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ABSTRACT

Experimental and analytical research was performed to develop guidelines for the fatigue

desig~ of cantilevered sign, signal, and luminaire support structures due to galloping and/or vortex

shedding. Aerodynamic and aeroelastic wind tunnel tests were performed at the Massachusetts

Institute of Technology on one-eighth and one-half scWe models to characterize the dynamic

responsevof cantilevered sign and signal support structures to the galloping and vortex shedding

phenomena. Dynamic finite-element analyses were performed in this study to: 1) simulate the

wind-tunnel experiments and identify the amplitude of the across-wind loads on the sign and

signal attachments which correspond to the measured base moment amplitudes during galloping­

and vortex sheading; 2) model the full-scale prototype structures represented by the wind-tunnel

test specimens to verify scaling laws; and, 3) model full-scale cantilevered support structures that

were observed galloping in the field and identify the amplitude of the across-wind loads on the

sign and signal attachments which correspond to the observed displacement amplitudes. The

analyses showed that the loads experienced by the structures in the field were reasonably

consistent with the loads determined from the wind-tunnel tests. An equivalent static across-wind

(vertical) traction range (l kPa) is proposed for the design of cantilevered support structures for

galloping-induced fatigue. The traction range is to be applied vertically (like a shear force) to the

area of signal and sign attachments projected on a vertical plane. The stress ranges resulting from '

this 'applied traction range must be lower than the constant amplitude fatigue limit (CAFL) for the

various details of, the,'struetures, ensuring essentially 'infinite iife. typical cantilevered support

structure connection details were categorized according to the existing AASHTO/AWS fatigue

design curves. Because of a lack of data near the fatigue limit, fatigue tests were performed on
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snug- and fully-tightened anchor bolts. A CAFL corresponding to the AASHTO Category 0

fatigue limit (i.e. 48 MPa) should be used in the design of both snug- and fully-tightened anchor

bolts in the regime of infinite life (e.g. greater than two million cycles).
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Chapter One

INTRODUCTION

1.1 STATEMENT OF THE PROBLEM

Cantilevered sign, signal, and luminaire support structures are used extensively on major

interstate highways and at local intersections for the purposes of traffic control and roadway

~/

illumination. The fact that cantilevered support structures are supported by a single vertical

support as opposed to two supports for a traditional overhead support structure increases motorist

safety by minimizing the probability of vehicle collision. The span of these cantilevers has been

increasing over the years as they are used on roads with more lanes and as the setback distance

of the column from the roadway bas increased for safety reasons. It is not unusual for the

cantilever to span more than 12 meters. These structures have low mass and stiffness, and

associated low resonant frequencies of about 1 Hz. The damping is extremely low, typically less

than one percent of the critical damping. These conditions make cantilevered support structures

particularly susceptible to vibration due to wind-loading.

Cantilevered sign, signal, and luminaire support structures are designed in accordance with

the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires, and

Traffic Signals [4]. Historically, the performance of a majority of the structures designed with-

these specifications has been satisfactory. However, the results of a state department of

transportation survey conducted in conjunction with this research indicated that approximately one-

half of the 36 states which responded to the survey experience problems with wind-induced

vibration of cantilevered support structures [27]. Several states reported occurrences of horizontal

mast-arm vibration amplitudes in excess of 600 mm under steady-state winds with velocities in

3



the range of 5 mJs to 15 mJs [27]. Generally, the reported vibrations were observed to occur in

the plane of the structure (i.e. vertical-plane vibrations of the horizontal mast arm) in a direction

normal to the direction of wind flow.

The large-amplitude, across-wind vibrations observed in cantilevered support structures

can be attributed to galloping and/or vortex shedding. Each of these phenomena are aeroelastic

instabilities characterized by large-amplitude, resonant vibrations which occur normal to the

direction of wind flow. In some cases, the stress ranges resulting from these vibrations are

relatively small. In these cases, the vibration is only a serviceability problem; i.e. motorists

cannot clearly see the signals or signs or are afraid to drive under the vibrating structures.

Because of the excessive number of complaints that are generated, this large-amplitude vibration

is deemed unacceptable.

In many cases, howe\l'ei·, the magnitudes of the stress ranges induced in critical connection

details result in the initiation and propagation of fatigue cracks. The 36 state departments of

transportation which responded to the survey reported a total of 80 occurrences of fatigue damage

in cantilevered support structures resulting from wind-loading [27]. All of the occurrences of

fatigue damage were reported at either the mast-arm-to-colurnn connection, colurrin-to-base-plate

connection, or anchor bolts [27]. The propagation of these cracks has resulted in the collapse of

several cantilevered support structures [22].

The provisions of the AASHTO Standard Specifications for Structural Supports for

Highwav Signs, Luminaires, and Traffic Signals [4] are vague and insufficient with respect to the

design of structures for vibration and fatigue. Furthermore, the commentary to the specifications

does not contain adequate guidance for the application of the current provisions. The reported
. -,

problems with the performance of cantilevered support structures underscore the need for

4



of the research were as follows:

improvements in the current specifications with respect to the provisions pertaining to vibration

and fatigue.

1.2 OBJECTIVES

Research was conducted to form a basis for guidelines for preventing excessive vibration

and fatigue of cantilevered sign, signal, and luminaire support structures. The specific objectives
'~

I

~I

• Identify and characterize the susceptibility of cantilevered support structures to the

galloping and ~ortex shedding phenomena.

• Develop equivalent static load models which reasonably represent the magnitude of

the fluctuating pressures to which cantilevered support structures are subjected during
•

galloping- and vortex-induced vibrations.

• Identify fatigue-sensitive cantilevered support structure connection details and

categorize those details according to the AASHTO [3] and/or AWS [6] fatigue design

curves.

• Determine the fatigue strength of axially-loaded, snug- and fully-tightened anchor

bolts.

5



1.3 SUMMARY OF APPROACH

The approach to this research was as follows:

• A literature review and survey of state departments of transportation were performed

to determine the nature and extent of fatigue damage in cantilevered support structures

and to identify the conditions under which cantilevered support structures have been

observed to oscillate in the field. These tasks resulted in the identification of

galloping and vortex shedding as the most critical fatigue-loading mechanisms.

• Aerodynamic wind tunnel tests were performed to evaluate the susceptibility of

cantilevered support structures to galloping phenomenon. Aeroelastic wind tunnel

tests were performed to investigate the characteristics of the dynamic response of

cantilevered support structures subjected to galloping- and vortex-induced vibrations.

The data obtained from the aeroelastic tests (lift moment amplitudes at the base of the

vertical support}were incorporated into a series ofdynarniciinite;.element simulations

to estimate the magnitude of the across-wind pressure fluctuations associated with

galloping and vortex shedding.

• Dynamic finite-element analyses of the full-scale prototype structures represented by
j~

the wind-tunnel test specimens was used to verify scaling laws. Then, full-scale

cantilevered support structures that were observed galloping in the field were modeled

to determine the amplitude of the across-wind loads on the sign and signal

attachments which correspond to the observed displacement amplitudes. The results

6 .,



of the dynamic finite-element analyses were used to develop an equivalent static load

model to be used in the design of cantilevered support structures for fatigue.

• Fatigue-sensitive cantilevered support structure connection details were identified

through a review of state department of transportation standard drawings of

cantilevered support structures. Existing knowledge of the fatigue of weldments was

used to categorize the fatigue strengths of these detailsaccording to the AASHTO [3]

and/or AWS [6] fatigue design curves.

• Full-scale fatigue tests were perfonned to detennine lower-bound estimates of the

fatigue strength of axially-loaded, snug- and fully-tightened anchor bolts in the

regimes of finite and infinite life.

1.4 SCOPE OF REPORT

Chapter Two provides background infonnation related tathe galloping and vortex

shedding phenomena. Included in this chapter is a review of previous research programs which

were. perfonned to evaluate the perfonnance of cantilevered support structures subjected to

galloping- and vortex-induced vibrations.

Chapter Three summarizes the wind tunnel experimental test program. A description of

the experiments and summary of the results is provided in this chapter. Chapter Four describes

the dynamic finite-element analyses arid summarizes the development of the equivalent static load..
models for the galloping and vortex shedding phenomena.

7
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Chapter Five discusses the categorization of typical cantilevered connection details to the

AASHTO [3] and/or AWS [6] fatigue design curves. The actual categorization of connection

details is contained in an appendix to this report.

Chapter Six summarizes the anchor bolt fatigue test program. A description of the

experiments, summary of the results, and recommendations for the design of anchor bolts for

fatigue is presented in this chapter.

Chapter Seven presents the conclusions and synthesizes the results of this research in a

series of guidelines which can be used in the design of cantilevered support structures for

vibration and fatigue resulting from galloping and vortex shedding. In addition, recommendations

for future research are presented.
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Chapter Two

AEROELASTIC WIND EFFECTS ON CANTILEVERED SUPPORT

STRUCTURES

2.1 INTRODUCTION

Cantilevered sign, signal, and luminaire support structures are susceptible to two types of

wind-loading which are critical with respect to the design for vibration and fatigue: (1) galloping

and (2) vortex shedding. Galloping and vortex shedding are aeroelastic phenomena caused by a

coupling between the aerodynamic forces which act on a structure (caused by the action of wind)

and the structural vibrations. Aeroelastic instability, commonly referred to as self-excited motion,

results when the motion of a structure, induced by initial aerodynamic forces caused by the action

of wind, causes variations in those forces which cause successively larger oscillations.

Cantilevered support structure vibrations resulting from galloping and vortex shedding are

- -- ---

particularly critical with respect to· fatigue. The characteristic dynamic response of a cantilevered

support structure to either of these aeroelastic phenomena is a large-amplitude, across-wind,

resonant vibration. The magnitude of the stress ranges induced in the connection details of

cantilevered support structures subjected to galloping- and vortex-induced vibrations is generally

quite large, thus the initiation and propagation of fatigue cracks is highly probable. As a result,

the research reported herein was oriented towards the development of fatigue design criteria which

address the behavior of cantilevered support structures subjected to galloping- and vortex-induced

vibrations.
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Chapter Two provides a summary of the galloping and vortex shedding phenomena as

they relate to the perfonnance of cantilevered sign, signal, and lumiriaire support structures.

Section 2.2 discusses the galloping phenomenon while Section 2.3 is devoted to a discussion of

the vortex shedding phenomenon. Each section contains a brief summary of the mechanics of the

phenomenon, an evaluation of the susceptibility of cantilevered support structures to the

phenomenon, a summary of the methods to mitigate vibrations resulting from the phenomenon,

and a review of current design specifications which contain provisions for the design of

cantilevered support structures for. the phenomenon.

2.2 GALLOPING

2.2.1 General

Galloping is a fonn of aeroelastic instability characterized by large-amplitude, resonant

oscillations which occur in a single, uncoupled mode of vibration [33] nonnal to the direction of

wind flow. Galloping-induced oscillations primarily occur in flexible, lightly-damped structures

and, as will be. discussed below, are limited to those structures with Eon-symmetrical cross­

sections (i.e. circular cylinders are not susceptible to galloping-induced vibrations). The

phenomenon has been extensively studied in a variety of structures such as square and rectangular

prismatic members and ice-coated transmission conductors.

Galloping-induced oscillations are caused by aerodynamic forces which act on a structural

element as it is subjected to periodic variations in the angle of attack of the wind flow. The

periodically varying angle of attack is generated by across-wind oscillation of the structure. If the

aerodynamic forces are aligned with the direction of across-wind motion, successively larger

amplitudes of oscillation, and thus galloping, result.
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The derivation of the conditions under which galloping-induced oscillations occur is

significantly simplified through the use;;[ a quasi-steady approach, i.e. the aerodynamic forces

to which a structure is subjected under a periodically varying angle of attack of the wind flow are

assumed to be identical to the forces to which the structure would be subjected under static

variations in the angle of attack. The quasi-steady assumption has been adopted in the following

derivation of the conditions under which galloping-induced oscillations occur. Additional

discussion pertaining to the mechanics of the galloping phenomenon can be found in References

8, 14, 29, and 38.

Consider, as depicted jn Figure 2.1, a sign or signal attachment (which is assumed to be

a single-degree-of-freedom system) subjected to motion y in a direction normal to the direction

of the free-stream, steady-state flow, V. The relative movement of the structure with respect to

the steady-state flow results in a relative velocity, V re1 • The orientation of the relative velocity
!

vector, Vre1 , with respect to the steady-state flow velocity vector, V, is defined as the angle of

attack, ex:

IX = arctan y
V

Positive values of the angle of attack are defined as is shown in Figu.re 2.1.

(2.1)

The aerodynamic drag and lift forces per unit length, FD and FL, respectively, imposed

upon the structure with respect to the relative velocity are given by:

(
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(2.2)

(2.3)

where p is the density of air, 0 is the across-wind dimension of the element, CD is the drag force

coeffiCient, CL is the lift force coefficient, and the remaining variables are as previously defined.

For a given structure, the aerodynamic lift and drag forces can be predicted by standard

aerodynamic theory or measured in wind tunnel tests.

The component of the aerodynamic lift and drag forces in the y-direction yields the

aerodynamic lift force per unit length, F/a), acting normal to the free-stream .velocity, V:

(2.4)

Equation 2.4 can be rewritten as:

(2.5)

where CF/a) is the lift force coefficient of the aerodynamic force per unit length acting normal

to the free-stream velocity. The free-stream velocity, V, is related to the relative velocity, Vrel ,

by the following:

(2.6)

It follows from Equations 2.2 through 2.6 that the lift force coefficient, CFy(a), is given by:

(2.7)

For the equilibrium position (i.e. zero displacement), the angle of attack, ct, is equal to

zero and the aerodynamic force per unit length normal to the free-stream velocity is approximated

by:
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aF (a)
F (a =0)::: y I a

y aa «=0
(2.8) .

,
Differentiating Equation 2.5, evaluating at a = 0, and substituting the approximation a ::::: yN

(valid for small a) yields the following expression for the aerodynamic force per unit length

normal to the free-stream velocity, Fia = 0):

(2.9)

Substituting Equation 2.9 into the standard equation of motion for a single-degree-of-freedom

system yields:

13

and mechanical damping terms yields an effective damping given by de:

(2.12)

(2.11)

(2.10)

1 dCL
-- PVD(- + Cn) 1«=0 y

2 dcx.

dC
_(_L + Cn)

da

dCFy

da

Examination of the right side of Equation 2.12 indicates that the aerodynamic force normal

is termed aerodynamic damping. The aerodynamic damping contributes to the mechanical

to the free-stream velocity is coupled to the velocity, y. As a result, the right side of the equation

damping (i.e. the term 2m~co) possessed by the structural system. Combining the aerodynamic

where m is the mass per unit length, ~ is the damping ratio, and co is the circular natural

frequency of the structure. Differentiating Equation 2.7 yields:

Substituting Equation 2.11 into Equation 2.10 yields:



1 dCL
d = 2m~w + -pVD(- + CD) 1«=0

I. e 2 da
(2.13)

If the effective damping is greater than zero, the system is stable and galloping from the

equilibrium position will not occur. However, if the effective damping is less than zero, the

system is unstable and galloping-induced oscillations from the equilibrium position will result.

Since the mechanical damping possessed by the structural system is always positive, galloping-

induced oscillations from the equilibrium position result when the following inequality is satisfied:

dCFy

da
(2.14)

Equation 2.14 is an exact condition for evaluating the susceptibility of a structure to

galloping from the equilibrium position. Generally, however, the mechanical damping term is

neglected [31], and the potential susceptibility of a structure to galloping from the equilibrium

position is evaluated using the following inequality:

dCFy
(-d-) 1«=0. a

(2.15)

Equation 2.15 is referred to as the Den Hartog stability criterion [15]. The Den Hartog stability

criterion states that "a section is dynamically unstable if the negative slope of the lift curve is

greater than the ordinate of the drag curve [15]." As is evident from Equation 2.15, this condition

is satisfied when the slope of the lift force coefficient normal to the free-stream velocity, dCF/da.,

is positive (in other words, when the term dCL/c,la + CD is negative). When the Den Hartog

stability criterion is satisfied, a structure possesses aerodynamic characteristics which result in

negative aerodynamic damping. Thus, the Den Hartog stability criterion defines one of the

14



primary conditions (i.e. negative aerodynamic damping) necessary for the occurrence of galloping

from the equilibrium position.

As was discussed above, however, galloping from the equilibrium position can only occur

if the magnitude of the negative aerodynamic damping is greater than the magnitude of the

positive mechanical damping possessed by the structure (i.e. galloping can only occur if the

effective damping is less than zero). As is evident in Equation 2.13, the magnitude of the

negative aerodynamic damping is a function of the free-stream flow velocity. Rearranging

Equation 2.14, the minimum wind velocity, Vo, nece~'sary for negative effective damping is given

by:

4m~w

deFy
pD­

da

(2.16)

.Thus, two conditions are necessary for a structure to gallop from the equilibrium position:

(1) the Den Hartog stability criterion must be satisfied (which defines the condition of negative

aerodynamic damping), and (~) the structure rpust be subjected to a minimum onset wind velocity

at which the negative aerodynamic damping exceeds the positive mechanical damping possessed

by the structure.

Inspection of Equation 2.16 indicates that the magnitude of the onset wind velocity

necessary for galloping is a function of the dynamic and aerodynamic characteristics of the

structure. The onset wind velocity is directly proportional to the mechanical damping possessed

by the structure [34] and is also proportional to the mass and stiffness of the structure.

Furthermore, the onset wind velocity is inversely related to the slope of the lift force coefficient

curve, CFy ' Thus, a highly flexible structure with low damping (such as a typical cantilevered

support structure) will be susceptible to galloping-induced oscillations at relatively low wind

velocities provided, of course, that the Den Hartog stability criterion is satisfied.
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Once galloping is initiated, the characteristics of the dynamic response in the across-wind

direction are dictated by energy considerations. At wind velocities exceeding the onset velocity,

the energy inputed to the structure by the flow exceeds the energy dissipated by structural

damping. Since the energy inputed to the structure is a function of flow velocity, the amplitudes

of vibration associated with the galloping phenomenon increase with flow velocity. The amplitude

of the' across-wind oscillation at any particular flow velocity is limited by nonlinearities in the

fluid force or by nonlinearities in the structure [8].

Several researchers have proposed various analytical models to predict the dynamic

characteristics of structures subjected to galloping [33, 34, 36]. The models are based upon quasi­

steady theory in which it is assumed that aerodynamic data can be can be used to describe and

predict the dynamic behavior of a structure during galloping. One of the most comprehensive

analytical models currently available was developed by Novak [34]. The model has been used

to predict the behavior of structural members composed of square and rectangular cross-section

with acceptable accuracy. In addition, the model has been extended to predict the response of

multi-degree-of-freedom systems to the galloping phenomenon. The accuracy of these analyses,

however, is dependent upon an accurate representation of the variation in the aerodynamic lift

force coefficient, CFy, with angle of attack. For complicated geometrical configurations,

aerodynamic wind tunnel tests must be performed to obtain this relationship. Furthermore, the

analysis is quite tedious and computationally intensive for multi-degree-of-freedom systems. Thus,

current analytical models which attempt to predict the dynamic response of structures to the

galloping phenomenon are not well-suited for inclusion in a design specification.

It should be noted that the results of previous research indicate that structures may also

be susceptible to galloping-induced oscillations under conditions in which the Den Hartog stability

criterion is not satisfied (i.e. dCF/da :::; 0). Novak [34] found that two criteria must be satisfied
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in order for galloping to occur under such conditions: (1) the structure must be subjected to an

initial disturbance in the across-wind direction, the magnitude of which must be approximately

equal to the amplitude of the galloping response, and (2) the structure must be subjected to a

minimum onset wind velocity. It was found that the magnitude of the initial, across-wind

disturbance and onset wind velocity are proportional to the level of damping possessed by the

structure. Furthermore, it was also found that the magnitude of the minimum onset wind

velocities required to initiate galloping in structures which did not satisfy the Den Hartog stability
,

criterion was significantly greater than the magnitude of the minimum onset wind velocity

required to initiate galloping in structures which did satisfy the criterion. The implication of this

research with respect to the performance of cqntilevered support structures is that these structures

may be susceptible to galloping-induced oscillations even when configured with attachments which

possess aerodynamic characteristics th~o not satisfy the Den Hartog stability criterion. Sources

·of the initial, across-wind displacement required to initiate galloping under such conditions include

natural-wind gusts, truck-induced wind gusts, and vortex shedding.

In summary, a structure will be subject to galloping-induced oscillations from the

equilibrium condition when two conditions are satisfied: (1) the structure possesses aerodynamic

characteristics which satisfy the Den Hartog stability criterion and (2) the. structure is subjected

to a certain minimum onset wind velocity. The Den Hartog stability criterion establishes whether

the aerodynamic characteristics of the structure are such that negative aerodynamic damping is

possible (i.e. the criterion establishes the condition under which the across-wind force, Fy, will be

oriented in the same direction as the across-wind motion). The minimum onset wind velocity

establishes the condition for which the magnitude of the negative aerodynamic damping will- be

greater than the magnitude of the positive mechanical damping possessed by the structure. When

both of the above conditions are satisfied, the structure is unstable and large-amplitude, across-
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wind oscillations result. The amplitudes of the oscillations are proportional to the wind velocity

and occur at the natural frequency of the structure.

2.2.2 Evaluation of the Susceptibility to Galloping

As was discussed in Chapter One, the oscillations observed in cantilevered support

structUres in the field are consistent with the characteristics of the galloping phenomenon. These

characteristics include the sudden onset of large-amplitude, across-wind vibrations which increase

with wind velocity and occur at the natural frequency of the structure. Based upon existing

knowledge of the galloping phenomenon, it is known that the obseryed vibrations of cantilevered

support structures in the field are not the result of galloping of the support members. A majority

of cantilevered support structures are composed of structural elements consisting of circular cross-

sections. As was previously discussed, elements with circular cross-section are not susceptible

to galloping-induced vibrations. The symmetry of a circular cylinder lends to the development

of a pure drag force when subjected to a periodically varying angle of attack of the wind flow.

As a n~sultjtheaerodynamic force which develops nonnal to the free-stream velocity is always

orient~d opposite to the direction of across-wind motion (i.e. circular cylinders always experience

positive aerodynamic damping). Th~s, circular cylinders are not susceptible to the galloping

instability. This fact is important because it indicates that the across-wind vibrations observed in

the cantilevered support structures in the field are the result of the aerodynamic characteristics

possessed by the attachments to these structures (i.e. signs/signals).

This fact was confinned by McDonald et al. [32] in a research program which was

recently conducted to evaluate the susceptibility of cantilevered signal support structures to Jhe

galloping phenomenon.
i1

McDonald et al. [32] perfonned tow tank tests to measure the
•

aerodynamic forces acting on horizontally-mounted signal attachments (i.e. signals mounted
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parallel to the horizontal mast-arm) composed of various geometrical configurations under flow

directions from the front and the rear. The results of these tests indicated that the configuration

of the signal attachments and the direction of flow significantly influence the susceptibility for

galloping. Signal attachments configured with backplates and subjected to flow from the rear

were found to be most susceptible to galloping (i.e. the slope of the lift force coefficient curve,

CFy' was greatest for this configuration and flow direction). Conversely, signal attachments

configured without backplates· were found not to be susceptible to ga1l0ping for flow from both

the front and the rear (i.e. the slope of the lift force coefficient curve, CFy, indicated positive

aerodynamic damping).

McDonald et al. [32] also performed full-scale tests on two cantilevered signal support

structures to evaluate the dynamic response exhibited by these structures during occurrences of

galloping-induced oscillations. One of the structures tested had a horizontal support length of 12.2

m and the other had a horizontal support length of 14.6 m. Each of the structures was mounted

to a rotatable foundation which permitted the structures to be oriented normal to the prevailing

wind direction. Tests on the 12.2 m structure were conducted with the structure configured with

signal attachments which were found to be both susceptible and not susceptible to galloping from

the equilibrium position during the tow tank experiments. Tests in which the structure was

mounted with signal attachments found not to be susceptible to galloping from the equilibrium

position during the tow tank experiments did not exhibit galloping-induced oscillations when

tested in the field. However, when configured with signal attachments found to be susceptible to

galloping during the tow tank tests, the structure was observed to experience galloping oscillations

,with displacement amplitudes at the tip of the horizontal support estimated at between 300 to 400

mm. The results of tests on the 14.6 m stru<;ture were similar. Galloping was observed in this

structure at a wind velocity equal to 4.5 m/s with a maximum measured stress .Fangeih the vertical
-- --- -~~- --- -----

19

'\



support (at a location 330 mm from the base) equal to approximately 34 MPa. As will be

discussed in Chapter Five, fatigue cracks would be expected to form under a 34 MPa stress range

for a large majority of cantilevered support structure connection details.

Thus, the results of previous research programs confirm that cantilevered signal support

structures are susceptible to galloping as a result of the aerodynamic characteristics possessed by

the attachments to these structures. Tow tank experiments performed by McDonald et al. [32]

indicate that horizontally-mounted signal attachments configured with backplates possess

aerodynamic characteristics which satisfy the Den Hartog stability criterion. Furthermore, the

-----------results of these tests indicate that the susceptibility of cantilevered signal support structures to the

galloping phenomenon is dependent upon the direction of flow as well as upon the geometrical

configu'ration of the attach~ent. Full-scale field tests conducted by McDonald et al. [32]

illustrated that cantilevered signal support structures are susceptible to significant amplitudes of

vibration due to galloping at relatively low wind velocities. Furthermore, stress measurements

made during occurrences of galloping-induced vibrations indicate that, even at low wind velocities,

cantilevered support structures are subject to stress ranges which are potentially damaging with

respect to fatigue.

2.2.3 Mitigation of Galloping.In~uced Vibrations

As was discussed in Section 2.2.1, a structure which possesses aerodynamic characteristics

that satisfy the Den Hartog stability criterion will experience galloping-induced vibrations at ~

certain onset wind velocity, defined previously as Vo' The magnItude of the wind velocity at

which galloping vibrations will initiate is dependent upon the dynamic properties of the structure

(i.e. mass, damping, and stiffness).. AS'a result, two primary means exist by which to mitigate

galloping-induced oscillations in cantilevered support structures:(l) changing the dynamic
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characteristics of the structure such that the magnitude of the onset wind velocity is greater than

the wind velocity for which steady-state flows are typically maintained, or (2) changing the \_

aerodynamic characteristics of the attachments such that the structure will be experience positive

aerodynamic damping when subjected to a periodically varying angle of attack of the wind flow.

