
Lehigh University
Lehigh Preserve

Theses and Dissertations

1992

An application of classifier systems to the reduction
of finite state machines
Bijan Marjan
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Marjan, Bijan, "An application of classifier systems to the reduction of finite state machines" (1992). Theses and Dissertations. Paper 31.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/31?utm_source=preserve.lehigh.edu%2Fetd%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

-AUTHOR: Marjan, Bijan .

TITLE: <

An Application of Classifier

Systems to the Reduction

of Finite State' Machines
,. \ _" . A/

"

DATE: May 31,1992

AN APPLICATION OF CLASSIFIER SYSTEMS TO THE

REDUCTION OF FINITE STATEMACH1f.rnS

by

Bijan Marjan

A Thesis

.Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

'j . Master of Science'

In

Computer Science

Lehigh University

1992

ACKNOWLEDGMENTS

/~

I would like to thank all those who inspired and aided me in completing this

paper. First of al)r.I am grateful to Dr. S. David Wu, my advisor, for having spent much time

with me, giving me numerous suggestions and hints on how to proceed. I would also like

to thank Rick L. Riolo for having generously provided his software for my usage and allowed

me to consulthim when I had difficulties. My thanks are also extended to Minho J0 and Mona

A. El-Gayar for all the ideas and support they gav~m.e on.possible applications. I also owe

. many thanks to the Lehigh University Interlibrary Loan Service for all the patience they had·

with me in obtaining materials that I needed. Special thanks to my parents and brother Ales

sandro for all the support, both financial and moral, they have given me, allowing meto pur

sue my education. Finally, I would like to thank all those whose names I have not mentioned,

but who have greatly helped in· writing my thesis.

ill

)

TABLE OF CONTENTS

'ABSTRACT ~ -I •••• ! .
CHAPTER 1 INTRODUCTION ; .

"1.0 Adaptive Systems ~ - .
1.1 Classifier Systems Applications ~ .

:1\

1.3 Classifier Systems and other Artificial Intelligence Systems .
1.4 Classifier Systems and Finite State Machines .
1.5 Classifier Systems, Finite State Machines, and Communication

Protocols .

CHAPTER 2 CLASSIFIER SYSTEMS .
2.0 Classifier Systems fPld Induction .
2.1 Elements of Classifier Systems .

2.1.1 Types of Classifier Systems .
2.1.2 The Rule-Base .

2.3 Schematas and Mental Models .
2.3.1 Schemata and Building'Blocks " .
2.3.2 Mental Models and Q-Morphisms .

2.4 The Classifier System Major Cycle .
2.5 Modifying the Classifier List .

2.5.1 Credit Assignment: the Bucket Brigade Algorithm .
2.5.2 Taxes : .

2.6 Genetic Algorithms: The Discovery Method "•.......
__ - . __ - - '<;I

2.6.1 Genetic Algorithms and their Operation .
2.6.2 Other Operators that Complement the Genetic Algorithm .
2.6.3 Genetic Algorithms and Appropriate Usage .

2.7 Parallelism and Emergence .
2.7.1 Emergence .
2.7.2 Parallelism .

2.8 Trade-OffBetween Knowledge and Search .

CHAPTER 3 FINITE STATE MACIDNE REDUCTION AND
COMMUNICATIONS PROTOCOL APPLICATION .

3.0 The Finite State Machine World .
3.0.1 The Markov Process .
3.0.2 The Learning Process .

3.1 The Finite Space Reduction Task .
.3.1.1 The Reduction Task Approach .

3:2 The Protocol Environment : .
3.2.1 The Protocol Specifications .

iv

1
'- \'"

2
3
7
9

11

11

14
14
16
17
20
21
22
24
28
32
32
35
36
37
41
43
44
44
46
47

50
51
51
54
56
56
57
58

':. '>3.2.2 Reduction of the Protocol. 59 .

CHAPTER 4 EMPIRICAL RESULTS FOR THE FINITE STATE
MACIDNE REDUCTION TASK. 62

4.0 Testing Procedures for the Finite State Machine Task. 62

4.0.1 Preliminary Tests . 63
4.0.2 Parameter Settings 65

4.0.3 Results with Modified Parameter Settings '......... 67
4.0.4 Selecting the best Parameter Settings. 71
4.0.5 Using Different Heuristics 75

4.1 Using the Classifier System Appropriately ',' 77
4.2 Protocol Arialysis . 79

4.2.1 Protocol Reduction. 79
4.2.2 Protocol State Convergence ;... 83

4.2.3 Perturbation and its Effects. 84"
4.2.4 Rewards , 86

CHAPTER 5 CONCLUSION "........... 90
5.0 Results 90

5.1 Communication Protocols Used as the Environment. 92
5.2 Classifierfurstems Revisited 93

REFERENCES ~ . . 96

APPENDIX A PROTOCOL ENVIRONMENT SPECIFICATION 104

APPENDIX B THE CLASSIFIER LIST 116

-
VITA ... ~ . 125

v

LIST OF TABLES

Table 4.1 Parameter Settings for the Classifier System .
Table 4.2 Test Set for FSM .

Table 4.3 Payoff Values for FSM States at Major Cycle 12800
Using Different Values for mutprop, bidJc, and crowdfac ...

Table 4.4 Deviations from the Mean of Payoff Values for the
FSM at Major Cycle 12800 .

Table 4.5 Best ParameteYSettings .
Table 4.6 Parameter Settings for FSM 1 Problem 1, Including

Deviations from the Mean .
Table 4.7 Results of Discriminatory Analysis for Different

Parameter Settings and State Sets from FSM 1 Problem ~ .. ,
Table 4.8 Results of Discriminatory Analysis for all Tests .
Table 4.9 Gap Sizes for Three Different FSMs Using Two

Different Payoff Sets with Random Uniforms [0, 327] for
Payoffs and [0, 24] for Transitions .

Table 4.10 Gap Sizes for Three Different FSMs Using 1Wo
Different Payoff Sets with Random Uniforms [0, 250] for
Payoffs and [0, 18] for Transitions .

Table 4.11 Gap Sizes for Three Different FSMs Using 1Wo
Different Payoff Sets with Random Uniforms [0, 150] for
Payoffs and [0, 12] for 'fransitions .

