2011

Advanced digital and analog error correction codes
Kai Xie
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Xie, Kai, "Advanced digital and analog error correction codes" (2011). Theses and Dissertations. Paper 1035.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1035&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1035&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1035&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1035?utm_source=preserve.lehigh.edu%2Fetd%2F1035&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Advanced digital and analog

error correction codes

by

Kai Xie

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Lehigh University

May 2011

Approved and recommended for acceptance as a dissertation in partial fulfill-

ment of the requirements for the degree of Doctor of Philosophy.

Date

Dissertation Advisor

Accepted Date

Committee Members:

Tiffany Jing Li

Zhiyuan Yan

Shalinee Kishore

Garth Isaak

Erich F. Haratsch

ii

Acknowledgements

I would like to express my profound gratitude to my supervisor Prof. Tiffany

Jing Li for her support since the beginning, and for her patience and guidance.

I am especially grateful to my committee members, Prof. Zhiyuan Yan, Prof.

Shalinee Kishore, Prof. Garth Isaak and Dr. Erich F. Haratsch for their support,

suggestion and review of my proposal and dissertation. Without their continuous

encouragement and advice, I could never complete this thesis.

I would like to thank all my friends and colleagues, especially Meng Yu, Ruiyuan

Hu, Xingkai Bao, Peiyu Tan, Hend Alqamzi, Nattakan Puttarak, Phisan Kaew-

prapha, Yan Li, Yongmei Dai, Gang Xiong and Min Xiao with whom I have worked

together, for their helpful discussions and friendship. I would like to thank my par-

ents, my in-laws, and my wife for their love, understanding and support.

iii

Contents

Acknowledgements . iii

List of Figures . vii

Abstract . 1

1 Introduction 4

1.1 Interleaver design for turbo codes 7

1.2 Gaussian assumption for LDPC codes 9

1.3 Analog error correction codes . 11

2 Interleaver Design of Turbo Codes 16

2.1 Typical Interleavers . 19

2.2 Metric 1: Cycle Correlation Sum (CCS) 23

2.3 Evaluating Algebraic Interleavers by CCS 25

2.3.1 Analysis and Classification of Algebraic Interleavers 26

2.3.2 Graph Representation and Simulations 30

2.4 Metric 2: Variance of the second-order spread spectrum (VSSS) . . 34

2.5 Interleaver Design and Simulations for coprime interleaver 40

2.6 Conclusion . 41

3 Gaussian Assumption of LDPC Codes 44

iv

3.1 Background and Notations . 47

3.2 Lognormal Distributions . 49

3.3 Accuracy of Gaussian Approximation 54

3.3.1 Validation of Gaussian Assumption in Message-Passing De-

coding . 54

3.3.2 Additional Comments and Simulation Verifications 57

3.4 A New LDPC EXIT Formulation When Gaussian Assumption is

Accurate . 60

3.4.1 Simplifying Computation of Mutual Information 60

3.4.2 A New Formulation for Computing EXIT Charts 67

3.5 Evaluating EXIT Formulations When Gaussian Assumption is Less

Accurate . 74

3.6 Conclusion . 80

4 Analog Coding and Linear analog coding 90

4.1 Theory and Concepts for Analog Codes and Linear Analog codes . 93

4.1.1 Definition of Analog Error Correction Codes 93

4.1.2 Euclidean Weight and Squared Euclidean Weight Ratio . . . 96

4.1.3 Maximum squared distance ratio Expansible (MDRE) Codes 101

4.1.4 ML Decoding and Distortion 104

4.2 Analysis of Linear Analog Codes 109

4.2.1 A Brief Overview . 110

4.2.2 Discrete Fourier Transform Codes and Analog BCH Codes . 111

4.2.3 Discrete Cosine Transform (DCT) Codes and Analog BCH-

like codes . 113

4.2.4 Linear Analog Codes on Pulse Channels 114

v

4.2.5 Analysis of Existing Linear Analog Codes on AWGN Channels115

4.3 Design of Linear Analog Block Codes on AWGN Channels 117

4.3.1 Geometric explanation of linear analog codes 118

5 Non-Linear analog coding 122

5.1 Chaotic analog codes . 125

5.2 Tent Map Codes . 127

5.2.1 Coding Gain of Tent Map Codes 129

5.2.2 ML Decoding of Tent Map Codes 132

5.3 CAT codes and SISO MAP decoding 137

5.3.1 Performance Simulation of CAT codes 141

5.4 2-D Chaotic Analog Codes: Mirrored Baker’s Map Codes 142

5.4.1 Encoding of Baker’s Map Codes 142

5.4.2 ML decoding of Mirrored Baker’s codes 146

5.4.3 Performance of Mirrored Backer’s Map codes 149

5.5 Analog vs Digital systems . 150

6 Conclusion 158

vi

List of Figures

2.1 Comparison between CCS predictions and simulations results on a

turbo code with component code [1, 5/7]. Top row: CCS prediction

and simulated BER of a length 100 linear coprime interleaver; Bot-

tom row: CCS prediction and simulated BER of a length 128 linear

coprime interleaver. Evaluating SNR=3.0dB. 26

2.2 The CCS values of coprime interleavers, random interleavers, S-

random interleavers and the Takeshita-Costello interleavers. N = 128. 27

2.3 Scatter-plot representation for interleavers with N =100 and 128. . 29

2.4 BER performance of the random-like interleaver. 32

2.5 BER of the optimized coprime interleaver (a = 129, b = 161) and

S-random interleavers (s=10,20) for N = 2048. 42

3.1 Illustration of lognormal pdf’s µ = 0 and σ = 0.5, 1.0, 1.5, 3.0. 82

3.2 Histograms for ln(S) with k = 2, 5, 10, 100. 82

3.3 Histogram of messages m1
ji for a LDPC code with dc = 4 at different

SNRs. 83

3.4 Histograms of message m1
ji for regular LDPC codes with variable

node degree 3 and different check node degrees (SNR=3db). 83

vii

3.5 D-statistic collected from the KS test for codes with different check

node degrees operating on different channel SNRs. dv = 3, dc =

4, 10, 30. D-statistics below the solid horizontal line correspond to

cases where the Gaussian assumption holds well. 84

3.6 Comparison of EXIT charts of a (3, 6)-regular LDPC code computed

by Theorem 3.4 and the conventional density evolution. SNR={-1,
-2} db. 85

3.7 EXIT chart of irregular LDPC code at SNR = {−2db,−1db, 2db} . 86

3.8 The pdf of the extrinsic LLR messages from the check nodes to the

variable nodes, after one decoding iteration on an AWGN channel

of 0.5 db. The check nodes have degree 6. 87

3.9 EXIT curves computed using different formulations. (A) The com-

plete EXIT chart. (B) The zoomed-in EXIT chart. 88

3.10 Comparison of the EXIT curves computed using the proposed new

model and using the exact density evolution (without any assump-

tion) in regions where the Gaussian assumption is not accurate.

(3, 6)-regular LDPC codes. Channel SNR is -1 db and -2 db. 89

4.1 The system model of a general analog code. 96

4.2 The structure of DFT codes . 112

4.3 Performance of linear analog code with AWGN. 117

4.4 Geometric explanation of linear analog code. 119

5.1 Comparing between the linear analog codes and nonlinear analog

codes . 123

viii

5.2 Performance comparison between the linear analog codes (DCT

codes) and nonlinear analog codes(tent map codes, baker’s map codes)124

5.3 The normalized MSE Distortion Bound for Gaussian source and

AWGN channels . 126

5.4 Understanding the encoding of chaotic analog code. 131

5.5 Comparison between ML decoding and backward decoding N = 5 . 137

5.6 Encoding scheme of CAT codes . 139

5.7 Comparison between CAT codes and tent map codes 152

5.8 Comparison between of CAT codes and BPSK hyper codes, repeti-

tion hyper codes . 152

5.9 The process of baker’s map . 153

5.10 the system model of 2-D chaotic analog codes 153

5.11 Function curve of x1[1] and x1[n− 1] in terms of {u, v}. 154

5.12 Function curve of y[1] and y[3] in terms of {u, v} 155

5.13 Performance comparison between baker’s codes and tent map code

with rate of 1/12. 156

5.14 Performance comparison between analog codes and digital codes . . 157

ix

Abstract

Practical communication channels are inevitably subject to noise uncertainty,

interference, and/or other channel impairments. The essential technology to enable

a reliable communication over an unreliable physical channel is termed as channel

coding or error correction coding(ECC).

The profound concept that underpins channel coding is distance expansion.

That is, a set of elements in some space having small distances among them are

mapped to another set of elements in possibly a different space with larger distances

among the elements. Distance expansion in terms of digital error correction has

been a common practice, but the principle is by no means limited to the discrete

domain. In a broader context, a channel code may be mapping elements in an

analog source space to elements in an analog code space. As long as a similar

distance expansion condition is satisfied, the code space is expected to provide an

improved level of distortion tolerance than the original source space. For example,

one may treat the combination of quantization, digital coding and modulation as

a single nonlinear analog code that maps real-valued sources to complex-valued

coded symbols.

Such a concept, thereafter referred to as analog error correction coding (AECC),

analog channel coding, or, simply, analog coding, presents a generalization to digital

error correction coding (DECC). This dissertation investigates several intriguing

aspects of DECC and especially of AECC.

The research of DECC focuses on turbo codes and low-density-parity-check

(LDPC) codes, two of the best performing codes known to date. In the topic of

1

turbo codes, this dissertation studies on interleaver design, which plays an im-

portant role in the overall performance of turbo codes (at small to medium code

lengths) but does not affect the decoding architecture. Before this work, the theo-

retical foundation of interleaver design and evaluation were rather incomplete, e.g.

efficient approaches in measuring “randomness” (one of the most important char-

acteristics for interleavers) were rigorously established. This work proposes two

powerful metrics, cycle correlation sum (CCS) and variance of the second order

spread spectrum (VSSS), to quantify spread and randomness, two fundamental

properties of interleavers, while accounting for the iterative nature of turbo de-

coding and the weight spectrum of turbo encoding. We evaluate the ensemble of

algebraic interleavers, propose design approaches specific to coprime interleavers,

a subclass of algebraic interleavers, and provide theoretical insights on selecting

parameters. Simulation results show superior performance of the newly designed

coprime interleavers to the existing ones.

The second topic analyzes the Gaussian assumption for the stochastic analy-

sis in iterative decoding. Gaussian distribution is widely believed to match the

real message density in analyzing iterative decoding, but the justification is largely

pragmatic, except for the messages directly coming from Gaussian channels. This

work investigates when and how well the Gaussian distribution approximates the

real message density and why. We show that the Gaussian assumption is statisti-

cally sound when the LLRs extracted from the channel are reasonably reliable to

start with, and when the check node degrees of the LDPC code are not very high;

but the assumption is much less accurate when one or both conditions are violated.

Extensive simulation results are provided to exemplify and verify this discussion.

2

Besides these topics on digital coding, this dissertation also investigates ana-

log coding, which brings the benefit of avoiding quantization errors for real-world

analog sources and hence presents a very promising direction in error-correction

coding. As a recent emerging topic, the analysis and understanding of analog cod-

ing is far from mature. We categorize analog codes into two classes, summarize

the existing analog codes and propose a few new codes.

For linear analog codes, this work initiates some fundamental concepts, defines

analytical metrics and theorems, develops the achievable upper and lower bounds,

and identifies several classes of linear analog codes that could achieve these bounds.

For nonlinear analog codes, we focus on a special type that makes essential use of

nonlinear chaotic functions. We develop turbo-like coding structures for chaotic

analog codes, and show that they can easily beat the performance bound of linear

analog codes. In this, we propose a conjecture that while linear codes are sufficient

for digital coding, they are not for analog codes, and nonlinear analog codes, such

as those based on chaotic functions, must be used in order to effectively combat

error on Gaussian channels.

3

Chapter 1

Introduction

Essential to reliable communication and storage is the technology of error correc-

tion coding, which targets correcting errors (deviating from what is true) caused

by noise and distortion coming from channels and devices. In reality, not only do

communication systems, but people perform error correction every day. For exam-

ple, we can read from hand-written papers even though everyone’s handwriting is

different. Our brain will tolerate the deviates between the hand-written alphabet

and the standard printed alphabet. When the deviation is within a certain range,

our brain will find the most similar and likely letter in the alphabet automatically,

which is also the basic operation performed by error correction in wireless commu-

nication and storage systems. Similar to the alphabet and letter, a signal space S

must be defined for any system.

Based on the pre-learned knowledge, our brain can effectively find the most

likely letter and ignore the deviations. But how to define the “most likelihood” in

a system? The concept of “distance” is introduced, and will take different flavors

4

in variant systems, such as the Hamming distance and the Euclidean distance.

During error correction, the system may search the entire signal space S to find

the most likely signal with the smallest distance to the perceived signal. When

the deviation is less than a certain threshold, the signal can usually be recovered

correctly. The error correction capability thus heavily depend on the distance

spectrum, especially the minimum distance among the signals within the space S.

The basic and profound idea behind error correction coding is distance expan-

sion, which is also known as space expansion. A source signal space S with small

distance among elements will be mapped to a signal space C with larger distances,

termed the code book, by adding redundancy. Each element in the code book is

termed a codeword. Consider, for example, an (n, k, d) binary systematic channel

code that encodes source sequences u ∈ {0,1}k to codewords c(u) ∈ {0,1}n. A

source sequence with neighbors that are only 1 Hamming distance away is now

mapped to a codeword whose nearest neighbors are at least d Hamming distance

away, thus enabling the detection of up to (d− 1) bit errors or correction of up to

b(d − 1)/2c bit errors. The code rate, defined as r = k/n, denotes the payload of

the channel code.

Two critical problems running through the studies of error correction coding

are:

1. How to construct a code book with a good distance spectrum?

2. Given a received signal, how to effectively find the closest signal in the code-

book?

Answers to these two questions remain illusive until the discovery of turbo codes

5

in 1993 and the rediscovery of low density parity check codes (LDPC) codes in 1999.

They bridged the afore-considered insurmountable theory-practice gap between the

practical error correction performance and the Shannon limit [1]. Turbo codes and

LDPC codes also revolutionized the coding research with new concepts for success-

ful error correction: a paradigm of building long codes with random construction,

and decoding them using soft, iterative decoders with manageable complexity.

However, the random property of the codebook and the nonlinear iterative

characteristics of the decoding process are a double-edged sword. On one hand,

they enable the remarkable performance of turbo codes and LDPC codes; on the

other hand, they also make design and analysis difficult. Many traditional analyt-

ical methods become inefficient or inapplicable. Although a theory of an iterative

analysis and ensemble analysis is being developed, several questions remain open.

This research is dedicated to the study of advanced error correction technology,

in the digital domain as well as in the analog domain. Specific focus will be set on

the design, analysis and evaluation of the state-of-the-art and the emerging coding

schemes.

The first two chapters cover digital coding, and discuss specific design issues

for turbo codes and LDPC codes, the two classes of best-performing codes known

to date. The remainder chapter investigates ideas and concepts in analog coding,

and explore new ways of error correction.

6

1.1 Interleaver design for turbo codes

We first study the interleaver design issue for turbo codes. The interleaver, being

a critical component of turbo codes, affects both the order of input sequences and

the exchange of extrinsic information. It plays two roles in turbo codes: at the

encoder side, it makes the constituent encoders work on the same set of information

bits but in different orders, which in turn provides a good distance spectrum;

at the decoder, it decorreclates the exchanged information, allowing an iterative

decoder to approximate the performance of an maximal likelihood (ML) decoder.

Therefore, interleaver design has been an interesting research pursuit that spans

much of turbo codes’s short history.

Intuitively, a good interleaver should process two properties:

1. Spread: two or multiple bits close to each other before interleaving should

be separated far apart after interleaving;

2. Randomness: the scrambling rule should not have any apparent or repeatitive

patterns.

These basic properties of interleaver have guided the design of good interleavers.

However, the theory behind the design criteria is still not complete. Some questions

are still open. For instance, how do these two strategies affect and get reflected

in the coding performance? How to quantify these two properties, especially the

randomness? How to use them to design a good algebraic interleaver? Chapter 2

of this dissertation targets solving at least some of these problems.

7

Another design challenge for interleaver is how to design interleavers equipped

with deterministic formats yet preserve a random characteristic. Generally, large

random interleavers deliver good performance, but in practice short deterministic

interleavers are preferred over large random ones due to storage and operational

concerns. For example, algebraic interleavers are highly desirable, because they

can be generated on-the-fly; the system only needs to store a few parameters;

and reasonable randomness is exhibited in the interleaving patterns. Coarsely

speaking, an algebraic interleaver is an interleaver whose scrambling pattern is

completely specified by a well-defined mathematical formula with a few seeding

parameters. Additional design difficulty also comes from the decoding perspective,

namely, most of the interleaved and concatenated codes use a suboptimal iterative

decoding algorithm rather than theoretically optimal maximal likelihood (ML)

decoding due to complexity concern.

Taking into consideration of randomness in interleaving pattern, deterministic

formats and suboptimal decoding, we propose to first investigate efficient ways to

evaluate interleavers in turbo codes. Two simple and powerful metrics, cycle cor-

relation sum (CCS) and variance of the second order spread spectrum (VSSS), are

proposed to quantify the spread factor and the randomness factor, and to further

measure the relative quality of interleavers and guide the interleaver design. The

CCS metric accounts for the iterative nature of the message flow in a turbo de-

coder and evaluates the impact of interleaver design on the decoder optimization.

The VSSS takes into explicit consideration of quantifying the randomness for dif-

ferent interleavers and attempts to build the connection between randomness and

performance of an interleaver. These two metrics make it possible to evaluate the

performance of an interleaver without lengthy simulation, which, in turn, leads to

8

good interleaver design guidance. Based on these two design tools, we reevaluate

a rich class of algebraic interleavers, the coprime interleavers. Simulation results

show that the new coprime interleaver design rules can in general improve the

performance while saving the complexity and storage memories.

1.2 Gaussian assumption for LDPC codes

The Chapter 3 of this research evaluates the Gaussian assumption that is used in

the iterative decoding of LDPC codes.

Toward a deep theoretic understanding of soft iterative decoding, researchers

have conducted active analysis. A soft iterative decoder generally consists of sev-

eral component soft decoders connected in a parallel, serial or hybrid fashion,

passing probabilistic message along the connecting edges between the component

decoders. Message-passing algorithm, for which the a posterior probability decod-

ing for turbo codes is a specialization, forms the majority of soft iterative decoding

mechanisms. Since almost all the message-passing decoders are high-dimensional

nonlinear mapping, analysis using conventional methods (such as those based on

the codeword space) appears ineffective. On the other hand, stochastic approaches

offer a rich source for analyzing the properties of iterative decoding, enabling the

modeling of the input and output of a soft decoder as random processes and the

tracking of the evolution of their statistic characteristics through iterations. Den-

sity evolution (DE), proposed by Richardson et al in [2], was one of the pioneering

stochastic methods to investigate the convergence behavior for iterative decoding.

Density evolution, when applied to code graphs with asymptotically unbounded

9

girth, can compute thresholds for the performance of LDPC codes and turbo codes

with iterative decoding, but tracking the probability density function (pdf) of the

messages involves infinite dimensional algebra, and is therefore computationally

prohibitive.

To simplify the analysis, researchers started to look into the widely-adapted

Gaussian model. Wiberg [3] first demonstrated that the pdf of the extrinsic in-

formation (exchanged between component decoders) may be approximated by a

Gaussian distribution. This discovery significantly simplified the stochastic analy-

sis, since a Gaussian distribution can be completely characterized by its mean and

variance. Following this approximation, [4] succeeded in estimating the thresholds

for both regular and irregular LDPC codes. At the same time, [5] showed that the

pdf of the extrinsic information in message-passing decoding satisfies and preserves

a symmetry condition. Realizing that a probabilistic density that is both“symmet-

ric” and Gaussian distributed satisfies σ2 = 2m, where m and σ2 are the mean and

the variance of the Gaussian distribution, researchers were able to further simplify

the analysis by using a single parameter, either the mean or the variance of the

message density, to track down the probabilistic evolution.

As an alternative analysis approach, extrinsic information transfer (EXIT)

charts was proposed in [6] to visualize the behavior of an iterative decoder, and

especially the evolution of the extrinsic information exchanged between different

computational units during the iterative decoding. At its proposition, EXIT charts

were considered an effective tool, but one providing not much more knowledge

than visualizing the repeated application of the density evolution algorithm with

different channel signal-to-noise ratios (SNR) and at different stages of iterative

10

decoding.

Both EXIT charts and their underlying tool of density evolution make essen-

tial use of a prevailing Gaussian assumption, which states that the log-likelihood

ratio (LLR) messages exchanged between different component decoders at an ar-

bitrary stage of iterative decoding follow a Gaussian distribution. However, the

justification of this assumption is largely pragmatic rather than demonstrated over

any rigorous theory. Since this philosophy has shaped the analysis of the itera-

tive decoding for both turbo and LDPC codes, it would be of great importance

to provide some statistical analysis on its accuracy. In Chapter 2, we provide a

statistical justification for LDPC codes, and [7] provided an analysis on Gaussian

assumption for turbo codes.

1.3 Analog error correction codes

While channel coding has been, for much of the decades’ long history of mod-

ern communications, almost exclusively regarded as a digital-only technology, the

principle of space mapping and distance expansion is not intrinsically labeled with

“digital only” and needs not be confined in the domain of digital coding.

Analog coding is another possibility and will likely bring huge benefits in certain

scenarios. Many the raw signals we obtain from the natural world are analog, such

as light and sound. Analog coding allows us to work directly on analog sources

without the burden of quantization and filtering. It also avoids the unrecoverable

granularity noise caused by quantization.

11

Analog error correction codes have been considered for solving the peak-to-

average-ratio problem in orthogonal frequency division multiplexing (OFDM) schemes,

for adding fault-tolerance to massive computation systems [8], for transmitting im-

ages and video streams across wireless channels [9], and for joint source-channel

coding [10]. However, comparing to the high level of maturity of digital error cor-

rection coding in both the theoretical and the practical context, the research of

analog coding is still much incomplete [11], [12].

Most existing works on analog coding are isolated and investigate analog codes

as straight-forward extensions of digital codes. However, a comprehensive study

was not yet shown. This work is the first to systematically structure the anal-

ysis and design of analog codes. We develop several new concepts for analyzing

and understanding analog codes, including the encoding power gain, average dis-

tance/weight ratio and its achievable upper and lower bounds. We also define

maximum distance ratio expansible (MDRE) codes, a class of codes similar in

spirit to maximum distance separable (MDS) codes in digital coding, and prove

that they could achieve those bounds. We also generalize the concept of union

bound to analog codes, and show that it is an effective indicator to the perfor-

mance of analog codes. We also classify analog codes into linear analog codes and

non-linear analog codes. Besides, we demonstrate several new codes, and analyze

important properties of these codes using our newly-developed concepts and tools.

The first example of nonlinear analog codes was constructed by Chen and Wor-

nell [11] referred to as tent map codes. These codes are based on the chaos theory

and exhibit an elegant property of distance expansion similar to its digital coun-

terpart.

12

Chaos is a universal phenomenon found in a wide spectrum of natural phe-

nomena and nonlinear systems. Prominent features of chaos include nonlinearity,

topological mixing and sensitivity to initial conditions. The latter is popularly

known as the “butterfly phenomenon” due to a 1972 paper by Lorenz entitled

“Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set Off a Tornado

in Texas?” [13]. While the non-periodic, random and fast-diverging evolution of

chaotic states are typically viewed as penalty to a system, these same features may

be exploited to serve good purposes.

Chen and Wornell explored a natural way of building a chaotic code: the real-

valued information, or, the systematic symbol is fed to the chaotic map as the

initial state, and a few subsequent states are treated as parity symbols to pro-

tect the systematic symbol [11]. In [11], the chaotic map was specified as tent

map. Several chaotic estimation techniques were developed for decoding the tent

map codes, including the maximum-likelihood (ML) based detector [11] [14], the

expectation-maximization (EM) algorithm [15], the Bayesian approach [16], and

dynamic programming [17].

Chaotic analog coding has a promising potential to be applied in a secure

communication system, since variant parameters may be exploited as the secure

keys to lead to drastically different encoded sequences. Another major advantage

of using chaotic signals in communications is its low-cost implementation. Many

chaotic signals, including the popular tent map, can be generated by simple electric

circuits [18]. Chaotic coding offers additional advantage to analogue sources (such

as transmission and recoding of music), since it is free from granularity or source

quantization errors.

13

Although the tent map codes have exhibited interesting properties, our anal-

ysis shows that the performance of tent map codes is adversely limited by the

unbalanced protection of the sign sequence as well as the short code length.

To avoid unbalanced protection, we propose a more sophisticated chaotic coding

strategy that borrows useful ideas from turbo codes. Turbo codes, the renowned

class of digital error correction codes that were the first to exhibit performance

close to the channel capacity, have enlightened the coding research with several

new concepts. One notable feature of turbo codes, for example, is the parallel

concatenation of two recursive systematic convolutional (RSC) codes, such that

the chance of both component codes producing low-weight codewords is rather

small. This ensures that the low-weight codewords or, equivalently, small-distance

codeword pairs are scant (the so-called “spectrum thinning” effect). Exploring a

similar idea, we propose chaotic analog turbo (CAT) codes through the parallel

concatenation of two tent maps. Our new codes are to the concatenated turbo

codes, as tent map codes are to the individual convolutional codes. The specific

concatenation structure will be discussed in detail in Chapter 5. The maximum

likelihood decoding algorithm and iterative decoding will be presented. Simulation

tests are carried out, and it is shown that the proposed CAT codes noticeably

outperform tent map codes of the same code rate. It is also interesting to note

that CAT codes can outperform some conventional digital communication schemes,

such as BPSK modulation and repetition codes. It should also be pointed out that

there is sharp difference between our approach and other notions of chaotic turbo

codes in the previous literature [19], [20]. Ours is analog codes, but both [19]

and [20] are digital codes.

14

Next we extend the code length of tent map codes by developing a 2-dimensional

chaotic code based on the baker’s map. The less-than-desirable performance of the

tent map code [11] may be attributed, in part, to the low dimensionality of the

underlying chaotic system: the tent map is a 1-dimensional nonlinear function

with a scalar input and offers relatively simple relation between the time-evolving

states. The CAT code [21] strengthens the inter-state relation by concatenating

two tent maps, thus creating a higher level of protection. In Chapter 5, we propose

to exploit useful 2-dimensional chaotic systems to construct good chaotic analog

codes.

Leveraging rich literature of the chaos theory, we identify the baker’s map, a 2-

dimensional nonlinear function from a unit square to itself, as a desirable candidate.

We demonstrate how to apply the baker’s map to the tent map to achieve 2-

dimensional chaotic coding. Realizing its uneven error protection capability, we

further propose a mirrored replication structure to improve the code performance.

Unlike the tent map that has many available detection algorithms (such as [15]

[16] [17]), the baker’s map has hardly any that is suitable for decoding purpose.

Hence we also develop a maximum likelihood decoding algorithm. The resultant

code, termed the baker’s map code, successfully strikes a good balance between

performance and complexity. Additionally, a comparison between the baker’s map

code and digital codes (including the convolutional code and the turbo code) reveals

a surprisingly good performance achieved by the baker’s map code, which is, in

some cases, comparable to or better than digital systems.