The dynamic properties of a cantilevered support structure can be altered by changing

either the structure's mass, stiffness, and/or damping. Increasing any of the three dynamic

properties increases the magnitude of the onset wind velocity required to initiate galloping

vibrations. Increases in stiffness and mass can be obtained by increasing the sizes of the structural

supports. Increases in damping can be obtained by mounting a variety of external damping

devices to the structure. McDonald et al. [32] evaluated the effectiveness of two types of external

damping devices for mitigating galloping-induced vibrations in cantilevered signal support

structures: (1) a tuned-mass damper and (2) a liquid-tuned damper. The tuned-mass damper was

dismissed as a potential mitigation measure following an evaluation which indicated that the

installation of such a device to the horizontal mast-arm of a cantilevered support structure would

be impractical. The liquid-tuned damper, which consistedof a 914 mm long PVC pipe filled with

water and inserted into the end of the horizontal mast-arm of a full-scale signal support structure,

was found to be ineffective in mitigating galloping-induced vibrations.

The aerodynamic properties of the attachments to cantilevered support structures can be

altered in one of two ways: (1) the geometric configuration of the attachment can be changed to

either minimize or eliminate the characteristics which result in negative aerodynamic damping
,

or (2) a device which is known to provide positive aerodynamic damping can be mounted to the

structure. With respect to the first method, the simplest method by which to reduce the

susceptibility of a signal attachment to negative aerodynamic damping would be to remove the

backplate. Based upon the results of tow tank tests conducted by McDonald et al. [32], signals
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configured without a backplate did not possess aerodynamic characteristics which satisfied the Den

Hartog ~tability criterion (i.e. signal without backplates were found to possess positive

aerodynamic damping). As a result, removal of the backplates from signals would eliminate the

condition which creates the galloping instability. With respect to the second method, McDonald

et al. [32] evaluated the effectiveness of a damping plate mounted to the horizontal support of a

cantilevered signal support structure. The damping plate consisted of a sign blank measuring 410

mm x 1680 mounted horizontally (i.e. parallel to the horizon) directly above the signal attachment

located closest to the tip of the horizontal mast-arm. The results of full-scale tests indicated that·

the damping plate provided enough positive aerodynamic damping to effectively mitigate

galloping-induced vibrations. It was noted, however, that smaller damping plates did not

effectively mitigate the vibrations. In addition, damping plates mountecl at locations other than

directly above the outermost signal .were also not effective at mitigating the galloping-induct

vibrations.

2.2.4 Review of Design Specifications

Current specifications used for the desigITtantilevered support structures for vibration and

fatigue [4, 35] do not recognize or contain pro:yisions pertaining to the galloping phenomenon.

As a result, designers are provided no guidance regarding the design of cantilevered support

structures for galloping-induced vibrations.
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2.3 VORTEX SHEDDINC

2.3.1 General

Vortex shedding is a wake-induced aerodynamic phenomenon which typically develops

during steady, uniform flows, and produces resonant oscillations in a plane normal to the direction

of flow. Unlike galloping, which results from a periodic variation in the angle of attack of the

wind flow, vortex shedding is caused by the shedding of vortice~ in a regular, alternating pattern

. in the wake of a structural element. The phenomenon has been studied in a wide-range of

structures, some of which include bridge decks, hyperbolic cooling towers, antenna masts, and

pipelines.

When a structural element is exposed to a steady, uniform flow, vortices are shed in the

wake behind the element in an alternating pattern commonly referred to as a von Karman vortex

street (Figure 2.2). The frequency at which vortices are sh~d from the element, fs' is given by the

Strouhal relation:

f. = SV
S D

(2.17)

,

where S is the Strouhal number, D is the across-wind dimension of the element, and V is the free-

stream wind velocity. As is indicated by Equation 2.17, the frequency at which vortices are shed

is primarily dependent upon the velocity of the flow, the across-wind dimension of the element,

and the shape of the element (as defined by the magnitude of the Strouhal number). Table 2. I

summarizes the magnitude of the Strouhal number for typical cantilevered support structure

attachments and structural members. A brief discussion of each is provided in the following

paragraphs.

For circular cylinders, the magnitude of the Strouhal number is dependent upon. the

characteristics of the flow as defined by the Reynolds number, R:
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R =
VD
v

(2.18)

where V is the free-stream flow velocity, D is the across-wind dimension of ·the element, and v

is the kinematic viscosity of air. In the regime of subcritical flow, defined by Reynolds numbers

less than approximately 3 x 105
, the Strouhal number is equal to 0.18. Vortex formation in the

subcritical regime is coherent and centered around one well-defined frequency. In the regime of

critical flow, defined by Reynolds number between approximately 3 x 105 and 3.5 x 106
, the

Strouhal number increases sharply. Vortex formation in ~his flow regime is highly disorganized

and occurs over a broad range of frequencies. In the regime of supercritical flow, defined by

Reynolds numbers greaterthan approximately 3.5 x 106
; vortex formation again becomes centered

around one well-defined frequency with a Strouhal number equal to approximately 0.25. Figure

2.3 summarizes the relationship between Strouhal number and Reynolds number for flow arou~a

a circular cylinder.

Vortex formation in the wake of a sign or signal is approximately independent of

Reynolds number and occurs in a regular, coherent manner at well-defined frequencies for all

velocities for which uniform, steady-state flow is maintained. The value of the Strouhal number

for a flat plate, such as a sign, is equal to 0.14. For a signal, the value of the Strouhal number

. is dependent upon the geometrical configuration and orientation of the signal with respect to the

..
flow. McDonald et al. [32] found that the Strouhal number for a signal varies between 0.13 and

0.28, with an average value. of approximately 0.20.

Vortex shedding is an aerodynamic phenomenon if the frequency of vortex shedding, as

predicted by the Strouhal relation, does not match one of the natural frequencies of the structure.

In these cases, the shedding of vOl1ices in the wake of a structure will elicit only a nominal

periodic response. However, when the frequency of vortex shedding approaches one of the natural
I

I
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frequencies of a flexible, lightly-damped structure, significant amplitudes of vibration can result.

The primary implication of this large-amplitude, across-wind, resonant vibration is that it has a

strong organizing effect on the pattern with which vortices are shed. The result is an increase in

vortex strength, an increase in the spanwise correlation of the vortex shedding forces, and a

tendency for the vortex shedding frequency to become coupled to the natural frequency of the

structu're.

The tendency for the vortex shedding frequency to become coupled to the natural

frequency of a structure is termed lock-in. The critical wind velocity, Vcr> at which lock-in occurs

is given by the Strouhal relation:

(2.19)

where fn is the natural frequency of the structure, D is the across-wind dimension of the element,

and S is the Strouhal number. Figure 2.4 illustrates a schematic of the lock-in phenomenon. As

predicted by the Strouhal relation, the frequency at which vortices are shed from a structure is

linearly related to the flow velocity. However, as the frequency of vortex shedding, fs' approaches

one of the natural frequencies of a structure, fn, lock-in occurs and the frequency of vortex

shedding becomes dependent solely on the natural frequency of the structure. The result is a

condition of resonant vibration that persists over a range of wind velocities.

The amplitudes of vibration associated with the lock-in phenomenon are generally limited

by the ability of vortices to be shed from the structure in a symmetric pattern. Large amplitudes

of vibration tend to interfere with the symmetrjc pattern of vortex formation. Previous research

indicates the maximum amplitudes of displacements associated with the lock.,in phenomenon

rarely exceed approximately I to 1.5 times the across-wind dimension of the structural element

from which vortices are shedJa, 29]~. _
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2.3.2 Evaluation of the Susceptibility to Vortex Shedding

Current knowledge concerning wind characteristics can be used to generally bound the

velocities under which structures will be subject to vortex-induced vibrations. For example, one

basic assumption for the formation of vortices in the wake of any element is that the element is

subjected to uniform, steady-state flow. Natural turbulence tends to interfere with the symmetric

formation of periodic vortices in the wake of a structure by reducing the length over which the

vortex shedding forces remain correlated. As a result, natural turbulence creates an upper-bound

on the maximum wind velocity for which periodic vortex shedding can occur. Previous research

indicates the level of turbulence associated with wind velocities above approximately 15 to 20 m1s

limits the symmetric formation of periodic vortices [29]. At the opposite end of the spectrum,

vortex formation at wind velocities below approximately 5 m1s generates forces with magnitudes

insufficient to excite even lightly-damped structures [29]. Based upon this knowledge, structures

can be reasonably assumed to be susceptible to vortex-induced vibrations in the range of wind

velocities between approximately 5 and 15 m1s.

The range of wind velocities for which vortex-induced vibnl.tlons can be expected to occur

provides a convenient criterion by which to evaluate the potential susceptibility of cantilevered

sign, signal, and luminaire support structures to this wind-loading phenomenon. The following

paragraphs provide a brief discussion of the critical wind velocities for which lock-in will occur

for the range of member and attachment dimensions typically used in cantilevered support

structures. A comparison of these critical wind velocities with the range of wind velocities for

which vortex-induced vibrations can be expected to occur suggests that the susceptibility of

cantilevered support structures to vortex shedding lock-in is generally quite limited..
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Figure 2.5 depicts the wind velocities required to initiate vortex-induced vibrations due

to the shedding of vortices from the c.ircular supports of cantilevered support structures in the

supercritical flow regime. The results are based upon the Reynolds number relationship:

Rsupercritical v
Vsupercritical = --'----D-- (2.20)

where Vsupercritical is the wind velocity required to enter the supercritical flow regime, Rsupercritical is

the Reynolds number corresponding to the supercritical flow regime (3.5 x 106), V is the kinematic

viscosity of air (14.() mm2/s), and D is the across-wind dimension (i.e. diameter) of the circular

support. As is evident from Figure 2.5, the diameters selected are representative of the range of

diameters typically used in cantilevered support structures. The results of the calculations shown

in Figure 2.5 indicate that the· wind velocities required to initiate vortex shedding in the

supercritical flow regime are well above the maximum velocity for which uniform, steady-state

flows are typically maintained (i.e. 20 rn/s). As a result, only the subcritical flow regime need

be considered when evaluating the susceptibility of cantilevered support structures to vortex-

induced vibration caused by the shedding of vortices-from th-esiIpp6rts.

Figure 2.6 depicts. the critical wind velocities required to initiate lock-in due to the

shedding of vortices from the circular supports of cantilevered support structures in the subcritical

flow regime. The results are based upon the Strouhal relation:

(2.21)

where fn is the natural frequency of the structure (assumed to be 1 Hz, which is a typical value

for the first mode of vibration of a cantilevered support stn1eture in tpe vertical plane), D is the

across-wind dimension (i.e. diameter) of the circular support, and S is the Strouhal number (0.18

for subcritical flow). Again, the diameters selected are representative of the range of diame~ers
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typically used in cantilevered support structures. The results of the calculations shown in Figure

2.6 indicate that the wind velocities for which vortices will be shed from the circular supports of

cantilevered support structures fall below the minimum wind velocity of 5 rn/s required to initiate

vibration in even lightly-damped structures. Thus, cantilevered support structures are generally

not expected to be susceptible to vortex-induced vibrations due to the shedding of vortices from

the supports.

Based upon the above calculations, it can also be assumed that tapered circular support

members will not be susceptible to vortex-induced vibrations due to the shedding of vortices from

the supports. Vortex sheQding lock-in in a tapered element occurs at multiple critical .wind

velocities.as a result of the variation in diameter along the length of the tapered element:

~

(2.22)

where Ycr(x) is the critical wind velocity corresponding to the across-wind dimension D(x), fn is .

the natural frequency of the structure, D(x) is the across-wind dimension (i.e, diameter) at a

distance x along the tapered element, and S is the Strouhal number. ALlow critical wind

velocities, vortices are shed from the tip of the tapered element at frequencies which correspond

to the natural frequency of the structure. As the wind velocity increases, the location at which

vortices are shed at frequencies which correspond to the natural frequency of the structure moves

from the tip towards the base of the tapered element (i.e. from the smallest diameter to the largest

diameter).. Thus, vortex shedding lock-in in a tapered structural element is a copdition of localized

resonance in which the vortex shedding forces remain correlated over a limited length of the

element at each discrete increment in critical wind velocity. Since the diameters of taper~d

elements used in cantilevered support structures fall within the diameters indicated in Figure 2.6,

it is evident that the range in critical wind velocities associated with lock-in of tapered elements
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will also fall below the minimum velocity required to initiate vortex-induced vibrations (i.e. 5

m/s).

The critical wind velocities for which lock-in would occur due to the shedding of vortices

from sign attachments are shown in Figure 2.7. The results depicted in Figure 2.7 were calculated

using Equation 2.21 with a natural frequency equal to 1 Hz and a Strouhal number equal to 0.14.

Examination of these critical wind velocities indicates that vortex-induced vibrations would be

expected for sign depths ranging from approximately 800 mm to 2800 rom. The critical wind

velocities for sign attachments with depths greater than approximately 2800 mm are above the

velocity for which steady, uniform flows are expected. Thus, cantilevered support structures

mounted with sign attachments greater than approximately 2800 mm in depth are not expected

to be susceptible to vortex-induced vibrations.

The critical wind velocities for which lock-in would occur due to the shedding of vortices

from signal attachments are shown in Figure 2.8. The results depicted in Figure 2.8 were

calculated using Equation 2.21 with a natural frequency equal to 1 Hz and a Strouhal number

equal to 0.20. Examination of these critical wind velocities indicates that vortex-induced

vibrqtions would be expected for signal depths greater than approximately 1000 mm. Thus,

horizontally-mounted signal attachments (i.e. mounted with the directional lights oriented parallel

to the horizontal mast-arm), with typical depths ranging from approximately 300 mm to 500 mm,

would not be expected to experience vortex-induced vibrations. Vertically-mounted signal

attachments (i.e. mounted with the directional lights oriented perpendicular to the horizontal mast-

arm), however, with depths ranging from approximately 900 mm to 1300 mm, would be expected

. to be susc~~uc'ed viBrations.

The preceding observations related to the susceptibility of cantilevered support structures

to vortex-induced vibrations are supported by the results of previous researGhers. McDonald et
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al. [32] conducted a series of water table and tow tank experiments to evaluate the potential

susceptibility of cantilevered support structure signal attachments and support members to the

vortex shedding phenomenon. Much like a wind tunnel test, the water table experiments were

conducted on scale models to 'measure the frequencies at which vortices would be shed from

various structural members and attachments. Flow velocities equivalent to 4.5 m/s and 9 m/s were

considered. A partial summary of the results is provided in Table 2.2. As is evident from the

data tabulated in Table 2.2, the frequencies at which vortices were shed from circular and

octagonal supports at the two flow velocities considered were well above the natural frequency

of I Hz possessed by a majority of cantilevered support structures. The results of the water table

experiments, therefore, support the preceding conclusions that cantilevered support structures are

generally not susceptible to vibrations due to the shedding of vortices from the supports.

As is shown in Table 2.2, the frequencies at which vortices were shed from signal

attachments configured with a backplate, however, can be observed to fall significantly closer to

the typical natural frequency of I Hz possessed by a majority of cantilevered support structures.

Based upon the results of these tests, it appears that vortex-induced vibrations resulting from the

shedding of vortices from signal attachments is a possibility.

The results of the water table tests conducted by McDonald et al. [32], however, did not'

consider the three-dimensional characteristiCs associated with flow around signal attachments.

Full-scale flow-visualization tests were conducted by McDonald et al. [32] using a tow tank to

evaluate these effects. The results indicated that the three-dimensional characteristics of signal

attachments interfered with the formation of a regular pattern of vortices at a well-defined

frequency. The frequency at which vortices were shed was observed to be highly random. In

addition, the vortices shed in the wake of the attachments were disorganized. As a result, it was

concluded that cantilevered signal support structures were unlikely to experience significant
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amplitudes of across-wind oscillation due to the shedding of vortices from the signal attachments.

Thus, even though the calculated critical flow velocities for a majority of signal attachments fall

in the range for which vortex shedding would be expected, the occurrence of significant

amplitudes of vibration are unlikely due to the incoherent, random characteristics of the vortex

street in the wake of a signal attachment.

, Based upon the above discussion concerning the susceptibility of cantileve'red support

structures to vortex-induced vibrations, the following general observations can be made:

• A large majority of cantilevered support structures will not be susceptible to vortex-

induced vibrations due to the shedding of vortices from the supports. For typical

member dimensions, the critical wind velocities necessary for lock-in fall below the

minimum velocity required to initiate vortex-induced vibrations (5 m/s). Only those

support structures with the largest member dimensions will be potentially sus~tible

to vortex-induced vibrations resulting from the shedcliIlg_ofvortjcesfromJhe supports.

• Cantilevered signal support structures will not be susceptible to significant amplitudes

.
of across-wind vibration resulting from the shedding of vortices from the attachments

to these structures. Although the critical wind velocities generally fall within the

range of velocities for which vortex-induced vibrations would be expected, the three-

dimensional characteristics'of flow around signal attachments interferes with the

formation of a coherent pattern of vortices at one well-defined frequency.

• Cantilevered sign support structures mounted with sign attachments with relatively

small depths (i.e. less than approximately 2800 mm) will be susceptible to vortex-
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induced vibrations when considering the range of wind velocities for which vortex

shedding would be expected.

It should be noted that the preceding statements are generaliJ:ed conclusions based upon

the typical characteristics of ~atural wind. As with any natural phenomenon, variations from what.

is considered "typical" can occur. For example, vortex-induced vibrations of bridge structures

have been observed during unifonn, steady-state wind flows exceeding 27 mls. As a result, the

preceding conclusions represent qualitative generalities regarding the potential susceptibility of

cantilevered support structures to the vortex shedding'phenomenon. Th(1 conclusions are intended

to indicate that the large-amplitude, across-wind vibrations observed in the majority of cantilevered
)...-

support structures in the field are due to the galloping phenomenon. It is recognized, however,

that cantilevered support structures may be susceptible to vortex-induced vibrations under

conditions outside of the bounds presented above.

2.3.3 Mitigation of Vortex-Induced Vibrations

Simil~ to the mitigation of galloping-induced vibrations, the effects of vortex shedding

can be mitigated by one of two methods: (1) altering the dynamic properties of the structure (i.e.

mass, stiffness, and/or damping) or (2) altering the aerodynamic characteristics of the structure.

Significant amplitudes of vibration associated with vortex shedding can be avoided by

ensuring that the critical wind velocity associated with lock-in falls outside of the range of wind

velocities for which vortex shedding would be expected (i.e. 5 rn/s to 20 rn/s). This can be

achieved by either increasing or decreasing the natural frequency of the structure (through

t''''

variations in the mass and stiffness). Of course, decreasing the natural frequency such'that the

critical wind velocity is less than the lower limit for vortex shedding (i.e. 5 mls) is generally not
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feasible for a majority of cantilevered support structures. Existing cantilevered support structures

are already quite flexible and additional reductions in stiffness may increase the susceptibility for

galloping-induced oscillations. Increasing the natural frequency, however, could readily be

achieved through increased member dimensions so that the critical wind velocity falls above the

upper-bound velocity for which uniform, steady-state flows are typically maintained (i.e. 20 mfs).

The increased levels of stiffness associated with increases in natural frequency would also be

beneficial in limiting the susceptibility of cantilevered support structures to the galloping

phenomenon.

The dynamic.'properties of cantilev~red support structures can also be altered through the-

use of external damping devices such as tuned-mass and impact dampers. As was discussed in

Section 2.2.3, however, the results of research conducted by McDonald et al. [32] indicate that

the use of tuned-mass dampers in cantilevered support structures is impractical. Furthermore,

previous experience [26] obtained with the use of impact dampers to red~ce cantilevered support

structure vibrations indicates that such damping devices are not effective for structures with natural

frequencies of vibration below approximately 1 Hz.

Vortex-induced vibrations can also be minimized by altering the aerodynamic

characteristics of the element from which vortices are shed. This is achieved by altering the cross-

section of the element such that the formation of a coherent pattern of vortices at one well-defined

frequency is prevented. With respect to the shedding of vortices from members with circular

cross-sections, helical strakes, shrouds, and rectangular plates installed at intervals along the

members have proven to be an effective method by which to mitigate vibrations in structures such

as stacks and chimneys [8, 31). Although the use of such devices has proven effective in a

variety of structures, their effectiveness for preventing vortex-induced vibrations in cantilevered

support structures has been questioned by Edwards et al. [17]. The results of wind tunnel tests
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conducted by Edwards et al. [17] suggest that the installation of strakes to the support members

of cantilevered support structures do not significantly reduce the response of these structures to

vortex shedding.

2.3.4 Review of Design Specifications

Several design specifications [4, 35] contain provisions for the design of structures for

vortex-induced vibrations. The following paragraphs summarize the provisions contained within

two specifications and compare the magnitudes of the across-wind forces specified in each.

The current AASHTO Specifications [4] for the design of cantilevered sign, signal, and

luminaire support structures contain provisions for the design of simple cantilever poles for vortex

shedding. The provisions are based upon research conducted by Brockenbrough [10]. The

methodology of the AASHTO design provisions are as follows: The natural frequency is

estimated using an analytical solution for the natural frequency corresponding to the first mode

of vibration of a simple pole. The critical wind velocity, Vep associated with vortex-shedding

lock-in is computed using the Strouhal relation (i.e. Equation 2.19). The transverse pressure, P t,

acting on the pole is given by:

where:

p
p =­

t 2P
(2.23)

(2.24)

where Pis the damping ratio (conservatively estimated in the Specifications as 0.005), 1I2P is the

dynamic magnification factor for a single-degree-of-freedom-system (conservatively estimated in

the Specifications as 100), Cd is the drag force, coefficient (determined based upon the shape of

the element), and Ch is the height coefficient (used to account for the variation in wind velocity
------------------=- ---- ---- -----------
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with height above ground). The transverse pressure, PI' is then used to compute stresses for the

design of the pole for fatigue.

Tapered poles are accounted for in the Specifications in a similar manner. Equations are

provided to compute equivalent lengths and diameters for estimation of the natural frequencies of

tapered poles. The critical wind velocity is computed using the Strouhal relation (i.e. Equation

2.19), evaluated using the diameter of the pole at a distance 3L14 (where L is the length of the

pole) from the base. The transverse pressure, PI' acting on the pole is then given by Equations

2.23 and 2.24.

As mentioned above, the provisions contained in the current Specifications for vortex

shedding are based upon research conducted on simple cantilever poles. Thus, the applicability

of these provisions to the design of cantilevered support structures for vortex shedding is

questionable. Furthermore, the provisions do not contain adequate guidance concerning.

application of the transverse loading. Specifically, the provisions do not specify whether the

transverse loading, PI' represents a pressure range or a pressure amplitude.

The Ontario Highway Bridge Design Code, Third Edition [35] also contains provisions

for the design of support structures for vortex shedding. The provisions require that a structure

be designed based upon the results of a dynamic modal analysis to solve for the amplitude of the

steady-state response due to an applied force per unit)ength in the transverse direction, Fs(x,t),

defined as:

( ) 1 V2CD' .,Fs x,t ="2 P cr s sm[21tn/] (2.25)

where p is the density of air, Vcr is the critical wind velocity computed from the Strouhal relation

(Equation 2.19), Cs is the transverse force coefficient, D is the across-wind dimension of the

structural element, ne is the natural frequency of the structure, x is the coordinate describing the

~
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length or height along the structure, and t is time. For circular elements subjected to flow in the

subcritical flow regime, the transverse force coefficient Cs is specified as 0.71. Furthennore, the

loading is an amplitude applied to the structure in accordance with mode shape being considered

in the analysis and is assumed to act in phase along the entire length of the element.

The- design of tapered elements is accounted for in the Ontario Code [35] in a manner

similar to that described above. As was previously discussed, however, vortex shedding lock-in

in a tapered structural element is a condition of localized resonance in which the vortex shedding

forces remain 'correlated over a limited length of the element at each discrete increment in critical

wind velocity. The Ontario Code specifies that, in a tapered element, the across-wind load, FsCx,t),

be assumed to act over a length equal to ±10 percent of the diameter D(x) at which the critical

wind velocity is calculated. The length of the structural element over which the transverse load

is applied represents a conservative estimate of the length over which the vortex shedding forces

remain perfectly correlated. As a result, the design of structures with tapered elements requires

a series of modal analyses in which the transverse load is incrementally moved along the tapered

member to solve' for the maximum amplitude of the steady-state response of the structure. At

each increment, the load is assumed to act in the direction of the natural mode of vibration at the

location being considered.

For the design of simple cantilever poles for vortex shedding, the Ontario Code [35]

pennits the use of. a simplifjed analysis using an equivalent static load per unit length, Fs' applied

transverse to the direction of the free-stream wind velocity to estimate the amplitude of the steady­

state, dynamic response:

36



F = 0.3 C DV2

s ~ s cr
(2.26)

where ~ is the damping ratio (assumed to equal 0.0075 for steel and aluminum poles), Cs is the

transvt::rse force coefficient, D is the across-wind dimension of the element, and Vcr is the critical

wind velocity computed in accordance with the Strouhal relation (Equation 2.19).

. Comparison of the AASHTO Specifications [4] and Ontario Code [35] indicates that the

provisions for the design of simple cantilevered poles are approximately equivalent. Consider, for

example, a simple prismatic cantilever pole with a diameter equal to 305 mm and a natural

frequency equal to 5 Hz. Using the Strouhal relation (with a Strouhal number equal to 0.18,

which is specified in each of the design codes), the critical wind velocity, Vcp for lock-in is equal

to 8.5 m1s (30.6 kmlhr).

Based upon the AASHTO Specifications, the equivalent static transverse pressure would

be given by: (assuming a drag force coefficient equal to 1.10 and a height coefficient equal to

1.00):

P

2P
=

2
0.0473 VcrCdCh

2p
(0.0473) (30.6kml hri (1.10) (1.00)

2(0.005)

= 4870 Pa (2.27)

The equivalent transverse force per unit length, Fl' would therefore be given by:

----------------------------------------
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P
Ft = - (D) = (4870Pa)(O.305m)

2P

1490 N
m

(2.28)

Based upon the provisions of the Ontario Code, the amplitude of the equivalent static

transverse load per unit length is given by:

0.3 (O.71)(O.305m){8.5mjsf
0.0075

N
= 630-

m
(2.29)

Thus, the AASHTO Specifications [4] and the Ontario Code [35] specify approximately

the same equivalent static transverse load per unit length (assuming the equivalent static pressure

specified in the AASHTO Specifications is a pressure range and not a pressure amplitude) for the

design of a simple cantilever poles for vortex-induced vibrations.
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Geometry Flow Regime
Strouhal
Number

Subcritical 0.18

Circular Cylinder Critical NA

Supercritical 0.25

Sign NA 0.14

Signal NA 0.13 - 0.28

NA =not applicable

Table 2.1 - Strouhal Number for Circular Supports, Sign Attachments, and Signal Attachments.

