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ABSTRACT 

 

The lateral organization of lipids in cell membranes is one of the most vexing 

problems facing chemists, biologists, and biophysicists today.  Among the techniques 

used to probe membrane organization, the Nearest Neighbor Recognition (NNR) method 

developed in our laboratory is unique in its ability to provide quantitative, molecular level 

information about the interactions between lipids in a bilayer.  The NNR method was 

applied to two problems of biological relevance: “lipid sorting,” i.e. the partitioning of 

membrane components into discrete domains, and the origin of cholesterol’s condensing 

effect. 

 Lipid sorting was probed by measuring the free energy of interaction between a 

mimic of the known raft associating peptide motif [(myristoyl)GlyCys(palmitoyl)], as 

well as an analogous peptide bearing an unsaturated acyl chain, and mimics of 1,2-

dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)  and cholesterol.  The NNR results, 

which represent the first direct measurement of lipidated peptide-lipid interaction 

energies, were then used in Monte Carlo simulations to produce a physical picture of the 

partitioning of the peptide between liquid ordered (lo) and liquid disordered (ld) domains 

in a model membrane. The peptide motif [(myristoyl)GlyCys(palmitoyl)] mixed ideally 

across both domains, while the analogous peptide bearing an unsaturated acyl chain was 

found to have a slight preference for ld domains.  The lack of a clear preference for the lo 

phase suggests that hydrophobic interactions between lipidated proteins and membrane 

lipids may be less important than previously hypothesized for lipid sorting, with other 

factors such as hydrogen bonding potentially playing a greater role.  
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 The origin of cholesterol’s condensing effect was revealed via the use of NNR 

measurements to compare the relative condensing power of three sterols: cholesterol, 

coprostanol, and dihydrocholesterol.  Contrary to what is predicted by the widely 

accepted “umbrella model,” coprostanol was found to be a weaker condensing agent than 

the other sterols, despite its larger cross-sectional area.  To explain this observation, we 

propose a “template model” for cholesterol’s condensing effect, wherein the rigid planar 

core acts as a template upon which the acyl chains of phospholipids can extend and 

condense, maximizing hydrophobic contact.    
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Chapter 1 

 

Introduction 

 

1.1 Membrane Structure 

 Cellular membranes consist of a complex mixture of lipids and proteins. 
  

Classically, the arrangement of these components has been described by the “fluid 

mosaic” model.
1  

In this model, the lipids of the membrane form a homogenous fluid 

bilayer.  The lipids diffuse rapidly in the plane of the bilayer, but diffusion from one 

leaflet to the other is slow.  Unlike earlier models which described all of the membrane 

proteins as forming monolayers encasing both sides of the lipid bilayer, the fluid mosaic 

model calls for two distinct classes of membrane proteins: peripheral proteins, which are 

bound to the exterior of the bilayer, and integral proteins, which are inserted directly into 

the phospholipid matrix, and may span one or both leaflets of the bilayer. 

 When it was first proposed in 1972, the fluid mosaic model gained widespread 

acceptance.  In recent years, however, it has been largely replaced by a “lipid raft” 

model.
2,3

  In this view of membrane organization, the lipid bilayer is not a homogenous 

mixture.  Nanoscale domains rich in cholesterol, sphingolipids, other high-melting lipids, 

and certain proteins, float like rafts in a sea of low-melting lipids.  Lipid rafts have been 

suggested to be the site of cellular signaling events, as they would allow proteins to be 

brought into close proximity.
4,5 

 Because lipid rafts in cell membranes are thought to be too small (10-100 nm in 

diameter)
3
 to be resolved optically, evidence for their existence is mostly inferential.  

Detergent resistance experiments, in which fractions of membrane lipids enriched in 

sphingolipids, cholesterol, and certain membrane proteins are shown to resist extraction 
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by cold detergents, provided the initial evidence for the presence of discrete membrane 

domains.
6  

Detergent resistance experiments are frequently used to measure the affinity of 

specific lipids or proteins for raft domains.
7,8  

However, due to the destructive nature of 

such experiments and the low temperatures used (typically 4 
o
C) there are lingering 

questions as to whether detergent resistance correlates to native membrane organization.
9  

 

More recently, advances in microscopy technologies have provided evidence for 

transient, nanoscale domains in cellular membranes.
3,10

   Eggeling and coworkers have 

used Stimulated Emission Depletion Microscopy (STED) in Fluorescence Correlation 

Spectroscopy (FCS) experiments to show that sphingolipids in live cells become 

transiently trapped in domains with an estimated radius of less than 20 nm.
11

 The use of 

STED achieves a smaller focal volume than tradition FCS experiments, permitting the 

resolution of nanometer scale domains.  Similar techniques using Near-Field Scanning 

Optical Microscopy (NSOM) have also been used to detect the entrapment of 

sphingolipids in nanoscale domains in live cells.
12

 Additional studies using advanced 

Förster Resonance Energy Transfer (FRET) and Fluorescence Return After 

Photobleaching (FRAP) techniques have detected clustering of certain lipid anchored 

proteins in cholesterol dependent nanoscale domains in cell membranes.
13,14  

Taken 

together, these findings represent the strongest evidence yet for the existence of raft-like 

domains in live cells. 

While lipid rafts in cells remain a controversial idea, phase separation in model 

membranes is well-studied.  Phase diagrams have been published for model systems 

consisting of binary and ternary mixtures of lipids.
15

  Phase separation on a large enough 

scale to be visualized by fluorescence microscopy has been seen in model membranes 



 

5 

prepared from pure lipids.  Many of these systems exhibit coexisting fluid phases, called 

the liquid disordered (ld) and liquid ordered (lo) phases.  The liquid ordered phase, like 

the putative lipid rafts in live cells, is enriched in cholesterol and characterized by slower 

lateral diffusion of lipids, a thicker membrane, and more fully extended lipid acyl chains 

than the ld phase.  For this reason, the lo phase is considered a useful model of a lipid raft.  

It should be noted, however, that lo domains are distinct from lipid rafts, and raft 

associating proteins have been shown to be excluded from lo domains in certain model 

systems.
16,17

         

A complete understanding of the origin of phase separation in both cells and 

model membranes depends on the precise measurement of lipid-lipid interactions in the 

membrane. Among the numerous techniques used to study lipid interactions in model 

membranes, including differential scanning calorimetry, fluorescence resonance energy 

transfer, isothermal titration calorimetry, and analyses of phase diagrams, the Nearest 

Neighbor Recognition (NNR) method is unique in its ability to quantitatively measure 

interaction energies without relying on comparison to theoretical curves.
15

  Nearest 

Neighbor Recognition experiments are sensitive enough to measure differences in 

interaction energy of tens of calories per mole.  Nearest Neighbor Recognition thus has 

unique potential for gaining insight into the molecular level organization of model 

membranes. 

 

1.2 The Nearest Neighbor Recognition Method 

The NNR method was developed in our laboratory as a tool to measure molecular 

interaction energies between lipids in a phospholipid bilayer.
18

  This method, depicted in 
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Scheme 1, measures the thermodynamic tendency of two lipids to become nearest 

neighbors.  Dimers consisting of two lipid molecules (A and B) connected via a disulfide 

bond are incorporated into a bilayer and allowed to undergo thiolate-disulfide exchange, 

resulting in an equilibrium mixture of the heterodimer (AB) and the two homodimers 

(AA and BB).  This equilibrium is governed by an equilibrium constant, K, given by the 

equation K = [AB]
2
/([AA][BB]).  If lipids A and B mix ideally, this will result is a 

statistical distribution of dimers, reflected by a K value of 4. If hetero-association is 

favored, however, K will be greater than 4, and if homo-association is favored K is less 

than 4.  Furthermore, taking statistical considerations into account, the nearest neighbor 

interaction free energies between A and B are then given by ωAB =  

-½RT ln(K/4).  Values of ωAB  are the primary information sought in NNR experiments, 

and can be used in Monte Carlo simulations to produce a physical picture of membrane 

organization. 

AB

S S

AA

S SS S

+

BB

AA  +  AB  +  BB

Equilibrium Mixture

 
Scheme 1:  Stylized illustration of the NNR method 

The NNR method is unique in its ability to provide quantitative measurements of 

nearest neighbor interaction free energies in model membranes, and is sensitive enough 

to measure energy differences as small as tens of calories per mole.   
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In addition to measurements of ωAB, NNR has been shown to be useful as a 

“chemical sensor” to probe the state of a membrane.
19

  When small amounts (~5 mol%) 

of exchangeable lipid dimers are included in a host membrane of non-exchangeable 

lipids, the resulting K value is very sensitive to changes in the structure of the host 

membrane.  For example, NNR experiments were conducted in host membranes 

consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol 

using the exchangeable lipids shown in Figure 1,  cho (an exchangeable mimic of 

cholesterol) and 16PL (an exchangeable mimic of a 16 carbon phospholipid).   

 
Figure 1: Structures of cholesterol, DPPC, and exchangeable lipids cho and 16PL 

As shown in Figure 2, the observed K values were found to be dependent on the 

cholesterol content of the host membrane.
19

  At sterol concentrations below 14 mol%, 
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when the host membrane is in the liquid disordered phase (ld), a K of ~3.7 was observed, 

while host membranes in the liquid ordered phase (lo) exhibited a K of ~5.5. The 

observed K value can therefore be considered a measure of the compactness of the host 

membrane, with a more condensed membrane having in a larger value K.  This “chemical 

sensor” application of NNR makes it a sensitive tool for detecting changes in the 

organization of a phospholipid membrane.  

 
Figure 2:  Plot of K versus the mol % of total sterol present in bilayers made from 95 mol % of non-

exchangeable lipids (i.e., DPPC plus varying percentages of cholesterol) and 5 mol % of exchangeable 

lipids (2.5 mol % of cho and 2.5 mol % of 16PL)
19

   

 

 

In recent years, NNR has been applied to a variety of biologically relevant 

questions, including the detection of cross-talk in membranes,
20  

the mechanism of action 

of general anesthetics,
21-23 

and the effect of oxidative stress on membrane fluidity.
24

  In 

this thesis, two significant problems of biological relevance, lipid sorting of peripheral 

proteins, and the origin of cholesterol’s condensing effect, have been investigated using 

the NNR method. 
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Chapter 2 

Lipid Sorting 

2.1 Background 

 An estimated 25-40% of eukaryotic proteins are membrane bound.
25

 These 

proteins are divided into two classes: integral proteins, having one or more 

transmembrane domains that penetrate one or both of the membrane leaflets, and 

peripheral proteins, which are otherwise soluble proteins anchored to the membrane by a 

covalently attached hydrophobic moiety.  Among the most common anchors (shown in 

Figure 3) are (i) myristoylation – attachment of a 14 carbon acyl chain to an N-terminal 

glycine residue via an amide bond, (ii) S-acylation (palmitoylation) – a thioester bond 

attaching an acyl chain, typically 16 carbons long, to the sulfur of a cysteine residue, (iii) 

prenylation – a 15 carbon (farnesylation) or 20 carbon (geranylgeranylation) isoprenoid 

unit linked via a thioether bond to a cysteine residue, and (iv) cholesteroylation – a 

cholesterol moiety found on the carboxyl group of a C-terminal glycine residue.
26

 In 

addition, peripheral proteins can be anchored to the membrane by 

glycosylphosphatidylinositol (GPI) anchors,
27

 a conserved oligosaccharide core coupled 

to a phosphoinositide moiety bearing two or three acyl chains (Figure 4).  The 

oligosaccharide core may also be modified with additional branching sugars or 

ethanolamine phosphate groups. Among these lipid anchors, palmitoylation is unique in 

that it is dynamically controlled (i.e. the palmitoyl chain is added and removed 

enzymatically and is not present for the entire lifetime of the protein).
26 
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Figure 3: Structures of several common membrane anchors (figure adapted from ref.  26) 
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Figure 4: Structure of a GPI anchored protein. R=a saturated acyl chain.  The 2-OH position on the inositol 

ring may also be acylated with a palmitoyl chain 

 

Due to the diversity of anchor structures and the enzymatic control of 

palmitoylation, it has been suggested that along with conferring membrane association to 

proteins, these anchors act to direct proteins to specific regions of the cell for proper 

functioning.  Achieving an understanding of the processes by which these lipid anchors 

of membrane proteins serve to separate and direct proteins to their targeted domains (i.e. 

lipid sorting) is a major problem facing biochemists and biophysicists today. 

The earliest evidence for raft association of membrane proteins came from 

detergent resistance experiments
 
(see Section 1.1).

 7,8 
  Detergent resistance has been used 
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extensively as an indicator of raft affinity in both live cells and model membranes for a 

large variety of proteins, including GPI anchored proteins, palmitoylated proteins, and 

cholesterol anchored proteins (for a review see reference 28).  Despite its widespread use, 

detergent resistance has several drawbacks as a method for measuring raft association.  

Because of the destructive nature of detergent resistance experiments, it is not clear to 

what extent the composition of the detergent resistant fraction represents the native lipid 

rafts.
9  

The low temperatures used in detergent resistance experiments also call their 

relevance to physiological membranes into question.
9
  Detergent resistance varies 

depending on the detergent extraction procedure used as well.  Some GPI anchored 

proteins, for example, have been shown to be resistant to extraction by Triton X-100, but 

not  3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS).
29

  Finally, 

detergent resistance experiments are qualitative measures of raft association, no 

quantitative partition coefficient can be obtained.  

A complementary approach to detergent resistance involves the use of 

fluorescence microscopy to visualize domain partitioning in model membranes.  Giant 

unilamellar vesicles (GUVs), typically prepared from a ternary mixture of cholesterol, a 

high-melting lipid such as DPPC or sphingomyelin, and a low melting lipid such as 

POPC, exhibit phase separation into large scale (micrometer sized) lo and ld domains.
30

  

Partitioning of fluorescently labeled proteins can thus be directly visualized in these 

systems.
 
Large scale phase separation can also be induced in model systems through the 

cross-linking of known raft components to form large domains.  Cross-linking of the 

ganglioside GM1 by the pentavalent ligand cholera toxin subunit B (CTB), for example, 

has been used to induce the formation of large lo domains in model membranes that show 
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no phase separation in the absence of CTB.
16,31

  Like detergent resistance, fluorescence 

microscopy has found widespread use as a tool to gauge raft partitioning of many 

proteins, including palmitoylated and farnesylated peripheral protiens,
32,33 

transmembrane 

domains,
34-36 

and GPI anchored proteins.
37   

The composition of simple model systems may be a poor mimic of the rich 

compositional diversity found in cell membranes.  Recently, Giant Plasma Membrane 

Vesicles (GPMVs)
38

 and Plasma Membrane Spheres (PMSs),
31

 model systems prepared 

by chemically separating some or all of the membrane from an intact cell, have been used 

for fluorescence microscopy experiments.  These systems offer raft-like domains 

compositionally similar to those thought to exist in live cells, and thus represent the best 

available model system.  However, there is some ambiguity in the results of experiments 

in these systems, as the phase separation properties of the model systems depend strongly 

on the method of preparation,
39 

and significant differences in the partitioning of some 

anchored proteins has been observed even in different GPMVs prepared by identical 

methods.
40

  In addition, fluorescence microscopy experiments in GUVs, GPMVs, and 

PMSs all rely on micron-sized domains which can be readily visualized.  The relevance 

such domains may have to nanoscale lipid rafts remains unclear.    

Several other techniques are less commonly used to probe lipid sorting in both 

model membranes and live cells.  Atomic Force Microscopy has been used to visualize 

the clustering of proteins in ld domains in supported bliayers.
41  

As noted above (see 

Section 1.1), recent advances in FRET, FRAP, and FCS have been used to track sorting 

of GPI anchored proteins into raft-like domains.  Fluorescence quenching assays have 

been used to probe the relative affinity of a variety of  small lipidated peptides toward lo 
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domains in model membranes.
42

  Recently, Chao and Daniel have reported the use of a 

micro fluidic device to measure the kinetics of the sorting of lipid probes between 

supported bilayers of lo and ld membranes.
43  

The diversity of available techniques places 

the concept of lipid sorting on firmer ground, but all of these techniques suffer from some 

of the same inherent drawbacks as detergent resistance experiments and microscopy in 

GUVs, including the reliance on micron sized domains and the inability to determine a 

partition coefficient. 

To see how all of these techniques can be applied to gain insight into protein 

functioning via studies of lipid sorting, let us consider the Ras family of GTPase proteins 

as a “case study.” The Ras GTPases are a family of peripheral membrane proteins 

involved in signal transduction.
44

  Misregulated Ras signaling has been implicated in 

~30% of human cancers.
41

 These enzymes hydrolyze guanosine triphosphate (GTP), 

producing guanosine diphosphate (GDP).  Three Ras isoforms are common in 

mammalian cells, H-Ras, N-Ras, and K-Ras.  These isoforms have homologous GTP 

binding regions (called the G-domain), and differ only in the hypervariable region, the 23 

C-terminal residues.  The hypervariable region is comprised of the signal sequence for 

the attachment of the membrane anchors, as well as a linker region that connects the 

membrane anchor region to the G-domain.  All three isoforms have a farnesyl anchor, N-

Ras and H-Ras also have additional palmitoylation sites.  The hypervariable domain of 

K-Ras also includes a polybasic region of six consecutive lysine residues.  These 

differences in the structure of the part of the protein that interacts with the membrane 

suggest that the various isoforms may sort into different membrane domains. 
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To examine the sorting of Ras proteins, Hancock and coworkers conducted a 

series of studies using detergent resistance, as well as a similar separation technique 

based on fractionation of membrane proteins over a sucrose gradient.
45,46

  It was 

discovered that H-Ras associates with rafts when it is in its inactivated (GDP bound) 

state, but in its activated (GTP bound) form is excluded from rafts.  Conversely, K-Ras 

remains outside of rafts, regardless of bound nucleoside.
45,46

  These detergent resistance 

results were confirmed using an immuno-imaging procedure in which the distribution of 

Ras proteins on the membrane surface was visualized by electron microscopy of gold 

nanoparticles attached to anti-Ras antibodies.
 45,46

  More recently, the preference of K-

Ras for non-raft domains has been confirmed using both fluorescence microscopy in 

GUVs and AFM studies in model membranes.
32

  Fluorescence microscopy, surface 

plasmon resonance, and AFM have also shown N-Ras to favor disordered domains 

regardless of the GTP/GDP binding state, or palmitoylation state.
33,47  

Unlike K-Ras, 

however, N-Ras was shown to form clusters at the interface of lo and ld domains in AFM 

experiments.  The differences in the hypervariable regions therefore dictate that the three 

isoforms cluster in three distinct regions of the cell.  Taken together, these results can 

explain how, despite their conserved G-domain, these three proteins can have different 

signal outputs.       

While studies like those done the Ras family of proteins can improve our 

understanding of protein function via a study of lipid sorting, there is still remarkably 

little understanding of the basic mechanistic principles of lipid sorting.  Because of the 

qualitative nature of most of the methods for measuring protein partitioning between 

domains, very little work has been done to determine how the structure of specific lipid 
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anchors influences lipid sorting.  In one such investigation, Silvius and coworkers used a 

fluorescence quenching assay in model membranes, as well as detergent resistance 

experiments in cells, to measure the relative partitioning of several small lipidated 

peptides.
42

  In this study, small peptides bearing a variety of lipid anchors were 

fluorescently labeled and incorporated in model membranes containing TEMPO-DOPC, 

a lipid bearing a quenching group which is known to partition into disordered domains.  

For each lipidated peptide, plots of fluorescence intensity as a function of TEMPO-

DOPC concentration were prepared, where the shape of such “quenching curves” is 

indicative of the partitioning of the fluorescent lipid.  Partitioning of the probe into lo 

domains results in upward concavity in the quenching curve, while partitioning into ld 

domains results in downward concavity.  Based on the shape of their fluorescence 

quenching curves, several lipidated probes were ranked by their relative preference for 

the lo phase.  It was found that both the structure of the lipid anchors and the spacing 

between anchors influenced the partitioning of the peptides. A tripeptide consisting of an 

N-terminal glycine acylated with a myristoyl chain, followed by a palmitoylated cysteine 

residue and another glycine bearing the fluorescent tag, 

([(myristoyl)GlyCys(palmitoyl)Gly]-caBim, Figure 5) was found to be the smallest motif 

which could be demonstrated to consistently prefer lo domains in both fluorescence 

quenching and detergent resistance experiments.  It should be noted that while it does 

measure the relative affinity for the lo phase for the peptides, the fluorescence quenching 

technique does not provide an absolute partition coefficient.  In addition, this method 

relies on a “top down” measurement of the fluorescence of entire liposomes, and as such 

does not provide any insight into the molecular level interactions that drive lipid sorting.    
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Figure 5: Structure of [(myristoyl)GlyCys(palmitoyl)Gly]-caBim 

 

The aim of the work reported in this thesis was to develop a quantitative approach 

to lipid sorting by taking a “bottom up” approach to the measurement of peptide 

partitioning.  Molecular interaction energies between lipidated peptides and lipids were 

measured using the NNR method.  These energy measurements give insight into the 

interactions that are thought to drive lipid sorting.  The measured interaction energies 

were then used in Monte Carlo Simulations to provide a physical picture of membrane 

organization.  This combination of NNR measurement and Monte Carlo simulation is a 

powerful new tool for the study of lipid sorting, which allows the quantitative 

determination of partition coefficients and is not limited to macroscale phase separated 

models. 

 

2.2 Experimental Design 

The experimental approach described in this chapter details how NNR 

experiments were expected to measure the energetics of interaction between lipidated 

peptides, cholesterol, and phospholipids in both lo and ld host membranes.  The resulting 

energy measurements can then be used in Monte Carlo simulations to provide a physical 

picture of membrane organization in a simulated membrane containing coexisting and lo 

and ld domains, as well as a quantitative partition coefficient to describe the distribution 
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of the peptide between domains.  In designing these experiments, variables to consider 

include (i) the choice of lipidated peptides to examine, (ii) the choice of host membranes 

to use for NNR experiments, and (iii) the choice of exchangeable lipids.  For each of 

these variables, we sought to choose the simplest possible substrate, expected to produce 

the greatest possible partitioning. 

Our choice of lipidated peptide was inspired by the work of Silvius et. al, who 

found a peptide of the structure [(myristoyl)GlyCys(palmitoyl)Gly] to be the minimal 

motif that ensures partitioning into the lo phase in model membranes (see Section 2.1).
42  

This motif has been observed in the protein p56
lck

, as well as in the src family of 

kinases.
42 

The presence of this motif in the src related kinase Fyn has been shown to be 

necessary for the proteins to associate with detergent resistant fractions in COS-1 cells.
48

 

The exchangeable dipeptide, Pep1, (Figure 6) that we have chosen to study is therefore a 

mimic of this motif.  In Pep1, the thioester has been replaced by a thioether to allow 

greater stability under NNR conditions. 

In order to assess the effect of unsaturation in the lipid anchors on peptide 

partitioning a second dipeptide, Pep2, bearing a permanent kink in its C14 chain, was 

also chosen.  Because double bonds undergo cis/trans isomerization under NNR 

conditions, a cyclopropyl group was used to “lock in” a permanent kink.
49  
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Figure 6: Structures of exchangeable lipids used in NNR studies  

 

The NNR reactions were conducted in host membranes of DPPC and cholesterol.  

The phase diagram of this system is well understood,
50

 and allows convenient access to 

both lo and ld membranes at 45 
o
C depending on cholesterol content.  In addition, this 

system is of interest because at intermediate cholesterol concentrations discrete lo micro 

domains, roughly analogous to putative lipid rafts, are thought to be present but have 

never been directly observed.
51-53  

For measuring the interaction of Pep1 and Pep2 with 

DPPC and cholesterol, cho and 16PL were used in NNR reactions.  These lipids have 

previously been shown to be excellent mimics of cholesterol and DPPC, respectively, 

with cho having condensing behavior nearly identical to cholesterol, and 16PL having a 

transition temperature of 41.9 
o
C (compared to 41.5 

o
C for cholesterol).

54,55
  NNR 
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reactions conducted in DPPC/cholesterol host membranes using the four exchangeable 

lipids shown in Figure 6  provide a simple system for measuring the interactions of small 

lipidated peptides with lipids in lo and ld membranes. 

Nearest neighbor interaction energies, however, are not the only data necessary to 

model the organization of a membrane using Monte Carlo simulations.  Because both 

Pep1 and Pep2 resemble phospholipids, having a polar headgroup and two acyl chain 

tails, they might be expected to exhibit phase transition behavior in a bilayer similar to 

phospholipids.  In order to model their behavior in a bilayer, it is therefore necessary to 

estimate their transition temperatures.  Differential Scanning Calorimetry (DSC) 

experiments were thus carried out to measure the phase transition properties of the 

heterodimers {Pep1-16PL} and {Pep2-16PL}, as well as Pep1a and Pep2a, non-

exchangeable monomer mimics of Pep1 and Pep2 (Figure 7).   

 

Figure 7: Structures of Pep1a and Pep2a.  
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2.3 Results
56 

2.3.1 Synthesis of Dimers 

 The homodimer {Pep1-Pep1} was synthesized as shown in Scheme 2.  

Alkylation of boc-cysteine with bromohexadecane, followed by deprotection and 

condensation with cystamine afforded 2, which was then coupled with a myristoyl 

glycine (3) to give {Pep1-Pep1}.  As shown in Scheme 3, {Pep1-cho} was prepared 

using a similar strategy.  Activation of cholesterol with N,N’ disuccinimidyl carbonate 

and subsequent reaction with cystamine afforded 4, which was then coupled, sequentially 

with alkylated boc-cysteine and 3 to produce the desired heterodimer.   

 

 

 
Scheme 2: Synthesis of {Pep1-Pep1} 
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Scheme 3: Synthesis of {Pep1-cho} 

To prepare the heterodimer {Pep1-16PL}, the homodimer {Pep1-Pep1} was first 

reduced with tris(2-carboxyethyl)phosphine hydrochloride salt (TCEP) to make the thiol 

monomer, which was then reacted with an activated form of 1,2-dipalmitoyl-sn-glycero-

3-phosphoethanolamine (DPPE) (6), producing the desired heterodimer (Scheme 4). 

 

Scheme 4: Synthesis of {Pep1-16PL} 
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The homodimer {Pep2-Pep2} was synthesized using similar methods.  A 

cyclopropyl derivative of myristeoleic acid (7) was prepared via a Simmon’s Smith 

reaction using the procedure of Charette et al.
57

  Coupling of 2 with boc-glycine, 

followed by deprotection and reaction with 7 gave {Pep2-Pep2} (Scheme 5). 

 
Scheme 5: Synthesis of {Pep2-Pep2} 

 

 
Scheme 6: Synthesis of {Pep2-cho} 

 

The synthesis of {Pep2-cho} is shown in Scheme 6.  Activation of cholesterol 

with N,N’ disuccinimidyl carbonate, to give 10, and subsequent condensation with 9 

afforded the activated disulfide 11.  The homodimer {Pep2-Pep2} was reduced with 

TCEP and combined with 11, giving the final heterodimer, {pep2-cho}.   
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Like {Pep1-16}, {Pep2-16} was prepared via reaction of the peptide thiol 

monomer with 6.  The remaining dimers used in these studies, {cho-cho}, {16PL-

16PL}, and {16PL-cho} were synthesized in our laboratory by Dr. Wen-Hua Chen using 

previously reported procedures.
19,55 

 

2.3.2 Calibration of Chromatographic Systems 

All NNR reactions performed using {16PL-cho} were analyzed using the 

previously published calibration curve.
21  

For the other dimer pairs, the chromatographic 

systems were calibrated by repeating the NNR sample preparation technique using 

samples of known dimer concentration and using the same HPLC conditions as the NNR 

samples (see Section 5.2 for experimental procedures).  For the chromatographic system 

used for {Pep1-cho} reactions, the system was found to respond as follows:  For {Pep1-

Pep1},  1016685 x n{Pep1-Pep1} + 696011 = Signal  (R
2
= 0.9988); for {Pep1-cho} 752027 x 

n{Pep1-cho} + 491569  = Signal n (R
2
 =0.9982); for {cho-cho} 579558 x n{cho-cho} + 213952 

= Signal (R
2
 = 0.9975), where signal is the area of the chromatographic peaks for the 

dimers and n is the number of moles of dimers.  The calibration curve for these dimers is 

shown in Figure 8. 