Table 5.1 Gap Sizes as a Percentage of the Range of Deviation
of Payoff Values for Three Different FSMs Using 1Wo

'l. Diff~rent Payoff Sets with Random Uniforms [0, 327] for
Payoffs and [0, 24] for Transitions .

Table 5.2 Gap Si7:e~as a Percentage of the Range of Deviation
of PayoffVah.les for Three Different FSMs Using 1Wo
Different Payoff Sets with Random Uniforms [0, 250] for
Payoffs and [0, 18] for Transitions .

Table 5.3 Gap Sizes as a Percentage of the Range of Deviation.
of Payoff Values for Three Different FSMs Using 1Wo
Different Payoff Sets with Random Uniforms [0, 150] for
Payoffs and [0, 12] for Transitions .

Table A.1 Data- Link Layer State Descriptions .

VI

63
66

68

70
71

73

74

75

76

76

77

91

91

92
105

LIST OF FIGURES

. Figure 1.L: An Adaptive System 3
Figure 1.2: Amount of epitasis for different search and

optimization techniques 6
"Figure 1.3 A Finite State Machine Repr~sentationof a

Figure 2.1: A Classifier System. 18
Figure 2.2: A Classifier System with Long-Term Memory. 19
Figure 2.3: A transition function which detects the input from

. the environment and outputs some behavior that affects the
environment. ~ . . 25

Figure 2.4: A transition function which detects the input from
the environment and and produces the appronmate internal
category•.. ; " 26

Figure 2.5: A Q-morphism showing the two levels of abstraction
.....'llUffare used to qlodel the environment, using function P ... 27

Figure 2.6: The Hertzian Model . 28
Figure 2.7 The Genetic Algorithm Behavior Mechanism 38
Figure 2.8 Genetic Algorithms in Classifier Systems . i • • • • • • • • • 39
Figure 2.9: Trade-off between Knowledge (Rules) and Search

(Tasks) 49
Figure 3.1 A Simple Finite State Machine Defining a Markov

Process ". 53
Figure 3.2 The Open S~stems Interconnection 58
Figure 3.3 Reduction of a Communications Protocol 60
Figure 4.1 Final Payoff Values for a Finite State Machine Using

Five Different Initial Payoff Values "....... 64
Figure 4.2 Final Payoff Values for a Finite State Machine Using

Five Different Initial Payoff Values 65
Figure 4.3 Payoff Values at Major Cycle 12,800 Using Eight

Different Parameter Setting Combinations. 67.
Figure 4.4 Deviations from the Mean of Payoff Values for FSM

State 12 69
Figure 4.5 Deviations from the Mean of Payoff Values for FSM

State 15 ". 69
Figure 4.6 Payoff Values at Major Cycle 12,800 for FSM 1 with

Payoff Set 1 . 72
Figure 4.7 Payoff Values at Major Cycle 12,~00 for FSM 1 with

Payoff Set 1 . 72

Vll

Figure 4.8 Convergence of State Payoff Values Using a
.Threshold of 1000 --'78

Figure 4.9 Payoff Values at" MAjor Cycle 12,800 using the
Communications Protocol ~ : .. . 80

Figure 4.10 Number of Classifier Schemata in the Classifier
List Supporting Each State at Cycle Step 1000 81

Figure 4.11 Number of Classifier Schemata in the Classifier
List Supporting Each State at Cycle Step 12,000 Superimposed
with the Payoff for those States at the Same Time 82

Figure 4.12 Flow of Strength in Classifier List 82
Figure 4.13 Convergence of Payoff Values for Protocol Using

Three Different Heuristics . 83
Figure 4.14 Increase in Payoff Values for Protocol. 84
Figure 4.15 Comparison of Fitness of two Classifiers

Supporting States 2 and 6.1 with no Perturbation 85
Figure 4.16 Comparison of Fitness of Classifiers

Supporting States 2 and 6.1 in Presence of Perturbation 86
Figure 4.17 Flow of Strength in Classifier List

with no Rewards Received 87
Figure 4.18 Difference in Fitness Between a Strategy which Shared

Rewards Among.all Active Classifiers and One that I?~~s Not 88

Vlll

ABSTRACT

t

Classifier systems are massively parallel, rule-based adaptive systems that

use genetic algorithms for the generation ofnew rules and the production ofdynamic behav

ior. Classifier systems, which are now emerging as new computational models of learning,

? use intermittent feedback from the environment as a ~de to future behavior generation.

One way in which this environment can be modeled is via Finite State Machines (FSMs).

. FSMs can properly represent an environment since they are characterized by a number of

states and transitions among those states which designate the condition of the environment
.

at any given time: FSMs are an ideal tool for representipg a multitude of synthetic environ-

\

ments such as communication protocols. One problem an FSM often encounters is its size,

since the computation involved in evaluating an FSM is directly affected by its size.~s
thesis, weproposed a method which uses classifier systems to reduce and refme a given FSM.

The classifier learns-the-relevanCe~oreach'srate-anQgiv~s-f;;a.;:cfstOffie-stafes-iased-olit1ie--·-·-_·-_.--- --

frequency ofvisitation. At the end of the computation, the classifier system identifies a spe

cific subset ofstates that demonstrates the highest level ofrelevancy. In this research, anum-
.

. ber ofFSMs tested using various parameter settings in the classifier system. A specific FSM
~.

of a communications protocol was used to demonstrate the efficacy of this approach.

1

CHAPTERl·

INTRODUCTION

In the recent history of artificial intelligence (AI), new methods~ have

emerged that allow machines to operate on the basis of cognitive models., Much effort has

been placed in creating intelligent systems that can learn based on the environment with

which they interact. Such systems have to be able to analyze largeknowledge bases andeval-

uate the significance of the residing information therein. Connectionist systems have been

. very popular in this area for a number of years. However, they are now flanked with a new

computational model thatis also an isomorphic paradigm to connectionist systems. Classifi-
,

,er systems, 'which like connectionist systems are used to classify real-world data in some

fashion, are rising as anew powerful tool in the cognitive arena. Classifier systems are rules

based, massively parallel;message-passtng systems that learn via intermittent environmen-

tal feedback. They constitute a bridge that links not only researchers in artificial intelligence,

but also those in parallel distributed pro~ssing, cognitive science, machine learning, and

artificial life (AL). This last category is really a combination of all the previous ones since

it introduces the concept of adaptive nonlinear networks (ANNs). John Holland introduced

this category which incorporates classifier systems, connectionist systems (cognitive

psychology), immune system, economic systems, ecologies, genetic systems, and so on. In

addition, a number ofother AL research programs have recently emerged that attempt to pro

duce the natural living system in artificial forms. These have 'extensive simulation capabili-

ties and include computer viruses, evoJving computer processes, biomorphs and ontogeneti

cally realistic processes, robotics, autocatalytic networks, cellular automata, artificial

nucleotides, cultural evolution, and evolutionary reinforcement learning (ERL) [1]. A good

description of these is given by Taylor [72].