Vortex Shedding Frequency (Hz) for Wind of
Configuration

Octagonal Cylinder

Circular Cylinder

Signal with Backplate

4.5 mls

3.8

4.5

1.3

9.0 mls

7.7

8.9

2.7

Table 2'.2 - Summary of Water Table Test Results Obtained by McDonald et al. [32].
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Figure 2.1 - Schematic of the Galloping Phenomenon.
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Figure 2.2 - Schematic of a von Kannan Vortex Street in the Wake of a Circular Cylinder.
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Figure 2.4 - Schematic of Vortex Shedding Lock-In.

43



600

500

2 400
E

'--'

o
] 300
II)

>
"0
C

§; 200

100

o

\

\
\

\

'"~
I'--

Limit for steady-state, --I--- -
uniform flow~

I
I

,
I

o 200 400
Diameter (mm)

600 800

\

Figure 2.5 - Wind Velocities Required to Enter Supercritical Flow Regime for Flow Around
a Circular Support.

44



6

5
,--..

~
E
'-'...
u 4
>
i-
u

~ 3
>
"'0
t:

~2
"!

.::!-8
1

o

Threshold for vortex-induced
vibrations ~

/
;/

/

/
V

V
1/,

I

o 200 400
Diameter, D (mm)

600 800

Figure 2.6 - Critical Wind Velocities Required For Vortex Shedding Loc~-In For Circular
Supports. (

45



50

,.-.. 40
E
E
'-'....
<J

>
.~ 30
<J
o
Cl)

>
-g 20
~
«3
<J-.;:
u 10

o

/
,/

Limit for steady-state, Vuniform flow~
.,-

./
V

V Threshold for vortex-induced
/ ,-vibrations

17
, , , ' , , , , , I ' , ,

o 1000 2000 3000 4000
Sign Depth, D (mm)

5000

Figure 2.7 - Critical Wind Velocities Required For Vortex Shedding Lock-In For Sign
Attachments.

-------

46



8-r------,--------,--------,

""'-en
E6-1-------l-----____1f---r------i
'-' Threshold for vortex-induced...
;; vibrations

b
u

~4-1------+----r-----1f---------i
>
"0
C

~
c;:

.g 2 _1_-----,,.L-+-----____1f---------i
'i:
U

o 500 1000
Signal Depth, D (mm)

1500

Figure 2.8 - Critical Wind Velocities Required For Vortex Shedding Lock-In For Signal
Attachments.

47



Chapter Three

WIND TUNNEL TESTS

3.1 INTRODUCTION

This Chapter summarizes the results of wind tunnel tests which were performed to

evaluate galloping on scale-models of cantilevered support structures. The wind tunnel tests were

conducted in two phases. The first phase consisted of a series of aerodynamic tests (i.e. not

including the effects of structural interaction) to determine the relative susceptibility of various

cantilevered support structure attachments (i.e. signs and signals) to the galloping phenomenon.

The susceptibility for galloping was evaluated by applying the Den Hartog stability criterion to

the measured aerodynamic lift and drag forces exerted on each of the test specimens under steady­

state flow conditions. The second phase consisted of a series of aeroelastic tests (i.e. including

the effects of structural interaction) to study the dynamic behavior of cantilevered sign and signal

support structures subjected to galloping- and vortex-induced vibrations. These tests were

simulated using dynamic finite-element analyses (described in Chapter Four) to estimate the

magnitude of the dynamic loads to which the wind tunnel models were subjected during galloping­

and vortex-induced vibrations. This was accomplished by correlating the results of the finite­

element analyses to the magnitudes of the base moments measured during the wind ..!unnel tests.

The wind tunnel tests were conducted at the Wright Brothers Memorial Wind Tunnel at

the Massachusetts Institute of Technology (MIT). The wind tunnel at the MIT facility is a closed,

single return test system capable of wind velocities up to 76 mls. The elliptical test area measures

2290 mm high x 3050 rnrn wide x 4570 mm long.
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As is the case with most wind tunnel tests, the limited size of the test area at the MIT

facility required that testing be conducted on scale models. Selection of a model scale was based

primarily upon the level of wind tunnel blockage below which two-dimensional flow conditions

could be maintained (i.e. three percent blockage). For the prototype dimensions of the

cantilevered support structures considered in the aeroelastic test program, a three percent blockage

required that the aeroelastic model specimens be fabricated to one-eighth scale. In order to

maintain consistency between the aeroelastic and aerodynamic test programs, the aerodynamic test

models were also fabricated to one-eighth scale. However, as will be discussed in Section 3.2,

tests on one of the aerodynamic test specimens were duplicated using a specimen fabricated to

one-half scale in order to investigate possible scale effects. Tests on the one-half scale

aerodynamic specimen verified that scale effects were not excessive, and therefore the one-eighth

scale aerodynamic and aeroelastic test results are expected to be representative of the behavior

exhibited by full-scale cantilevered support structures.

This Chapter is organized into two basic sections. Section 3.2 summarizes the specimen

details, experimental procedures, and results related to the aerodynamic test program while Section

3.3 summarizes the specimen details, experimental procedures, and results related to the aeroelastic

test program. The reader is referred to Reference 13 for additional details of the wind tunnel test

program.

3.2 AERODYNAMIC TEST PROGRAM

3.2.1 Objectives

As was discussed in Chapter Two, a structure is potentially susceptible to galloping-

"

induced oscillations when a periodically varying angle of attack of the wind flow produces

aerodynamic forces which are aligned with the across-wind motion of the structure. The
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-= alignment of these forces with the across-wind motion of the structure generates negative

aerodynamic damping. If the total damping possessed by the structure (mechanical damping plus

aerodynamic damping) is less than zero, the structure becomes unstable and large-amplitude,

across-wind galloping oscillations occur. Thus, one of the primary factors (besides the level of

mechanical damping) which drives the galloping phenomenon is the aerodynamic characteristics

of the 'structure (i.e. the relation between the aerodynamic lift and drag forces under varying

angles of attack of the wind flow). These aerodynamic forces can be measured in the wind tunnel

under static conditions to evaluate the potential susceptibility for galloping-induced oscillations.

For example, recent research conducted by McDonald et ai. [32] has established that

cantilevered signal support structures possess aerodynamic characteristics which make these

structures susceptible to galloping. This research indicates that the galloping-induced vibrations

observed in cantilevered signal support structures in the field are generated by the aerodynamic

lift and drag forces exerted on the attachments (i.e. signals). The scope of this previous work,

however, was limited to horizontally-mounted signal attachments (i.e. signals which are mounted

parallel to the horizontal mast arm) and also did not consider the possibility of galloping-induced

oscillations in cantilevered sign support structures.

The aerodynamic test program reported herein wa~ conducted to evaluate the aerodynamic

characteristics of various cantilevered support structure attachments (which were not considered

within the scope of previous research programs) to determine their susceptibility to the galloping

phenomenon. Specifically, tests were conducted on two types of attachments: (1) a vertically­

mounted signal (i.e. mounted perpendicular to the horizontal mast-arm) configured with and

without a backplate, and (2) a sign. The primary objective of these tests was to qualitatively

evaluate the relative susceptibility of each of the attachments to the galloping phenomenon with

respect to attachment geometry and flow direction.
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3.2.2 Specimen Details and Test Matrix

The signal test specimens were fabricated to both one-eighth and one-half scales in order
~

to investigate the effects of model scale. Details of the one-eighth and one-half scale signal

specimens are provided in Figures 3.1 and 3.2, respectively. As is indicated in each of these

figures, the signal specimens were fabricated with a removable backplate so that the effects of this

. geometrical variation on the susceptibility to galloping could be evaluated. For reference

purposes, the dimensions of the prototype signal from which each of the test specimens was scaled

are shown in boldface in each of the figures. The dimensions of the prototype signal are typical

for a signal with a 305 mm lens diameter.

Two one-eightp scale sign attachments were also included in the aerodynamic test

program. The aspect ratio between each of the specimens was varied by a factor of two in order

"to evaluate the effect of this parameter on susceptibility to galloping. Details of the two sign

attachments are summarized in Figures 3.3 and 3.4, respectively. Again, the dimensions of the

prototype signs from which each of the model specimens was scaled are shown in boldface in

each of the figures.

The aerodynamic test matrix is shown in Table 3.1. The matrix is composed of six test

senes. At least two tests were conducted within each of the test series to detennine the

aerodynamic force coefficients for flows from the front and rear of each specimen. For several

specimens, additional tests were also perfonned to establish repeatability of the results.

3.2.3 Aerodynamic Test Set-Up and Experimental Procedure

Schematics of the aerodynamic test set-up are provided in Figures 3.5(a)'and-c:3.5tbr~"·As

is indicated, each of the test specimens was mounted toa steel cylinder which extended vertically

d

from the floor of the wind tunnel. The set-up was oriented so as to simulate the flow conditions
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to which an attachment detail would be subjected when mounted to the horizontal mast-arm of

a cantilevered support structure. The vertical cylinder was attached to a mounting flange which

in turn was bolted to a mechanical pyramidal balance located just below the floor of the wind

tunnel. The balance was used to measure the aerodynamic drag and lift forces exerted on each

of the specimens during testing. As is indicated in Figure 3.5(c), the orientations of the

aerodynamic lift and drag forces measured by the mechanical balance were fixed with respect to

a global coordinate system defined by the direction of the wind tunnel flow. The aerodynamic

drag forces measured by the mechanical balance were oriented in a horizontal plane parallel to

the direction of the wind tunnel flow while the aerodynamic lift forces were oriented in a

horizontal plane perpendicular to the wind tunnel flow. The mounting flange could be rotated ±1O

degrees to provide a twenty degree variation in the angle of attack of the wind tunnel flow with

respect to the test specimen.

Each of the aerodynamic tests was conducted by subjecting the test specimen to a uniform,

steady-state flow and measuring the aerodynamic lift and drag forces as the specimen was rotated

in one to two degree increments through a range of twenty degrees. The aerodynamic lift and drag

data were then analyzed using the procedure described in Section 3.2.4 to evaluate the

susceptibility of each specimen to galloping.

3.2.4 Evaluation of the Aerodynamic Force Measurements

Static angles of attack, as were produced during the aerodynamic tests by rotating the

specimens with respect to the wind tunnel flow, simulate the conditions under which signs and

signals experience galloping. Figure 3.6 shows the nomenclature .and sign convention for the

aerodynamic test set-up rotated at an arbitrary angle of attack, ex, with respect to the wind tunnel

flow, Vtunnel' The drag and lift forces measured by the mechanical balance are shown in Figure
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3.6 in accordance with the global coordinate system fixed with respect to the wind tunnel flow.

As is indicated, the velocity produced by the wind tunnel, Vlunnel' simulates the relative velocity,

Vre), which was previously discussed in Chapter Two (see Figure 2.1). The vector components

of the wind tunnel flow, Vx and Vy, are defined with respect to a local coordinate system that

rotates with the attachment. The velocity Vx simulates the free-stream velocity, V, defined in

Figure 2.1 while the velocity Vy simulates the velocity to which the attachment would be

subjected under across-wind motion y. The force of interest with respect to evaluating the

susceptibility of a signal to galloping, Fy, is oriented in accordance with the local coordinate

system defined in Figure 3.6.

The standard aeronautical sign convention is used to define the angle of attack, a. In a

flow from left to right, clockwise rotations of the attachment (as is shown in Figure 3.6) result in

positive angles of attack. Similarly, in a flow from left to right, counter-cl~wise rotations of

the attachment result in negative angles of attack. Thus, positive angles of attack (as is shown

in Figure 3.6) produce a velocity Vy oriented in the negative y-direction while negative angles of

attack produce a velocity Vy oriented in the positive y-direction.

For each of the aerodynamic tests, the aerodynamic forces measured by the mechanical

balance were converted to force coefficients using the following relationships:

(3.1)

(3.2)
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(3.3)

where CL is the lift force coefficient corresponding to the aerodynamic lift force, FL , acting on the

test specimen; Co is the drag force coefficient corresponding to the aerodynamic drag force, Fo,

acting on the test specimen; COpole is the drag force coefficient corresponding to the aerodynamic

drag force, Fopole acting on the vertical cylinder to which the test specimen was mounted

(measured prior to mounting the specimen); p is the density of air; A is the projected area of the

attachment; and Apole is the projected area of the vertical cylinder to which the attachment was

mounted.

The relative flow velocity, V" is related to the wind tunnel flow velocity, Vtunnel' by the

following:

(3.4)

Furthermore, it is known that the lift force normaLto the relative velocity, Fy, is related to the lift

and drag forces by the following:

(3.5)

From Equations 3.1 through 3.5, the lift force coefficient, CFy, corresponding to the aerodynamic

force normal to the free-stream flow velocity, V" was computed using:

(3.6)

Note that the aerodynamic drag force acting on the vertical cylinder to which the test specimens

were mounted was not included in the calculation of the lift force coefficient, CFy ' The
\'

susceptibility of an attachment to galloping is based solely on the aerodynamic forces which act
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on the attachment, including the effects of forces which are generated by the presence of the

support (i.e. interference forces which result from flow interactions between the attachment and

the cylinder). Since the aerodynamic drag force acting on the pole was measured prior to the

mounting of the test specimen, the calculation of the lift force coefficient (Equation 3.6) included

the effect of interference forces but did not include the effect of forces acting only on the vertical

cylinder.

The susceptibility of each of the attachments to the galloping phenomenon was then

evaluated in accordance with the Den Hartog stability criterion [15], i.e. the attachment is

potentially susceptible to galloping if:

3.2.5 Aerodynamic Test Results

deFY> 0
da

(3.7)

The aerodynamic test results for the one-half scale signal attachment configured without

a backplate (Test Series III) are shown in Figures 3.7(a) and 3.7(b) for flows from the front and

the rear, respectively. The results are plotted in terms of the lift force coefficient, CFy, versus

angle of attack, <X. As is shown in Figure 3.7(a), the slope of the lift force coefficient for flow

from the front of the signal is negative in the vicinity of <X equal to zero, indicating that the

ae:~ynamic force, Fy, acting on the signal is oriented opposite to the direction of across-wind

motion. As a result, the attachment is not susceptible to galloping from the equilibrium position

when mounted to the horizontal mast-arm in a plane normal to the horizon (i.e. perpendicular to

the roadway).

However, in the region of -10 < <X < -3, tlie slope of the lift force coefficien~ is positive,

indicating that the signal could be susceptible to galloping-induced oscillations if mounted to the
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horizontal mast-arm of a cantilevered support structure at angles in this range (such as might occur

to improve the visibility of the signal from the roadway). Thus, for flow from the front, the signal

attachment configured without a backplate will not be susceptible to galloping-induced vibrations

unless it is mounted at an angle to improve the visibility of the signal from the roadway.

Figure 3.7(b) depicts the lift force coefficient computed for flow from the rear of the

signal' configured without a backplate. As is shown, the slope of the lift force coefficient is

positive in the vicinity of (J. equal to zero, indicating that the signal is potentially susceptible to

galloping-induced vibrations from the equilibrium position when subjected to flow from the rear.

The aerodynamic test results for the one-half scale signal attachment configured with a

backplate (Test Series IV) are depicted in Figures 3.8(a) and 3.8(b) for flow from the front and

the rear, respectively. As is shown in Figures 3.8(a) and (b), the slope of the lift force coefficient

for flows from both the front and rear of the signal is positive in the vicinity of (J. equal to zero,

indicating a potential susceptibility for galloping-induced oscillations from the equilibrium position

regardless of the direction of flow. In addition, note the relative magnitudes of the slopes of the

lift force coefficient between the two flow conditions. In the vicinity of (J. equal to zero, the slope.

of the lift force coefficient is greater (i.e. more positive) for flow from the rear, indicating a

stronger potential for galloping when the signal is subjected to flow from this direction.

The effect of configuring a signal with a backplate can be evaluated by comparing Figures

3.7 and 3.8. As is shown in Figures 3.7(a) and 3.8(a), the addition of a backphlte to a signal

creates conditions which are favorable for galloping from the equilibrium position when the signal

is subjected to flow from the front, i.e. the slope of the lift force coefficient becomes positive in

the vicinity of (J. equal to zero with the addition of a backplate to the ~ignal. Similarly, for flow

~

from the rear (as is shown in Figures 3.7(b) and 3.8(b», the addition of a backplate increases the

signal's potential for galloping from the equilibrium position, i.e. the slope of the lift force

56



coefficient is greater (i.e. more positive) in the vicinity of a equal to zero for the signal configured

with a backplate.

The results of tests on the one-eighth scale signal specimens were generally consistent

with the results shown in Figures 3.7 and 3.8. Although not specifically shown, the results

indicate that the scale effects were not significant. Thus, the wind tunnel tests can be considered

reasonable representations of the characteristics possessed by full-scale cantilevered support

structures in the field. The reader is referred to Reference 13 for additional information regarding

the evaluation of the test data for scale effects.

The aerodynamic test results for the one-eighth scale "full-size" sign attachment (Test

Series V) are depicted in Figures 3.9(a) and 3.9(b) for flow from the front and rear, respectively.

As is shown in Figures 3.9(a) and 3.9(b), the slope of the lift coefficient is slightly positive or

near zero for the angles of attack considered. Based on the strong susceptibility of the sign

support structure to gallop during the aeroelastic tests (as will be discussed in Section 3.3.4), the

slope of the lift coefficient in these aerodynamic tests would be expected to be more positive than

was obs·erved. The aerodynamic data obtained from tests on the "half-sized" specimen (Test

Series VI) were consistent with the data shown in Figure 3.9. As a result. aspect ratio does not

appear to influence the susceptibility of sign attachments to galloping-induced oscillations.

3.2.6 Summary

The results of the aerodynamic test program indicate that cantilevered sign and signal

support structures are potentially susceptible to large-amplitude, across-wind vibrations resulting

from the galloping phenomenon. Specifically, this susceptibility arises from the aerodynamic

characteristics possessed by the attachments (i.e. signs and signals) to these structures, ~hich is
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in agreement with the results of previous research programs [32]. Furthennore, the results of the

aerodynamic research program indicate that:

• signal attachments, configured with or without a backplate, are more susceptible to

galloping when subjected to flow from the rear,

• signal attachments are more susceptible to galloping when configured with a backplate,

• the susceptibility of sign attachments to the galloping phenomenon is independent of

aspect ratio and flow direction.

The results of the aerodynamic test program are also in agreement with the conditions

under which galloping-induced oscillations have been observed in cantilevered support structures

in the field. For example, a majority of cantilevered signal support structures have been observed

to vibrate when the signals are configured with a backplate and the direction of flow is from the

rear. Inspection of the lift coefficient data obtained from the aerodynamic tests indicates that

signal attachments are most susceptible to galloping under these conditions, i.e. the slope of the

lift coefficient with respect to angle of attack was greatest (most positive) for tests in which the

signals were configured with a backplate and flow was from the rear. This observation serves to

provide a level of confidence that the wind tunnel tests reasonably simulate the aerodynamic

characteristics and dynamic behavior of full-scale support s.tructures in the field.
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3.3 AEROELASTIC TEST PROGRAM

3.3.1 Objectives

The results of the aerodynamic test program indicate that cantilevered support structure

attachments (i.e. signs and signals) possess aerodynamic characteristics which are potentially

favorable for the occurrence of galloping. The aerodynamic tests, however, provided no

information concerning the dynamic behavior of cantilevered support structures subjected to

galloping- and vortex-induced vibrations. Therefore, aeroelastic tests were performed to evaluate

the magnitude of the support structure forces (in terms of moments at the base of the vertical

supports of the test specimens) to which cantilevered support structures are subjected during

occurrences of galloping- and vortex-induced vibrations (the magnitudes of the across-wind loads

could not be directly measured). Dynamic finite-element analyses (described in Chapter Four)

were then used to estimate the amplitude of the loads on the attachments which corresponded to

the measured base moment amplitudes.

3.3.2 Specimen Details and Test Matrix

A total of five cantilevered-support-structure configurations (two signal supports and three

sign supports) were included in the aeroelastic test program. Details of each of the specimens are

summarized in Figures 3.10 to 3.14. The specimens are identified as Specimens A through E,

with the prototype dimensions from which each of the models were fabricated shown in boldface.

Each of the prototype structures were fabricated from steel. The material from which each of the

model specimens were fabricated (steel or aluminum) is shown in the upper-left corner of each

figure. As was discussed previously, all of the model specimens were fabricated to one-eighth

scale.
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Details of the two cantilevered signal support structures are shown in Figures 3.10 and

3.11. Specimen A, shown in Figure 3.1 0, was a one-eighth scale model of a signal support

structure known to have experienced galloping-induced vibrations. The prototype structure from

which the model was scaled was observed to experience vertical-plane, galloping-induced

vibrations in the field when flow was from the rear with velocities in the range of 16 mls. Under

these flow velocities, the displacement amplitudes at the tip of the horizontal mast-arm, estimated

from a videotape of the vibrating structure, were approximately 305 mm to 610 mm. As is shown

in Figure 3.10, the prototype structure was composed of uniformly tapered structural elements.

Due to difficulties encountered in fabrication, the model specimen was fabricated using non­

uniformly tapered structural elements which approximately simulated the mass and stiffness of the

prototype structure.

Specimen B, shown in Figure 3.11, was a one-eighth scale model of a signal support

structure that was tested to evaluate the effects of slight variations in structural stiffness on the

dynamic response to galloping and/or vortex shedding. As is shown, Specimen B was identical

to Specimen A with the exception of the horizontal support being prismatic.

Details of the three cantilevered sign support structures are shown in Figures 3.12 through

3.14. Each of the model sign support structures were fabricated from aluminum (in order to

facilitate fabrication of the specimens) and sized such that the mass and stiffness properties

adequately simulated the properties of the prototype structures. Specimen C, shown in Figure

3.12, was a one-eighth scale model of a single-arm sign support structure composed of prismatic

vertical and horizontal supports. Specimen D, shown in Figure 3.13, was a one-eighth scale

model of a sign support structure with a prismatic vertical support and a two-~hord truss

horizontal support. Specimen E, shown in Figure 3.14, was identical to Specimen D with the

exception of the vertical support being replaced with a vertical support of reduced stiffness.
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As is indicated in Figures 3.10 through 3.14, each of the specimens were configured with

a variety of attachment details. Specimens A and B were tested with signal attachments

configured with and without backplates (details of each of these attachments are shown in Figure

3.15). Specimen C was tested with two sign attachments as shown in Figures 3.16 and 3.17.

Specimen D was tested with the sign attachment shown in Figure 3.16 and Specimen E was tested

with the two sign attachments shown in Figures 3.16 and 3.18. As is evident from each of these

figures, the geometric dimensions of the attachment details included in the aeroelastic test program

were identical to the dimensions of the attachment details included in the aerodynamic test

program. The weights of each of the attachments are shown in the upper left comer of each

figure. In addition, each of the specimens were also tested with no attachments.

The t~st matrix. for the aeroelastic test program is shown in Table 3.2. Each of the

specimens was tested under two basic conditions: (1) configured with attachments, and (2)

configUred without attachments. Tests in which the specimens were configured with attachments

were performed with flows from both the front and the rear.

3.3.3 Aeroelastic Test Set-Up and Experimental Procedure

A schematic of the aeroelastic test set-up is provided in Figure 3.19. As is indicated, the

specimens were mounted in the wind tunnel such that the flow was normal to the plane of the

structure. The vertical support of each of the test specimens was mounted to a dynamic balance

which was used to measure the moments to which each of the specimens were subjected during

testing. The dynamic balance was instrumented with two pairs of strain gages located on

orthogonal planes. These gages permitted the measurement of the drag and lift moments shown

schematically in Figure 3.19.
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The dynamic properties (i.e. natural frequency and damping) of each of the models was

determined by hanging a mass from the end of the horizontal support. The string used to support

the mass was cut and the resulting dynamic response recorded by the data acquisition system. The

strain output (i.e. strain versus time) was used to estimate the natural frequency corresponding to

the first vertical mode of vibration of each model. In addition, the level of damping possessed

by the model was calculated using the log decrement method [11]. Each of the models was then

subjected to discreet increments of increasing flow velocity. At each increment in velocity,

uniform, steady-state flow conditions were maintained and data from each of the strain gages

att.ached to the dynamic balance were recorded by the data acquisition system. The strain data

were then processed to determine the lift and drag moment amplitudes.

3.3.4 Aeroelastic Test Results

3.3.4.1 Galloping

Figure 3.20 shows the observed dynamic response of Specimen A configured with signal

attachments without backplates (Test Series I-A) under flow from the front. The data is presented

in terms of the lift moment amplitude versus flow velocity. The arrows indicate the progression

of the test with respect to flow velocity. As is indicated, the specimen did not exhibit significant

vertical-plane oscillations when subjected to increasing flow velocities. Similar results were

obtained when Specimen A was subjected to flow from the rear.

Figures 3.21(a) and 3.21(b) show the observed lift moment amplitude for Specimen A

configured with signal attachments with backplates (Test Series II-A) under flow from the front

and the rear, respectively. As is shown in Figure 3.21(a), the specimen exhibited no significant

dynamic response in the vertical plane for flow from the front. However, for flow from the rear

(Figure 3.21(b)), the specimen exhibited severe oscillations resulting from the galloping
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phenomenon. The characteristics of the response observed in this test consisted of significant

amplitudes of vibration perpendicular to the direction of flow (i.e. the oscillations were oriented

in the vertical plane).