Figure 9 shows the calibration curve for the chromatographic system used for 

{Pep1-16PL} reactions, which was found to respond as follows:  For {Pep1-Pep1},  

359579 x n{Pep1-Pep1} + 94387 = Signal  (R
2
= 0.9903); for {Pep1-16PL} 778799 x n{Pep1-

16PL} + 289723  = Signal n (R
2
 =0.9957); for {16PL-16PL} 1040969 x n{16PL-16PL} + 

274274 = Signal (R
2
 = 0.9974).  
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For the chromatographic system used for {Pep2-cho} reactions, the system was 

found to respond as follows:  For {Pep2-Pep2},  997621 x n{Pep2-Pep2} + 979954 = Signal  

(R
2
= 0.9953); for {Pep2-cho} 723232 x n{Pep2-cho} + 398744  = Signal n (R

2
 =0.9969); for 

{cho-cho} 446355 x n{cho-cho} + 281227 = Signal (R
2
 = 0.9961). The calibration curve for 

these dimers is shown in Figure 10.  

Finally, as shown in Figure 11,  the chromatographic system used for {Pep2-

16PL} reactions was found to respond as follows:  For {Pep2-Pep2},  427519 x n{Pep2-

Pep2} + 167174 = Signal  (R
2
= 0.9990); for {Pep2-16PL} 652968 x n{Pep2-16PL} + 31632  = 

Signal n (R
2
 =0.9989); for {16PL-16PL} 1037098 x n{16PL-16PL} + 365839 = Signal (R

2
 = 

0.9966). 

 

 
Figure 8: Peak area plotted as a function of nmol/injection for dimers {cho-cho} (♦),{Pep1-cho} (●), and 

{Pep1-Pep1} (▲). 
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Figure 9: Peak area plotted as a function of nmol/injection for dimers {16PL-16PL} (♦),{Pep1-16PL} (●), 

and {Pep1-Pep1} (▲). 

 

 

 
Figure 10: Peak area plotted as a function of nmol/injection for dimers {cho-cho} (♦),{Pep2-cho} (●), and 

{Pep2-Pep2} (▲). 
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Figure 11: Peak area plotted as a function of nmol/injection for dimers {16PL-16PL} (♦),{Pep2-16PL} 

(●), and {Pep2-Pep2} (▲). 

 

2.3.3 Epimerization of {Pep1-Pep1}  

A typical HPLC chromatogram for an NNR reaction starting from {Pep1-cho} is 

shown in Figure 12.  The peak at retention time ~32 minutes, which is the homodimer 

{Pep1-Pep1}, is overlapping with a second peak, rendering it impossible to integrate 

accurately.  In order to quantify the concentration of all three dimers in the sample and 

obtain a reliable measurement of K, it was therefore necessary to determine the source of 

this second peak. 
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Figure 12:  Typical HPLC chromatogram from the analysis of product mixtures in NNR reactions starting 

with heterodimer {Pep1-cho}.  
 

In order to identify this extra peak, several samples were collected from an NNR 

reaction that was prepared using the standard conditions (see Section 5.2).  The samples 

were then analyzed using an HPLC mobile phase that did not contain tetrabutyl 

ammonium acetate.  A doublet of peaks with a retention time of ~31 minutes was 

observed, and fractions were manually collected from the HPLC detector in order to 

isolate a sample of each of the two peaks of the “doublet.”  The collected samples, along 

with samples of (i) pure {Pep1-Pep1} and (ii) a fraction collected from the HPLC 

detector when no peak was eluting (baseline), were analyzed by MALDI-MS to 
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determine molecular weight.  The results of these analyses are shown in Table 1.  In the 

sample of pure homodimer, only two peaks with m/z > 1000 were visible, at m/z of 

1364.94 and 1380.96, corresponding to (M+Na) and (M+K).  The samples collected from 

both HPLC peaks were identical. 

Sample Peaks Detected (m/z) 

pure {Pep1-Pep1} 1364.94, 1380.96 

baseline - 

peak 1 1364.89, 1380.87 

peak 2 1365.00, 1380.90 
Table 1: All peaks with m/z >1000 detected in MALDI analysis of fractions collected from NNR samples.  

Below 1000, it was not possible to distinguish matrix peaks from sample peaks. 

 

The MS data shown in Table 1 suggests that the compounds present in peak 1and 

peak 2 have identical molecular masses (i.e. are isomers).   The most likely cause of 

isomerization of Pep1 under NNR conditions would be epimerization at the cysteine 

residue.  The mechanism of this epimerization is not presently understood.  Potentially, it 

could occur as a result of deprotonation by the thiolate anions generated under NNR 

conditions, as shown in Figure 13. 

 
Figure 13: Hypothetical mechanism for epimerization of Pep1. 

In order to confirm that these two peaks are due to the epimerization of the 

cysteine of Pep1, analogs of {Pep1-Pep1} and {Pep1-cho} and were synthesized 

starting from racemic cysteine.  These dimers were then analyzed by HPLC and 

compared to the chromatogram shown in Figure 12.  The results of these experiments are 

shown in Figures 14 and 15.  Like the NNR samples, analogs of {Pep1-Pep1} that were 
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prepared from racemic cysteine produced a doublet of peaks, while the analog of {Pep1-

cho} had a single peak.  

Taken together with the MALDI results showing that both peaks of the doublet 

have identical molecular mass, the results of these experiments strongly suggest that the 

doublet of peaks evident for {Pep1-Pep1} in NNR samples is the result of epimerization.  

Since the {Pep1-Pep1} diastereomers are unlikely to have different molar absorbtivities, 

the doublets were integrated as one peak and the previously discussed calibration curve 

was applied to determine the concentration of {Pep1-Pep1} present in all NNR samples. 
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Figure 14: HPLC analysis of (a) {Pep1-Pep1} and (b) an analog of {Pep1-Pep1} synthesized from 

racemic cysteine 
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Figure 15: HPLC analysis of (a) {Pep1-cho} and (b) an analog of {Pep1-cho} synthesized from racemic 

cysteine 

 

 

2.3.4 NNR Results 

In order to obtain the Nearest Neighbor interaction energy (AB) measurements 

necessary for Monte Carlo simulations, NNR experiments were carried out using the 

heterodimers {16PL-cho}, {Pep1-cho}, {Pep1-16PL}, {Pep2-cho}, and {Pep2-16PL} 

in ld and lo host membranes consisting of 5% exchangeable lipid and 95% DPPC (ld) or a 

mixture of DPPC and cholesterol (lo).  For reactions using {Pep1-cho} or {Pep2-cho}, 
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2.5% 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) was included in the 

membrane to give all liposomes used in these studies the same net negative charge.  For 

additional details regarding the composition and preparation of the liposomes used in 

these studies, see Section 5.2.  Unless otherwise noted, Aldrithiol-2 was used during the 

preparation of HPLC samples from NNR reactions of {Pep1-cho}, {Pep1-16PL}, 

{Pep2-cho}, and {Pep2-16PL}, but was omitted from samples collected from {16PL-

cho} reactions. The results of these NNR reactions are shown in Tables 2-13.  The 

average K and ωAB for each of these dimer pairs are summarized in Table 14.   

In general, preliminary NNR reactions were conducted with samples collected at 

several time points, and the results were plotted to determine the time necessary to reach 

equilibrium (results not shown).  In subsequent experiments, samples were withdrawn at 

two time points; one where equilibrium was expected to have been reached (based on the 

preliminary experiments) and a second time point ~12 hours later.  If these two time 

points produced similar results, the reaction was considered to have reached equilibrium 

and the data from both time points were averaged.  Thus, all of the reactions shown in 

Tables 2-13 contain data from samples collected at at least 2 time points.    

For the equilibration of {16PL-cho} in ld host membranes (Tables 2 and 3) there 

was significant difference between the two time points.  Based on this, it was assumed 

that the reactions had not yet reached equilibrium after 12 hours, and the data from the 12 

hour samples were not used.  Because the 23 hour samples agreed with the results from 

preliminary experiments (not shown) and previously reported {16PL-cho} 

experiments,
19,21

 the 23 hour results were used.  For all other NNR reactions (Tables 4-

13) equilibration was observed and all of the data were averaged.  
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The average vesicle size for each liposome preparation was measured before and 

after the NNR procedure, in order to verify that the liposomes remained intact.  Those 

data are shown in Tables 15 and 16.  Typical chromatograms from the analysis of NNR 

reaction product mixtures are presented in Figures 12 (page 28), and 16-19.  For reasons 

that are not presently understood, the epimerization discussed in Section 2.3.3 was not 

observed in NNR reactions of {Pep1-16PL}, {Pep2-cho}, or {Pep2-16PL}. 

 

Reaction 

Reaction 

Time (h) 

 

Dimer 

 

RT (min) 

Peak 

Area 

 

N (nmol) 

 

K 

  {16PL-16PL} 11.15 2509780 5.25  

1 12 {16PL-cho} 17.01 5671667 10.65 3.91 

  {cho-cho} 31.65 3360075 5.52  

  {16PL-16PL} 11.18 2579814 5.40  

1 12 {16PL-cho} 17.03 5819865 10.93 3.86 

  {cho-cho} 31.72 3487922 5.74  

  {16PL-16PL} 11.20 2507409 5.25  

1 23 {16PL-cho} 17.09 5370991 10.09 3.52 

  {cho-cho} 31.76 3354369 5.51  

  {16PL-16PL} 11.22 2471672 5.17  

1 23 {16PL-cho} 17.13 5323626 10.00 3.54 

  {cho-cho} 31.82 3323015 5.46  

  {16PL-16PL} 11.25 2538360 5.31  

1 23 {16PL-cho} 17.18 5473361 10.28 3.58 

  {cho-cho} 31.90 3381364 5.56  

  {16PL-16PL} 11.32 2507616 5.25  

2 12 {16PL-cho} 17.24 6182174 11.61 4.65 

  {cho-cho} 32.04 3363664 5.53  

  {16PL-16PL} 11.36 2579734 5.40  

2 12 {16PL-cho} 17.30 6358257 11.94 4.62 

  {cho-cho} 32.14 3478508 5.72  

  {16PL-16PL} 11.38 2780874 5.82  

2 23 {16PL-cho} 17.38 5795786 10.89 3.40 

  {cho-cho} 32.22 3635933 5.99  

  {16PL-16PL} 11.45 2664372 5.57  

2 23 {16PL-cho} 17.47 5588222 10.50 3.50 

  {cho-cho} 32.33 3432769 5.65  

  {16PL-16PL} 11.52 2847952 5.96  

2 23 {16PL-cho} 17.59 5949540 11.18 3.45 

  {cho-cho} 32.55 3687662 6.08  

Table 2: Data for {cho-16PL} equilibration in 2.5 mol% sterol LUVs at 45 C using 0.8 equivalents of 

DTT (Reactions 1 and 2). Only 23 hour samples were used to calculate average K, as reaction had not yet 

reached equilibrium at 12 hours. 
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Reaction 

Reaction 

Time (h) 

 

Dimer 

 

RT (min) 

Peak 

Area 

 

N (nmol) 

 

K 

  {16PL-16PL} 13.63 1483058 3.10  

3 12 {16PL-cho} 19.71 3378166 6.36 3.79 

  {cho-cho} 32.72 2124440 3.44  

  {16PL-16PL} 13.67 1444816 3.02  

3 12 {16PL-cho} 19.77 3400178 6.40 4.04 

  {cho-cho} 32.80 2074445 3.35  

  {16PL-16PL} 13.73 1389383 2.91  

3 23 {16PL-cho} 19.83 3088347 5.81 3.58 

  {cho-cho} 32.85 2010966 3.24  

  {16PL-16PL} 13.73 1248334 2.61  

3 23 {16PL-cho} 19.85 2816810 5.30 3.68 

  {cho-cho} 32.87 1822690 2.93  

  {16PL-16PL} 13.45 1399903 2.93  

3 23 {16PL-cho} 19.85 3138040 5.91 3.58 

  {cho-cho} 32.94 2058529 3.32  

  {16PL-16PL} 13.82 1433026 3.00  

4 12 {16PL-cho} 19.97 3231017 6.08 3.72 

  {cho-cho} 33.09 2050948 3.31  

  {16PL-16PL} 13.86 1379285 2.89  

4 12 {16PL-cho} 20.01 3115105 5.86 3.79 

  {cho-cho} 33.11 1951766 3.14  

  {16PL-16PL} 13.92 1162704 2.43  

4 23 {16PL-cho} 20.11 2550957 4.81 3.49 

  {cho-cho} 33.21 1700225 2.72  

  {16PL-16PL} 13.95 1253894 2.62  

4 23 {16PL-cho} 20.17 2622219 4.94 3.44 

  {cho-cho} 33.29 1689516 2.70  

  {16PL-16PL} 14.00 1235744 2.59  

4 23 {16PL-cho} 20.24 2676294 5.04 3.49 

  {cho-cho} 33.35 1755506 2.81  

Table 3: Data for {cho-16PL} equilibration in 2.5 mol% sterol LUVs at 45 C using 0.8 equivalents of 

DTT (Reactions 3 and 4). Only 23 hours samples were used to calculate average K, as reaction had not yet 

reached equilibrium at 12 hours 
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Reaction 

Reaction 

Time (h) 

 

Dimer 

 

RT (min) 

Peak 

Area 

 

N (nmol) 

 

K 

  {16PL-16PL} 11.36 1428160 2.99  

1 12 {16PL-cho} 17.64 5233055 9.83 10.02 

  {cho-cho} 33.98 2002576 3.23  

  {16PL-16PL} 11.40 1453197 3.04  

1 16 {16PL-cho} 17.67 5332490 10.02 9.96 

  {cho-cho} 34.06 2053687 3.32  

  {16PL-16PL} 11.41 1353970 2.83  

1 18 {16PL-cho} 17.71 5122688 9.63 10.01 

  {cho-cho} 34.11 2023893 3.27  

  {16PL-16PL} 11.64 1422840 2.98  

1 20 {16PL-cho} 18.05 5335479 10.02 10.04 

  {cho-cho} 34.59 2080007 3.36  

  {16PL-16PL} 11.65 1416196 2.96  

1 22 {16PL-cho} 18.07 5292757 9.94 10.05 

  {cho-cho} 34.61 2056679 3.32  

  {16PL-16PL} 12.28 1366107 2.86  

2 12 {16PL-cho} 18.73 4855303 9.12 9.96 

  {cho-cho} 34.83 1822288 2.93  

  {16PL-16PL} 12.31 1314610 2.75  

2 16 {16PL-cho} 18.76 4823031 9.06 10.03 

  {cho-cho} 34.89 1854173 2.98  

  {16PL-16PL} 12.35 1367810 2.86  

2 18 {16PL-cho} 18.80 4907340 9.22 9.90 

  {cho-cho} 34.89 1867776 3.00  

  {16PL-16PL} 12.36 1288106 2.70  

2 20 {16PL-cho} 18.82 4680862 8.80 9.92 

  {cho-cho} 34.92 1803597 2.89  

Table 4: Data for {cho-16PL} equilibration in 40 mol% sterol LUVs at 45 C using 0.8 equivalents of 

DTT (Reactions 1 and 2). 
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Reaction 

Reaction 

Time (h) 

 

Dimer 

 

RT (min) 

Peak 

Area 

 

N (nmol) 

 

K 

  {16PL-16PL} 11.56 1564909 3.27  

3 11 {16PL-cho} 17.82 5608884 10.54 9.98 

  {cho-cho} 33.85 2101558 3.40  

  {16PL-16PL} 11.62 1486861 3.11  

3 11 {16PL-cho} 17.88 5345242 10.04 10.31 

  {cho-cho} 33.89 1952812 3.15  

  {16PL-16PL} 11.43 1510453 3.16  

3 24 {16PL-cho} 17.57 5523001 10.38 10.00 

  {cho-cho} 33.47 2106365 3.41  

  {16PL-16PL} 11.46 1544369 3.23  

3 24 {16PL-cho} 17.60 5397989 10.14 9.74 

  {cho-cho} 33.46 2025715 3.27  

  {16PL-16PL} 11.43 1629205 3.41  

3 24 {16PL-cho} 17.56 5751621 10.80 9.60 

  {cho-cho} 33.42 2201971 3.57  

  {16PL-16PL} 10.94 1470688 3.08  

4* 12 {16PL-cho} 16.42 4850694 9.12 8.89 

  {cho-cho} 29.37 1889339 3.04  

  {16PL-16PL} 10.96 1442309 3.02  

4* 12 {16PL-cho} 16.44 4768091 8.96 8.62 

  {cho-cho} 29.43 1917756 3.09  

  {16PL-16PL} 10.95 1414779 2.96  

4* 24 {16PL-cho} 16.43 4731676 8.89 9.15 

  {cho-cho} 29.41 1818257 2.92  

  {16PL-16PL} 10.97 1382341 2.89  

4* 24 {16PL-cho} 16.45 4706273 8.84 9.36 

  {cho-cho} 29.42 1801148 2.89  

  {16PL-16PL} 10.98 1374576 2.88  

4* 24 {16PL-cho} 16.46 4867026 9.15 10.29 

  {cho-cho} 29.45 1763473 2.83  

Table 5: Data for {cho-16PL} equilibration in 40 mol% sterol LUVs at 45 C using 0.8 equivalents of 

DTT (Reactions 3 and 4) *Aldrithiol-2 (8 equivalents relative to DTT was adding during preparation of 

HPLC samples) 
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Reaction 

Reaction 

Time (h) 

 

Dimer 

 

RT (min) 

Peak 

Area 

 

N (nmol) 

 

K 

  {cho-cho} 20.89 1568668 2.34  

1 15 {Pep1-cho} 25.57 3152714 3.54 3.40 

  {Pep1-Pep1} 32.02 2297070 1.57  

  {cho-cho} 20.91 1491172 2.20  

1 15 {Pep1-cho} 25.63 2930782 3.24 3.03 

  {Pep1-Pep1} 32.03 2296674 1.57  

  {cho-cho} 20.94 1372125 2.00  

1 24 {Pep1-cho} 25.67 2735311 2.98 3.38 

  {Pep1-Pep1} 32.07 2036028 1.32  

  {cho-cho} 20.97 1397803 2.04  

1 24 {Pep1-cho} 25.69 2685431 2.91 3.03 

  {Pep1-Pep1} 32.05 2081903 1.36  

  {cho-cho} 20.71 2520601 3.98  

2 15 {Pep1-cho} 25.28 4498039 5.33 2.75 

  {Pep1-Pep1} 31.45 33328321 2.59  

  {cho-cho} 20.74 2510171 3.96  

2 15 {Pep1-cho} 25.31 4330008 5.10 2.62 

  {Pep1-Pep1} 31.45 3243683 2.51  

  {cho-cho} 20.89 2351795 3.69  

2 24 {Pep1-cho} 25.50 4255424 5.00 2.83 

  {Pep1-Pep1} 31.77 3135926 2.40  

  {cho-cho} 20.93 2336791 3.66  

2 24 {Pep1-cho} 25.54 3887591 4.52 2.62 

  {Pep1-Pep1} 31.79 2857868 2.13  

  {cho-cho} 14.34 1677062 2.54  

3 24 {Pep1-cho} 15.92 2894584 2.86 2.41 

  {Pep1-Pep1} 18.23 1998970 1.33  

  {cho-cho} 14.35 1667881 2.52  

3 24 {Pep1-cho} 15.94 2875665 2.83 2.32 

  {Pep1-Pep1} 18.24 2038915 1.33  

Table 6: Data for {Pep1-cho} equilibration in 2.5 mol% sterol LUVs at 45 C using 1.0 equivalents of 

DTT
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Reaction 

Reaction 

Time (h) 

 

Dimer 

 

RT (min) 

Peak 

Area 

 

N (nmol) 

 

K 

  {cho-cho} 20.76 927844 1.23  

1 15 {Pep1-cho} 25.41 2642361 2.86 6.25 

  {Pep1-Pep1} 31.78 1775891 1.06  

  {cho-cho} 20.76 938919 1.25  

1 15 {Pep1-cho} 25.44 2561479 2.75 6.10 

  {Pep1-Pep1} 31.76 1704576 0.99  

  {cho-cho} 20.78 926176 1.23  

1 24 {Pep1-cho} 25.45 2547746 2.73 5.87 

  {Pep1-Pep1} 31.79 1749358 1.04  

  {cho-cho} 20.78 959906 1.29  

1 24 {Pep1-cho} 24.47 2425551 2.57 5.84 

  {Pep1-Pep1} 31.79 1590625 0.88  

  {cho-cho} 20.61 1437920 2.11  

2 15 {Pep1-cho} 25.18 3323335 3.77 5.30 

  {Pep1-Pep1} 31.31 1983386 1.27  

  {cho-cho} 20.69 1431611 2.10  

2 15 {Pep1-cho} 25.20 3274186 3.70 4.91 

  {Pep1-Pep1} 31.42 2044305 1.33  

  {cho-cho} 20.75 1111352 1.55  

2 24 {Pep1-cho} 25.34 2852804 3.14 5.67 

  {Pep1-Pep1} 31.57 1836445 1.12  

  {cho-cho} 20.79 1280725 1.84  

2 24 {Pep1-cho} 25.39 2927249 3.24 5.36 

  {Pep1-Pep1} 31.65 1776091 1.06  

Table 7: Data for {Pep1-cho} equilibration in 40 mol% sterol LUVs at 45 C using 1.0 equivalents of 

DTT 
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Reaction 

Reaction 

Time (h) 

 

Dimer 

 

RT (min) 

Peak 

Area 

 

N (nmol) 

 

K 

  {16PL-16PL} 11.68 1468583 3.82  

1 15 {Pep1-16PL} 21.78 5596407 6.81 4.60 

  {Pep1-Pep1} 44.24 3021457 2.64  

  {16PL-16PL} 11.76 1441823 3.75  

1 15 {Pep1-16PL} 21.91 5583514 6.80 4.58 

  {Pep1-Pep1} 44.35 3076490 2.69  

  {16PL-16PL} 11.83 1346517 3.48  

1 24 {Pep1-16PL} 22.07 4984146 6.03 4.39 

  {Pep1-Pep1} 44.45 2748803 2.38  

  {16PL-16PL} 11.89 1339278 3.46  

1 24 {Pep1-16PL} 22.22 4872834 5.88 4.29 

  {Pep1-Pep1} 44.51 2704094 2.33  

  {16PL-16PL} 11.11 1572946 4.11  

2 15 {Pep1-16PL} 20.97 6314407 7.74 5.15 

  {Pep1-Pep1} 43.76 3215506 2.83  

  {16PL-16PL} 11.14 1633964 4.28  

2 15 {Pep1-16PL} 20.98 6608247 8.11 5.11 

  {Pep1-Pep1} 43.81 3404047 3.01  

  {16PL-16PL} 11.27 1691001 4.44  

2 24 {Pep1-16PL} 21.27 6669211 8.19 4.82 

  {Pep1-Pep1} 44.09 3538274 3.14  

  {16PL-16PL} 11.30 1369611 4.30  

2 24 {Pep1-16PL} 21.37 6554686 8.04 5.01 

  {Pep1-Pep1} 44.17 3406151 3.01  

  {16PL-16PL} 10.71 1529696 3.99  

3 24 {Pep1-16PL} 19.63 5979618 7.31 4.62 

  {Pep1-Pep1} 41.55 3286918 2.89  

  {16PL-16PL} 10.69 1567496 4.10  

3 24 {Pep1-16PL} 19.64 5994065 7.32 4.35 

  {Pep1-Pep1} 41.54 3405897 3.01  

  {16PL-16PL} 13.40 1644817 4.31  

4 15 {Pep1-16PL} 24.70 6816432 8.38 5.03 

  {Pep1-Pep1} 45.48 3642892 3.24  

  {16PL-16PL} 13.47 1704481 4.48  

4 15 {Pep1-16PL} 24.80 6864943 8.44 4.72 

  {Pep1-Pep1} 45.54 3785177 3.37  

  {16PL-16PL} 13.56 1638442 4.29  

4 24 {Pep1-16PL} 24.99 6583007 8.08 4.58 

  {Pep1-Pep1} 45.66 3728445 3.32  

  {16PL-16PL} 13.67 1542800 4.03  

4 24 {Pep1-16PL} 25.18 6493601 7.97 5.17 

  {Pep1-Pep1} 45.73 3446944 3.05  

  {16PL-16PL} 13.77 1523749 3.98  

4 24 {Pep1-16PL} 25.35 6163196 7.54 4.96 

  {Pep1-Pep1} 45.85 3276312 2.88  

Table 8: Data for {Pep1-16PL} equilibration in 2.5 mol% sterol LUVs at 45 C using 1.0 equivalent of 

DTT 
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Reaction 

Reaction 

Time (h) 

 

Dimer 

 

RT (min) 

Peak 

Area 

 

N (nmol) 
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  {16PL-16PL} 11.48 887502 2.21  

1 15 {Pep1-16PL} 21.42 3247595 3.80 3.94 

  {Pep1-Pep1} 43.85 2004295 1.66  

  {16PL-16PL} 11.49 898272 2.24  

1 15 {Pep1-16PL} 21.46 3306306 3.87 3.94 

  {Pep1-Pep1} 43.91 2046693 1.70  

  {16PL-16PL} 11.52 847389 2.09  

1 24 {Pep1-16PL} 21.54 3182934 3.71 3.93 

  {Pep1-Pep1} 43.94 2020736 1.68  

  {16PL-16PL} 11.59 885205 2.20  

1 24 {Pep1-16PL} 21.62 3137000 3.66 3.83 

  {Pep1-Pep1} 44.03 1926365 1.59  

  {16PL-16PL} 11.07 1114527 2.84  

2 15 {Pep1-16PL} 20.91 4191505 5.01 4.11 

  {Pep1-Pep1} 43.61 2515718 2.15  

  {16PL-16PL} 11.08 1069173 2.71  

2 15 {Pep1-16PL} 20.95 4013165 4.78 4.23 

  {Pep1-Pep1} 43.67 2348294 1.99  

  {16PL-16PL} 11.19 1035050 2.62  

2 24 {Pep1-16PL} 21.16 3920981 4.66 4.11 

  {Pep1-Pep1} 43.85 2376613 2.02  

  {16PL-16PL} 11.22 1107937 2.82  

2 24 {Pep1-16PL} 21.21 4113836 4.91 3.97 

  {Pep1-Pep1} 43.91 2519170 2.16  

  {16PL-16PL} 13.12 1046008 2.65  

3 15 {Pep1-16PL} 24.32 4156429 4.96 4.23 

  {Pep1-Pep1} 45.05 2568589 2.20  

  {16PL-16PL} 13.20 1068420 2.71  

3 15 {Pep1-16PL} 24.37 4184402 5.00 4.23 

  {Pep1-Pep1} 40.01 2548241 2.18  

  {16PL-16PL} 13.23 1177348 3.01  

3 24 {Pep1-16PL} 24.42 4253370 5.09 3.70 

  {Pep1-Pep1} 45.16 2692814 2.32  

  {16PL-16PL} 13.26 1183058 3.03  

3 24 {Pep1-16PL} 24.48 4268528 5.11 3.69 

  {Pep1-Pep1} 45.24 2707761 2.34  

  {16PL-16PL} 13.31 1155534 2.95  

2 24 {Pep1-16PL} 24.59 4535480 5.45 3.99 

  {Pep1-Pep1} 45.30 2916304 2.54  

Table 9: Data for {Pep1-16PL} equilibration in 40 mol% sterol LUVs at 45 C using 1.0 equivalent of 

DTT 
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Reaction 

Reaction 

Time (h) 