2

•

. 1.0 Ada'ptive$ystems

In order for computer systems to be able to produce intelligent behavior, they

must be capable of interacting with the environment and iearning from it. This is a continu

ous knowledge acquisition task that we as human beings always indulge in. Adaptive sys

tems gainknowledge viaenvironmental feedback. Figure 1.1 shows how an adaptive system

might look like [33]. Note that the system gathers input from the environment, processes

SCENE

THRESHOLD
DEVICE

The scene shown is classified as c+ because Lf~ 1 w•.o.(t) = 01(t) + ~t) + ~t)

+ Mt) + 2Or,(t) + 4Oe(t)+ ... > 4. where 0 is a weight given to each cell in the
sensor array.

Figure 1.1 : An Adaptive System
From: Holland, John H. Adaption in Natural and Artificial Systems. Ann Arbor, MI: The

University of Michigan Press (1975)

the input (in this case represented by a summation function), and then generates output. This

adaptive system resembles a classifier system. The sensor array would consist of a number

3

of classijiersthathave weights assigned to them caIledfttnesses or strength. These values

designate the importance of a classifier in the environment being probed. This mechanism

provides a learning mechanism since the classifiers are constantly modified given the input

that is received from the 'environment. Any change in the environment should be reflected

by a change in ~e behavior of the classifier system.

Classifier systems are ANN systems. To fit this category, certain criteria have

to be met, as Holland requires [37]. First of all, an ANN system exhibits hierarchical orga

nization. This implies that building blocks exist that combine intelligent units at lower levels

'- to produce intelligent units at higher levels. Such behavior can be found in all living systems

(as seen with meiosis in biological systems). In classifier system~, classifiers are built via a

process that begins with the establishment of certain building blocks called schemata and

the successive refmement of them in time. A second characteristic of ANN systems is that

a certain level of competition exists that drives the fonnation of schemata and the eventual

fonnation ofsystem behavior. The fitness value is the commanding element in suchcompeti

tion. Third, the environment with which the system interacts provides incentives for the clas

sifier system to produce desirable outputs. This is done via the assignment ofpayoffvalues

or system rewards. A fourth criteria is that of the exploitation of environmental regularities.

In other words, the environment produces behavior that is often used by a system as a basis

for its own behavior. A classifier system that represents a robot probing some environment

would, hence, use light as its tool in its examination. This restraint causes the system to func

tion at non-optimallevels since the robot could well be using other, more efficient means

of driving its behavior. It is therefore difficult to exploit all possible environmental regulari

ties for the generating system behavior. Fifth, there is a tradeoff between exploitation and

exploration. To explore an entire search space, such as the robot trying to fmd which direc

tion to move in, is very expensive since it requires much time. Exploitation, however, may

not consider all desirable movements but focus on a single one and would, therefore, produce

4

less than optimal behavior. Hence, a trade-offexists between long searches but higher levels

of confidence and brief searches and lower levels of confidence.

A sixth factC!r is denoted by a tradeoff between tracking and averaging. The

environment may generate behavior that changes too fast in accordance to the systems be

havior, therefore the environmental data has to be averaged in time to gather qualitative in-

formation. But if the behavior is synchronous with the system behavior, then the data can

betracked. A seventh momentous characteristic of ANN systems resides in the nonlinear
~

feature. In a natural system, such as a genetic system, which resembles classifier systems,

genes depend on other ,genes during the building block process [15]. In genetic terms, a
, '\

~

phenotype, which would be the resulting organism from the interaction of genes, emerges.

But genes tend to inhibit other genes from acting in given ways or activate them at other

times. This creates the condition called epitasis, where one gene affects the behavior of

another one. The genes, interact together to produc,some higher level organization (a new

organism). Butdue to epitasis, it is notpossible to determine from the genes alone the constit-

uency of the higher level organism (via the schemata building block). This factor introduces

nonlinearity in the system. In classifier system, this effect is produces via the search tech-

nique dilled genetic algorithms. The amount of nonlinearity present in the functioning of

genetic algorithms is important to control since too much epitasis can lead to very complex

schemata that are hard to understand while too little epitasis does not provide an adequate

building block mechanism. Davidor [15] compares genetic algorithms in comparisonto oth

er search techniques and identifies how much epitasis each method should have, as displayed

in Figure 1.2. Note that chaotic behavior of the environment is also an endogenous factor,
'-

beyond linear estimation. The functioning of the classifier system depends on the environ-

ment and how the environment interacts with the system. Ifthe environment displays nonlin

ear behavior, where it acts in bursts rather than in a deterministic fashion, then the classifier

system's behavior will also be additionally unpredictable.

5

Hill Climbing Random Search

I'
I
I
I
I

\ f""
I I
II
I I
I I

Genetic Algor.ithms
_A....