15

Chapter 2

Interleaver Design of Turbo Codes

Turbo codes are high performance codes and have found wide utilization in stor-

age and communication systems, including magnetic recording systems, optical

communications, digital video broadcasting, space exploring systems and cellular

networks. Turbo codes are claimed to achieve near Shannon-limit error correction

performance with relatively simple component codes (usually convolutional codes

concatenated in a serial or parallel fashion) and large interleavers. Interleavers are

essential to the overall performance of turbo codes, since a good interleaver can

lead to a lower error floor and earlier decoder convergence, and does not very much

affect the structure of the decoder design. In the case of parallel concatenation,

the two constituent encoders are working on the same set of information bits but

in different bit orders. In other words, when a sequence produces a low-weight out-

put at one constituent encoder, its scrambled counter part will most likely produce

a high-weight output on the other. Hence the overall codeword, combined from

both outputs, will have a decent weight with a high probability. As for decoding,

16

interleavers break up error bursts and de-correlate the reliability information ex-

changed between the two component decoders, such de-correlation warrants the

efficiency of the iterative decoding algorithm and narrows the performance gap

between iterative decoding and the optimal maximum likelihood decoding.

These two effects of interleavers categorize the design strategies into two groups:

the distance spectrum criterion and the effective decoding criterion. The distance

spectrum criterion aims at a large effective free distance deff,free (for turbo codes)

as well as a small multiplicity by mapping the bad pattern which yields a low-

weight output at one component code to a good pattern at another component

code. In this sense, a general rule is maximizing the minimum spread. However,

the spread is not the single most important factor that affects the performance.

For example, a row-column interleaver typically has a larger minimum spread than

a random interleaver, and may exhibit a better performance at short lengths of no

more than a few hundred bits. However, as the length increases to a few thousand

bits, its performance may drop noticeably below that of the random interleaver.

The reason is that the repetition character of a row-column interleaver increases the

multiplicity of its small free distance. Hence, although its minimum free distance

may be larger than that of the random interleaver, it may still not perform well,

especially at large code lengths. Therefore, randomness and spread are both critical

to the performance of interleavers.

Several metrics have been created to evaluate the spread factor. For example,

the minimum spread criterion: An interleaver is said to have a minimum spread

of Sp if any two bits within a distance of Sp are mapped to two positions that are

at leat Sp apart. Crozier relaxed the definition of spread by noting the sum of the

17

distances between two bit positions before and after interleaving [22], namely, the

spread of a bit pair i and j is given by Si,j = |i − j| + |π(i) − π(j)|. However,

the minimum spread criterion does not show the whole picture of spread. Suppose

we have a good interleaver π(i) with length N . Without loss of generality, assume

π(0) = 0. Then we can create a new interleaver π′(i) with length N +1, by letting





π′(i + 1) = π(i) i 6= 0,

π′(0) = 0;
(2.1)

Since the minimum spread of the new interleaver π′(i) is 1, it may follow that the

minimum spread factor criterion that this interleaver is among the worst. However,

as it inherits the majority of the scrambling pattern from the good interleaver, it

will perform decently for the most of the time. This simple example illustrates how

insufficient the minimum spread criterion is in characterizing the spread factor of

an interleaver.

Randomness is another critical factor that affects the performance. For ex-

ample, a row-column interleaver typically has a larger minimum spread than a

random interleaver, and may exhibit a better performance at short lengths of a

few hundred bits. However, its performance may drop noticeably below that of the

random interleaver as the length increases to a few thousand bits. The connection

between the randomness and the performance is not well understood. We do not

even have an effective way to quantify the randomness. Since aiming at various

targets in different situations, the existing random testing methods are not suitable

for use in the interleaver design.

18

This chapter investigate efficient ways to evaluate interleavers in turbo codes.

We proposed two powerful metrics: cycle correlation sum (CCS) quantifies the

spread factor, and variance of the second order spread spectrum (VSSS) quanti-

fies the randomness factor. The CCS metric accounts for the iterative nature of

the message flow in a turbo decoder and evaluates the impact of interleaver de-

sign on the decoder optimization. The VSSS takes into explicit consideration of

quantifying the randomness for different interleavers and attempts to build the con-

nection between randomness and performance of interleavers. These two metrics

give a comprehensive evaluation to the performance of interleaver in turbo codes,

also they make it possible to predict the performance without lengthy simulation,

hence are further utilized to guide the interleaver design. The relations behind the

generation parameters and the design metrics (CCS and VSSS) are analyzed and

proved, and simulation results demonstrated that the new design rules for coprime

interleaver improve the performance.

2.1 Typical Interleavers

A length-N interleaver is a single-input single-output device that provides a one-

to-one mapping of an alphabet set A ≡ {0, 1, ..., N−1} to itself. Let π and π−1

denote interleaving and its reverse operation (known as de-interleaving). We say

position i is interleaved to position j if

π(i) = j, i, j ∈ A (2.2)

or π−1(j) = i, i, j ∈ A (2.3)

19

A matrix interleaver, or a row-column interleaver with parameters M(p×q,N),

formats the N input data bits in a matrix of p rows and q columns. The data are

written in along the rows and read out along the columns.

A S-random interleaver [23] donated by S(s = w,N), is a randomly generated

interleaver which guarantees the minimum spread is at least w, where N is the

interleaver length.

Random interleavers, and especially S-random interleavers, generally perform

better than row-column interleavers, but the need to store the entire scrambling

pattern makes their application costly, especially in systems that have limited

storage, but require the use of an exceptionally long code or the support of a few

different code lengths. Algebraic interleavers, on the other hand, can be generated

on-the-fly using well-defined algebraic formula with only a few seeding parameters.

For example, the coprime interleavers are generated by only two parameters. Below

we review a few useful classes of algebraic interleavers and coprime interleavers.

A coprime interleaver donated by C(a, b, N), is a structured interleaver whose

interleaving pattern is defined recursively as [24]:





π(0) = 0;

π(i) = mod
(
aπ(i− 1)+b , N

)
, i=1, 2, ...N−1,

(2.4)

where N is the interleaver length, π(i) is the new position to which indice i should

be scrambled, and mod(x, N) denotes the modulo N arithmetic. The seeding

parameters a and b need to satisfy the following set of rules to ensure one-to-one

mapping:

20

1. 0 < a < N , 0 ≤ b < N , and b be relatively prime to N ;

2. (a− 1) be a multiple of c, for every prime c dividing N ;

3. (a− 1) be a multiple of 4, if N is a multiple of 4.

Since the value of the starting point π(0) has little impact on the interleaving

performance, we have set it to 0 in (2.4) for convenience.

The recursion in (2.4) imposes a constraint for sequential implementation which

may cause a long delay. An alternative form expresses π(i) as a direct function of

its indice i and hence allows for parallel implementation:

1) a 6=1:

π(i) = mod(b
i−1∑
j=0

aj, N)

= mod(
(1− ai)b

(1− a)
, N), i = 0, 1, ...N−1. (2.5)

2) a = 1:

π(i) =





0, i = 0,

mod(π(i−1)+b,N), i=1, ...N−1

= mod(b i ,N), i=0, 1, ...N−1. (2.6)

A coprime interleaver C(1, b, N) as defined in (2.6), is also termed linear co-

prime interleaver and denoted as LC(b,N).

21

A golden linear coprime interleaver [25] G(N) is an LC(b,N) interleaver, whose

b is chosen to be the closest integer to the golden section of N , i.e. b is closest to

b (
√

5−1)×N
2

+ 0.5c and relatively prime to N .

Two classes of algebraic interleavers are particularly worth mentioning. The

Welch-Costas interleavers make essential use of the Costas array, offer perfor-

mances comparable to random interleavers, and allow for efficient implementa-

tions [26]. One drawback, however, is the high complexity in the design procedure,

since searching for a primitive element in the Galois field GF (N) can be nontrivial

especially for large N . Further, for many practical interleaver lengths of N =2m,

the Welch-Costas interleavers do not exist. Another notable class of algebraic

interleavers are the Takeshita-Costello interleavers [27], which have been proven

to possess several desirable properties as random interleavers. However, since its

interleaving pattern can not be derived directly from the input indices, an inter-

mediate sequence of length N has to be computed and stored, thus diminishing

the storage advantage of a typical algebraic interleaver.

A Welch-Costas interleaver is generated according to the following rule [26]:

π(i) = mod((ai
1), N)− 1, i = 0, 1, ...N − 1, (2.7)

where N+1 is a prime number and a1 is a primitive element in GF (N). Note that

the constraint on N being a prime number minus 1 excludes the possibility for many

interleaver lengths. for example, there does not exist Welch-Costas interleavers at

length N =32, 64, 128, 512, 1024, 2048, 4096.

22

The generating rule of the Takeshita-Costello interleavers is [27]:

Ci = mod((a2 × (i− 1)× i/2), N), (2.8)

π(Ci) = Ci+1, (2.9)

where the interleaver length N should be 2m (m is an integer), and the parameter a2

should be an odd number smaller than N . As mentioned before, the intermediate

sequence {Ci} needs to be generated and stored before performing interleaving or

de-interleaving.

Since an interleaver that performs well for one turbo code (with specific con-

stituent convolutional codes) in general also performs well for a class of turbo

codes with the same constraint length, we thus concentrate the search on one

sample turbo code, but the search results generalize to the entire class.

2.2 Metric 1: Cycle Correlation Sum (CCS)

According to the definition, all the coprime interleavers having a length N = 2k

for some integer k can be generated by a pair of parameters a and b, where a =

4× c + 1, 0 ≤ c < N/4, and b is an odd integer. Our first tool is the CCS metric,

which regards the correlation between the extrinsic input and output sequences of

a BCJR decoder as the indication of the interleaver quality [28].

From the coding theory, the performance of an iterative decoder will approx-

imate that of the optimal decoder when the code graph is free of cycles or when

the outbound message from any computing unit does not circulate back. That

23

latter condition translates to minimal correlation between the outbound message

and the subsequent inbound message. In the case of turbo decoders, completion

of any round of message exchange between the two component decoders inevitably

introduces such undesirable message correlation. To see this, consider bits i and j

in the first component code which are interleaved to bits π(i) and π(j) in the sec-

ond component code. Since i and j are part of a convolutional codeword, they are

inherently correlated. Hence, the reliability information carried by i is transferred

to the output extrinsic information of j (through the BCJR decoding), which in

turn becomes the input extrinsic information for bit π(j). After the BCJR decod-

ing of the second decoder, this reliability information for π(j), originated from bit

i, gets relayed to bit π(i) and, after deinterleaving, is passed back to bit i. Hence,

an important measure for the goodness of an interleaver is its ability to minimize

the average amount of such correlated message carried from one decoder iteration

to the next, where average is performed over all the bits in the sequence.

To quantify the above measure, [28] proposes to evaluate the correlation be-

tween the input and output extrinsic information of the BCJR decoding using

the standard correlation coefficients. It is shown that correlation coefficients are

a function of the Hamming distance between two bits and can be approximated

by an exponential function. Specifically, [28] formulates the correlation between

bits i and j as e−c|i−j|, where c is a parameter. Likewise, the correlation be-

tween bits π(i) and π(j) follows e−c|π(i)−π(j)|, and the correlations induced by cycle

i→ j→π(j)→π(i)→ i becomes e−c(|j−i|+|π(i)−π(j)|). Averaging over all such cycles

24

gives rise to the metric of cycle correlation sum [28]:

CCS =
∑
i,j∈A

e−c(|j−i|+|π(j)−π(i)|) (2.10)

where A ≡ (0, 1, 2, ..., N − 1), and N is the interleaver length. The parameter c is

a constant that is dependent on the component convolutional code, or loosely, the

memory size of the component convolutional codes [28]. A lower value of CCS im-

plies less undesirable message correlation introduced in each decoding iteration, a

higher efficiency in the iterative turbo decoder, and therefore a better performance

achieved by the code. For a more detailed discussion including the computation of

CCS, please refer to [28].

To demonstrate the accuracy of CCS, Figure 2.1 compares the CCS predictions

and their corresponding performances for linear coprime interleavers (a = 1) at

length N = 100 and 128 bits. For all the possible values of b, the simulated

bit error rate (BER) matches remarkably well with the CCS prediction, with a

complete and accurate identification of all the worst choices of b (what we should

definitely avoid) and a quite accurate identification of the best choices of b (what

we wish to attain).

2.3 Evaluating Algebraic Interleavers by CCS

We classify coprime interleavers by their performances as indicated by the CCS

metric, and subsequently formulate the rules for good parameters that will lead

to performance on par with or better than random interleavers. To complete

25

0 10 20 30 40 50 60 70 80 90 100
10

−4

10
−3

10
−2

10
−1

C
C

S

[1,3] [33] [49,51] [67]

[97,99]

[7] [43,47] [53,57]

[83,91,93]
[17] [83]

Linear coprime interlaver, interleaver length = 100

[37] [27] [63]

(27,37,63,73 are the best values for b)

[73]

b

0 5 10 20 30 40 50 60 70 80 90 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

b

B
E

R

[33]

[49,51]

[67]

[1,3] [97,99]

[7]
[43,47]

[53,57]
[83]

[89,91,93]
[17] [29]

[27] [37] [63] [81]

 Linear coprime interlaver, interleaver length = 100

(27,37,63,73,81 are the best values for b)

[73]

0 20 40 60 80 100 120 140
10

−4

10
−3

10
−2

b

C
C

S

[21] [25]

[31,33]

[43]

[51]

[47, 49](49 is the best value for b)

[63,65]

[111]

 Linear coprime interlaver, interleaver length = 128

0 20 40 60 80 100 120
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

0 20 40 60 80 100 120
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

[21]

0 20 40 60 80 100 120
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

[21]

[21] [25]

[31,33]

[111][49](49 is the Best point)

[63,65]

[51]

[43]

Relative−prime interleaver, length = 128bits

Figure 2.1: Comparison between CCS predictions and simulations results on a
turbo code with component code [1, 5/7]. Top row: CCS prediction and simulated
BER of a length 100 linear coprime interleaver; Bottom row: CCS prediction and
simulated BER of a length 128 linear coprime interleaver. Evaluating SNR=3.0dB.

the CCS evaluation, we further compare coprime interleavers with Welch-Costas

interleavers, Takeshita-Costello interleavers, random interleavers and S-random in-

terleavers through graph representation and computer simulations.

2.3.1 Analysis and Classification of Algebraic Interleavers

Figure 2.2 evaluates the performance of a host of interleavers with length N =

128 bits, including coprime interleavers (and the Golden prime interleaver), the

26

0 20 40 60 80 100 120 140
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

a = 1
a = 5
a = 9
a = 13
a = 17
a = 21
a = 25
a = 29
a = 33
a = 37
a = 41
a = 45
a = 49
a = 53
a = 57
a = 61
a = 65
a = 69
a = 73
a = 77
a = 81
a = 85
a = 89
a = 93
a = 97
a = 101
a = 105
a = 109
a = 113
a = 117
a = 121
a = 125

Parameter−b (Coprime interleaver), length = 128

CCS

random interleaver

s−random interleaver s=7

s−random interleaver s=8

golden point

Takeshita−Costello

Figure 2.2: The CCS values of coprime interleavers, random interleavers, S-random
interleavers and the Takeshita-Costello interleavers. N = 128.

Takeshita-Costello interleaver, several random interleavers and S-random inter-

leavers. (Length-128 Welch-Costas interleaver does not exist). The y-axis repre-

sents the CCS value. The x-axis represents the value of b for coprime interleavers

and the value of a2 for the Takeshita-Costello interleavers. We tested all the sub-

classes of coprime interleavers with a = 4n+1, 0≤n < 32 and all odd values of b.

Different values of a are marked with different line types.

Let us start with S-random interleavers whose performances are delineated by

the set of straight horizontal lines located at CCS=0.00035 to 0.0004. From the

27

plot, most of these straight lines are hugging around CCS=0.0004 and form one

thick line. They correspond to the five S-interleavers we found with spread factor

s=7. The thin line slightly below them at CCS=0.00035 is an S-interleaver with

s=8. Since the spread factor is upper bounded by
√

2N for a length N S-random

interleaver, these interleavers we tested are about the best S-random interleavers

of length 128.

Next, look at the bundle of blue horizontal lines at around CCS=0.001 in Fig-

ure 2.2. They correspond to the five random interleavers we tested (generated ran-

domly), the set of Takeshita-Costello interleavers generated using (2.8) and (2.9)

with different values of a2, and several subclasses of coprime interleavers. First,

the performances of the Takeshita-Costello interleavers are not sensitive to the pa-

rameter a2 (denoted by the x-axis) and fall right in the random interleaver region

according to CCS. This confirms the claim that they are structured interleavers

but behave like random interleavers [27]. Similar results of the Welch-Costas in-

terleavers (i.e. perform similar to random interleavers and insensitive to a1) are

obtained for interleaver length of 100 bits, but the plot is omitted due to the space

limitation. Third, the subclasses of coprime interleavers that fall in this perfor-

mance category have a=5, 13, 21, ...125. Unlike other subclasses, the performances

of these coprime interleavers are consistently close to that of random interleavers

regardless of the value of b. It is remarkable to note that this observation is not

unique to length N = 128. In general, it appears that for any given length N ,

there exists subclasses of coprime interleavers which perform unanimously close to

random interleavers. These subclasses, thereafter referred to as regular coprime

interleavers, are determined by a single parameter a (provided that b is coprime

with N). From extensive tests, when N = 2m, the subclasses having a = 8k−3

28

where k=1, 2, ..., N/8 form regular prime interleavers.

In addition, we observe that coprime interleavers can be classified in several

categories in accordance to their ensemble CCS values. For the case of N = 128

shown in Figure 2.2, regular coprime interleavers clearly form one category. The

subclasses with a = 9, 25, ..., 8k+1, ..., 121 (marked with red cross) form a second

category, whose CCS values are either slight above or slight below that of random

interleavers depending on b. Then there is the category with a = 17, 49, 81, 113

(marked with green diamonds), whose performances vary more noticeably with

the different choices of b. Finally, the subclasses of a = 1 and 65 (marked with

red plus signs) see the largest performance variation with respect to b. These

subclasses consist of a hybrid of “extreme” interleavers, i.e. the worst coprime

interleavers that lag far behind the others and the best coprime interleavers that

can outperform random and S-random interleavers. We are unable to formulate a

rule for the desirable choices of b, but the Golden prime interleaver with a=1 and

b=0.618×N =79 is certainly one good example.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Coprime interleaver,
 a = 1, b = 63,

frame length = 100

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Coprime interleaver,
 a = 1, b = 79,

frame length = 128

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Coprime interleaver,
a = 33, b = 79,

frame length = 128

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Coprime interleaver,
a = 5, b = 79,

frame length = 128

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Welch−Costas interleaver,
 a = 11, frame length = 100

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Takeshita−Costello
interleaver, a = 41,
frame length = 128

Figure 2.3: Scatter-plot representation for interleavers with N =100 and 128.

29

To summarize, we have the following major results:

1. The ensemble of coprime interleavers comprises different subclasses parame-

terized by a. In general, the interleaver performances in each subclass are also

dependent on b. However, some subclasses exhibit a quite strong dependence

while some others appear rather insensitive.

2. One important subclass is the linear coprime interleavers where a=1. Despite

its simplicity, it consists of some of the best coprime interleavers which can

outperform random interleavers and S-random interleavers (for short lengths)

[28] (e.g. the Golden prime interleaver). Since it also consists of some of the

worst interleavers, the value of b should therefore be chosen with caution.

3. There exist several subclasses of coprime interleavers, referred to as regular

coprime interleavers, which perform as well as random interleavers. Reg-

ular coprime interleavers are attractive for their random-like behavior and

cheap implementation. For N =2m, the following parameters lead to regular

coprime interleavers:





a = 8k − 3, k = 1, 2, ..., N/8

b = 2t− 1, t = 1, 2, ..., N/2
(2.11)

2.3.2 Graph Representation and Simulations

As a complement to the CCS evaluation, we visualize the randomness of some

interleavers using graphs. As shown in Figure 2.3, a length-N interleaver can be

represented using an N×N grid or lattice where the y-axis represents the original

30

sequence i and the x-axis indicates the interleaved sequence π(i).

The coprime interleavers with N = 100, a = 1, b = 63 (top-left) and N = 128,

a=1, b=79 (top-right) are the Golden prime interleavers. Despite their regularity

which may lead to repeated and periodic error patterns, Golden prime interleavers

offer quite good performances especially at short lengths.

The coprime interleaver with N = 128, a = 33, b = 79 (mid-left) is an example

of a poor interleaver. The undesirable interleaving pattern is obvious from the

existence of many repeated (error) patterns and in particular the many vulnerable

pairs with very short Euclidean distances [28].

The three other interleavers, the regular coprime interleaver with parameters

N = 100, a = 5, b = 79 (mid-right), the Welch-Costas interleaver with N = 100,

a1 =11 (bottom-left), and the Takeshita-Costello interleaver with N =128, a2 =41

(bottom-right), are clearly examples of algebraic interleavers that are constructed

using structure yet exhibit random-like behavior.

Further, it is interesting to compare the three interleavers on the top-right,

mid-left and mid-right, all of which have b=79, the Golden section. Depending on

a, they exhibit very different properties: regular but still good, regular and bad,

and random-like and hence good. This points out the importance to understand

the classification of coprime interleavers and the impact of the parameters on their

behavior, and to subsequently make informed choices.

Finally, we provide the SNR-vs-BER performance of regular coprime inter-

leavers in Figure 5.13, and compare it with that of the Takeshita-Costello inter-

leavers and random interleavers. Two different interleaver lengths of 128 bits and

31

2048 bits are simulated for a turbo code with two identical component codes of

generator polynomial [1, 5/7]. The simulation results confirm that regular coprime

interleavers perform as well as random interleavers and the Takeshita-Costello in-

terleavers.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Random interleaver(128bits)
Regular oprime interleaver(128bits)
Takeshita−Costello interleaver(128bits)
Regular coprime interleaver(2048bits)
Takeshita−Costello interleaver(2048bits)
Random interleaver(2048bits)

2048 Bits

128 Bits

Figure 2.4: BER performance of the random-like interleaver.

To summarize, algebraic interleavers are preferable due to practical concerns

such as reduction of hardware requirements and interleaving/deinterleaving oper-

ations. We have investigated the behavior of random interleavers and random-like

algebraic interleavers using the CCS metric. With the above investigation, we

32

found that random interleavers and S-random interleavers fall into the fixed re-

gions in the CCS plane. The Welch-Costas interleavers, the Takeshita-Costello

interleavers and certain subclasses of coprime interleavers will also stay in the ran-

dom interleaver region. Following this observation, we propose a bank of good

interleavers, termed regular coprime interleavers, and formulate their parameters

for interleaver lengths of power of 2. Graph representation and BER simulations

further confirm the randomness and the good performance exhibited by regular

coprime interleavers. In addition, we found that the subclass of linear coprime

interleavers (a = 1), although simple, contain some of the best interleavers. How-

ever, caution should be taken in choosing parameter b, since the same subclass also

contain some of the worst interleavers.

We therefore propose the regular coprime interleavers as a strong candidate

for practical turbo codes. They offer similar performance as the Welch-Costas

interleavers, the Takeshita-Costello interleavers, and random interleavers, but are

simpler, more storage efficient and easily parallelizable.

In the next section, we will prove that regular coprime interleavers (cpower=0)

have the largest randomness degree among all the coprime interleavers and that

the degree of randomness decreases with the increase of cpower. Hence, it appears

that randomness and spread can not be optimized at the same time, and one must

strike a good trade off between the two aspects.

33

2.4 Metric 2: Variance of the second-order spread

spectrum (VSSS)

We first introduce the concept of variance of the second-order spread spectrum

(VSSS) to characterize the degree of randomness for an interleaver [29]. We next

show that regular coprime interleavers have the maximal degree of randomness.

Definition 2.1: Let i and j be the input bit-pair of an interleaver with length

N , and π(i) and π(j) be the corresponding interleaved bit-pair. Let u and v be

the distances where 1 ≤ u = |i−j| ≤ N−1 and 1 ≤ v = |π(i)−π(j)| ≤ N−1.

Let Su,v be the number of the weight-2 patterns (i-j pairs) with the same u and v.

Then the set of Su,v forms an (N−1)-by-(N−1) matrix (termed the second-order

spread spectrum matrix [29]), with u indexing the rows and v indexing the columns.

V SSS is defined as
∑

u(var(Su,:))/(N−1), where var(Su,:) stands for the variance

of u-th row in the spread matrix. [29] shows that a smaller V SSS indicates a larger

degree of randomness of the interleaver.

Definition 2.2: Consider a function z = F (x, y), 0 < x < m, 0 ≤ y < m−1. Let

mz,x denote the number of y which generates the same z, for a given x. We define

the matrix MF , whose entries are mx,z with x and z representing the row index

and column index respectively, as the input-output-matrix of function F (x, y). The

variance of MF is defined as
∑

x(var(mx,:))/(m− 1).

Lemma 2.1: For a given u ∈ {1, 2, ..., N − 1}, the elements contained in the set

34

{A(i)}, where

A(i1) = mod(b
au − 1

a− 1
ai1 , N), i1 = 0, 1, ...N − 1, (2.12)

will not co-exist in the set {B(i)}, where

B(i2) = N −mod(b
au − 1

a− 1
ai2 , N), i2 = 0, 1, ...N − 1. (2.13)

where N is a power of 2, both a, b < N . In addition, a = 4c + 1 where c is

integer, and b is relative prime with N .

∇ Proof: (Proof by contradiction) If an element A(i1) in sequence (2.12 equals

to an element B(i2) in sequence 2.13, we have

mod(b
au − 1

a− 1
ai1 , N) + mod(b

au − 1

a− 1
ai2 , N) = N. (2.14)

Without loss of generality, we assume i1 ≤ i2 and let t = |i2 − i1|. We can rewrite

the previous equation as

mod(b
au − 1

a− 1
ai1(1 + at), N) = 0. (2.15)

Consider that au−1
a−1

= 2q1q2 (where q2 is odd).

If N ≤ 2q1 , since N is the power of 2, then A(i1) is always 0 and B(i2) is always

N.

35

If N > 2q1 , we have

mod(bq2a
i1(1 + at), N/2q1) = 0. (2.16)

and subsequently

mod((1 + at), N/2q1) = 0. (2.17)

Following the definition of coprime interleavers and substituting a with a =

4c + 1, we expand this equation to:

mod(
t∑

k=1

(
t

k

)
(4c)k + 2, N/2q1) = 0. (2.18)

It is easy to see that
∑t

k=1

(
t
k

)
(4c)k + 2 is a multiple of 2, and the quotient is odd.

This makes

mod((2B), N/2q1) = 0, (2.19)

where B is odd. Since N > 2q1+1, (2.19) can not hold. Contradiction. 4

Theorem 2.2: If F (x, y) is in the form of

F (x, y) = mod(b
ax − 1

a− 1
ay, N),

then the V SSS of the length-N coprime interleaver generated with parameters a

and b is smaller than the variance of MF for F (u, i), where i and j are any input

pair of the interleaver, and u = |i− j|.