 

Dimer 

 

RT (min) 

Peak 
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K 

  {cho-cho} 20.89 1636534 3.04  

1 18 {Pep2-cho} 24.32 3047743 3.66 2.83 

  {Pep2-Pep2} 28.86 2537867 1.56  

  {cho-cho} 20.92 1526852 2.79  

1 18 {Pep2-cho} 24.37 3127730 3.77 3.20 

  {Pep2-Pep2} 28.88 2568342 1.59  

  {cho-cho} 20.94 1524012 2.78  

1 24 {Pep2-cho} 24.39 2833697 3.37 2.67 

  {Pep2-Pep2} 28.97 2497572 1.52  

  {cho-cho} 20.95 1557946 2.86  

1 24 {Pep2-cho} 24.42 2932818 3.50 2.74 

  {Pep2-Pep2} 29.01 2544817 1.57  

  {cho-cho} 20.97 1403241 2.51  

1 24 {Pep2-cho} 24.42 2693014 3.17 3.16 

  {Pep2-Pep2} 29.00 2242239 1.27  

  {cho-cho} 24.27 2210245 4.32  

2 18 {Pep2-cho} 28.76 4211653 5.27 2.23 

  {Pep2-Pep2} 34.48 3861816 2.89  

  {cho-cho} 24.15 2022522 3.90  

2 18 {Pep2-cho} 28.57 4017688 5.00 2.57 

  {Pep2-Pep2} 34.30 3469034 2.50  

  {cho-cho} 24.11 2115256 4.11  

2 24 {Pep2-cho} 28.49 4230993 5.30 2.52 

  {Pep2-Pep2} 34.21 3687187 2.71  

  {cho-cho} 24.06 2232175 4.37  

2 24 {Pep2-cho} 28.44 4410568 5.55 2.50 

  {Pep2-Pep2} 34.17 3793476 2.82  

  {cho-cho} 24.09 2188602 4.27  

2 24 {Pep2-cho} 28.46 4263906 5.34 2.43 

  {Pep2-Pep2} 34.14 3726463 2.75  

  {cho-cho} 19.59 1610371 2.98  

3 18 {Pep2-cho} 23.23 3022309 3.63 2.72 

  {Pep2-Pep2} 28.01 2598099 1.66  

  {cho-cho} 19.65 1686870 3.15  

3 18 {Pep2-cho} 23.28 3143956 3.80 2.59 

  {Pep2-Pep2} 28.03 2741842 1.77  

  {cho-cho} 19.67 1610073 2.98  

3 24 {Pep2-cho} 23.28 3052258 3.67 2.74 

  {Pep2-Pep2} 28.06 2627474 1.65  

  {cho-cho} 19.69 1476728 2.68  

3 24 {Pep2-cho} 23.34 2757203 3.26 3.03 

  {Pep2-Pep2} 28.14 2286606 1.31  

  {cho-cho} 19.73 1645247 3.06  

3 24 {Pep2-cho} 23.35 3080277 3.71 2.71 

  {Pep2-Pep2} 28.10 2634932 1.66  

Table 10: Data for {Pep2-cho} equilibration in 2.5 mol% sterol LUVs at 45 C using 1.0 equivalent of 

DTT 
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  {cho-cho} 20.71 1455056 2.63  

1 18 {Pep2-cho} 24.09 3671540 4.53 4.97 

  {Pep2-Pep2} 28.58 2543176 1.57  

  {cho-cho} 20.80 1391508 2.49  

1 18 {Pep2-cho} 24.21 3642811 4.48 4.68 

  {Pep2-Pep2} 28.70 2702816 1.73  

  {cho-cho} 20.80 1468489 2.66  

1 24 {Pep2-cho} 24.20 3780062 4.68 4.70 

  {Pep2-Pep2} 28.67 2725333 1.75  

  {cho-cho} 20.86 1522040 2.78  

1 24 {Pep2-cho} 24.27 3900815 4.84 4.64 

  {Pep2-Pep2} 28.82 2795258 1.82  

  {cho-cho} 20.85 1496257 2.72  

1 24 {Pep2-cho} 24.27 3891345 4.83 4.72 

  {Pep2-Pep2} 28.79 2791367 1.82  

  {cho-cho} 24.53 1489497 2.71  

2 18 {Pep2-cho} 28.98 393957 4.90 5.36 

  {Pep2-Pep2} 34.75 2627428 1.65  

  {cho-cho} 24.31 1497405 2.72  

2 18 {Pep2-cho} 28.74 3890068 4.83 4.94 

  {Pep2-Pep2} 34.45 2707348 1.73  

  {cho-cho} 24.19 1521810 2.78  

2 24 {Pep2-cho} 28.60 4025985 5.02 5.35 

  {Pep2-Pep2} 34.29 2667567 1.69  

  {cho-cho} 24.41 1493388 2.72  

2 24 {Pep2-cho} 28.84 3939318 4.90 5.15 

  {Pep2-Pep2} 34.63 2689828 1.73  

  {cho-cho} 24.38 1473127 2.67  

2 24 {Pep2-cho} 28.83 3762291 4.65 4.88 

  {Pep2-Pep2} 34.59 2636651 1.66  

  {cho-cho} 19.58 1273679 2.22  

3 18 {Pep2-cho} 23.21 3250644 3.94 5.85 

  {Pep2-Pep2} 27.96 2173029 1.20  

  {cho-cho} 19.55 1309619 2.30  

3 18 {Pep2-cho} 23.17 3344632 4.07 5.41 

  {Pep2-Pep2} 27.90 2307285 1.33  

  {cho-cho} 19.53 1388010 2.48  

3 24 {Pep2-cho} 23.17 3488717 4.27 4.90 

  {Pep2-Pep2} 27.90 2479001 1.50  

  {cho-cho} 19.57 1327033 2.34  

3 24 {Pep2-cho} 23.19 3291093 4.00 5.07 

  {Pep2-Pep2} 27.94 2322463 1.35  

  {cho-cho} 19.60 1264279 2.20  

3 24 {Pep2-cho} 23.23 3227374 3.91 5.21 

  {Pep2-Pep2} 27.96 2309331 1.33  

Table 11: Data for {Pep2-cho} equilibration in 40 mol% sterol LUVs at 45 C using 1.0 equivalent of 

DTT 
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  {16PL-16PL} 12.87 1431963 2.96  

1 18 {Pep2-16PL} 23.08 4952645 7.54 10.55 

  {Pep2-Pep2} 44.72 2252897 1.82  

  {16PL-16PL} 12.87 1417138 2.92  

1 18 {Pep2-16PL} 23.08 4908069 7.47 10.51 

  {Pep2-Pep2} 44.75 2247037 1.81  

  {16PL-16PL} 12.91 1366890 2.81  

1 24 {Pep2-16PL} 23.15 4556451 6.93 10.05 

  {Pep2-Pep2} 44.77 2131495 1.70  

  {16PL-16PL} 12.95 1406100 2.90  

1 24 {Pep2-16PL} 23.18 4755153 7.23 9.91 

  {Pep2-Pep2} 44.80 2255986 1.82  

  {16PL-16PL} 12.94 1440507 2.98  

1 24 {Pep2-16PL} 23.21 4876979 7.42 10.55 

  {Pep2-Pep2} 44.85 2182379 1.75  

  {16PL-16PL} 20.18 1447609 3.00  

2 18 {Pep2-16PL} 32.90 5041223 7.67 9.84 

  {Pep2-Pep2} 53.71 2436892 2.00  

  {16PL-16PL} 20.19 1498786 3.11  

2 18 {Pep2-16PL} 32.89 5342101 8.13 10.36 

  {Pep2-Pep2} 53.73 2491672 2.05  

  {16PL-16PL} 20.19 1467423 3.04  

2 24 {Pep2-16PL} 32.90 5211314 7.93 10.13 

  {Pep2-Pep2} 53.73 2483378 2.04  

  {16PL-16PL} 20.17 1537331 3.20  

2 24 {Pep2-16PL} 32.89 5419296 8.25 9.86 

  {Pep2-Pep2} 53.76 2600318 2.15  

  {16PL-16PL} 20.17 1577682 3.30  

2 24 {Pep2-16PL} 32.90 5353106 8.15 9.32 

  {Pep2-Pep2} 53.79 2604991 2.16  

  {16PL-16PL} 12.79 1511693 3.14  

3 18 {Pep2-16PL} 22.58 5611257 8.55 9.79 

  {Pep2-Pep2} 44.01 2826315 2.37  

  {16PL-16PL} 12.74 1592945 3.33  

3 18 {Pep2-16PL} 22.48 5878642 8.95 9.54 

  {Pep2-Pep2} 43.93 2980061 2.52  

  {16PL-16PL} 12.83 1621158 3.40  

3 24 {Pep2-16PL} 22.63 5832156 8.88 9.06 

  {Pep2-Pep2} 44.14 3022502 2.56  

  {16PL-16PL} 12.84 1639915 3.44  

3 24 {Pep2-16PL} 22.65 5704906 8.69 8.57 

  {Pep2-Pep2} 44.14 3018201 2.56  

  {16PL-16PL} 12.88 1572522 3.29  

3 24 {Pep2-16PL} 22.70 5851590 8.91 9.31 

  {Pep2-Pep2} 44.23 3057644 2.60  

Table 12: Data for {Pep2-16PL} equilibration in 2.5 mol% sterol LUVs at 45 C using 1.0 equivalent of 

DTT 
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Reaction 

Reaction 

Time (h) 

 

Dimer 

 

RT (min) 

Peak 

Area 

 

N (nmol) 

 

K 

  {16PL-16PL} 12.73 790886 1.46  

1 18 {Pep2-16PL} 22.96 2433678 3.68 9.34 

  {Pep2-Pep2} 43.60 1395634 0.99  

  {16PL-16PL} 12.75 753095 1.37  

1 18 {Pep2-16PL} 22.87 2462433 3.72 10.29 

  {Pep2-Pep2} 43.96 1384618 0.98  

  {16PL-16PL} 12.79 854748 1.61  

1 24 {Pep2-16PL} 22.94 2549529 3.86 8.90 

  {Pep2-Pep2} 44.39 1442794 1.04  

  {16PL-16PL} 12.80 719586 1.29  

1 24 {Pep2-16PL} 23.02 2271574 3.43 10.22 

  {Pep2-Pep2} 44.48 1289208 0.89  

  {16PL-16PL} 12.90 822421 1.53  

1 24 {Pep2-16PL} 23.11 2629641 3.98 9.18 

  {Pep2-Pep2} 44.60 1532138 1.12  

  {16PL-16PL} 15.91 1279180 2.60  

2 18 {Pep2-16PL} 30.10 4145478 6.30 7.26 

  {Pep2-Pep2} 51.62 2546701 2.10  

  {16PL-16PL} 20.32 1387044 2.85  

2 18 {Pep2-16PL} 33.08 4495410 6.84 7.79 

  {Pep2-Pep2} 53.91 2546701 2.10  

  {16PL-16PL} 20.34 1490782 3.10  

2 24 {Pep2-16PL} 33.06 4619451 7.03 7.23 

  {Pep2-Pep2} 53.87 2652584 2.20  

  {16PL-16PL} 20.34 1396364 2.88  

2 24 {Pep2-16PL} 33.02 4632398 7.05 7.61 

  {Pep2-Pep2} 53.83 2719604 2.27  

  {16PL-16PL} 20.19 1307791 2.67  

2 24 {Pep2-16PL} 32.95 4380747 6.66 7.89 

  {Pep2-Pep2} 53.72 2551542 2.11  

  {16PL-16PL} 12.76 1103240 2.19  

3 18 {Pep2-16PL} 22.60 3350508 5.10 7.32 

  {Pep2-Pep2} 43.87 2048319 1.62  

  {16PL-16PL} 12.77 1051859 2.07  

3 18 {Pep2-16PL} 22.59 3281880 4.98 7.18 

  {Pep2-Pep2} 43.87 2095659 1.67  

  {16PL-16PL} 12.76 1156501 2.31  

3 24 {Pep2-16PL} 22.61 3491473 5.30 6.51 

  {Pep2-Pep2} 43.89 2297144 1.86  

  {16PL-16PL} 12.77 1116504 2.22  

3 24 {Pep2-16PL} 22.67 3408500 5.17 6.57 

  {Pep2-Pep2} 43.94 2266555 1.83  

  {16PL-16PL} 12.80 1104174 2.19  

3 24 {Pep2-16PL} 22.68 3365931 5.11 6.54 

  {Pep2-Pep2} 44.00 2253226 1.82  

Table 13: Data for {Pep2-16PL} equilibration in 40 mol% sterol LUVs at 45 C using 1.0 equivalent of 

DTT. 
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 lo ld 

Dimer pair K ωAB (cal/mol) K ωAB (cal/mol) 

cho-16PL 9.8 ± 0.5 -282 ± 15 3.5 ± 0.1 40 ± 7 

Pep1-cho 5.7 ± 0.4 -110 ± 23 2.8 ± 0.4 108 ± 41 

Pep1-16PL 4.0 ± 0.2 0.8 ± 14 4.8 ± 0.3 -55 ± 20 

Pep2-cho 5.1 ± 0.3 -74 ± 21 2.7 ± 0.3 123 ± 31 

Pep2-16PL 8.0 ± 1.3 -219 ± 51 9.8 ± 0.6 -284 ± 19 
Table 14: Average K and ωAB values from NNR reactions of cho, 16PL, Pep1, and Pep2. 

 

 

 

 

 

 

Dimer Host time mean                     Dimer Host time mean 

Pair Mem-

brane 

(h) diameter (nm)  Pair Mem-

brane 

(h) diameter (nm) 

{Pep1-cho} ld 0 180.3 ± 70.3  {Pep2-cho} ld 0 177.3 ± 63.8 

  24 173.5 ± 76.3    24 177.3 ± 62.1 

{Pep1-cho} ld 0 165.1 ± 54.5  {Pep2-cho} ld 0 158.6 ± 71.4 

  24 160.3 ± 62.5    24 150.5 ± 57.2 

{Pep1-cho} lo 0 199.2 ± 59.8  {Pep2-cho} ld 0 161.9 ± 47.0 

  24 194.6 ± 75.9    24 158.3 ± 68.1 

{Pep1-cho} lo 0 191.8 ± 57.5  {Pep2-cho} lo 0 180.6 ± 84.9 

  24 194.3 ± 64.1    24 198.7 ± 79.5 

{Pep1-16PL} ld 0 182.1± 51.0  {Pep2-cho} lo 0 181.0 ± 65.2 

  24 178.4 ± 69.6    24 175.0 ± 63.0 

{Pep1-16PL} ld 0 174.4 ± 57.6  {Pep2-cho} lo 0 186.7 ± 72.8 

  24 173.1 ± 55.4    24 185.8 ± 22.3 

{Pep1-16PL} ld 0 173.0 ± 62.3  {Pep2-PL} ld 0 181.0 ± 63.5 

  24 167.9 ± 53.7              24 178.6 ± 44.7 

{Pep1-16PL} lo 0 201.9 ± 72.7  {Pep2-PL} ld 0 178.9 ± 75.1 

  24 187.7 ± 43.2    24 169.3 ± 44.0 

{Pep1-16PL} lo 0 194.8 ± 76.0  {Pep2-PL} ld 0 175.3 ± 57.8 

  24 200.3 ± 62.1    24 175.3 ± 61.4 

{Pep1-16PL} lo 0 192.7 ± 54.0  {Pep2-PL} lo 0 180.6 ± 84.9  

  24 188.0 ± 73.3    24 198.7 ± 79.5 

     {Pep2-PL} lo 0 174.7 ± 36.7 

       24 176.0 ± 77.4 

     {Pep2-PL} lo 0 191.8 ± 78.6 

       24 179.3 ± 59.2 

Table 15: DLS data for vesicles before and after NNR reactions involving Pep1 and Pep2. Monomodal 

size distribution was observed in all cases 
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Dimer Host time mean                     

Pair Membrane (h) diameter (nm)  

{cho-16PL} ld 0 169.0 ± 60.8  

  23 163.7 ± 45.8  

{cho-16PL} ld 0 169.7 ± 45.8  

  23 159.6 ± 51.1  

{cho-16PL} ld 0 178.8 ± 57.2  

  24 163.3 ± 50.6  

{cho-16PL} ld 0 181.7 ± 85.4  

  24 160.9 ± 48.3  

{cho-16PL} lo 0 185.6 ±70.5  

  22 183.8 ± 58.8  

{cho-16PL} lo 0 194.2 ± 56.3  

  22 194.8 ± 58.4  

{cho-16PL} lo 0 187.9 ± 52.6  

  24 181.9 ± 56.4            

{cho-16PL} lo 0 182.9 ± 56.7  

  20 178.8 ± 46.5  

Table 16: DLS data for vesicles before and after NNR reactions involving {cho-16PL}. Monomodal size 

distribution was observed in all cases. 

 

 
Figure 16:  Typical HPLC chromatogram from the analysis of product mixtures in NNR reactions starting 

with heterodimer {cho-16PL} 
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Figure 17:  Typical HPLC chromatogram from the analysis of product mixtures in NNR reactions starting 

with heterodimer {Pep1-16PL} 
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Figure 18:  Typical HPLC chromatogram from the analysis of product mixtures in NNR reactions starting 

with heterodimer {Pep2-cho} 
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Figure 19:  Typical HPLC chromatogram from the analysis of product mixtures in NNR reactions starting 

with heterodimer {Pep2-16PL} 

 

 

2.3.5 DSC Results  

Experimental results shown in this section were obtained by Prof. Paulo Almeida 

(University of North Carolina, Wilmington), additional preliminary experiments were 

performed at Lehigh University by Trevor Daly (results not shown). 

In order to measure the phase transition properties of Pep1 and Pep2 by DSC, 

non-exchangeable mimics of each peptide, Pep1a and Pep2a (Figure 7, page 20), were 

synthesized by reduction of {Pep1-Pep1} or {Pep2-Pep2} by TCEP, followed by 

reaction with methyl iodide.  Thin films of these monomers were then hydrated with 

MOPS buffer at 85 
o
C in order to prepare vesicles suspensions for DSC experiments.  

Monomer Pep1a remained completely insoluble in buffer at 85 
o
C, while Pep2a readily 
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formed a dispersion at that temperature.  Examination of this dispersion by DSC showed 

a well-defined endotherm (Figure 20c) with a Tm of 61 
o
C.  Due to uncertainty in 

determining the concentration of this dispersion, no enthalpy value could be determined 

from this analysis. 

 
Figure 20:  DSC scan of dispersions of  (a) {Pep1-16PL}, (b) {Pep2-16PL}, and (c) Pep2a 

As an alternate means to measuring the phase transition properties of Pep1 and 

Pep2, dispersions of the heterodimers {Pep1-16PL} and {Pep2-16PL} were analyzed by 

DSC.  Both heterodimers readily formed dispersions in MOPS buffer at 85 
o
C.  

Examination of {Pep1-16PL} by DSC revealed a main transition at 55 °C with an 

apparent ΔH ≈ 24±3 kcal/mol, while {Pep2-16PL} gave a broad and complex transition 

that was centered around 45 °C, with a significant dependence on the hydration 

temperature and thermal history (Figure 20a and 20b).  All of these DSC data are 

summarized in Table 17.  In addition, Table 17 contains relevant DSC data for lipids 

14PL and 18PL (exchangeable mimics of 14 and 18 carbon phospholipids, see Figure 

21), and their analogous phosphocholines, for comparison.
54, 58-66  
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Lipid Tm (
o
C) ΔH (kcal/mol) 

DMPC 23.8 6.1 

{14PL-14PL}
a 22.7 14.7 

DPPC 41.5 8.5 

16PL
a,b

 39.9 9.3 

{16PL-16PL}
a 41.9 18.7 

DSPC 54.8 10.9 

{18PL-18PL}
a 55.4 21.7 

{14PL-16PL}
a 31.2 16.7 

{14PL-18PL}
a 33.9 18.7 

{Pep1-16PL} 55 ~24 

{Pep2-16PL} 45 ~17 

Pep1 (~80) (~10) 

Pep2 61
c 

(~7) 
Table 17: Melting Behavior of Dimers and Monomers. The values given for phosphocholines, 1,2-

myristoyl-sn-glycero-3-phosphocholine (DMPC), DPPC, and 1,2-stearoyl-sn-glycero-3-phosphocholine 

(DSPC) are from a combination of references  59-66).  Numbers in parentheses are estimated values. 
a
Taken from reference 54. 

b
Value of a methyl thioether analog of 16PL.

 c
Value of Pep2a. 

 

 

 

 
Figure 21:  Structures of exchangeable phospholipids used in DSC studies 
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Based on the data in Table 17, the enthalpies (ΔH) of dimers are nearly equivalent 

to the sum of their constituent monomers.  The ΔH for Pep1 and Pep2 were therefore 

estimated by subtracting ΔH of 16PL (9.3 kcal/mol) from the ΔH observed in the DSC 

experiments of the heterodimers Pep1-16PL and Pep2-16PL.   

Unlike ΔH, the Tm data for dimers is not additive. Instead, the Tm of homodimers 

are nearly identical to the Tm of the monomer.  The homodimer {16PL-16PL} for 

example, has a Tm of 41.9 
o
C, compared to 41.5 

o
C  for DPPC (and 39.9 

o
C for the 

monomer 16PL) .  For heterodimers, the Tm is intermediate to the monomers, and is 

slightly closer to the Tm of the lower melting lipid.  This bias towards the lower-melting 

lipid is analogous to what is known for phospholipids bearing two different acyl chains.  

For example, the Tm for 1-palmitoyl-2-oleyol-sn-glycero-3-phosphocholine (POPC), 1,2-

dioleyol-sn-glycero-3-phosphocholine (DOPC), and DPPC are -3 °C, -13 °C, and 41.5 

°C, respectively.
58

  

 Figure 22 shows the Tm of the dimers {14PL-14PL}, {14PL-16PL}, and {14PL-

18PL}, plotted as a function of the Tm of the higher melting monomer.  Based on the data 

shown in Figure 22, the Tm of a heterodimer can be approximated by Equation 1 (dashed 

line in Figure 22) where Tm
low 

and Tm
high

  are the Tm values for the low and high-melting 

monomers, respectively. 

                                            eq.1 

 

Using equation 1, the Tm of Pep1 was estimated to be ~80 °C, based on the 

experimentally observed Tm of {Pep1-16PL} and 16PL.  This high Tm  can account for 

our difficulty dispersing the monomer Pep1a at 85 °C.  
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Figure 22: Dependence of and Tm of the phase transition of dimers

54
 on those of the PC with the same acyl 

chain length.
58-66

  Solid squares are for dimers of 14PL with 14PL, 16PL,  and 18PL as a function of the 

Tm of the PC that corresponds to the longer- or equivalent-chain monomer. The dashed line is the equation 

y = 0.65×23.8+0.35x, which is eq. 1, with Tm
Low

 = 23.8 
o
C for DMPC 

 

2.3.6 Monte Carlo Simulations 

Based on the nearest neighbor interaction energies measured by NNR and the 

thermodynamic data measured in the DSC experiments, Monte Carlo simulations were 

performed by our collaborator, Professor Paulo Almeida (University of North Carolina, 

Wilmington).  Lipid membranes were simulated as 100 × 100 triangular lattices, where 

each site represents a phospholipid, a lipidated peptide, or a sterol molecule. The 

phospholipids can exist in three states: gel, lo, and ld state. The lo state is intermediate to 

the gel and ld states in terms of its enthalpy, entropy, and chain order. Simulations were 

performed at the same temperature (45 
o
C) using NNR values that were experimentally 

determined in each phase, in addition to those previously used for DPPC/cholesterol.
67

 

Snapshots of the simulations are shown in Figure 23 for the ld, lo, and lo/ld (20 mol% 

cholesterol) coexistence regions. In addition, a fourth simulation was performed in which 

the DPPC/cholesterol interaction energy was changed from the experimental value of 40 
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cal/mol to an artificial value of 400 cal/mol.  As expected, this led to a system 

approaching true phase separation (Figure 23-D). DPPC is shown in black (gel), white 

(ld), or blue (lo); cholesterol is shown in red, and Pep1 is shown in green. No distinction 

is made between DPPC and 16PL, or between cholesterol and cho.  Similar simulations 

were also done using Pep2 in place of Pep1 (not shown). 

 
Figure 23: Snapshots of Monte Carlo simulations of mixtures of DPPC and cholesterol containing 2.5 

mol% of Pep1:  (A) ld phase, DPPC/cholesterol/Pep1, 95/2.5/2.5 (mol/mol/mol), (B) lo phase, 

DPPC/cholesterol/Pep1, 57.5/40/2.5 (mol/mol/mol), (C) ld/lo coexistence region, DPPC/cholesterol/Pep1, 

77.5/20/2.5 (mol/mol/mol), (D) Same as C, except that ω
d
cho-16PL (i.e., nearest-neighbor interaction free 

energy between cho and 16PL in the ld phase) has been artificially set at 400 cal/mol instead of the 

observed value of 40 cal/mol.  DPPC is shown in black (gel), white (ld), or blue (lo); cholesterol is shown in 

red; and 1 is shown in green. No distinction is made between DPPC and 16PL, or between cholesterol and 

cho. 
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Figure 23-C shows a snapshot from the Monte Carlo simulation of 2.5% Pep1 

included in a host membrane containing coexisting ld and lo domains.  While the peptides 

appear to be randomly distributed between ld and lo domains, a partition coefficient can 

be calculated based on Equation 2 to quantitatively measure the affinity of the peptide for 

each phase.   

                                                               eq. 2 

 

Here, [pep]o and [pep]d represent the number of lipidated peptides (Pep1 or Pep2) 

in the lo and ld regions, and [lo] and [ld] are the number of phospholipid sites belonging to 

each region.  For these simulations, a lipidated peptide molecule was considered to be 

located in a lo or ld region according to the majority of nearest neighbor lipids surrounding 

it.  In defining Kp, only phospholipid molecules were counted; the sites occupied by sterol 

were not counted for either phase. The results obtained for Pep1 and Pep2 in the ld/lo 

coexistence region (20 mol% cholesterol) are summarized in Table 18. 

 

Peptide Phase Behavior cho-16PL Kp 

  (cal/mol) (lo/ld) 

Pep1 small domains 40 1.0 

Pep1 phase separation 400 1.2 

Pep2 small domains 40 0.46 

Pep2 phase separation 400 0.46 
Table 18:  Partition coefficients determined from Monte Carlo simulations in membranes of 

DPPC/cholesterol/(pep) 77.5/20/2.5 (mol/mol/mol).   No distinction is made between DPPC and 16PL, and 

between cholesterol and cho.  

 

2.4 Discussion 

 The results of the NNR reactions summarized in Table 14 (page 46) are shown 

graphically as an energy diagram in Figure 24.  The light scattering data shown in Tables 
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15 & 16 demonstrate that vesicles used in these NNR reactions were stable over the 

timeframe of the experiments.  The results shown in Figure 24 can be readily interpreted 

if one considers two factors: the favorable interactions between cholesterol and 

phospholipids (or lipidated peptides) that develop in the lo phase, and unfavorable 

interactions that result from poor packing of kinked acyl chains in a planar bilayer.  In 

explaining the trends observed in these energy levels, it is important to keep in mind that 

our experimental values of ωAB do not represent absolute energies for the interactions 

between A and B.  Rather, they are a measure of the difference in energy associated with 

hetero-interactions and the average of the homo-interations.  The nearest neighbor 

interaction energy, ωAB is thus defined by Equation 3, where ɛAB represents the contact 

(nearest-neighbor) interactions between lipids A and B. 