" (I I
I I
I I
I I

\
I
I
I
'IJ

0% epitasis 100% epitasis

Figure 1.2: Amount ofepitasis for different search and optimization techniques

From: Davidor, Yuval. Genetic Algorithms and Robotics: A Heuristic Strategy for
Optimization. Teaneck, NJ: World Scientific (1991)

An eight facet to ANNs is coupling. This is somewhat related to hierarchical

organization since the combination of-classifier constituents gives rise to different classifi

ers. Two claSsifiers can be coupled when the action of one satisfies the condition of another

one, resulting in the organization or coupling ofclassifiers. Ninth, there can be certain build-

ing blocks of a general nature (generalists), those upon which many classifiers can be built,

and there can be specialists, restricting themselves to a small pool of classifiers. Tenth, the

cooperation ofdifferent building blocks in producing system behavior within a certain envi-

ronment can lead to more flexible and complete system behavior. The eleventh point con-

cerns the construction of internal models. This puts ANNs in the perspective of cognitive

models, where systems learn from the environment. Internal models provide a better under-

standing ofhow the system adapts and develops. They defme what the system is getting from

the environment, what is it doing to the input, and what output does it produce in any given •

time step. Such topic has also been examined in the neural network area [20]. Finally, ANN

systems exhibit a growth in entropy [15]. As building blocks are created within a system,

that ~ystem h~ tQ use.!D0re!eso~ces in order to continlle it~bllildiJ;l.g process. In this fashion,

the amount of (fmite) resources increase as th~ system complexity increases. Entropy puts

a ceiling on how much a system can evolve due to limited resources. Note that this is recur-

6

_ring-probleminthedesign ofinfonnatiOIBystems~where-sometiIDes-iIieamountofinfonna

tion to be processed is onerous. In cases where the amount ofdata becomes unmanageable,

the haystack syndrome results, where it becomes difficult to determine what data is really

useful.

Once the above requirements aremet, the adaptive system can be created. Ge

netic algorithms provide a useful means to manipulating and adapting classifier systems..

The mechanisms employed by genetic algorithms f<Ycus on chromosomes, which are the .

structures that encode the traits of living beings. These beings take shape given the decoded

chromosomes. Genetic algorithms have four key features. First of all, the chromosomes are

the means by which we evolve and ~erefore any adaptiolfthat takes place directly affects

these structures. Second, evolution via natural selection is based on the strength of the

chromosomes (their ability to survive in time). TIlls happens because certain chromosome

"blue-prints" (or schemata) are better fit for the environment being tested. Third, during re-

. .

environment). Fourth, since biological evolution has no memory, the certain chromosome

blue-prints will be forgotten and surpassed in time [16].

1.1 Classifier Systems Applications

Classifier systems represent a computational and cognitive model that can be

easily applied to a great number of domains. This is done by changing the enviromnental

interface of the classifier system to support new applications. The application used in this

thesis used a package that provides a facilitated construction of a specific domain-[56].

Classifier systems have.beenemployed in a number of domains: Thesem- .

clude strategy acquisition [30], learning models of consumer behavior [27], discovering

scheduling heuristics [32], learning sequential decision rules [29], detecting events in syn-

7

".

:thetic images [47], recognizing letters [22], negotiating [43], naturallanguage processing

[3] and various others, some of which are explained.very well by Goldberg [23].

A number ofdifferent systems have evolved for developing classifier system

.'" applications. They are based on two programmatic approaches to classifier sYstems [17].

One ofthem encapsulates all the rules in the classifier system within one data structure which

is the "Pitt" approach, after the University.ofPittsburgh, mdoctrinated by Dejong, while the

other one takes a less.holistic approach where eachrule is a separate data structure. This latter

approach is characteristic of classifier systems of the "Michigan" type, after the University

of MichIgan, designed by Holland.

Among the different systems used in implementing classifier systems we find

the LS-I (Learning System-I) family of programs [64] [65] the ARGOT system [63], the

GOFER family of systems [8], the classifier system with long-term memory (CSM) [76],

the KL-ONE family of classifier systems [21] which use USP as the programming lan-

==~===---=-gfJ.age,tlie CS:-l1CogniHveSjTjfum Qrielpmgiam134}1NhiclLwJlSlhefirstclassifieLsyste~----~~~--

the~ANIMATsystem [73], the BOOLEsystem 4 [74], andCFS-e [56], which is used in this
-

thes1s and is written in C. CFS-e also uses the "Michigan" approach to classifier systems.

Although various programs have ~eendeveloped for classifier systems, there

still rests much work to be done in the area. Current!y provided are the basic classifier system

computational mechanisms, which are not yet capable ofhandling commercial-scale prob-

lems. A number of refmement processes for classifier architectures and genetic algorithms

.;:rre still necessary. In addition, user interfaces are primitive and have to be enhanced.

Programming in classifier systems has been done in a number of languages.

The ideal language is one that does not necessarily provide symbolic processing (as in the

. case ofProlog orOPS5), but one that-allows good numerical computations.CFS-e has been ~

designed in C, which provides sufficient computational power.

Classifier systems are well suited for implementations on parallel machines.

8

One such implementati'on was created with the CFS-C package on aConnection Machine
.,

[60]. A number ofother systems have been designed for parallel implementations [14] [50]

[61] [39] [71] [24]. Most of these incorporate the parallelism inherent in genetic algorithms.

1.3 Classifier Systems and other Artificial Intelligence Systems

Classifier systems would seem to have a number of disadvantages at first

glance. First of all, the rule-base seems to consist of a grepl number of rules encoded in

binaryfonnat (O's and 1's), giving classifier systems very little descriptive power. In addi

tion, classifier systems suppon parallelism where many rules can be active simultaneously.

There is a problem in the management ofrule activations in such a case since somehow the

rule,s that should be activated must be found and selected in some qualitative fashion [10].

However, the classifier system language allows one to build representations using the binary

encodings. In fact, schemata (or building blocks or blue-prints)pennit-the creati~~~f-=!!i~[l!l:.-::_

chical associations among rules. A good example of this is give~ by Holland and Booker!

where. networks are build via associations among different rules. Another description of

high-level hierarchical associations is given by Antonisse [2]. Rule clustering is also becom-

ing ofgreat relevance in classifiersystems. Such clustering is useful especially when the sys

tem attempts to solve problems via associations or analogy [76]. In such case, rules that are

similar in some ways are recalled in attempting to solve the problem at hand. Another con

cept is that of rule corporations [74J. This idea involves having rule clusters cooperate to

gether in solving problems (just like corporate collusion).