36

∇ Proof: Given a pair (u, v), we can find a set Ci of i satisfying v = F (u, i),

then mu,v equals the size of Ci.

On the other hand, according to the definition of coprime interleavers, we have

v =





mod(bau−1
a−1

ai, N), π(j) > π(i),

N −mod(bau−1
a−1

ai, N), π(j) ≤ π(i).

(2.20)

We divide Ci into two subsets: C
(1)
i for π(j) > π(i) and C

(2)
i for π(j) < π(i),

such that C
(1)
i

⋃
C

(2)
i = Ci and C

(1)
i

⋂
C

(2)
i = φ. Hence the size of C

(1)
i is not larger

than the size of Ci, which equals to mu,v.

For a coprime interleaver π, using (2.20), and given u and C
(1)
i , we get the

unique output v1. Now from Lemma 1, given u, C
(1)
i contains all the is that will

generate v1. Hence, Su,v1 equals the size of C
(1)
i , and it is smaller than mu,v.

Following the same line of derivation, when we assume that the set C
(2)
i will

generate v2 under u, we will get that mu,v ≤ Su,v2 .

Hence, the value of each element in MF is divided into two parts which corre-

spond to two elements in VSSS. Therefore, V SSS is less than the variance of MF

of F (u, i). 4

Additionally, because F (u, i) is periodic for a given i, we can convert the prob-

lem of maximizing the V SSS of a coprime interleaver to one of increasing the

period of F (u, i).

37

Theorem 2.3: If we break au−1
a−1

down to the product of 2q (even component)

and l (odd component), where l is odd and q is a nonnegative integer, then F (u, i)

and sequence mod(ai, N/2q) have the same period, where N is the power of 2 and

N > 2q.

∇ Proof: Assume the period of F (u, i) is Pf , then

(F (u, i + Pf)− F (u, i)) ≡ 0. (2.21)

From the definition of F (u, v)’s definition, we get

mod((b
au − 1

a− 1
(ai+Pf − ai)), N) ≡ 0. (2.22)

Under the assumption in Theorem 2.3, i.e. au−1
a−1

= 2ql, where l is odd, (2.22)

becomes

mod((b2ql(ai+Pf − ai)), N) ≡ 0. (2.23)

Since both b and l are odd, we have

mod((ai+Pf − ai), N/2q) ≡ 0, (2.24)

This essentially states that Pf is also the period of sequence mod(ai, N/2q). 4

Theorem 2.4: For a coprime interleaver with length N = 2m ≥ 4 and parameters

a and b, if c = (a−1)/4 is odd, then the period of sequence mod(ai, N/2q) is

maximized.

38

∇

Proof: Since N is a multiple of 4 and a = 4c + 1 (see the definition of coprime

interleavers), (2.24) can be simplified to

mod((4c + 1)Pf − 1, N/2q) ≡ 0. (2.25)

Expanding (2.25), we get

mod((

Pf∑

k=1

(
Pf

k

)
(4c)k), N/2q) ≡ 0, (2.26)

which can be re-written as

mod(Pf (4c) +

(
Pf

2

)
(4c)2 + ... + (4c)Pf), N/2q) ≡ 0. (2.27)

Similarly, we can factorize Pf into a product of an odd component Op and an even

component Ep. Observing that all the terms in
∑Pf

k=1

(
Pf

k

)
(4c)k contain 4cEp, we

can extract it and move it before the summation. The remainder can be denoted

by an odd number A. Finally, (2.27) becomes

mod(A4Epc, N/2q) ≡ 0. (2.28)

On the other hand, since Pf is the period, it is the smallest number satisfying

(2.24). Thus the smallest possible value Pf is Ep (when Op = 1). More important,

consequently, only when c is odd, Ep can be maximized as N/2(q+2). Finally,

Pf = N/2(q+2) is the largest period possible, obtained when c is odd. 4

39

Corollary 2.5: Among all the coprime interleavers, the regular coprime inter-

leavers (cpower=0) provide the minimal V SSS.

Corollary 2.6: Let c = 2cpowercodd. The degree of randomness as measured by

VSSS decreases with the increase of cpower. The degrees of randomness of all the

coprime interleavers remain at the same level for the same cpower.

2.5 Interleaver Design and Simulations for co-

prime interleaver

As shown in the previous discussion, the largest degree of randomness and the

largest spread can not be achieved at the same time for a coprime interleaver.

As cpower increases, the best spread (indicated by the lowest CCS) in the cate-

gory of coprime interleavers increases, but the degree of randomness (indicated by

VSSS) reduces. Additionally, they both stay at the same level for the same cpower,

irrelevant to codd. Hence for convenience we can take codd = 1.

When we design a coprime interleaver, we need to first carefully select the

parameter a = 4c + 1, where c = 2CpowerCodd, and then select b.

• At first, we will choose cpower which determines both the randomness charac-

ter and the range of spread character. For code length N = 2k, cpower could

be any integer from 0 to k − 3, since a ≤ N . To balance the spread and

randomness, we might take some middle value of cpower. On the other hand,

for convenience, we also let codd = 1. Then we can obtain the parameter a

40

and a = 4 · 2cpower + 1.

• After choosing the parameter a that strikes a good balance between the

randomness and the spread, we can search the parameter b to obtain the

maximal spread by minimizing the CCS.

As an example, consider N = 2048. We have 10 categories of coprime inter-

leavers, exemplified by a = {1, 5, 9, 17, 33, 65, 129, 257, 513, 1025}, each associated

with a different cpower: cpower = ∞, 0, 1, ..., 7, 8. To get a good balance between the

spread and the randomness, we choose cpower = 5, that is a = 129. Then we will

search the parameter b to obtain the lowest CCS associated with a = 129. Finally

we get a = 129 and b = 161.

We compare the BER performance of the coprime interleaver (a = 129, b = 161)

and two S-random interleavers (spread s = 10, 20) based on a turbo code with code

length 2048 on AWGN channels. We use [5,7] as the component code of the turbo

code, and the code rate is 1/3. For each frame, we performed 8 rounds of iterations.

From Figure 2.5, we see that our optimized coprime interleaver outperforms the

S-random interleaver with s = 10 by 0.2db. It provides a performance better than

the S-random interleaver with s = 20 at low to medium SNRs and a comparable

performance at high SNR.

2.6 Conclusion

Algebraic interleavers are preferable due to their simplicity in hardware implemen-

tation and economy in storage. Algebraic interleavers with good randomness and

41

0.5 1 1.5 2
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

SNR (db)

B
E

R

S−random interleaver(s=10)
S−random interleaver(s=20)
Coprime interleaver with a =129 and b = 161
Random interleaver

Figure 2.5: BER of the optimized coprime interleaver (a = 129, b = 161) and
S-random interleavers (s=10,20) for N = 2048.

spread properties promise great performances at low cost.

In this chapter, we investigates the coprime interleavers, a rich subset of alge-

braic interleavers. For interleavers whose lengths are powers of 2, we formulated a

critical parameter cpower, which captures some important behavioral properties of

coprime interleavers. We used the cycle correlation sum criterion (CCS), to mea-

sure the minimum spread, and the variance of the second order spread spectrum,

to measure the degree of randomness, for coprime interleavers. With the increasing

cpower, the CCS property becomes better, while the randomness property becomes

worse. Since the optimal degree of randomness and the optimal spread cannot

be simultaneously achieved for coprime interleavers, we formulated a rule to find

interleaver parameters that strike the a good balance between them. Simulations

42

confirm the effectiveness of our rule by demonstrating that optimized coprime in-

terleavers perform as well as or better than S-random interleavers.

43

Chapter 3

Gaussian Assumption of LDPC

Codes

The breakthrough of turbo codes and low-density parity-check (LDPC) codes has

revolutionized the coding research with new concepts for successful error correction:

a paradigm of constructing long, powerful codes using short, weak component codes

and decoding them using soft, iterative decoders with manageable complexity. To

fully understand soft-iterative decoding, researchers explored stochastic approaches

which model the input and output of a soft decoder as random processes and track

the evolution of their statistic characteristics through iterations. This resulted in

the renowned method of density evolution (DE) [2], a useful method for asymp-

totic performance analysis and optimization of sparse-graph codes [5]. The original

DE tracks the complete probability density function (pdf) of the messages, which

unavoidably involves infinite or huge dimensional algebra, and is therefore compu-

tationally tedious. Remedy was then proposed to approximate the log-likelihood

44

(LLR) messages exchanged between component decoders by a Gaussian distri-

bution [3] [4]. This Gaussian assumption (also termed Gaussian approximation

(GA)), when combined with the symmetry condition (known to preserve in any

message-passing algorithm [5]), leads to a remarkable doubling relation, namely,

the variance equals twice the mean. σ2 = 2µ. The results is a significant simplifi-

cation of DE, since it now suffices to track a single scalar parameter (i.e. mean or

variance or some function of them) rather than the entire message pdf.

Building upon the successful idea of DE, [6] proposed to use extrinsic infor-

mation transfer (EXIT) charts to characterize the behavior of iterative decoding

as the temporal evolution of the extrinsic mutual information (MI) exchanged be-

tween different computational units. Although they were initially proposed largely

as a visualization tool, recent studies have revealed surprisingly elegant and useful

properties of EXIT charts, including, for example, the convergence property, the

area property, and code optimization through curve fitting [30] [31].

Despite the significant role the Gaussian assumption has played in simplifying

and popularizing these methods, the justification of this assumption is largely prag-

matic. This seems-to-work philosophy has underlined the analysis of the iterative

decoding for much of its short history, and it is only recently that [7] provided a

statistical analysis on the accuracy of the Gaussian assumption for turbo codes.

As a parallel to [7], this work provides a statistical justification for LDPC codes.

We investigate when and how well the Gaussian distribution approximates the

real message density, and the far subtler why. We will show that the Gaussian

assumption is statistically sound (i) when the LLR messages extracted from the

channel are reasonably reliable to start with, and (ii) when the check node degrees

45

of the LDPC code are not very high, but the assumption is much less accurate when

one or both conditions are violated. Extensive simulation results are provided to

exemplify and verify the discussion.

The analysis of GA naturally leads to the study of EXIT charts for LDPC

codes. We differentiate two cases: (1) When GA is (reasonably) accurate and

so are EXIT charts, we consider simplifying the computation of EXIT charts by

avoiding the many cumbersome integrations involved in the EXIT formulation. A

previous effort was made in [30], but the model therein involves many parameters.

The new formulation developed here is much simpler, and works well for both

regular and irregular LDPC codes. As part of the investigation, we also derive

several simple and good closed-form approximations for evaluating the mutual

information between bits and their LLR messages. These approximations can be

applied to codes beyond LDPC codes. (2) When the Gaussian approximation

is less accurate and so the doubling relation is less accurate, we compare several

mutual information formulas computed using either the mean, the variance or both

parameters. We show that different choices of formulations will lead to different

levels of accuracy in EXIT charts, and with the right choice, a good level of EXIT

accuracy is achievable (dispute the discrepancy between the true message density

and the Gaussian distribution). A similar observation was noted previously [6],

but we have included more comparison cases. Hence, for practical purpose, the

Gaussian assumption and the doubling relation may still be used for EXIT analysis.

It then follows that the simple EXIT model we developed for Case (1) is also

practically useful in Case (2) where Gaussianity actually breaks. We also show

that it is possible, but rather tedious, to simultaneously track the evolution of the

message mean and variance, and to use them to obtain a very close approximation

46

to the true EXIT curves.

The remainder of the chapter is organized as follows. Section 3.1 briefs the

the background of LDPC decoding and the notations used in the chapter. Section

3.2 discusses lognormal distributions and establishes several properties useful for

our analysis. Section 3.3 discusses the accuracy and the applicable region of the

Gaussian assumption. Section 3.4 proposes a new simple EXIT formulation. Sec-

tion 3.5 discusses accuracy of different mutual information formulations for EXIT

chart when Gaussian assumption is less accurate. Finally, Section 3.6 concludes

the chapter.

3.1 Background and Notations

An (n, k) LDPC code is a linear channel code characterized by a sparse parity

check matrix H = {hi,j} with n columns representing all the bits in the codeword

and m ≥ n−k rows representing the parity constraints imposed on the coded bits.

Practical decoding of LDPC codes makes essential use of bipartite graphs, known

as Tanner graphs (or factor graphs which are generalization of Tanner graphs), to

represent codes, and to pass probabilistic messages along the edges of the graph.

The Tanner graph for an (n, k) LDPC code consists of n variable nodes corre-

sponding to the columns in H, m check nodes corresponding to the rows in H, and

multiple edges connecting the two types of nodes. An edge connects ith variable

node and jth check node if and only if hij = 1. The number of the edges connected

to a node is termed the degree of this node. We will use dv and dc to represent the

degree of a variable node and a check node, respectively.

47

Consider message-passing decoding over an LDPC Tanner graph, where soft

extrinsic information iterates between variable nodes and check nodes, and up-

dates itself after each iteration. Let superscript ` denote the number of decoding

iterations, and subscripts i and j denote, respectively, variable nodes and check

nodes. At `-th iteration, the extrinsic information passed from variable node i to

check node j, denoted as m`
ij, and the extrinsic information passed from check

node j to variable node i, denoted as m`
ji, are updated as follows:

m`
ij =





mi, ` = 0,

mi +
∑

j′∈Nc(i)\{j}
m`

j′i, ` > 0.
(3.1)

m`
ji = ln

(
1 +

∏
i′∈Nv(j)\{i} tanh(m`−1

i′j /2)

1−∏
i′∈Nv(j)\{i} tanh(m`−1

i′j /2)

)
, (3.2)

= 2 tanh−1
(∏

i′∈Nv(j)\{i}
tanh

m`−1
i′j

2

)
, (3.3)

=
(∏

i′∈Nv(j)\{i}
sign(m`−1

i′j)
)
· Φ

(∑

i′∈Nv(j)\{i}
Φ

(
m`−1

i′j

))
, (3.4)

where Nc(i) is the set of check nodes connected with i-th variable node, Nv(j) is the

set of variable nodes connected with j-th check node, and mi is the log likelihood

ratio (LLR) of signal si, extracted from ith channel output ri:

mi = ln
Pr(ri|si = +1) Pr(si = +1)

Pr(ri|si = −1) Pr(si = −1)
(3.5)

For equally-probable input and additive white Gaussian noise (AWGN) with a

zero mean and a variance σ2
n, we have mi = 2ri/σ

2
n, and mi follows a (conditional)

48

Gaussian distribution: mi|si ∼ N(2si/σ
2
n, 4/σ2

n). The function Φ(·) in (3.4) is

defined as:

Φ(x) = ln

(
e|x| + 1

e|x| − 1

)
, (3.6)

where for convenience we let Φ(0) = ln(2/0) = ∞. The formulations in (3.2), (3.3)

and (3.4) present three different forms describing the same check update operation.

Our Gaussian analysis in the below will be performed based on (3.4).

3.2 Lognormal Distributions

This section establishes a few useful properties of lognormal distributions, upon

which our analysis of Gaussian approximation is based.

Definition 3.1: [Lognormal distribution] A positive random variable X is said

to be lognormal distributed if its logarithm value ln(X) follows a Gaussian distri-

bution. Using the Jacobian rule, the lognormal pdf for X follows:

fX(x) =
1√

2πxσ
e−

(ln(x)−µ)2

2σ2 , for x > 0, (3.7)

where µ and σ2 are the mean and the variance of ln(X).

To provide a visual impression of how lognormal densities look like, Figure

3.1 plots the pdf curves for 4 lognormal distributions with µ = 0 and σ =

0.5, 1.0, 1.5, 3.0, respectively.

A long-recognized fact in statistics is that the sum of two lognormal random

variables is also lognormal. This statistic rule has been widely applied in many

49

science and engineering fields. For example, it was used to derive the coherent

channel interference model in wireless communications [32] [33] [34] [35] [36] [37]

[38] and to perform risk measuring in finance [39]. Recently, it was also used

to justify the Gaussian assumption in the BCJR decoding algorithm [7]. Here we

exploit this rule to evaluate the Gaussian assumption in the LDPC message-passing

algorithm. Notice that repeated application of this rule tends to suggest that the

lognormal property will preserve even when the number of additive terms becomes

large, which will conflict with the central limit theorem. Below we restate this

statistical rule in a more accurate way by differentiating between correlated and

uncorrelated random variables and between finite and infinite number of terms.

Proposition 3.1: [Sum of Lognormal Variables] The sum of a set of correlated

lognormal random variables follows a lognormal distribution, regardless of whether

the set is finite or countably infinite. The sum of a set of independent lognormal

random variables approximates the lognormal distribution when the set is small,

transforms from lognormal to Gaussian as the set size increases, and eventually

becomes Gaussian in the limit of infinite set size.

The case of correlated random variables can refer to [36]- [38], [39], [7] and may

be verified by simulations (see Figure 3.2 and the related discussion later on). For

independent random variables, the investigation in [40] confirmed that the lognor-

mal approximation is quite accurate for a set size of 10 or smaller. Gaussianity of

the sum in the limiting case follows from the central limit theorem1

Proposition 3.2: [Power Sum of Lognormal Variables] Let X be a lognormal

1Strictly speaking, the application of the central limit theorem requires that no one or few
terms in the set are dominant.

50

random variable, its power sum, defined as

S =
k∑

i=1

aiX
bi , (3.8)

follows a lognormal distribution, where {ai} and {bi} are sets of arbitrary non-zero

constants and k may be either finite or infinite.

∇ Proof: Since X follows a lognormal distribution, there exists a Gaussian ran-

dom variable Z that satisfies the equality X = eZ . Rewrite aiX
bi as ebiZ+ci , where

ci is a constant and ci = ln(ai). Since biZ + ci’s satisfy the correlated Gaussian

distribution (for bi 6= 0), according to the definition of the lognormal distribution,

ebiZ+ci ’s, and hence aiX
bi ’s for ai 6= 0, form a set of correlated lognormal random

variables. Following Proposition 3.1, their sum S will also be lognormal. 4

For LDPC analysis, we are most interested in negative integer values of bi’s.

Since the proof of Proposition 3.2 uses Proposition 3.1 which is a statistical rule-of-

thumb, we perform experimental tests to verify Proposition 3.2. Figure3.2 presents

the histograms, each collected over 10000 test samples, for ln(S) with set size

k = 2, 5, 10, 100 and randomly selected negative integers bi’s. The histograms

demonstrate that ln(S) consistently behaves like a Gaussian variate regardless of

the set size, which confirms the validity of the lognormal approximation for S.

To provide a quantifiable evaluation of how close the empirical data matches the

true Gaussian distribution (and hence to what accuracy Proposition 3.2 stands),

we resort to a goodness-of-fit tool named Kolmogorov-Smirnov (KS) test [41]. The

KS test compares the cumulative frequency of empirical data (normalized by the

sample size) with the cumulative density function (cdf) of a Gaussian distribu-

51

tion by measuring the greatest discrepancy between the two cdf’s. This greatest

discrepancy, termed the Dstatistic [41], is mathematically formulated as expressed

as:

Dstatistic = max
x

(|F (x)−G(x)|), (3.9)

where F (x) represents the normalized cumulative frequency of the observations

that are equal to or small than x, and G(x) represents the standard Gaussian

cdf evaluated at x. For the experimental data in Figure 3.2, the KS tests show

that for k = 2, 5, 20, 100, Dstatistic = 0.0047345, 0.0048123, 0.0087541, 0.0077152,

respectively. The uniformly very small values of Dstatistic confirm that ln(S) is very

close to Gaussian and hence S is very close to lognormal.

Proposition 3: [Distribution of Φ(x) with Gaussian Input] If |X| follows an

(approximate) Gaussian distribution, then Φ(X) in Equation (3.6) follows an (ap-

proximate) lognormal distribution.

∇

Proof: Consider an auxiliary function ξ(z) defined for z ≥ 1 as

ξ(z) = ln(
z + 1

z − 1
), z ≥ 1, (3.10)

Using the Tailor series expansion, ξ(z) can be expressed as

ξ(z) = 2
∞∑

k=1

z1−2k

(2k − 1)
. (3.11)

52

Since e|x| ≥ 1, we substitute for z in (3.11) with e|x| and get

Φ(X) = ξ(e|X|) = 2
∞∑

k=1

e(1−2k)X

(2k − 1)
(3.12)

= 2 (e|X|)−1 +
2

3
(e|X|)−3 +

2

5
(e|X|)−5 + ... (3.13)

Since |X| is (approximately) Gaussian, e|X| satisfies an (approximate) lognor-

mal distribution. Hence, according to Proposition 3.2, Φ(X), the power sum of

lognormal variables e|X| follows an (approximated) lognormal distribution. 4

Comment 3.1: Since |X| ≥ 0, |X| cannot be exactly Gaussian. If X is a

Gaussian variable such that Pr(X ≥ 0) >> Pr(X < 0) (or Pr(X ≤ 0) >> Pr(X >

0)), then |X| equals X (or −X) most of the time and will follow the Gaussian

distribution closely. Hence, when we let a Gaussian random variable X, whose

probability mass is heavily concentrated on one side of the origin, be the input to

Φ(·), then the output, Φ(X), will follow an approximate lognormal distribution.

Proposition 3.4: [Distribution of Φ(X) with Lognormal Input] If X (X ≥ 0)

follows a lognormal distribution, then Φ(X) will follow a Gaussian distribution.

∇

Proof: Let Φ−1(x) denote the inverse function for Φ(x). It is easy to verify that

Φ−1(x) = ln(
e|x| + 1

e|x| − 1
) = Φ(x). (3.14)

Since Φ(X) is self-inversed, and since a Gaussian distribution at the input

53

to Φ(X) will produce a lognormal distribution at the output (Proposition 3.3), it

follows that a lognormal distribution at the input to Φ(X) will produce a Gaussian

distribution at the output. 4

3.3 Accuracy of Gaussian Approximation

This section provides a statistical analysis of when and how well the messages ex-

changed in the message-passing decoding of LDPC codes approximate the Gaussian

distribution.

3.3.1 Validation of Gaussian Assumption in Message-Passing

Decoding

Consider AWGN channels which are symmetric and memoryless: Pr(ri = q|si =

+1) = Pr(ri = −q|si = −1). Since LDPC codes are linear codes, without loss

of generality, we take the all-zero codeword, mapped to si = +1 for all i, as

the reference codeword. Further consider belief propagation on a Tanner graph

with asymptotically unbounded girth, such that the probabilistic messages passed

through different edges from variable nodes to check nodes (as well as from check

nodes to variable nodes) follow an independent and identical distribution.

The variable node update and the check node update are formulated in (3.1) and

(3.4), respectively. Initially, m0
ij = m0

ji = 0 for all i and j, and the LLR information

mi extracted from the Gaussian channel is Gaussian distributed. Thus, the first

set of messages, m1
i,j, passed from variable nodes to check nodes, follow a Gaussian

54

density.

Now suppose that the messages exchanged at (`− 1)th iteration are Gaussian

distributed. We wish to show whether or when Gaussianity is preserved through

the variable node update and the check node update in `th iteration. The main

result of this Section is stated in the below.

Theorem 3.1: [Gaussianity of Messages from Check Nodes] The outbound mes-

sages from check nodes to variable nodes at the `th iteration, m`
ji, can preserve

Gaussianity from the previous iteration, provided that (i) the inbound messages,

m`−1
i′j ,are reasonably reliable and that (ii) the degree of the check nodes is small.

∇

Proof: Consider the check node update in (3.4). Since +1’s are transmitted,

the condition that the inbound messages are reasonably reliable implies that the

majority of m`−1
i′j ’s take positive values. From Proposition 3.3 and Comment 3.1,

|m`−1
i′j | will then approximate a Gaussian distribution and so Φ(m`−1

i′j) will follow an

(approximate) lognormal distribution. Further, Φ(m`−1
i′j)’s are independent from

each other because of the independent assumption for m`−1
i′j ’s. Now Proposition 3.2

states that only the sum of a small set of independent lognormal random variables

will continue to be lognormal. Hence,
∑

i′∈Nv(j)\{i} Φ(m`−1
i′j) will be lognormal when

(and only when) the check node degree, dc(j) = |Nv(j)|, is small, where |.| means

the size of a set. Finally, from Proposition 3.4 that a lognormal distribution at the

input to Φ(·) makes the output Gaussian, we get that Φ(
∑

i′∈Nv(j)\{i} Φ(m`−1
i′j)),

and subsequently m`
ji follow Gaussian distributions.

55

The proof is best summarized as

m`
ji =

[∏

i′∈Nv(j)\{i}
sign(m`−1

i′j)
]
· Φ

(
lognormal 3︷ ︸︸ ︷

∑

i′∈Nv(j)\{i}

lognormal 2︷ ︸︸ ︷
Φ

(
m`−1

i′j︸ ︷︷ ︸
Gaussian 1

))

︸ ︷︷ ︸
Gaussian 4

, (3.15)

where from “Gaussian 1” to “lognormal 2”, it requires m`−1
i′j to be a Gaussian ran-

dom variable with a small tailing probability (which asks for reliable messages to

start with), and from “lognormal 2” to “lognormal 3” it requires the terms in the

summation to be small (which corresponds to small check degrees). 4

Theorem 3.2: [Gaussianity of Messages from Variable Nodes] The outbound

messages from variable nodes to check nodes `th iteration, m`
ij, preserves Gaus-

sianity from the previous iteration.

∇

Proof: The result follows directly from the independence assumption and the

fact the sum of independent Gaussian random variables is also a Gaussian random

variable. 4

Comment 3.2: Theorem 3.2 is rather obvious, and is stated here solely for com-

pleteness. A comment is that, when the variable node degree dv(i) = |Nc(i)| is very

large, according to the central limit theorem, the outbound messages from the vari-

able nodes,
∑

j′∈Nc(i)\j m`
j′i, will behave like Gaussian even if the inbound messages,

m`
j′i, are not. In other words, when the code rate is very small, the discrepancy

between the true message density and the Gaussian distribution, caused by the

check node operation in a decoding iteration, can be mitigated by the succeeding

56

variable node operation.

Gathering Theorem 3.1 and Theorem 3.2, we have:

Corollary 3.1: [Validity of Gaussian Assumption] The LLR messages passed

between the check nodes and the variable nodes of an LDPC code during the

decoding iterations, as well as those produced at the output of the decoder, can be

well approximated by Gaussian distributions, if (i) the input LLRs are reasonably

reliable; and (ii) the check node degrees are not large.

3.3.2 Additional Comments and Simulation Verifications

This section further investigates the accuracy and applicable region of the Gaussian

assumption in the iterative analysis for LDPC codes. From Theorem 3.1 and

Theorem 3.2, two conditions need to be satisfied in order for the message density

to approximate the Gaussian distribution well.

First, the messages passed along the edges need be reasonably reliable to start

with. In general, the message reliability improves with iterations, but to ensure

reliability in the first few iterations, the AWGN channel (or the “virtual” AWGN

channel) on which the LDPC code operates needs to have a reasonably high SNR.

To demonstrate the impact of channel SNR on the message density, we show in

Figure 3.3 the histograms of messages passed from check nodes to variable nodes

during the first iteration, L1
ji, for a LDPC code whose check nodes degree is 4.

As evident from the figure, the message density is very close to Gaussian at high

SNRs (e.g. ≥ 1 db), but starts to deviate noticeably from Gaussian as the SNR

drops low (e.g. ≤ 0 db).