Figures 3.22(a) through 3.22(c) depict time histories of the dynamic response depicted in

Figure 3.21(b) at three discrete flow velocities. The data is presented in terms of the root-mean-

square' (rms) variation in lift moment versus time. Again, note the increase in magnitude of the

lift moment with respect to the drag moment for increasing flow velocities, which is characteristic

,
of the galloping phenomenon. At low flow velocities (Figure 3.22(a)), the specimen exhibited no

significant dynamic response in the vertical plane. As the flow velocity was increased, as depicted

in Figures 3.22(b) and 3.22(c), the galloping instability became apparent as the range in lift

moment increased in much greater proportion than the range in drag moment. At the peak flow

velocity (Figure 3.22(c)), the response of the structure was oriented primarily in the vertical plane.

Several interesting characteristics can be observed with regards to the dynamic response

depicted in Figure 3.21 (b). First, note the persistent nature of the galloping phenomenon as the

flow velocity was decreased from a peak of 18.2 mls. Significant vertical plane oscillations

continued even with decreases in the flow velocity. This type of behavior has been observed in

various other types of structures which are susceptible to galloping-induced vibrations (e.g.

transmission lines) [25] and suggests that once galloping-induced oscillations are initiated in a

structure, damaging stress cycles may continue to occur even with reductions in the flow velocity.

Second, note the reduction in the relative magnitude of the lift moment amplitude as the flow

velocity was increased a second time. This is evidence of the inherent variability in the dynamic

response of a structure to the galloping phenomenon and indicates the highly specific conditions

which must be present in order for significant across-wind vibrations to occur. As further

evidence of the dependence of galloping to specific flow conditions, the galloping response of
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Specimen A shown in Figure 3.21(b) occurred only once during the aeroelastic test program.

Repeated testing of Specimen A under identical flow conditions failed to reproduce the results

shown in Figure 3.2J(b).

Tests conducted on Specimen B (Test Series I-B and II-B) did not exhibit a significant

vertical plane response when configured with either attachment TS-ID or TS-2D and subjected

to flow from either the front or the rear. In general, the dynamic response of Specimen B under

each of the conditions considered were similar to that shown in Figure 3.20. The lack of response

in the across-wind direction could have possibly been due to the lack of very specific conditions

which must be present for galloping to occur. Therefore, it cannot be concluded with certainty

that the increased stiffness of the horizontal support prevented galloping-induced oscillations in

this specimen.

Figures 3.23(a) and 3.23(b) illustrate the observed dynamic response of Specimen C for

Test Series I-C under flow from the front and the rear, respectively. Each of the tests were

conducted with tire specimen configured with attachment RS-ID. As is indicated in Figure

3.23(a), the specimen exhibited a significant vertical-plane response due to galloping when

subjected to flow from the front. A comparison of the characteristics of the response with those

shown in Figure 3.21(b) indicate several similarities, the most notable of which are: (1) the

increase in response with increasing flow velocity and (2) the persistent nature of the galloping

oscillations as the flow velocity was decreased. As is shown in Figure 3.23(b), the specimen did

not exhibit a significant vertical plane-response due to the galloping phenomenon when subjected

to flow from the rear.

Figure 3.24(a) and 3.24(b) depict the observed dynamic response of Specimen C for Test

Series II-C under flow from the front and rear, respectively. Each of the tests was conducted with

the specimen configured with attachment RS-3D. Note that the projected area of attachment RS-

64



3D was one-half t~e projected area of specimen RS-ID. Again, for flow from the front, the

specimen exhibited srgnificant vertical-plane oscillations due· to the galloping phenomenon. In

addition, a comparison of Figures 3.23(a) and 3.24(a) indicates that, at the flow velocity

corresponding to the peakvertical-plane response, the magnitude of the lift moment for attachment

RS-3D was approximately one-half the magnitude of the lift moment for attachment RS-ID. This

observation suggests that the forces to which a cantilevered support structure is subjected during
I

occurrences of galloping are directly proportional to the projected area of the attachment detail.

As is shown in Figure 3.24(b), Specimen C did not exhibit significant vertical-plane response

when configured with attachment RS-3D and subjected to flow from the rear.

Figure 3.25 depicts the observed dynamic response of Specimen D for Test Series I-D

under flow from the front. As is indicated, Specimen D did not exhibit significant vertical plane

oscillations for flow from the front of the specimen. Similar results were obtained for flow from

the rear. The observed dynamic response of Specimen E was similar to that of Specimen D for

all of the flow conditions and attachment configurations considered (i.e. Test Series I-E and II-E).

Reductions in the column stiffness (i.e. Test Series I-E) and sign mass (i.e. Test Series II-E) did

not increase the susceptibility of Specimen E to galloping-induced vibrations. However, because

of the sensitivity to specific conditions, it cannot be concluded that the truss structure is less

susceptible to galloping than the single-arm cantilevered" sign structure (i.e. Specimen C). In fact,

failures of truss structures in the field have been attributed to vertical-plane vibrations which are

consistent with the occurrence of galloping [22].

3.3.4.2 Vortex Shedding

Table 3.3 summarizes the predicted critical wind velocities at which each of the test

specimens was expected to exhibit vortex-induced vibrations due to the shedding of vortices from
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the attachments. The table consists of seven columns of data. The first two columns summarize

the test specimen and attachment detail, respectively. The third column indicates the average

natural frequency of the test specimen as determined from vertical-plane, free-vibration tests. The

fourth column indicates the depth of the attachment. The fifth column indicates the value of the

Strouhal number used to predict the critical flow velocity at which lock-in was expected. Finally,

the sixth and seventh columns summarize the values of the predicted and observed critical wind

velocities for each specimen. Predicted values of the critical wind velocity, Vcr> were calculated

using the Strouhal relation:

(3.8)

where fn is the average measured natural frequency corresponding to the first vertical-plane mode

of vibration, D is the depth of the attachment, and S is the Strouhal number.

As is indicated in Table 3.3, none of the test specimens exhibited vortex-induced

vibrations when configured with either sign or signal attachments. Inspection of the data

presented in Table 3.3 indicates that the magnitudes of the predicted critical wind velocities for

which lock-in of the signal support specimens (i.e. Specimens A and B) would be expected were

near or below the threshold wind velocity (i.e. 5 m1s) below which the vortex shedding force is

considered insufficient to excite significant amplitudes of vibration [29]. In addition, the results

of research conducted by McDonald et al. [32] suggest that the three-dimensional characteristics

of signal attachments disrupt the formation of coherent vortices at one-well defined frequency.

As a result, vortex-induced vibration of the signal support specimens due to the shedding of

vortices from the attachments would not be expected.

Inspection of the data for the cantilevered sign support specimens (i.e. Specimens C, D,

and E) shows that the predicted critical wind velocities for each of the specimens is greater than
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the threshold velocity of 5 m/s. Vortex-induced vibrations, however, were not observed. One

possible explanation for the lack of vortex-induced vibration may be that sign attachments also

poss~ss three-dimensional characteristics which interfere with the formation of coherent vortices

at one-well defined frequency.

Table 3.4 summarizes the predicted critical wind velocities at which each of the test

specimens without attachments was expected to exhibit vortex-induced vibrations due to the

shedding of vortices from the horizontal mast-arms. As is indicated in Table 3.4, the tapered and

prismatic signal support structures (Specimens A and B) did not experience vortex-induced

vibrations. Inspection of the predicted critical wind velocities for which vortex shedding lock-in

would be expected in these specimens indicates that the predicted velocities fall below the

threshold velocity of 5 m/s necessary for vortex-induced vibrations. As a result, vortex-induced

vibrations would not be expected in these specimens.

The prismatic sign support structure (Specimen C) did exhibit a significant vortex-induced

response resulting from the shedding of vortices from the horizontal mast-arm. As is indicated

in Table 3.4, the predicted velocity is approximately 18 percent less than the velocity at which the

peak dynamic response was observed. This result is reasonable considering that lock-in probably·

began at a wind velocity slightly below the velocity at which peak across-wind response was

observed. Figure 3.26 depicts the dynamic response of Specimen C. As is indicated, a sharp peak

in the response occurs at the critical wind velocity at which the vortex shedding frequency.
corresponds to the natural frequency of the specimen (i.e. lock-in). This is in contrast to the

characteristic increase in across-wind response with increasing wind velocity associated with

galloping (see Figure 3.23(a)). Figure 3.27 depicts a time history of the observed dynamic

response at the critical wind velocity. As is indicated, the response is harmonic and dominated

by the lift moment.
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The contrast in behavior between the signal support specimens (Specimens A and B) and

the sign support specimen (Specimen C) can be attributed to the magnitudes of the critical wind

velocities at which lock-in was expected for each of these structures. The diameters of the support

members for Specimens A and B resulted in critical wind velocities which were significantly less

than the wind velocity of 5 mls which previous researchers indicate as being the minimum wind

velocity required to initiate significant amplitudes of wind-induced vibration [29]. The diaI;neter

of the support members for Specimen C resulted in a critical wind velocity which was very near

the threshold velocity of 5 mls. Based upon the results of these tests, it appears that the threshold

wind velocity proposed by Kolousek [29] represents a reasonable estimate of the minimum wind

velocity at which significant amplitudes of vibration can be expected.

3.3.5 Summary

The results of the aeroelastic test program permit several conclusions to be drawn

concerning the dynamic-response of cantilevered support structures to the gallopi-ng and vortex

shedding phenomena. With respect to galloping:

• The galloping phenomenon was extremely difficult to reproduce in the wind tunnel

experiments, even though the support structure models had extremely low levels of

damping. Some models which theoretically should have been strongly susceptible to

galloping did not exhibit galloping-induced vibrations. Other models which exhibited

galloping-induced vibration on one occasion did not exhibit an identical response in

repeated tests. The difficulties encountered in reproducing the galloping phenomenon

in many of the test series can be attributed to the very specific conditions (dynamic­

properties of the structure, aerodynamic properties of the attachment details, and
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characteristics of the flow) which must be present in order for galloping-induced

oscillations to occur. This sensitivity to very specific conditions is also evident in the

observed dynamic responses of cantilevered support structures in the field.

• Cantilevered signal support structures are most susceptible to galloping-induced

oscillations when the signal attachments are rigidly mounted on the mast-arm and are

configured with backplates. This observation is in agreement with the results of the

aerodynamic test program reported in this Chapter, tow tank tests conducted by

McDonald et al. [32], and full-scale field tests performed by McDonald et al. [32].

In addition, the results are consistent with the observed dynamic responses of

cantilevered signal support structures in the field.

• The results suggest that, once the galloping instability is initiated, the resulting acro'ss-

wind resonant vibrations persist even with reductions in the flow velocity. This fact

is, of course, detrimental to the behavior of the structure with respect to fatigue, i.e.

damaging stress cycles may persist in a structure subjected to galloping-induced

oscillations even with reductions in the flow velocity.

• The trussed cantilevered sign support structures considered in this test program did not

exhibit a susceptibility to galloping-induced vibration.
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With respect to vortex shedding:

• Vortex-induced vibrations generated by the shedding of vortices from the attachments

to cantilevered sign and signal support structures does not appear critical with respect

to the design of these structures for vibration and fatigue.

• The Strouhal relation provides a reasonable estimate of the critical wind velocity at

which resonant vortex shedding can be expected.

• Cantilevered support structures are most susceptible to vortex-induced vibrations due

to the shedding of vortices from the horizontal supports, i.e. vortex shedding from the

column does not appear to be significant.

• Vortex shedding need not be considered in the design of cantilevered support

structures for fatigue when the critical wind velocity for lock-in (as computed by the

Strouhal relation) falls significantly below 5 mls. As a result, only those structures

with horizontal supports of relatively large diameter are susceptible to vortex-induced

vibration (which is in agreement with the conclusions presented in Chapter Two).

• The addition of attachments to the horizontal supports of cantilevered support

structures appears to disrupt the spanwise correlation of the vortex shedding forces.

As a result, vortex-induced vibrations need only be considered prior to the installation

of attachments to the structure.
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• Cantilevered support structures composed of tapered structural members do not appear

susceptible to vortex-induced vibrations. In general, the dimensions of the tapered

elements are such that the critical wind velocities will fall below the threshold wind

velocity of 5 rn/s necessary for a significant across-wind pressure fluctuation.

Furthermore, the vortex shedding forces which develop in a tapered structural member

will be correlated over a limited length of the member. As a result, the probability of

generating a significant vortex shedding force in a tapered structural member is quite

limited.
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Test Series Specimen Test Number
Flow

Direction

I I I

1

I

Front

I

I TS-IS

2 Rear

I I I

3

I

Front

I
II TS-2S

4 Rear

I I I
5

I
Front

I
III TS-3S

6 Rear

I I I
7

I

Front

I
IV TS-4S

8 Rear

I I I
9

I

Front

I
V RS-IS

10 Rear

I I I

11

I

Front

I
VI RS-2S

12 Rear

Table 3.1 - Aerodynamic Test Matrix.
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Test Series
Support

Test Number Attachments Flow Direction
Structure

I TS-lD Front

I-A A 2 TS-ID Rear

3 None NA

4 TS-2D Front

II-A A 5 TS-2D Rear

6 None NA

7 TS-lD Front

I-B B 8 TS-lD Rear

--
9 None NA

10 TS-2D Front

II-B B 11 TS-2D Rear

12 None NA

Note: NA =not applicable

Table 3.2(a) - Aeroelastic Test Matrix (Signal Support Specimens).
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Test Series
Support

Test Number Attachments Flow Direction
Structure

13 RS-lD Front

I-C C 14 RS-1D Rear,

15 None NA

16 RS-3D Front

II-C C 17 RS-3D Rear

18 None NA

19 RS-lD Front

.
I-D D 20 RS-lD Rear

21 None NA

I I I

22 RS-lD

I

Front

I

I-E E
23 RS-lD Rear

I I I

24 RS-2D

I

Front

I

II-E E
25 RS-2D Rear

Note: NA = not applicable

Table 3.2(b) - Aeroelastic Test Matrix (Sign Support Specimens).
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Note:
Boldface indicates dimensions of prototype.

I~

E C
E C
c C
t""1 rt'l
N ~

570mm

4570 mm

Figure 3.3 - Dimensions of the One-Eighth Scale "Full-Size" Sign Attachment (Specimen
R5-15) Included in the Aerodynamic Test Program.
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Note:
Boldface indicates dimensions of prototype.
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Fig~re 3.4 - Dimensions of the One-Eighth Scale "Half-Size" Sign Attachment (Specimen
RS-2S) Included in the Aerodynamic Test Program.

80



n

\

~ Steel 'ylindoc~

r Flange for mounting \I. to mechanical balance \

c::=:~ C::::::==:J

(a) (b)

Drag force, F0

Lift force, FL

rDi",tion of wind tunnel flow
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Figure 3.5 - Schematic Showing the Orientation of the (a) Signal and (b) Sign Attachments
During the Aerodynamic Tests and, (c) Orientation of the Aerodynamic Forces
Measured by the Mechanical Balance.

81





















..,
0..o
8
8
0..

4.­
o
en
c:

'0
. 'U;

c:..,
E
:a
en
~

'"o:ac:..,
~
"0

.. '0

..,1:0
C
Z

E S
E S

00 lI)

r-- ~

I

mm S901

WW££l

I ~I'
... mm OZL = mm 09£ @ Z

ww 06 = ww <;t ® L

mm OZ£1
Will <;9 I

)
I

Figure 3.15 - Dimensions of the One-Eighth Scale Signal Attachments Mounted to Specimens
A and B During the Aeroelastic Tests. Specimen TS-ID Denotes Signal Without
Backplate. Specimen TS-2D Denotes Signal With Backplate.

91



Weight = 4.2 N

Weight = 3110 N

I~

570mm

4570 mm

~I

Note:
Boldface indicates dimensions of prototype.

Figure 3.16 - Dimensions of the One-Eighth Scale "Full-Size" Sign Attachment (Specimen RS­
ID) Mounted to Specimens C and D During the Aeroelastic Tests.
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Weight =1560 N

I~

'I. Note:
Boldface indicates dimensions of prototype.

286mm

2290 mm

Figure 3.17 - Dimensions of the One-Eighth Scale "Half-Size" Sign Attachment (Specimen RS­
3D) Mounted to Specimen C During the Aeroelastic Tests.
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Boldface indicates dimensions of prototype.
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Figure 3.18 - Dimensions of the One-Eighth Scale "Full-Size" Sign Attachment (Specimen RS­
2D) Mounted to Specimen E During the Aeroelastic Tests.
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Figure 3.19 - Schematic Showing the Orientation of the Aeroelastic Test Specimens With
Respect to the Wind Tunnel Flow and the Orientation of the Lift and Drag
Moments Measured by the Dynamic Balance.
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Chapter Four

FINITE-ELEMENT ANALYSES

4.1 INTRODUCTION

This Chapter summarizes the results of dynamic and static finite-element analyses which

were performed to estimate the magnitude of the across-wind lift pressures to which cantilevered

support structures are subjected during occurrences of galloping- and vortex-induced vibrations.

The following methods were used to accomplish this objective:

• Finite-element analyses of the wind-tunnel model specimens were performed to

estimate the magnitude of the lift pressures required to simulate the across-wind

response amplitudes (i.e. lift moment amplitudes at the base of the vertical supports)

measured during the aeroelastic wind tunnel tests.

• Finite-element analyses of the wind tunnel prototype specimens were performed to

verify that the mass and stiffness of the prototype specimens were reasonably

represented by the model specimens. There was good agreement between the

prototype and model specimens, indicating that the aeroelastic wind tunnel results are

representative of the behavior which would be expected in cantilevered support

structures in the field.

• Finite-element analyses of several full-scale cantilevered support structures were

performed to evaluate the validity of the experimentally-determined lift pressures. The
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structures selected for these analyses were known to have been subjected to across­

wind vibrations consistent with galloping. In addition, estimates of at least one

dynamic response amplitude from each of these structures was known (either

displacements at the tip of the horizontal mast-arm or stress measurements) so that the

dynamic response observed in the field could be simulated using finite-element

analyses.

The results of the above analyses were used to develop equivalent static load models (in the form

of lift pressures) which reasonably estimate the magnitudes of the across-wind loads associated

with the galloping and vortex shedding phenomena. These equivalent load models can be used

in the design of cantilevered support structures for galloping- and vortex-induced fatigue.

This chapter is organized into six sections. Section 4.2 provides a brief summary of the

theoretical dynamic response of a single-degree-of-freedom system to a resonant load. Section

4.3 describes the analytical methods which were used in the finite-element analyses reported

herein. Section 4.4 summarizes the results of finite-element analyses of the model wind tunnel

specimens. Section 4.5 summarizes the results of finite-element analyses of the prototype wind

tunnel specimens. Section 4.6 summarizes the result of finite-element analyses of the full-scale

cantilevered support structures. Section 4.7 synthesizes the results of the finite-element analyses

reported in the previous sections into equivalent static load models which can be used in the

design of cantilevered support structures for galloping- and vortex-induced fatigue.

4.2 GENERAL THEORY OF DYNAMIC RESPONSE

The response of a linear-elastic structural system to a dynamic load is dependent on four

parameters: (1) mass, (2) damping, (3) stiffness, and (4) the characteristics of the applied dynamic
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load. In the simplest case, the effects of these parameters on the dynamic response of a structure

can be investigated through the use of a single-degree-of freedom (SDOF) model.

Figure 4.1 depicts the general model for a SDOF structural system. The mass, m, of the

system is constrained to a lateral translation, y(t). The stiffness and damping properties of the

system are given by a spring with stiffness equal to k and a damper with damping equal to c,

respectively. The response of this system to a dynamic load, F(t), is given by the equation of

motion:

my + cy + ky = F (t) (4.1)

where y, y, and y are displacement, velocity, and acceleration, respectively; t is time; and the

remaining variables are as previously defined.

The undamped circular natural frequency of the system, ro, is related to the stiffness and

the mass by the following:

w =~ (4.2)

For low levels of damping, the undamped natural frequency is approximately equal to the damped

natural frequency [11].

The level of damping possessed by the system is a measure of the structure's ability to

dissipate energy and return to the at-rest condition. In typicalstructural applications, damping is

represented as a ratio of the form:

~ _~ = _c_
cerit 2m w

(4.3)

where ~ is the damping ratio, c is the amount of equivalent viscous damping possessed by the

structure, and Cerit is the minimum amount of equivalent viscous damping for which no oscillation

will occur when the structure is subjected to free-vibration.
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Substituting Equations 4.2 and 4.3 into Equation 4.1, the equation of motion can be

rewritten as:

(4.4)

Thus, for any dynamic loading, F(t), the equation of motion can be solved to determine

the response of the structure, yet). The response is comprised of two components; a transient

component and a steady-state component. The transient component represents the response of the

structure under damped, free-vibration. The steady-state component represents the response of the

structure to the load, F(t). Typically, only the steady-state component is of concern when

determining the response of a structure to a forced vibration (i.e. the transient component of the

response eventually damps out).

For an externally-applied load, F(t), of the form:

(4.5)

where Fa and 6) are the amplitude and frequency of the applied load, respectively, the steady-state

component of the dynamic response is given by:

Fo 1 --
yet) = -[ ][(1-p2)sinwt - 2~ pcoswt] (4.6)

k (1 - p2f + (2 ~ pf

where ~ is the ratio of the loading frequency to the natural frequency of the structure (i.e. 6)/ro)

and the remaining variables are as previously defined. The term FJk represents the response of

the system under static application of the load Fa. The amplitude of the steady-state response

defined by Equation 4.6 is given by:
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(4.7)

Under resonant conditions, the frequency of the loading is equal to the natural frequency

of the structure (i.e. ~ = 1). Therefore, at resonance, the amplitude of the steady-state response

is given by:

(4.8)

Equation 4.8 indicates that, at resonance, the maximum dynamic response of a SDOF system is

equal to the static response (Folk) multiplied by a constant (1I2~). The constant 1I2~ is termed

the dynamic magnification factor. It is the ratio of the resonant steady-state dynamic response

amplitude to the static response which would be produced by the force Fo. As is evident from

Equation 4.8, the resonant response of a SDOF system is inversely proportional to the amount of

damping possessed by the system.

4.3 ANALYTICAL METHODS

The finite-element analyses reported in this chapter were performed usmg the

commercially-available finite-element program ABAQUS [2]. Details of the analytical methods

which were used in these analyses are provided in Sections 4.3.1 through 4.3.4.

4.3.1 Analytical Models

The cantilevered support structures considered in the analytical program (i.e. wind-tunnel

model specimens, wind-tunnel prototype specimens, and full-scale support structures) were

modeled using continuous, three-noded, quadratic beam elements. Structures composed of

prismatic structural members were modeled using beam elements of the same corresponding cross-
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sectional dimensions (i.e. the actual member dimensions were used in the finite-element model).

Structures composed of uniformly tapered structural members were modeled using a series of

"equivalent" prismatic elements arranged in a step fashion as is shown in Figure 4.2. The cross­

sectional dimension of each "equivalent" prismatic element was equal to the average cross­

sectional dimension of the corresponding tapered member.

. A relatively fine mesh size was used in the analyses of the full-scale cantilevered support

structures and prototype wind tunnel specimens (a nominal element length equal to 305 mm) to

ensure adequate representation of the variation in mass and stiffness along the length of the

tapered structural members. In order to maintain a reasonable level of consistency between

individual analyses, the full-scale cantilevered support structures and prototype wind tunnel

specimens which were composed of prismatic structural members were also modeled using the

same mesh size.

The wind tunnel model specimens were modeled using a reduced mesh size (i.e. nominal

element length equal to 38 mm). The mesh size was reduced in the same proportion as the model

scale. As a result, the relative level of mesh refinement between the full-scale cantilevered

support structures and wind tunnel model specimens was identical.

Signal attachments were modeled as lumped masses at the nodal points corresponding to

the locations of the attachments on the actual support structure. Sign attachments were modeled

as a series of lumped masses at the nodal points corresponding to the length of the horizontal

support over which the sign was mounted on the actual support structure. The mass at each nodal

point was computed as the mass of the actual sign attachment divided by the number of nodal

points over which the sign was mounted on the actual support structure.

The base of the vertical support of each of the models was assumed fixed. Effects of

foundation flexibility and/or soil-structure interaction were neglected in each of the analyses.
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Kaczinski et al. [27] showed that the fixed base assumption results in worst-case estimates of the

stress ranges at critical connection details. Therefore, the equivalent static load models developed

ffom these finite-element analyses will conservatively predict the magnitudes of the stress ranges

to which cantilevered support structures are subjected during galloping and vortex shedding.

4.3.2 Load Models

Analytical load models for the galloping and vortex shedding phenomena were developed

based upon the wind tunnel test results. As was discussed in Chapter Three, galloping of the

cantilevered sign and signal model specimens was caused by the aerodynamic forces acting on the

attachments to these specimens. As a result, the load model for galloping of the signal support

structures was represented in the finite-element analyses as a concentrated load applied in the

vertical-plane at the nodal points corresponding to the locations ofthe signal attachments in the

actual structure (see Figure 4.3). The load model for galloping of the sign support structures was

represented as a uniformly distributed load applied in the vertical-plane over the length of the sign

panel (see Figure 4.4).

The wind tunnel test results indicated that vortex shedding of the cantilevered sign support

model specimen (configured without attachments) was caused by the shedding of vortices from

thehorizontal mast-arm. As a result, the load model for vortex shedding was represented as a

uniformly distributed load applied to the structure in the vertical-plane over the length of the

horizontal mast-arm (see Figure 4.5).

4.3.3 Analyses

As was discussed in Section 4.1, finite-element analyses were performed to determine the

magnitude of the lift pressures required to simulate a known dynamic response amplitude. For
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the wind tunnel model and prototype specimens, the known dynamic response amplitude was the

magnitude of the lift moment at the base of the vertical support. For the full-scale support

structures, the known dynamic response amplitude was either an estimate of the displacement

amplitude of the horizontal support ~r an estimate of the stress range at some location within the

structure. Three finite-element analyses were performed on each of the structures considered

within 'the scope of the analytical program. A brief discussion of each of the analyses follows:

Eigenvalue analyses were performed to determine the natural frequencies and mode shapes

corresponding to the first six modes of vibration of the structure. The number of modes extracted

in the ,eigenvalue analysis was arbitrarily selected. As will be discussed below, the dynamic

response of cantilevered support structures to galloping and vortex shedding is dominated by the

first vertical-plane mode of vibration.