Rule clustering and combination can also be represented via the disjunction

of complementary rules. Booker [11] also >argues that using complementary feature man

ifolds, where a chromosome can be used to represent one value, such as the color blue or red

1. This is done via the tags assigned to rules (which will be discussed later). Holland and Booker give
a good description in [10] on page 249

9

\ or green, a number ofdisjunctive generalizations can be obtained. Thus, for the three colors

above from which the other colors of the spectrum can be obtained, a generalization can be

made using disjunctive operators that could create a new color. Thus, blue and red may pro

duce purple as a result (this would also have its own chromosome'encoding different from
J

all others).
<"

In addition to being able to produce qualitative representations, classifier sys-

tem provide parallelism which is cmcial inouilding combinations ofrules that would other

wise be impossible to configure in a serial system. Specifically, the firing of rules simulta-
v

neously greatly enriches the pool of facts (or messages in classifier systems) that exist in

working memory and that can be accessed for the matching of classifier conditions.

Classifier systems use sub-symbolicprocessing, similarto connectionist sys-

terns. In such models of computation, each "unit of intelligence" is in itself not very mean-

ingful [21]. For example, a single synapse in a neural network or a classifier in a classifier

- sy.steriLby themselvesilonot havemuch:iI1formatlv.:e_power But the-coiribll1at1Ons..aniiinter~c=-~~_

actions ofthese units at low-level produces very complexhigh-level representations, as sup

ported by the schemata mechanism in classifier systems. On the other hand, knowledge can

be represented inrule-base format which is more easily interpretable and accessible to inves

tigation that the hidden layers of the connectionist systems. Classifier systems, hence, pro-

vide a middle ground to connectionist systems and traditional symbolic processing systems

such as expert systems.

Furthermore, the schemata mechanism of genetic algorithms has been used

to provide a betterunderstanding of sub-symbolic processing in connectionist systems. Via

the schemata mechanisms, hierarchies are built to represent different symbols. An excellent

example of the is given by Dolan [19]. Indeed, understandingneural networkhidden layers.

and what those layers represent (what is the network learning at any given time) can be quite

complicated [20].

10

"0 '

Antonisse and Keller [2] -provide yet another example o~ how classifier sys

tems can help build high-level representations via the schemata processing. They build a

production system for building trees representing hierarchies.

1.4 Classifier Systems and Finite State Machines

A Finite State Machine (FSM) can be used to model a number of domains

with classifier systems. The reas90 for this is that the environment with which the classifier

system-1ntermittently transacts can be represented as a state space system. Each state within

the FSM can represent a state the environment can be in at a given time. Once tl].e classifier
--

system re,ceives input from the environment, processes it, and outputs its behavior, the envi-

ronment's state changes. FSM, hence, make the problem ofrepresentation easier. The classi

fier system is a c;omputer program with no inherent cognitive traits. In order forit to be able

_~p!"oc~s~ the infQI1llationlt.Iecehres,jtmustknow how the environment "looks-likp::e."!"!'''---~----

The use of the FSM in classifier systems is not a unique concoction. In fact,

FSMs are the main design element of cellular automata. They have also been used in anum

ber ofnew artificial life systems, underlining the fact that FSMs are~ appropriate cognitive

model, capable of representing environmental states in a simple while complete fashion.

They are also used as a main counter-example of artificial neural networks.2

1.5 Classifier Systems, Finite State Machines, and Communication Proto
cols

It has been shown that classifier systems are an important tool in developing

problem solving systems that can successfully handle tasks within a particular domain. One

2. For a good sampling ofFinite State Machines and their use in intelligent systems, the Artificial
Life IT: A Proceedings Volume in the Santa Fe Institute Studies in the Sciences of Complexity volume
can be a good guide.

11

such area is that of protocol design. A protocol defines the functions of a communication

system. Specifically, aprotocol delineates all the rules and conventions that are used in com

munication among various systems that~e connected to a network.

Comm~cation protocols are specified as finite state machines, orprotocol

machines [25], and incorporate the various states that the communications system may be

in at any given time. ~e FSM concept is especially appropriate in protocol specifications
I

si?ce a communications network consists of a number of input and output sequences tl}at

change the state of the network. Hence, at one point of communication between two nodes

, (suC,h as two computer terminals, using Data Connecting Equipment (DCE) in a network,

one node may be sending amessage or it may be waiting for an acknowledgem.ent for a mes-
\

sage tha~ was sent to another node. An example of such a state diagram is seen in Figure 1.3,

as defined by Bochmann [7]:

Very often the number ofstates specified in aprotocol machine can be super

------:=I---1tlPh\l1'l70mu.....s::r<or-redundant.-m-.suen-a-case;-me lClencles-are created in-cOininunicationsfuce ffie ~
-,-

protocol system has to transit to additional states when this not really necessary. To avoid

such aplethora of states, amethod has to be devised to analyze whether all the states are nec

essary and whether any of the states can be eliminated, while not comprising the functioning

or efficiency'of the protocol. The classifier system in this paper analyzes aprotocol that de

fmes the Integrated Services Digital Network link-access protocol on D-channel (LAPD),

which is defined in the data-link layer of the Open System Interconnection (OSI) Reference

Model of the International Organization for Standardization (ISO). In doing so, it learns

which 'states appear to be bottlenecks within the protocol specification. In addition, to sup

port empirical resWts, some randomly generated finite states machines are produced and

testedtp check the efficacy of the approach taken.

This thesis intends to support the concept ofsystem reliability optimization.

To produce systems that are reliable and perfonn well, redundancies have to be eliminated

12

/

As it will be shown, classifier systems comply to the specifications delineated by inductive

systems, permitting dynamic b,ehavior as a result ofits interactions with the environment and

successive modification ot:its knowledge base.

2.1 Element~ of Classifier Systems

A classifier system is a rule-based system that interfaces with the outside

world. In doing so, it learns from the environment and generates appropriate behavior. In

expert system language, a classifier system is made ofcondition/action rules, where condi

tions are matched by messages detected from the environment and actions are fired as a con-

sequence. The classifier system consists of the following element:

1) an input interface that extracts information from the environment and encodes it into

::binaIyJOrm,-the-classiher-system-operating-l-anguage;---These binary strings--are--call:ed--------
. . . _ - - --~- r . ":

chromosomes for their use iIi the genetic algorithm (the discovery algorithm used by classifi-

er systems). These chromosomes are called detector messages since they detect the current

state of the environment.

2) a rule-base or classijier-list consisting of the condition/action rules. The number ofclas

sifiers in the rule-base is called the population, once more in genetic algorithm terminology.