57

Second, the degrees of the check nodes should not be large. The check node

degree of a regular LDPC code relates to the variable node degree and the code rate

by dc = dv/(1− R) (assuming all the rows in the parity check matrix are linearly

independent). For example, a constant variable node degree of 3 will require a

constant check node degree to be 6 for rate 1/2, 9 for rate 2/3, 12 for rate 3/4,

15 for rate 4/5 and so on. This implies that the Gaussian approximation does

work well for high-rate codes (such as rates above 0.8). For verification, Figure 3.4

provides the histograms of the messages m1
ji for a set of LDPC codes having the

same variable node degree of 3 but different check node degrees. To eliminate the

impact of channel SNR, we consider a sufficiently high SNR of 3 db. We observe

that a check node degree of 30 and above (corresponding to rate 9/10 and above)

has caused a large discrepancy from Gaussian density (at this SNR).

It should be noted that the two conditions we just discussed speak for different

dimensions of the problem, and a favorable condition for one may mitigate the

negative impact of the other. To evaluate the effect with both conditions combined,

we show in Figure 3.5 the KS test values of the check node messages in the first

iteration, m1
ji, for different channel SNRs and check node degrees. The Dstatistics

smaller than a critical value of 0.04, marked out in a solid horizontal line, indicate a

close approximation to the Gaussian distribution. Not surprisingly, “a high SNR”

points to different db values for codes with different check node degrees. For a

regular LDPC code with check degree of 4, 0 db appears to be adequate, whereas

for a code with check degree of 30, it requires some 4.5 db before the channel SNR

is considered sufficient.

It is possible to combine the two conditions in one metric by defining the error

58

rate of check nodes as

P `
E =

∫ 0−

−∞
p`

check(m)dm +
1

2

∫ 0+

0−
p`

check(m)dm, (3.16)

where p`
check(m) is the pdf of check nodes at `-th iteration, which can be approx-

imated using statistical histogram. The error rate of the check nodes indicates

the accuracy of the Gaussianity through a threshold of around 0.2. For example,

in Fig. 3.5, all the test points above the Dstatistics = 0.04 horizontal line have

corresponding P `
E larger than 0.2, and those below the line have P `

E smaller than

0.2. This observation also implies that the two conditions which ensure the Gaus-

sianity are also indications of good error rate performance, or, the accuracy of the

Gaussian message density is in line with the good performance of the LDPC code.

Since the (average) variable node degree and the (average) check node degree are

linearly proportional to each other for a given code rate (dv = dc(1 − R)), that

the check node degree should not be large (Condition 2) suggests that the variable

node degree should also be kept small. This is again in agreement with the em-

pirical results that good LDPC ensembles generally have relatively small (average)

variable node degrees between 3 and 6.

To summarize, the Gaussian assumption holds better for codes with low rates

than with high rates, and for channels with high SNRs than with low SNRs.

When evaluating practical scenarios where the code rate is generally smaller than

R = 0.85 and the operating (Gaussian) channel has a reasonable quality, the Gaus-

sian assumption holds good fidelity. However, when computing the asymptotic

threshold which typically concerns a rather low SNR, the Gaussian approximation

is less accurate and will likely affect the accuracy of the analytical result.

59

3.4 A New LDPC EXIT Formulation When Gaus-

sian Assumption is Accurate

Having provided a statistical analysis of the accuracy and applicability of the Gaus-

sian assumption for LDPC codes, we now discuss a few simplifications for tracking

the message evolution and plotting the EXIT charts. Although an EXIT chart

is essentially repeated application of density evolution on the two-part iterative

decoder, its ability to visualize the trajectory of the probabilistic evolution as well

as its elegant properties (such as the area property) make it extremely popular. At

the emergence of the EXIT technique, a number of quantities, including the mean

of the messages, the equivalent SNR, and the corresponding error probability, were

used to describe the EXIT curves, until [6] showed that mutual information, ar-

guably the single most important metric in information theory, is least sensitive to

numerical artifacts and hence most accurate for characterizing EXIT curves.

Below we will first formulate a few simple, closed-form approximations to com-

pute mutual information from LLR messages (Subsection 3.4.1), and further de-

velop a simple new model to compute the EXIT curves (Subsection 3.4.2). The

discussion throughout this section uses the Gaussian assumption.

3.4.1 Simplifying Computation of Mutual Information

Let X ∈ {+1,−1} be a (coded) bit, and Lx be its associated LLR message with pdf

pL(y). Since pL(y|X = +1) = pL(−y|X = −1), the mutual information between

60

X and Lx can be computed using

I(X; Lx) =

∫ ∞

−∞
pL(y|X = +1) · log2

2pL(y|X = +1)

(pL(y|X = +1) + pL(−y|X = +1))
dy.

(3.17)

Now suppose that the message Lx follows a Gaussian distribution with mean

µ and variance σ2, the mutual information can be simplified to

I(X; Lx) = Iµ,σ(µ, σ)
∆
= 1− 1√

2πσ

∫ ∞

−∞
e−(y−µ)2/2σ2

log2(1 + e−y)dy, (bit).

(3.18)

Considering σ2 = 2µ, we can define Iµ(µ)
∆
= Iµ,σ(µ,

√
2µ) and Iσ(σ)

∆
= Iµ,σ(σ2/2, σ),

and rewrite the mutual information as

I(X; Lx) = Iµ(µ) = Iσ(σ). (3.19)

Researchers have investigated simplifying mutual information computation and

LDPC code design such as curve fitting [42], but most published results are for

binary erasure channels (BEC), and do not easily extend to Gaussian channel due

to the integral involved in the latter. One available result for AWGN, proposed

in [42], approximates the mutual information in (3.19) as

Iσ(σ) = J(σ) ≈





aJ,1σ
3 + bJ,1σ

2 + cJ,1σ, 0 ≤ σ ≤ σ∗

1− eaJ,2σ3+bJ,2σ2+cJ,2σ+dJ,2 , σ∗ ≤ σ ≤ 10

1, σ ≥ 10

(3.20)

where σ∗ = 1.6363, aJ,1 = −0.0421061, bJ,1 = 0.209252, cJ,1 = −0.00640081,

61

aJ,2 = 0.00181491, bJ,2 = −0.141675, cJ,2 = −0.0822054, dJ,2 = 0.0549608, and

approximates its inverse function as

J−1(I) ≈





asigma,1I
2 + bσ,1I + cσ,1

√
I, 0 ≤ I ≤ I∗

− aσ,2 ln[bσ,2(1− I)]− cσ,2I, I∗ < I < 1

(3.21)

where I∗ = 0.3646, aσ,1 = 1.09542, bσ,1 = 0.214217, cσ,1 = 2.33727, aσ,2 = 0.706692,

bσ,2 = 0.386013, cσ,1 = −1.75017.

Below we derive a few approximations for mutual information which are sim-

pler (and more accurate) than (3.20). Our discussion herein is not limited to

LDPC codes, but applicable to any code that permits EXIT analysis. We start by

changing the logarithm in (3.19) from base 2 to base e and separating the mutual

62

information in several terms:

Iσ(σ) =1− log2 e√
2πσ

(∫ ∞

0

e−(y−σ2

2
)2/2σ2

ln(1 + e−y)dy+

∫ 0

−∞
e−(y−σ2

2
)2/2σ2

ln(1 + e−y)dy

)

=1− log2 e√
2πσ

(∫ ∞

0

e−(y−σ2

2
)2/2σ2

ln(1 + e−y)dy+

∫ 0

−∞
e−(y−σ2

2
)2/2σ2

(ln(1 + ey)− y)dy

)

=1− log2 e√
2πσ




∫ ∞

0

e−(y−σ2

2
)2/2σ2

ln(1 + e−y)dy

︸ ︷︷ ︸
PartA

+

∫ 0

−∞
e−(y−σ2

2
)2/2σ2

ln(1 + ey)dy

︸ ︷︷ ︸
PartB

−
∫ 0

−∞
e−(y−σ2

2
)2/2σ2

ydy

︸ ︷︷ ︸
PartC




(3.22)

Next simplify the three parts one by one.

For PartA, since y ≥ 0, we have e−y ≤ 1. Using the Taylor series expansion,

we get

ln(1 + e−y) =
∞∑

k=1

(−1)k+1 e−ky

k
(3.23)

Plugging in (3.23) leads to

PartA =

∫ ∞

0

e−(y−x2

2
)2/2x2

∞∑

k=1

(−1)k+1 e−ky

k
dy (3.24)

=
∞∑

k=1

(−1)k+1

k

∫ ∞

0

e−
y2+(2k−1)x2y+ x4

4
2x2 dy. (3.25)

63

Since ∫
e−(ay2+2by+c)dy =

1

2

√
π

a
e

b2−ac
a erf(

√
ay +

b√
a
), (3.26)

where erf(·) is the error function, we get

PartA =
∞∑

k=1

(−1)k+1

k

√
2πσ

2
e

k2−k
2

σ2

erf
(√2

2σ
y +

2k − 1

4

√
2σ

)∣∣∣∣∣

∞

0

(3.27)

=
∞∑

k=1

(−1)k+1

k

√
2πσ

2
e

k2−k
2

σ2

(
1− erf

(2k − 1

4

√
2σ

))
(3.28)

For PartB, we have y ≤ 0 and hence ⇒ ey ≤ 1. Following a similar procedure

as with PartA, we get

PartB =
∞∑

k=1

(−1)k+1

k

√
2πσ

2
e

k2+k
2

σ2

(
1− erf

(2k + 1

4

√
2σ

))
. (3.29)

For PartC , we replace y with y = t + x2

2
:

PartC = −
∫ −σ2/2

−∞
e−t2/2σ2

t dt− σ2

2

∫ −σ2/2

−∞
e−t2/2σ2

dt (3.30)

We again apply (3.26) and arrive at

PartC = σ2e−
σ2

8 −
√

2π

4
x3(1− erf(

√
2

4
x)). (3.31)

To help combine PartA and PartB, we further rewrite PartA in (3.25) by

64

separating the term k = 1 from all the others:

PartA =

√
2πσ

2

(
1− erf

(√2

4
σ
))

+

∞∑

k=1

(−1)k

k + 1

√
2πσ

2
e

k2+k
2

σ2

(
1− erf

(2k + 1

4

√
2σ

))
.

(3.32)

Substituting for PartA, PartB and PartC in (3.22) with (3.32), (3.29) and

(3.31), we get

Iσ(σ) = 1− (
log2 e

)
[

σ√
2π

e−
σ2

8 +
2− σ2

4

(
1− erf

(√2

4
σ
))

+

√
2πσ

2

∞∑

k=1

(−1)k+1

k(k + 1)
e

k2+k
2

σ2

(
1− erf

(2k + 1

4

√
2σ

))]
, (3.33)

which contains only the standard functions. As the number of terms in the sum-

mation approaches infinity, (3.33) converges to I(σ). Since the impact of the terms

become negligibly small for large k, it is a standard practice to truncate after a

few terms to sacrifice a little accuracy in exchange for a significant reduction in

complexity. Specifically, our experiments show that keeping only the first four

terms (k ≤ 4) suffices to give a close approximation. Table 3.1 lists the simulated

distortion and more discussion will follow shortly.

Further, although erf(·) is considered a standard function, it nevertheless in-

volves an integral. In the case when computing erf(·) is cumbersome, we can resort

to curve fitting without going through the Taylor series expansion. Observing that

Iσ(σ) has a curve whose shape is very similar to the exponential function 1− e−x2
,

we hereby propose three possible forms of approximation:

65

1. Form 1: Î(σ) = 1− e−aσ2
;

2. Form 2: Î(σ) = 1− ae−bσ2 − (1− a)e−cσ2
;

3. Form 3: Î(σ) = 1− e−aσb
.

To help determine the parameters a, b and c, we use the mean squared error (MSE)

as the figure of merit. The MSE is defined as

MSE =
1

N

N∑

k=1

(
Îσ(σk)− Iσ(σk)

)2
, (3.34)

where I(·) is the true mutual information given in (3.19), Î(·) is the approximation,

N is the number of test samples, and σk’s are randomly generated positive real

number. Through a computer-assisted search, we have found the following to be

good parameters:

Form 1: a = 0.16, (3.35)

Form 2: a = 0.83, b = 0.141, c = 0.355, (3.36)

Form 3: a = 0.178, b = 1.894. (3.37)

The MSE distortion of these three exponential forms and two truncated Taylor

series that are truncated after k = 1 term and k = 4 terms are evaluated and listed

in Table 3.1. For comparison purpose, the approximation proposed in [42] is also

listed. The results are obtained over N = 1000 test samples with each σ randomly

generated between 0 and 10. The reason we direct more attention to σ ≤ 10 is

because the mutual information becomes extremely close to 1 for σ ≥ 10.

66

We see that Form 2 and Form 3 provide the best approximation with the least

distortion. It is also worth noting that Form 3 has a simple inverse function, which

is particularly useful as we derive a new EXIT formulation in the next subsection.

The theorem below summarizes the results discussed in this subsection:

Theorem 3.3: [Closed-Form Approximation for Mutual Information Iσ(σ)] Un-

der the Gaussian assumption, the mutual information between the (coded) bits

and their LLR messages, as defined in (3.19), can be closely approximated by

I(X; Lx) = Iσ(σ) ≈ 1− (
log2 e

)
[

σ√
2π

e−
σ2

8 +
2− σ2

4

(
1− erf

(√2

4
σ
))

+

√
2πσ

2

4∑

k=1

(−1)k+1

k(k + 1)
e

k2+k
2

σ2

(
1− erf

(2k + 1

4

√
2σ

))]
,(3.38)

≈ 1− 0.83e−0.141σ2 − 0.17e−0.355σ2

, (3.39)

≈ 1− e−0.178σ1.894

. (3.40)

Substituting µ = 2σ2/2 in (3.40), we get

Corollary 3.2: [Approximation for Mutual Information Iµ(µ)]

I(X; Lx) = Iµ(µ) ≈ 1− e−0.343µ0.947

(3.41)

3.4.2 A New Formulation for Computing EXIT Charts

Having simplified the computation of mutual information, we now proceed to sim-

plifying the computation of LDPC EXIT charts. The new formulation makes

67

explicit use of Form 3 which has a low distortion and a simple inverse function.

For notational convenience, define (i.e. rewrite (3.41))

η(x)
∆
= 1− e−0.343x0.947

, x ≥ 0, (3.42)

whose inverse function is

η−1(x)
∆
= −3.094 (ln(1− x))1.056, 0 ≤ x ≤ 1, (3.43)

where ln(0) = −∞.

Let µA and µE be the mean of a priori and extrinsic LLRs, and IA and IE be

the a priori and extrinsic mutual information, respectively. According to (3.41) in

Corollary 3.2,

IA = η(µA), IE = η(µE). (3.44)

If the relation between µA and µE can be explicitly formulated for a given

LDPC code, then its EXIT curves can be computed efficiently, obviating lengthy

Monte Carlo simulations or complicated calculations. Further, as an immediate

implication of the area property and the convergence property of EXIT charts, a

channel code needs to be optimized such that the EXIT curves corresponding to

the (two) local computing units match closely to each other [30]. Hence, a simpler

EXIT formulation, when combined with curve fitting, also facilitates the design of

the optimal degree profiles for LDPC codes.

Consider an LDPC code with check node degree dc and variable node degree

68

dv, the relation between the message mean of variable nodes, µv, and the message

mean of check nodes, µc, is given by [4]

µv = µ0 + (dv − 1)µc; (3.45)

µc = ϕ−1(1− (1− ϕ(µv))
dc−1), (3.46)

where µ0 = 4SNR (SNR here is not in the logarithm domain and does not use

db as the unit) is the message mean from the Gaussian channel. The authors

of [4] provided the definition of 1 − ϕ(x), as well as a closed-form approximation

for x ≤ 10. Our study leads to a similar form to that in [4], but uses different

parameters and works well for the entire region of x:

ϕ(x)
∆
=





1√
4πx

∫ ∞

−∞
tanh

u

2
e−

(u−x)2

4x du, if x > 0;

0, if x = 0,

(3.47)

≈ 1− e−0.432x0.88

, x ≥ 0, (3.48)

Gathering (3.42), (3.45) (3.46) and (3.48), we obtain a simpler model for com-

puting the EXIT charts:

Theorem 3.4: [EXIT Model for Regular LDPC Codes] Under the Gaussian as-

sumption, the EXIT curves for a (dv, dc)-regular LDPC code with unbounded girth

can be computed directly using the following relations between the a priori and

69

extrinsic mutual information:

Variable nodes: IE,v(IA,v, dv) = 1− e−0.343[4γ+3.094(dv−1)(− ln(1−IA,v))1.056]0.947

,

(3.49)

Check nodes: IE,c(IA,c, dc) = ζ2([ζ1(IA,c)]
dc−1), (3.50)

where γ is the SNR of the underlying AWGN channel, and ζ1 and ζ2 are defined

as

ζ1(x) = 1− e−1.1671(− ln(1−x))0.9293

, (3.51)

ζ2(x) = 1− e−0.8468(− ln(1−x))1.0761

. (3.52)

The new EXIT model in Theorem 3.4 is much less complex than the conven-

tional model. To demonstrate its accuracy, we compare in Figure 3.6 the EXIT

curves of a (3, 6)-regular LDPC code computed using Theorem 3.4 and the con-

ventional Gaussian-approximated density evolution model (i.e. Equations (3.45)

(3.46) and (3.19)). The X-axis denotes the extrinsic (a priori) mutual informa-

tion for the check (variable) nodes, and the Y-axis denotes the extrinsic (a priori)

mutual information for the variable (check) nodes.

From eye observation, the curves resulted from the new model agree extremely

well with those from the conventional model. Applying the mean-squared-error

test, we find that the MSE distortion between these EXIT curves is 1.5231× 10−6

and 1.3459 × 10−4 for the variable nodes and the check nodes respectively, which

further confirms the accuracy of the proposed new EXIT model.

70

Theorem 3.5: [EXIT Model for Irregular LDPC Codes] Consider an irregular

LDPC code with unbounded girth. Let λ(x) =
∑

i λix
i and ρ(x) =

∑
i ρix

i be the

respective generating function of the degree distributions for the variable nodes

and check nodes, such that λi and ρi are the percentage of the degree-i variable

nodes and check nodes. Assuming that the Gaussian assumption holds, the EXIT

curves of this code can be computed using

Variable nodes: IE,v(IA,v, λ(x)) =
∑

i

λiIE,v(IA,v, dv = i), (3.53)

Check nodes: IE,c(IA,c, ρ(x)) =
∑

i

ρiIE,c(IA,c, dc = i), (3.54)

where IE,v(IA,v, dv = i) and IE,c(IA,c, dc = i) are given in (3.49) and (3.50), respec-

tively.

∇

Proof: Theorem 3.5 follows from Theorem 4 and the fact that, for an irregular

LDPC code, the EXIT curves are evaluated by averaging the extrinsic mutual

information from all the variable nodes and the check nodes, respectively [30].

Specifically, let the irregular LDPC code has m variable nodes and n check nodes,

and let IE,v,i(IA) and IE,c,j(IA) be the extrinsic mutual information associated with

the ith variable node and the jth check node given a priori mutual information

IA (1 ≤ i ≤ n, 1 ≤ j ≤ m). The average extrinsic mutual information exchanged

71

between the variable nodes and the check nodes is given by [30]

Variable nodes: IE,v(IA,v) =
1

m

m∑
i=1

IE,v,i(IA,v), (3.55)

Check nodes: IE,c(IA,c) =
1

n

n∑
j=1

IE,c,j(IA,c). (3.56)

Notice that IE,v,i(IA,v) is only dependent on the degree of the ith variable node

and IA,v, the (average) a priori mutual information available to variable nodes.

Since the latter is the same for all the variable nodes, we can group the variables

nodes having the same degree in (3.55), which immediately gives rise to (3.53). A

parallel argument holds for the check nodes. 4

Theorem 3.5 complements Theorem 3.4 by making the same simple EXIT model

work for irregular LDPC codes also. An exemplary EXIT chart computed using

Theorem 3.5 is presented in Figure 3.7, where the irregular LDPC code has variable

node and check node degree profile





λ(x) = 0.6x3 + 0.3x4 + 0.1x6;

ρ(x) = 0.7x7 + 0.3x8,

(3.57)

and the SNR being evaluated includes −2db, −1db and 2db.

The EXIT model presented in Theorems 3.4 and 3.5 speaks for the context

of a single LDPC code operating on an AWGN channel, where check nodes and

variable nodes are each viewed as a sub computing unit and each generates an EXIT

curve. When an LDPC code is used in serial concatenation with another code or

a modulation scheme, then the entire LDPC code is viewed as a sub computing

unit in the global iterative system. The proposed new EXIT model can be easily

72

adapted to those cases by evaluating mutual information after a full variable- and

check-node decoding iteration (instead of a half iteration), and by accounting for

the Turbo principle.

Corollary 3.3: [EXIT Model for Concatenated LDPC codes] Consider an LDPC

code being a component code in a serially concatenated system. Assume that the

LDPC code has unbounded girth and that the LLR messages extracted from the

channel and exchanged between different parts of the system follow the Gaussian

distribution. Let λ(x) and ρ(x) be the variable node and check node degree profiles

of the LDPC code, µ0 be the mean of the LLR messages extracted directly from the

channel, IA be the extrinsic mutual information passed from the other component

code to the LDPC code, and IE be the extrinsic mutual information passed from

the LDPC code to the other component code. The EXIT curve of this LDPC code,

i.e. IE as a function of IA, can be derived using the following steps:

1. Before decoding: the a priori mutual information available to (the variable

nodes of) the LDPC code is

I1 =





η
(
η−1(IA) + µ0

)
, LDPC is inner code

IA, LDPC is outer code
, (3.58)

where η(·) is defined in (3.42).

2. After check node update: the mutual information passed from the check

nodes to the variable nodes inside the LDPC decoder is

I2 = IE,c(IA,c = I1, ρ(x)), (3.59)

73

where IE,c(·, ·) is defined in (3.54).

3. After variable node update: the total mutual information at the output of

the variable nodes is

I3 = IE,v(IA,v = I2, xλ(x)), (3.60)

where IE,v(·, ·) is defined in (3.53).

4. Outbound message in accordance to the Turbo principle: the extrinsic mutual

information passed from the LDPC code to the other component code is

IE = η
(
η−1(I3)− η−1(IA)

)
(3.61)

3.5 Evaluating EXIT Formulations When Gaus-

sian Assumption is Less Accurate

The previous section has formulated a new LDPC EXIT model under the Gaussian

assumption. As discussed in Section 3.3, when some conditions are not satisfied,

the extrinsic message densities do not match well with the Gaussian distribution.

This gives rise to several questions. First, how to properly track the evolution of the

probabilistic information in order to perform iterative analysis for LDPC codes?

The pioneering work of density evolution [4] and EXIT charts [42] recommends

using Gaussian approximation (and the doubling rule σ2 = 2µ that follows after)

regardless, since the great simplicity more than outweighs the small degradation

in accuracy. In practice, if the LLR messages are the probabilistic information

74

of interest, then the Gaussian assumption could lead to noticeable discrepancy,

whereas the metric of mutual information is much less sensitive to pdf mismatch

[42].

In the actual message passing, the LLR variance σ2 may be either more or

less than twice of the mean value µ. This observation, also reported in [7] for

turbo codes, is not due to any violation of the symmetry condition, but rather the

inaccuracy of the Gaussian assumption. When the doubling relation holds, the

mutual information between data and their LLR messages may be evaluated using

either Iµ(µ) or Iσ(σ) in (3.19), and both equal Iµ,σ(µ, σ) in (3.18). Otherwise, these

formulations lead to different values, causing different levels of discrepancy from

the true value. Now what formulation to use? Do we have to track both µ and σ?

To answer these questions, in what follows, we provide a comparison study on

the accuracy of different mutual information formulations. Please note that, unless

otherwise stated, the assumption here is that LLR messages follow some Gaussian

distribution with mean µ and variance σ2, where µ and σ2 do not necessarily re-

late to each other by a factor of 2. This assumption may appear self-contradicting,

since, given that the symmetry condition [5] always holds, admitting Gaussian pdf

implies σ2 = 2µ. The reason behind our assumption is two-fold. First, although

less accurate than desired, Gaussian is nevertheless the best and simplest distribu-

tion to model the message density. Second, as we will show shortly, relaxing the

doubling relation (but still holding on to the Gaussianity) may improve the accu-

racy of the results in certain cases. The true EXIT chart without any assumption,

computed using (3.17) with the histogram serving as the pdf, will also be provided

as the benchmark.

75

It should be noted that although Iµ,σ(µ, σ) appears to involve one additional

degree of freedom than Iµ(µ) or Iσ(σ), in essence, they are all one-dimensional

functions. This is because Iµ,σ(·, ·) can be rewritten as a function of a single

parameter t = µ/σ:

Iµ,σ(µ, σ) = Iµ/σ(µ/σ = t)
∆
= 1−

∫ ∞

−∞

e−(y−(t/
√

2))2

√
π

log2(1 + e−2
√

2yt)dy. (3.62)

From the discussion in Section 3.3, the Gaussian assumption and the doubling

relation do not hold well in the low SNR region. Although hard to prove, as shown

in the example in Fig. 3.8, the probability mass of the extrinsic LLR messages in

this region tends to lean toward the left, causing σ2/µ > 2; see, for example, Fig.

3.8. Similar phenomena were also observed in [4] [6].

Theorem 3.6: Let µ and σ2 be the mean and variance of the (a priori or ex-

trinsic) LLR messages of any channel code at any decoding stage. If σ2/µ > 2,

then

Iµ/σ(µ/σ) < Iµ(µ) < Iσ(σ). (3.63)

Proof: By definition,

Iσ(σ) = Iµ,σ(σ2/2, σ) = Iµ/σ(σ/2), (3.64)

Iµ(µ) = Iµ,σ(µ,
√

2µ) = Iµ/σ(
√

µ/2). (3.65)

76

From σ2/µ > 2, we get

σ/2 >
√

µ/2, (3.66)

and

√
µ

2
>

√
µ

σ2/µ
= µ/σ. (3.67)

Since Iµ/σ(·) is a strictly monotonically increasing function,

Iµ/σ(µ/σ) < Iµ/σ(
√

µ/2) < Iµ/σ(σ/2). 2 (3.68)

Comment 3.3: When σ2/µ < 2, the order of the three mutual information

results will simply reverse. It appears, however, that the case of σ2/µ < 2 does

not occur with LDPC codes: at low SNRs, σ2/µ > 2, and at high SNRs, σ2/µ

converges to 2 from above.

To assess the relative accuracy of Iµ/σ, Iµ and Iσ requires the knowledge of the

true mutual information. The true mutual information between data X and their

LLR messages Lx is evaluated using (3.17), where the message pdf pL(y) satisfies

the symmetry condition but not necessarily the Gaussian distribution. Due to the

lack of formal methods to track the exact pL(y), the assessment here has to rely

on the statistics collected from extensive experiments.

We have tested a vast number of cases, each at a relatively low SNR, and

evaluated the extrinsic mutual information from the check nodes with dc = 6 after

the first decoding iteration. In each test, 200, 000 samples are collected to form

the pdf histogram from which µ, σ2, and the true mutual information I(X; Lx)

are derived. µ and σ2 are then used to evaluate the approximated values Iµ/σ, Iµ

77

and Iσ. To minimize the distortion associated with the experiments, 50 tests are

performed for each case which represents a particular combination of an LDPC

code and an operating SNR, and the average results over these tests are recorded.