 

         eq. 3 

 

 Let us first consider the phospholipid-cholesterol and peptide-cholesterol 

interactions.  In all cases, the lipid-sterol interactions become more favorable (i.e. AB 

decreases) upon going from ld to lo.  This favorable interaction between rigid planar 

sterols and condensed acyl chains is characteristic of the liquid ordered phase.  Within 

experimental error, the interactions of the two peptides with cho are identical.  While the 

mixing of cho and 16PL is close to ideal in the ld phase, the mixing of cho with either 

peptide favors homo-association in the same phase.  This greater (more positive) value of 

AB for the peptides relative to 16PL carries over to the lo phase, although in that phase 

all values of AB are negative.  The greater preference for hetero-association in cho-16PL 
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interactions (relative to cho-Pep interactions) in both phases is most likely a consequence 

of poor interactions between cho and the acyl chains of the peptides, which are farther 

apart, and thus more disordered, than those on the phospholipids. 

 
Figure 24: Energy diagram showing the nearest-neighbor interaction free energies, ωAB, for various pair of 

lipids and lipidated peptides in the lo phase (left) and the  ld phase (right), separated into peptide-cholesterol 

(Pep-Chol), cholesterol-phospholipid (Chol-PL) and peptide-phospholipid (Pep-PL) interactions 

 

In considering the peptide-phospholipid interactions, the most dramatic trend is 

the large difference between Pep1 and Pep2 associating with 16PL.  The mixing of Pep1 

and 16PL is close to ideal in both phases, implying that there are no significant hetero- or 

homo-interactions occurring in either phase.  However, Pep2 shows a strong preference 

for hetero-association with 16PL in both phases.  Since both peptides have the same 

headgroup, this large difference in their interactions with 16PL must arise from the 
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presence of a kink in the acyl chains of Pep2.  In light of the definition of AB, the 

apparent favorable hetero-interaction between Pep2 and 16PL can be explained by a very 

weak homo-association between Pep2 molecules.  Apparently, the permanent kink in the 

acyl chain of Pep2 inhibits efficient acyl chain packing when two Pep2 molecules 

become nearest neighbors, resulting in poor homo-association.  The slightly more 

negative value of AB  that is observed on going from lo to ld can therefore be accounted 

for by poor packing of neighboring Pep2 molecules that becomes better tolerated in a 

disordered matrix. 

Finally, note that unlike the Pep2-16PL interactions, large negative values AB 

are not observed for the Pep2-cho interactions. Based on Equation 3, if the Pep2-Pep2 

homo-interactions are unfavorable (i.e. ɛPep2-Pep2 >0), Pep2-cho interactions must also be 

unfavorable (i.e. ɛPep2-cho >0) in order for Pep2-Cho to be positive in the ld  phase (or close 

to zero in the lo phase).  A careful examination of the energy level diagram in Figure 24 

therefore leads to the conclusion that nearest-neighbor interactions between two 

molecules of Pep2, and also between a molecule of Pep2 interacting with a molecule of 

cho, are especially weak. 

The NNR measurements themselves thus provide new insight into the interaction 

of lipidated peptides with sterols and phospholipids.  Further insight into the interaction 

of the peptides with membranes can be obtained from the Monte Carlo simulations.  As 

shown in Table 18 (page 56), partition coefficients can be calculated from the Monte 

Carlo simulations to quantitatively measure the affinity of Pep1 and Pep2 for the lo phase 

in membranes containing coexisting lo and ld domains.  Pep1 was chosen for these 

experiments because it was expected to strongly favor the liquid ordered phase, based on 
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the presence of two long saturated acyl chains.  However, it was found to have no 

preference for either phase in these simulations (Kp = 1).  As expected, the kinked acyl 

chain on Pep2, gives it a slight preference for ld domains.   

Pep1 is a mimic of a peptide that has previously shown a preference for lo 

domains in model membranes made from DPPC, cholesterol, and POPC.
42

  Such systems 

are known to exhibit phase separation into large domains, in contrast to the small 

transient domains thought to be present in binary mixtures of DPPC and cholesterol.  To 

determine whether domain size is a key parameter in controlling the partitioning of 

lipidated peptides, the Monte Carlo simulations were repeated with 16PL-Cho in the ld 

phase constrained to 400 cal/mol instead of the experimentally determined 40 cal/mol.  

As expected, this lead to large scale phase separation of ld and lo domains (Figure 23D, 

page 55).  However, as shown in Table 18 (page 56), the change in phase behavior did 

not affect the partitioning of either peptide. 

One particularly powerful method of interpreting the NNR data, and the resulting 

partition coefficients, was suggested to us by our collaborator, Prof. Paulo Almeida.  In 

this approach, a “mean-field” approximation is used to represent the differences in 

peptide-phospholipid and peptide-cholesterol interactions experienced by the average 

peptide molecule upon going from the lo to ld domains as a weighted average of the 

measured interaction energies, as shown in Equations 4 and 5 below.  

 

   eq. 4 

   eq. 5 
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In these equations, 
o
 and 

d
 represent the measured nearest neighbor interaction 

energies in the lo and ld phase, respectively, and fc
o
 and fc

d
 are the mole fractions of 

cholesterol in the lo and ld phase.  Note that fc
o
 and fc

d
 do not necessarily add up to one; 

they refer to the percentage of total lipid molecules in each phase that are cholesterol, not 

the percentage of total cholesterol molecules that are in a given phase.  Because each 

lipid has 6 nearest-neighbors in the hexagonal array, the partition coefficient can be 

expressed in terms of Δ as shown in Equation 6. 

 

                                                          eq. 6 

 

The only variables in Equations 4, 5, and 6 are the AB values (which are 

experimentally determined in the NNR reactions) and fc
o
 and fc

d
.  Therefore, the partition 

coefficient can be calculated directly from the experimental AB values, if the mole 

fractions of cholesterol in each phase are known.  Based on the experimental AB values 

and the Kp values of 1.0 and 0.46 for Pep1 and Pep2, respectively (as determined by 

Monte Carlo simulation), the mole fractions of cholesterol in the lo and ld regions can be 

calculated to be fc
o
 = 0.36 and fc

d
 = 0.08.  These values are reasonable, given a 

cholesterol content of 20 mol% in the host membrane and the phase diagram for 

DPPC/cholesterol.
50 

Thus, NNR measurements can be used to determine the partition 

coefficients of other lipidated peptides in future experiments  without the need for further 

Monte Carlo simulations by using these values of fc
o
 and fc

d
, and Equations 4, 5, and 6, 

provided that the same host membranes are used. 
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2.5 Conclusions 

The existence of lipid rafts in live cells, and as the role that lipid rafts may play in 

sorting of peripheral proteins remain controversial subjects.  While techniques such as 

detergent resistance assays, fluorescence microscopy in GUV’s, and AFM have been 

used to qualitatively gauge the partitioning of peripheral proteins into putative lipid rafts, 

these techniques suffer from several drawbacks and have largely been applied to specific 

proteins without regard to the more basic questions of what structural elements are key to 

lipid sorting on a molecular level.  The studies presented here represent a new approach 

to the study of lipid sorting, which is unique in its ability to provide a quantitative, 

molecular level view of lipid sorting while probing domains of any size. 

Nearest Neighbor Recognition experiments applied to lipidated peptides Pep1 (a 

lipidated peptide based on the motif [(myristoyl)GlyCys(palmitoyl)Gly]) and Pep2  (a 

similar peptide bearing a permanent kink in its 14 carbon chain) revealed that the 

interactions of both peptides with sterols and phospholipids were roughly similar, but the 

behavior of Pep2 was largely dictated by poor packing of its kinked acyl chain in the 

planar bilayer.  Interactions of Pep2 molecules with cholesterol molecules, as well as 

with other molecules of Pep2, were found to be especially weak.  The use of these NNR 

measurements in Monte Carlo simulations revealed that in membranes containing 

coexisting lo and ld domains, Pep1 partitions randomly between both phases, while Pep2 

has a slight affinity for disordered domains.  These results are qualitatively similar to 

those previously reported by Silvius et al. using similar peptides.
42

 The observed 

partitioning coefficients were found to be independent of the size of the domains. 
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NNR measurement of nearest neighbor interaction energies, coupled with Monte 

Carlo simulation, provides a powerful new tool for measuring the partitioning of 

peripheral proteins between domains.  This technique is unique in its ability to generate a 

quantitative partition coefficient without reliance on artificially large domains in model 

systems. 

All of the variables in this study, including the choice of peptides, host 

membranes and reaction conditions, were anticipated to produce a marked affinity for the 

lo phase (Kp > 1).  The fact that Pep1 did not exhibit such an affinity therefore suggests 

that the sorting of lipidated peripheral proteins based on the interaction of their 

hydrophobic anchors with the host membrane is less important than previously suggested, 

and that other factors, such as hydrogen bonding or specific protein-protein interactions 

may play a larger role in directing of peripheral proteins into lipid rafts. 

Recent findings by Triffo et al. support the conclusion that that specific protein-

protein or protein-lipid interactions may play a greater role in lipid sorting than sorting 

based on the packing of their hydrophobic anchors into phase separated membrane 

domains.  Using an FCS technique called pulsed-interleaved excitation fluorescence 

cross-correlation spectroscopy (PIE-FCCS) in live cells, Triffo et al. observed the 

presence of two orthogonally composed membrane domains containing different lipid-

anchored membrane proteins, as well as additional anchored proteins distributed evenly 

about the cell surface.
68  

This level of complexity cannot be accounted for by sorting of 

proteins into lipid rafts by the packing of their fatty acid anchors.  Instead, Triffo et al. 

favor a model in which, “lipid-anchored fluorescent proteins partition into pre-existing 
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clusters that are primarily defined by specific protein-protein and protein-lipid 

interactions among native cell membrane proteins.”
 68

      

Now that the applicability of NNR and Monte Carlo simulations to the problem of 

measuring protein partitioning has been demonstrated, future work will involve the 

modification of this technique to allow the observation of molecular level interactions in 

a system that more closely mimics a biological membrane.  Sphingomyelin, a lipid which 

has been shown to be a major component of lipid rafts in mammalian membranes, is of 

particular interest because the amide and hydroxyl groups in its headgroup could have 

significant hydrogen bonding interactions with peptides.  Such hydrogen bonding 

interactions are not accounted for in DPPC/cholesterol host membranes.  Performing 

NNR reactions in host membranes containing sphingomyelin (or a sphingomyelin mimic 

lacking a C-C double bond) could be used to assess the role of protein-lipid hydrogen 

bonding in lipid sorting. 

Additionally, future experiments will involve the application of this technique to a 

wide variety of other peptides, in order to gain further insight into the structural elements 

necessary for effective peptide partitioning into lo domains.  Peptides with different 

spacing between chains, different chain lengths, and multiple unsaturations will all be 

considered.  In addition, work on extending this technique to transmembrane peptide 

domains will also be considered. 
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CHAPTER 3 

Cholesterol’s Condensing Effect 

 

3.1 Background 

Cholesterol’s condensing effect, defined as its ability to decrease the apparent 

molecular area occupied by fluid phase lipids, has been known for nearly a century.
69

 

This effect is typically observed in monolayer experiments at the air-water interface.
70-72

  

Despite the fact that the condensing effect presumably plays a large role in defining the 

structure of mammalian cell membranes (which are rich in both cholesterol and low-

melting lipids), the molecular mechanism giving rise to lipid condensation is poorly 

understood.   

The most widely accepted mechanism is the “umbrella model,” proposed by 

Huang and Feigenson, in which the condensing effect is driven by the need for the 

relatively hydrophobic cholesterol molecule to fit underneath the phospholipid 

headgroups in order to minimize contact with water.  In order to accommodate the 

cholesterol underneath the headgroups, the lipid acyl chains must, “become more tightly 

packed as cholesterol content increases, because they share limited space under 

phospholipid headgroups.”
73  

This umbrella model is based on an effort at developing a theoretical model to 

account for the experimental observation that the maximum solubility of cholesterol in 

phosphatidylcholine (PC) membranes is 66 mol%, while the maximum solubility in 

phosphatidylethanolamine (PE) membranes is 51%.
74  

A model of phospholipid-



 

66 

cholesterol interaction must therefore account for solubility limits close to 

cholesterol/phospholipid mole ratios of both 2:1 and 1:1.  Using Monte Carlo simulations 

to visualize membrane organization and calculate the chemical potential of cholesterol 

molecules in a simulated bilayer matrix, Huang and Feigenson observed that the only 

models which can produce sharp increases in chemical potential (which is necessary for 

cholesterol insolubility to occur) at both of the expected mole ratios are models which 

include increasingly steep energy penalties for multiple cholesterol molecules 

neighboring the same phospholipid.
73

  In other words, the experimentally observed 

cholesterol solubility can be accounted for only in models in which phospholipid-

cholesterol interactions become increasingly unfavorable with each additional cholesterol 

molecule contacting a given sterol.  Such unfavorable interactions would arise in the case 

of an umbrella model, where the first cholesterol molecule neighboring a phospholipid is 

able to comfortably fit beneath the head group, but additional sterols are increasingly 

crowded out and exposed to water. 

Work in the Regen group has lead to the proposal of an alternate mechanism to 

explain the condensing effect.  This mechanism, which we call the “template model,” is 

based on the finding that NNR reactions carried out using the exchangeable dimer {cho-

14PL} (Figure 25), showed random mixing (i.e. K=4.0) across a range of cholesterol 

concentrations, while hetero-association (i.e. K>4.0) occurred for dimers {cho-16PL} 

and {cho-18PL} at physiologically relevant cholesterol concentrations.
55 

This favorable 

interaction between sterol and phospholipid acyl chains suggests a “template mechanism” 

for the condensing effect, in which, “the uncoiling of the phospholipids is driven by 

hydrophobic interactions between their acyl chains and the rigid hydrophobic framework 
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of neighboring sterols.”
55

  The observed differences between the K of these three dimers 

suggest that the condensing effect is greatest when the acyl chain is long enough to 

complement, perfectly, the planar sterol core of cholesterol, thus maximizing 

hydrophobic contact. 

 
Figure 25: Exchangeable lipids {cho-14PL}, {cho-16PL}, and {cho-18PL} 

 

Building upon this earlier work, the goal of the studies reported herein was to 

distinguish between the umbrella and template mechanisms for cholesterol’s condensing 

effect by probing the interactions of cholesterol, and related structural analogs, with 

phospholipids using NNR. 
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3.2 Experimental Design 

  To differentiate between the “umbrella” and “template” models, we investigated 

the effects of coprostanol (Figure 26), a sterol that occupies a larger surface area in the 

monolayer state than cholesterol, due to the cis fusion of its A and B rings.
72

 As depicted 

in Figure 27, a careful consideration of the template and umbrella models reveals that the 

two models differ in their predictions about the relative condensing power of coprostanol.  

By a template model, one would expect coprostanol to have a poor condensing effect, as 

it lacks the planar structure necessary to maximize hydrophobic contact with fully 

extended acyl chains.  The umbrella model, however, would predict a stronger 

condensing effect for coprostanol than for cholesterol, since coprostanol’s larger surface 

area would require tighter packing of the acyl chains in order for the sterol to fit 

completely under the headgroup.  Thus, a quantitative comparison of the condensing 

effects of these two sterols should distinguish between an umbrella and a template model. 

 

cholesterol

HO

dihydrocholesterol

HO

HO coprostanol  
Figure 26: Structures of coprostanol, cholesterol, and dihydrocholesterol  
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Figure 27: Cartoon depicting the “template” and “umbrella” models of cholesterol’s condensing effect, and 

the predicted condensing effect of coprostanol 

 

 Dihydrocholesterol, which has a cross sectional area similar to cholesterol, but 

like coprostanol, lacks a double bond, would be expected to have a similar condensing 

effect to cholesterol based on both a template and umbrella model.  It can be used to 

verify that the presence of a double bond is not crucial to cholesterol’s condensing effect.  

 Previous efforts to compare the condensing effects of these sterols have had 

contradictory results.  Previous NNR studies aimed at measuring the effects of a variety 

of sterols on the interaction of two exchangeable phospholipid mimics were unable to 

measure any difference between cholesterol and coprostanol.
75 

 Monolayer experiments 

have found that dihydrocholesterol has a similar condensing effect to cholesterol,
72,76

 

while coprostanol does not have a strong condensing effect, and fails to induce the 

formation of coexisting fluid phases.
72,77

 It is not clear, however, whether these 
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monolayer measurements are relevant to biological systems.  An unambiguous measure 

of the condensing effect of coprostanol in a bilayer is necessary to clearly distinguish 

between the “template” and “umbrella” models of cholesterol’s condensing effect. 

To measure the condensing effect of these three sterols, we used NNR as a 

chemical sensor (see Section 1.2) to measure the effect that replacing cholesterol with 

coprostanol or dihydrocholesterol has on the compactness of the bilayer.  It has been 

previously shown that NNR reactions carried out using 2.5 mol %  each of cho and 16PL 

in host membranes made of non-exchangeable lipids (i.e. DPPC and cholesterol) can act 

as a “chemical sensor” to detect changes in the organization of the host membrane, with 

K increasing sharply as the host membrane becomes more condensed.
19

  To assess the 

relative condensing power of cholesterol, dihydrocholesterol, and coprostanol, 

experiments were thus carried out using NNR reactions to measure the compactness of 

host membranes containing each of the three sterols.  Specifically, thiolate-disulfide 

equilibration reactions were carried out at 45 
o
C in liposomes (∼200 nm) made from 

DPPC/cholesterol/X/cho/16PL (here, X is coprostanol or dihydrocholesterol) having the 

following mole percentages: (a) 57.5/37.5/0/2.5/2.5, (b) 57.5/27.5/10/2.5/2.5, (c) 

57.5/17.5/20/2.5/2.5, and (d) 57.5/0/37.5/2.5/2.5.  

In a complementary set of experiments, studies aimed at directly measuring the 

interactions of several sterols with phospholipids by conducting NNR reactions using 

exchangeable analogs of coprostanol and dihydrocholesterol (among other sterols) were 

performed.  The results of these experiments are discussed in Appendix 1. 

 Prior to performing NNR experiments, it was necessary to show that replacement 

of cholesterol with dihydrocholesterol or coprostanol does not alter the phase properties 
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of the membranes, i.e. to verify that all membranes used in these studies are in the liquid 

ordered phase.  To do so, fluorescence measurements were carried out using the phase 

sensitive probe Laurdan (Figure 26).  Laurdan generalized polarization (GP), given by 

GP = (I440-I490)/(I440+I490) where I440 and I490 are the fluorescence emission intensity at 

440 and 490 nm (λex=350 nm), is highly sensitive to the polarity of the immediate 

environment of the probe.
78 

 Because a less compact membrane allows deeper penetration 

of water into the hydrophobic core, GP can be considered a measure of membrane 

compactness.  Plots of GP as a function of temperature therefore reveal phase transitions 

as sharp changes in GP.  

 
Figure 28: The structure of Laurdan 

 

3.3 Results
79 

3.3.1  Laurdan Fluorescence Polarization Results 

Laurdan generalized polarization measurements were used to examine the phase 

transition properties of liposomes containing cholesterol, coprostanol, and 

dihydrocholesterol.  The results of these experiments are shown in Table 19, and plotted 

in Figure 29. 
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2.5 mol% Chol. 

95 mol% DPPC 

2.5 mol% DPPG 

40 mol% Chol. 

57.5 mol% DPPC 

2.5 mol% DPPG 

20 mol% Cop. 

20 mol% Chol. 

57.5 mol% DPPC 

2.5 mol% DPPG 

T (C) GP T (C) GP T (C) GP 

24.7 0.49 30.5 0.49 29.8 0.48 

27.7 0.49  34.5 0.47 33.4 0.45 

34.5 0.45 37.9 0.45 37.6 0.41 

38.0 0.41 40.3 0.44 39.6 0.39 

39.9 0.28 42.3 0.43 41.5 0.36 

41.9 0.02 44.5 0.40 43.5 0.33 

44.1 -0.05 46.4 0.39 45.9 0.31 

46.1 -0.10 50.2 0.34 49.6 0.25 

49.9 -0.17 54.4 0.30 54.0 0.19 

54.4 -0.22     

 

37.5 mol% Cop. 

2.5 mol% Chol. 

57.5 mol% DPPC 

2.5 mol% DPPG 

20 mol% Dihydro. 

20 mol% Chol. 

57.5 mol% DPPC 

2.5 mol% DPPG 

37.5 mol% 

Dihydro. 

20 mol% Chol. 

57.5 mol% DPPC 

2.5 mol% DPPG 

T (C) GP T (C) GP T (C) GP 

29.6 0.43 29.7 0.49 30.0 0.48 

33.4 0.37 33.4 0.47 33.4 0.47 

37.7 0.31 37.2 0.45 37.4 0.45 

39.6 0.28 39.5 0.44 39.4 0.43 

41.4 0.25 41.4 0.42 41.5 0.41 

43.5 0.21 43.4 0.40 43.9 0.39 

45.8 0.18 45.8 0.38 45.7 0.37 

49.7 0.12 49.3 0.34 49.7 0.32 

53.8 0.06 54.5 0.28 54.5 0.27 

      

Table 19: Laurdan GP values for all liposomes investigated in this study 
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Figure 29:  Plot of generalized polarization versus temperature for liposomes made from the following 

molar percentages of lipids: (○) DPPC/DPPG/cholesterol 95/2.5/2.5; (■) DPPC/DPPG/cholesterol 

57.5/2.5/40; (□) DPPC/DPPG/cholesterol/dihydrocholesterol 57.5/2.5/2.5/37.5; and (▲) 

DPPC/DPPG/cholesterol/coprostanol 57.5/2.5/2.5/37.5 

 

 

3.3.2  Results of NNR Experiments  
 

 In order to measure the condensing effects of cholesterol, coprostanol, and 

dihydrocholesterol, NNR reactions using {cho-16PL} were carried out in host 

membranes containing these three sterols.  Specifically, NNR reactions were carried out 

in liposomes made from DPPC/cholesterol/X/cho/16PL (here, X is coprostanol or 

dihydrocholesterol) having the following mole percentages: (a) 57.5/37.5/0/2.5/2.5, (b) 

57.5/27.5/10/2.5/2.5, (c) 57.5/17.5/20/2.5/2.5, and (d) 57.5/0/37.5/2.5/2.5. The results of 

the reactions containing only cholesterol (i.e. composition a) are shown in Section 2.3.4.  

The results for the other NNR reactions are shown in Tables 20-25, and summarized in 

Table 26 and Figure 30.  In addition, DLS measurements of the size of the vesicles before 

and after NNR reactions for all of the experiments reported here are presented Table 27.  

Unless stated otherwise, aldrithiol-2 was not used in the preparation of samples for HPLC 
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analysis for all NNR reactions reported in this chapter (see Section 5.2 for a discussion of 

the sample preparation procedure). 

 

 

 

 

Reaction 

Reaction 

Time (h) 

 

Dimer 

 

RT (min) 

Peak 

Area 

 

N (nmol) 

 

K 

  {16PL-16PL} 11.46 1601680 3.35  

1 12 {cho-16PL} 17.75 5902559 11.09 9.80 

  {cho-cho} 34.20 2306896 3.74  

  {16PL-16PL} 11.94 1410612 2.95  

1 16 {cho-16PL} 17.81 5240497 9.85 9.75 

  {cho-cho} 34.24 2084317 3.37  

  {16PL-16PL} 11.48 1429628 2.99  

1 18 {cho-16PL} 17.80 5316417 9.99 9.71 

  {cho-cho} 34.25 2123605 3.43  

  {16PL-16PL} 11.68 1471351 3.08  

1 20 {cho-16PL} 18.11 5385209 10.12 9.86 

  {cho-cho} 34.68 2086570 3.37  

  {16PL-16PL} 11.73 1424513 2.98  

1 22 {cho-16PL} 18.15 5317250 9.99 10.11 

  {cho-cho} 34.76 2051154 3.31  

Table 20:  Data for {cho-16PL} equilibration in 10 mol% dihydrocholesterol + 30 mol% cholesterol 

LUVs at 45 C using 0.8 equivalents of DTT 
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Reaction 

Reaction 

Time (h) 

 

Dimer 

 

RT (min) 

Peak 

Area 

 

N (nmol) 

 

K 

  {16PL-16PL} 11.52 1469550 3.07  

1 12 {cho-16PL} 17.85 5465099 10.27 10.28 

  {cho-cho} 34.29 2064445 3.33  

  {16PL-16PL} 11.54 1403782 2.94  

1 16 {cho-16PL} 17.88 5389636 10.13 10.90 

  {cho-cho} 34.32 1986468 3.20  

  {16PL-16PL} 11.56 1295224 2.71  

1 18 {cho-16PL} 17.93 4927691 9.26 10.55 

  {cho-cho} 34.39 1865654 3.00  

  {16PL-16PL} 11.75 1346208 2.82  

1 20 {cho-16PL} 18.21 5094228 9.57 10.47 

  {cho-cho} 34.84 1930263 3.11  

  {16PL-16PL} 11.77 1389339 2.91  

1 22 {cho-16PL} 18.24 5321970 10.00 10.40 

  {cho-cho} 34.86 2049025 3.31  

  {16PL-16PL} 12.39 1294856 2.71  

2 12 {cho-16PL} 18.91 4456470 8.38 10.12 

  {cho-cho} 35.02 1606156 2.56  

  {16PL-16PL} 12.44 1198310 2.51  

2 16 {cho-16PL} 18.94 4531307 8.52 10.89 

  {cho-cho} 35.13 1662635 2.66  

  {16PL-16PL} 12.51 1086150 2.27  

2 18 {cho-16PL} 19.04 3947165 7.42 10.32 

  {cho-cho} 35.16 1480360 2.35  

  {16PL-16PL} 12.47 1165140 2.44  

2 20 {cho-16PL} 19.03 4271552 8.03 10.52 

  {cho-cho} 35.27 1578928 2.51  

  {16PL-16PL} 12.54 1206262 2.52  

2 22 {cho-16PL} 19.13 4489306 8.44 10.34 

  {cho-cho} 35.39 1705564 2.73  

Table 21:  Data for {cho-16PL} equilibration in 20 mol% dihydrocholesterol +20 mol% cholesterol LUVs 

at 45 C using 0.8 equivalents of DTT (Reactions 1 and 2) 
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Reaction 

Reaction 

Time (h) 

 

Dimer 

 

RT (min) 

Peak 

Area 

 

N (nmol) 

 

K 

  {16PL-16PL} 11.60 1524225 3.19  

1 12 {cho-16PL} 17.67 5521821 10.37 9.96 

  {cho-cho} 34.49 2095396 3.39  

  {16PL-16PL} 11.63 1469070 3.07  

1 16 {cho-16PL} 18.01 5430197 10.20 10.03 

  {cho-cho} 34.54 2089208 3.38  

  {16PL-16PL} 11.65 1341503 2.81  

1 18 {cho-16PL} 18.05 4959354 9.32 10.20 

  {cho-cho} 34.56 1886607 3.03  

  {16PL-16PL} 11.80 1339188 2.80  

1 20 {cho-16PL} 18.30 5047761 9.48 10.50 

  {cho-cho} 34.95 1900478 3.06  

  {16PL-16PL} 11.83 1402618 2.93  

1 22 {cho-16PL} 18.33 5295436 9.95 10.30 

  {cho-cho} 34.98 2030087 3.28  

  {16PL-16PL} 12.58 1480248 3.10  

2 12 {cho-16PL} 19.17 5084391 9.55 9.47 

  {cho-cho} 35.52 1932633 3.11  

  {16PL-16PL} 12.64 1443352 3.02  

2 16 {cho-16PL} 19.25 4828211 9.07 9.73 

  {cho-cho} 35.68 1749254 2.80  

  {16PL-16PL} 12.71 1392584 2.91  

2 18 {cho-16PL} 19.35 4782586 8.99 9.40 

  {cho-cho} 35.78 1837066 2.95  

  {16PL-16PL} 12.76 1284733 2.69  

2 20 {cho-16PL} 19.45 4450752 8.37 9.73 

  {cho-cho} 35.82 1675237 2.68  

  {16PL-16PL} 12.86 1274545 2.67  

2 22 {cho-16PL} 19.60 4497639 8.45 9.46 

  {cho-cho} 36.09 1766848 2.83  

Table 22:  Data for {cho-16PL} equilibration in 37.5 mol% dihydrocholesterol + 2.5 mol% cholesterol 