3) a message list, much like the agenda of an expert system, that contains the detector mes-

sages that have been taken from the input interface. The message list is updated constantly

to represent the state of the environment. Note that the classifier system is capable of per

forming real-time operations thanks to its environmental interface.
,

4) an output interface that generates system behavior. The output is also a chromosome,

called effector, which is then decoded to affect the environment in some way. For example,

if in a packet-switched networking system a certain data packet is not received at a given

16

time, the classifier system must learn to request re-transmission ofthe data packet using its

output interface.

2.1.1 Types of Classifier Systems

The rule-base ofthe classifier system consists ofshort-tenn memory offacts

that lasts as long as the classifier system is operating to--sol¥e-a~re-the-t.agkK-----

is accomplished, or learning has occurred, this volatile memory is shut down. In order to pre-

vent such loss, a classifier system with long-tenn memory has been developed [77] that al-

lows old rules to be recalled. In order to do so, the classifier system matches its detector mes-

sages with rules residing in this long-term memory and builds a population of classifiers

from those rules. This type ofassociation can be referred to as learning by analogy, since the

classifier system retrieves facts from previous experiences and uses them for current prob-

- iems.NoteB.1so-that-this notieeably-improves'Systemperformance-smcellle system does noT----------- ---

need to reconstruct those same rules again. Once the system has accomplished its tasks, it

saves those rules in long-tenn memory in order to fetch them at some future time.

Figure 2.1 shows a classifier system with short-tenn memory. Note that
~

whatever resides in the classifier list is then lost when the task is accomplished. The input

interface gathers data from the environment in the fonn of a message which it places on the

message list. The message list is also updated with any other messages that are fIred from

the classifier population. When the clac;;sifiers generate effector messages, these messages

are delivered via the output mechanism of the system, generating system behavior.

- Figure 2.2 shows a classifier system with long-term memory which is initial-

ized with a classifier population stored from previous runs of the system. Associations are

made between what is in the message list and what resorts in the long-tenn memory via the

matcher. Specifically, as soon as the classifier system receives some initial environmental

17

Input Interface

Output Interface 10100110 Message List
10110110 00101010

""'---""'"--~ """CIIl~BqilI11 010101

01010101

Messages that satisfy classifier
conditions and matches in the

classifier list

condition condition

Classifiers that have their conditions
satisfied fire their action and post it

in the message list

action

1

2

3

Population 4

•
•
•
n

01010101 01010101 10100110

01OW100 00010101 00101010

0001010001110101 11010101

10100011 11100001 01010101

) •)•
•

11101011 01001100 01010010

Classifier List

Figure 2.1: A Classifier System

data from the input mechanism, it compares the data to the rules in the long-term memory,

which are grouped iIlf()CliIstersrelated to the different problem-solving tasks dealt with in

the past, and initializes a population consisting of all the rules in that cluster. If the number

of rules in that cluster is not as big as the limit of the classifier list, additional rules are gener-

ated randomly. The remaining operations are similar to the short-term memory classifier

18

Matcher

t
condition condition action

Input Interface

,Message List
10100110

01110110 00101010
~paiii!lIj1III11 010101

01010101

Output Interface
.'

Classifier List
condition condition action

•
•
•
n

01010101 01010101 10100110

0101010000010101 00101010

0001010001110101 11010101

10100011 11100001 01010101

) • S•
•

11101011 01001100 01010010

1

2

3

4

•

•
n

0101010101010101 10100110

0101010000010101 00101010

00010100 01110101 11010101 ,

10100011 11100001 01010101 S

<; • ..~-----.---- - --

•
11101011 01001100 01010010

Figure 2.2: A Classifier System with Long-Term Memory

system.

The classifier system, like any other adaptive system, is supposed to be a dy-

namic system which changes over time given its interaction with the "outside world" and

improves its performance as it learns more about it [17]. The adaptive mechanism is an en

capsulated "black box" to which access is limited and all interfacing is done via a special

19

broadcast or interface language. In addition, in order to improve performance, it has to be

able to extract new environmental data into a format that it can understand (which is called

schema). The formation of such abstract forms is an ongoing process since the environment

is rarely in·a static state, changing in time as a result ofits interaction with the classifier sys-

tern or other source.

2.1.2 The Rule-Base

All rules within aclassifier system are composedofbits (l, 0) and adon't care

symbol (#). The condition and action strings of a rule are composed of a sequence of such

symbols. The syntax used in can be written in Bakus-Naur Form (BNF) [21]:

<classifier system> ::= <classifier>
.-

<classifier> ::= <corrdition>-<conOiti0fi5 =><aCtion>

<condition> ::= <alphabet>n I-<alphabet>n

<action> ::= <alphabet>n

<alphabet> ::= 110 I#.

Note here that we have used two condition strings which is the default number used by the

software library [56] used in this thesis and have set n to 16. The tilda in the condition state-

ment indicates that if no other strings matches that condition, then the rule is fired, or ac-

cepted, given that the fIrst condition is also satisfIed.

Therefore, a' condition or action may look like 00101010101010110 or

-1010100001010101010 or#100##11010#11111. The latter case is that ofa generalist mes

sage, which will match many different messages (approximately 43 messages) since there

are 4 don't cares. The former messages, on the otherhand, are specialists and will match only

20

·'

I

one other message, genotypically identical to them. '

There are four different tags assoc~d with the messages. A message3 that

starts with "00" in its left-most bits designates a detector message. Therefore, such a mes
I

sage will only match messages from the input interface. Messages that start with" 11" or"01"

"
are used only within the classifier list. Finally, those messages that start with a "10" in their

left-most bits represent effector messages. For example, when a classifier fIres an action
J .

with"11" or "01" in it, that action will be matched only by the condition ofanother classifier.

If that action has "00" in its left-most bits, then it will match IT,lessages on the message-list.

And if the action has "10" in left-most bits, then it will match effectors. In fact, there are

different effectors that can be defined, each defIning the system behavior that is desired. This

will be discussed later on.

Tags are also used to produce networks of activations of classifiers. For ex-

ample, a tag like 1001, embedded in the action of a classifier, can designate an action to be

another action with a different tag which would only occur if the previous rule had fIred an
~

action. In this fashion, a hierarchy of classifiers is formed giving the classifier system a

knowledge structure that not only provides maneuverability of the knowledge and how it

should be used, but also flexibility in how to use that knowledge. A more accurate account

of networks is given by Booker et al. [10].