Linear modal analyses were performed to determine the steady-state dynamic response of

each of the structures to the galloping and/or vortex shedding phenomena. The load to which each

of the structures was subjected was assumed a sinusoidal waveform of the form:

(4.9)

where Fa is the amplitude of the dynamic load required to simulate the known dynamic response

amplitude, (0 is the circular natural frequency of the structure corresponding to the first mode of

vibration in the vertical-plane, and t is time. The load given by Equation 4.9 was applied to the

structure in accordance with one of the load models discussed in Section 4.3.2. Representation

of the loading as a sinusoidal function is consistent with the time history of the dynamic response

observed during the wind tunnel tests for which galloping and vortex shedding were observed (see

Figures 3.22 and 3.27, respectively). Each of the dynamic analyses was performed by only

considering the contribution of the first vertical-plane mode of vibration (generally the second

mode of vibration of each of the structures). The superposition of response amplitudes from
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higher vertical-plane modes were found to not significantly contribute to the overall dynamic

response of the structures.

Static analyses were then peIformed to determine the magnitude of the static load

amplitude required to obtain a response equal to the known dynamic response amplitude for each

of the structures. The static load was applied to the structure in accordance with the load models

described Section 4.3.2. These analyses were performed to evaluate the accuracy of using

equivalent static load models to simulate the forces to which cantilevered support structures are

subjected during occurrences of galloping and vortex shedding. The use of equivalent static load

models will avoid the necessity for using dynamic analyses for design.

4.4 ANALYSES OF WIND TUNNEL MODEL SPECIMENS

Table 4.1 provides a tabular summary of the data collected from the wind tunnel

specimens which exhibited significant vertical-plane vibrations due to either galloping or vortex

shedding. The data presented in Table 4.1 are identical to the data presented in Chapter Three.

As may be recalled from the discussion in Chapter Three, vortex-induced vibrations were only

observed in the sign support specimen (i.e. Specimen C) configured without attachments. The

remaining specimens shown in Table 4.1 exhibited' galloping-induced vibrations. Member

dimensions for each of the model specimens were previously summarized in Chapter Three. The

natural frequency (corresponding to the first vertical-plane mode of vibration) and percent critical

damping (also corresponding to the first vertical-plane mode of vibration) were determined from

free-vibration tests. The wind velocity indicated for each specimen is the velocity at which peak

vertical-plane oscillations were observed. Similarly, the column moment amplitude is the lift

moment measured at the base of the vertical support of the specimen at the time of peak vertical-

plane oscillation.

113

·l, .



4.4.1 Results of Dynamic Analyses

Table 4.2 summarizes the dynamic finite-element analysis results for the wind tunnel

model specimens. The predicted natural frequencies in the table are for the vertical-plane mode

of vibration of the specimen and agree to within 20 percent of the measured values. As is

indicated, the damping ratio for each specimen was set equal to the damping ratio obtained from

verticaf-plane, free-vibration tests of that specimen during the wind-tunnel tests.

The equivalent static pressures indicated in Table 4.2 were calculated using the following'

relation:

Equivalent Static Pressure Fdynamic

(A)(20
(4.10)

where Fdynamic is the dynamic force required to obtain the lift moment amplitude recorded during

the wind-tunnel test, A is the projected area of the member subjected to the loading (i.e. signal,

sign, or horizontal support), ~ is the damping ratio, and 1/2~ is the dynamic magnification factor

for a SDOF system subjected to resonant vibrations (as was discussed in Section 4.2). Note that

the equivalent static pressure is a lift pressure amplitude. The remaining columns of Table 4.2

depict the dynamic response amplitudes (i.e. moments and displacements) corresponding to the

magnitude of the load required to obtain the lift moment amplitude recorded during the wind

tunnel test.

Examination of the equivalent static pressures listed in Table 4.2 indicate that the lift

pressures associated with galloping vary from 423 Pa for the signal structure to 739 Pa for the

sign structure configured with the "full-size" sign attachment (i.e. Attachment RS-ll).

Considering the differences in these structures and the randomness of the galloping phenomenon,

this range in equivalent static pressures is remarkably consistent.
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A comparison of the results for the sign support structure (i.e. Specimen C) configured

with the two sign attachments (i.e. Attachment RS-ID and Attachment RS-3D) indicates that the

response is approximately proportional. That is, the response amplitudes associated with

Specimen C configured with Attachment RS-ID (the "full-size" sign attachment) are

approximately two times greater than the response amplitudes associated with Specimen C

" ,
configUred with Attachment RS-3D (i.e. the "half-size" sign attachment). This result verifies that

the magnitude of the across-wind loads to which cantilevered support structures are subjected

during occurrences of galloping are proportional to the area of the attachment detail. In other

words, the lift pressure associated with galloping is approximately constant for different signs and

signals.

The equivalent static pressure for vortex shedding from the mast-anrt of the sign structure

(i.e. Specimen C) without attachments is 2091 Pa. Comparisons of this equivalent static pressure

with the equivalent static pressures computed using the provisions of the present AASHTO

Specifications [4] and Ontario Code [35] follows.

As was discussed in Chapter Two, the present AASHTO Specifications [4] contain

provisions for the design of simple poles for vortex shedding. The critical wind velocity

associated with vortex shedding lock-in, Vcr' is given by the Strouhal relation:

(4.11)

where fn is the natural frequency of the structure, D is the across-wind dimension of the element

from which vortices are shed, and S is the Strouhal number. The measured natural frequency of
,"

Specimen C was 14.1 Hz, the diameteJ of the horizontal support was 57 mrn, and the Strouhal

number for vortex shedding from a circular cylinder is 0.18. Substituting this data into the

Strouhal relation, the predicted critical wind velocity is:
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Vcr = (14.1Hz)(O.057m) = 4.5m/s (16km/hr)
0.18

The equivalent static pressure range is given by:

(4.12)

P
P = - =

t 2~

2
0.0473 VcrCd9h

2~

(4.13)

where Cd is the drag coefficient, Ch is the height coefficient, and ~ is the damping ratio. As is

indicated in Table 4.1, the measured damping ratio for Specimen C was 0.14%. Based upon the

wind velocity and diameter of the horizontal mast-arm, the AASHTO Specifications specify the

use of a drag coefficient equal to 1.1 O. The height coefficient is assumed to be equal to 1.00 (i.e.

the height coefficient does not pertain to the wind tunnel flow condition because the wind tunnel

flow velocity does not vary with height). Substituting these data into Equation 4.13, the predicted

equivalent static pressure range is:

P = (0.0473)(16km/hr)2(1.10)(1.00) = 4760Pa
t (2)(0.0014)

(4.14)

Therefore, the amplitude of the equivalent static pressure fluctuation predicted by the provisions

of the AASHTO Specifications would be equal to 2380 Pa, which agrees very well with the

analytically-determined equivalent static pressure amplitude of 2091 Pa.

The Ontario Code [35] also contains provisions for predicting the equivalent static

transverse force amplitude per unit length, Fs' associated with vortex shedding from a simple pole:

F = 0.3 C DV2

s ~ s cr
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The equivalent static transverse pressure amplitude is given by:

(4.16)

Substituting the measured damping ratio of 0.14%, a transverse force coefficient equal to 0.71,

and a critical wind velocity equal to 4.5 mis, the predicted equivalent transverse pressure

amplitude is:

Pt 0.3 (0.71)(4.5mjs)2 = 3080Pa
2 0.0014

(4.17)

Thus, for a measured value of damping, the equivalent static pressure predicted by the Ontario

Code [35] is more conservative than the equivalent static pressure predicted by the AASHTO

Specifications [4].

Generally, the equivalent static pressures predicted by each of the design specifications

correlate well with the equivalent static pressure derived from the dynamic finite-element ~nalysis.

As a result, it can be concluded that the design provisions for vortex shedding from a simple pole

can be used to estimate the magnitude of the equivalent static pressures to which cantilevered

support structures are subjected during occurrences of vortex-induced vibration resulting from the

shedding of vortices from the mast-arm. Unfortunately, there are no equivalent load models

specified in either the Ontario Code [35] or the AASHTO Specifications [4] for galloping.

4.4.2 Results of Static Analyses

Static analyses of the wind tunnel model specimens were also performed to determine the

validity of using an equivalent static load model to estimate the magnitude of the support structure

forces to which cantilevered support structures are subjected during occurrences of galloping and
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vortex shedding. Table 4.3 summarizes the results of these analyses. The static pressures

indicated in Table 4.3 was computed using the following relation:

Static Pressure
Fsratic

A
(4.18)

where Fstatic is the amplitude of the load required to simulate the lift moment amplitudes measured

during'the wind tunnel test and A is the projected area of the member subjected to loading. Note

that the static pressure is a lift pressure amplitude. The remaining columns of Table 4.3 depict

the static response amplitudes (i.e. moments and displacements) for the magnitude of the load

required to simulate the lift moment amplitudes recorded during the wind tunnel test.

A comparison of Tables 4.2 and 4.3 indicates a systematic variation between the dynamic

and static response amplitudes between each of the specimens. In particular, the dynamic analysis

predicts that the arm moment will be approximately 65 to 75 percent of the column moment while

the static analysis predicts that the arm and column moments should be equal. Note that the arm

moments indicated in Tables 4.2 and 4.3 were computed at the face of the column while the

column moments were computed at the longitudinal axis of the column. As a result, the arm·

moments computed from the static .analyses are slightly less than the column moments. The

variation between the static and dynamic results can be attributed to the inertial effects inherent

in the dynamic analysis of a multi-degree-of-freedom system which are not accounted for in the

single-degree-of-freedom dynamic magnification factor. In view of the considerable variation in

the lift pressures to which the model specimens were subjected under galloping, the fact that the

static analyses do not precisely simulate the dynamic response amplitudes is not considered

significant. It is therefore concluded that equivalent static load models provide a reasonable

means by which to simulate the dynamic response amplitudes exhibited by cantilevered support

structures subjected to galloping and vortex shedding.
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4.5 ANALYSES OF WIND TUNNEL PROTOTYPE SPECIMENS

Dynamic and static finite-element analyses were also conducted on the prototype wind

tunnel specimens in a manner identical to that of the model specimens. Details of the dimensions

of the prototype specimens were provided in Chapter Three. Scaling of the column moment

amplitudes in the model specimens to the· column moment amplitudes in the prototype specimens

was hased upon the one-eighth scaling factor used in the fabrication of the wind tunnel test

specimens. The use of this scale factor to obtain the amplitudes of the column moments in the

prototype specimens is illustrated in the following example. The col~mn moment amplitude to

which the model specimens were subjected is given by the following:

(Amplitude Column Moment)model = [PAmodel] Lmodel (4.18)

where P is the amplitude of the across-wind lift pressure to which the specimen was subjected

(note that, based upon aerodynamic and aeroelastic scaling laws, the magnitude of the lift pressure

to which the model specimen was sutijected is identical to the magnitude of the lift pressure to

which the prototype sp~cimen would be subjected), Amade, is the projected area of the member

subjected to the lift pressure, and Lmodel is the length of the moment arm.

The dimensions of the prototype specimens (i.e. dimensions of the support members and

attachments) are eight times the dimensions of the model specimens. Therefore, the area of the

member subjected to the lift pressure in the prototype specimen is 64 times the area of the

member subjected to the lift pressure in the model specimen. In addition, the length of the

moment arm in the prototype specimen is 8 times the length of the moment aim in the model

specimen. Therefore, the amplitude of the column moment in the prototype specimens is related

to the amplitude of the column moment in the model specimens by the following:
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[Amplitude Column Moment]prototype = 512 [Amplitude Column Moment]model (4.19)

Equation 4.19 was used to calculate the column moment amplitudes to which the

prototype specimens would have been subjected. Tables 4.4 and 4.5 summarize the dynamic and

static response amplitudes, respectively, for the load magnitudes required to simulate the prototype

column moment amplitudes.

Inspection of Tables 4.4 and 4.5 indicates that the magnitudes of the predicted stress

ranges at the mast-arm and column exceed 42 MPa for each of the prototype structures. As will

be discussed in Chapter Five, these stress ranges would be in excess of the constant amplitude

fatigue limits for typical cantilevered support structures connection details. As a result, fatigue

damage would be expected had these structures experienced galloping- and/or vortex-induced

vibrations in the field.

A comparison of the data presented in Tables 4.4 and 4.5 with the data presented in

Tables 4.2 and 4.3 indicates that the mass and stiffness properties of the model specimens were

scaled with a reasonable level of accuracy. The laws of similitude indicate that the natural

frequencies of the model specimens should be eight times the natural frequencies of the prototype

specimens. A comparison of the natural frequencies depicted in Tables 4.2 and 4.4 indicates that

this hold true with an error of less than 30 percent, which is considered excellent agreement. .

Similarly, for a given applied lift pressure, the displacements of the prototype specimens would

be expected to be eight times the displacements of the model specimens. Inspection of the data

indicates that this holds true with an error of less than 15 percent. As a result, it can be concluded

that the dynamic behavior of the model specimens observed during the aeroelastic wind tunnel

tests were representative of the behavior which would be exhibited by full-scale cantilevered

support structures in the field.
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4.6 ANALYSES OF FULL-SCALE SUPPORT STRUCTURES

Finite-element analyses of several full-scale cantilevered support structures were performed

to validate the magnitudes of the equivalent static pressures derived from finite-element analyses

of the wind tunnel test specimens. The structures included in these analyses wer~ known to have

experienced vertical-plane vibrations consistent with galloping. Estimates of at least one dynamic

response amplitude was known (either displacements at the tip of the horizontal mast-arm or stress

measurements) so that the dynamic response observed in the field could be simulated using finite­

element analyses. Details of the full-scale support structures are provided in Figures 4.6 through

4.8.

4.6.1 Signal Structure #1

Figure 4.6 summarizes--$e details of a cantilevered signal support structure (identified as

Signal Structure #1) which was observed to experience vertical-plane vibrations consistent with

the galloping phenomenon. The dimensions of Signal Structure #1 are identical to the prototype

dimensions of Specimen A (see Figure 3.10) which was tested in the wind tunnel.

Across-wind vibrations of Signal Structure #1 were documented on videotape.

Observations of the videotape indicate that the natural frequency of the structure (corresponding

to the vertical-plane mode of vibration) was approximately equal to 1.2 Hz. The amplitudes of

vibration of the mast-arm were estimated at between 254 mm and 610 mm. Additionally,

information obtained from the National Climatic Data Center indicated that the average hourly

wind velocity on the day the vibrations were observed was between 11 mls and 13 mls with gust

velocities up to approximately 18 mls. As was shown in Chapter Three, these velocities are in

good agreement with the velocities at which galloping occurred in Specimen A during the

aeroelastic wind tunnel tests.

121



Finite-element analyses were performed to determine the magnitudes of the equivalent

static pressures required to produce mast-arm displacements of 254 mm (indicated as Run A in

Table 4.6) and 610 mm (indicated as Run B in Table 4.6). A level of damping equal to 0.75CJc

of critical was assumed in each of the dynamic analyses. This level of damping is representative

of the level of damping possessed by signal support structures in the field.

. As is indicated in Table 4.6, the frequenc):' corresponding to the vertical-plane mode of

vibration predicted by finite-elements (1.13 Hz) correlates well with that observed on the

videotape (1.2 Hz). Additionally, the 578 Pa equivalent static pressure required to produce a

mast-arm displacement amplitude of 254 mm correlates reasonably well with the equivalent static

pressures obtained from finite-element analyses of the wind tunnel specimens. The equivalent

static pressure required to produce a displacement amplitude of 610 mm is significantly greater

than that obtained from the wind tunnel tests. This large displacement was only observed during

a short segment of the videotape and most likely corresponds to a short burst in the response due

to gusts. Therefore, it is not necessary to consider an occasional extreme equivalent static pressure.

such as this in the design of cantilevered support structures for fatigue. It is the cumulative effect

of the response over a few hours that dominates the fatigue damage.

4.6.2 Signal Structure #2

Figure 4.7 summarizes the details of a cantilevered signal support structure (identified as

Signal Structure #2) which was subjected to a series of full-scale field tests in a research program

conducted by McDonald et al. [32]. The scope of this research program was summarized in

Chapter Two. The results of these field tests indicated that Signal Support Structure #2 was

subjected to a maximum measured stress range in the vertical support (at a location approximately

330 mm from the base) equal to approximately 34 MPa under wind velocities in the range of 4.5
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mls. The results of vertical-plane free-vibration tests indicated that the natural frequency of the

structure was 0.74 Hz and the damping was 0.62% of critical.

A dynamic finite-element analysis was performed to determine the equivalent static

pressure amplitude required to produce a stress range equal to 34 MPa at a location 330 mm from

the base of the vertical support. The results of this analysis are summarized in Table 4.7. As is

indicated, good correlation was obtained between the predicted and measured natural frequencies.

An equivalent static pressure amplitude equal to 355 Pa was required to produce a stress range

in the column equal to 34 MPa.

The equivalent static pressure amplitude required to produce the observed dynamic

response in this structure is less than the magnitudes of the equivalent static pressures obtained

from the wind tunnel test results. This result would be expected considering that the structure

tested by McDonald et al. [32] was only subjected to a 4.5 mls wind velocity. Furthermore, this

result highlights the fact that the load to which cantilevered support structures are subjected is a

function of the wind velocity. It can reasonably be assumed that this structure would have been

subjected to equivalent static lift pressure amplitudes significantly greater than 355 Pa had higher

wind velocities been observed during the testing of this structure.

4.6.3 Sign Structure #1

Figure 4.8 summarizes the details of a cantilevered sign support structure (identified as

Sign Structure #1) which collapsed as a result of the propagation of fatigue cracks in the anchor

bolts. Fractographic analyses of the failed anchor bolts indicated that the structure was subjected

to vertical-plane oscillations which resulted in anchor bolt stress ranges of 69 to 103 MPa [22].

As is indicated in Table 4.8, an equivalent static pressure amplitude of between 347 Pa

and 520 Pa is required to produce anchor bolt stress ranges of 69 MPa and 103 MPa, respectively.
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Once again, the magnitude of this equivalent static pressure correlates reasonably well with the

pressures obtained from finite-element analyses of the wind tunnel model specimens.

4.7 SUMMARY

4.7.1 Galloping

The results of finite-element simulations of the wind tunnel experiments indicate that

cantilevered sign and signal support structures are subject to equivalent static lift pressure

amplitudes in the range of approximately 420 Pa to 740 Pa during occurrences of galloping­

induced vibrations. This range in equivalent static lift pressures is correlated by the results of

finite-element analyses of full-scale support structures which were known to experience vertical­

plane oscillations consistent with the galloping phenomenon.

Considering the inherent variability in the response of a structure to galloping, the range

in equivalent static pressure amplitudes observed in this study are remarkably consistent. Based

upon these results, itis recommended that an equivalent static lift pressure amplitude equal to 500

Pa (i.e. an equivalent static lift pressure range equal to 1 kPa) be used in the design of

.cantilevered sign and signal support structures for galloping-induced fatigue. This equivalent static

lift pressure range should be applied vertically (as was indicated in the load models presented in

Section 4.3.2) to the projected area of all sign and signal attachments mounted to the horizontal

mast-arm.

4.7.2 Vortex Shedding

The results of finite-element simulations of the wind tunnel experiments indicate that

cantilevered support structures mounted without attachments should be designed for vortex­

induced fatigue provided that the magnitude of the critical wind velocity (as calculated by the
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Strouhal relation) is greater than approximately 5 m/s. The magnitude of the equivalent static lift

pressure range should be calculated based upon the provisions contained in the present AASHTO

Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic

Signals. This equivalent static lift pressure range should be applied vertically to the horizontal

support of the structure as per the load model described in Section 4.3.2.

125



>oj
t.l
0"
;:;'"

f-....
I

0
cr'
Vl
rll...,
<:
rll
P-

o-" ~10
0\ S·

0..
I

>-Jc
::l
::l
~

>-J
rll.
Vl.....
::0
rll
Vlg.
Vl

Amplitude

Support Attachmcnt Flow
Natural Flow Column

Frequcncl Damping! Velocity· MomentS
Structurc! Detail' Direction

(Hz) (%)
Figure]

(m1s) (N-m)

A TS-2D Rear 0.95 0.12 3.2ICh) 18.2 14.7

C RS-ID Front 10.00 0.13 3.23(a) 11.2 116.6

C RS-3D Front 11.24 0.17 3.24(a) 13.1 54.5

C None - 14.10 0.14 3.26 5.5 122.3

I Specimen and <ittachment details sllmm<irized in Ch<ipter Three.
2As mC<isured from vertic<il-pl<ine, free-vihmtion tests.
JCorresponding figure in Chapter Thrce .
·Ye)ocity al which peak vnlical-plane response was observed.
'pe<ik column momenl <implitude me<isured <it h<ise of vertic<il su·pporl.



~
llj

0"
;;-
.1:0
N

0
'-<
::l
po

:3
O·
'"T1
§:
~

tTl
~
:3
(1l
::l
~

;J>
::l
llj

'Z
10 V>

-..) V>

:::0
(1l
V>g.
V>

0
...."

~
S·
0..

>-J
I::
::J
::l
~

~
0
0..
~
CIl

"0
(1l
0

3'
(1l
::J
~

\

Equivalent Amplitude Amplitude
Natural Static Column Arm

Support Attachment Frequency Damping Pressure Moment Moment
Structure Detail (Hz) (%) (Pa) (N-m) (N-m)

A TS-2D 6.1 0.12 423 14.7 10.3

C RS-ID 12.4 0.13 739 116.6 83.5

C RS-3D 13.6 0.17 593 54.5 38.9

C None 16.6 0.14 2091 122.3 79.4

Amplitude Amplitude
Column Arm

Support Attachment Displacement Displacement
Structure Detail (mm) (mm)

A TS-2D 2.5 21.9

C RS-ID 4.1 18.9·

C RS-3D 1.9 8.8

C None 4.2 18.6



>-3
~

~
rt>

+0-
W

C/l

~o·
'T1
S·
~.

I

tTl
(p

a
(t)

g
»
::J
p

c'Z
~.

N [/l

00 :;0
(t)
[/l

c
~

[/l

0
...."

~
S·
0..

>-ic
::J
::J
~

s:
0
0..
~

C/l
'0
(j)
n§.
(j)

::J
~

Amplitude Amplitude Amplitude Amplitude
Static Column Arm Column Arm

Support Attachment Pressure Moment Moment Displ. Displ.
Structu re Detail (Pa) (N-m) (N-m) (mm) (mm)

A TS-2D 575 14.7 14.6 2.9 31.1

C RS-ID 884 116.6 1\2.9 4.5 23.0

C RS-3D 724 54.5 53.2 2.1 11.0

C None 2551 122.3 115.8 4.8 23.0



>-03
~

C"
;-
+-.
~

I

0
'<
;::l
I'-'
:3
n'
'TI
5'
ro
rnn
3
rll
;:?

?
;::l

E..
'<

C/l

10
U;-

'0
~
rll
C/l
c:
~

C/l

0......,

:E
S·
0.

>--3c:
;::l
;::l

~

'i:1
>;

S
0
~
'U
rll

CIJ
'U

(j)
n
3'
(j)
;::l
~

Equivalent Amplitude Amplitude
Natural Static Column Arm

Support Attachment Frequency Damping Pressure Moment Moment
Structure Detail (Hz) (%) (Pa) (N-m) (N-m)

A TS-2D 1.05 0.12 460 7520 5710

C RS-ID 1.36 0.13 740 59700 43300

C RS-3D 1.41 017 590 27900 19800

C None 1.86 0.14 2090 55600 36400

Amplitude Amplitude Column Arm
Column Arm Stress Stress

Support Attachment Displ. Displ. Range Range
Structure Detail (mm) (mm) (MPa) (MPa)

A TS-2D 17 151 42 66

C RS-ID 32 146 150 108

C RS-3D 15 67 70 50

C None 29 127 139 91



...-j
c.:>
0-
;"
~

01

C/l

§
(=i'

'T1
§:
~

I

tTl
CD
S
(1)

g
>-
:J
P
~
~,
'J'

Vj :::0
0 (1)

'J'
C
~

'J'

0
..."

~
S'
0..

>-Jc
:J
::l
~

"'0....
0
0
.Q
"'d

(1)

C/l
"'d

(1)
0

s'
(1)

::l
~

Amplitude Amplitude Amplitude Amplitude
Static Column Arm Column Arm

Support Attachment Pressure Moment Moment Displ. DispI.
Structure Detail (Pa) (N-m) (N-m) (mm) (mm)

A TS-2D 575 7530 7520 19 192

C RS-ID 884 59700 59200 35 177

C RS-3D 724 27900 27300 16 85

C None 2550 55600 53200 32 157

Column Arm
Stress Stress

Support Attachment Range Range
Structure Detail (MPa) (MPa)

A TS-2D 42 77

C RS-ID 150 129

C RS-3D 70 68

C None 139 133



VJ

>-j
t.l
0"
~

+>.
a...

UlCJ
~'<

'"Cl ::l
'"Cl ~
o a;4 _.

Ul n
~ 'Tla _.
n 8.
2 (;
@ rn
---- ~CJ)(1)-. a
~ (1)
::l ::l
::.~

Ul;J>
.... ::l
"1 ~= ~r'l,<
.... [/l= _.
"1 [/l

I'D ;;0
'*(1)
"""[/l
~c

~

[/l

o...,.,
'Tl
§:

I

Ul
n
E:?..
(1)

n
P.:>
g,
CD
<
(1)...
(1)
P-

Ul

(0
E:?..

\

"'!'"'

Equivalent Amplitude Amplitude
Natural Assumed Static Column Arm

Support Run Fre(!uency Damping Pressure Moment Moment
Structure Number (Hz) (%) . (Pa) (N-m) (N-m)

Signal #1 A 1.13 0.75 578 9650 7120

Signal #1 B 1.13 0.75 1390 23200 17100

Amplitude Amplitude Column Arm
Column Arm Stress Stress

Support Run DispI. DispI. Range Range
Structure Number (mm) (mm) (Pa) (MPa)

Signal #1 A 30 254 74 113

Signal #1 B 72 610 180 270



...-3
~

0"
(;"
.J;;o.