LUVs at 45 C using 0.8 equivalents of DTT (Reactions 1 and 2) 
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Reaction 

Reaction 

Time (h) 

 

Dimer 

 

RT (min) 

Peak 

Area 

 

N (nmol) 

 

K 

  {16PL-16PL} 11.69 1434498 3.00  

1 11 {cho-16PL} 17.98 4673266 8.78 8.67 

  {cho-cho} 34.00 1845606 2.96  

  {16PL-16PL} 11.70 1333931 2.79  

1 11 {cho-16PL} 18.02 4366326 8.21 9.17 

  {cho-cho} 33.95 1648698 2.63  

  {16PL-16PL} 11.45 1142870 2.39  

1 24 {cho-16PL} 17.65 3762546 7.08 8.35 

  {cho-cho} 33.45 1575830 2.51  

  {16PL-16PL} 11.46 1203087 2.52  

1 24 {cho-16PL} 17.68 3859021 7.26 8.21 

  {cho-cho} 33.44 1599076 2.55  

  {16PL-16PL} 11.48 1104068 2.31  

1 24 {cho-16PL} 17.71 3581069 6.74 8.61 

  {cho-cho} 33.50 1440967 2.28  

Table 23:  Data for {cho-16PL} equilibration in 10 mol% coprostanol + 30 mol% cholessterol LUVs at 45 

C using 0.8 equivalents of DTT (Reaction 1) 

 

 

 

 

 

Reaction 

Reaction 

Time (h) 

 

Dimer 

 

RT (min) 

Peak 

Area 

 

N (nmol) 

 

K 

  {16PL-16PL} 11.75 1676350 3.51  

1 11 {cho-16PL} 18.10 4963874 9.33 7.76 

  {cho-cho} 34.15 1983472 3.20  

  {16PL-16PL} 11.78 1447176 3.03  

1 11 {cho-16PL} 18.17 4285756 8.06 7.76 

  {cho-cho} 34.20 1725175 2.76  

  {16PL-16PL} 11.49 1337467 2.80  

1 24 {cho-16PL} 17.72 4010051 7.54 7.36 

  {cho-cho} 33.58 1723571 2.76  

  {16PL-16PL} 11.51 1198242 2.51  

1 24 {cho-16PL} 17.75 3860281 7.26 7.94 

  {cho-cho} 33.54 1657473 2.65  

  {16PL-16PL} 11.51 1340493 2.80  

1 24 {cho-16PL} 17.77 3927432 7.39 7.04 

  {cho-cho} 33.60 1726541 2.76  

Table 24:  Data for {cho-16PL} equilibration in 20 mol% coprostanol + 20 mol% cholessterol LUVs at 45 

C using 0.8 equivalents of DTT (Reaction 1) 
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Reaction 

Reaction 

Time (h) 

 

Dimer 

 

RT (min) 

Peak 

Area 

 

N (nmol) 

 

K 

  {16PL-16PL} 11.85 1584328 3.31  

1 11 {cho-16PL} 18.26 4392543 8.26 6.26 

  {cho-cho} 34.38 2034700 3.28  

  {16PL-16PL} 11.89 1539091 3.22  

1 11 {cho-16PL} 18.31 4452380 8.37 6.50 

  {cho-cho} 34.49 2072355 3.35  

  {16PL-16PL} 11.56 1154686 2.42  

1 24 {cho-16PL} 17.82 3451893 6.49 6.76 

  {cho-cho} 33.64 1618854 2.58  

  {16PL-16PL} 11.58 1222506 2.56  

1 24 {cho-16PL} 17.84 3518862 6.62 6.43 

  {cho-cho} 33.63 1667751 2.66  

  {16PL-16PL} 11.58 1152432 2.41  

1 24 {cho-16PL} 17.86 3374288 6.35 6.65 

  {cho-cho} 33.69 1577475 2.51  

  {16PL-16PL} 11.02 1321171 2.76  

2* 12 {cho-16PL} 16.58 3666276 6.90 6.28 

  {cho-cho} 29.60 1713162 2.74  

  {16PL-16PL} 11.03 1436579 3.01  

2* 12 {cho-16PL} 16.60 3939125 7.41 6.27 

  {cho-cho} 29.60 1814543 2.91  

  {16PL-16PL} 11.06 1354891 2.83  

2* 20 {cho-16PL} 16.66 3629825 6.83 6.03 

  {cho-cho} 29.64 1705493 2.73  

  {16PL-16PL} 11.07 1330245 2.78  

2* 20 {cho-16PL} 16.67 3611131 6.79 6.01 

  {cho-cho} 29.67 1723725 2.76  

  {16PL-16PL} 11.10 1403508 2.94  

2* 20 {cho-16PL} 16.71 3712769 6.98 6.05 

  {cho-cho} 29.72 1714081 2.74  

Table 25:  Data for {cho-16PL} equilibration in 37.5 mol% coprostanol + 2.5 mol% cholessterol LUVs at 

45 C using 0.8 equivalents of DTT (Reactions 1and 2). *
 
Aldrithiol-2 (8 equivalents relative to DTT) was 

included in the HPLC sample preparation 

 

 

 

% dihydro. % coprostanol % cholesterol K AB (cal/mol) 

0 0 40 9.8 ± 0.5 -282 ± 15 

10 0 30 9.9 ± 0.2 -284 ± 5 

20 0 20 10.5 ± 0.3 -304 ± 8 

37.5 0 2.5 9.9 ± 0.4 -286 ± 12 

0 10 30 8.6 ± 0.4 -243 ± 14 

0 20 20 7.6 ± 0.4 -203 ± 15 

0 37.5 2.5 6.3 ± 0.3 -145 ± 13 

Table 26:  Summary of {cho-16PL} equilibration in the presence of varying amounts of cholesterol, 

coprostanol, and dihydrocholesterol.  Exchangeable lipid cho is included in the % cholesterol 
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Figure 30: Bar graph showing K in liposomes containing (i) 40/0, (ii) 30/10, (iii) 20/20, (iv) 2.5/37.5 mole 

percentages of cholesterol/coprostanol and (v) 30/10, (vi) 20/20, and (vii) 2.5/37.5 mol percentages of 

cholesterol/dihydrocholesterol.  Here, cho is included in the cholesterol count.  Error bars represent one 

standard deviation 

 

 

 

mol% 

dihydro 

mol% 

cop 

mol% 

cho 

Time  

(h) 

Diam. 

(nm) 

10 0 30 0 186.3 ± 61.5 

10 0 30 22 182.9 ± 49.4 

20 0 20 0 188.3 ± 33.9 

20 0 20 22 190.9 ± 61.1 

20 0 20 0 179.2 ± 57.3 

20 0 20 22 183.6 ± 44.1 

37.5 0 2.5 0 188.9 ± 64.2 

37.5 0 2.5 22 188.6 ± 60.4 

37.5 0 2.5 0 175.3 ± 29.8 

37.5 0 2.5 22 182.5 ± 74.8 

0 10 30 0 162.9 ± 60.3 

0 10 30 24 166.6 ± 43.3 

0 20 20 0 181.2 ± 34.4 

0 20 20 24 177.2 ± 40.8 

0 37.5 2.5 0 178.6 ± 57.2 

0 37.5 2.5 24 172.0 ± 60.2 

0 37.5 2.5 0 169.2 ± 52.5 

0 37.5 2.5 20 168.1 ± 55.5 

Table 27: DLS data for vesicles before and after NNR reactions. Monomodal size distribution was 

observed in all cases 
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3.4 Discussion 

 The aim of the studies presented in this chapter was to distinguish between two 

competing models of cholesterol’s condensing effect; the “template” and “umbrella” 

models.  To do so, we investigated the condensing effects of cholesterol, 

dihydrocholesterol, and coprostanol using NNR as a chemical sensor to measure the 

compactness of a host membrane in which cholesterol has been replaced with 

dihydrocholesterol or coprostanol.  By a template model, one would expect coprostanol 

to have a poor condensing effect, as it lacks the planar structure necessary to maximize 

hydrophobic contact with fully extended acyl chains.  The umbrella model, however, 

would predict a stronger condensing effect for coprostanol than for cholesterol, since 

coprostanol’s larger surface area would require tighter packing of the acyl chains in order 

for the sterol to fit completely under the headgroup.  Thus, a quantitative comparison of 

the condensing effects of these two sterols should distinguish between an umbrella and a 

template model.  Dihydrocholesterol, which has a cross sectional area similar to 

cholesterol, but like coprostanol, lacks a double bond, would be expected to have a 

similar condensing effect to cholesterol based on both a template and umbrella model, but 

will be used to verify that the presence of a double bond is not crucial to cholesterol’s 

condensing effect.   

Prior to measuring the condensing effect of these sterols, it was necessary to 

verify that replacement of cholesterol with dihydrocholesterol or coprostanol does not 

change the phase transition properties of the membrane, i.e. to make sure the host 

membrane for all NNR experiments will be in the lo phase.  To do so, the effects of 

cholesterol, dihydrocholesterol, and coprostanol on DPPC based liposomes were first 
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examined using the phase sensitive probe, Laurdan.  Laurdan fluorescence, as measured 

by its generalized polarization (GP) where GP = (I440-I490)/(I440+I490) and I440 and I490 are 

the emission intensities at these wavelengths (λex = 350 nm), is highly dependent on the 

polarity of its microenvironment.  A higher GP measurement is indicative of a less polar 

microenvironment around the Laurdan molecule, and therefore less penetration of water 

into the hydrophobic core and a more tightly packed membrane.  As shown in Figure 29 

(page 73), a DPPC based liposome containing 2.5% cholesterol (open circles) exhibits a 

sharp decrease in GP near the DPPC phase transition temperature of ~41 
o
C.  A liposome 

containing 40% cholesterol (filled squares) shows a gradual decline in GP as temperature 

increases, showing the presence of a lo phase across all temperatures.  Liposomes 

containing 40% dihydrocholesterol or 40% coprostanol (open squares and filled triangles, 

respectively) also show similar “lo-like” profiles, indicating that the replacement of 

cholesterol with dihydrocholesterol or coprostanol does not alter the phase properties of 

the membrane.  The coprostanol containing liposomes, however, have significantly lower 

GP values than either of the other sterols, suggesting that coprostanol containing 

membranes are not as tightly packed as those rich in cholesterol or dihydrocholesterol.     

In order to assess the relative condensing power of cholesterol, 

dihydrocholesterol, and coprostanol, experiments were carried out using NNR in its 

“chemical sensor” application to measure the compactness of host membranes containing 

each of the three sterols.  Thiolate-disulfide exchange reactions were carried out at 45 
o
C 

in liposomes made from DPPC/cholesterol/X/cho/16PL (here, X is coprostanol or 

dihydrocholesterol) having the following mole percentages: (a) 57.5/37.5/0/2.5/2.5, (b) 

57.5/27.5/10/2.5/2.5, (c) 57.5/17.5/20/2.5/2.5, and (d) 57.5/0/37.5/2.5/2.5.  The results of 
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these experiments are shown graphically in Figure 30 (page 79).  The incremental 

replacement of cholesterol with coprostanol resulted in a steady decrease in K, indicating 

a decrease in the compactness of the host membrane.  In contrast, replacement of 

cholesterol with dihydrocholesterol did not result in a statistically significant change in K.  

Taken together, the results of these NNR experiments show that while cholesterol and 

dihydrocholesterol have similar condensing effects, coprostanol is a weaker condensing 

agent. 

The Laurdan fluorescence results, which show coprostanol containing bilayers to 

be significantly less compact than bilayers containing cholesterol or dihydrocholesterol, 

combined with the NNR experiments showing coprostanol to be a weaker condensing 

agent than the other sterols, provide compelling evidence that coprostanol’s curved 

structure and large surface area make it a weaker condensing agent than cholesterol.  

These findings agree with previously reported monolayer experiments,
72 

as well as 

similar monolayer experiments conducted in our own laboratoy.
79  

 

3.5 Conclusions 

 The finding that coprostanol is a weaker condensing agent than cholesterol argues 

against the long-held “umbrella model” for cholesterol’s condensing effect, which would 

predict that coprostanol, with its large surface area, would induce greater condensing of 

phospholipid acyl chains in order to accommodate the bulky sterol underneath the 

phospholipid headgroup.  Instead, these results are strong evidence for a “template 

model,” wherein the planar sterol nucleus of cholesterol acts as a template to promote the 

straightening of the acyl chains in order to maximize hydrophobic contact.  Such a model 
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would predict the observed weak condensing effect of coprostanol, as a sterol with a 

curved hydrophobic core could not compliment the acyl chains as perfectly as planar 

cholesterol molecules. 

Other recent findings from our laboratory shed more light on the structural 

features of a sterol necessary for efficient condensing of acyl chains.   Using a similar 

approach to what was reported here for coprostanol, it has been shown that 7β-

hydroxycholesterol (7β-OH, see Figure 31 for structure) has a greater condensing effect 

than cholesterol.
24  

This observation can best be explained if one assumes that 7β-OH 

orients itself in the bilayer in such a way as to expose both hydroxyl groups to water.  

Doing so would require the sterol nucleus of 7β-OH to occupy more space closer to the 

surface of the bilayer.  It has been shown that in fluid bilayers, the phospholipid 

headgroups occupy only about half of the surface area of membrane, with the remainder 

occupied by partially solvated methylene groups of the acyl chains.
80,81  

When cholesterol 

is added to the membrane, some of this excess surface area is occupied by the cholesterol 

hydroxyl group, freeing the acyl chains to penetrate into the hydrophobic core.  A sterol 

like 7β-OH, which occupies more surface area (while still preserving the planar nucleus 

necessary for a template effect), can therefore be expected to condense acyl chains to a 

greater extent than cholesterol. 
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Figure 31: Structure of 7β-OH, 25-OH and “upside down” cholesterol 

 

Further evidence for the importance of surface occupancy comes from NNR 

studies measuring the condensing effects of 25-hydroxycholesterol (25-OH) and “upside 

down” cholesterol (25-OH’ Figure 31).  Using similar methods to those reported here for 

coprostanol and dihydrocholesterol, both of these sterols were found to be weaker 

condensing agents than cholesterol.
27,82

 The hydroxyl groups located on the acyl chain of 

both of these sterols allow them to orient themselves in the membrane with the sterol 

nucleus penetrating deep into the hydrophobic core.  Both of these sterols thus occupy 

less area at the membrane surface than cholesterol, resulting in a weaker condensing 

effect. 

Considering the strong evidence in support of a template effect and the 

importance of surface occupancy, a cohesive mechanism for cholesterol’s condensing 

effect emerges.  Cholesterol’s hydroxyl headgroup occupies area at the membrane 

surface, displacing methylene groups of the phospholipid acyl chains and freeing them to 

make hydrophobic contact with the sterol nucleus.  The planar structure of cholesterol 

then acts as a template to condense the acyl chains.  
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Work towards confirming or refining this template model is ongoing in our 

laboratory.  Specifically, we are interested in measuring the condensing effects of 

demethylated cholesterol.  As shown in Figure 26 (page 68), cholesterol has two methyl 

groups protruding from its sterol core, giving it one “smooth” planar face (the α face) and 

one “bumpy” face (the β face).  Removing these two methyl groups would produce a 

sterol with two planar faces.  From a template model point of view, demethylated 

cholesterol, with two planar faces capable of acting as templates for acyl chain 

condensation, would have a stronger condensing effect than cholesterol.  Recent 

molecular dynamics studies, however, indicate that demethylated cholesterol is not a 

good condensing agent.
83  

Obtaining experimental measurements of the condensing 

effects of demethylated cholesterol will, therefore, be a critical test of the “template” 

model of cholesterol’s condensing effect. 
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Chapter 4 

 

Conclusions 

 The studies presented in this thesis illustrate the potential for NNR to be used to 

probe important biologically relevant problems that were previously difficult to approach.  

Because of the unique ability of Nearest Neighbor Recognition to quantify the molecular 

level interaction energies of membrane components, it is an ideal tool for examining 

basic questions about membrane structure. 

 Chapter 2 of this thesis details the use of NNR to measure the interaction of two 

lipidated peptides, Pep1 and Pep2 with membrane lipids in liquid ordered and liquid 

disordered membranes.  The resulting data were then used in Monte Carlo simulations to 

develop a physical picture of membrane organization in a membrane containing 

coexisting ld and lo domains. From these Monte Carlo simulations, a quantitative partition 

coefficient was calculated to describe the distribution of the peptides in the membrane.  

In addition, it was found that through the use of a mean field approximation, the partition 

coefficients can be calculated directly from the experimental AB measurement without 

the need for Monte Carlo simulations, if the cholesterol content of each phase in the 

membrane is known.  The dipeptide Pep1, with its two saturated acyl chains, was 

expected to exhibit an affinity for lo domains, but was shown to mix ideally in both 

phases.  This finding suggests that interactions between lipid anchors on peripheral 

proteins and the membrane lipids alone are not as important as previously suggested in 

driving lipid sorting, and that some other factor which was not accounted for in our 

model, such as hydrogen bonding or specific protein-protein interactions may play a 
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larger role.  These findings are in agreement with recently reported results from 

fluorescence experiments in live cells which show a level of complexity in lipid sorting 

that cannot be explained by differences in lipid anchor structure alone.
68 

The success of this study in determining quantitative partition coefficients based 

on NNR measurements demonstrated that the combination of NNR experiments and 

Monte Carlo simulations is a powerful new tool for examining lipid sorting.  Among the 

tools commonly used to examine the lateral distribution of membrane proteins, including 

detergent resistance experiments, fluorescence microscopy experiments in GUVs, and 

AFM, this approach is unique in its ability to provide quantitative partition coefficients in 

model systems with domains of any size.  Continued use of this powerful new tool to 

investigate the partitioning of several other peptide motifs will be invaluable in sorting 

out the “ground rules” that dictate how lipidated protein structure dictates partitioning 

between coexisting phases. 

In the third chapter, NNR was applied to a long unsolved mystery of membrane 

biophysics, the origin of cholesterol’s condensing effect.  Despite the fact that cholesterol 

has been known to condense the acyl chains of neighboring phospholipids for nearly a 

century, the molecular mechanism for this biologically important phenomenon remained 

unknown.  By comparing the condensing power of cholesterol to that of two other sterols, 

dihydrocholesterol and coprostanol, we were able to distinguish between the commonly 

held “umbrella model” and an alternative “template model.”  Our findings strongly 

support the template model, in which cholesterol’s planar sterol core acts as a template to 

guide the straightening of the phospholipid acyl chains.  Ongoing work aimed at 
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confirming or refining our understanding of the origin of cholesterol’s condensing effect 

includes an examination of the condensing effect of demethylated cholesterol.   

Taken together, the results presented in this thesis represent novel applications of 

NNR chemistry to develop molecular level understanding of well known, but poorly 

understood, properties of biological membranes.  Nearest Neighbor Recognition is an 

important tool for basic science research into membrane organization, and continues to 

produce valuable insight into important biologically relevant questions.  
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Chapter 5 

 

Experimental 

5.1 General 

Unless stated otherwise, all reagents and chemicals were obtained from Sigma-

Aldrich or VWR and used without further purification.  Boc protected cysteine was 

purchased from Chem Impex International (Wood Dale, IL, USA). 1,2-Dihexadecanoyl-

sn-glycero-3-phosphoethanolamine (DPPE), 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC), and 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG, 

sodium salt) were purchased from Avanti Polar Lipids (Alabaster, AL, USA) and used as 

obtained.  Dithiothreitol and dihydrocholesterol were purchased from Alfa Aesar (Ward 

Hill, MA, USA).  Aldrithiol-2 (2,2’-dipyridyldisulfide) and EDTA 

(ethylenediaminetetraacetic acid) were obtained from Acros (Waltham, MA, USA).  

Coprostanol was obtained from Steraloids, Inc. (Newport, RI, USA).  House-deionized 

water was purified using a Millipore Milli-Q filtering system containing one carbon and 

two ion-exchange stages. 

Silica gel (EMS, silica gel 60) was used for all column chromatographic 

separations. Preparative TLC was done on 1.0 mm EMD silica gel 60 plates purchased 

from VWR.  Analytical TLC was done on EMD silica gel 60 plates or 250 micron 

Analtech silica gel plates purchased from VWR, with detection by a combination of 

sulfuric acid (10% in water), I2, ninhydrin, and UV (254 and 365 nm).   

All 
1
H NMR spectra were recorded on a Bruker Avance 500 MHz instrument.  

Chemical shifts are reported in parts per million relative to residual solvent.  Unless 

stated otherwise (Section 5.3) all mass spectrometry measurements were performed at the 
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University of California, Riverside Mass Spectrometry facility using either an Agilent 

LCTOF high resolution TOF analyzer or a PE Biosystems DE-STR MALDI TOF system. 

 

5.2 Procedures Used for NNR Experiments 

5.2.1 Preparation of Vesicle Dispersion 

Thin films of lipid were prepared by evaporating a chloroform solution containing 

the desired lipids under a stream of argon while rapidly rotating the tube, resulting in a 

thin film uniformly covering the inner surface of the tube up to approximately 1/2 of the 

height of the tube.  Typically, < 2mL of chloroform solution and 13 x 100 mm test tubes 

were used.  For the exact composition of the thin films used for all NNR reactions 

reported in this thesis, see Tables 28 and 29. After drying the thin film overnight under 

reduced pressure (0.4 mm Hg), 2.0 mL of a 10 mM Tris-HCl buffer (10 mM Tris, 150 

mM NaCl, 2 mM NaN3, 1 mM EDTA, pH = 7.4) was added the dried film.  The mixture 

was then vortexed for 30 seconds, incubated for 5 min at 60 °C, vortexed for an 

additional 30 seconds, and incubated for an additional 30 min at 60 °C with intermittent 

vortexing.  The dispersions were then subjected to six freeze/thaw cycles (liquid 

nitrogen/60 °C water bath) and extruded 20 times through a 200 nm pore diameter 

polycarbonate (Nuclepore, Whatman Inc.) filter using argon at a pressure of ~100 psi.  

Host  µmol Pep1       

Membrane or Pep2 µmol cho µmol 16PL µmol DPPC µmol DPPG µmol cholesterol 

lo 0.3 0.3 - 6.6 0.3 4.5 

lo 0.3 - 0.3 6.6 - 4.8 

ld 0.3 0.3 - 11.1 0.3 - 

ld 0.3 - 0.3 11.1 - 0.3 
Table 28: Composition of lipid films used for the preparation of vesicle dispersions for lipid sorting studies 
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    µmol coprostanol 

µmol cho µmol 16PL µmol DPPC µmol cholesterol or dihydro chol. 

0.3 0.3 6.9 4.5 - 

0.3 0.3 6.9 3.3 1.2 

0.3 0.3 6.9 2.1 2.4 

0.3 0.3 6.9 - 4.5 
Table 29: Composition of lipid films used for the preparation of vesicle dispersions for NNR experiments 

including non-exchangeable dihydrocholesterol and coprostanol 

 

5.2.2 NNR Experiments 

An aliquot of the vesicle dispersion (typically 1600 L) was heated to 45 °C, 

oxygen was removed by purging with argon, and thiolate-disulfide interchange reactions 

were initiated by adding dithiothreitol (typically 0.8-1.0 equivalents with respect to 

disulfide content, added as a ~20 mM solution in pH 7.4 Tris buffer ) and sufficient 

amounts of 0.1 M NaOH to bring the pH to 7.4 at 45 C.  Aliquots (250 µL) were 

withdrawn as a function of time. The exchange reactions were quenched by adding 25 µL 

of 8.3 M acetic acid to the test tubes containing these aliquots, vortexing, and quickly 

freezing in liquid nitrogen.  Aliquots were stored at -20 C until HPLC analysis was 

carried out.   

To each thawed aliquot was then added 1000 µL of CHCl3/MeOH (2/1, v/v) and 

aldrithiol-2 (30 µL of a 10 mM solution in CHCl3), the tubes were vortexed, centrifuged, 

and the aqueous phases removed using a Pasteur pipette.  The organic phase was then 

concentrated under reduced pressure using a Savant SVC-100 SpeedVac concentrator 

equipped with a cold trap and vacuum pump (~1 hr at ~ 0.4 torr).  The lipids were then 

dissolved in a mixture of CHCl3 and mobile phase A (see Table 30 for the compositions 

of mobile phases A and B).  For samples containing Pep1 or Pep2, 30 µL of CHCl3 and 
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70 µL of mobile phase were used.  For all other samples, 20 µL of CHCl3 and 80 µL of 

mobile phase were used. 

Mobile Phase Ethanol (mL) Water (mL) hexanes (mL) 

A 76 130 100 

B 77.5 11 11 
Table 30: Composition of mobile phases A & B.  All mobile phases consisted of 10mM n-Bu4NOAc in 

ethanol/water/hexane mixtures given here. 

 

These samples were then analyzed by HPLC using either a Waters Alliance 

HPLC system consisting of a Waters 2690 Separation Module and a Waters 996 

Photodiode Array Detector or a Waters Breeze HPLC system consisting of a Waters 

717plus Autosampler, Waters 1515 Binary Pump, and Waters 2187 Dual λ Absorbance 

Detector.  A 5 µ, 80 Å, 4.6 x 250 mm Ultrasphere ODS C18 column (Hichrom, Reading, 

England ) was used, with a flow rate of 0.9 mL/minute, and 70 µL injections.  The 

column was maintained at 31 °C and the components were monitored at 203 nm. Values 

of K (K=[AB]
2
/([AA][BB])) were calculated from peak areas obtained from the HPLC 

chromatograms using appropriate calibration curves.  NNR reactions using {cho-16PL} 

were analyzed using mobile phase A isocratically.  NNR reactions using {Pep1-cho} or 

{Pep2-cho} were analyzed using mobile phase B isocratically.  The gradient used for the 

analysis of product mixtures from NNR reactions using {Pep1-16PL} or {Pep2-16PL} 

is shown in Table 31. 

time (min) %A %B 

0 100 0 

20 100 0 

30 0 100 

50 0 100 

60 100 0 
Table 31: Gradient used for HPLC analysis of product mixtures containing {Pep1-16PL} or {Pep2-16PL} 
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5.2.3 DLS Measurements 

 

The effect of NNR reactions and vesicle composition on vesicle size was 

investigated using a Nicomp Model 270 Submicron Particle Sizer.  Typically, 60 L 

aliquots were taken from each vessel before and after the exchange reaction.  These 

aliquots were diluted with 400 L of Tris buffer (pH = 7.4) and analyzed at 23 C 

assuming a sample viscosity of 0.9325 centipoise. The photopulse rate was adjusted to 

~300 kHz.  Vesicle size was evaluated through Gaussian analysis. At least 100000 scans 

were performed. 

 

5.3 MALDI Analysis of {Pep1-Pep1} 

 Samples were collected from an NNR reaction of {Pep1-cho} in a lo host 

membrane, following the procedure outlined in Section 5.2.  Samples from this reaction 

were analyzed using the typical HPLC procedure, with tetrabutyl ammonium acetate 

omitted from the mobile phase. From each of seven injections, fractions were collected 

thusly:  two thirty second collections taken at randomly selected times when no peak was 

eluting (these fractions, that are henceforth called baseline, were combined immediately 

after collection), one thirty second collection (peak1) taken as soon as the first of the 

peaks with retention time near 32 minutes began to elute, and one thirty second collection 

(peak2) taken near the end of the elution of the second peak.  All collected fractions were 

taken to dryness under reduced pressure using a Savant SVC-100 SpeedVac concentrator 

equipped with a cold trap and vacuum pump (~1 hr at ~ 0.4 torr).  Each sample was 

dissolved in 100 µL CHCl3.  In addition, a solution of {Pep1-Pep1} in CHCl3 (1.5 

mg/mL) was prepared to use as a standard.  
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An α-cyano matrix (a saturated solution of α-cyano-4-hydroxy cinnamic acid in 

670 µL water, 330 µL acetonitrile, and 1 µL trifluoroacetic acid) was prepared, and 5 µL 

was deposited on a MALDI target plate.  The solvent was evaporated and {Pep1-Pep1} 

standard (1 µL) or a sample of baseline, peak1, or peak2 (5 µL) was deposited on top.  