2.3 Schematas and Mental Models

A schema is the classifier mechanism for encoding categories. Schemata are
.

the building blocks of the system. From the schema, the classifier system builds an internal

3. Note that terms such as message, chromosome, bit string are used interchangeably since
they are standard classifier system terminology.

21

(~

-representation of~e system. In other words, the schemata define the most relevant'charac

teristics of the environment that are being considered. The schemata constitute a part of the

conditions or actions of a classifier. For example, if one of the classifiers in the rule-base

looks like the following: 00110000#1#10101 -1010101#01#0001111 ~

##100###0101######, then the schemata (in boldface) designate those attributes that are

significant in identifying a particular concept. Note also that the' pound signs ("#") here

serves as pass-:-through symbols since the message that the action of this rule will match will

satisfy the message regardless of the values in those positions.

2.3.1 Schemata and Building Blocks

Each ofthe bits in achromosome can represent a certain concept. For exam

pIe, in a ~ystem that diagno~mm~cation network problel11_~~d_~~~g is posted in

the classifier-system-such-as-oOOOOOOOOOOOOOOl,the right-mosrbir(turnedon, or'set to 1)
,

may indicate that the last data packet in the a series has not been received. But one may need

to capture more data once aproblem has been detected. In such a case, a number ofbits can

be used to represent such a concept. For example, mthe bit string 000000000001010, the

sequence 1010 can represent the network state network load high and rising, where bit 2

could represent rising load and bit 4 could represent load high. Note that since the alphabet

is also composed of a third symbol, the 1010 sequence of bits is actually only one in a set

offour distinct possibilities ((1010, 1110, 1011, 1111}). This schema, 1#1#, permits the clas-

sifter system to represent many different concepts having a similar building block. There

fore, the network example could be expanded to represent network load high, rising, and

breakdown point reached, using the schema 1110, for example. A schema can be of any

length and appear anywhere in the chromosome. In the above example, the schema can be

represented as ************1#1# since the other bits are not part of it. Therefore, in more

22

(

generic terms, a schema can be in the set {I, 0, #, *}n, where n is the length of the string

(set to 16 in this application). Radcliffe [52] uses this more generic definition of schemata

theory to develop his formae.

This phenomena, where an n-bit string is an instance of 2n schemata, has

been called implicit parallelism. In a sense, the schemata and all the strings that can be

< derived from them, are active at the same time. This gives greater computational power to

the classifier system and a greater number of concept formation strategies.

A schema, then, serves as a building block for the classifier system. Holland,

however, suggests that there are various obstacles to adaption related to schemata that have

to be overcome if learning is to be efficient [33]. First of all, the cardinality of the various

schemata is very high. There can be a great number of such structures and the search for the

most fit can be non-exhaustive. Second, due to the fact that biological evolution has no

memory, the apportionment ofcredit may occur on the basis ofincomplete knowledge, based
--_. ---~---------------

-solely~on-we-infOri1faJioin;U1'fefitlyjjftlie-cUlssifierliSt-:lliiid;the strength (fitness) of the

classifiers have high dimensionalities, removing much influence from the other variables

that are at the basis of the optimization process provided by the genetic algorithm. The

strength measure follows a nonlinear (chaotic) behavior due to epitasis, causing the optimi-

zation process to be locked in suboptimal areas of the total search space. Fifth, search and

exploitation are not mutually exclusive. the search for new structures interferes with the gen

eration of above-average schemata. Finally, there is more information than payoff values

that the environment provides that has to be taken into consideration. This is especially true

with such parameters as system rewards. Holland also explains that such problems can be

overcome by progressively exploiting the best schemata, ensuring that the schemata being

generated are the best ones, and testing a large number of new schemata in order to amelio

rate the chances of exploiting the entire search space.

23

2.3.2 Mental Models and Q-Morphisms

Mental models are used to emulate the structures by which we represent the

world inourbrains. These structures, categories, or schemataare certainlynotunique to clas

sifier systems and genetic algorithms. Indeed, Roger Schank and Marvin Minsky developed

-inost of the concepts related to such models. Schank developed the concept of scripts and

later on Memory Organization Packages (MOPs) while Minsky improvised frames [62]

[45].

Schemata and similar structures permit adaptive systems to gather environ

mental data from the outside world, decode them, and represent them in internal format. This

is what the detectors do in a classifier system on a continual basis since the environment

keeps on changing with time. Once a classifier system has detected the information from the

environment, performed its classification, and. output its behavior, the environment has

c}earlychanged its state. A mathematical model of such state transition is ~iven by Holland

et al. [36]. This is composed of a transition function T[S(t), O(t)], where T is the transition

function, S(t) is the current state of the environment at time t, and O(t) is the output of the

classifier system at that time step.

Once the time step is concluded; the transition will be T[S(t + 1), O(t +1)].

This transformation process is represented in Figure 2.3. Note that information about the

outside world is mapped into the classifier system at any given time step.

Since the environment is highly complex and difficult to convert into an in

ternal state using an isomorphic function, only approximations can be made. This is done

via a homomorphism. In doing so, the most relevant characteristics of the environment are

extracted and mapped into the input interface of the classifier system. Recall that in the clas

sifiersystem beingused here, these characteristics are mapped into 16-bitmessages. Abetter

24

time t
,..----,

T[S(tl) = S(t + , l

Figure 2.3: A transition function which detects the input from the environment and
outputs some behavior that affects the environment.

From: Holland, John H., Holyoak, Keith J.,.Nisbett, Richard E., and Thagard, Paul R. I!l=
duction: Processes of Inference. Learning. and Discovery. Cambridge, MA: Massachusetts

Institute of Technology Press (1986)

representation of this is given in Figure 2.4 Note that for the different characteristics, certain

schemata are formed.