Some of these average results are provided in Table 3.2. For clarity, we list the

true mutual information I(X; Lx) and the distortion introduced by Iµ/σ, Iµ, Iσ and

(Iµ/σ + Iµ)/2, respectively.

The experimental results are very consistent. The true mutual information

I(X; Lx) largely locates between Iµ/σ and Iµ. In general, Iσ introduces a higher

distortion than either Iµ or Iµ/σ, and should therefore be avoided. Both Iµ and

Iµ/σ provide quite accurate approximations, with distortion of less than a couple

of percent. Since Iµ/σ tends to be slightly pessimistic while Iµ tends to be slightly

optimistic2, taking an average on them effectively cancels out the distortion on both

sides, resulting in a truly good approximation whose distortion is only a fraction of

a percent. Finally, although not shown, we have performed similar tests on turbo

codes and found that 1
2
(Iµ + Iµ/σ) therein also provides very close approximation

to I(X; Lx).

The examples in Table 3.2 are evaluated in the first decoding iteration. To see

how the accuracy of different mutual information formulas evolve with iterations,

we compare a set of EXIT curves resulted from different methods. The true EXIT

curves without any assumption (not even the Gaussian assumption on the in-edge

messages), computed using the discretized density evolution with the histogram

serving as the pdf, is provided as the benchmark to the approximated values. The

complete EXIT chart and its close-up shot are shown in Figure 3.9.

2Exceptions exist, e.g., the last case in the table. In the exception case, both Iµ and Iµ/σ)
cause only a few thousandths in distortion.

78

Table 3.1: MSE Distortion for different approximations to compute mutual infor-
mation.

Name of Approximation MSE Distortion

Form 1 0.10358
Form 2 1.5913× 10−7

Form 3 1.5767× 10−6

Truncated Taylor k = 1 2.9424× 10−4

Truncated Taylor k ≤ 4 4.7839× 10−6

Approximation in [42] 1.759× 10−3

Table 3.2: The extrinsic mutual information generated from the check nodes with
dc = 6 at the first decoding iteration.

SNR(db) variance
mean

I = I(X; Lx) Iµ/σ − I Iµ − I Iσ − I 1
2
(Iµ/σ + Iµ)− I

-1 2.1899 0.0929 -0.0058 0.0020 0.0103 -0.0019
-0.5 2.1990 0.1264 -0.0072 0.0036 0.0153 -0.0018
0 2.2009 0.1685 -0.0088 0.0054 0.0206 -0.0017

0.5 2.1873 0.2208 -0.0103 0.0064 0.0243 -0.0019
1 2.1641 0.2820 -0.0108 0.0072 0.0260 -0.0018

1.5 2.1217 0.3524 -0.0096 0.0063 0.0226 -0.0017
2 2.0677 0.4294 -0.0058 0.0043 0.0146 -0.0007

2.5 2.0032 0.5105 0.0005 0.0010 0.0015 0.0007

79

For the variable-node EXIT curve, different mutual information formulas ex-

hibit negligibly small differences and all can be considered sufficiently accurate.

For the check-node EXIT curve, observations similar to those from Table 3.2 can

be noted, with Iσ being the least accurate, (Iµ/σ + Iµ)/2 being the most accurate,

and Iµ/σ and Iµ each being reasonably accurate. Considering the complexity, we

recommend computing EXIT curves using either Iµ or (Iµ/σ + Iµ)/2, where the

latter trades a little more complexity for an even higher accuracy.

In Section 3.4, we developed a simple EXIT model based on Iµ(µ). The close

proximity of Iµ to the real mutual information, insensitive to the accuracy the

Gaussianity, is thus clear indication that the new EXIT model can also find useful

application where the Gaussian assumption holds less well. A verifying example is

provided in Fig. 3.10, whose EXIT curves are computed using the new model and

compared to the exact density evolution (without any assumption). Although the

(3, 6)-regular LDPC code is evaluated at an SNR of −1 and −2 db, a region where

the LLR messages deviate noticeably from the Gaussian distribution (at least in

the first few iterations), the two EXIT curves nevertheless match very well.

3.6 Conclusion

While the prevailing assumption that LLR messages follow Gaussian distributions,

and the simplicity it brings to density evolution and EXIT analysis, contribute

substantially to the flourishing of iterative analysis, its theoretical justification is

largely lacking. This work fills the gap for LDPC codes by performing a statisti-

cal analysis for when, how and how well the Gaussian distribution approximates

80

the real message densities in the iterative decoding. The impact of the Gaussian

assumption on the accuracy of the EXIT charts is then investigated, and new ap-

proximations for mutual information and a new EXIT model are developed. The

major contributions are summarized as follows:

1. We performed statistical analysis and showed that the Gaussian assumption

is accurate when the initial LLR messages from the channel (or the front-

end modulator/detector) have reasonable reliability and when the check node

degrees are not large.

2. In the cases when the LLR messages deviate noticeably from the Gaussian

distribution, we evaluated the accuracy of the mutual information between

bits and their LLR messages (and subsequently the EXIT curves), computed

using different formulations under the Gaussian assumption. We showed

that (Iµ + Iµ/σ)/2 provides an extremely close match to the true mutual

information, the simpler form Iµ is also quite accurate, but Iσ results in

a large discrepancy and should be avoided. Hence, EXIT analysis can be

accurate even when the underlying Gaussian assumption is not, provided

that one uses the right formulation for mutual information.

3. We derived several simple but good approximations to compute the mutual

information using Iµ. We also developed a simple analytical model, consisting

of closed-form expressions only, to compute the EXIT charts for regular and

irregular LDPC codes. The new EXIT model provides an efficient alternative

to the conventional model to analyze LDPC code ensembles.

81

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

X

P
D

F
(x

)

sigma = 0.5
sigma = 1.0
sigma = 1.5
sigma = 3.0

Figure 3.1: Illustration of lognormal pdf’s µ = 0 and σ = 0.5, 1.0, 1.5, 3.0.

−140 −120 −100 −80 −60 −40 −20 0
0

50

100

150

200

250

300

350

X

P
D

F

 2 terms

−200 −150 −100 −50 0 50
0

50

100

150

200

250

300

350

 5 terms

−35 −30 −25 −20 −15 −10 −5 0
0

50

100

150

200

250

300

350

400

 10 terms

−16 −14 −12 −10 −8 −6 −4 −2 0 2 4
0

50

100

150

200

250

300

350

400

 100 terms

Figure 3.2: Histograms for ln(S) with k = 2, 5, 10, 100.

82

−10 0 10 20
0

200

400

−10 0 10 20
0

200

400

−10 0 10 20
0

200

400

−10 0 10 20
0

200

400

−10 −5 0 5 10
0

200

400

−5 0 5 10
0

500

−5 0 5 10
0

500

1000

−5 0 5
0

500

1000

−4 −2 0 2 4
0

500

1000

1500

−4 −2 0 2 4
0

1000

2000

−2 0 2 4
0

1000

2000

−4 −2 0 2
0

1000

2000

3000

−5db−4db

−3db−1db −2db

0db

−5db

−6db

2db 1db

3db5db 4db

Figure 3.3: Histogram of messages m1
ji for a LDPC code with dc = 4 at different

SNRs.

−10 −5 0 5 10 15
0

500

1000

1500

2000

2500

3000

3500

4000

D
c
 = 4

−6 −4 −2 0 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

4000

D
c
 = 10

−4 −2 0 2 4 6
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

D
c
 = 30

−3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

D
c
 = 50

Figure 3.4: Histograms of message m1
ji for regular LDPC codes with variable node

degree 3 and different check node degrees (SNR=3db).

83

−4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

SNR(db)

K
S

S
T

A
T

 te
st

 v
al

ue

 The goodness of fit to the normal for check node distribution

degree = 4
degree = 10
degree = 30

Figure 3.5: D-statistic collected from the KS test for codes with different check
node degrees operating on different channel SNRs. dv = 3, dc = 4, 10, 30. D-
statistics below the solid horizontal line correspond to cases where the Gaussian
assumption holds well.

84

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
AV

, I
EC

I A
C
,

 I
E

V

Check nodes, Degree = 6

Variable nodes,
Degree = 3, SNR = −1db

Variable nodes,
Degree = 3, SNR = −2db

Mutual Information
by Density Evolution

Mutual Information
by approximation

Figure 3.6: Comparison of EXIT charts of a (3, 6)-regular LDPC code computed
by Theorem 3.4 and the conventional density evolution. SNR={-1, -2} db.

85

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
AV

, I
EC

I A
C
,

 I
E

V

degree of variable nodes
= 0.6 x3 + 0.3 x4 + 0.1 x6

degree of check nodes
= 0.7 x7 + 0.3 x8

Check nodes

Variable nodes, SNR = −2db

Variable nodes, SNR = −1db

Varaible nodes, SNR = 2db

Figure 3.7: EXIT chart of irregular LDPC code at SNR = {−2db,−1db, 2db}

86

−6 −4 −2 0 2 4 6 8
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

X

H
is

to
gr

am
 o

f t
he

 e
xt

rin
si

c
in

fo
rm

at
io

n

Ratio
= Variance/Mean
= 2.2107

Figure 3.8: The pdf of the extrinsic LLR messages from the check nodes to the
variable nodes, after one decoding iteration on an AWGN channel of 0.5 db. The
check nodes have degree 6.

87

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

True EXIT chart

I
σ

I
µ/σ

I
µ

SNR = −1db

Variable nodes

Check nodes

(I
µ
 + I

µ/σ
)/2

(A)

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86 True EXIT chart

I
σ

I
µ/σ

I
µ

SNR = −1db

Variable nodes

Check nodes

(I
µ
+I

µ/σ
)/2

(B)

Figure 3.9: EXIT curves computed using different formulations. (A) The complete
EXIT chart. (B) The zoomed-in EXIT chart.

88

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
Av

, I
Ec

I A
c,

 I
E

v

Check nodes of True EXIT chart at −1db

Variable nodes of True EXIT chart at −1db

 of EXIT chart by mean

Varialbe nodes of EXIT chart by mean

Check nodes of True EXIT chart at −2db

Variable nodes of True EXIT chart at −2db

Estimated Check nodes at
SNR = −1db

Estimated Check nodes at
SNR = −1db

Figure 3.10: Comparison of the EXIT curves computed using the proposed new
model and using the exact density evolution (without any assumption) in regions
where the Gaussian assumption is not accurate. (3, 6)-regular LDPC codes. Chan-
nel SNR is -1 db and -2 db.

89

Chapter 4

Analog Coding and Linear analog

coding

The first work of analog error correction coding traces back to the early 80’s, when

Marshall and Wolf independently introduced the concept [43–46]. It was termed

real number coding in Marshall’s work and analog coding in Wolf’s work. Early

ideas of analog coding are a natural outgrowth of digital error correction coding,

by extending conventional digital error correction codes from the finite field to the

real-valued or the complex-valued field (i.e. symbols from a very large finite field

can approximate real values). Hence, linear codes prevail the short literature of

analog coding, just as they do in digital coding. There have also been proposals of

nonlinear analog codes, but the study is rather limited.

The fundamental idea of error correction coding is to enlarge the distances

among the codewords by mapping, for example, a small space to a larger space.

90

The notion of distance is therefore of critical importance to coding theory and code

evaluation. Since much of the development of analog codes follows a similar path

as digital codes, Hamming distance, a key metric in digital codes, was also taken

as a figure of merit in analog codes; namely, the distance between two (analog)

codewords was also measured by the number of different symbols between them.

While the adoption of Hamming distance has also lead to the adoption of related

concepts such as maximum distance separability, Hamming distance is not nearly

as indicative in the analog domain as in the digital domain.

Aiming at advancing the theory and practice of analog codes, in this disser-

tation, we develop several new concepts for analyzing and understanding analog

codes, including the encoding power gain, minimum (Euclidean) distance/squared

weight ratio and its achievable upper bound, and the minimum MSE distortion

and its achievable lower bound. For linear analog codes, we define a concept of

maximum distance ratio expansible (MDRE) (with respect to squared Euclidean

distance), a concept similar in spirit to maximum distance separable (MDS) (with

respect to Hamming distance). We show that MDRE codes can achieve the best

(i.e. largest) squared Euclidean distance ratio and the best (i.e. smallest) aver-

age Euclidean distortion among all linear analog codes. In this, we show that all

MDRE codes perform exactly the same on AWGN channels when evaluated by

mean square error (MSE) metric. We identify linear analog codes that are MDRE,

as well as codes that are MDS. We show that MDRE codes and MDS codes, al-

though evaluated against different distance metrics, do not have to conflict each

other, and can actually be unified in the code design. We also proposed the concept

of maximum squared Euclidean distance ratio to analog codes, and show that it is

a rather effective tool in indicating the performance of an analog code.

91

On the more practical side, we also study the two categories of analog codes:

linear codes and nonlinear codes. We summarize the existing analog codes and

demonstrate a few new codes we designed. We apply our newly-developed concepts

and tools on these codes to reveal useful properties. We also study maximum

likelihood (ML) decoding algorithms for these codes. One important conjecture

that results from our study is that, although linear digital codes are sufficient in

achieving the channel capacity of additive white Gaussian noise (AWGN) channels,

linear analog codes are inadequate in handling Gaussian noise. The majority of the

existing linear analog codes, such as analog Bose-Chaudhuri-Hocquenghem (BCH)

codes, grow out of their digital counterparts by extending the supporting finite field

to an infinite size. Hence, when they are decoded through a BCH-like decoder (e.g.

a modified Berlekamp-Massey and Forney algorithm), they can only survive pulse

noise that occurs only to a limited positions in the codeword. Even with an ML

decoder, these analog linear codes are rather weak in handling ambient noise that

occurs everywhere in the codeword. We provide a geometric method to illustrate

how and why, and point to nonlinear codes as the solution for analog error control.

Specifically, we show that chaotic systems, an special class of nonlinear dynamical

systems, can play an important role in analog coding. We demonstrate a few novel

designs for nonlinear chaotic analog codes, whose “butterfly effect” can lead to

surprisingly good performance.

92

4.1 Theory and Concepts for Analog Codes and

Linear Analog codes

In what follows, we will always use bold fonts, such as G and u, to denote vectors

or matrices, and use regular fonts, such as n and Rw to denote scalars. Further,

superscript T denotes simple transpose of a vector or matrix, while superscript H

denotes Hermitian transpose. By default, all the codes have parameters (n, k), and

map a length-k discrete-time analog source sequence u = (u0, u1, · · · , uk−1)
T to a

length-n discrete-time analog codeword v = (v0, v1, · · · , vn−1)
T .

4.1.1 Definition of Analog Error Correction Codes

One difference between an analog code and a digital code is error tolerance. A digi-

tal error correction code has a discrete codeword space, and hence a small (analog)

distortion on each finite-field symbol can usually be rounded off. In comparison, an

analog symbol takes a value in a continuum of real or complex space, and there-

fore has zero tolerance to analog noise. Hence, unlike a digital error correction

code, an analog error correction code can never achieve the error-free transmission

of a codeword across an AWGN channel. In general, an analog code will always

result in some non-zero distortion on AWGN channels. As long as the distortion

is controlled under a desirable level, then the analog code can still find good use in

transmitting analog sources (e.g. audio and video signals) as well as digital signals

(e.g. the first five digits after the decimal are correct with a high probability).

Before introducing new concepts and tools for analog codes, below we first

93

provide a few basic definitions of an analog error correction code.

Definition 4.1: [Analog codes] Consider a mapping u = (u0, u1, · · · , uk−1)
T C→

v = (v0, v1, · · · , vn−1)
T , which transforms a length-k sequence u belonging to the

space Uk to a length-n sequence v belonging to the space Vn, where ui ∈ U for

0 ≤ i < k, and vj ∈ V for 0 ≤ j < n. If the sets U and V are both continuums

(or the union of a finite number of continuums) of real or complex values, then the

above mapping defines an analog code C(n, k). Here, k/n is termed the rate of the

code, and the vector v is termed a codeword. If any source sequence u is also part

of its corresponding codeword v, then the analog code is said to be systematic.

From the Nyquist sampling theorem, any continuous-time waveform can be

represented by a sequence of discrete-time samples without any loss of information,

provided that the sampling rate is at least twice as fast as the bandwidth of the

original waveform. Hence, any continuous-time waveform can be sampled, encoded

through an analog code C(n, k), and subsequently decoded and interpolated to

form another continuous-time waveform, and k/n would be the ratio between the

bandwidths of the original waveform and the transformed waveform.

Similar to digital codes, analog codes can also be categorized into two groups

with code rate k/n > 1 and k/n ≤ 1 respectively. The former corresponds to

compression or source coding, and the latter corresponds to error correction or

channel coding, which is the subject of this work. In what follows, unless otherwise

stated, the term analog coding/codes (and similarly digital coding/codes) refers to

analog error correction coding/codes (digital error correction coding/codes).

In what follows, we will discuss both linear analog codes and nonlinear analog

94

codes. Since all linear analog codes can be expressed in the form of linear analog

block codes, our discussion on linear analog codes will therefore focus on block

codes. We now specify a few definitions and notations that will be used in the

discussion. Some of the concepts and theorems developed in this section apply to

both linear and nonlinear analog codes, while others are specific to linear (block)

analog codes.

Definition 4.2: [Linear analog block codes] A linear analog block code C(n, k)

can be defined by its generator matrix G. A discrete-time analog source stream,

whose values may either be real or complex, is fed into the analog encoder in blocks

of k symbols each. Each block u = {u0, u1, ..., uk−1}T of length k analog symbols is

encoded to a codeword v = {v0, v1, ..., vn−1}T of length n analog symbols, through

a linear matrix operation:

v = GHu. (4.1)

where G is a k × n matrix of rank k. All the elements ui and vi may be complex

numbers or real numbers: ui, vi ∈ C or R. The support sets for u and v are called

the source space Uk and the codeword space Vn respectively.

The codeword v is put onto a channel with additive noise w, which results in

a noisy vector r at the receiver,

r = v + w (4.2)

The decoder produces an estimate ũ of the original source vector u. The system

model is shown in Fig. 4.1.

An analog code C(n, k) can be regarded as a mapping from a subspace Uk of

95

Encoder:

Generator

matrix G

Channel

},...,,{ 110

1

0

K

K
uuuu

},...,,{ 110

1

0

N

N
vvvv

1

0

 N
w

1

0

 N
r

Decoder

}~,...,~,~{~
110

1

0

!

K

K
uuuu

Figure 4.1: The system model of a general analog code.

the k-dimensional real-valued space Rk or complex-valued space Ck to a subspace

Vn of the n-dimensional space Cn or Rn with a transform matrix G. With the

expanded distance, the distortion due to additive noise can be reduced by finding

the closest or the most likely vector within the subspace Vn.

Similar to digital error correction codes, a parity check matrix H can be defined

for linear analog block codes, where HGH = 0. The syndrome s is computed as

s = Hr, where r ∈ Cn or Rn. For any valid codeword v, its syndrome satisfies

s = Hv = 0.

4.1.2 Euclidean Weight and Squared Euclidean Weight Ra-

tio

In digital error correction, the separation between two codewords is typically mea-

sured by Hamming distance, and a concept of minimum (Hamming) distance is

defined to evaluate the “space expansion” capability of a code. If the minimum

Hamming distance achieves the Singleton bound, then the corresponding code is

96

called a maximum distance separable code or Hamming-distance-optimal. When

the digital code operates on a Gaussian noise channel, one can also define the Eu-

clidean distance for the digital error correction code, and use a similar concept of

“minimum Euclidean distance” to measure the code performance. In the digital

context, both Hamming distance and Euclidean distance are equivalent in essence.

However, the situation becomes rather different in the analog context. First, al-

though a similar concept of minimum Hamming distance can be defined for analog

codes, the metric is not really useful in evaluating the code performance. Second,

Hamming distance and Euclidean distance no longer have a one-to-one correspon-

dence in the analog domain. In fact, the minimum Euclidean distance of a linear

analog code always approaches 0 (please refer to Theorem 4.2), making this metric

useless in the analog coding context. This calls for the development of new and

more appropriate metrics for evaluating analog codes.

The structural goodness of a code is determined by the codeword space (termed

the“code book”in the DECC literature) and the mapping between the source space

and the codeword space (termed the “encoding function” in the DECC literature).

For linear block codes, that is completely determined by the generator matrix

G. Consider two generator matrices G′ and G, where one is a scaled version

of the other (i.e. G′ = aG, where a > 1 is a real-value scalar). Apparently,

these two codes have essentially the same code structure, and, although one may

appear to have expanded the distances more than the other, the gain comes with

a comparable cost of a higher (average) transmission power. For fair comparison

and analysis, one should constrain the transmission power of all the analog codes

at the same level. That is, the ratio between the average codeword power and the

97

source vector power should be limited to the same number or be normalized to 1.

With this, we first define the power gain of a generator matrix G.

Definition 4.3: [Encoding power gain] The encoding power gain Γ of an analog

code is defined as the ratio between the average codeword power and the average

source vector power:

Γ =

∫
P (u)vHvdu∫
P (u)uHudu

(4.3)

where P (u) is the probability density function (pdf) of the source vector u, and
∫

f(v)dv represents the multiple integrals

∫ ∫
· · ·

∫
f(v0, v1, · · · , vn−1)dvn−1 · · · dv1dv0. (4.4)

Theorem 4.1: For a given linear analog codes, suppose that u is uniformly

distributed in the source space Rk and encoded by the generator matrix G, then

the encoding power gain is given by Γ = trace(GGH)/k.

Proof:

Γ =

∫
P (u)vHvdu∫
P (u)uHudu

(4.5)

=

∫
uHGGHudu∫

uHudu
(4.6)

=

∫
trace(GGH)/kuHudu∫

uHudu
(4.7)

= trace(GGH)/k (4.8)

An error correction code provides error protection by expanding the distances

among codewords. On AWGN channels, Euclidean distance is a very relevant con-

98

cept, since it constitutes the exponential part of the Gaussian distribution, and

is closely related to the likelihood (probabilistic) test. It should also be noted,

although the term generally goes as the “Euclidean distance,” for computational

convenience, most of the expressions actually involve the “squared Euclidean dis-

tance.”

Definition 4.4: [Squared Euclidean distance of analog codes] For an analog code

C(n, k), consider two source sequences u and u′ being encoded to two codewords

v and v′, respectively, the squared Euclidean distance between them is given by

DE2(v,v′) =
n−1∑
i=0

|vi − v′i|2. (4.9)

For linear codes, the concepts of “Hamming distance” and “Hamming weight”

can be used inter-changeably in many cases. For example, the Hamming distance

spectrum is the same as the Hamming weight spectrum, and the minimum Ham-

ming distance of a code is the same as the minimum non-zero Hamming weight of

the code. Here we define a similar concept of Euclidean weight for linear (analog)

codes.

Definition 4.5: [Squared Euclidean weight and Minimum Euclidean weight of

analog codes] Let v be a codeword of an analog code C. The squared Euclidean

weight of this codeword is given by

WE2(v) =
n−1∑
i=0

|vi|2. (4.10)

The smallest non-zero squared Euclidean weight of all the valid codewords, WE2,min,

99

is called the minimum squared Euclidean weight of C.

Since the all-zero sequence is always a valid codeword in a linear analog code,

the Euclidean weight of any codeword is also the Euclidean distance between itself

and the all-zero codeword. Hence, the minimum Euclidean distance of a linear

analog (block) code is equivalent to its minimum Euclidean weight. In what follows,

when applicable, we will study the Euclidean weight instead of Euclidean distance.

Theorem 2 Any linear analog block code C(n, k) has a minimum Euclidean

weight that is approaching 0. That is, for any small positive value ε, there al-

ways exists a codeword v = GHu whose squared Euclidean weight WE2(v) =
∑n−1

i=0 |vi|2 < ε.

Proof: Consider a source sequence u = {u0, 0, ..., 0} with only one non-zero

element u0. After encoding, we have

DE2(v) =
n−1∑
i=0

|vi|2 (4.11)

= ||GHu||2 (4.12)

= u2
0

n−1∑
i=0

|gi0|2 (4.13)

where || |̇| represents the p-2 norm, and gij is an element in the ith row and the

jth column of the generator matrix G.

Clearly, if we select

u0 <

√
ε√∑N−1

i=0 |gi0|2
, (4.14)

then the codeword v = GHu has a squared Euclidean weight DE2 smaller than ε.

100

Since the minimum Euclidean weight of any analog linear code can be arbitrarily

small, it can no longer indicate the spacial goodness of an analog code. Instead,

we introduce a new concept, the squared distance ratio.

Definition 4.6: [Distance square ratio (DR) and squared weight ratio (WR)]

Given an analog code C(n, k), consider any two source sequences u and u′ and

their respective codewords v and v′. The squared distance ratio between them is

defined as

RD(u,u′) =
DE2(v,v′)
DE2(u,u′)

. (4.15)

The smallest squared distance ratio among all the source pairs is termed the min-

imum squared (Euclidean) distance ratio of the code C.

For a linear analog (block) code, the Euclidean weight (square) ratio for any

non-zero sequence is defined as

RW (u) =
WE2(v)

WE2(u)
, (4.16)

and the smallest non-zero squared weight ratio is termed the minimum (Euclidean)

squared weight ratio.

4.1.3 Maximum squared distance ratio Expansible (MDRE)

Codes

Having defined the squared Euclidean distance ratio and the squared Euclidean

weight ratio, we now perform analysis on the squared weight ratio of linear analog

codes.

101

Theorem 4.3: [Upper bound for squared distance ratio] For an C(n, k) linear

analog code with a fixed power gain Γ, its minimum weight ratio (squared distance

ratio) is upper bounded by Γ, and the upper bound is achieved when all the k

eigenvalues of GGH are identical.

Proof:

RW (u) =
WE2(v)

WE2(u)
(4.17)

=
uHGGHu

uHu
(4.18)

=
uHGGHu

uHu
(4.19)

Since GGH is a Hermitian matrix and a positive definite matrix, it is possible

to perform a singular value decomposition, such that GGH = AHDA, where A

is unitary matrix and D is a diagonal matrix with all the positive (real-valued)

diagonal elements {d0, d1, ..., dk−1}. Without loss of generality, we can assume that

dmin is the minimum value of all the element: dmin = min{d0, d1, ..., dk−1} > 0.

Let u′ = Au, Equation (4.19) can be further simplified as

RW (u) =
u′HDu′

uTu
(4.20)

≥ dmin
u′HIu′

uHu
(4.21)

where I is an identical matrix. The equality in (4.21) is achieved when u′ =

(0, 0, · · · , ui, · · · , 0) where i is the location for dmin.

102

Since u′Hu′ = uHAHAu = uHu, we have

min(RW (u)) = dmin, (4.22)

which gives rise to

min(RW (u)) = dmin (4.23)

≤
∑k−1

i=0 di

k
(4.24)

=
trace(GGH)

k
(4.25)

= Γ (4.26)

The equality in (4.24), i.e., the upper bound of the minimum squared weight

(distance) ratio, is achieved when all the eigenvalues of GGH are identical, i.e.

d0 = d1 = · · · = dk−1 = dmin.