Samples were analyzed using a Bruker Daltonics MicroFlex MALDI-MS. 

 

5.4 Generalized Polarization Analysis   

Liposomes made from 40/0/0/57.5/2.5, 2.5/0/0/95/2.5, 20/20/0/57.5/2.5, 

2.5/37.5/0/57.5/2.5, 20/0/20/57.5/2.5, and 2.5/0/37.5/57.5/2.5 

cholesterol/coprostanol/dihydrocholeterol/DPPC/DPPG (mol/mol/mol/mol, 12 mol total 

lipid) plus Laurdan (0.5 mol% with respect to total lipid) were prepared from thin lipid 

films using methods similar to those used in NNR experiments (see Section 5.2.1).  

Liposomal dispersions were placed in sealed fluorescence cuvettes and the fluorescence 

of each sample was measured as a function of temperature using a Perkin Elmer LS50B 

Luminescence Spectrometer employing a temperature controlled cell holder.  An 

excitation wavelength of 350 nm was used, along with an excitation slit width of 6.5 nm.  

Fluorescence emissions were recorded from 350 to 600 nm using an emission slit width 

of 6.5 nm.  To correct for light scattering, a vertical polarizer was placed on the excitation 

beam and a horizontal polarizer was placed on the emission beam.  Generalized 

Polarization (GP) values were calculated using the equation:  GP=(I440 - I490)/(I440 + I490), 

where I440 and I490 are fluorescence emission intensities at 440 and 490 nm respectively.  
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5.5 Differential Scanning Calorimetry 

 DSC experiments were performed using one of two procedures.  In the first 

procedure, performed by Professor Paulo Almeida (University of North Carolina, 

Wilmington), suspensions of lipidated peptide samples (heterodimers {Pep1-16PL} and 

{Pep2-16PL}, and Pep2a, the methyl sulfide derivative of Pep2) were prepared by 

hydrating the lipid film at 85-95 °C in buffer, pH 7.5 (10 mM Potassium Phosphate or 20 

mM MOPS, 0.1 mM EGTA, 0.02% NaN3, and 100 mM KCl). Concentrations were 

estimated by weight and (for phosphate-containing dimers) by a modified Bartlett 

phosphate method.
84,85

 The heat capacity of the aqueous suspensions (degassed under 

vacuum of 500 mm Hg for 10 min) was measured using a high sensitivity Nano DSC (TA 

Instruments, New Castle, DE), equipped with 300-mL twin gold capillary cells, under a 

slight pressure (set once to 3 atm). The scan rate was 0.1 °C/min. The DSC curves were 

corrected by baseline subtraction as previously described.
86  

This technique was used to 

obtain the data shown in Section 2.3.5. 

In additional preliminary experiments, performed by Trevor Daly, dispersions of 

{Pep1-16PL} and {Pep2-16PL} (1.56 µmol) were prepared using the procedure 

described in Section 5.2.1.  The resulting dispersions were filtered through glass wool to 

remove any suspended solids.  Several aliquots (10 µL each) of the dispersions were set 

aside for concentration measurement.  The lipid concentration was determined using 

HPLC procedures similar to those used for NNR samples (see Section 5.2.2).  The 

remaining vesicle dispersions were placed in the sample cell of a Microcal MC-2 

Scanning Calorimeter, with TRIS buffer in the reference cell.  Five scans were performed 
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for each sample, with an initial temperature of 10 
o
C, a final temperature of 60

 o
C, a scan 

rate of 30 
o
C/hour, and a resting time of 90 minutes between scans. 

 

5.6 Monte Carlo Simulations  

Monte Carlo simulations were performed by Professor Paulo Almeida (University 

of North Carolina, Wilmington) using the model and methods recently described for 

DPPC/Cholesterol,
67

 with standard Monte Carlo procedures.
87-89

  The lipid membrane 

was represented by a triangular lattice, with skew-periodic boundary conditions, where 

each site is occupied by a phospholipid, a lipidated peptide, or a cholesterol molecule.  

Equilibrium configurations of the lattice were generated using two types of steps:  a non-

nearest-neighbor Kawasaki step,
90

 in which lipids are exchanged by randomly selecting 

partners on the lattice, and a Glauber step,
91 

in which the lipid is switched between gel, ld 

and lo states.
 
Cholesterol is considered to have only one state.  The choice between 

attempted moves is aleatory.  Acceptance is based on the Metropolis criterion
92

 with a 

move probability that depends exponentially on the free energy change,
67,87-88,92

 using a 

random number for the decision.
93

  The simulations were performed in 100×100 lattices, 

but it was previously shown that simulations in lattices of 200×200 and 300×300 sites 

yield equivalent results in this type of system.
67,94

 A Monte Carlo cycle is defined as a 

number of attempted moves identical to the number of lattice sites.  The calculations 

included a pre-equilibration period of 5×10
4
 Monte Carlo cycles followed by a period of 

10
6
 acquisition cycles, which were more than sufficient to obtain equilibrium properties.  

One lipid–lipid interaction parameter (ωAB) is used for each pair of possible states (gel, lo 

and ld) and lipid species (Pep1, Pep2, cho, and 16PL) present in the system, which is 
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defined by Equation 3 (page 57).
15 

Except in the cases determined here experimentally by 

nearest-neighbor recognition measurements,  the ωAB interaction parameters were the 

same as those previously used for DPPC/cholesterol.
85

 Namely, for gel-lo and ld-lo 

interactions ωAB = +330 cal/mol, and for gel-ld interactions ωAB = +360 cal/mol, where A 

and B are any phospholipids (16PL) or lipidated peptides (Pep1 or Pep2). The complete 

set of parameters is listed in Table 32.   

  ωAB (cal/mol) 

Lipids  DPPC (16PL) Lipidated Peptide Pep1 Lipiddated Peptide Pep2 

 State gel lo ld gel lo ld gel lo ld 

DPPC (16PL) gel 0 +330 +360 +140 +330 +360 +140 +330 +360 

 lo +330 0 +330 +330 0 +330 +330 -220 +330 

 ld +360 +330 0 +360 +330 -55 +360 +330 -285 

Cholesterol (cho)  +350 -280 +40 +350 -110 +110 +280 -75 +120 

Table 32: Lipid-Lipid interaction parameters ωAB used in the Monte Carlo simulations.  The values from 

NNR experiments (in bold) were rounded to the nearest 5 cal/mol. 

 

In addition, the simulations use the experimental values of the enthalpy (∆H) and 

the transition temperatures (Tm) of the main phase transition of the phospholipids and 

lipidated peptides to calculate the probabilities of changing the lipid state.  The model of 

Almeida
67

 was used for DPPC and 16PL.  In this model, the phospholipid accesses 

essentially only the gel and the ld states in the absence of cholesterol, but has one more 

accessible thermodynamic state, lo, which is intermediate in enthalpy and entropy, in the 

presence of cholesterol. The enthalpy of the lo state is assumed to lie at 40% of the way 

between those of the gel and ld.
67

  Because lipidated peptides Pep1 and Pep2 resemble 

phospholipids, having a polar headgroup and two hydrocarbon chains, we have assumed 

that they behave similarly to DPPC and its analogue 16PL.  Namely, they exhibit gel-to-

fluid phase transitions. The Tm  and ∆H values of the chain-melting transition for Pep1 

and Pep2 were estimated from DSC experiments, as described above (see Sections 2.3.5 
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and 5.5).  The thermodynamic values used in the simulations are shown in Table 33.  It 

should be noted that, although there is some uncertainty about the ∆H values for the 

monomer Pep1 and Pep2, it has been shown that this level of uncertainty has a negligible 

effect on the outcome of the Monte Carlo simulations.
94

  

 DPPC/16PL Pep1 Pep2 

Transition ΔH ΔS Tm ΔH ΔS Tm ΔH ΔS Tm 

gel - ld 8.7 27.65 41.5 10.0 28.33 80 7.0 20.96 61 

gel - lo 3.5 10.15  4.0 10.45  2.8 7.65  

lo - ld 5.2 17.5  6.0 17.88  4.2 13.31  
Table 33: Phase transition enthalpies (in kcal/mol), entropies (in cal/mol/K) and temperatures (in 

o
C) used 

in the Monte Carlo simulations 

 

 

5.7 Synthetic Procedures 

S-Hexadecyl boc-cysteine (1) Procedures that were used for the alkylation of 

cysteine were similar to those previously described.
95

 Freshly cut sodium (857mg, 37.28 

mmol) was dissolved in ethanol (100 mL) under an argon atmosphere. Boc-cysteine 

(3.00g, 13.56 mmol) and 1-bromohexadecane (4.56 mL, 14.92 mmol) were added and the 

solution was refluxed for 6 h under an argon atmosphere.  After cooling to room 

temperature, the solvent was removed under reduced pressure, and the resulting solid was 

dissolved in ethyl acetate (75 mL), washed with 5% NaH2PO4 (2 x 75 mL) and brine (75 

mL), and dried with anhydrous MgSO4.  Purification by column chromatography [silica 

gel, CHCl3/MeOH (8/1, v/v)] yielded 1 (5.842 g, 97%) as a yellow solid having Rf 0.49 

[silica gel, CHCl3/MeOH (8/1, v/v)];
 1
H NMR (CDCl3, 500 MHz) δ 5.39 (bs, 1 H), 4.51 

(bs, 1 H), 3.00 (bs, 2 H), 2.56 (t, J=7.45 Hz, 2 H), 1.58 (m, 2 H), 1.47 (s, 9 H), 1.40-1.20 

(26 H), 0.89 (t, J=6.94 Hz, 3 H); and HR-ESI MS for C24H47NO4NaS ([M+Na]
+
) 

Calculated: 486.3124, found: 486.3101. 
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N1,N2-Bis[S-(hexadecyl)cysteinyl]cystadiamide (2) To a solution of cystamine 

(74 mg, 0.49 mmol, prepared by washing a suspension of cystamine dihydrochloride in 

CHCl3 with 1 M NaOH and removing solvent under reduced pressure) in CH2Cl2 (20 

mL), was added 1 (500 mg, 1.12mmol), EDC (215 mg, 1.12 mmol), HOBt (172 mg, 1.12 

mmol), and DIPEA (600 µL), and the resulting mixture was stirred overnight under an 

argon atmosphere, affording a clear solution.  After adding CHCl3 (30 mL), the resulting 

solution was washed with 5% NaH2PO4 (2 x 50 mL), and the aqueous layers extracted 

with CHCl3. The combined organic layers were washed with saturated NaHCO3 (50 mL) 

and brine (50 mL), and dried with anhydrous MgSO4.  Purification by column 

chromatography [silica gel, CHCl3/MeOH (95/5, v/v)] afforded a yellow solid, which was 

then dissolved in TFA (3 mL).  After stirring for 20 min, the solvent was removed under 

reduced pressure, and the resulting solid was dissolved in CHCl3 (50 mL), washed with 

saturated NaHCO3 (2 x 50 mL) and brine (50 mL), and dried over anhydrous MgSO4.  

Removal of the solvent under reduced pressure yielded afforded 2 (303 mg, 77%) as a 

white solid having Rf 0.43 [silica gel, CHCl3/MeOH (8/1, v/v)]; 
1
H NMR (CDCl3/D2O, 

500 MHz) δ 3.58 (m, 4 H), 3.49 (m, 2 H), 3.05 (m, 2 H), 2.83 (t, J=6.45 Hz, 4 H), 2.66 

(m, 2 H), 2.51 (t, J=7.46 Hz, 4 H), 1.58 (m, 4 H), 1.41-1.19 (52 H), 0.88 (t, J=6.73 Hz, 6 

H); and HR-ESI MS for C42H87N4O2S4 ([M+H]
+
) Calculated: 807.5712, found 807.5704. 

N-Myristoyl glycine (3) To a solution that was made from t-butyl glycine 

hydrochloride (100 mg, 0.60 mmol), DIPEA (364 µL), and CH2Cl2 (10 mL), was added, 

dropwise, a solution made from myristoyl chloride (324 µL, 1.19 mmol) and CH2Cl2 (10 

mL) with stirring at 0 
o
C under an argon atmosphere.  After stirring for 3.5 h, CHCl3 (50 

mL) was added, and the solution was washed, sequentially, with 5% NaH2PO4 (2 x 50 
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mL) and brine (50 mL), and then dried over MgSO4.  The solvent was removed under 

reduced pressure, and TFA (5 mL) was added.  After stirring for 20 min, the solvent was 

removed under reduced pressure.  Trituration of the resulting solids with hexanes 

afforded 3 (146 mg, 86%) as a white powder having Rf 0.24 [silica gel, CHCl3/MeOH 

(4/1, v/v)]; 
1
H NMR (MeOD3, 500 MHz) δ 3.89 (bs, 2 H), 2.23 (m, 2 H), 1.60 (m, 2 H), 

1.37-1.22 (20 H), 0.89 (t, J=6.83 Hz, 3 H); and HR-ESI MS for C16H32NO3 ([M+H]
+
) 

Calculated: 286.2382, found: 286.2380. 

N1,N2-Bis{[(myristoyl)glycyl]-S-(hexadecyl)cysteinyl}cystadiamide ({Pep1-

Pep1}) To a solution of 2 (100 mg, 0.12 mmol) in CH2Cl2 (5 mL), was added 3 (84 mg, 

0.30 mmol), EDC (57 mg, 0.30 mmol), HOBt (46 mg, 0.30 mmol) and DIPEA (130 µL).  

After stirring the mixture overnight, the solvent was removed under reduced pressure and 

the residue recrystallized from a mixture of CHCl3 and MeOH to give {Pep1-Pep1} (116 

mg, 70 %) as a white solid having Rf 0.81 [silica gel, CHCl3/MeOH (6/1, v/v)]; 
1
H NMR 

(CDCl3/CD3OD, 500 MHz) δ 4.60 (t, J=6.54, 2 H), 3.91 (m, 4 H), 3.54 (m, 4 H), 2.96-

2.80 (8 H), 2.54 (t, J=6.90, 4 H), 2.26 (t, J=7.41 Hz, 4 H), 1.67-1.52 (8 H), 1.41-1.21 (96 

H), 0.89 (t, J=6.64 Hz, 12 H); and HR-MALDI-TOF MS for C74H144N6O6NaS4 

([M+Na]
+
) Calculated: 1363.9922, found 1363.9902. 

O-(N-succinimidyl)-O-cholesteryl carbonate (10)  To a solution that was made 

from cholesterol (1.00 g, 2.59 mmol), CHCl3 (15 mL), and NEt3 (5 mL), was added di-

(N-succinimidyl)carbonate (2.98 g, 11.64 mmol).  After stirring the solution overnight at 

45 
o
C, the solvent was removed under reduced pressure, and the residue was dissolved in 

CHCl3 (100 mL) and washed with water (2 x 50 mL).  The aqueous layers were extracted 

with CHCl3 (2 x 50 mL), and the organic layers were combined, dried over anhydrous 
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MgSO4, and the solvent was removed under reduced pressure.  Purification by column 

chromatography [silica gel, CHCl3/CH3CN (95/5, v/v)] yielded 10 (1.162 g, 85%) as a 

yellow-white solid having Rf 0.49 [silica gel, CHCl3/CH3CN (95/5, v/v)];
 1

H NMR 

(CDCl3, 500 MHz) δ 5.39 (m, 1H), 4.58 (m, 1H), 2.81 (s, 4H), 2.46 (m, 2H), 2.04-0.77 

(38H), 0.66 (s, 3H).  

N1-(Cholesteryl)cystamide carbamate (4)  To a solution of cystamine (1.154 g, 

7.58 mmol, prepared by washing a suspension of cystamine dihydrochloride in CHCl3 

with 1 M NaOH and removing solvent under reduced pressure) and DIPEA (1.32 µL) in 

CHCl3 (50 mL) was added a solution of 10 (1.00 g, 1.89 mmol) in CHCl3 (30 mL) while 

stirring at 0 
o
C.  After stirring for 90 minutes, the solution was diluted with CHCl3 (100 

mL) and washed, sequentially, with saturated NaHCO3 ( 2 x 50 mL), H2O (50 mL), 0.5 

M HCl (150 mL),  and brine (150 mL).  Removal of the solvent under reduced pressure 

followed by column chromatography [silica gel, CHCl3/MeOH (8/1, v/v)] afforded 4 

(540 mg, 47%) as a white solid having Rf 0.13 [silica gel, CHCl3/MeOH (8/1, v/v)]; 
1
H 

NMR (CDCl3, 500 MHz) δ 5.37(bs, 1H), 5.03 (bs, 1H), 4.50 (bs, 1H), 3.51 (m, 2H), 3.02 

(t, J=6.23 Hz, 2 H), 2.77 (m, 4H), 2.06-0.76 (40H), 0.67 (s, 3H); and HR-ESI MS for 

C32H57N2O2S2 ([M+H]
+
) Calculated: 565.3861, found 565.3858.  

O-(cholesteryl)-N2-6-carbamoyl-3,4-dithia-N1-hexylamide (5)  To a solution of 

1 (222 mg, 0.50 mmol) in CH2Cl2 (15 mL), were added EDC (97 mg, 0.50 mmol), HOBt 

(76 mg, 0.50 mmol), and DIPEA (525 µL).  After stirring under an argon atmosphere for 

1 h, 4 (250 mg, 0.42 mmol) was added and the solution stirred overnight. The solution 

was then washed with 5% NaH2PO4 (2 x 50 mL), and the aqueous layers were extracted 

with CHCl3.  Subsequently the organic layers were combined, washed with saturated 
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NaHCO3 (50 mL) and brine (50 mL), and dried over anhydrous MgSO4.  Purification by 

column chromatography [silica gel, ethyl acetate/hexanes (20/80, v/v)] afforded a cloudy 

white oil, which was dissolved in TFA (4 mL).  After stirring for 20 min, the solvent was 

removed under reduced pressure, and the residue was dissolved in CHCl3, washed with 

saturated NaHCO3 (2 x 50 mL) and brine (50 mL), and dried over anhydrous MgSO4.  

Removal of the solvent under reduced pressure yielded 5 (107 mg, 29%) having Rf 0.65 

[silica gel, CHCl3/MeOH (8/1, v/v)];  
1
H NMR (CDCl3, 500 MHz) δ 7.81 (bs, 1 H), 5.37 

(m, 1 H),5.16 (m, 1 H), 4.49 (m 1 H), 3.59 (m, 2 H), 3.50 (m, 3H), 3.05 (m, 1 H), 2.82 

(m, 4 H), 2.67 (m, 1 H), 2.51 (t, J=7.42 Hz, 2 H), 2.34 (m, 1 H), 2.27 (m, 1 H), 2.03-0.80 

(71 H), 0.67 (s, 3 H); and HR-ESI MS for C51H94N3O3S3 ([M+H]
+
) Calculated: 892.6457, 

found 892.6463.  

(Myristoyl)glycinyl-S-(hexadecyl)cysteinyl-O-(cholesteryl)-N2-6-carbamoyl-

3,4-dithia-N1-hexylamide ({Pep1-cho})  To a solution that was made from 5 (152 mg, 

0.17 mmol) in CH2Cl2 (15 mL), was added 3 (58 mg, 0.20 mmol), EDC (39 mg, 0.20 

mmol), HOBt (31 mg, 0.20 mmol), and DIPEA (177 µL).  After stirring overnight, 

removal of the solvent under reduced pressure followed by recrystallization from a 

mixture of CHCl3 and MeOH afforded {Pep1-cho} (110 mg, 56 %) as a yellow solid 

having Rf 0.73 [silica gel, CHCl3/MeOH (8/1, v/v)];
 1
H NMR (CDCl3/CD3OD, 500 MHz) 

δ 5.37 (bs, 1 H), 4.45 (m, 1 H), 3.88 (m, 2 H), 3.54 (m, 1 H), 3.43 (m, 2 H), 2.98-2.74 (7 

H), 2.53 (t, J=7.38 Hz, 2 H), 2.34 (m, 2 H), 2.27 (t, J=7.94), 2 H), 2.05-0.79 (92 H), 0.69 

(s, 3 H); and HR-ESI MS for C67H123N4O5S3 ([M+H]
+
) Calculated: 1159.8656, found 

1159.8628. 
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3-(2-pyridinyldithio)porpionyl-dipalmitoyl phosphatidylethanolamine 

sodium salt (6)  To a solution that was made from 1,2-dihexadecanoyl-sn-glycero-3-

phosphoethanolamine (DPPE, 250 mg, 0.36 mmol) in CHCl3 (5 mL), MeOH (5 mL), and 

H2O (1 mL) was added DIPEA (125 µL) and BPDP (169 mg, 0.47 mmol).  See 

Reference 96 for a discussion of the preparation and use of BPDP.  After stirring under 

an argon atmosphere for 4 h, CHCl3 (50 mL) was added.  The solution was then washed 

with 5% NaH2PO4 (2 x 50 mL), and the aqueous layers were extracted with CHCl3 (2 x 

50 mL).  The organic layers were combined and dried over anhydrous MgSO4.  

Purification by column chromatography [silica gel, CHCl3/MeOH (4/1, v/v)] yielded 6 

(281 mg, 85%) as a yellow solid having Rf 0.65 [silica gel, CHCl3/MeOH (4/1, v/v)];
 1
H 

NMR (CDCl3, 500 MHz) δ 8.30 (bs, 1H), 7.86 (bs, 1H), 7.60 (bs, 1H), 7.16 (bs, 1H), 5.19 

(m, 1H), 4.54 (m, 1H), 4.34 (m, 1H), 4.16-4.03 (2H), 3.92 (m, 4H), 3.81 (m, 1H), 3.57-

3.35 (4H), 3.04-2.76 (6H), 2.58 (t, J=6.81 Hz, 2 H), 2.48 (t, J=7.43 Hz, 2 H), 2.30-2.18 

(6H), 1.63-1.15 (114H), 0.85 (t, J=6.85 Hz, 12H); and HR-ESI MS for C45H80N2O9PS2 

([M]-) Calculated: 887.5048, found: 887.5031.   

(Myristoyl)glycyl-S-(hexadecyl)cysteinyl-4,5-dithia-7-aminoheptanoyl-

dipalmitoyl phosphatidylethanolamine, sodium salt ({Pep1-16PL})  To a solution that 

was made from {Pep1-Pep1}(40 mg, 0.03 mmol) in CHCl3 (20 mL), and MeOH (20 mL) 

and heated to 55 °C was added a solution of TCEP (34 mg, 0.12 mmol) in 0.19M 

aqueous NaOH (1.6 mL).  After stirring at 55 °C under an argon atmosphere for 4 h, the 

solution was washed with brine (50 mL), the aqueous layer was extracted with 

CHCl3/MeOH (3/1 v/v, 3 x 25 mL), and the organic layers were combined and dried over 

anhydrous MgSO4.  The resulting material was purified by column chromatography 
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[silica gel, CHCl3/MeOH (9/1, v/v)]. Solvent was removed from the collected fractions 

under reduced pressure, and the resulting white residue was immediately dissolved in 25 

mL CHCl3/MeOH (2/1, v/v) and added to a flask containing 6 (68 mg, 0.07 mmol).  After 

stirring under an argon atmosphere for 48 h, purification by preparative TLC 

[CHCl3/MeOH/H2O (4/1/0.1, v/v)] afforded {Pep1-16PL} (54  mg, 62%) as a white solid 

having Rf 0.74 [silica gel, CHCl3/MeOH (4/1, v/v)];
 1
H NMR (CDCl3MeOD, 500 MHz) δ 

8.36 (m, 1H), 7.81-7.73 (2H), 7.16 (m, 1H), 5.17 (m, 1H), 4.38 (m, 1H), 4.14 (m, 1H), 

3.93 (t, J=5.80, 2H), 3.86 (m, 2H), 3.68 (m, 1H), 3.17 (m, 1H), 3.04 (t, J=7.26 Hz, 2H), 

2.60 (t, J=7.20 Hz, 2H), 2.27 (m, 4H), 1.56 (bs, 4H), 1.48-1.10 (48), 0.85 (t, J=7.01 Hz, 

6H); and HR-ESI MS for C77H148N4O12PS3 ([M]-)Calcd: 1447.9999, Found: 1448.0052. 

Cis-9,10-methylenetetradecanoic acid (7)  Procedures that were used for the 

synthesis of 7 were similar to those previously described.
57

  To a solution of 2,4,6-

trichlorophenol (1.61g, 8.16 mmol) in anhydrous CH2Cl2 (36 mL); which was maintained 

at -40 °C, was added a 1M hexane solution of diethyl zinc (8.16 mL).  After stirring for 

15 minutes at -40 °C under an Ar atmosphere, CH2I2 (658µL, 8.16 mmol) was added.  

The solution was then stirred another 15 minutes at -40 °C, and myristeoleic acid (462 

mg, 2.04 mmol) was added.  After stirring overnight at room temperature, CHCl3 (150 

mL) was added and the mixture was washed with 10% HCl (2 x 75 mL).  The aqueous 

layers were combined and extracted with CHCl3 (3 x 50 mL).  The organic layers were 

combined, washed with brine (100 mL) and dried over anhydrous MgSO4.  Purification 

by flash chromatography [silica gel, CHCl3/MeOH (20/1, v/v)] afforded 7, (190 mg, 

39%) having Rf 0.76 [silica gel, CHCl3/MeOH (8/1, v/v)];
 1
H NMR (CDCl3, 500 MHz) δ 

2.31 (t, J=7.56 Hz, 2H), 1.60 (m, 2H), 1.39-1.20 (14H), 1.10 (bs, 2H), 0.86 (t, J=7.01 Hz, 
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3H), 0.60 (bs, 2H), 0.53 (m, 1H), -0.37 (m, 1H); and HR-ESI MS for C15H27O2 ([M-H]
-
) 

Calculated: 239.2017, Found: 239.2015. 

N1,N2-Bis[N-glycyl-S-(hexadecyl)cysteinyl]cystadiamide (8)  To a solution of 2 

(100 mg, 0.12 mmol) in CH2Cl2 (40 mL) was added DIPEA (170 µL), boc-glycine (48 

mg, 0.27 mmol), EDC (52 mg, 0.27 mmol), and HOBt (41 mg, 0.27 mmol) and the 

resulting mixture was stirred overnight under an argon atmosphere.  The resulting 

solution was washed with 5% NaH2PO4 (2 x 25 mL), saturated NaHCO3 (2 x 25 mL) and 

brine (25 mL), and dried with anhydrous MgSO4.  Purification by preparative TLC 

[CHCl3/MeOH (12/1, v/v)] afforded a white solid, which was then dissolved in CHCl3 (3 

mL) and TFA (3 mL).  After stirring for 45 min, the solvent was removed under reduced 

pressure, and the resulting solid was dissolved in CHCl3 (50 mL), washed with saturated 

NaHCO3 (2 x 50 mL) and brine (50 mL), and dried over anhydrous MgSO4.  Removal of 

the solvent under reduced pressure afforded 8 (63 mg, 55%) as a white solid having Rf 

0.20 [silica gel, CHCl3/MeOH (4/1, v/v)]; 
1
H NMR (CDCl3, 500 MHz) δ 8.03 (d, J=6.26 

Hz, 1H), 7.36 (bs, 1H), 4.61 (m, 2H), 3.54 (m, 4H), 3.38 (s, 4H), 2.90 (m, 8H), 2.78 (t, 

J=6.48 Hz, 4H), 2.53 (t, J=7.45, 4H), 1.83 (bs, 4H), 1.54 (m, 4H), 1.38-1.34 (52H), 0.84 

(t, J=6.98Hz, 6H); and HR-ESI MS for C46H93N6O4S4([MH]
+
) Calculated: 921.6136, 

Found: 921.6115.  