~

UlO
t::::,<
'd ::l
'd ~

o S::4 _.
Ulo

2 ::n
° B.2 ro
...., ,
(1l tTl
,.-.., -Ul(1l_. S
C1Q (1l
::l ::l
~~

CIJ;J>
..... ::l.., ~c _

U-.l rl'<10 ..... C/)C _ .
.., C/)

r'll ::0
=l:l:n
NC/)

~~
C/)

0,..,.,
'T1
~
I

Ul

°2.-
(1l

n
P>

§.
(p
<
rt>....,
rt>
P,

Ul
CjQ'
::l
2.-

Equivalent Amplitude Amplitude
Natural Measured Static Column Arm

Support Frequency Damping Pressure Moment Moment
Structu re (Hz) ('Yo) (Pa) (N-m) (N-m)

I Signal #2 I 0.83 I 0.62 1 355 I 8460 I 7510 I

Amplitude Amplitude Column Arm,
Column Arm Stress Stress

Support Displ. Displ. Range Range
Structure (mm) (mm) (Pa) (MPa)

I Signal #2 I 10 I 151 I 34 I 47 I



>-3
c­
O"
ro
f>­
oe

C/lt:l
~'-<2 ::J
n po

2 a.., _.
~ n
r-o'TjC/l _._. ::J
crQ _.

= rP
C/lm.... -.., (l)

=an ~

8" ~
~ ;J>
=l1:::J
"""E:..'-' '-<

l;.l • en
VJ C;;"

::0
(l)
eng.
en
o.....,
'Tj
t::
'I
C/l
n
po

CD
n
g.
ro
<
(]l

i1l
P­
C/l

Clq
::J
C/l
t::

'"d
'"d
a
;J.

Amplitude
Equivalent Amplitude Arm

Natural Assumed Static Column Moment
Support Run Frequency Damping Pressure Moment Bot. Chord

Structure Number (Hz) (%) (Pa) (N-m) (N-m)

Sign #1 A 1.27 1.0 347 92800 4790

Sign #1 B 1.27 1.0 520 139200 7190

Amplitude Anchor
Column Amplitude Amplitude Column Bolt
Moment Column Arm Stress Stress

Support Run Top Chord Displ. DispI. Range Range
Structure Number (N-m) (mm) (mm) (MPa) (MPa)

Sign III A 912 24 53 20 69

Sign III n 1370 36 80 30 103



//

I

/
~y(t)

/
k

/
/

!
! m/

]
C

Figure 4.1- Single-Degree-of-Freedom (SDOF) System.

134



~ I
I I

: Thickness ~ t
I I
I I
I I
I I
I I
I I
I I
I I
I I

~ Support Member
.--.

~ I -I l I
I I ~ I -
I I I ,
I I I

davg 1
I d avg2 I davg3

I d avg4
I I I
I I . I

I I I -
I ~

I

I I
I I-- I

"-Model

~ Thkknos, = I

I I I
I I

. I

davg 1 davg2 d avg 3 dava
"4

Finite-Element

Figure 4.2 - Finite-Element Model of Tapered Members.

135



(a)

r-- -
- o· 0

0 0 ~
0 0
'-- -

I
I
I
I
I
I
I
I
I
I

IIIIIII

(b)

III/III

iF(t) iF(t)

Figure 4.3 - Load Model for Galloping From Signals; (a) Support Structure (b) FEM Model.

136



-
------------------
----------- -------

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I !
I I
I I
I I
I I
I I
I I

(a)

1//////

(b)

///1///

Figure 4.4 - Load Model for Galloping From Signs; (a) Support Structure (b) FEMJvlodel.

137



I

(a)

1IIIIii

(b)

0

- - - - - - - - - -- - - - - - - - - -
J J ~ ~ A A~ ~ J All A..

n F(t)

l~

~

.~

.~

•

ill/III

Figure 4.5 - Load Model for Vortex Shedding From Mast-Arm; (a) Support Structure (b) FEM
Model.

138



\\

WW 0809

Will 00179

Figure 4.6 - Details of Full-Scale Cantilevered Signal Support Structure (Signal Support #1).

139



<'I Z C"'l Z

0
60 Eo

0 r-C'l0";- \DC'l

0 - II 0 II

II :c II :c
0

<"l.!:!l ro .e.o
0,) <1.l ~ <1.l

~~ --<~

0
~E 0

E
0
\D
\D
(")

6
6

,,;-

0
0

8 E

6 0 E E
6

E
c

~ E
t-

o 0 C'l
(") ~\D 8
\D
'1"

II ~ E
... UJ E E

'0 0,) <1.l 0 6
~t)~ ~\D
0,) E u
0. '" .- II II

~6F ... ~

6
- <1.l <1.l
C) CJ c

E ~ 6 -t3
0

I::. «:.-
0 ~oF
0
0

I~ ww 06j?~ ~I

Figure 4.7 - Details of Full-Scale Cantilevered Signal Support Structure (Signal Support #2).

140



E
E
o
o
r­,.,..,

I~

WWO£IZ

I" ~I
Ir---'l
I /1
I , I
1 , I
I I I
I' I
~---/
I I I
I I I
I I I
1/ I
"'----J.I ,I
I , I
I I I
I I I
I' 1I

WWOO~OI
--I

Figure 4.8 - Details of Full-Scale Cantilevered Sign Support Structure (Sign Support #1).

141



Chapter Five

.
FATIGUE CATEGORIZATION OF CONNECTION DETAILS

5.1 INTRODUCTION

The current AASHTO Standard Specifications for Structural Supports for Highway Signs.

Luminaires and Traffic Signals [4] contain provisions which specify that cantilevered support

structures should be designed for infinite fatigue life in accordance with the procedures outlined

in the AASHTO bridge specifications [3]. The geometrical configuration of typical cantilevered

support structure connection details, however, varies significantly from the bridge details found

in the AASHTO bridge specifications. As a result, designers are faced with significant uncertainty

when attempting to apply the provisions of the AASHTO bridge specifications to the design of

cantilevered support structures for fatigue.

This chapter describes the categorization of typical cantilevered support structure

connection details to the existing AASHTO and/or AWS fatigue design curves. Section 5.2

summarizes the factors which influence the fatigue strength of welded details. Section 5.3

describes the methodology which was used to categorize typical cantilevered support structure

connection details to the existing AASHTO and/or AWS fatigue design curves. The actual

categorization of cantilevered support structure connection details is provided in an appendIx to

this report.

5.2 FATIGUE OF WELDED DETAILS

Fatigue is a complex phenomenon governed by factors which are highly variable and

difficult to quantify. The results of previous research [19, 20, 28], however, indicate that the
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fatigue resistance of welded details can be characterized by two primary parameters: (1) nominal

stress range and (2) notch severity. The notch severity describes the severity of the stress

concentration associated with a welded detail. It includes the effects of the global stress

concentration associated with the configuration of the detail and the effects of local stress

concentration due to the geometry of the weld and the existence of any weld discontinuities.

· The provisions of the AASHTO bridge specifications [3] for the design of structures for

fatigue are based upon a nominal stress approach in which details are grouped into categories (i.e.

S-N curves) according to their relative fatigue resistance. The AASHTO Specifications contain

seven design S-N curves labeled A through E' in order of decreasing fatigue strength (there is also

an eighth S-N curve, labeled Category F, for the design of fillet welds loaded in shear. This

category rarely controls the design of structures for fatigue). Each design S-N curve possesses

a constant amplitude fatigue limit below which infinite fatigue life is obtained under constant

amplitude loading. The loading is characterized by the nominal stress range remote from the

detail.

The AASHTO fatigue design categories were developed from the results of full-scale,

constant amplitude fatigue testing of bridge details. Because fatigue resistance is highly variable,

the design categories are based upon a lower-bound 95 percent confidence limit. Thus, the

AASHTO S-N design categories implicitly ,/-count for variables which are highly variable and

difficult to quantify such as local stress concentration associated with weld geometry and weld

discontinuities. Details which are grouped within the same design category generally exhibit

similar cracking modes and are subject to similar stress concentrations. For example, transverse

stiffeners and transverse butt welds with reinforcement are both Category C details. Thus, even

though the geometrical configurations of these details are very different, transverse stiffeners and

143



transverse butt welds with reinforcement exhibit similar fatigue resistance because the severity of

the stress concentration associated with each of the details is similar.

5.3 CATEGORIZATION OF CONNECTION DETAILS

The categorization of cantilevered support structure connection details to the existing

AASHTO and/or AWS fatigue design curves is based upon a general understanding of fatigue

behavior, knowledge of previous research which has led to the development of the existing fatigue

design curves, experience with structural failures which have resulted from fatigue, and

engineering judgement. The fact that details which possess similar stress concentrations and cause

cracks to form at the same location (e.g. the toe of a weld) was used to link the behavior of

cantilevered support structure connection details to the existing knowledge base of bridge details

which have been subjected to extensive testing. A similar approach has been used previously to

categorize the fatigue resistance of ship details to the AASHTO fatigue design curves [23].

Whenever possible, existing data related to the fatigue testing of a particular cantilevered support

structure connection detail was reviewed prior to the categorization of that detail to an AASHTO

and/or AWS fatigue design curve [21].

The appendix to this report contains the categorization of typical cantilevered support

. structure connection details to the existing AASHrO [3] and/or AWS [6] fatigue design

categories. Identification of the typical cantilevered support structure connection details was based

upon a review of: (1) state department of transportation standard drawings of cantilevered sign,

signal, and luminaire support structures, (2) literature obtained from cantilevered support structure

manufacturers, and (3) literature developed by the AASHTO-AGC-ARTBA Task Force No. 13

[1]. The format of the categorization is similar to the format of the categorization of bridge

details found in Reference 3.
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Chapter Six
· _.'

ANCHOR BOLT FATIGUE TESTS

6.1 INTRODUCTION

As was discussed in Chapter Five, previous research [19,' 20, 28] indicates that the fatigue

strength of welded details is primarily dependent on two parameters: (1) nominal stress range and

(2) notch severity. Notch severity is a function of the stress concentration associated with the

detail, local weld geometry, and weld discontinuities. Experience with the behavior of welded

components under the application of repeated loading indicates that details which possess similar

stress concentrations (e.g. the toe of a weld) and are subjected to similar loading (e.g. nominal

stresses normal to the axis of the weld) will behave in a similar manner even though the physical

appearance of these details may be significantly different. This methodology was used in Chapter

Five to categorize welded cantilevered support s~ructure connection details according to the

existing AASHTO and/or AWS fatigue design curves.

Anchor bolts, however, are unique with respect to their behavior under the application of

repeated loading. For example, fatigue cracking in anchor bolts initiates at the thread root. The

stress concentration at the root of a thread is significantly different from the stress concentrations

associated with the welded details for which the AASHTO fatigue design curves were developed.

Furthermore, being non-welded structural components, the fatigue strength of anchor bolts is

influenced by parameters which do not significantly influence the fatigue strength ofweldments .

(e.g. the lack of tensile residual stresses resulting from the welding process make stress parameters

such as maximum stress significant with respect to the fatigue strength of anchor bolts). As a
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result, existing knowledge of the fatigue strength of welded details cannot be used to predict

anchor bolt fatigue strength.

Several research programs, .which will be summarized in Section 6.2.1, have been

previously conducted to evaluate the fatigue strength of anchor bolts. The results of these research

programs indicate that the lower-bound fatigue strength of axially-loaded, snug-tight anchor bolts

is consistent with the AASHTO Category E' fatigue design curve in the regime of finite life (e.g.

less than two million ·cycles). Similarly, the fatigue strength of axially-loaded, fully-tightened

anchor bolts in the regime of finite life has been found to be consistent with the AASHTO

Category·E fatigue ~esign curve. No data, however, have been acquired below a stress range of

approximately 69 MPa. As a result, it is unknown whether the AASHTO Category E and E'

fatigue design curves accurately represent the fatigue strengths of fully-tightened and snug-tight

anchor bolts, respectively, in the regime of infinite life (e.g. greater than two million cycles).

A series of fatigue tests were conducted within the scope of the current research program

to extend the existing anchor bolt fatigue database into the infinite life regime. Specifically, the

objective of these tests was to determine ~ lower-bound estimate of the constant amplitude fatigue

limit (CAFL) of double-nutted, snug-tight anchor bolts subjected to axial tension. In order to

accomplish this objective, the test program was arranged so as to evaluate the effects of: (I)

maximum stress, (2) yield strength, (3) thread forming method, (4) bolt pretension, and (5)

misalignment. The fatigue design recommendations presented in Section 6.5 are based upon a

worst-case condition so that the effects of these secondary variables need not be explicitly

considered in the design process. Material property tests were also performed to ensure that the

strength, ductility, a!1d fracture toughness of the specimens obtained for this study were in

accordance with existing anchor bolt material property specifications.
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The effects of bolt diameter, thread series, and galvanizing were not explicitly considered

in the experimental program foIlowing a review of previous research (described in Section 6.2. I)

which indicated that these variables do not significantly influence the fatigue strength of anchor

bolts. Furthermore, the influence of thread fit on the fatigue strength of anchor bolts was not
('

specifically considered within the scope of the test program. Rather, thread fit was considered a

random variable, the effects of which were incorporated in the sample of test specimens.

Chapter Six is organized into five sections. Section 6.2 provides a summary of the

previous research pertaining to anchor bolt fatigue strength and discusses the provisions for the

design of bolts for fatigue which are contained in existing design specifications. Section 6.3

summarizes the specimen details, experimental set-up, and test procedures used in this test

program. The results of the fatigue tests are presented and discussed in Section 6.4. Finally,

recom~endations for the design of anchor bolts for fatigue are presented in Section 6.5.

6.2 BACKGROUND

6.2.1 Previous Research

Frank [24] performed fatigue tests to evaluate the effects of type of steel, thread series,

nominal diameter, galvanizing, thread forming method (i.e. cut vs rolled), and stress range on the

fatigue strength of "snug-" and "fully-tightened" anchor bolts subjected to axial tension.. In

Frank's tests, snug was defined by a level of torque equal to 271 N-m. Fully-tightened was

defined as one-third-of-a-tum beyond snug. The tests included anchor bolts fabricated from

ASTM A36, ASTM A193 Grade B7, and AISI 4340 (heat treated) steels in nominal diameters

ranging from 35 mm to 51 mm. Thread series consisting of 8UN, 6UNC, and 4Y2UNC were

included in the test program. Single- and double-nutted anchor bolts (i.e. anchor bolts configured

with one nut on either side of the baseplate) were also considered. Frank conducted each of the
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fatigue tests at a maximum stress corresponding to 75 percent of the minimum specified yield

strength of the material.

The results of Frank's research indicated that the effects of nominal diameter, thread

series, galvanizing, type of steel, and thread forming method were negligible with respect to the

fatigue strength of anchor bolts.. The results of tests on the fully-tightened specimens indicated

that tightening of the nuts to one-third-of-a-tum beyond snug resulted in increased fatigue

strengths as compared to the double-nutted, snug-tight specimens and the single-nut specimens.

Failure of the single-nut specimens was consistently observed to occur at the first engaged thread

of the exterior nut. Failure of the double-nutted, snug-tight specimens was observed at either: (1)

the first engaged thread of the exterior nut or (2) at multiple threads within the exterior nut.

Tightening of the double-nutted anchor bolts to one-third-tum-beyond snug was found to shift the

mode of failure to the threaded region outside of the connection (i.e. below the leveling nut).

The shift in failure mode from the first engaged thread of the exterior nut to the threaded

region below the leveling nut in fully-tightened, double-nutted anchor bolts can be attributed to

a variation in the distribution of the applied load which occurs in the ful1y-tightened connection.

In double-nutted, snug-tight anchor bolts subjected to CLxial tension, the entire applied load range

is carried by the exterior nut. Furthermore, a majority of the load is transferred to the bolt at the

first engaged thread. As a result, the first engaged thread is subjected to the largest stress range

and is the critical location with respect to the initiation of fatigue cracks. Tightening of the

double-nutted connection to one-third-of-a-tum beyond snug pretensions the short length of bolt

between the interior and exterior nuts, creating a clamping force which results in a more even

distribution of the applied load between the exterior and interior nuts. This effect was evident in

strain gage measurements made by Frank during testing of the fully-tightened, double-nutted

anchor bolts. These measurements indicated that approximately one-third of the applied load was
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taken by the interior nut. Furthermore the distribution of load within the nuts of fully-tightened,

double-nut connections is more uniform (i.e. the transfer of load is not concentrated at the first

engaged thread). As a result, the critical location for the initiation of fatigue cracks in fully­

tightened, double-nutted anchor bolts shifts from the first engaged thread of the exterior nut to the

free-length of bolt below the leveling nut which is not subjected to pretensioning.

The beneficial effects of pretension in conventional bolted connections loaded in tension

IS well known and is described extensively in Reference '30. However, the behavior of

conventional bolted connections subjected to axial tension is inherently different from that of

fully-tightened, double-nutted anchor bolts. In a conventional connection, the entire length of bolt

is subjected to the pretension force. In fully-tightened, double-nutted anchor bolt connections, the

exposed length of bolt below the leveling nut is not subjected to the beneficial effects of

pretensioning. As a result, fully-tightened, double-nutted anchor bolts are, in general, more

,susceptible to fatigue cracking at this location.

Dusel et al. [16] conducted a similar test program to evaluate the effects of type of steel,
,<-./

nominal diameter, bolt length, and stress range on the fatigue strength of snug- and fully-tightened

(i.e. tightened to one-third-of-a-tum beyond snug) double-nutted anchor bolts subjected to axial

tension. The tests included anchor bolts fabricated from ASTM A307 and ASTM A449 steels in

nominal diameters ranging from 25 mm to 44 mm. Snug-tight was defined by a level of torque

equal to 136 N-m. Furthennore, the tests were conducted at maximum stress levels ranging from

approximately 10 percent to 100 percent of the yield strength of the material.

Similar to the results of the research performed by Frank [24], Dusel et al. [16] found that

the effects of nominal diameter, type of steel, and bolt length were insignificant. The results of

tests on the fully-tightened specimens indicated that tightening of the nuts to one-third-of-a-tum

beyond snug resulted in increased fatigue strengths as compared to the snug-tight specimens.
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Failure of all of the snug-tight specimens was observed at the first engaged thread of the exterior

nut. Failure of the fully-tightened specimens was observed at one of three locations: (l) the first

engaged thread of the exterior nut; (2) within the threads of the interior nut; or (3) within the

threaded region outside of the connection (i.e. below the leveling nut) .

. The database of fatigue test results generated by Frank [24] and Dusel et al. [16] for

single~nutted and double-nutted, snug-tight anchor bolts subjected to axial tension is depicted in

Figure 6.1. As will be discussed in Section 6.4.3, the magnitude of the maximum stresses to

which anchor bolts are subjected significantly influences the fatigue strength. Increases in the

magnitude of the maximum stress tend to decrease the fatigue strength. Therefore, the data shown

in Figure 6.1 include only those tests conducted at maximum stresses greater than 60 percent of

the minimum specified yield strength of the material. A maximum stress equal to 60 percent of

the minimum specified yield strength corresponds to the allowable static design stress for anchor

bolts [4]. As a result, the data shown in Figure 6.1 represent a worst-case condition in terms of

the fatigue strength of snug-tight anchor bolts. Under actual service lmi.d conditions, anchor bolts

are not expected to be subjected to maximum stresses greater than 60 percent of the material yield

strength. For a given applied load range, bolts which are less efficiently designed would be

expected to have longer fatigue lives than are exhibited in Figure 6.1.

The results of a statistical analysis of the data in Figure 6.1 (the methods of which were

discussed in Chapter Five) indicates that the lower-bound, corresponding to the mean minus two-

times the standard deviation, falls between the AASHTO Category E and E' fatigue design curves.

Therefore, the fatigue strength of axially-loaded, snug-tight anchor bolts is conservatively rounded.
down to the nearest AASHTO fatigue desi~n curve, i.e. Category E'. Note that this conclusion

is only applicable in the regime of finite life (i.e. less than two million cycles).
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The database of fatigue test results generated by Frank [24] and Dusel et al. [16] for

double-nutted anchor bolts tightened to one-third-of-a-tum beyond snug and subjected to axial

tension is depicted in Figure 6.2. Again, the data shown in Figure 6.2 include only those tests

conducted at maximum stresses corresponding to greater than 60 percent of the minimum specified

yield strength of the material. The results of a statistical analysis of the database indicates that

the lower-bound falls between the AASHTO Category 0 and E fatigue design curves. Therefore,

the fatigue strength of axially-loaded, fully-tightened anchor bolts is conservatively approximated

by the AASHTO Category E fatigue design curve in the regime of finite life (i.e. less than two

million cycles).

6.2.2 Review of Existing Design Specifications

The following summarizes the provisions contained in three design specifications (i.e.

AISC LRFD [5], BS7608 [9], and Eurocode 3 [18]) known to have provisions for the design of

bolts for fatigue. It should be noted that none of the above design specifications specifically

addresses the design of anchor bolts for fatigue. It is useful, however, to compare the provisions

contained in these specifications to the available test data related to the fatigue strength of anchor

bolts.

In the AISC LRFD Specifications [5], bolted joints loaded in direct tension are evaluated

in terms of the maximum unfactored tensile load attributed to each bolt, including any prying

force. Provisions for the calculation of prying loads are provided in Part 11 of the LRFD Manual.

The AISC LRFD procedure for the design of bolts for fatigue is identical to the AISC ASD

procedure and is based upon a specification developed by the Research Council on Structural

Connections (RSCS) [37]. Typically, the AISC provisions are applied to hanger-type or bolted

flange connections where the bolts are tensioned against the plies.
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The AISC LRFD Specifications for the design of bolts for fatigue are based upon the

maximum applied load rather than the applied stress range because the fraction of the externally

applied stress range to which fully-tightened, axially-loaded bolts are subjected is highly variable

and very difficult to estimate analytically [30]. In the AISC Specifications, the fatigue strength

of high strength bolts is given in terms of the nominal unthreaded area of the bolt. The allowable

total service load in fatigue for more than 500,000 cycles (i.e. infinite life) is 25 percent of the

product of the nominal area of the bolt and the ultimate tensile strength.

In a majority of design specifications, the design of bolts for fatigue is typically based

upon the tensile stress area of the bolt. The tensile stress area is defined as:

A = ~(d _ 0.9743)2
T 4 n

(6.1)

where AT is the tensile stress area (in2
), d is the nominal diameter of the unthreaded portion of

the bolt (in), and n is the number of thread per inch. In order to convert the tensile stress area

to metric units (mm2
), the tensile stress area computed using the above equation should be

multiplied by 645. Generally, the tensile stress area is approximately 75 percent of the nominal

area of the bolt. Thus, for the purposes of comparison to other specifications, the allowable

service stress for greater than 500,000 cycles permitted in the AISC Specifications is actually

about 0.33 times the ultimate tensile strength of the bolt.

In BS7608 [9] a slightly different approach is used for the design of axially-loaded, fully-

tightened bolts for fatigue. As in the AISC provisions, the problem of calculating the ~ctual stress

range in bolts in fully-tightened connections is deemed intractable. In order to circumvent this

problem, BS7608 assumes that the stress range acting on the tensile stress area of the bolt is 20
,

percent of the total applied load, regardless of the magnitude of the actual fluctuating portion of

the load. This assumption represents a conservative estimation of the actual stress range to which
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fully-tightened bolts are subjected under fatigue loading in a variety of connections. The S-N

fatigue design curve is given as a proportion of the tensile strength of the bolt, so that for high-

strength bolts with a tensile strength of 785 MPa, the resulting S-N curve falls between the

AASHTO Category E and E' design curves for less than 2 million cycles. In BS7608, the tensile

strength may not be taken as greater than 785 MPa even when higher strength bolts are used. The

CAFL for bolts is given as 6 percent of the tensile strength, with a slight reduction for bolts larger

than 25 mm in diameter.

For example, for fully-tightened AASHTO Grade 105 anchor bolts with a tensile strength

equal to 862 MPa, the tensile strength would be taken as 785 MPa under the BS7608 provisions,

and the S-N design curve for less than 2 million cycles would fall between the AASHTO Category

E and E' design curves. For greater than 2 million cycles, the CAFL would be taken as 6 percent

of the allowable tensile strength (785 MPa), or 47 MPa (which is very close to the CAFL for the

AASHTO Category D fatigue design curve). For fully-tightened Grade 55 anchor bolts with a

tensile strength equal to 517 MPa, the S-N design curve for less than 2 million cycles would fall

below the AASHTO Category E' design curve. For greater than 2 million cycles, the CAFL

would be taken as 6 percent of the tensile strength (517 MPa), or 31 MPa (which is very close

to the CAFL for the AASHTO Category E fatigue design curve).

If the assumed stress range of 20 percent of the peak load is applied to the AISC

provisions, the AISC provisions would imply a CAFL of 20 percent of 0.33 times the ultimate

tensile strength (for greater than 500,000 cycles). This is equivalent to 6.6 percent of the tensile

strength. Given this assumed stress range, the provisions of the AISC and BS7608 Sp~cifications

for the design of bolts for infinite life are approximately in agreement.

In the Eurocode 3 [18], the design S-N curve for axially-loaded bolts is specified to be

approximately equivalent to the AASHTO Category E' fatigue design. Furthermore, the desi¥n
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S-N curve is independent of the tensile strength of the bolt. The Eurocode S-N curve for bolts

is approximately equivalent to the BS7608 S-N curve (and therefore the AISC provisions) for

high-strength bolts with yield strengths greater than 785 MPa. AISC and BS7608 would be more

conservative than the Eurocode 3 for lower strength bolts. The CAFL in the Eurocode 3 is 23

MPa for.all types of bolts, which is significantly more conservative than the CAFL of 47 MPa

specified in the BS7608 provisions or the CAFL of 52 MPa implied by the AISC provisions.

The fatigue strength in the Eurocode 3 Specifications is based upon the actual stress range

acting on the tensile stress area of the bolt. For snug-tight bolts, this calculation is straight­

forward (i.e. the stress range within the bolt is equal to the applied load range divided by the

tensile stress area of the bolt). For fully-tightened bolts, however, calculation of the actual stress

range acting on the tensile stress area is uncertain, and the Eurocode 3 Specifications do not

suggest how such calculations are to be performed. However, assuming such a calculation can

be performed, the provisions of Eurocode 3 permit a slightly improved fatigue strength for fully­

tightened bolts due to the fact that the reduced stress range acting within the fully-tightened

connection would be compared to the S-N fatigue design curve.

Generally, the provisions contained in the above design specifications are consistent with

the results of previous research programs [16, 24] which have been performed to determine the

fatigue strength of anchor bolts in the regime of finite life. As was shown in Figures 6.1 and 6.2,

the lower-bound fatigue strengths exhibited by snug- and fully-tightened anchor bolts in the

regime of finite life are consistent with the AASHTO Category E' and Category E design curves,

respectively. These design S-N curves are generally in agreement with the provisions of the AISC

LRFD, BS7608, and Eurocode 3 Specifications for the design of bolts for finite life.