Corollary 4.4: Given a linear analog code C(n, k) with generator matrix G, its

minimum squared Euclidean distance ratio is dmin, where dmin is the minimum

eigenvalue of matrix GGH .

Definition 4.7: [Maximum squared distance ratio expansible (MDRE) codes]

Consider all the linear analog codes C(n, k) with the fixed encoding power gain

Γ. A code is called maximum squared distance ratio expansible or MDRE, if its

minimum squared Euclidean distance ratio achieves the upper bound Γ.

Corollary 4.5: An analog linear block code C(n, k) with generator matrix G is

MDRE, if and only if the eigenvalues of GGH are all identical.

103

Definition 4.8: [Analog unitary Codes] A linear analog code C(n, k) is called

an analog unitary code, if its generator matrix is formed by G = aΞ, where a is

non-zero real-value scalar and Ξ is formed of a set of k columns selected from a

unitary matrix U.

Theorem 4.6: Analog unitary codes are MEDR codes.

Proof: Let G be the generator matrix of an analog unitary code. Clearly,

GGH = a2I, where I is an identical matrix. Hence GGH has identical eigenvalues

and the code is therefore MEDR.

4.1.4 ML Decoding and Distortion

In the following, we will first discuss the maximum likelihood decoder of a general

analog code (linear or nonlinear), and then focus on linear codes.

Definition 4.9: [Basic space] Given an analog code C with mapping Uk C→ Vn.

The source space Uk comprises a finite number of t subspaces, denoted as Bi for

0 ≤ i ≤ t−1, such that the function C is continuous and differentiable in each

subspace. We call each subspace Bi as a basic space of the code C. Each Bi is

indexed by Ii, 0 ≤ i ≤ t−1, named as the basic index.

Consider the sequence r at the output of a noise channel. We can define the

ML decoder for a general analog code as

ũ = arg max
0≤i≤t−1

(arg max
ũ∈Bi

Pr(r|u)), (4.27)

104

where ũ is the estimation of source u.

Since the function C is continuous and differentiable in each subspace Bi, 0 ≤
i ≤ t− 1, if the channel transfer function p(y|v) is differentiable (a condition

that is generally satisfied for channels), then p(y)|u ∈ Ui) is also differentiable.

Suppose there are only a finite number of local maximums (again a condition that

is generally satisfied for linear and nonlinear mapping), then we will have a finite

number of candidates for possible u. The ML decoder can compare all of these

candidates to identify the best u with the largest probability. The complexity of

the ML decoder will be linear to the number of candidates.

Below we prove that MEDR codes are the best linear analog codes on AWGN

channels in terms of mean square error (MSE) distortion. To show that, we first

discuss the optimal decoder for linear analog codes on AWGN channels.

The maximum likelihood decoding of a linear analog code on an AWGN channel

can be modeled as an unconstrained convex optimization problem:

min ||r−GHu||2 (4.28)

where || · ||2 is the square of the p-2 norm.

This problem can be solved analytically by expressing the objective function

as the convex quadratic function

f(ũ) = uHGGHu− 2rHGHu + rHr. (4.29)

105

The minimum value of f(ũ) is obtained when

ũ = (GGH)−1Gr (4.30)

Theorem 4.7: [ML decoder of linear analog codes] The maximum-likelihood

decoder of a linear analog code on an AWGN channel produces:

ũ = (GGH)−1Gr, (4.31)

where G is the generator matrix of the code, and r is the noisy codeword observed

from the AWGN channel.

Definition 4.10 [MSE distortion] Consider an analog code C(n, k) transmitted

over a noisy channel with an additive noise w. The mean square error distortion

for a particular decoder on this channel is defined as

∆ =

∫
p(u)

∫
||ũ− u||2p(w)dwdu, (4.32)

where u is the analog source vector, the ũ is the decoder estimate for u, p(u) is

the pdf for the noise vector and p(u) is the pdf for the source vectors. Specifically,

for linear analog codes, because of the geometric uniformity, instead of evaluating

over all the possible source vectors u, the all-zero source vector can serve as the

representative. Hence the MSE distortion can be simplified to:

∆ =

∫
||ũ||2p(w)dw, (4.33)

where ũ is the decoder estimate for the all-zero codeword.

106

Theorem 4.8: [Lower bound of MSE distortion for linear analog codes] Consider

an (n, k) linear analog code with encoder power gain Γ operating on an AWGN

channel with noise w, where wi ∼ N(0, σ2). The mean square error distortion ∆

after ML coding is lower bounded by

∆ ≥ ∆min =
kσ2

Γ
. (4.34)

The lower bound is achieved by s2
0 = s2

1 = ...s2
k−1 = Γ, where {s0, s1, ...sk−1} are

the set of singular values of G.

Proof: Without loss of generality, assume that the all-zero codeword is trans-

mitted. Substituting r = w and (4.30) in (4.31):

∆ =

∫
||(GGH)−1Gw||2P (w)dw

=

∫
||(GGH)−1Gw||2

n−1∏
i=0

(
1√

2πσ2
e−

w2
i

2σ2)dw

=
1

(2πσ2)n/2

∫
||(GGH)−1Gw||2e−

∑
i w2

i
2σ2 dw

=
1

(2πσ2)n/2

∫
wHGH(GGH)−1(GGH)−1Gwe−

∑
i w2

i
2σ2 dw

=
1

(2πσ2)n/2

∫
wHBwe−

∑
i w2

i
2σ2 dw (4.35)

where B = GH(GGH)−1(GGH)−1G. Equation (4.35) calculates the variance of a

weighted summation of an n-dimension i.i.d. Gaussian vector. Therefore, (4.35)

can be further simplified as

107

∆ = trace(B)σ2

=
k−1∑
i=0

1

s2
i

σ2, (4.36)

where {s0, ...sk−1} are the set of singular values of G, since (GGH)−1G is the

pseudo inverse matrix of G.

To minimize ∆ is to minimize
∑k−1

i=0
1
s2
i
, subject to

∑k−1
i=0 s2

i = kΓ, which leads

to:

s2
1 = s2

1 = ... = s2
k−1 = Γ. (4.37)

Hence we have

∆ ≥ kσ2

Γ
(4.38)

Corollary 4.9: An MDRE code can achieve the minimum bound of the average

MSE distortion on AWGN channel, and is therefore distortion optimal.

The above analysis shows that the minimum distance (weight) ratio can provide

an effective indication of the code performance (i.e. MEDR and minimum MSE

distortion) for linear analog codes. However, as will be shown later in Chapter 5,

this metric is much less useful for nonlinear analog codes. One way to explain this

is that a linear mapping scales a source vector exactly the same way as it does

to another source vector, but it is not the case for nonlinear mapping. Hence, we

introduce the concept of the average squared distance ratio for nonlinear codes.

108

Definition 4.11: [Average squared distance ratio] The average squared distance

ratio of an analog code C is defined as

µ(RD) =

∫

u

∫

u′
p(u,u′)RD(uk−1

0 ,u′k−1
0))dudu′, (4.39)

where u and u′ are source vectors of the code.

Further, to fairly compare the code performances of two codes (linear or nonlin-

ear) having possibly different source space, we introduce the metric of normalized

MSE distortion.

Definition 4.12: [Normalized MSE distortion] The normalized MSE distortion

for the performance measurement of an analog code is defined as

∆∗ =
∆

σ2
u

, (4.40)

where σ2
u is the variance of the source u and ∆ is the averaged MSE distortion of

the code.

4.2 Analysis of Linear Analog Codes

We have previously developed several concepts and theorems for analog codes and

linear analog codes.

In this section, we first provide a brief overview of the existing linear analog

codes in general, and then focus the discussion on two important classes, the analog

discrete Fourier transform (DFT) codes and the analog discrete cosine transform

109

(DCT) codes. We will apply the concepts and tools we developed earlier to analyze

these codes and to advance our understanding of linear analog codes.

4.2.1 A Brief Overview

The first analog code, due to Marshall [43] and Wolf [44], is called the discrete

Fourier transform (DFT) code. To achieve a desirable Hamming distance t, the

DFT code extracts r = 2t columns from the inverse discrete Fourier transform

(IDFT) matrix to form the generator matrix G. When the extracted columns

follow certain structural formalism, the resultant complex DFT code can be viewed

as an analog Bose-Chaudhuri-Hocquenghem (BCH) code and at the same time

also satisfies the maximum distance separable condition in terms of Hamming

distance [46]. In other words, there exist a subclass of DFT codes that are by

nature analog Read-Solomon (RS) codes and optimal in the MDS sense.

Another important class of MDS-optimal analog codes was proposed by Wu and

Shiu and named discrete cosine transform (DCT) codes [47]. Unlike DFT codes,

DCT codes are not analog BCH codes or even cyclic codes. However, Wu and

Shiu showed that a specific subclass of DCT codes can be expressed in a BCH-like

structure and decoded by a modified Berlekamp-Massey and Forney algorithm [47].

This BCH-like DCT structure was later generalized by Rath and Guillemot, which

gave rise to discrete sine transform (DST) codes [9]. A subspace-based decoding

algorithm was also developed for these codes [9]. However, the work in [47] and [9]

only discussed a special case of DCT and DST codes, namely DCT and DST codes

with a BCH-like structure. A general decoding based on subspace methods is

proposed in [48].

110

Following the same line of development of analog block codes, there have also

been studies of analog convolutional codes, and their encoding and decoding mech-

anisms [46] [49].

4.2.2 Discrete Fourier Transform Codes and Analog BCH

Codes

We now discuss discrete Fourier transform codes, one of the most important class

of linear analog codes in literature. An (n, k) DFT code is an analog linear block

code whose Hermitian transpose of the generator matrix consists of a set of k

columns from the DFT matrix Ψ of order n, where

Ψ =




1 1 1 · · · 1

1 φ φ2 · · · φn−1

1 φ2 φ4 · · · φ2(n−1)

...
...

...
. . .

...

1 φn−1 φ2(n−1) · · · φ(n−1)2




(4.41)

where φ = e−j2π/n.

The remaining (n− k) columns of the DFT matrix forms parity check matrix

of the code

For example, we can take the first k columns to form the generator matrix, and

the remainder (n−k) columns to form the parity check matrix, as shown in Fig.

4.2.

111

!

"

#
#
#
#
#
#

$

%

&&&&&

&&

&&

2)1()1()1)(1(1

)1(22)1(22

11

1

1

1

11111

NKNKNN

NKK

NKK

!

Generate Matrix: G Parity Check Matrix: H

1

0

1

1

0

KN

K

S

S

u

u

u

Source

vector

=
*

Syndrome

CodeWord

1

0

1

0

 N
v

v

v

v

Figure 4.2: The structure of DFT codes

The DFT matrix Ψ consists of Hermitian transpose of the generator matrix

GH and Hermitian transpose of the parity check matrix HH . The n-dimensional

vector on the right hand side of the equation in Fig. 4.2, consists of a k-dimensional

source vector v and a (n−k)-dimensional syndrome s; and the left hand side of

the equation corresponds to some n-dimensional coded vector v. Since the DFT

matrix is a unitary matrix, it is easy to prove that v is the valid codeword for the

source u if and only if the syndrome s = 0.

Encoding of the DFT code follows the usual matrix multiplication process (be-

tween the source vector and the generator matrix) of a linear block code. Al-

ternatively, it may also be treated as a matrix multiplication between the square

unitary matrix and the zero-stuffed source vector. The later viewpoint draws close

parallelism to OFDM with redundant information bits, and DFT therefore finds a

useful application in OFDM transmission (see, for example, [50] [51]).

112

If the parity check matrix of the DFT code can be expressed in the form of

H =




1 1 1 · · · 1

1 φα φ2α φ(n−1)α

1 φ2α φ4α φ2(n−1)α

...

1 φ(n−k−1)α φ2(n−k−1)α · · · φ(n−k−1)(n−1)α




(4.42)

where α is an integer relatively prime to n, then the resultant code becomes a

BCH DFT code. Further, since α is relatively prime to n, all the elements of

the second column in H are different due to mod(iα, n) 6= mod(jα, n), 0 ≤ i, j ≤
n−k−1. Then according to the properties of Vandermonde matrices, any (n−k)-by-

(n−k) sub-matrix of H is full rank. Thus, this code is also a complex-valued MDS

code in terms of Hamming distance, and is therefore also termed the analog RS

code. It has been shown that the traditional decoder (such as Peterson-Gorenstein-

Zierler (PGZ) decoder, Berlekamp-Massey algorithm and Forney algorithm) of

digital BCH codes can be applied to analog BCH codes.

4.2.3 Discrete Cosine Transform (DCT) Codes and Analog

BCH-like codes

Similar as the DFT codes, the generator matrix G of the discrete cosine transform

code comprises k selected columns from a matrix Ξ, where each element ξ(i, j) ∈ Ξ

is defined as

ξ(i, j) =





1/
√

n j = 0

2√
n

cos (2i+1)jπ
2n

j = 1, 2, ..., n− 1
(4.43)

113

Unlike DFT codes, the DCT codes are not analog BCH codes. However, the

parity check matrix H of the DCT code can be decomposed into [9] AXU, where A

is an (n−k)-by-(n−k) full rank matrix, U is an n-by-n diagonal matrix and X is an

(n−k)-by-n Vandermonde matrix. For an arbitrary (n−k)-by-(n−k) submatrix X′

of X, interacting with full-rank matrices A and U does change its rank. Therefore,

the parity check matrix will preserve the properties of Vandermonde matrix which

in turn defines an MDS code.

4.2.4 Linear Analog Codes on Pulse Channels

Early work of analog codes has primarily used a special channel model where pulse

noise will either occur or not occur upon any (analog) symbol transmitted through

the channel. For instance, consider an analog codeword A = {a0, a1, ..., an−1}T ∈
Rn that is being transmitted. If m pulse errors occur to this codeword, that

means only m analogy symbols will be distorted, and the remainder n−m analog

symbols must remain perfectly intact, free from any noise or interference, including

thermal noise, circuitry noise, media noise, detection distortion and the like. Any

slightest change on any additional symbol will cause the decoder to malfunction

or completely fail.

Since all real-world devices are subject to imperfection or noise of some kind,

researchers have also considered more realistic channel models with additive white

Gaussian noise (AWGN) or a mixture of white Gaussian noise and pulse noise, and

studied the code design and decoding strategies in this context. For example, [52]

and [53] introduced an iterative decoding strategy for analog product codes and

analog component codes on an AWGN channel. In [54], Redinbo proposed a Weiner

114

estimator for on the mixed Gaussian-and-pulse noise channel by using a modified

Berlekamp-Massey algorithm as the error position detector. A more robust decoder

for the DFT analog codes is further developed in [55] by modifying the error

location polynomial. In [56], Takos and Hadjicostis proposed a strategy to estimate

the number of errors in the DFT codes in the presence of low-level quantization

noise [56]. These studies have certainly demonstrated an encouraging step forward

compared to the pure pulse noise channel, but the Gaussian noise thereof is all

very small.

4.2.5 Analysis of Existing Linear Analog Codes on AWGN

Channels

Since DFT codes and DCT codes are both unitary codes, and unitary codes are

MEDR codes, we have:

Corollary 4.10: The DFT codes and DCT codes are MEDR codes.

Further, since the (n, 1) repetition code, whose generator matrix is all ones, is

also a unitary code, we have

Corollary 4.11: The repetition codes are MEDR codes.

Additionally, the DFT codes, the DCT codes, and the repetition codes are also

MDS codes in terms of Hamming distance.

Corollary 4.9 states that MEDR codes can achieve the biggest squared Eu-

clidean distance ratio and the smallest average MSE distortion. Hence they exhibit

115

the same, best MSE performance on AWGN channels. This conclusion can also

be verified by computer simulations. In Fig. 4.3, we compare four linear analog

codes with parameters, n = 60 and k = 30 with the same given power gain of

Γ = 60 on the same AWGN channel. They are: a DCT code, a repetition code and

two randomly-constructed generator matrices with minimum squared Euclidean

distance ratio of 0.0235 and 0.0514, respectively. Since the DCT code and the

repetition code are all MDRE codes, they have the same best minimum squared

weight ratio of 2, and achieve the smallest average MSE distortion . Simulations

confirm that they perform the same. The two random analog codes have much

lower minimum squared weight ratios which in turn lead to considerably larger

average MSE distortions, with the one having a higher minimum squared weight

ratio of 0.0514 exhibiting a sightly smaller average distortion.

Our analysis and simulations indicate that the minimum distance (weight) ra-

tio can provides a simple and good metric for the design and evaluation of linear

analog codes. Specifically linear analog codes that achieve the minimum squared

weight ratio possible also achieve the smallest MSE ratio possible on AWGN chan-

nels. In the next subsection, we will discuss the design of linear analog codes for

AWGN channels. We note, however, that that linear analog codes are not the best

codes for AWGN channels, and that nonlinear analog codes can easily exceed the

performance bound of linear analog codes. In the discussion of the nonlinear analog

codes in the next chapter, we will also show that the easy-to-calculate minimum

squared distance ratio serves only as a good metric for linear analog codes, and

not for nonlinear analog codes. Instead, the union bound serves both cases well.

116

0 1 2 3 4 5 6 7 8 9 10
−6

−5

−4

−3

−2

−1

0

1

SNR(dB)

lo
g2

(d
is

to
rt

io
n)

Comparing between codes of C(30,60), Power gain = 60

DCT codes
Repetition codes
Random G with min RD = 0.0514
Random G with min RD = 0.0235

Figure 4.3: Performance of linear analog code with AWGN.

4.3 Design of Linear Analog Block Codes on AWGN

Channels

BCH codes and BCH-like codes primarily consider the Hamming distance. To

satisfy certain decoding capability, the Hamming weight of the noise vector must

be limited. That is, in the system model, the additive noise w can only be modeled

as the pulse function that happen in a limited number of positions. In all the other

positions, the distortion must be zero in order for the BCH-like decoder to work.

Since such a channel model is too idealistic and artificial, there has been some

recent work studying the decoder design and the performance of linear analog block

117

codes on AWGN or mixed Gaussian-and-pulse noise channels [52] [53] [54], [55] [56].

However, most of these studies have not really departed from the BCH and the

pulse noise model, and underpinning theory of designing linear analog codes for

AWGN channels is far from mature.

Below we provide a geometric view for linear analog codes and propose engi-

neering rules to design good linear analog codes.

4.3.1 Geometric explanation of linear analog codes

From the geometric point of view, to encode a linear analog code is to linearly

transform some subspace in the n-dimensional space. The source vectors span a

k-dimensional subspace, which, when represented in the n-dimensional space, is

like the n-dimensional vectors having (n−k) zeros in the last n−k dimensions.

After encoding, the k-dimensional subspace is linearly transformed to a new n-

dimensional subspace.

A linear transform can de decomposed to a set of basic linear transformations:

rotation, scaling, shearing, and reflection. It has been known that an arbitrary

n-dimensional matrix G can be decomposed to G = UDV by singular value

decomposition, where U and V are two square unitary matrices and D is a diagonal

matrix whose diagonal elements are the eigenvalues of the matrix G. In other

words, any linear transform can be implemented in three steps: rotating via the

rotation matrix U, followed by scaling via the scale matrix D, and followed by a

second rotating via the rotation matrix V. Fig.4.4 uses a simple case of n = 3

and k = 2 to illustrate how the rotation and scaling operations will impact the

118

Hamming distance and the Euclidean distance. The general idea holds for any n

dimensions.

x

y

z

Source Space: min

Hamming weight 1

Source Space: min

Hamming weight 2

Encoder Mapping
weight 1

Figure 4.4: Geometric explanation of linear analog code.

In Fig 4.4, a 2-dimensional source space, namely, the x-y plane, is mapped to

the codeword space in the 3-dimensional space. Since it is a linear mapping, the

codeword space is also a plane, and also passes through the origin, the (0, 0, 0)

point. In terms of Hamming weight in a 3-dimension space, the origin (0, 0, 0) has

the lowest weight of 0. Other points on the x axis, the y axis or z axis have the

second lowest weight of 1. The points located in the x-y plane, the y-z plane or

the x-z plane excluding the three axises have Hamming weight of 2. All the other

points will have Hamming weight of 3. Since the original source space, the x-y

plane, contains the x axis and the y axis, so the minimum (non-zero) Hamming

weight of the source space is 1. Through encoding, if the source plane is rotated to

119

a different plane that does not include any one of the x , y or z axises (i.e. does not

intersect these axises except for the origin), then the minimum Hamming weight

is increased to at least 2. In addition, since the codeword plane will inevitably

have an intersecting line with either the x-y plane, the y-z plane or the x-z plane,

the minimum Hamming distance is upper limited to 2. From this analysis, we can

tell that the rotation operation plays a key role in expanding the Hamming weight

during the encoding process. The scaling operation will only affect the Euclidean

weight, but casts no impact on Hamming weight. Hence as far as Hamming weight

is concerned, one can safely assume that the scaling matrix is an identity matrix

(i.e. no scaling on any dimension). What this implies in terms of code design is, for

a given linear analog code C(n, k), it is always possible to find an analog unitary

code which will produces the same Hamming weight as the original linear analog

code for all the source vectors. In other words, a rotation matrix suffices to achieve

the upper bound of the minimum Hamming weight.

Now to put Euclidean distance in perspective, it is clear that rotation becomes

irrelevant and scaling takes the determining role. From our previous analysis of

maximum squared Euclidean distance ratio and the minimum MSE distortion, the

best scaling should be one that is uniform across all the dimensions. This is why,

for example, codes whose eigenvalues of the GGH are all identical are MDRE

codes that can achieve the maximum squared distance ratio and the minimal MSE

distortion.

To conclude, the goals of optimizing Hamming weight and optimizing Euclidean

weight do not conflict with each other in the case of linear analog codes. A good

code design can unify both metrics in one. For example, a carefully-selected rota-

120

tion matrix, such as that for an analog unitary code, can achieve both MDRE and

MDS bounds at one shot.

121

Chapter 5

Non-Linear analog coding

A linear analog codes will do a uniform distance expansion for all the codewords.

However, to have a best average distance expansion, we expect that the codeword

pair which has a smaller distance in the source space is expanded more in the

codeword space, therefore the nonlinear analog codes are desired.

Fig 5.1 compares the difference between two toy examples of the linear analog

codes AC(3, 1) and nonlinear analog code (tent map codes) NAC(3, 1). The input

space is a straight line. After encoding, the analog code AC(3, 1) is still a straight

line. Without any transmission power gain, the space distance will remain the

same as before encoding. However the nonlinear code NAC(3, 1) will be mapped

to a folded line after encoding. Even without accurately measuring, we can tell

that the folded line has a longer length than the straight line. That is, the distances

between the neighboring points are extended more in nonlinear analog codes than

the linear analog codes. From another point of view, the linear operation will

preserve the dimension of the space during encoding, and therefore can not take

122

the full advantage of the changing of the space dimension. However, the codeword

dimension will be increased for nonlinear operation. Further, the linear operation

will evenly expand the codeword distance, while the nonlinear operation can give

different pair different expanding ratios, such as giving a larger expansion to the

pair of points that are closer to each other before encoding.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

c(0)

Linear analog codes vs. nonlinear analog codes

c(1)

c(
2)

Linear analog codes;
A straight lineNonlinear analog codes

(Tent map codes)

Figure 5.1: Comparing between the linear analog codes and nonlinear analog codes

The simulation can also confirm the advantage of nonlinear analog codes. Fig.

5.2 shows that the tent map codes and the mirrored baker’s map codes (both

simple nonlinear analog codes) can outperform the DCT codes (the best linear

analog codes) with the same code rate.

From Shannon’s theory, we know that, given a source x with distortion d(x, x̃),

123

4 5 6 7 8 9 10 11 12
−8.5

−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

SNR(dB)

lo
g2

(d
is

to
rt

io
n)

DCT codes C(60,30)
Tent map codes with rate of 2
DCT codes C(120,30)
Back map codes with rate of 4

Figure 5.2: Performance comparison between the linear analog codes (DCT codes)
and nonlinear analog codes(tent map codes, baker’s map codes)

a channel with capacity C and coding with bandwidth expansion ratio of n/k, the

minimum achievable distortion is limited to

R(D) ≤ n/kC (5.1)

where R(D) is the rate-distortion function given by

R(D) = minp(x̃|x),E(d(x,x̃)<D(I(x, x̃)) (5.2)

For example, given a Gaussian distributed source with mean square error dis-

tortion and AWGN channel, the lower bound of the MSE distortion (5.1) is derived

124

as

1

2
log

σ2
x

D
≤ n

2k
log(1 +

P

σ2
w

) (5.3)

D

σ2
x

≥ 1

(1 + P
σ2

w
)

n
k

, (5.4)

where P
σ2

w
is the signal to noise ratio of AWGN channel, and σ2

x is the variance of

the Gaussian source.

In the log domain, we have

log
D

σ2
x

≥ −n

k
log(1 +

P

σ2
w

) (5.5)

This bound is plotted in Fig. 5.3 for different values of n/k

5.1 Chaotic analog codes

The first chaotic analog code is the tent map code, constructed by Chen and

Wornell [11] using the tent map as the chaotic generator or the encoder. The tent

map is a popular nonlinear chaotic mapping with simple formulation. For each

input symbol, the encoder will generate a corresponding chaotic analog sequence.

Chaotic systems are nonlinear systems with bounded state spaces exhibiting a

topological mixing feature. They are widely existent in the natural world and the

engineering world, and many of them can be realized using simple electric circuits.

125

2 3 4 5 6 7 8 9 10
−30

−25

−20

−15

−10

−5

0

SNR(dB)

lo
g2

(r
el

at
iv

e
di

st
or

tio
n)

Relative distortion bound

bandwidth expansion = 2
bandwidth expansion = 3
bandwidth expansion = 4
bandwidth expansion = 5
bandwidth expansion = 6
bandwidth expansion = 7
bandwidth expansion = 8

Figure 5.3: The normalized MSE Distortion Bound for Gaussian source and AWGN
channels

Despite the rich variety of formalities, chaotic systems share one common property

of high sensitivity to the initial state. Popularly dubbed the “butterfly effect,” this

property states that a small distortion on the initial states of a chaotic system

will cause a big difference at the ending states. Although this butterfly effect is in

general viewed as a system penalty, it can actually be cleverly exploited to satisfy

the distance expansion property required by a good channel code. Specifically, if

one treats the initial states of a chaotic system as the source (to be encoded), and

treats some later states as the codeword (having been encoded), then the chaotic

system naturally enacts a channel encoder that successfully magnifies the small

difference (distance) among the source sequences.

126

This elegant feature was first exploited by Chen and Wornell in the late nineties.

A (near) maximum likelihood (ML) detector is also developed to perform effective

channel decoding [11]. In part because the tent map code performs nowhere com-

parable to digital codes, and in part because the chaotic theory is rather foreign

to the coding community, the beautiful idea exposed in [11] slept for a decade be-

fore we recently picked it up [21]. Carrying the idea further, and leveraging useful

concepts from digital coding, we propose a much better-performing code, termed

the chaotic analog turbo (CAT) code [21]. By connecting two tent map codes in

parallel and decoding it through a soft iterative decoder, the CAT code is capa-

ble of achieving a significant coding gain over a single tent map code, at the cost

of a higher decoding complexity. For the coding theory, a larger dimensionality

introduces a richer context and promises a better coding gain. As tent maps are 1-

dimensional chaotic maps, we further explore higher dimensional maps. Specially,

we study the baker’s map, a 2-dimensional map and sue it to construct a mirrored

baker’s map codes that further outperforms the CAT codes.