N1,N2-Bis-(cis-9,10-methylenetetrdecanoyl)glycyl-S-(hexadecy)cysteinyl 

cystadiamide {Pep2-Pep2}  To a solution of 8 (53 mg, 0.06 mmol) in CH2Cl2 (10 mL) 

was added DIPEA (60 µL), 7 (30 mg, 0.13 mmol), EDC (24 mg, 0.13 mmol), and HOBt 

(19 mg, 0.19 mmol) and the resulting mixture was stirred overnight under an argon 

atmosphere. Removal of solvent under reduced pressure followed by preparative TLC 
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[CHCl3/MeOH (10/1 v/v)] afforded {Pep2-Pep2} (55 mg, 70%) as a white solid having 

Rf 0.58 [silica gel, CHCl3/MeOH (8/1, v/v)]; 
1
H NMR (CDCl3, 500 MHz) δ 7.49 (d, 

J=8.43, 2H), 7.42 (bs, 2H), 7.02 (bs, 2H), 4.73 (m, 2H), 4.01 (m, 4H), 3.57 (m, 4H), 2.81 

(m, 8H), 2.55 (m, 4H), 2.22 (t, J=7.63, 4H), 1.71-1.02 (96H), 0.86 (m, 12H), 0.61 (bs, 

4H), 0.53 (m, 2H), -0.36 (m, 2H); and HR-ESI MS for C76H144N6O6S4Na([MNa]
+
) 

Calculated: 1387.9922, Found: 1387.9890. 

2-(2-Pyridinyldithio)-ethanamine (9)  A solution of cysteamine hydrochloride 

(516 mg, 4.54 mmol) was added, drop wise, to a solution of 2,2`-dithiopyridine (1.100g, 

4.99 mmol) in methanol (10 mL).  After stirring for 90 minutes at room temperature, 

removal of solvent under reduced pressure followed by purification by column 

chromatography [silica gel, CHCl3/MeOH (10/1, v/v)] yielded 9 (575 mg, 57%) as a 

yellow solid having 
1
H NMR (CDCl3/MeOD, 500 MHz) δ 8.55 (m, 1H), 7.72 (m, 1H), 

7.53 (m, 1H), 7.28 (m, 1H), 3.29 (t, J=6.41 Hz, 2H), 3.16 (t, J=6.16 Hz, 2H). 

N-[2-(2-pyridinyldithioethyl)]-O-cholesteryl carbamate (11) To a solution of 9 

(297 mg, 1.30 mmol) and DIPEA (1.36 mL) in CHCl3 (45 mL) was added 10 (686 mg, 

1.30 mmol).  After stirring overnight at room temperature, purification by column 

chromatography [silica gel, CHCl3/MeOH (99/1, v/v)] afforded 11 (1.08g, 100%) as a 

yellow oil having Rf 0.85 [silica gel, CHCl3/MeOH (95/5, v/v)];
 1

H NMR (CDCl3, 500 

MHz) δ 5.37 (bs, 1H), 5.03 (bs, 1H), 4.50 (bs, 1H), 3.51 (m, 2H), 3.02 (t, J=6.23 Hz, 2H), 

2.77 (m, 4H), 2.06-0.76 (40H), 0.67 (s, 3H);  and HR-ESI MS for C35H55N2O2S2([MH]
+
) 

Calculated: 599.3700, Found: 599.3703. 

(Cis-9,10-methylenetetradecanoyl)glycyl-S-(hexadecyl)cysteienyl-O-

(cholesteryl)N2-6-carbanoyl-3,4-dithia-N1-hexylamide ({Pep2-cho}) To a solution that 
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was made from {Pep2-Pep2}(25 mg, 0.02 mmol) in CHCl3 (25 mL), and MeOH (25 mL) 

and heated to 55 °C was added a solution of TCEP (21 mg, 0.07 mmol) in 0.18 M 

aqueous NaOH (1.0 mL).  After stirring at 55 °C under an argon atmosphere for 4.5 h, the 

solution was washed with brine (50 mL), the aqueous layer was extracted with 

CHCl3/MeOH (3/1 v/v, 3 x 25 mL), and the organic layers were combined and dried over 

anhydrous MgSO4.  The resulting material was purified by column chromatography 

[silica gel, CHCl3/MeOH (9/1, v/v)]. Solvent was removed from the collected fractions 

under reduced pressure, and the resulting white residue was immediately dissolved in 25 

mL CHCl3/MeOH (2/1, v/v) and added to a flask containing 11 (27 mg, 0.05 mmol).  

After stirring under an argon atmosphere for 45 h, purification by preparative TLC 

[CHCl3/MeOH (8/1, v/v)] afforded {Pep2-cho} (8 mg, 37%) as a white solid having Rf 

0.68 [silica gel, CHCl3/MeOH (4/1, v/v)];
 1

H NMR (CDCl3, 500 MHz) δ 7.19 (bs, 1H), 

7.07 (d, J=8.01Hz, 1H), 6.37 (bs, 1H), 5.35 (m, 1H), 5.20 (m, 1H), 4.56 (m, 1H), 4.47 (m, 

1H), 3.93 (m, 2H), 3.56 (d, J=5.57 Hz, 2H), 3.44 (m, 2H), 3.00 (m, 2H), 2.89-2.70 (5H), 

2.51 (m, 2H), 2.32 (m, 1H), 2.24 (t, J=7.49 Hz, 2H), 2.05-0.74 (93H), 0.71-0.57 (5H), 

0.54 (m, 1H), 0.36 (m, 1H); HR-ESI MS for C68H122N4O5NaS3([M-Na]
+
) Calculated: 

1193.8470, Found: 1193.8464.  

(Cis-9,10-methylenetetradecanoyl)glycyl-S-(hexadecyl)cysteinyl-4,5-dithia-7-

aminoheptanoyl-dipalmitoyl phosphatidylethanolamine, sodium salt ({Pep2-16PL})  

To a solution that was made from {Pep2-Pep2}(56 mg, 0.04 mmol) in CHCl3 (27.5 mL), 

and MeOH (27.5 mL) and heated to 55 °C was added a solution of TCEP (47 mg, 0.16 

mmol) in 0.23M aqueous NaOH (1.8 mL).  After stirring at 55 °C under an argon 

atmosphere for 4 h, the solution was washed with brine (50 mL), the aqueous layer was 
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extracted with CHCl3/MeOH (3/1 v/v, 3 x 25 mL), and the organic layers were combined 

and dried over anhydrous MgSO4.  The resulting material was purified by column 

chromatography [silica gel, CHCl3/MeOH (9/1, v/v)]. Solvent was removed from the 

collected fractions under reduced pressure, and the resulting white residue was 

immediately dissolved in 25 mL CHCl3/MeOH (2/1, v/v) and added to a flask containing 

6 (93 mg, 0.10 mmol).  After stirring under an argon atmosphere for 48 h, purification by 

preparative TLC [CHCl3/MeOH/H2O (4/1/0.1, v/v)] afforded {Pep2-16PL} (36 mg, 

59%) as a white solid having Rf 0.47 [silica gel, CHCl3/MeOH/ H2O (4/1/0.1, v/v)];
 1

H 

NMR (CDCl3, 500 MHz) δ 8.30 (bs, 1H), 7.78 (bs, 1H), 7.60 (bs, 1H), 7.12 (bs, 1H), 5.20 

(m, 1H), 4.54 (m, 1H), 4.35 (m, 1H), 4.10 (m, 2H), 3.92 (m, 4H), 3.82 (m, 1H), 3.58-3.35 

(4H), 3.05-2.75 (6H), 2.58 (t, J=6.98 Hz, 2H), 2.49 (t, J=7.46 Hz, 2H), 2.25 (m, 6H), 

1.63-1.04 (98H), 0.85 (t, J=6.90 Hz, 12H), 0.61 (bs, 2H), 0.53 (m, 1H), -0.36 (m, 1H); 

HR-ESI MS for C78H148N4O12PS3([M]
-
) Calculated: 1459.9999, Found: 1460.0033.  

N-[(cis-9,10-methylenetetradecanoyl)glycyl-S-(hexadecy)cysteinyl-2-

(methylthio)ethyl]amide (Pep1a)  To a solution made from {Pep1-Pep1} (22 mg, 0.016 

mmol) in CHCl3 (10 mL), and MeOH (10 mL) and heated to 55 °C was added a solution 

of TCEP (19 mg, 0.07 mmol) in 0.40M aqueous NaOH (0.4 mL). After stirring at 55 °C 

under an argon atmosphere for 4 h, the solution was washed with brine (50 mL), the 

aqueous layer was extracted with CHCl3/MeOH (3/1 v/v, 3 x 25 mL), and the organic 

layers were combined and dried over anhydrous MgSO4. The resulting material was 

purified by column chromatography [silica gel, CHCl3/MeOH (9/1, v/v)].  To a flask 

containing the collected fractions from the column (~15 mL) was added a solution of 

CH3I (5.0 µL, 0.08 mmol) in 0.1 M methanolic NaOH solution (300 µL). After stirring 
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overnight, purification by preparative TLC [CHCl3/MeOH (9/1, v/v)] afforded Pep1a (9 

mg, 40%) as a white solid having Rf 0.81 [silica gel, CHCl3/MeOH (6/1, v/v)]; 
1
H NMR 

(CDCl3, 500 MHz) δ 4.27 (t, J=6.50 Hz, 1H), 3.63 (m, 2H), 3.19 (m, 2H), 2.96 (m, 1H), 

2.67 (t, J=5.54 Hz, 2H), 2.41 (t, J=6.95 Hz, 2H), 2.30 (t, J=7.43, Hz, 2H), 2.04 (t, J=7.73 

Hz, 2H), 1.89 (s, 3H), 1.45-1.28 (5H), 1.63-0.97 (44H), 0.65 (t, J=6.95 Hz, 6H); HR-ESI 

MS for C38H76N3O3S2 ([MH]
+
) Calculated: 686.5323, Found 686.5338. 

N-[(myristoyl)glycyl-S-(hexadecy)cysteinyl-2-(methylthio)ethyl]amide 

(Pep2a)  To a solution made from {Pep2-Pep2} (17 mg, 0.012 mmol) in CHCl3 (10 mL), 

and MeOH (10 mL) and heated to 55 °C was added a solution of TCEP (13 mg, 0.05 

mmol) in 0.30M aqueous NaOH (0.4 mL). After stirring at 55 °C under an argon 

atmosphere for 4 h, the solution was washed with brine (50 mL), the aqueous layer was 

extracted with CHCl3/MeOH (3/1 v/v, 3 x 25 mL), and the organic layers were combined 

and dried over anhydrous MgSO4.  The resulting material was purified by column 

chromatography [silica gel, CHCl3/MeOH (9/1, v/v)].  To a flask containing the collected 

fractions from the column (~15 mL) was added a solution of CH3I (3.8 µL, 0.06 mmol) in 

0.1 M methanolic NaOH solution (300 µL). After stirring overnight, purification by 

preparative TLC [CHCl3/MeOH (9/1, v/v)] afforded Pep2a (14 mg, 81%) as a white solid 

having Rf 0.50 [silica gel, CHCl3/MeOH (9/1, v/v)]; 
1
H NMR (CDCl3, 500 MHz) δ 4.41 

(t, J=6.50 Hz, 1H), 3.79 (m, 2H), 3.35 (t, J=6.91 Hz, 2H), 2.81 (bs, 2H), 2.55 (bs, 2H), 

2.44 (t, J=7.34 Hz, 2H), 2.18 (t, J=7.69 Hz, 2H), 2.03 (s, 3H), 1.61-1.41 (4H), 1.33-0.95 

(43H), 0.79 (m, 6H), 0.55 (bs, 2H), 0.47 (m, 1H), -0.43 (m, 1H); HR-ESI MS for 

C39H76N3O3S2 ([MH]
+
) Calculated: 698.5323, Found 698.5336. 
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Appendix 1 

 

Additional NNR Studies Using Exchangeable Sterol Dimers 

A1.1 Introduction 

In a complementary approach to the experiments discussed in Chapter 3, we 

sought to gain additional insight into sterol-phospholipid interactions by directly 

measuring the nearest neighbor interaction energies between 16PL and several 

exchangeable sterols.  Despite the importance that sterol-phospholipid interactions have 

in membrane structure, little is known about the energetics of these interactions, 

especially in the biologically important lo phase.  In an attempt to investigate the effects 

of variations in sterol structure on sterol-phospholipid interactions, we conducted a series 

of NNR experiments using the lipids shown in Figure 32.      

 

 
Figure 32: Structures of exchangeable lipids used in exchangeable sterol studies 
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Lipids cho and 16PL are exchangeable mimics of cholesterol and DPPC, 

respectively (see Section 2.2 for a discussion of the properties of these lipids).  Lipid 7β 

is an exchangeable mimic of 7β-hydoxycholesterol (7β-OH).  This sterol was chosen to 

investigate the effect of the addition of a polar group to the sterol core.  Lipids di and cop 

are exchangeable mimics of dihydrocholesterol and coprostanol, respectively.  Both 

dihydrocholesterol and coprostanol are structural analogs of cholesterol lacking the 

double bond found in cholesterol’s B ring.  Dihydrocholesterol and coprostanol differ 

only in the stereochemistry at carbon 5; coprostanol’s structure at this position results in a 

cis fusion of its A and B rings, giving the sterol core a curved three dimensional structure 

(see Figure 26, page 68).  Dihydrocholesterol has a planar core similar to cholesterol.  A 

sterol with a non-planar nucleus cannot make the perfect contact with fully extended acyl 

chains that is necessary (by a template model) to maximize sterol-phospholipid 

interaction in the lo phase.  Sterol cop is therefore expected to show less affinity for 16PL 

than di does, mirroring its weaker condensing effect compared to cholesterol or 

dihydrocholesterol (as discussed in Chapter 3).  

To quantitatively measure the interactions of the four sterols with 16PL in the 

liquid-ordered phase, NNR reactions were performed using the exchangeable lipids 

shown in Figure 32 in host membranes of DPPC and cholesterol.  All NNR reactions 

were done in membranes containing 40 mol% sterol.  Such membranes are in the lo 

phase, where sterol-phospholipid interactions are expected to be greatest. Specifically, 

thiolate-disulfide equilibration reactions were carried out at 45 
o
C in liposomes (∼200 

nm) made from 57.5/37.5/2.5/2.5 mol% DPPC/cholesterol/X/16PL (here, X is cho, 7β, 

di, or cop).  
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A1.2 Results 

A1.2.1 Synthesis of Dimers for NNR Reactions 

The exchangeable dimers {di-di}, {di-16PL}, and {7β -7β}, as well as the7β-OH 

used as a starting material to synthesize {7β -7β}, were synthesized in our laboratory by 

Dr. Wen-Hua Chen.  Dimers {cop-cop} and {cop-16PL} were synthesized by Destinee 

Zablocki.  The heterodimer {7β -16PL} was synthesized by Trevor Daly.  As discussed 

in Section 2.3.1, {cho-16PL}, {16PL-16PL}, and {cho-16PL} were synthesized as 

previously reported.
19,55

   

The synthesis of the dihydrocholesterol dimers {di-di} and {di-16PL} is shown 

in Scheme 7.  In brief, dihydrocholesterol was activated with N,N’ disuccinimdyl 

carbonate and condensed with cystamine to generate the homodimer.  The activated 

sterol was condensed with 3-(2-aminoethyldithio)propanoic acid hydrochloride salt 

(AEDP), followed by coupling with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine 

(DPPE), affording the corresponding heterodimer.  

The coprostanol dimers ({cop-cop} and {cop-16PL}) were synthesized similarly, 

beginning with coprostanol rather than dihydrocholesterol.  The 7β-OH homodimer ({7β 

-7β}) was also synthesized via N,N’ disuccinimidyl carbonate activation and 

condensation with cystamine, beginning with 7β-OH cholesterol prepared from 

cholesterol as shown in Scheme 8.  
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Scheme 7: Synthesis of dimers {di-di} and {di-16PL} 

 

 
Scheme 8: Synthesis of 7β-OH cholesterol 
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An attempted synthesis of the 7β-OH-phospolipid heterodimer ({7β-16PL}) using 

methods similar to those used for the other heterodimers failed to produce product of 

sufficiently high purity.  Instead, {7β -16PL} was prepared as shown in Scheme 9.  A 

catalytic amount of TCEP was added to a mixture of {7β-7β} and {16PL-16PL} under 

basic pH to initiate thiolate-disulfide exchange.  Preparative thin layer chromatography 

was used to separate the resulting heterodimer from the homodimers, which were then 

subjected to an additional round of thiolate-disulfide exchange to generate additional 

heterodimer. 

 

Scheme 9: Synthesis of {7β-16PL} via thiloate-disulfide exchange 
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A1.2.2 Calibration of Chromatographic Systems 

 In order to analyze NNR product mixtures by HPLC, it was first necessary to 

develop appropriate calibration curves.  As noted in Section 2.3.2, all NNR reactions 

performed using {cho-16PL} were analyzed using the previously published calibration 

curve.
21  

For the other dimer pairs, the chromatographic systems were calibrated by 

repeating the NNR sample preparation technique using samples of known dimer 

concentration.  The HPLC conditions were identical to those used for NNR reaction 

analysis, see Section A1.5 for the specific conditions used for the HPLC analysis of each 

pair of dimers.
 
 The calibration curve obtained for {7β-16PL} and related dimers is 

shown in Figure 33.   For the chromatographic system used for {7β-16PL} reactions, the 

system was found to respond as follows: for {7β-7β},  723370 x n{7β-7β} + 19294 = 

Signal  (R
2
= 0.9974); for {7β-16PL} 648646 x n{7β-16PL} + 1461.1  = Signal n (R

2
 

=0.9981); for {16PL-16PL} 554675 x n{16PL-16PL} - 90368 = Signal (R
2
 = 0.9976) where 

signal is the area of the chromatographic peaks for the dimers and n is the number of 

moles of dimers. 

The calibration curves for the dimers containing di and cop are shown in Figures 

34 and 35, respectively.  Because the chromatographic system used in these reactions is 

identical to that used in previously reported experiments, it was not necessary to prepare 

a new calibration curve for {16PL-16PL} under these conditions, so it is not included in 

the figures.  For the chromatographic system used for {di-16PL} and {cop-16PL} 

reactions, the system was found to respond as follows: for {di-16PL},  340730 x n{di-16PL} 

+ 44454 = Signal  (R
2
= 0.9958); for {di-di} 159102 x n{di-di} – 5345.6  = Signal n (R

2
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=0.9961); for {cop-16PL} 295492 x n{cop-16PL} + 117225 = Signal (R
2
 = 0.9946),  and for 

{cop-cop} 157225 x n{cop-cop} + 42112 = Signal (R
2
 = 0.9899). 

 
Figure 33: Peak area plotted as a function of nmol/injection for dimers {7β-7β} (♦),{7β-16PL} (●), and 

{16PL-16PL} (▲) 

 

 
Figure 34: Peak area plotted as a function of nmol/injection for dimers {di-di} (♦) and {di-16PL} (●) 
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Figure 35: Peak area plotted as a function of nmol/injection for dimers {cop-cop} (♦) and {cop-16PL} (●) 

 

A1.2.3 Results of NNR Experiments Using Exchangeable Sterols 

 For the results of NNR reactions using {cho-16PL}, see Section 2.3.4.  The 

results of individual NNR reactions using {7β-16PL}, {di-16PL}, and {cop-16PL} are 

shown in Tables 34-37.  Refer to Figure 32 (page 110) for the structures of these 

exchangeable lipids.  The average K and ωAB for each of these dimer pairs are 

summarized in Table 38.  In addition, the average vesicle size for each liposome 

preparation was measured before and after the NNR procedure, in order to verify that the 

liposomes remained intact.  Those data are shown in Table 39.  Typical chromatograms 

from the analysis of NNR reaction product mixtures are presented in Figures 36-38.         

NNR results for samples from {7β-16PL} are shown in Table 34, below.  These 

data represent the results from only one NNR reaction, and therefore should be 



 

118 

considered approximate results and are presented only for comparison to the NNR values 

obtained for the other dimer pairs.  In addition, it should be noted that because the {7β-

7β} peak overlaps with an unknown impurity peak (see the representative chromatogram, 

Figure 36) for these samples K was approximated as K ≈ [{7β-16PL}]
2
/[{16PL-16PL}]

2
. 

 

 

 

 Reaction   Peak   

Reaction Time (h) Dimer RT (min) Area N (nmol) K 
1 12 {7β-16PL} 28.51 4918321 7.58  

1 12 {16PL-16PL} 33.72 1662160 3.16 5.76 

1 16 {7β-16PL} 28.57 4984098 7.68  

1 16 {16PL-16PL} 33.72 1720393 3.26 5.54 

1 18 {7β-16PL} 28.64 4930195 7.60  

1 18 {16PL-16PL} 33.83 1710500 3.25 5.48 

1 20 {7β-16PL} 28.72 4967288 7.66  

1 20 {16PL-16PL} 33.90 1707549 3.24 5.58 

1 22 {7β-16PL} 28.80 5077526 7.83  

1 22 {16PL-16PL} 33.98 1756866 3.33 5.52 

Table 34: Data for {7β-16PL} equilibration in 40 mol% sterol LUVs at 45 
o
C using 0.8 equivalents of 

DTT 
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 Reaction   Peak   

Reaction Time (h) Dimer RT (min) Area N (nmol) K 
  {16PL-16PL} 12.85 1569031 3.28  

1 12 {di-16PL} 20.61 3350550 9.70 8.09 

  {di-di} 43.11 558650 3.54  

  {16PL-16PL} 12.87 1369067 2.86  

1 16 {di-16PL} 20.68 2918754 8.44 7.92 

  {di-di} 43.14 493707 3.14  

  {16PL-16PL} 12.90 1352906 2.83  

1 18 {di-16PL} 20.71 2938809 8.49 8.82 

  {di-di} 43.30 454753 2.89  

  {16PL-16PL} 12.93 1314669 2.75  

1 20 {di-16PL} 20.76 2872427 8.30 7.96 

  {di-di} 43.25 495036 3.15  

  {16PL-16PL} 12.94 1375007 2.88  

1 22 {di-16PL} 20.78 2953287 8.54 7.83 

  {di-di} 43.39 509216 3.23  

  {16PL-16PL} 12.94 2008393 4.20  

2 12 {di-16PL} 20.74 4100554 11.90 9.34 

  {di-di} 43.56 568938 3.61  

  {16PL-16PL} 12.91 2013996 4.21  

2 16 {di-16PL} 20.79 4069564 11.81 9.11 

  {di-di} 43.50 573069 3.64  

  {16PL-16PL} 12.99 2130895 4.46  

2 18 {di-16PL} 20.82 4268169 12.40 9.19 

  {di-di} 43.71 591575 3.75  

  {16PL-16PL} 13.03 2082062 4.36  

2 20 {di-16PL} 20.88 4184820 12.15 9.31 

  {di-di} 43.71 573724 3.64  

  {16PL-16PL} 13.06 2173343 4.55  

2 22 {di-16PL} 20.94 4307414 12.51 8.73 

  {di-di} 43.83 622251 3.94  

Table 35: Data for {di-16PL} equilibration in 40 mol% sterol LUVs at 45 
o
C using 0.8 equivalents of 

DTT. (Reactions 1 and 2) 
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 Reaction   Peak   

Reaction Time (h) Dimer RT (min) Area N (nmol) K 

  {16PL-16PL} 11.66 1376505 2.88  

1 12 {di-16PL} 18.85 2905390 8.40 8.35 

  {di-di} 39.77 460838 2.93  

  {16PL-16PL} 11.67 1356624 2.84  

1 16 {di-16PL} 18.87 2832348 8.18 8.07 

  {di-di} 39.81 459878 2.92  

  {16PL-16PL} 11.69 1294586 2.71  

1 18 {di-16PL} 18.90 2733830 7.89 8.01 

  {di-di} 39.99 451682 2.87  

  {16PL-16PL} 11.72 1297343 2.71  

1 20 {di-16PL} 18.95 2747802 7.93 8.06 

  {di-di} 39.91 452168 2.88  

  {16PL-16PL} 11.74 1287155 2.69  

1 22 {di-16PL} 18.99 2755287 7.96 8.11 

  {di-di} 40.02 455506 2.90  

  {16PL-16PL} 11.84 1621373 3.39  

2 12 {di-16PL} 19.12 3414506 9.89 8.05 

  {di-di} 40.31 5644485 3.58  

  {16PL-16PL} 11.87 1460650 3.06  

2 16 {di-16PL} 19.19 3140692 9.09 8.15 

  {di-di} 40.37 522062 3.31  

  {16PL-16PL} 11.90 1431664 3.00  

2 20 {di-16PL} 19.23 3035384 8.78 8.44 

  {di-di} 40.38 479682 3.05  

  {16PL-16PL} 11.94 1469769 3.08  

2 22 {di-16PL} 19.28 3061067 8.85 8.37 

  {di-di} 40.52 478923 3.04  

Table 36: Data for {di-16PL} equilibration in 40 mol% sterol LUVs at 45 
o
C using 0.8 equivalents of DTT 

(Reactions 3 and 4)  
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 Reaction   Peak   

Reaction Time (h) Dimer RT (min) Area N (nmol) K 

  {16PL-16PL} 11.63 1276120 2.67  

1 12 {cop-16PL} 17.65 4148346 13.64 23.17 

  {cop-cop} 41.04 515127 3.01  

  {16PL-16PL} 11.66 1247174 2.61  

1 16 {cop-16PL} 17.73 4020901 13.21 23.28 

  {cop-cop} 41.20 493865 2.87  

  {16PL-16PL} 11.72 1325243 2.77  

1 18 {cop-16PL} 17.79 4233830 13.93 23.84 

  {cop-cop} 41.38 503737 2.94  

  {16PL-16PL} 11.77 1330530 2.78  

1 20 {cop-16PL} 17.89 4235515 13.94 24.02 

  {cop-cop} 41.51 498778 2.90  

  {16PL-16PL} 11.85 1294205 2.71  

1 22 {cop-16PL} 18.01 4163583 13.69 25.36 

  {cop-cop} 41.68 471498 2.73  

  {16PL-16PL} 11.75 1201637 2.51  

2 12 {cop-16PL} 17.75 3869950 12.70 24.50 

  {cop-cop} 40.81 453828 2.62  

  {16PL-16PL} 11.77 1231174 2.58  

2 16 {cop-16PL} 17.77 3968086 13.03 23.81 

  {cop-cop} 40.84 477418 2.77  

  {16PL-16PL} 11.76 1198559 2.51  

2 18 {cop-16PL} 17.82 3838822 12.59 26.89 

  {cop-cop} 40.95 411884 2.35  

  {16PL-16PL} 11.80 1225525 2.56  

2 20 {cop-16PL} 17.81 3924415 12.88 23.65 

  {cop-cop} 40.95 472564 2.74  

  {16PL-16PL} 11.81 1220376 2.55  

2 22 {cop-16PL} 17.83 3903061 12.81 24.45 

  {cop-cop} 40.97 455314 2.63  

  {16PL-16PL} 11.84 1301231 2.72  

3 12 {cop-16PL} 17.87 4165991 13.70 25.46 

  {cop-cop} 41.15 467914 2.71  

  {16PL-16PL} 11.87 1308954 2.74  

3 16 {cop-16PL} 17.91 4058596 13.34 26.23 

  {cop-cop} 41.25 431466 2.48  

  {16PL-16PL} 11.88 1223807 2.56  

3 18 {cop-16PL} 17.96 3847920 12.63 25.10 

  {cop-cop} 41.26 432012 2.48  

  {16PL-16PL} 11.91 1245795 2.61  

3 20 {cop-16PL} 17.99 3983929 13.09 24.52 

  {cop-cop} 41.38 463383 2.68  

  {16PL-16PL} 11.95 1282741 2.68  

3 22 {cop-16PL} 18.05 4114851 13.53 25.60 

  {cop-cop} 41.49 460946 2.66  

Table 37: Data for {cop-16PL} equilibration in 40 mol% sterol LUVs at 45 
o
C using 0.8 equivalents of 

DTT 
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Dimer Pair K ωAB (cal/mol) 

{cho-16PL} 9.77 ± 0.47 -282.0 ± 15.2 

{7β-16PL} 5.57 ± 0.11 -104.6 ± 6.2 

{di-16PL} 8.42 ± 0.51 -235.0 ± 19.1 

{cop-16PL} 24.66 ± 1.09 -574.3 ± 14.0 
Table 38: Summary of NNR data from exchangeable sterols 

 

 

 

Dimer Reaction Time Mean   

Pair Number (h) Diameter (nm)   

{7β-16PL} 1 0 167.2 ± 60.2   

  22 170.1 ± 45.9   

{di-16PL} 1 0 183.6 ± 42.2   

  22 183.7 ± 29.4   

{di-16PL} 2 0 165.6 ± 39.7   

  22 169.2 ± 60.9   

{di-16PL} 3 0 188.3 ± 60.3   

  22 181.7 ± 56.3   

{di-16PL} 4 0 181.9 ± 40.0   

  22 189.8 ± 66.4   

{cop-16PL} 1 0 183.4 ± 23.8   

  22 177.4 ± 56.8   

{cop-16PL} 2 0 168.1 ± 50.4   

  22 173.9 ± 57.4   

{cop-16PL} 3 0 163.5 ± 37.6   

  22 168.3 ± 52.2   
Table 39: DLS data for vesicles before and after NNR reactions. Monomodal size distribution was 

observed in all cases.  DLS data for reactions involving {cho-16PL} is reported in Section 2.3.4 
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Figure 36:  Typical HPLC chromatogram from the analysis of product mixtures in NNR reactions starting 

with heterodimer {7β-16PL} 
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Figure 37:  Typical HPLC chromatogram from the analysis of product mixtures in NNR reactions starting 

with heterodimer {di-16PL} 
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Figure 38:  Typical HPLC chromatogram from the analysis of product mixtures in NNR reactions starting 

with heterodimer {cop-16PL} 

 

 

A1.3 Discussion 

  In order to directly measure the nearest neighbor interaction energies of 

cholesterol, 7β-OH, dihydrocholesterol, and coprostanol with a DPPC, exchangeable 

mimics of these lipids (see Figure 32, page 110) were synthesized and used in NNR 

reactions.  The results of these reactions are shown in Table 38 (page 122).  
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All four of the exchangeable sterols interact favorably with 16PL in the lo phase 

(i.e. AB < 0).  The affinity of cho for 16PL in membranes has been previously 

reported,
19,55 

and is a result of the favorable interactions between the hydrophobic sterol 

and the ordered acyl chains of the phospholipid.  For a more detailed discussion of the 

interactions of cho and 16PL, see Section 2.4.  The similarity in structure between cho 

and di leads to very little difference in their interactions with 16PL.   