There does, however, appear to be disagreement with respect to the magnitudes of the

constant amplitude fatigue limits recommended by the three Specifications. Within each of the
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design Specifications, the magnitude of the CAFL appears to be arbitrarily set without regard to

referenced test data. As a result, significan! uncertainty exists with respect to the design of bolts

for fatigue in the regime of infinite life.

6.3 DESCRIPTION OF EXPERIMENTS

6.3.1 Test Specimens

A total of 47 specimens were included in the fatigue test program. Table 6.1 summarizes

the details of the four types of specimens which were tested. As is shown, the test specimens

consisted of 38 mm diameter AASHTO Grade 55 and AASHTO Grade 105 anchor bolts with a

6UNC thread series. Selection of the diameter and thread series to be tested was based upon a

review of state department of transportation standard drawings of cantilevered support structures.

Thirty-eight millimeter diameter anchor bolts with a 6UNC thread series were identified as being

typical for a majority of cantilevered support structure installations. As is shown in Table 6.1,

approximately one-half of the specimens within each material grade were obtained with cut

threads. The remaining specimens were obtained with rolled threads.

The basic specimen geometry is depicted in Figure 6.3. As is shown, the specimens were

914 mm long with a 203 mm long threaded region at each end and were supplied with four

washers and four Grade 2H heavy hex nuts. All of the specimens, nuts, and washers were

obtained from two independent commercial vendors in order to simulate the thread quality of

anchor bolts .used in actual construction and to minimize any bias in the test results due to a

specific manufacturing process. Furthermore, all of the specimens, nuts, and washers were

obtained galvanized in order to simulate the condition of anchor bolts used in typical cantilevered

support structure installations. The nuts were re-tapped by the supplier following galvanizing, as

is typical.
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6.3.2 Experimental Set-Up and Procedures

A schematic of the experimental set-up used for the concentrically-loaded tests is depicted

III Figure 6.4. As is shown, test fixtures were designed to transfer load directly from a

servohydraulic actuator directly to the exterior nuts on each end of the specimen through bearing

plates measuring 140 mm x 146 mm x 38 rom thick. Figure 6.5 shows a photograph of a

complete test set-up.

As is indicated in Figure 6.6, the effects of misalignment were introduced by fabricating

holes in the bearing plates which were offset from the longitudinal axis of the servohydraulic

actuator. The amount of offset was set so as to subject the misaligned specimens to a 1:40

vertical misalignment, thereby introducing stresses caused by axial tension and non-uniform

bending along the longitudinal axis of the specimens.

Selection of the amount of misalignment to which the anchor bolts would be subjected

was based upon a review of current state department of transportation specifications for anchor

bolt installation which indicated 1:40 as a maximum amount of anchor bolt misalignment

permitted for cantilevered support structure installations [12]. In addition, bevelled washers were

used at each end of the misaligned test specimens to minimize any localized bending effects

resulting from non-uniform bearing of the nuts against the bearing plate. Bevelled washers are

typically used in cantilevered support structures in which the anchor bolts are installed at

misalignments less than 1:40 [12]. Generally, state department of transportation require that

anchor bolts installed at misalignments greater than 1:40 be rejected for use in cantilevered

support structure foundations. As a result, misalignments greater than 1:40 were not considered

within the scope of the test program.

Each of the specimens were snug-tightened against the bearing plates using a standard

torque wrench without the aid of additional lubrication. For the purposes of this research
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program, snug-tight was defined as tightening of the nuts to a torque of 271 N-m. A constant

torque value was used to define snug-tight to ensure a reasonable level of consistency between

individual tests and to permit a direct comparison with the results obtained by Frank [24]. It

should be noted that defining snug-tight by a torque of 271 N-m was arbitrary and does not

correspond to any specific level of bolt pretension. However, the definition of snug-tight adopted

for the purposes of this research program resulted in levels of bolt pretension below those

achieved using the generally accepted definitions of snug-tight (which are discussed in the

following paragraphs). As a result, the data obtained from these tests are slightly conservative.

For those tests conducted at greater than snug-tight, tightening of the nuts was achieved with the

use of a hydraulic wrench. Beeswax was applied to t~e threaded and bearing surfaces of these

. specimens to reduce the level of torque required to obtain the desired level of nut tightness.

. Several specifications currently contain provisions which specify minimum requirements

for obtaining the snug-tight condition. The AISC LRFD Specifications [5] define snug-tight as

the "tightness that exists when all of the plies in a joint are in firm contact." This requirement

is generally not applicable to anchor bolt installations because the nuts in a double-nut connection

are tightened against a single base-plate (i.e. multiple plies do not exist in anchor bolt

installations). AASHTO recently issued supplemental specifications for AASHTO M164 (ASTM

A325) [39] which define snug-tight as 10 percent of the specified proof load. The proof load is

determined from tensile tests and is defined as the "applied load fasteners must resist without

evidence of permanent deformation." The level of torque required to achieve the minimum

specified bolt tension corresponding to snug-tight is determined from calibrations in a Skidmore­

Wilhelm Calibrator. For galvanized bolts, all tests in the AASHTO supplemental specifications

are to be performed following galvanizing. The application of these provisions to the installation

of anchor bolts, however, is uncertain. For example, double-nutted anchor bolts are subject to
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pretensioning in the short length of bolt between the double nuts. Such a 'short length of bolt

cannot be calibrated in a Skidmore-Wilhelm Calibrator. As a result, the level of torque required

to achieve a bolt pretension of 10 percent of the specified proof load would be unknown.

~

It is recommended that, in actual anchor bolt installations, snug-tight be defined by the

level of torque corresponding to the full-strength of a man using an ordinary spud wrench. This

represents the definition previously used by AISC to define snug-tight. Based upon the results

of the research reported herein, defining snug-tight as the full-strength of a man will always result

in a level of torque greater than the definition of snug-tight adopted for this research program (i.e.

271 N-m). As a result, anchor bolts tightened in the field will possess a greater level of

pretension and will exhibit a slightly higher fatigue strength than specimens tested in this research

program.

All specimens were tested in a double-nut configuration, i.e. one nut on each side of the

bearing plate, under constant-amplitude, tension-tension loading. A computer-controlled, 245 kN

capacity servohydraulic actuator was used to subject the test specimens to sinusoidal loading at

frequencies between 10 and 25 Hz. The variable controlled during each of the tests was the stress

range on the tensile stress area of the bolt. Except where noted, the maximum stress on the tensile

stress area for all tests on the Grade 55 anchor bolts was held constant at approximately 60

percent of the minimum specified yield strength of the material. Due to limitations on the

capacity of the testing machine used in this experimental program, the maximum stress on the

tensile stress area for the Grade 105 bolts was held constant at either 32 percent or 38 percent of

the minimum specified yield strength of the material.

The dynamic load range induced in the test specimens during testing was monitored by

a load cell mounted between one of test fixtures and the crosshead of the test machine. Prior to

the start of the fatigue test program, however, several concentrically-loaded test specimens were
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instrumented with a series of strain gages and statically tested to ensure adequate calibration of

the load cell and to evaluate the magnitude of any bending induced in the specimens due to

seating. The specimens were instrumented with a series of four strain gages mounted at 90 degree

intervals on the unthreaded portion of the bolt midway between the bearing plates. The results

of the static tests indicated good correlation between the bolt load indicated by the load cell and

the bolt load computed from the average of the four strain gages readings. Furthermore, bending

stresses due to seating of the specimens were found to be negligible. As a result, the load cell

was considered an adequate means by which to monitor the dynamic load range induced in the

specimens during testing.

Each specimen was tested under load control with failure defined by the propagation of

a crack through the entire specimen cross-section. The experimental set-up and specimen

geometry permitted two data points to be obtained from each specimen (i.e one data point from

each of the two threaded regions). As a result, all specimens which failed at one end with

sufficient threads remaining were retested until failure at the opposite end was obtained. This

procedure effectively limited the extended period of time required to conduct fatigue testing in the

regime of infinite life. Inclusion of multiple data from each of the specimens was found not to

significantly influence the results of statistical analyses of the data. The lower-bound

corresponding to the first observed failure was found to be identical to the lower-bound when

failures at both ends of the specimens were included in the statistical analysis.

6.4 RESULTS OF EXPERIMENTS

A tabular summary of the fatigue test results is provided in Tables 6.2 through 6.6. Each

table summarizes the specimen series and test number, test condition (snug-tight or number of

turns beyond snug), stress range, maximum stress, number of cycles, test result (failure or runout),
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and failure location if a failure was obtained. All of the stress parameters are summarized in

terms of the tensile stress area. The nomenclature defining the failure location is discussed in

Section 6.4.1. Specimens with two numbers of cycles indicated were tested until failure at each

of the threaded regions was obtained. Specimens marked with an asterisk were tested to runout

at a lower stress range and then retested at the stress range indicated. The failure surfaces of each

of these specimens were inspected following failure to ensure that significant fatigue damage did

not occur at the lower stress range (this was the case for all of the specimens retested at a higher

stress range). Any undetectable fatigue damage which may have occurred at the lower stress

range was not considered in the calculation of the stress range (i.e. an effective stress range was

not computed). Neglecting any potential fatigue damage at the lower stress range would result

in slightly more conservative estimates of the lower-bound fatigue strength. Sections 6.4.2

through 6.4.7 summarize the fatigue test results in terms of S-N curves.

6.4.1 Fatigue Crack Initiation and Propagation

Due to the inherent geometrical configuration of bolted connections, visual inspection for

fatigue cracking was not possible during the course of the testing program. However, post-test

inspections of the fatigue specimens indicated that failure was caused by the propagation of a

single crack which formed in one of two locations, as is indicated in Figure 6.7. The majority

of specimen failures occurred at the first fully-engaged thread from the loaded face of the exterior

nut of the double-nutted connection, identified as failure location 1 in Figure 6.7. In addition,

several specimens failed in the threaded region outside of the double-nutted connection, identified

as failure location 2 in Figure 6.7. All but one of the specimens which failed outside of the

connection were tightened to greater than snug-tight.
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Inspection of the failure surfaces indicated that fatigue cracks initiated at multiple points

at the thread root that coalesced into a single primary crack which resulted in failure. This

prolonged "initiation" or coalescence period is the primary source of the effect of yield strength

on anchor bolt fatigue strength. This is in contrast to weldments which have more significant

microdefects and therefore possess insignificant initiation lives.

Generally, the primary crack propagated along a straight-line front towards the center of

the cross-section of the specimen. In all cases, the primary crack propagated through

approximately 65% to 75% of the specimen cross-section prior to fracture. Figure 6.8 shows

photographs of typical fatigue crack surfaces.

6.4.2 Fatigue Strength of Snug-Tight Specimens

Figure 6.9 summarizes the fatigue test results for the concentrically-loaded, snug-tight

specimens in the form of an S-N curve. The data includes tests conducted on both Grade 55 and

Grade 105 specimens with roIied and cut threads. As is indicated in Figure 6.9, the lower-bound

to the test data is approximately equal to the AASHTO Category E fatigue design curve.

Furthermore, inspection of the data in the regime of infinite life indicates no failures were

obtained below a stress range of 62 MPa. The next lower CAFL would be the fatigue limit

corresponding to the AASHTO Category 0 fatigue design curve (48 MPa). Thus, the constant

amplitude fatigue limit of axially-loaded, snug-tight anchor bolts is conservatively approximated

by the fatigue limit corresponding to the AASHTO Category 0 fatigue design curve (48 MPa).

Figure 6.10 compares the results of the present research program with the results obtained

by previous researchers [16, 24]. The current data falls within the range of scatter exhibited by

the previous data. Statistical analysis of the entire database indicates that the lower~bound to the
'"'

test data falls between the AASHTO Category E and E' fatigue design curves. As a result, the
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lower-bound S-N design curve representative of the fatigue strength of axially-loaded, snug-tight

anchor bolts is a unique curve given by the AASHTO Category E' fatigue design curve with a

constant amplitude fatigue limit corresponding to the AASHTO Category 0 fatigue design curve

(48 MPa).

Comparison of the lower-bound estimates of the anchor bolt fatigue test data with the

recom'mendations of other design specifications (as was discussed in Section 6.2.2) indicates that

the recommended fatigue design strengths for anchor bolts and the provisions contained in these

other design specifications are generally consistent for Grade 105 anchor bolts but slightly liberal

with respect to the design of Grade 55 anchor bolts. This can generally be expected, since the

design Specifications discussed in Section 6.2.2 are oriented towards the design of high-strength

structural bolts for fatigue.

6.4.3 Effects of Maximum Stress

Figures 6.11 through 6.14 summarize the results of tests conducted to determine the

effects of maximum stress on the fatigue strength of anchor bolts. The data in these figures are

from tests conducted on Grade 55 anchor bolts with both rolled and cut threads at stress ranges

varying from 138 MPa to 69 MPa. At each stress range, longer fatigue lives were obtained for

tests conducted at lower magnitudes of maximum stress. This behavior is typical for non-welded

structural components, which have small residual stresses, and has been observed in fatigue testing

of other types of non-welded steels [7].

The maximum stress effect can be attributed to the fact that fatigue life in non-welded

structural steels is strongly dependent upon the initiation of fatigue cracks. Fatigue crack initiation

(and thus the fatigue life corresponding to the initiation period) is strongly dependent upon the

magnitude of the maximum stress. At lower values of maximum stress, the initiation life
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increases, resulting in a total fatigue life which is composed of the number of cycles required to

initiate a crack and propagate the crack to failure. The same effect is not observed in welded

details for two reasons. First, welded details are subject to a pre-existing tensile stress (resulting

from the residual stress caused by welding), the magnitude of which is on the order of the yield

strength of the material. Second, it is generally assumed that weldments possess crack-like

defects. As a result, the fatigue life of welded details is controlled by the number of cycles

required to propagate a pre-existing crack to failure (i.e. the fatigue life of weldments is not

composed of a significant initiation life).

The effects of maximum stress can be conveniently accounted for in the design of anchor

bolts for fatigue by basing the design S-N curve on tests conducted at worst-case (highest)

maximum stress levels. Thus, maximum stress need not be explicitly considered in the design

process. Anchor bolts which are subjected to a lower value of maximum stress in service will

exhibit fatigue lives greater than that predicted by the design S-N curve.

6.4.4 Effects of Thread Forming Method

Figures 6.15 and 6.16 summarize the effects of thread forming method (cut vs rolled) for

the Grade 55 and Grade 105 specimens, respectively. As is shown in Figure 6.15, thread forming

did not significantly influence the fatigue strength exhibited by the Grade 55 specimens.

Thread forming, however, did influence the fatigue strength exhibited by the Grade 105

specimens. As is shown in Figure 6.16, Grade 105 specimens with rolled threads consistently

exhibited longer fatigue lives at each of the stress ranges considered. The difference in fatigue

strengths between the cut and rolled specimens may be attributed to two factors. First, anchor

bolts fabricated with cut threads generally possess a smaller thread root radius than anchor bolts

fabricated with rolled threads. The stress concentration associated with the cut thread, therefore,
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is more severe. As a result, anchor bolts fabricated with rolled threads would be expected to

exhibit a slightly greater fatigue strength than anchor bolts fabricated with cut threads. Second,

anchor bolts fabricated with rolled threads possess compressive residual stresses at the thread root

resulting from the rolling process. The compressive residual stresses tend to shield the critical

thread root area from part of the applied tensile stress range, resulting in an increase in fatigue

strength in comparison to anchor bolts fabricated with cut threads.

The effects of thread forming method are observed in the Grade 105 specimens and not

in the Grade 55 specimens for two reasons. First, the magnitude of the compressive residual

stresses resulting from the rolling process are proportional to the material yield strength. For the

Grade 105 specimens (with a higher yield strength), the compressive residual stresses are larger

in magnitude than the magnitude of the compressive residual stresses in the Grade 55 specimens

(which have a lower yield strength). Therefore, for a given stress range, the magnitude of the

residual stresses in the Grade 105 specimens provide a greater benefit with respect to fatigue

strength (i.e. the greater compressive residual stresses in the Grade 105 specimens negate a greater

portion of the applied tensile 'stress range than in the Grade 55 specimens).

Second, the effects of thread forming method are also more apparent in the Grade 105

specimens because limitations on the capacity of the hydraulic actuator used in this test program

prevented the Grade 105 specimens from being tested at a maximum stress greater than

approximately 38 percent of .the minimum specified yield strength of the material. At lower

values of maximum stress, the effect of stress concentration on fatigue strength is more apparent

(i.e. the effects of stress concentration decrease with increasing maximum stress). At higher

values of maximum stress, fatigue damage occurs regardless of the severity of the stress

concentr~tion. As a result, no significant variations in fatigue strength were observed in the Grade

55 specimens (which were tested at 60 percent of the material yield strength) with cut and rolled
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tests. In addition, the relatively low maximum stress to which the Grade 105 specimens were

subjected was not large enough to fully negate the beneficial effects of the compressive residual

stresses at the thread root. On the other hand, the Grade 55 specimens, which were tested at a

maximum stress corresponding to approximately 60 percent of the minimum specified yield

strength of the material, did not exhibit a significant variation in fatigue strength between the cut

and rolled specimens (as is shown in Figure 6.15). It can be reasonably theorized that the

beneficial effects of the compressive residual stress induced by the rolling process were effectively

negated by the high applied tensile load.

In other words, when the magnitude of the minimum tensile stress exceeds the maximum

value of the compressive residual stress at the thread root, the applied stress range will be fully

tensile. Under these conditions, the beneficial effects of the compressive residual stresses at the

root of a rolled thread would not be apparent. As a result, the Grade 105 specimens with rolled

threads exhibited slightly longer fatigue lives when compared to the Grade 105 specimens with

cut threads. Based upon the results of these tests, it is not clear if this benefit would still be

obtained if the Grade 105 bolts had been tested at a maximum stress corresponding to 60 percent

of the yield strength of the material.

The results of tests conducted by Frank [24] suggest that the higher fatigue strengths

exhibited by the Grade 105 would not have been observed at higher levels of maximum stress.

As may be recalled from the discussion in Section 6.2.1, the maximum stress in each of the tests

conducted by Frank was held constant at 75 percent of the minimum specified yield strength of

the material. Frank observed from the results of these tests that the effects of thread forming

method were insignificant. Therefore, it appears that the effects of thread forming were minimized

in Frank's experiments due to the application of a high maximum tensile stress.
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6.4.5 Effects of Yield Strength

Figures 6.17 and 6.18 summarize the effects of yield strength for the specimens with cut

and rolled threads, respectively. The data in each of these figures were obtained from tests

conducted at approximately equivalent absolute magnitudes of maximum stress. Based on the data

in Figures 6.17 and 6.18, yield strength does not appear to significantly influence the fatigue

strength of anchor bolts fabricated with either rolled or cut threads under these conditions. This

conclusion is consistent with the results of Frank [24] and Dusel [16].

As was previously discussed, however, limitations on the capacity of the actuator

prevented the Grade 55 and Grade 105 specimens from being tested at magnitudes of maximum

stress which were similar in terms of percentage of material yield strength. As was discussed in

Section 6.4.3, the fatigue strength of anchor bolts is governed, in part, by the magnitude of the

maximum stress, i.e. larger values of maximum stress decreases the apparent fatigue strength of

anchor bolts. Based upon the results presented in Section 6.4.3, it can be reasonably concluded

that, under levels of maximum stress identical with respect to the percentage of material yield

strength, Grade 55 anchor bolts would exhibit longer fatigue lives than Grade 105 anchor bolts.

This apparent increase in fatigue strength would occur because, at values of maximum stress

similar with respect to the percentage of material yield, Grade 55 anchor bolts would be subjected

to an absolute maximum stress lower than the maximum stress in the Grade 105 anchor bolts.

As was discussed in the Section 6.1, the approach adopted with respect to the design of

anchor bolts for fatigue is to represent the lower-bound behavior of all types of anchor bolts and

loading conditions. In this way, the effects of secondary variables such as maximum stress, yield

strength, and thread forming method need not be explicitly considered in the design process. It

is possible that the worst-case maximum load effects were not considered in the t~sts of the Grade

105 specimens. The results of previous research, however, suggest that higher strength bolts do
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not exhibit significant degradation in fatigue strength at higher magnitudes of maximum stress.

For example, Frank [24] tested high-strength bolts at maximum stress levels equal to 75 percent

of the minimum specified yield strength of the material. The results of these tests did not indicate

that there was a significant decrease in fatigue strength in comparison to the lower strength anchor

bolts tested at the same percentage of yield.

In an optimally designed structure, proportioned such that the maximum anchor bolt

stresses associated with the extreme wind-loading event (e.g. 50-year wind) correspond to the

allowable static design stress, Grade 55 anchor bolts would be subjected to a smaller maximum

stresses than Grade 105 anchor bolts (in terms of absolute values of maximum stress). Based

upon the previous discussion, for a given fatigue stress range, the Grade 55 anchor bolts would

be expected to exhibit a longer fatigue life than the Grade 105 anchor bolts. Therefore, there is

a slightly greater margin of safety or reliability level for the lower strength anchor bolts. It is also

likely that the higher strength bolts would be used at higher stress ranges, which makes Grade 105

anchor bolts even more "fatigue critical."

6.4.6 Effects of Misalignment

Figure 6.19 shows data from tests conducted on the misaligned test specimens under snug­

tight conditions. The data include test results from Grade 55 and Grade 105 specimens with rolled

and cut threads. Figure 6.19 also includes a comparison of the misaligned test results with the

test data obtained from the concentrically-loaded test specimens. All of the data indicated in

Figure 6.19 were obtained under snug-tight conditions.

The data are presented in terms of the nominal axial stress range acting on the tensile

stress area. The bending stress range resulting from the misaligned configuration is not included ..

in the stress calculation. The bending is "built-into" the S-N curve and is reflected by the lower
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apparent fatigue strength relative to the concentrically-loaded test specimens. However, it appears

that, even with the inclusion of the misaligned test data, the AASHTO Category E' design curve

still represents a reasonable lower-bound to both the misaligned and concentric test data.

Comparison of the misaligned fatigue test results with the results of a full-scale

cantilevered support structure foundation fatigue· test suggest that the level of end-restraint

provided by the test fixture used in this test program was similar to the level of end restraint

provided by an actual base-plate. As a result, the bending stress ranges to which the misaligned

test specimens were subjected are expected to be similar to the bending stress ranges to which

misaligned anchor bolts are subjected in an actual cantilevered support structure foundation.

As is shown in Figure 6.19, no failures were obtained in the misaligned specimens below

a stress range of 55 MPa. Therefore, the constant amplitude fatigue limit corresponding to the

AASHTO Category D design curve (48 MPa) can also be used to design anchor bolts for infinite

life with misalignments up to 1:40 (provided that bevelled washers are used during installation)

without explicit consideration of the bending stresses created by the misaligned configuration. It

should be noted that, without bevelled washers, misaligned anchor bolts may be subject to

additional localized bending stresses due to non~i.Iniform bearing of the nut against the base-plate.

Under these conditions, the apparent constant amplitude fatigue limit may be lower than the

AASHTO Category D fatigue limit.

6.4.7 Effects of Bolt Preload

Figure 6.20 depicts the fatigue lives exhibited by anchor bolts subjected to varying levels

of bolt pretension (one-third-of-a-turn beyond snug, one-sixth-of-a-turn beyond snug, and one-

twelfth-of-a-turn beyond snug) at a 138 MPa nominal stress range. No attempt was made to

calculate the actual stress range between the double-nuts. Specimens tested at one-third and one-
,
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I Tensile Property· I Grade 55 I Grade 105 I
Tensile Strength (MPa) 517 - 655 862 - 1034

Yield Strength··, min (MPa) 380 724

Elongation in 50 mm, min (%) 21 15

Reduction in Area, min (%) 30 45

·AASHTO M314-90 (ASTM F1554-94)
··0.2% Offset

(a)

Minimum Energy, (J)

Material
Test Temperature

Ave. 3 Tests One Test (deg. C)

Grades 55 & 105 20 16 5'

Grade 105 20 16 -29"

·ASTM F1554-94 S4
"ASTM F1554-94 S5

(b)

Table 6.7 - ASTM F1554-94"(a) Tensile and (b) Charpy Impact Requirements for Anchor
Bolts.

182



Grade 55" Grade 105··

Tensile Property H55 F55 H105 F105

Tensile Strength (MPa) 580 596 964 1048

Yield Strength·, min (MPa) 421 420 823 930

Elongation in 50 mm, min (%) 32.8 30.9 19.3 18.4

Reduction in Area, min (%) 67.9 62.2 52.0 56.1

·0.2% Offset
··Average of Three Tests

(a)

Impact Energy, (J)

Material
Test Temperature

Ave. 3 Tests Lowest Test (deg. C)

H55 44 37 5

HI05 52 47 -29

F55 71 65 5

F105 52 38 -29

(b)

Table 6.8 - (a) Tensile and (b) Charpy Impact Test Results.
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Figure 6.5 . Photograph Showing Test Set-Up for Concentrically-Loaded Tests.
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Figure 6.5 - Photograph Showing Test Set-Up for Concentrically-Loaded Tests.
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Figure 6.7 - Schematic Defining Failure Locations.
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Figure 6.13 - S-N Curve Showing Effects of Maximum Stress for Grade 55 Specimens with Cut
Threads at 97 MPa and 83 MPa Stress Ranges.
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Chapter Seven

SUMMARY AND CONCLUSIONS

7.1 SUMMARY OF THE RESEARCH PROGRAM

- -The research reported herein forms the preliminary basis for the fatigue design of

cantilevered support structures for galloping and vortex-induced vibrations. Aerodynamic and

aeroelastic wind-tunnel tests were performed at the Massachusetts Institute of Technology to

characterize the dynamic response of cantilevered sign and signal support structures to the

galloping and vortex shedding phenomena. The aeroelastic wind-tunnel tests were simulated using

dynamic finite-element analyses to determine the magnitude of the across-wind loads associated

with galloping and vortex shedding. The results of the dynamic finite-element analyses were used

to develop or evaluate existing equivalent static load models for galloping and vortex shedding.

Fatigue-sensitive cantilevered support structure connection details were evaluated with respect to

the AASHTO fatigue design guidelines [3]. One particular critical detail that is outside the scope

of the AASHTO bridge specifications is the anchor bolts. The fatigue-test data in the literature

on anchor bolts is insufficient to determine the constant-amplitude fatigue limit (CAFL).