5.2 Tent Map Codes

The tent map, a nonlinear iterative function in the shape of a tent, is widely used

to generate discrete-time chaotic dynamics. It is defined as

F (x) = β − 1− β|x|, 1 < β ≤ 2, −1 < x ≤ β − 1. (5.6)

In a time evolution, all the states x and F n(x) (n = 1, 2...) in the interval (−1, β−1]

tend to the attracting interval [−(β−1)2, β−1]. In general, the invariant density of

127

the tent map cannot be described in closed form, except for the case of β = 2 where

the invariant density is uniform over the region of (−1,−1]. For simplicity and for

the purpose of transmitting over additive white Gaussian noise (AWGN) channels

(symmetric source distribution is preferred on symmetric channels), below we will

consider β = 2.

Wornell et al showed that the properties of chaotic systems are useful for channel

coding, and to illustrate this point, they constructed the tent map analog codes

based on the tent map [11], along with an efficient sequence decoding algorithm [11].

Suppose that we transmit a discrete-time real-valued source x[0] over a station-

ary AWGN channel. The encoder encodes each source symbol into a sequence of

N + 1 states, where the original source symbol x[0] is the initial state followed by

N subsequent parity states x[1], ..., x[N],

x[n] = F (x[n− 1]) = F n(x[0]), (5.7)

where F 0(x) = x and

F n(x) = F ◦ F ◦ ... ◦ F (x)︸ ︷︷ ︸
n

. (5.8)

We use a different presentation for vectors throughout this part, in order to

clearly identify each symbol in a vector, for instance, a length-(N + 1) code-

word, consisting of the information symbol x[0] and the encoded parity symbols

x[1], ..., x[N], is denoted as x.

128

5.2.1 Coding Gain of Tent Map Codes

Having discussed the encoding procedure, below we analyze the coding gain of

chaotic analog codes. We start with the tent map codes, whose upsides and down-

sides motivate the proposed new design.

Conventional digital channel coding and analog coding both rely on space ex-

pansion and hence distance expansion to achieve coding gain. A digital code en-

codes an information sequence of length k (U ∈ {0, 1}k) to a codeword sequence of

length n (c(U) ∈ {0, 1}n), or, projects a k-dimensional space onto an n-dimensional

codeword space. This in general results in an increase of the Hamming distance

between any pair of sequences. In the analog case, each (information) symbol

takes a continuous value whose equivalent vector representation has an infinite

dimensionality, and it is therefore impossible to further expand the overall vector

space. Nevertheless coding gain is attainable through expanding a neighborhood

vector space and hence magnifying the differences (distances) of two like symbols

(vectors). The neighborhood spaces that were previously disjoint will in general

overlap after expansion, giving rise to the renowned topologically mixing feature

of a chaotic system.

To see this, consider the depth-1 encoding procedure shown in Fig. 5.4-a for

the tent map. The depth-1 tent encoder encodes x[0] to x[1], and transmits x1
0.

This is achieved by dividing the overall interval (−1, +1] into two neighborhood

intervals (−1, 0] and (0, +1], and expanding and casting each neighborhood in-

terval onto the original full interval (−1, 1] (see ((5.7)). Hence a pair of points

in the same neighborhood interval (half-region), x[0] and x′[0], will see a dou-

129

bled Euclidean distance after being encoded to x[1] and x′[1]. Similarly, in the

depth-2 encoder shown in Fig. 5.7-b, the Euclidean distance for any pair of points

within each quarter-region may potentially be quadrupled. In general, after N

encoding steps, every 1/2N section of (−1, 1], namely, (k21−N , (k + 1)21−N] for

k = −2N−1,−2N−1 +1, · · · , 2N−1− 1, will be expanded and mapped back onto the

full interval (−1, +1]. As a result of this topological mixing, the Euclidean distance

between a pair of points in the vicinity of each other (coming from the same 1/2N

section) may be potentially increased by 2N times. In the case where two points

are coming from distinctive sections, the sign vector sN
0 (signs of xN

0), known in the

literature as symbolic coding, can be exploited to identify and locate each section

and subsequently differentiate these two points. For instance, in Fig.5.4-b, the four

quarter-sections are each associated with a unique symbolic coding s1
0. Suppose

the symbolic coding is accurately known to the decoder. Suppose that the AWGN

has variance δ2, which means that per-symbol detection distortion has a statistical

variance of δ2. Then, a detection distortion occurred to a chaotic state at time N ,

x[N], when mapped back to the original state at time 0, x[0], will become a much

smaller one with variance of only δ2/2N . This indicates that the depth-N encoded

state x[N] has a noise-tolerant level that is potentially N times as large as that of

the original state x[0], resulting in a positive coding gain.

It should be noted, however, that the projected “n-times” gain is based on

the ideal assumption the decoder gets the symbolic coding right. Clearly, symbolic

coding plays a critical role in the estimation accuracy of the chaotic states. Besides,

distortion error introduced by different erroneous signs has a non-uniform impact,

since a mistaken sign of an earlier state will in general introduce a larger error than

that of a later one. For example, in the depth-2 tent map in Fig. 5.4-b, a sign flip

130

of s[0] may cause a detection distortion as large as 0.75, while a sign flip of s[1]

will cause a distortion of at most 0.5. If the symbolic coding is correctly detected

for all the states involved, then the distortion would be controlled under 2−N for a

depth-N tent map. What this implies in the design of analog chaotic codes is the

need to carefully protect symbolic coding, and the symbolic coding of the early

states in particular, in order to effectively protect the information-bearing state

x[0]. This observation motivates us to consider a parallel structure that assembles

two tent maps in a turbo-like manner for a much needed double protection of the

symbolic coding.

x[0] x[2]

s[1], s[0]

x[1]x[0] x[1]

+

0 00 00

-

(a) (b)

- +

+ +

- -

+ -

s[0]

In
te

r s
u
b
-re

g
io

n
 e

rro
r

In
n
e
r s

u
b
-re

g
io

n
 e

rro
r

s
u
b
-s

e
c
tio

n

Figure 5.4: Understanding the encoding of chaotic analog code.

131

5.2.2 ML Decoding of Tent Map Codes

We now discuss detection of a single tent map. Let (N +1) be the codeword length,

x[0] be the (initial) information symbol, and xN
0 and yN

0 be the codeword and the

corresponding received signals respectively. An AWGN channel model with noise

variance of δ2 is considered for transmission. The ML decoder of the chaotic analog

code based on the tent map can be written as:

x̃[0] = arg min
−1<x̃[0]<β−1

P(yN
0 |x̃[0])

= arg min
−1<x̃[0]<β−1

P(yN
0 |F 0(x̃[0]), ..., FN(x̃[0]))

= arg min
−1<x̃[0]<β−1

N∑

k=0

(y[k]− F k(x̃[0]))2, (5.9)

where P(φ) denotes the probability of φ happening.

After replacing F (x) and F k(x) with (5.6) and (5.28), one should, in theory, be

able to solve x̃[0] by taking derivatives. However, since F (x) and F k(x) are defined

piece-wise rather than a single smooth function, the complexity of the derivative

operation increases exponentially with N , making the approach impractical for

large N .

Papadopoulos and Wornell proposed a useful three-step decoding algorithm

[11], thereafter referred to as the “backward decoding algorithm.” The major steps

of this detection algorithm is summarized as follows.

132

1) Estimate sign vector sN
0 via

s̃[n] = sgn[
N∑

k=0

β2(k−n)F n−k(y[k])], (5.10)

where 0 ≤ n ≤ N , and s̃[n] is the estimated sign s[n].

2) Estimate x[N] via

x̃[0] =

∑N
k=0 β2(k−N)FN−k(y[k])∑N

k=0 β2(k−N)
. (5.11)

3) Derive x̃[0] via

x̃[N] = F−N
s̃[0]...s̃[N−1](x̃[N]), (5.12)

where

F−1
s (x) =

1− x

β
s

and

F−N
s̃[0]...s̃[N−1](x) = F−1

s̃[0] ◦ ... ◦ F−1
s̃[N−1](x).

Compared to the ML decoding algorithm formulated in (5.30), the backward

decoding algorithm has a notable advantage of lower complexity that is linear of

N . Since it was not explicitly discussed in [11] the relation between backward

decoding and ML decoding, below we first analyze its optimality.

Lemma 5.1: If x[0] follows a uniform distribution, then the symbolic coding,

s[k]
∆
= sgn(x[k]), is independent of x[k+1], ..., x[N], s[k+1], ..., s[N], and y[k+

1], ..., y[N] for all k=0, ..., N , where sgn(x) denotes the sign of x.

133

Proof: First, the absolute value function |x[k]| detaches the connection between

sgn(x[k]) and x[k + 1], ..., x[N]. Since x[k] and −x[k] have exactly the same prob-

ability to produce the same sequence (x[k+1], ..., x[N]), the sign of x[k] is thus

unrelated to x[k + 1], ..., x[N]. Second, because s[t] is solely determined by x[t]

(for k+1 ≤ t ≤ N), which is proved to be unrelated to s[k], it follows that s[k]

is independent of s[k+1], ..., s[N]. Finally, since y[t] = x[t] + n[t] where n[t] is

the additive independent of x[τ] or s[τ] for any τ and x[t] at t = k + 1, · · · , N is

independent of s[k], we have y(t) for k + 1 ≤ t ≤ N is also independent of s[k]. 2

Lemma 5.2: The backward decoding algorithm is suboptimal, but it approaches

the performance of ML decoding in the limit of SNR going to infinity.

Proof: The exact ML estimation proceeds as

x̃[0] = arg min
−1<x̃[0]<β−1

P(yN
0 |x̃[0]) (5.13)

= arg min
−1<x̃[0]<β−1

P
(
yN

0

∣∣∣sgn(x̃[0]), FN(x̃[0]),

sgn(F (x̃[0])), · · · , sgn(FN−1(x̃[0]))
)
. (5.14)

Since sgn(x̃[0]), FN(x̃[0]) and sgn(F (x̃[0])), · · · , sgn(FN−1(x̃[0])) are all inde-

134

pendent, (5.14) can be rewritten as

x̃[0] = arg min
−1<x̃[0]<β−1

P(yN
0 |sgn(x̃[0]))P(yN

0 |FN(x̃[0]))

P(yN
0 |sgn(F (x̃[0]))) · · ·P(yN

0 |sgn(FN−1(x̃[0]))

= arg min
−1<x̃[0]<β−1

P(y[0]|sgn(x̃[0]))P(yN
0 |FN(x̃[0])))

P(y1
0|sgn(F (x̃[0]))) · · ·P(yN−1

0 |sgn(FN−1(x̃[0])). (5.15)

Since there exists a one-to-one mapping between x[0] and the sequence of sgn(x̃[0]),

sgn(F (x̃[0])), · · · , sgn(FN−1(x̃[0])), FN(x̃[0]), finding the value of x[0] that min-

imizes (5.15) equates to finding each individual element in the sequence s̃[0],

s̃[N − 1], · · · , x̃[N]. We have

s̃[k] = arg min
s̃[k]={+1,−1}

P(yk
0 |s̃[k]), (5.16)

x̃[N] = arg min
−1<x̃[N]<β−1

P(yN
0 |x̃[N]), (5.17)

x̃[0] = F−N
s̃[0],...,s̃[N−1](x̃[N]), (5.18)

and P(yN
0 |x̃[N])

= P(FN(y[0])|x̃[N])P(FN−1(y[1])|x̃[N]) · · ·P(y[N]|x̃[N]). (5.19)

When the SNR goes to infinity, FN−k(y[k]) approaches a Gaussian distribution

135

with mean x[N] and variance δ2β2(N−k). Replacing (5.19) with the probability

density function of a Gaussian distribution and taking derivatives, we get (5.11)

in the backward decoding algorithm. Further, considering that x̃[N] is a weighted

sum of FN−k(y[k]) for 0≤ k ≤N , and that x̃[N] forms a new Gaussian random

variable with mean x[N], we can obtain (5.10) using the same procedure shown

above.

However, when the SNR is finite, albeit large, FN−k(y[k]) is close to a Gaussian

distribution with mean x[N] and variance (slightly) smaller than δ2β2(N−k). The

difference is caused by a large noise sample n[k], (0 ≤ k ≤ N) which is greater

than 1/2N−k (0≤ k≤N). Hence, the backward decoding algorithm is in general

sub-optimal, but approaches ML decoding as SNR increases without bound. 2

Fig. 5.5 compares the true ML decoding and the backward decoding, and

confirms this result.

The previous discussion also reveals an important fact, namely, the use of a

length-k sequence yk−1
0 to estimate s[k − 1], for k = 0, · · · , N . This becomes a

problem when k is small, and in particular, when k = 0, we have only exploited

y[0] to estimate s[0]. This means that s[0], which is most important and whose

erroneous decision could cause the worst detection distortion, has actually received

the weakest protection. This observation motivates us to design a new coding

scheme, one that offers better protection for s[0] and other symbolic coding of

small indices.

136

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

SNR

M
S

E

Backward decoding algorithm
ML decoding algorithm

Figure 5.5: Comparison between ML decoding and backward decoding N = 5

5.3 CAT codes and SISO MAP decoding

We have shown that a single tent map, falls short in protecting symbolic coding

s̄N−1
0 , since exactly where the protection is most needed actually receives the least

of it. Further, unlike digital coding coupled with the BPSK modulation, in which

each codeword or symbol is transmitted with the same power, the transmit power

of an analog symbol x[k] is squared proportional to the magnitude of x[k]. Since

the estimated symbolic coding s̃[k] is much dominated by y[k], a small absolute

value of x[k] (low transmit power) makes y[k] less reliable and s̃[k] more prone

to error. This, adding to the insufficient protection of symbolic coding of small

indices, could lead to rather undesirable performance loss.

137

To enhance and especially balance the protection of symbolic coding, we pro-

pose to construct chaotic analog turbo codes by introducing a second tent map

associating it with a pre-determined symbol coding. Specifically, in this work, we

let this pre-determined symbolic coding be the reverse order (reversed indices) of

that from the first tent map. Thus, s[k] with a small indice k, which gets little

protections at the first tent encoder, is now gaining a better protection from the

second tent encoder. This is close in spirit to that of the classic turbo code, one

that tries to make a weakly-protected sequence (i.e. low-weight codeword) from the

first component code to hopefully get better protection (i.e. become a high-weight

one) from the second component code.

Fig.5.6 describes the encoding procedure of CAT codes based on two tent maps.

1. Generate the first analog sequence x1[0], ..., x1[N] by feeding the information

symbol x1[0] into the first tent map.

2. Extract the symbolic coding s1[0], ..., s1[N − 1].

3. Reverse the order of sN−1
0 to generate the symbolic coding for the second tent

map: s2[0] = s1[N − 1], · · · , s2[N − 1] = s1[0].

4. Let x2[N] = x1[N]. Generate the second chaotic sequence x2[N−1], ..., x2[0]

by using the inverse function F−1(x) and forcing the signs of the new chaotic

sequence to be s2[N − 1], ..., s2[0].

The proposed decoder follows three steps.

1. Estimate the symbolic coding s1[0], ..., s1[N − 1] using both tent maps.

138

The first component code:

Chaotic analog coding

u {x[0] = u, x1[1], x1[2],…, x1[N-1]}

s1[0],s1[1],…,s1[N]

x1[N]

Interleaver

s2[0],s2[1],…,s2[N]

MUX

The second

component code:

Chaotic analog coding

{x2[N-1] = x1[N], x2[N-2],…, x2[0]}

Figure 5.6: Encoding scheme of CAT codes

2. Estimate x1[N].

3. Derive x1[0] from (5.12).

Instead of using the backward decoding algorithm to estimate the symbolic

coding in the first step, here we exploit the renowned soft-iterative approach based

on soft-input soft-output (SISO) maximum a posterior (MAP) decoding of each

component tent map. To facilitate SISO MAP decoding, we define a likelihood

ratio (LLR) for s[k].

(i) When k = N − 1, we have

LLRs̃[N−1] =log
P(yN−1

0 |s̃[N−1]=+1)P(s̃[N − 1]=+1))

P(yN−1
0 |s̃[N−1]=−1)P(s̃[N−1]=−1))

=log
e

(G[N−1]−x+[N−1])2

2δ2 P(s̃[N − 1] = +1)

e
(G[N−1]−x−[N−1])2

2δ2 P(s̃[N − 1] = −1)
, (5.20)

where G[n] =
∑n

k=0 β2(k−n)F n−k(y[k])∑n
k=0 β2(k−n) . We use F−1

+1 (y[N]) to estimate xs̃[N−1]=+1[N−1],

139

and F−1
−1 (y[N]) to estimate xs̃[N−1]=−1[N − 1], and therefore get

LLRs̃[N−1] = log
e

(G[N−1]−F−1
+1 (y[N]))2

2δ2 P(s̃[N−1]=+1)

e
(G[N−1]−F−1

−1 (y[N]))2

2δ2 P(s̃[N−1]=−1)

. (5.21)

(ii) When k < N − 1, we have

LLRs̃[k] = log
P(yk

0 |+ +)P(++) + P(yk
0 |+−)P(+−)

P(yk
0 | −+)P(−+) + P(yk

0 | − −)P(−−)
,

=log
e

(G[k]−x++[k])2

2δ2 P(++) + e
(G[k]−x+−[k])2

2δ2 P(+−)

e
(G[k]−x−+[k])2

2δ2 P(−+) + e
(G[k]−x−−[k])2

2δ2 P(−−)
, (5.22)

where (X1X2) with X1, X2∈{+,−} represents (s̃[k]=X1, s̃[k+1]=X2). We next

use
F−1

X1
(y[N]) + β2F−2

X1X2
(y[N])

1 + β2
(5.23)

to estimate the xX1X2 [k] in (5.22).

In (5.21) and (5.22), the a priori probabilities P(s̃[N−1]=+1) and P(s̃[N−1]=

−1), and P(++), P(+−), P(−+) and P(−−) are calculated from LLRs̃[k], passed

from the other component decoder.

The iterative decoding process starts from LLRs̃[k] =0 for 0≤k≤N . The two

component decoders exchange and refines LLRs̃[k] with iterations, and at the end

of the iterations, computes the hard decision s1[0], ..., s1[N − 1].

140

5.3.1 Performance Simulation of CAT codes

We simulate and compare CAT codes with the tent map code, for the same code

length 11 (x[0] and 10 parity symbols). We choose the distortion log2|mean((x[0]−
x̃[0])2)| as the metric to evaluate the performance. Fig 5.7 plots the performance

curves. The CAT scheme outwins tent map codes by some 4dB gain at high SNR!

The aforementioned chaotic analog codes transmit the coded sequence xN
0 to

protect the information-bearing symbol x[0]. An alternative system may trans-

mit x[N] and sN−1
0 , which carry the equivalent information about x[0]. When

transmitting sN−1
0 , the binary sequence, we have the natural option of sending it

through the conventional digital communication system. If a system exploits both

the conventional digital system (for transmitting sN−1
0) and the analog system (for

transmitting x[N]), we call it a “hyper system”.

We simulate two hyper systems with BPSK modulation and repetition codes.

The first uses (uncoded) BPSK only for sN−1
0 , and the second protects sN−1

0 using

a rate-1/2 repetition code followed by BPSK modulation. Fig. 5.8 compares the

performance of these two hyper systems with the CAT chaotic system and Chen-

Wornell system. Performance curves show that the proposed CAT chaotic system

outperforms all of the other three systems.

141

5.4 2-D Chaotic Analog Codes: Mirrored Baker’s

Map Codes

The tent map code has successfully demonstrated the possibility of exploiting

chaotic systems to achieve error correction [11], but its performance awaits to

be desired. This is in part because it is a one-dimensional code that encodes only

a single source symbol ui at a time. From the coding theory, a larger batch involv-

ing more source symbols at a time can provide a richer context and potentially a

stronger error correction capability. This suggests that high-dimensional chaotic

systems may provide better candidates for coding construction. Since a high di-

mension also implies a high complexity, below we explore two-dimensional systems

to hopefully strike a good balance between complexity and performance.

Searching over the literature, we have identified the 2-dimensional baker’s map

as a suitable candidate for code construction. Below we first discuss our idea of

constructing the new code, and then develop the corresponding ML decoding and

its simplification.

5.4.1 Encoding of Baker’s Map Codes

The baker’s map is a nonlinear chaotic function named after a kneading operation

that bakers apply to dough. Figure 5.9 explains the entire process, and as an

142

example we choose the tent map with β = 2 as the “dough”:

x[k] = F (x[k − 1])

=





2x[k − 1] + 1, if x[k − 1] < 0

1− 2x[k − 1], otherwise

−1 ≤ x[0] ≤ 1.

The process of the baker’s map is summarized as below.

• First, the dough is compressed in vertical direction and stretched in horizon

direction.

• Then, the dough is cut in half, and the two halves are stacked on one-another.

• After that, we get the mapping for y and a new 2-dimensional mapping as

{x[k], y[k]} (5.24)

= F ({x[k − 1], y[k − 1]}) (5.25)

=




{2x[k − 1] + 1, y[k−1]

2
− 1

2
}, if x[k − 1] < 0

{1− 2x[k − 1], 1
2
− y[k−1]

2
}, otherwise

(5.26)

where −1 < x[0], y[0] < 1.

The baker’s map by itself can form an analog code, but does not perform very

well, because F ({x[k−1], y[k−1]}) is not symmetrical, in the sense that the current

x is used to generate the next value of y yet the conversance does not hold). Hence,

143

if directly applying the baker’s map to analog coding, information x is embedded

and protected by two codewords (x and y), while information y is only protected

by one codeword (Y). Aware of this unbalanced protection, we propose a new

coding scheme that makes use of a pair of (rather than one) baker’s maps in a

mirrored duplicate fashion to avoid the undesirable biased protection. The basic

idea is to introduce two identical baker’s maps F (x, y) which work in parallel to

encode the same source sequence u = {u2i, u2i+1}. Specifically, {u2i, u2i+1} and its

mirror {u2i+1, u2i} are fed into the first baker’s map and the second baker’s map

respectively. We name this new 2-dimensional chaotic analog codes the mirrored

baker’s map codes. The unbalance protection is canceled out by switching the

positions of inputs. Further, two parallel baker’s maps enable the transformation

from one-dimensional analog coding into two-dimensional coding, promising larger

coding gain in theory.

Specifically, as shown in Figure 5.10, the discrete-time real-valued source se-

quence u = {u0, u1,...} is divided into small coding frames with length 2. For the

ith frame, encoder transforms every pair of source symbols {u2i, u2i+1} into two

length-N analog symbol-pair sequences {xi
1,y

i
1} and {xi

2,y
i
2}, where {xi

1,y
i
1} =

{xi
1[0], yi

1[0]}, {xi
1[1], yi

1[1]}, ... , {xi
1[N−1], yi

1[N−1]} and {xi
2,y

i
2} = {xi

2[0], yi
2[0]},

{xi
2[1], yi

2[1]}, ... , {xi
2[N − 1], yi

2[N − 1]}. Note that the initial information pairs

{xi
1[0], yi

1[0]} and {xi
2[0], yi

2[0]} equal the source pair {u2i, u2i+1} and its mirrored

version {u2i+1, u2i} respectively. The rest parity pairs are recursively generated by

144

the 2-dimensional chaotic baker’s map





{xi
1[k], yi

1[k]} = F ({xi
1[k − 1], yi

1[k − 1]})
= F k({u2i, u2i+1})

{xi
2[k], yi

2[k]} = F ({xi
2[k − 1], yi

2[k − 1]})
= F k({u2i+1, u2i}),

(5.27)

where F (x, y) is defined by baker’s map as in (5.26) and

F k(x, y) =





(x, y) k = 0

F ◦ F ◦ ... ◦ F (x, y)︸ ︷︷ ︸
k

. k 6= 0,
(5.28)

Without loss of generality, we omit the superscription i for the ith frame in

this work and use {x1,y1}, {x2,y2} to represent the codeword, in which each

entry is expressed {x1[i], y1[i]}, {x2[i], y2[i]}. Suppose that the codeword {x1,y1},
{x2,y2} passes through an AWGN channel, then a noisy codeword {Rx1,Ry1}
and {Rx2,Ry2} is received at the receiver side.





Rx1 = x1 + w1

Ry1 = y1 + w2

Rx2 = x2 + w3

Ry2 = y2 + w4

(5.29)

where w1, w2, w3 and w4 are the Gaussian noise sequence.

145

5.4.2 ML decoding of Mirrored Baker’s codes

We start with the ML decoding for the proposed mirrored baker’s map codes.

Assuming u = u2i and v = u2i+1 for each ith frame, the ML decoder will provide

an estimate of {u, v} as {ũ, ṽ} which satisfying

{ũ, ṽ}

= arg min
−1<ũ,ṽ<1

P({Rx1,Ry1,Rx2,Ry2}|{ũ, ṽ}),

where P(x) denotes the probability of x. All the discussions in this section will

continue the example in (5.26), but they can be easily extended to other chaotic

mapping methods.

The ML decoder of the mirrored baker’s codes can be further written as:

{ũ, ṽ}

= arg min
−1<ũ,ṽ<1

P({Rx1,Ry1}N−1
0 |FN−1

0 ({ũ, ṽ})}))

P({Rx2,Ry2}N−1
0 |FN−1

0 ({ṽ, ũ})}))

= arg min
−1<ũ,ṽ<1

N−1∏
i=0

P({Rx1[i], Ry1[i]}|F i({ũ, ṽ}))

P({Rx2[i], Ry2[i]}|F i({ṽ, ũ})), (5.30)

where FN−1
0 ({ũ, ṽ}) = {F 0({ũ, ṽ}), ..., FN−1({ũ, ṽ})}.

We assume Gaussian noise and rewrite F i({ũ, ṽ}) and F i({ṽ, ũ}) in (5.30) as

146

{x̃1[i], ỹ1[i]} and {x̃2[i], ỹ2[i]} respectively. Then, we have

{ũ, ṽ} = arg min
−1<ũ,ṽ<1

N−1∑
i=0

(Rx1[i]− x̃1[i])
2(Ry1[i]− ỹ1[i])

2

(Rx2[i]− x̃2[i])
2(Ry2[i]− ỹ2[i])

2. (5.31)

All the four terms Rx1[i], Ry1[i], Rx2[i], and Ry2[i] can be expressed as a function

of u and v. To get the optimal solution of {ũ, ṽ}, i.e. to make (5.31) achieve the

minim value, we can take the differential of function (5.31). While the function

F i({ũ, ṽ}) and F i({ṽ, ũ}) are not differentiable over the defined range of {u, v},
both F i({ũ, ṽ}) and F i({ṽ, ũ}) are piece-wise linear and differentiable with respect

to u and v. Take F i({ũ, ṽ}) as an example, Figure 5.11 and 5.12 show the curves

of x̃1[1], x̃1[n], ỹ1[1] and ỹ1[3] in terms of {u, v}. x̃1[n] is linear to x̃1[0] in any range

from i
2n−1 to i+1

2n−1 , where −2n−1 ≤ i < 2n−1. The same holds for ỹ1[n], which is

linear to x̃1[0] and ỹ1[0] in the range from i
2n−1 to i+1

2n−1 , where −2n−1 ≤ i < 2n−1.