 In interpreting the interaction energies of the other sterols, it is important to 

remember that our experimental values of ωAB do not represent absolute energies for the 

interactions between A and B.  Rather, they are a measure of the difference in energy 

associated with hetero-interactions and the average of the homo-interations (eq. 3, page 

57).    

The most striking feature of Table 38 is the high K (and corresponding low AB) 

observed for cop, the coprostanol mimic.  This result is analogous to the low AB 

observed for Pep2-16PL (see Section 2.4).  In that case, the kinked structure of Pep2 led 

to poor homo-association, making the heterodimer more stable than the corresponding 

homodimers.  Coprostanol, and the exchangeable lipid cop, also have kinked structures, 

due to the cis fusion of their A and B rings.  The inefficient packing of coprostanol 

molecules in a bilayer thus leads to poor homo-association, and a correspondingly high 

K.   

The weak affinity between 7β and 16PL lends itself to two possible explanations.  

One possibility is that the low K value is a consequence of strong homo-association 

between molecules of 7β due to the increased hydrogen bonding made possible by the 

additional hydroxyl group.  The other possibility is that the presence of a hydroxyl group 
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at the 7 position of the sterol core disrupts the close hydrophobic contact between the 

sterol nucleus and the saturated acyl chains.  To distinguish between these possibilities, 

let us consider other recent findings applying NNR as a chemical sensor (i.e. using NNR 

measurements of {cho-16PL} to probe the state of the host membrane). 

When {cho-16PL} affinity was measured in lo host membranes containing 

varying amounts of (non-exchangeable) 7β-OH, it was found that replacing cholesterol 

with 7β-OH resulted in a more compact membrane,
24

 indicating that 7β-OH forms a more 

stable lo phase than cholesterol itself.  It is therefore unlikely that the low K value 

observed in NNR reactions of {7β-16PL} is indicative of a weakening of sterol-

phospholipid association in the lo phase due to the presence of a hydroxyl group on the 

hydrophobic nucleus of the peptide.  Rather, the NNR results can best be explained as 

hydrogen bonding between 7β molecules resulting in strong homo-association. 

The K values and interaction energy measurements reported in Table 38 can thus 

be readily interpreted in terms of the sterol structures, the well known affinity of 

cholesterol for phospholipid acyl chains in lo membranes, the poor packing of coprostanol 

molecules in a bilayer, and the favorable hydrogen bonding interaction between 7β-OH 

cholesterol molecules.  However, because these NNR measurements reflect the relative 

stability of the heterodimers compared to the average stability of the homodimers, rather 

than the absolute stability of the heterodimers, we cannot directly measure the affinity of 

each sterol for phospholipids in liquid-ordered membranes.  These data, therefore cannot 

distinguish between the “umbrella” and “template” models for sterol-phospholipid 

interactions. 
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A1.4 Conclusions 

 Directly measuring the nearest neighbor interactions between 16PL and the 

exchangeable sterols cho, di, 7β, and cop via NNR measurements in lo phase host 

membranes reveals a strong tendency for homo-association between molecules of 7β 

(most likely a result of increased hydrogen bonding due to the presence of a second 

hydroxyl group) and a high K value for cop-16PL interactions (which reflects the poor 

homo-association between molecules of cop, as a result of the poor packing of their non-

planar sterol cores in a condensed bilayer). Because these results are largely dictated by 

the strong (positive or negative) homo-interactions, however, they fail to provide insight 

into how variations in sterol core structure affect the energetics of hetero-interactions 

between sterols and 16PL.  For this reason, the approach of using exchangeable sterols to 

measure sterol-phospholipid interactions was abandoned in favor of the more 

informative, and less synthetically demanding method of using NNR as a chemical 

sensor, as discussed in Chapter 3.       

 

A1.5 Experimental 

A1.5.1 NNR Procedures 

 Vesicle preparation, NNR reactions, and particle size analysis were all conducted 

according to the procedures provided in Section 5.2.  Table 40 shows the compositions of 

the 40 mol% sterol vesicle dispersions used in all NNR reactions.  

µmol cop,      

di, or 7β µmol cho µmol 16PL µmol DPPC µmol cholesterol 

0.3 - 0.3 6.9 4.5 

- 0.3 0.3 6.9 4.5 

Table 40: Composition of lipid films used for the preparation of vesicle dispersions for NNR experiments 

using cop, di, and 7β 
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The product mixtures from NNR reactions were analyzed using similar conditions 

to those described in Section 5.2.  Aldrithiol-2 was not used in the preparation of HPLC 

samples from reactions containing {7β-16PL}, {cop-16PL}, or {di-16PL}.  Samples 

containing {cho-16PL}, {cop-16PL}, or {di-16PL} were analyzed using mobile phase 

A isocratically (see Table 41 for the compositions of mobile phases). The gradient used 

for the analysis of product mixtures from NNR reactions using {7β-16PL} is shown in 

Table 42. 

Mobile Phase Ethanol (mL) Water (mL) hexanes (mL) 

A 76 130 100 

C 77 18 6 
Table 41: Composition of all the mobile phases used in analysis of exchangeable sterol NNR reaction 

mixtures.  All mobile phases consisted of 10mM n-Bu4NOAc in ethanol/water/hexane mixtures given here 

 

 

time (min) %A %C 

0 0 100 

12 0 100 

27 100 0 

39 100 0 

45 0 100 
Table 42: Gradient used for HPLC analysis of product mixtures containing {7β-16PL} 

 

A1.5.2 Synthetic Procedures 

O-(N-succinimidyl)-O-dihydrocholesteryl carbonate (12)  To a solution of 

dihydrocholesterol (1.0 g, 2.57 mmol) and Et3N (5.0 mL) in CHCl3 (20 mL) was added 

di-(N-succinimidyl)carbonate (2.96 g, 11.55 mmol). After stirring at 45 
o
C for 6 h, the 

reaction mixture was concentrated, re-dissolved in CHCl3 (100 mL), washed with water 

(2 x 100 mL) and dried over anhydrous sodium sulfate.  After the solvent was removed 

under reduced pressure, the residue obtained was purified by chromatography on a silica-
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gel column (CHCl3) to give 12 (1.10 g, 81%) having 
1
H NMR (500 MHz, CDCl3) δ 4.66 

(m, 1 H), 2.81 (s, 4 H), 1.95-0.81 (m, 43 H), 0.62 (s, 3 H). 

{di-di} homodimer  Cystamine dihydrochloride (150 mg, 0.67 mmol) was 

suspended in CHCl3 (5 mL), followed by addition of DIPEA (0.7 mL). After stirring for 

10 minutes, 12 (760 mg, 1.40 mmol) was added as powder.  The reaction mixture was 

stirred overnight at room temperature, and then concentrated under reduced pressure.  

Purification by column chromatography [silica gel, CHCl3/hexanes, (1/1 v/v) and 

CHCl3/EtOAc (10/1 v/v)] gave {di-di} (562 mg, 86%) having 
1
H NMR (500 MHz, 

CDCl3) δ 5.13 (br, 2 H), 4.55 (m, 2 H), 3.86 (br, 2 H), 3.47 (br, 4 H), 2.77 (t, 4 H), 

1.94~0.78 (m, 86 H), 0.62 (s, 6 H); and HR-ESI MS for C60H105N2O4S2 ([M+H]
+
) 

Calculated: 981.7510, found: 981.7494. 

N-[1-(Carboxyethyldithio)-2-ethyl]dihydrocholesteryl carbamate (13) To a 

mixture of 3-(2-aminoethyldithio)propanoic acid hydrochloride salt (AEDP, 100 mg, 0.46 

mmol) and Et3N (200 μL) in CHCl3 (10 mL) was added 12 (250 mg, 0.46 mmol) in one 

portion. The resulting solution was stirred overnight at room temperature, and then 

diluted with CHCl3 (50 mL), washed with water (100 mL, pH 3, HCl). The organic phase 

was dried over sodium sulfate, and concentrated under reduced pressure. Purification by 

column chromatography [silica gel, CHCl3/MeOH (15/1 v/v)] afforded 13 (232 mg, 85%) 

having 
1
H NMR (500 MHz, CDCl3/MeOD, ca 10/1 v/v) δ 4.48 (br, 1 H), 3.40 (br, 2 H), 

2.87 (t, 2 H), 2.72 (t, 2 H), 2.68 (t, 2 H), 1.91-0.75 (m, 43 H), 0.58 (s, 3 H); and HR-ESI 

MS for C33H58NO4S2 ([M+H]
+
) Calculated: 596.3802, found: 596.3789. 

{di-16PL} heterodimer To a solution of 13 (225 mg, 0.38 mmol) and N-

hydroxysuccinimide (NHS) (49 mg, 0.43 mmol) in CHCl3 (5 mL) was added DCC (115 
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mg, 0.56 mmol). After stirring for 5 h at room temperature, 1,2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine (DPPE, 255 mg, 0.37 mmol) and DIPEA (200 μL) were added. 

After stirring overnight at room temperature, the solution was diluted with CHCl3 (50 

mL) and washed, sequentially, with water (pH ~2-3, HCl, 50 mL) and brine (50 mL). The 

organic layer was then separated, dried over anhydrous sodium sulfate and concentrated 

under reduced pressure. Purification by column chromatography [silica-gel, 

CHCl3/MeOH (25/1, v/v) and CHCl3/MeOH/H2O (50/10/1, v/v)] afforded {di-16PL} 

(132 mg, 28%) having 
1
H NMR (500 MHz, CDCl3/MeOD, ca 10/1, v/v) δ 5.15 (1H), 

4.45 (m, 1 H), 4.31 (m, 1 H), 4.08 (m, 1H), 3.92 (m, 4 H), 3.38 (br, 4 H), 2.87 (t, 2 H), 

2.73 (t, 2 H), 2.57 (t, 2 H), 2.27-2.21 (m, 4 H), 1.90-0.73 (m, 103 H), 0.58 (s, 3 H); and 

HR-ESI MS for C70H129N2O11PS2Na ([M+Na]
+
) calculated: 1291.8668, found: 

1291.8647. 

O-(N-succinimidyl)-O-coprostanyl carbonate To a solution of coprostanol 

(40.0 mg, 0.103 mmol) and Et3N (0.25 mL) in CHCl3 (1.0 mL) was added di-(N-

succinimidyl)carbonate (263.86 mg, 1.03 mmol). After stirring at 45 
o
C for 48 h, the 

reaction mixture was concentrated, re-dissolved in CHCl3 (10 mL), washed with water (2 

x 50 mL), and dried over anhydrous magnesium sulfate. After the solvent was removed 

under reduced pressure, the residue obtained was purified by column chromatography 

[silica-gel, CHCl3] to give O-(N-succinimidyl)-O-coprostanyl carbonate (39.0 mg, 72%) 

having 
1
H NMR (500 MHz, CDCl3) δ 5.07 (m, 1 H), 2.80 (s, 4 H), 2.03-0.79 (m, 43 H), 

0.62 (s, 3 H); and HR-ESI MS for C53H55N2O5 ([M+NH4]
+
). Calculated: 547.4106, found: 

547.4103. 
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{cop-cop} homodimer Cystamine dihydrochloride (10.3 mg, 0.0457 mmol) was 

suspended in CHCl3 (4 mL), followed by addition of DIPEA (39.8 μL). After stirring for 

10 minutes, O-(N-succinimidyl)-O-coprostanyl carbonate (44.0 mg, 0.0831 mmol) was 

added as powder. The reaction mixture was stirred overnight at room temperature, and 

then concentrated under reduced pressure. Purification by column chromatography [silica 

gel  hexanes/EtOAc (3/1, v/v)] and preparative TLC using 5% CH3OH in CHCl3 afforded 

{cop-cop} (35.0 mg, 43%) having 
1
H NMR (500 MHz, CDCl3) δ 4.84 (s, 1 H), 3.33 (t, 2 

H, J=6.62 Hz), 3.25 (m, 2 H), 3.10 (m, 2 H), 2.72 (t, 2 H, J=6.55 Hz), 1.94~0.71 (m, 53 

H), 0.56 (s, 3 H) ; and HR-ESI MS for C60H105N2O4S2 ([MH]
+
). Calculated: 981.7510, 

found: 981.7498. 

N-[1-(Carboxyethyldithio)-2-ethyl]coprostanyl carbamate To a mixture of 3-

(2-aminoethyldithio)propanoic acid hydrochloride salt (AEDP, 37.1 mg, 0.171 mmol) 

and DIPEA (105.2 μL) in CHCl3 (13.0 mL) was added O-(N-succinimidyl)-O-

coprostanyl carbonate (82.0 mg, 0.155 mmol) in one portion. The resulting solution was 

stirred overnight at room temperature, and then diluted with CHCl3 (50.0 mL) and 

washed with water (2 x 50 mL, pH 2, HCl). The organic phase was dried over 

magnesium sulfate, and concentrated under reduced pressure. Purification by column 

chromatography [silica gel, CHCl3/MeOH (15/1, v/v) and CHCl3/MeOH (5/1, v/v)] 

yielded N-[1-(carboxyethyldithio)-2-ethyl]coprostanyl carbamate (58.0 mg, 62.8%) 

having 
1
H NMR (500 MHz, CDCl3, ca 10/1 v/v) δ 4.92 (s, 1 H), 3.43 (s, 2 H), 2.88 (t, 2 

H, J=7.15 Hz), 2.74 (m, 4 H), 2.68 (t, 2 H), 1.97-0.73 (m, 43 H), 0.58 (s, 3 H); and HR-

ESI MS for C33H58NO4S2 ([MH]
+
).  Calculated: 596.3802. Found: 596.3795. 
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{cop-16PL} heterodimer To a solution of N-[1-(carboxyethyldithio)-2-

ethyl]coprostanyl carbamate (58 mg, 0.097 mmol) and N-hydroxysuccinimide (NHS) 

(12.7 mg, 0.110 mmol) in CHCl3 (1.5 mL) was added DCC (29.5 mg, 0.143 mmol). After 

stirring for 5 h at room temperature, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine 

(DPPE, 65.3 mg, 0.094 mmol) and DIPEA (51.2 μL) were added. After stirring overnight 

at room temperature, the solution was diluted with CHCl3 (50 mL) and washed, 

sequentially, with water (pH ~2-3, HCl, 50 mL) and brine (50 mL). The organic layer 

was then separated, dried over anhydrous magnesium sulfate and concentrated under 

reduced pressure. The product was purified by column chromatography [silica gel, 

CHCl3/MeOH (5/1, v/v)], followed by preparative TLC [CHCl3/MeOH (5/1, v/v) with 

1% water]. This afforded {cop-16PL} (31.0 mg, 24.7%) having 
1
H NMR (500 MHz, 

CDCl3/CD3OD, ca 10/1 v/v) δ 5.14 (s, 1 H), 4.83 (s, 1 H), 4.33 (m, 1 H), 4.10 (m, 1 H), 

3.90 (m, 4 H), 3.34 (m, 4 H), 2.86 (t, 2 H, J=6.82 Hz), 2.73 (t, 2 H, J=6.45 Hz), 2.55 (t, 2 

H, J=7.00 Hz), 2.24 (m, 4 H), 1.97-0.65 (m, 107 H), 0.57 (s, 3 H); and HR-ESI MS for 

C70H128N2O11PS2 ([M]
-
). Calculated: 1267.8703, found: 1267.8713. 

3-Acetoxy-cholesterol (14) To a solution of cholesterol (5.25 g, 13.56 mmol) in 

anhydrous pyridine (40 mL) was added acetic anhydride (15 mL). The resulting solution 

was stirred overnight at room temperature. The reaction mixture was concentrated to 

about 20 mL, and then was poured into cold water (250 mL). The resulting precipitate 

was collected by filtration, washed with water and dried under reduced pressure to 

quantitatively give 14 (5.82 g) having 
1
H NMR (500 MHz, CDCl3) δ 5.35 (d, 1H), 4.58 

(m, 1H), 2.29 (m, 2H), 2.00-0.83 (m, 41 H), 0.65 (s, 3H). 
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3-Acetoxy-7-oxo-cholesterol (15) To dichloromethane (200 mL) was added 

chromium trioxide (13.6 g), followed by addition of pyridine (22 mL). The mixture was 

stirred for 30 minutes and 14 (6.8 g) in dichloromethane (100 mL) was added. The 

mixture was refluxed for 3 days and diethyl ether (100 mL) was added and stirred for 

another 20 minutes. After filtration through a short silica gel column, the filtrate was 

concentrated under reduced and purified by column chromatography [silica gel, 

hexanes/EtOAc (10/1 v/v)] to give 15 (3.7 g, 52.8%) having 
1
H NMR (500 MHz, CDCl3) 

δ 5.68 (d, 1H), 4.70 (m, 1H), 2.54-2.18 (m, 4H), 2.03-0.83 (m, 37 H), 0.65 (s, 3 H). 

7β-hydroxycholesterol (16) To a mixture of 15 (6.5 g) and CeCl3
.
7H2O (5.2 g) in 

a THF (150 mL) and MeOH (75 mL) was added NaBH4 (1.3 g). After stirring at room 

temperature for 30 min, HCl (65 mL, 1 N) was added and the solvent was removed under 

reduced pressure. The obtained residue was partitioned between CHCl3 (150 mL) and 

water (150 mL). The organic layer was separated and the aqueous layer was washed with 

CHCl3 (2 x 100 mL). The organic layer was combined and washed, sequentially, with 

aqueous NaHCO3 (100 mL), brine (100 mL) and water (100 mL). Removal of solvent 

under reduced pressure afforded the crude 3-acetoxy-7β-hydroxycholesterol (6.5 g) which 

was hydrolyzed without further purification. Crude 3-acetoxy-7β-hydroxycholesterol (1.5 

g) was dissolved in THF (35 mL) and NaOH (270 mg) in MeOH/H2O (12 mL, 5/1 v/v) 

was added. After stirring at room temperature for 2 h, the reaction mixture was 

concentrated under reduced pressure. The obtained residue was partitioned between 

CHCl3 (100 mL) and water (100 mL). The organic layer was separated and the aqueous 

layer was washed with CHCl3 (2 x 50 mL). The organic layers were combined, dried over 

hydrous sodium sulfate, and concentrated under reduced pressure. Purification by column 
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chromatography [silica gel, EtOAc/hexanes (3/2 v/v)] afforded 7β-hydroxycholesterol 16 

(1.34 g, 98%) having 
1
H NMR (500 MHz, CDCl3) δ 5.26 (1H, m), 3.83-3.81 (1H), 3.46 

(m, 1H), 2.33-2.19 (m, 2H), 2.02-0.83 (m, 36H), 0.67 (s, 3H). 

O-(N-succinimidyl)-O-7βhydroxycholesteryl carbonate To a solution of 16 

(1.10 g, 2.74 mmol) and Et3N (10 mL) in a mixture of CHCl3 (25 mL) and CH3CN (25 

mL) was added di-(N-succinimidyl)carbonate (2.10 g, 8.20 mmol). After stirring at 45 
o
C 

for 3 h, another portion of di-(N-succinimidyl)carbonate (2.10 g, 8.20 mmol) was added, 

and the stirring continued for another 3 h. The reaction mixture was concentrated under 

reduced pressure and partitioned between CHCl3 (200 mL) and water (200 mL). The 

organic layer was separated and dried over anhydrous sodium sulfate. Concentration 

under reduced pressure and purification by column chromatography [silica gel, 

hexanes/EtOAc (2/1 v/v)] gave O-(N-succinimidyl)-O-7βhydroxycholesteryl carbonate 

(686 mg, 46%) having 
1
H NMR (500 MHz, CDCl3) δ 5.33 (1H), 4.59 (m, 1H), 3.83-3.81 

(1H), 2.80 (s, 4H), 2.47 (2H, m), 2.06-0.82 (m, 36 H), 0.66 (s, 3H). 

{7β-7β} homodimer Cystamine dihydrochloride (75 mg, 0.33 mmol) was 

suspended in CHCl3 (10 mL), followed by addition of DIPEA (500 uL, 2.61 mmol). After 

stirring for 10 minutes, O-(N-succinimidyl)-O-7βhydroxycholesteryl carbonate (386 mg, 

0.71 mmol) was added as powder. The reaction mixture gradually became clear to 

yellowish, and was stirred overnight at room temperature. The solvent then removed 

under reduced pressure and the residue was purified by column chromatography [silica 

gel, hexanes/EtOAc (3/2 v/v)] to give {7β-7β} (318 mg, 95%) having 
1
H NMR (500 

MHz, CDCl3) δ 5.29 (s, 2H), 5.19 (br, 2H), 4.51 (m, 2H), 3.84-3.82 (2H), 3.48 (m, 4H), 
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2.79 (t, 4H), 2.39-2.26 (m, 4H), 2.01-0.84 (m, 72H), 0.67 (s, 6H); and HR-ESI MS for 

C60H100N2O6NaS2 ([M+Na]
+
) calculated: 1031.6915, found: 1031.6891. 

{7β-16PL} heterodimer To a solution of {16PL-16PL}(25 mg, 24.8 µmol) in 

CHCl3 (1 mL) and MeOH (1 mL) was added {7β-7β} (37 mg, 24.8 µmol), TCEP (5 

µmol, 235 µL of a 21.1 mM aqueous solution), and NaOH (15 µmol, 15 µL of a 1M 

aqueous solution).  The solution was allowed to stir under argon for 48 h, during which 

time a white precipitate appeared.  The solvent was removed under reduced pressure, and 

the resulting residue was dissolved in CHCl3 and purified by preparative TLC, affording 

{7β -16PL} (8 mg) as a white solid.  From the rest of the TLC plate, 58 mg of yellow 

solid were collected.  This material was dissolved in CHCl3 (1 mL) and MeOH (1 mL), 

and additional TCEP (5 µmol) and NaOH (15 µmol) were added, and the solution was 

stirred under argon for 48 h.  Purification by preparative TLC and combination with the 

previously purified products afforded {7β -16PL} (22 mg, 34%) as a white powder 

having 
1
H NMR (500 MHz, CDCl3) δ 5.28 (s, 1H), 5.17 (1 H), 4.46 (m, 1H), 4.36 (m, 

1H), 4.11 (m, 1H), 3.84 (m, 5H), 3.43 (4H), 2.92 (2H), 2.78 (2H), 2.60 (2H), 2.36-2.24 

(m, 6H), 2.00-0.83 (94 H), 0.66 (s, 3H) and HR-ESI MS for C70H127N2O12NaPS2 

([M+H]
+
) calculated: 1305.8460, found: 1305.8447. 
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Appendix 2 

 

NMR Spectra  

 

 
Figure 39:  

1
H NMR spectrum of 1 
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Figure 40:  

1
H

 
NMR spectrum of 2 
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Figure 41:  

1
H

 
NMR spectrum of 3 
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Figure 42:  

1
H

 
NMR spectrum of {Pep1-Pep1} 
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Figure 43:  

1
H

 
NMR spectrum of 4 
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Figure 44:  

1
H

 
NMR spectrum of 5 
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Figure 45:  

1
H

 
NMR spectrum of {Pep1-cho} 
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Figure 46:  

1
H

 
NMR spectrum of 6 
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Figure 47:  

1
H

 
NMR spectrum of {Pep1-16PL} 
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Figure 48:  

1
H

 
NMR spectrum of 7 
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Figure 49: 

1
H

 
NMR spectrum of 8 
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Figure 50:  

1
H

 
NMR spectrum of {Pep2-Pep2} 
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Figure 51: 

1
H

 
NMR spectrum of 9 
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Figure 52: 

1
H

 
NMR spectrum of 10 
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Figure 53:  H

1
 NMR spectrum of 11 
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Figure 54:  

1
H

 
NMR spectrum of {Pep2-cho} 
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Figure 55:  

1
H

 
NMR spectrum of {Pep2-16PL} 
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Figure 56:  

1
H

 
NMR spectrum of Pep1a 
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Figure 57:  

1
H

 
NMR spectrum of Pep2a 
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Figure 58:  

1
H

 
NMR spectrum of 12 
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Figure 59:  

1
H

 
NMR spectrum of 13 
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Figure 60:  

1
H

 
NMR spectrum of {di-16PL} 
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Figure 61:  

1
H

 
NMR spectrum of {di-di} 
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Figure 62:  

1
H

 
NMR spectrum of O-(N-succinimidyl)-O-coprostanyl carbonate 
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Figure 63:  

1
H

 
NMR spectrum of N-[1-(Carboxyethyldithio)-2-ethyl]coprostanyl carbamate 
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Figure 64:  

1
H

 
NMR spectrum of {cop-16PL} 
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Figure 65:  

1
H

 
NMR spectrum of {cop-cop} 
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Figure 66:  

1
H

 
NMR spectrum of 14 
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Figure 67:  

1
H

 
NMR spectrum of 15 
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Figure 68:  

1
H

 
NMR spectrum of 16 
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Figure 69:  

1
H

 
NMR spectrum of O-(N-succinimidyl)-O-7βhydroxycholesteryl carbonate 
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Figure 70:  

1
H

 
NMR spectrum of {7β-7β} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

169 

 
Figure 71:  

1
H

 
NMR spectrum of {7β-16PL} 
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