Therefore, fatigue tests were performed to determine the CAFL for snug- and fully-tightened

anchor bolts. Finally, recommendations were developed for the design of cantilevered support

structures for galloping- and vortex-induced fatigue.
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7.2 FINDINGS

7.2.1 Aerodynamic Wind Tunnel Tests

The results of the aerodynamic wind tunnel tests indicate that cantilevered sign and signal

support structures are potentially susceptible to galloping-induced vibrations resulting from the

aerodynamic forces which act on the attachments to these structures. Specifically, the results of

the aerodynamic wind tunnel tests indicate that rigidly-attached signal attachments are significantly

more susceptible to galloping when configured with a backplate. The susceptibility of sign

attachments to galloping was found to be independent of the aspect ratio of the attachment for the

dimensions of the signs considered.

7.2.2 Aeroelastic Wind Tunnel Tests

The aeroelastic wind-tunnel tests revealed that the primary phenomenon involved in the
. \

vibration of cantilevered sign and signal support structures is galloping. Vortex shedding is only

a significant factor when the horizontal mast-arms of cantilevered support structures are configured
""

without attachments (e.g. during installation of the support structures). With regard to galloping,

the results of the aeroelastic tests indicate that:

• Wind-tunnel testing of one-eighth scale models can reproduce the aeroelastic behavior

of cantilevered support structures that were observed vibrating in the field.

• Galloping is highly sensitive to a variety of variables and was not easily repeatable

even under essentially identical conditions in the wind tunnel.
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• Galloping is induced by lift forces which act on the signal attachments and sign

panels. The magnitude of these lift forces are approximately proportional to the area

of the attachments projected on a vertical plane.

• The galloping response increases with wind velocity. As the wind velocity decreases,

the galloping may persist under velocities that are much lower than the onset wind

velocity.

With regards to vortex shedding, the results of the aeroelastic wind tunnel tests indicate that:

• Vortex-shedding vibrations are repeatable and the critical wind velocity associated

with lock-in is well predicted by the Strouhal relation.

• The wind-tunnel tests confirm the observations made by previous researchers [29] that

wind velocities less than 5 rnfs generate pressures which cannot cause significant

vortex-induced response.

•

•

Member diameters typically used for mast-arms are such that the critical wind velocity

for vortex-shedding lock-in is less than 5 m/s. Therefore, most cantilevered sign and

signal support structures are not susceptible to vortex-induced vibrations.

Models with large-diameter mast-arms which were susceptible to vortex shedding

vibration did not vibrate (due to vortex shedding) when the attachments were in place.
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• Cantilevered sign and signal support structures are not susceptible to vortex-induced

vibrations resulting from the shedding of vortices from the attachments to these

structures.

• Cantilevered sign and signal support structures are not susceptible to vortex-induced

vibrations resulting from the shedding of vortices from the vertical support.

7.2.3 Finite-Element Analyses

The results of the fmite-element analyses indicate that:

• The mass and stiffness of the prototype wind tunnel specimens was well represented

by the wind-tunnel model specimens. The scaling of natural frequencies and

displacements was reasonably consistent with the laws of similitude.

• The response of the wind-tunnel model that experienced vortex-induced vibration

corresponds to an equivalent static pressure range of 4200 Pa which is reasonably

consistent with provisions contained in the present AASHTO Standard Specifications

for Structural Supports for Highway Signs, Luminaires, and Traffic Signals [4].

• The response of the wind-tunnel models that experienced galloping corresponds to an

equivalent static pressure range between 840 and 1480 Pa.
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• The response of the full-scale structures which were observed to gallop in the field

corresponds to an equivalent static pressure range between 700 and 1060 Pa which

is consistent with the above wind-tunnel results.

• Based on these results, an equivalent static pressure range equal to IkPa represents

a reasonable estimate of the across-wind pressure range at the onset of galloping in

a wide range of cantilevered sign and signal support structures. Therefore, an

equivalent static pressure range equal to IkPa is recommended for use in design.

• The static pressure range computed from a static analysis is in good agreement with

the equivalent static pressure range computed using the SDOF dynamic magnification

factor. As a result, the equivalent static pressure approach is a reasonable method by

which to design cantilevered support structures for galloping- and vortex-induced

fatigue.

• The forces and displacements computed from a static analysis reasonably replicate the

dynamic response of a structure to galloping and/or vortex shedding. As a result, the

equivalent static pressure approach is a reasonable method by which to design

cantilevered support structures for galloping and vortex shedding.
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7.2.4 Anchor Bolt Fatigue Tests

The results of the anchor bolt fatigue tests indicate that:

• The AASHTO Category E' design curve is a reasonable lower-bound estimate of the

fatigue strength of axially-loaded, snug-tight anchor bolts in the regime of fmite life

(e.g. less than two million cycles).

• The AASHTO Category E design curve is a reasonable lower-bound estimate of the

fatigue strength of axially-loaded, fully-tightened (i.e. tightened to one-third-of-a-turn

beyond snug) anchor bolts in the regime of finite life.

• The constant amplitude fatigue limit corresponding to the AASHTO Category D

design curve (i.e. 48 MPa) is a reasonable lower-bound estimate of the CAFL for

axially-loaded, snug- and fully-tightened anchor bolts in the regime of infinite life.

• The bending stress range resulting from misalignments up to 1:40 need not be

explicitly considered in the stress calculations when designing anchor bolts for infmite

life provided that bevelled washers are utilized in the installation of the bolts. Prying

forces resulting from localized distortion of the base-plate should be minimized in all

anchor bolt installations (i.e. the base-plate should be designed suffici7ntly thick to

resist local;zed distortion).

The above conclusions are based upon fatigue tests conducted under worst-case stress

"""
conditions (i.e. maximum stresses equal to the allowable static design strength). Therefore, the
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effects ofmaximum stress, thread-forming method, and anchor bolt yield strength need not be

explicitly considered in the design of anchor bolts for fatigue. In addition, the following

qualitative observations concerning anchor bolt fatigue strength were made:

• The fatigue strength of anchor bolts is strongly influenced by the magnitude of the

maximum stress. Therefore, anchor bolts which are subject to maximum stress levels

less than the allowable static design strength will exhibit fatigue lives greater than

those predicted by the above design recommendations.

• Under low levels of maximum stress, anchor bolts fabricated with rolled threads

exhibit fatigue strengths slightly greater than anchor bolts fabricated with cut threads.

• At a maximum stress which is at a similar percentage of the yield strength, Grade 55

anchor bolts exhibit fatigue lives slightly greater than Grade 105 anchor bolts. As a

result, it is imperative that Grade 105 anchor bolts be properly proportioned with

respect to the above design recommendations.

7.3 RECOMMENDATIONS FOR DESIGN

7.3.1 Galloping

Cantilevered sign and signal support structures should be designed for galloping-induced

fatigue using an equivalent static pressure range equal to I kPa. This pressure range is applied

" vertically to the projected area of any sign and/or signal attachments mounted to the horizontal

mast-arm. The stress ranges resulting from this applied pressure range must be less than the

constant amplitude fatigue limits for the various fatigue-sensitive details within the structure. The
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constant amplitude fatigue limits corresponding to typical cantilevered support structure connection

details are provided in the appendix to this report. The constant amplitude fatigue limit for anchor

bolts is 48 MPa.

In addition, it is also recommended that the use of attachments known to be particularly

susceptible to galloping be avoided. For example, signal attachments configured with backplates

exhibit a greater susceptibility to galloping than signal attachments configured without backplates".

As a result, the potential for galloping should be minimized by avoiding the use of backplates

whenever possible.

7.3.2 Vortex Shedding

Cantilevered sign and signal support structures should be designed for vortex-induced

fatigue when two criteria are satisfied: (1) sign/signal attachments are not immediately mounted

to the horizontal mast-arm at the time of installation of the support structure and (2) the predicted

critical wind velocity is greater than approximately 5 mls. The following procedure should be

used to determine the equivalent static pressure range to be used in the design:

The critical wind velocity associated with lock-in is calculated using the Strouhal relation:

in D
V =­

cr S
(7.1)

where fn is the natural frequency of the structure corresponding to the first mode of vibration in

the vertical-plane, D is the diameter of the horizontal support, and S is the Strouhal number. For

horizontal supports with circular cross-sections, the Strouhal number is to be taken as 0.18.

The equivalent static pressure range to which the structure is subjected during lock-in is

taken as:
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2
0.0473 Vc,CdCh

2~

(7.2)

where Cd and Ch are the drag and height coefficients, respectively, determined in accordance with

the provisions of the AASHTO Specifications [4], and ~ is the damping ratio. The damping ratio

is to be conservatively estimated as 0.5%.

The equivalent static pressure range is to be applied vertically to the projected area of the

horizontal support. The stress ranges resulting from this applied pressure range must be less than

the constant amplitude fatigue limits for the various fatigue-sensitive details within the structure.

The constant amplitude fatigue limits corresponding to typical cantilevered support structure

connection details are provided in the appendix to this report. The constant amplitude fatigue

limit for anchor bolts is 48 MPa.

7.3.3 Discussion of Design Recommendations

The recommendations outlined in Sections 7.3.1 and 7.3.2 are based upon prevention of

fatigue crack growth (i.e. an infinite-life approach to fatigue design). It is proposed that

cantilevered support structures be proportioned such that the maximum expected stress range

resulting from the application of the equivalent static pressure range associated with either

galloping or vortex shedding is less than the CAFL so that crack propagation will not occur. The

infinite life approach is consistent with the intent of the current AASHTO LRFD Specifications

[4]. Several points, however, are worthy of comment.

The design recommendations are intended to ensure that the stress ranges induced at

critical connection details within a structure due to galloping and/or vortex shedding are less than

"-
the constant amplitude fatigue limits associated with those details. This requirement can be

satisfied in one of two ways. First, the nominal dimensions of the support members can be
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increased such that the nominal stress range at critical fatigue details is reduced below the fatigue

limit. Second, critical connections within the structure can be carefully detailed (e.g. by the

addition of stiffeners) such that the nominal stress range in the vicinity of the details is reduced

below the fatigue limit. One disadvantage to the second method is that a localized reduction in

the nominal stress range at the location of a detail will not significantly influence the global

stiffness of the structure. As a result, a structure can be detailed in a manner which satisfies the

design recommendations yet is still susceptible to large-amplitude, across-wind vibrations due to

either the galloping and/or vortex shedding phenomena. Thus, both the fatigue and deflection

limit states should be considered when proportioning cantilevered support structures for fatigue

and vibration resistance.

In addition, it should be noted that the recommended equivalent static design pressure for

galloping (l kPa) is not intended to be representative of the maximum expected across-wind load

to which a structure may be subjected during galloping-induced vibrations. Thus, the

recommended fatigue design procedure for galloping-induced fatigue is not an infinite life

approach with regards to the strict application of the defInition of infInite life. Rather, the 1 kPa

equivalent static pressure range represents a reasonable estimate of the magnitude of the across­

wind pressure fluctuations to which a cantilevered support structure will be subjected under

typical, steady-state wind conditions. It should be recognized, however, that unusually high

steady-state wind velocities may occasionally occur. Thus, the possibility exists that cantilevered

support structures may be subjected to equivalent across-wind pressures greater than 1 kPa in

service. Generally, however, the number of occurrences of these extreme wind conditions can be

expected to be reasonably small. Thus, for small nu.mbers of occurrences, the perfonnance of the

structure with respect to fatigue will not be expected to be signifIcantly influenced.
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7.4 FUTURE RESEARCH

The discussion presented in Chapter Two showed that galloping-induced oscillations result

when two conditions are satisfied: (1) the structure possess aerodynamic characteristics which are

conducive to the generation of negative aerodynamic damping and (2) the structure is subjected

to a minimum onset wind velocity at which the negative aerodynamic damping exceeds the

positive mechanical damping possessed by the structure. The magnitude of the minimum onset

wind velocity is dependent upon the dynamic characteristics of the structure (i.e. mass, damping,

stiffness).

The research reported herein was oriented towards the determination of the applied

pressure range (1 kPa) to which cantilevered support structures are subjected during galloping­

induced vibrations. The implication in designing with this equivalent static pressure range is that

cantilevered support structures will possess increased levels of mass and stiffness (provided, as

per the discussion in Section 7.3.3, that the nominal member sizes are increased). Thus, the

recommended design procedures for galloping implicitly mitigate the conditions under which

galloping occur by increasing the magnitude of the onset wind velocity. Thus, areas for future

research with respect to galloping include:

• Correlate the mass and stiffness properties of a cantilevered support structure to the

magnitude of the onset wind velocity at which galloping-induced vibrations occur.

• Investigate the use of external damping devices to increase the mechanical damping

possessed by cantilevered support structures. Increases in mechanical d~pmg will

mitigate galloping-induced vibrations.
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• Develop cantilevered support structure sign and signal attachments which possess

aerodynamic characteristics that provide positive aerodynamic damping. This would

effectively eliminate the conditions under which galloping-induced vibrations occur.

• Investigate the effectiveness of external attachments to cantilevered support structures

which provide aerodynamic damping. For example, McDonald et al. [32] found that

mounting a damping plate to the horizontal mast-arm provided sufficient positive

aerodynamic damping to mitigate galloping-induced vibrations.

With respect to vortex shedding:

• Further investigate the susceptibility of sign attachments to vortex shedding.

Specifically, determine whether sign attachments possess three-dimensional

characteristics which interfere with the shedding of vortices.

With respect to the fatigue strength of anchor bolts:

• Quantify potential benefits to using anchor bolts with rolled threads. SpeCifically,

determine the level of maximum stress at which the beneficial effects of the rolled

threads become apparent.

• Conduct additional tests to fully quantify the effects of yield strength on anchor bolt

fatigue strength.
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• Investigate the effects of prying in typical anchor bolt installations. Specifically,

relate the anchor bolt pattern, bolt diameter, and base-plate thickness to the magnitude

of the prying forces.
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7.5 CONCLUSIONS

The following conclusions have been derived from the results of this research:

• The load model for vortex shedding of simple poles in the AASHTO Standard

Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic

Signals [4] is adequate and applicable to the vortex-induced vibrations of cantilevered

support structures configured without attachments.

• The present AASHTO Standard Specifications for Structural Supports for Highway

Signs, Luminaires, and Traffic Signals [4] must be revised to include provisions for

galloping of cantilevered sign and signal support structures. Cantilevered sign and

signal support structures should be designed for galloping-induced loads using an

equivalent static pressure range equal to 1 kPa. This pressure range is to be applied

vertically to the projected area of any sign and/or signal attachments mounted to the

horizontal mast-arm. The stress ranges resulting from this applied pressure range

must be less than the constant amplitude fatigue limits for the various fatigue-sensitive

details within the structure.

• The constant amplitude fatigue limits corresponding to most typical cantilevered

support structure connection details are provided in AASHTO bridge specifications

[3]. The constant amplitude fatigue limit for anchor bolts is 48 MPa.
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Appendix

FATIGUE CATEGORIZATION OF CANTILEVERED SUPPORT

STRUCTURE CONNECTION DETAILS

A.I INTRODUCTION

This appendix contains a categorization of fatigue-sensitive details which are commonly

used in· cantilevered sign, signal, and luminaire support structures. As was described in Chapter

Five, identification of these details was based upon a review of:

• state department of transportation standard drawings of cantilevered sign, signal, and

luminaire support structures,

• literature obtained from cantilevered support structure manufacturers, and

• literature developed by the AASHTO-AGC-ARTBA Task Force No. 13 [1].

The connection details are categorized according to the existing AASHTO [3] and/or AWS

[6] fatigue design categories. As was discussed in Chapter Five, the categorization is based upon

existing knowledge ·of the behavior of welded details under the application of repeated loading.

A description of the format of the categorization is provided in Section. A.2.
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A.2 FORMAT

The general format of this categorization is similar to the format of the categorization of

bridge details found in Reference 3. The categorization is divided into two sections. The first

section consists of a tabular summary (Table A.I) of typical cantilevered support structure fatigue

details and their corresponding AASHTOIAWS fatigue design categories. The AASHTO design

S-N curves are shown in Figure A.15. The constant amplitude fatigue limits corresponding to the

applicable AASHTOIAWS S-N curves are provided in Table A.2. The second section consists

of illustrative drawings of the fatigue details described in the tabular summary. The illustrative

drawings are included to aid in the interpretation of some of the details described in the table.

The drawings are representative of actual cantilevered support structure connection details. As

a result, several drawings contain more than one fatigue detail. Illustrative drawings are not

provided for those details which are considered relatively self-explanatory.

The fatigue categorizations presented in Table A.1 are applicable to both steel and

aluminum structures. Generally, the fatigue design category associated with a particular detail is

the same for both steel and aluminum. The constant amplitude fatigue limits for aluminum,

however, are approximately one-third those of steel (i.e. in the same ratio as the elastic modulii).

The only detail for which a distinction in the fatigue category is made between steel and

aluminum is indicated in the section of the table entitled "Mechanically-Fastened Connections."

217



.., GENERAL SPECIFIC SITUATION STRESS APPLICATION DETAIL EXAMPLE
~

CONDITION CATEGORY0-
i;"

~....
I

'Tj Mechanically 1. Net section of tightened high- B - 1 Fig. A.IPlo. Fastened strength (ASTM A325, A490)
~
(]> Connections bolted connections.
n
Pl

Net section of other mechanically 2 Fig. A.2- 2.(]>
CIq

fastened connections:0
::J.

Steel: DNa
Aluminum: Eo'

::l
0

3. Anchor bolts; stress range based on E....,
n the tensile stress area.Pl

to ::l
...... O.
00 ~ Holes and 4. Net section of holes and cutouts. D Wire outlet holes.<:

(]>
Cutouts Drainage holes."'\

(]>
0. Unrein forced
VJ

handholes.c
'd
'd
0

Groove-Welded Tubes with continuous full- or:4 5. B' Longitudinal seam
VJ Connections partial-penetration groove welds welds.
2 parallel to the direction of then
8 applied stress.
"'\
(]>

n 6. Full-penetration groove-welded D Column or mast-arm 3 Fig. A.30
::l

splices (backing ring not removed) hutt-splices.::l
(]>

~ with welds ground to provide a
o' smooth transition between::l

tj memhers.
(]>

8.
~



GENERAL
CONDITION

SPECIFIC SITUATION STRESS
CATEGORY

APPLICATION DETAIL EXAMPLE

7. Full-penetration groove-welded E Column or mast-arm 3 Fig. A.3
splices (hacking ring not removed) butt-splices.
with weld reinforcement not
removed.

8. Full-penetration groove-welded E' Column-to-base-plate 4
tube-to-transverse plate connections connections. Mast- Fig. A.4

lo-3
(backing ring not removed): arm-to-f1ange-plate

~ connections.
0"-tl>
;l>

N ;... Fillet-Welded 9. Fillet-welded lap splices. E Column or mast-arm S Fig. A2-\0 I

Connections lap splices---n
0
::l..... 10. Axially loaded members with fillet- E Angle-to-gusset 6 Fig. AI,::;.
c welded end connections without connections. Slotted Fig. ASl1l
p.. notches perpendicular to the applied tube-to-gusset'-'

stress. Welds distributed around connections with
the axis of the memher so as to coped holes.
halance weld stresses.

11. Axially loaded memhers with fillet- E' Slotted tube-to-gusset 7 Fig. A.S
welded end connections with connections without
notches perpendicular to the applied coped holes.
stress. Welds distributed around
the axis of the member so as to
balance weld stresses.



GENERAL
CONDITION

SPECIFIC SITUATION STRESS
CATEGORY

APPLICATION DETAIL EXAMPLE

12. Fillet-welded tube-to-transverse E' Column-to-base-plate 8 Fig. A6,
plate connections. or mast-arm-to-flange- Fig. A.7,

plate socket Fig. A8
connections.

13. Fillet-welded connections with one- E' Built-up box mast- 9 Fig. A.8
sided welds normal to the direction arm-to-column

l-3 of the applied stress. connections.~

C"
;-

10
~

10 Fig A.910
,... 14. Fillet-welded mast-arrn-to-column E' Mast-arm-to-column

0 I

pas's-through connections. pass-through,......
n

connections.0g
5'
~ 15. Fillet welded T-, Y-, K-, and L- see a Chord-to-vertical or 11 Fig. AIO(C

-e: tube-to-tuhe connections. chord-to-diagonal truss
connections. Mast-
arm directly welded to
column.

16. Fillet-welded T-, Y-, and K-angle- see b Chord-to-vertical or
to-tuhe connections. chord-to-diagonal truss

connections.
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GENERAL
CONDITION

SPECIFIC SITUAnON STRESS
CATEGORY

APPLICATION

'"

DETAIL EXAMPLE

Attachments 17, Non-load bearing longitudinal Longitudinal 12 Fig. A.II.
attachments with partial- or full- stiffeners. Fig. A.12
penetration groove welds. or fillet Reinforcement at
welds. in which the main member handholes.
is subjected to longitudinal loading:

L:;;51 mm: C

~
51 mm< L~ 12tor 102mm: D

to) L> 12t or 102 mm when E
a'

t:;; 25 mm:rD
;..-

N ;.... 18. Non-load bearing longitudinal Weld terminations at 12 Fig. A.13N..... I

attachments with L > 102 mm in ends of longitudinalr-..
(")
0 which the main member is stiffeners.::l.... subjected to longitudinal loadingS'
c and the weld termination embodies'~

C a transition radius with the weld
termination ground smooth:

R> 51 mm: D
R:;; 51 mm: E

19. Transverse load-bearing fillet- C Longitudinal 13 Fig A.II.
welded longitudinal attachments in stiffeners. Fig. A.13
which the main member is
subjected to minimal axial and/or
flexural loads.



GENERAL
CONDITION

Notes:

SPECIFIC SITUATION

20. Transverse load-bearing
longitudinal attachments with
partial-or full-penetration groove
welds or fillet welds, in which the
main member is subjected to
longitudinal loading and the weld
termination embodies a transition
radius which is ground smooth:

R> 51 mm:
R:::; 51 mm:

Note that transverse load-bearing
longitudinal attachments must first
be checked with respect to the
longitudinal stress range in the
main member per the requirements
for non-load bearing longitudinal
attachments. The attachment must
then be separately checked with
respect to the transverse stress
range in the attachment per the
requirements for transverse load­
bearing longitudinal attachments.

STRESS
CATEGORY

D
E

APPLICATION

Gusset-pI ate-to-chord
attachments.

DETAIL

14

EXAMPLE

Fig. A.14

a) Category ET with respect to stress in branching member. Category E with respect to stress in chord.
b) Category E' with respect to stress in branching member. Category E with respect to stress in chord.



Detail
Constant Amplitude

Category
Fatigue Limit

(MPa)

B 110

B' 83

C 69

D 48

E 31

E' 18

ET
o

8

°AWS [6] fatigue design category for tubular joints.

Table A.2 - Constant Amplitude Fatigue Limits for Steel Structures. For Aluminum Structures,
Reduce the Indicated Fatigue Limits by One-Third.
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Chord~

High Strength Bolts
(Detail!)

----------------,
00:

I

Fillet Weld
(Detail 6)

Gusset~

Dead Load
Vertical ~

Fillet Weld
(Detail 6)

Wind Load
Y-Diagonal

Figure A.1 - Double-Angle Truss Gusset.

Standard Bolt
(Detail 2)

'- Fillet Weld
(DetailS)

Figure A.2 - Fillet-Welded Lap-Splice.
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Backing Ring

Groove Weld Groove Weld

(Detail 3) ~h----~_rlr (Detail 3)

Figure A.3 - Groove-Welded Butt-Splice.

Backing Ring

Figure A.4 - Groove-Welded Tube-to-Transverse Plate Connection.
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Fillet Weld
(Detail 7)

Gusset

Section A-A

Fillet Weld
(Detail 6)

Fillet Weld

Section A-A

Coped Hole

Figure A.5 - Slotted Tube-to-Gusset Connection.
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' ...

Fillet Weld
(Detail 8)

Fillet Weld
(Detail 8)

Figure A.6 - Fillet-Welded Socket Connection.

Fillet Weldr (Detail 8)

Fillet Weld
(Detail 8)

Figure A.7 - Fillet-Welded Socket Connection.
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Side Plate

A

Bottom Plate

Fillet Weld
(Detail 9)

r-------4- ,

Fillet Weld
(Detail 8)

Fillet Weld
(Detail 9)

A

Bottom Plate

Hong' PI",,, J

r- Fillet Weld
/ (Detail 9)

~
'-- FilletWeld

(Detail 9)

Side Plate
..>

Section A-A

Figure A.8 - Fillet-Welded Mast-Ann-to-Column Connection (Built-up Box).
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Fillet Weld
(DetailIO)

Fillet Weld
(Detail 10)

Figure A.9 - Fillet-Welded Tube-to-Tube Column Pass-Through Connection.

Fillet Weld
(Detail 11)

fdO

Figure A.10 - Fillet-Welded Tube-to-Tube Connection.
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L

Fillet Weld

~ (Detail 12)

Fillet Weld
(Detail 13)

Stiffener thickness =t

Figure A.ll - Non-Load Bearing Longitudinal Attachment.
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A
r--.:

L

Reinforcement

•A

Handhole

Reinforcement, thickness =t

Section A-A.

Figure A.12 - Reinforced Handhole.

231



L> 102mm

Fillet Weld
~ (Detai112)

Fillet Weld
(Detai113)

Stiffener thickness =t

Figure A.13 - Non-Load Bearing Longitudinal Attachment.

L

Gusset

D-'

1--,--4- - - - - - - - J--...J~ Fillet Weld

Figure A.14 - Transverse Load-Bearing Longitudinal Attachment.
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1000~--------------------------'

100

ro
0..
~

Q)
0)
C

100co
II:
(J)
(J)
Q)........

Cf)

(J)
~

Q)
0)

------- -- -------------------- ----~ §
____ _ ~, II:

CI (J)---- ----------------------J 10 (J)

----- - ---- -----~--------i ~

______1:;< Cf)

10 +-_'--'---'---'--'-~-+------'_'---'---'-'--'--'-Li-----'-----'--'--'--'-'--'-'-'I-----'-----'------'--'-'-'--'--'-;""------'

104 105 106 107 108

Number of Cycles

Figure A.IS - AASHTO Fatigue Design S-N Curves (Category A Not Shown).
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