Consider a length-N baker’s map, the definition range of u can be divided into

2N−1 subregions. Within each subregion, all the function F i(u, v) with 0 ≤ i <

N are linear and differentiable. the sign sequence s1
N−2
0 of sequence x1

N−2
0 is

determined. Therefore, each subregion can be represented by s1
N−2
0 . By given any

sign sequence s1
N−2
0 ,we can rewrite the expression of F n({u, v}) (5.26) as

{x̃1[n], ỹ1[n]}

= F ({x̃1[n− 1], ỹ1[n− 1]})

= {a1[n− 1]ũ + b1[n− 1], a2[n− 1]ṽ + b2[n− 1]}, (5.32)

where x̃1[0] = ũ, ỹ1[0] = ṽ. a1[n], b1[n], a2[n], and b2[n] are the parameters and

147

can be obtained by the following recursive equations





a1[n] = −2a1[n− 1]s1[n− 1];

b1[n] = 1− 2s1[n− 1]b1[n− 1];

a2[n] = (−1/2)s1[n− 1]a2[n− 1];

b2[n] = 1/2s1[n− 1]− 1/2s1[n− 1]b2[n− 1];

(5.33)

a1[0] = 1; b1[0] = 0; a2[0] = 1; b2[0] = 0. (5.34)

The previous discussion is based solely on the first baker’s map in the system

{x̃1[n], ỹ1[n]}. Similarly, we can derive {x̃2[n], ỹ2[n]} for the second baker’s map as

{x̃2[n], ỹ2[n]} (5.35)

= F ({x̃1[n− 1], ỹ1[n− 1]}) (5.36)

= {a3[n− 1]ṽ + b3[n− 1], a4[n− 1]ũ + b4[n− 1]}. (5.37)

The parameter A3
N−1
0 and A4

N−1
0 can be generated by the same recursive equations

as (5.33) and (5.34), but changing the sign sequence from S1
N−2
0 to S2

N−2
0 .

Therefore, we can further simplify (5.31)

{ũ, ṽ} (5.38)

= arg min
−1<ũ,ṽ<1,S1

N−2
0 ,S2

N−2
0

N−1∑
i=0

(Rx1[i]− a1[i]ũ− b1[i])
2

(Ry1[i]− a2[i]ũ− b2[i])
2(Rx2[i]− a3[i]ṽ − b3[i])

2

(Ry2[i]− a4[i]ũ− b4[i])
2. (5.39)

148

By taking the derivative, we have

ũ = arg min
S1

N−2
0 ,S2

N−2
0

T1

a2
1[i] + a2

4[i]
, (5.40)

ṽ = arg min
S1

N−2
0 ,S2

N−2
0

T2

a2
2[i] + a2

3[i]
, (5.41)

where

T1 =
N−1∑
i=0

Rx1[i]a1[i]− a1[i]b1[i] + Ry2[i]a4[i]− a4[i]b4[i], (5.42)

T2 =
N−1∑
i=0

Ry1[i]a2[i]− a2[i]b2[i] + Rx2[i]a3[i]− a3[i]b3[i]. (5.43)

Till now, we have proposed an ML decoding algorithm (5.30) for the mirrored

baker’s map codes. Under the Gaussian noise assumption, we have further simpli-

fied it and derived a close-form optimal {u2i, u2i+1} in (5.40) and (5.41) with given

sign sequence S1
N−2
0 and S2

N−2
0 .

5.4.3 Performance of Mirrored Backer’s Map codes

To verify the coding gain brought by the multi-dimension, this section compares

the new 2-dimensional mirrored baker’s map codes with the 1-dimensional tent

map codes, at the same code rate 12 (1 systematic symbol and 11 parity symbols).

For different analog systems, each analog source symbol may take a different

value range. Given the same encoder and decoder, the distortion is proportional

to the source range. To provide a fair comparison of analog systems, a normalized

149

distortion δ is evaluated, where

δ = log2

Avg((U− Ũ)2)

max(U)−min(U)
, (5.44)

U denotes the source sequence and Avg(X) represents the mean of vector X.

The performance curves of the tent map codes and mirrored baker’s map codes

are shown and compared in Figure 5.13. A 8dB coding gain is observed.

5.5 Analog vs Digital systems

For much of the half-century history of modern communications, channel coding

has been almost exclusively considered as a digital-only technology. In traditional

digital communication, an analog information source will be firstly quantized to a

binary sequence of 0s and 1s and subsequently be mapped from analog signal to

digital signal with quantization error. Then, after some digital processing, such as

channel coding, the digital sequence is modulated and mapped back from digital

signal to analog signal. The introduction of analog codes can save the effort of

quantization and also avoid the quantization error!

We now compare the performance of digital convolutional codes, digital turbo

codes and the mirrored baker’s map codes. A discrete-time real-valued source

sequence u is fed into both digital systems and analog systems. For the digital

coding systems, a uniform scalar quantizer is performed before the digital error

correction codes. The output codeword of the encoder will be modulated to BPSK

or 4PAM sequence. For the analog coding system, the source sequence u will

150

encoded to v by the chaotic analog coding directly. All the systems are evaluated

by the normalized distortion in (5.44) and kept the same bandwidth ratio

Rw =
|v|
|u| , (5.45)

where |x| indicates the size of vector x.

Figure 5.14 shows that the mirrored baker’s map codes outperforms the tradi-

tional convolutional code with both BPSK and 4PAM modulation. A low-order

level modulation for digital systems will likely improve the waterfall region but will

also increase the quantization error floor as fewer quantization bits can be afforded.

A balanced chaotic analog codes such as the mirrored baker’s map code provides

a larger than 5dB gain over the high-rate turbo codes with the component code of

[15, 17] and code length of 1000 at low SNRs, and offers a smaller distortion than

the low-rate turbo codes at high SNRs.

151

0 1 2 3 4 5 6 7 8 9 10
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

SNR(dB)

lo
g2

(m
ea

n(
di

st
or

tio
n)

)

Tent map codes with length 11
CAT codes with length 11

Figure 5.7: Comparison between CAT codes and tent map codes

0 1 2 3 4 5 6 7 8 9 10
−10

−9

−8

−7

−6

−5

−4

−3

−2
Code length = 5

SNR(dB)

lo
g2

(m
ea

n(
D

is
to

rt
io

n)
)

CAT codes
Tent map code
BPSK hyper codes
repeatation hyper codes

Figure 5.8: Comparison between of CAT codes and BPSK hyper codes, repetition
hyper codes

152

X<0 X>0 X<0 X<0X>0 X>0

compress

strentch Cut and move

X<0

X>0

y(i+1)=y(i)/2-1/2

y(i+1)=1/2-y(i)/2

Function of f(x)

Function of f(y)

Figure 5.9: The process of baker’s map

F(x,y)

Serial to

Parallel
 ,,,

210
uuu

F(x,y)

i
u
2

12 i
u

]1[,],1[],0[1111 ! NxxxX
iiii

]1[,],1[],0[1111 ! NyyyY
iiii

]1[,],1[],0[2222 ! NxxxX
iiii

]1[,],1[],0[2222 ! NyyyY
iiii

Parallel

to Serial

 ,,,,, 2211

iiii
YXYX

Figure 5.10: the system model of 2-D chaotic analog codes

153

F(x)

x

1

1-1

-1

x

1

1-1

-1

0.5-0.5

22

1
 n 22

1
 n

)(xF
n

Figure 5.11: Function curve of x1[1] and x1[n− 1] in terms of {u, v}.

154

Figure 5.12: Function curve of y[1] and y[3] in terms of {u, v}
155

0 1 2 3 4 5 6 7 8 9 10
−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

SNR (dB)

no
rm

liz
ed

 lo
g2

(m
ea

n(
di

st
or

tio
n)

)

Tent map codes with rate of 1/12
2−dimensional choatic analog codes with rate of 1/12

Figure 5.13: Performance comparison between baker’s codes and tent map code
with rate of 1/12.

156

0 1 2 3 4 5 6 7 8 9 10
−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

SNR(dB)

no
rm

liz
ed

 lo
g2

(m
ea

n(
di

st
or

tio
n)

)

punctured turbo code(rate 1/2)+BPSK
digital conv+soft decoder(3)+BPSK
2−dimensional chaotic analog codes
digital conv+soft decoder(3)+4pam
turbo code (rate 1/3)+ 4pam

Figure 5.14: Performance comparison between analog codes and digital codes .

157

Chapter 6

Conclusion

Error correction coding (ECC) is widely used in wireless and wireline communi-

cations, computer architectures, and storage systems. The simple profound idea

behind error correction coding is distance expansion, which could be exploited both

in the digital domain and in the analog domain.

This research contains investigation in digital error correction coding and analog

error correction coding. For the digital case, we study interleaver design for turbo

codes and analyze iterative decoding of LDPC codes. For the analog case, we

investigate the design and analysis of analog codes.

Interleavers in turbo codes assist encoders to obtain a good distance spectrum,

and allow iterative decoders approximate the maximal likelihood (ML) decoder.

Spread and randomness have been recognized as important aspects in interleaver

design, but rigorous and efficient ways to measure these two aspects are much

missing. Our study has resulted in two simple and powerful metrics to quantify

158

these properties. We further re-evaluate the coprime interlever (a rich class of

algebraic interleavers) and provide a design guidance. Simulation results show that

the new designed coprime interleaver outperforms most of the existing interleavers

with a lower complexity.

In analyzing iterative decoding of LDPC codes, we investigated the Gaussian

assumption. Gaussian distribution has been a popular assumption in the analysis

of iterative decoding, but the justification of this assumption is largely pragmatic,

except for the messages directly coming from Gaussian channels. Our research has

provided a statistical justification for the Gaussian assumption in LDPC codes.

We investigate when and how well the Gaussian distribution approximates the

real message density and why. We have shown that the Gaussian assumption

is statistically sound when the LLRs extracted from the channel are reasonably

reliable to start with, and when the check node degrees of the LDPC code are not

very high; but the assumption is much less accurate when one or both conditions

are violated. Extensive simulation results are provided to exemplify and verify this

discussion.

While distance expansion is largely performed in digital codes, we show that

analog codes can potentially be a very promising extension for digital codes. Ana-

log coding avoids quantization errors for natural analog sources (video, audio). In

our research, we conducted fundamental theoretical and algorithmic study. We

define a few analytical metrics and theorems, prove theoretical bounds for linear

analog codes, identify classes of linear analog codes that could achieve the bounds

and outline design rules for good linear analog codes. As linear analog codes do

not perform well on AWGN channels, we further study nonlinear analog codes.

159

We cleverly exploit the butterfly effect of chaotic systems and the successful con-

catenation idea from digital turbo codes, and propose two new classes of chaotic

analog codes: chaotic analog turbo codes and mirrored baker’s map codes. For the

former, we developed a SISO iterative decoder, and for the later, we developed a

simple closed-form ML decoder. Both codes perform significantly better than the

previous chaotic analog codes (i.e. tent map codes), and on par with the uniformly

quantized digital codes. Finally we show that it is also possible to explore suitable

non-chaotic nonlinear functions to construct good nonlinear analog codes.

160

Bibliography

[1] C. Shannon, N. Petigara, and S. Seshasai, “A mathematical theory of commu-

nication,” Bell System Technical Journal, vol. 27, pp. 379–423, 1948.

[2] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity check

codes,” IEEE Transactions on Information Theory, vol. 47, pp. 599–618, 2001.

[3] N. Wiberg and N. Wiberg, “Codes and decoding on general graphs,” Ph.D.

dissertation, Linkoing University Linkoing Sweden, 1996.

[4] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-product

decoding of low-density parity-check codes using a Gaussian approximation,”

IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 657–670, 2001.

[5] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-

approaching irregular low-density parity-check codes,” IEEE Transactions on

Information Theory, vol. 47, pp. 619–637, 2001.

[6] S. ten Brink, “Convergence behavior of iteratively decoded parallel concate-

nated codes,” IEEE Transactions on Communications, vol. 49, pp. 1727–1737,

2001.

161

[7] M. Fu, “Stochastic analysis of turbo decoding,” IEEE Transactions on Infor-

mation Theory, vol. 51, pp. 81–100, 2005.

[8] V. S. S. Nair and J. A. Abraham,“Real-number codes for fault-tolerant matrix

operations on processor,” IEEE Transactions on Computers, April 1990.

[9] G. Rath and C. Guillemot, “Characterization of a class of error correcting

frames for robust signal transmission over wireless communication channels,”

EURASIP Journal on Applied Signal Processing, pp. 229–241, 2005.

[10] A. Gabay, M. Kieffer, and P. Duhamel, “Joint source-channel coding using

real bch codes for robust image transmission,” IEEE Transactions on Image

Processing, pp. 1568–1583, 2007.

[11] B. Chen and G. W. Wornell, “Analog error-correcting codes based on chaotic

dynamical systems,” IEEE Transactions on Communications, vol. 46, pp. 881–

890, 1998.

[12] V. A. Vaishampayan and I. R. Costa, “Curves on a sphere, shift-map dynamics

and error control for continuous alphabet sources,” IEEE Transactions on

Information Theory, vol. 49, pp. 1658–1672, 2003.

[13] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of Atmospheric Sci-

ences, pp. 130–148, 1963.

[14] C. Pantalen, C. Pantaleon, D. Luengo, and I. Santamaria,“Optimal estimation

of chaotic signals generated by piecewise-linear maps,” IEEE Signal Processing

Letters, vol. 7, pp. 235–237, 2000.

162

[15] C. Pantalen, L. Vielva, D. Luengo, and I. Santamaria, “Estimation of a certain

class of chaotic signals: An em-based approach,” 2007. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.15.3073

[16] C. Pantaleon, D. Luengo, and I. Santamaria, “Bayesian estimation of a class of

chaotic signals,” in Proceedings of IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), 2000, pp. 197–200.

[17] S. M. Kay, “Methods for chaotic signal estimation,” IEEE Transactions on

Signal Processing, vol. 43, pp. 2013–2016, 1995.

[18] I. Campos-Canton, E. Campos-Canton, J. S. Murguia, and H. C.

Rosu, “A simple circuit realization of the tent map,” Chaos, Solitons

& Fractals, vol. 42, pp. 12–16, 2009. [Online]. Available: http:

//www.citeulike.org/user/uma physics/article/3036559

[19] S. A. Barbulescu, A. Guidi, and S. S. Pietrobon, “Chaotic turbo codes,” in

IEEE International Symposium on Information Theory, 2000, p. 123.

[20] X. lin Zhou, J. bo Liu, W. tao Song, and H. wen Luo, “Chaotic turbo codes in

secure communication,” in European Conference (EUROCON) International

Conference on Trends in Communications, 2001, pp. 199–201.

[21] K. Xie, P. Tan, N. B. Chong, and J. L. (Tiffany), “Analog turbo codes: A

chaotic construction,” IEEE International Symposium on Information Theory,

2009.

[22] S. N. Crozier, “New high-spread high-distance interleavers for turbo codes,”

in Proceeding of Biennial Symposium of Communications, May 2000.

163

[23] S. Dolinar and D. Divsalar, “Weight distributions for turbo codes using ran-

dom and nonrandom permutations,” in JPL TDA Progress Report 42-122,

1995, pp. 56–65.

[24] J. Li, “Low-complexity, capacity-approaching coding schemes: design, analysis

and applications,” Ph.D. dissertation, Texas A&M University, 2002.

[25] S. Crozier, J. Lodge, P. Guinand, and A. Hunt, “Performances of turbo-codes

with relative prime and golden interleaving strategies,” in Proceedings of 6th

International Mobile Satellite Conference, June 1999.

[26] C. Heegard and S. B. Wicker, Turbo Coding. Kluwer Academic Publishers

Norwell, MA, USA, 1999.

[27] O. Y. Takeshita and D. J. Costello, “New deterministic interleaver designs for

turbo codes,” IEEE Transactions on Information Theory, vol. 46, no. 6, pp.

1988–2006, 2000.

[28] K. Xie, P. Tan, J. Li, and W. Wang, “Interleaver design for short-length

turbo codes,” in Proceeding of 39th Conference on Information Sciences and

Systems, March 2005.

[29] K. Xie and J. Li, “Spread spectrum properties for interleavers,” submitted to

IEEE Transactions on Information Theory.

[30] A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information trans-

fer functions: model and erasure channel properties,” IEEE Transactions on

Information Theory, vol. 50, pp. 2657–2673, 2004.

164

[31] C. Measson, A. Montanari, and R. Urbanke, “Why we cannot surpass ca-

pacity: The matching condition,” in Proceeding of Allerton Conference on

Communication, Control and computing, September 2005.

[32] L. F. Fenton,“The sum of log-normal probability distributions in scatter trans-

mission systems,” IEE Transaction on Communication System, vol. CS-8, pp.

57–67, 1960.

[33] S. Schwartz and Y. S. Yeh, “On the distribution function and moments of

power sums with log-normal components,” Bell System Technical Journal,

vol. 6, pp. 1441–1462, 1982.

[34] C.-L. Ho, “Calculating the mean and variance of power sums with two log-

normal components,” IEEE Transactions on Vehicular Technology, vol. 44,

pp. 756–762, 1995.

[35] N. C. Beaulieu, A. A. Abu-Dayya, and P. J. McLane,“Estimating the distribu-

tion of a sum of independent lognormal random variables,” IEEE Transactions

on Vehicular Technology, vol. 43, pp. 2869–2873, 1995.

[36] A. A. Abu-Dayya and N. C. Beaulieu, “Outage probabilities in the presence of

correlated lognormal interferers,” IEEE Transactions on Vehicular Technology,

vol. 43, pp. 164–173, 1994.

[37] P. Pirinen, “Statistical power sum analysis for nonidentically distributed cor-

related lognormal signals,” in The 2003 Finnish Signal Processing Symposium,

May 2003.

[38] M. Pratesi, F. Santiccu, and F.Graziosi, “Generalized moment matching for

the linear combination of lognormal RVs: application to outage analysis in

165

wireless systems,” IEEE Transactions on Wireless Communications, vol. 5,

pp. 1122–1132, 2006.

[39] S. Vanduffel, T. Hoedemakers, and J. Dhaene, “Comparing approximations

for risk measures of sums of non-independent lognormal random variables,”

North American Actuarial Journal, vol. 9, pp. 71–82, 2005.

[40] N. C. Beaulieu and Q. Xie,“An optimal lognormal approximation to lognormal

sum distributions,” IEEE Transactions on Vehicular Technology, vol. 53, pp.

479–489, 2004.

[41] D. C. Boes, F. A. Graybill, and A. M. Mood, Introduction to the Theory of

Statistics. McGraw-Hill New York, 1974.

[42] A. Ashikhmin, G. Kramer, and S. ten Brink, “Design of low-density parity-

check codes for modulation and detection,” IEEE Transactions on Communi-

cations, vol. 52, pp. 670–678, 2004.

[43] J. T. G. Marshall, “Real number transform and convolutional codes,”Proceed-

ings of 24th Midwest Symposium on Circuits and Systems, pp. 650–653, June

1981.

[44] J. K. Wolf, “Analog codes,” IEEE International Conference on Communica-

tions, Conference Record, pp. 310–312, June 1983.

[45] ——, “Redundancy, the discrete fourier transform, and impulse noise cancel-

lation,” IEEE Transactions on Communications, pp. 458–461, March 1983.

[46] J. T. G. Marshall, “Coding of real-number sequenc es for error correction: A

digital signal processing problem,” IEEE Journal on Selected Areas in Com-

munications, pp. 381–391, March 1984.

166

[47] J.-L. Wu and J. Shiu, “Discrete cosine transform in error control coding,”

IEEE Transactions on Communications, pp. 1857–1861, May 1995.

[48] A. A. Kumar and A. Makur, “Improved coding-theoretic and subspace-based

decoding algorithms for a wider class of dct and dst codes,” IEEE Transactions

on Signal Processing, pp. 695–708, February 2010.

[49] G. R. Redinbo,“Decoding real-number convolutional codes: Change detection,

kalman estimation,” IEEE Transactions on Information Theory, pp. 1864–

1876, November 1997.

[50] W. Henkel, “Analog codes for peak-to-average ratio reduction,”Proceedings of

3rd ITG Conference on Source and Channel Coding, 2000.

[51] Z. Wang and G. Giannakis, “Complex-field coding for ofdm over fading wire-

less channels,” IEEE Transactions on Information Theory, pp. 707–720, March

2003.

[52] F. Hu and W. Henkel, “Turbo-like iterative least-squares decoding of analogue

codes,” Electronics Letters, pp. 1233–1234, October 2005.

[53] ——, “An analysis of the sum-product decoding of analog compound codes,”

International Symposium on Information Theory, pp. 24–29, June 2007.

[54] G. R. Redinbo, “Decoding real block codes: Activity detection, wiener es-

timation,” IEEE Transactions on Information Theory, pp. 609–623, March

2000.

[55] P. Azmi and F. Marvasti, “Robust decoding of dft-based error-control codes

for impulsive and additive white gaussian noise channels communications,”

IEE Proceedings Communications, pp. 265–271, June 2005.

167

[56] G. Takos and C. N. Hadjicostis, “Determination of the number of errors in dft

codes subject to low-level quantization noise,” IEEE Transactions on Signal

Processing, March 2008.

[57] W. Henkel, “Multiple error correction with analog codes,” Lecture Notes in

Computer Science 357, Springer, pp. 239–249, 1989.

[58] H. Poincare, “Les methodes nouvelles dela mechanique celeste,” Gauteheir-

Villars, 1892, in ENGLISH NASA Translation TTF-450/452 U.S. Federal

Clearinghouse Springfield VA 1967.

[59] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physics

Review Letter, vol. 64, no. 8, pp. 821–824, 1990.

[60] L. Kocarev, K. S. Halle, K. Eckert, L. O. Chua, and U. Parlitz, “Experi-

mental demonstration of secure communications via chaotic synchronization,”

International Journal of Bifurcation and Chaos, pp. 709–713, 1992.

[61] U. Parlitz, L. O. Chua, L. Kocarev, K. S. Halle, and A. Shang, “Transmis-

sion of digital signals by chaotic synchronization,” International Journal of

Bifurcation and Chaos, pp. 973–977, 1992.

[62] G. Kolumban, B. Vizvari, W. Schwarz, and A. Abel, “Differential chaos shift

keying: a robust coding for chaos communication,” Proceedings of the NDES,

pp. 87–92, 1996.

[63] M. Sushchik, N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K. Yao, and

A. Volkovskii, “Chaotic pulse position modulation: a robust method of com-

municating with chaos,” IEEE Communication Letters, pp. 128–130, 2000.

168

[64] C. W. Wu and L. O. Chua, “A simple way to synchronize chaotic systems

with applications to secure communication systems,” International Journal of

Bifurcation and Chaos, pp. 1619–1627, 1993.

[65] T. Yang and L. O. Chua, “Secure communication via chaotic parameter mod-

ulation,” IEEE Transactions on Circuits and Systems, pp. 817 – 819, 1996.

[66] K. S. Halle, C. W. Wu, M. Itoh, and L. O. Chua, “Spread spectrum commu-

nication through modulation of chaos,” International Journal of Bifurcation

and Chaos, pp. 469–477, 1993.

[67] S. Hayes, C. Grebogi, and E. Ott, “Communicating with chaos,” Physics Re-

view Letters, pp. 3031–3034, 1993.

[68] G. Mazzini, G. Setti, and R. Rovatti, “Chaotic complex spreading sequences

for asynchronous ds-cdma - part i: System modeling and results,” IEEE Trans-

actions on Circuits and Systems, pp. 515–516, 1998.

[69] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Jour-

nal of the Society for Industrial and Applied Mathematics, pp. 300–304, 1960.

[70] R. G. Gallager, “Low density parity-check codes,” Ph.D. dissertation, MIT

press Cambridge MA, 1963.

[71] E. N. Lorenz, “Predictability: Does the flap of a butterfly’s wings in brazil set

off a tornado in texas?” Washington Posts, 1972.

[72] N. Santhi and A. Vardy, “Analog codes on graphs.” [Online]. Available:

arXiv:cs/060808vc1

169

[73] H. C. Papadopoulos and G. W. Wornell, “Maximum likelihood estimation of

a class of chaotic signals,” IEEE Transactions on Information Theory, vol. 41,

pp. 312–317, 1995.

[74] K. Xie, W. Wang, and J. Li, “On the analysis and design of good algebraic

interleavers,” in Proceeding of 4th International Symposium on Turbo Codes

and Related Topics, April 2006.

[75] J. Hokfelt, “On the design of turbo codes,” Ph.D. dissertation, Lund Univer-

sity, 2000.

[76] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-

correcting coding and decoding,” in Proceedings of IEEE International Con-

ference on Communications, 1993, pp. 1064–1070.

[77] D. J. MacKay and R. M. Neal,“Near Shannon limit performance of low density

parity check codes,” Electronics Letters, vol. 32, pp. 1645–1646, 1996.

[78] R. G. Gallager, “Low-density parity-check codes,” Ph.D. dissertation, Cam-

bridge MA: MIT Press, 1963.

[79] H. Jin, A. Khandekar, A. Kh, and R. J. McEliece,“Irregular repeat accumulate

codes,” in Proceedings of 2nd International Symposium on Turbo Codes and

Related Topics, 2000.

[80] J. Li, K. R. Narayanan, and C. N. Georghiades, “Product accumulate codes: A

class of codes with near-capacity performance and low decoding complexity,”

IEEE Transactions on Information Theory, vol. 50, pp. 31–46, 2004.

170

[81] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of reed-solomon

codes,” IEEE Transactions on Information Theory, vol. 49, pp. 2809–2825,

2001.

[82] K. Xie and J. Li, “On accuracy of gaussian approximation in ldpc analysis,”

in Proceeding of IEEE International Symposium on Information Theory, July

2006.

171

Vita

Kai Xie received a B.S. degree and M.S. degree in Electrical Engineering from

Tianjin University, Tianjin, China. He was admitted to Lehigh University in Fall

2005, and joined Prof. Tiffany Jing Li’s group.

Kai’s research interests cover diversified topics in wireless communications and

signal processing. Specifically, he researched emerging topics in the theory and

practice of advanced error correction coding (ECC) technologies, including analysis

and design of turbo and low density parity check (LDPC) codes, interleaver design

of turbo codes. Kai also contributed to novel topics and explores capabilities of

ECC beyond their conventional applications, ranging from equalization and coding

in powerline communications, to chaotic analog coding, and to rateless codes for

network coding. Kai has published many articles in international journals and con-

ference preceedings, and he co-authored a book chapter for powerline communica-

tions. He is also a recipient of the Rossin Doctoral Fellowship. He also cooperated

with industrial projects, he proposed algorithms for base-station cooperation in

LTE-advance systems during his internship at Infineon, and he is now researching

and designing front-end signal processing algorithms in WCDMA/HSxPA systems

at Alcate-Lucent.

172

	Lehigh University
	Lehigh Preserve
	2011

	Advanced digital and analog error correction codes
	Kai Xie
	Recommended Citation

	tmp.1363264564.pdf.1KW2a