The schemata are the initial building blocks of the classifier systems. They

constitute default hierarchies from which additional refmements can be made to fully repre

sent the state of the environment. In order to do so, the current mathematical model has to

be expanded to take into consideratio~ the default hierarchies and the models that can be

derived from them. Figure 2.5 displays a quasi-morphism, or Q-morphism, as defmed by

Holland et al. [36] which not only brings the previous two figures into one, but also models

the internal state into two levels. Levell represents the default hierarchy while the Level 2

represents a specific instance ofthat hierarchy. Therefore, a condition within one rule iIi the

classifier system could undergo the following changes (the schemata is in boldface):

Timet

condition (Level 1):01010#1#00#01010

condition (Level 2): 0101011100101010

25

Time t+l

01010#0#00#01010

0101000100101010

Transition function that
maps the outside world into and inter

nal representation:
Transition function P: World --7 Model

Network status 0

Model

near alert

Figure 2.4: A transition function which detects the input from the environment and
and produces the approximate internal category

Adapted from: Holland, John H., Holyoak, Keith J., Nisbett, Richard E., and Thagard,
Paul R. Induction: Processes of Inference. Learning. and Discovery. Cambridge, MA:

Massachusetts Institute of Technology Press (1986)

Note that pound signs have been replaced by bits, indicating that a specific concept has been

formed.

Accordingly, mental models undergo a continuous process of alteration. It is

via this mathematical process that learning takes place and refmement occurs. Schank [61]

argues that learning occurs thanks to the iteration of interfaces with the environment. And

this is what occurs in aclassifier system since the more mstances ofa schemathat are encoun-

tered, the stronger and less abstract that schemata becomes, representing the current state of

the environment at any given time.

26

\
Figure 2.5: A Q-morphism showing the two levels of abstraction that are

used to model the environment, using function P

From: Holland, John H., IDlyoak, Keith J., Nisbett, Richard E., and Thagard, Paul R. In
duction: Processes of Inference, Learning. and Discovery. Cambridge, MA: Massachusetts

Institute of Technqlogy Press (1986)

An interesting analogy can be derived from the works of Cariani and the

Hertzian model ofemergence he presents [13]. This model embraces the concept that emer

gence in a system takes place by encapsulating and encoding information from the environ-

ment, processing it via some rules (or functions), and then generating a prediction of what

the environment wouldlook like in a successive time step. This is also clearly amental model

of how a system behaves, with the difference that a predictive element is used rather than

a deterministic, after the fact formula. The Hertzian model given by Cariani is displayed in

27

Figure 2.6 and shows how the data from the world is gathered and understood (semantics)

and how it is transformed from one time step to the other via internal functions (syntax).

Predictivo model

Observer-dependent
choice d what to
measuro & predict
(Pragmatic)

Phyalcailiwa

Encoding
(Semantic)

Formal Nlea
(Syntaaic)

Figure 2.6: The Hertzian Model

From: Cariani, Peter "Emergence and Artificial Life" in Langton, Christopher G., Tay
lor, Charles, Farmer, J. Doyne, and Steen Rasmussen. Artificial Life IT: A Proceedings
Volume in the Santa Fe Institute Studies in the Sciences of Complexity. Redwood City,

CA: Addison-Wesley (1992), pp. 775-779

2.4 The Classifier System Major Cycle

The classifier system performs its task by adapting to the environment. In or

der to do so, it keeps on getting information from the environment and processing it. The

classifier system, therefore, uses the following algorithm [56]:

1. Add messages that represent the current state of the enviromnent

to the message list;

28

2. Compare aU the messages that are on the message list with the

conditions ofthe classifiers in the classifier list;

3. Calculate bids for all the classifiers that have their conditions sa-

tisfied, run a competition among the bidding classifiers and select
-,

those classifiers that win;

4. Generate new message from the actions of those classifiers that

won the bidding competition (add the messages to the message

list);

5. Process the new messages to the output interface (effectors) and

get the reward from the environment.;

6. Apply the credit assignment algorithm to reallocate the strength of

the classifiers;

7. Use the discovery algorithm to modify the classifier rules given

the new strengths; this will produce new rules representing the cur-

rent state of the environment;

8. Replace of the message list with the new messages from the new

classifiers;

9. Go to Step 1.

Messages are added to the message list by a classifier and have a value

associated with them called intensity. The intensity of the message is the amount a classifier

bids in order to get its message (the action it fired) posted. The bidding system will be dis

cussed later, but it is important to keep in mind that the message intensities affect how much

classifiers bid for their messages. After every major cycle, the messages are added to a list

29

of messages along with their intensity values.'-All classifiers undergo a Darwinian survival process, via the discovery algo

rithm, where they must survive given their use and strength. Therefore, the more a classifier

is used'(the greater its use), the more its strengthwill increase. Classifiers also have a'bidratio

associated with them. The higher the bidratio, the more the classifier will bid during the bid~

ding competition. The bidratio can be seen as the classifier's willingness to post messages.

The classifier specification can now be expanded to:

<condition> <condition> -7 <action>, bidratio, strength

The default value for the bidratio of a classifier is called the specificity, in cas~ a bidratio is

not assigned. The bidratio is computed in this fashion4:

where

(S(condition]) + S(condition2))
specificity = -------------

(chromosome size * 2)
(2.1)

S(condition i) =
{

number of 1 or 0 symbols in match conditions

number of # symbols in non-match conditions (those with
tildas (-».

Another value that is used in the bidding contest is the support value for a classifier. It is the

summation ofall the intensities ofthe messages on the message list that match the classifier's

conditions. This can be viewed as:

(2.2)
m'

4. The parameters and formulae which appear are taken from Riolo in [56].

30

where m'represents all the messages that match classifier i at time step t and~m' is the intensi-

L.-- ty associated with those messages. Support is used to ~omputebids for classifiers. The great

er the support for a certain classifier, the greater the probability that that classifier will still

be active in the next time step.

_The bidding process of the classifier system permits those classifiers that

have their conditions satisfied to bid in order to become active. The bid for a classifier i at

time step tis Bj(t) and is computed in the following fashion:

B;(t) =k *S;(t) * bidratio;power *avgsupportj(t) (2.3)

where k is the parameter that determines how much of a classifier's strength will be used in

bidding, S;(t) is classifier i's strength attime step t, bidratio is classifier i's specificity,power

increases the importance of the specificity in the bidding process, and avgsupport;(t) is the

support for classifier i divided by the summation ofthe supports ofthe other bidding classifi

ers. Note that the bidding process heavily relies on the relevance of the cl~sifier to the cur

rent situation the Classifier system concerned with and also on how effective the classifier

was in the past.

Once the bids for all the classifiers that want to be active are computed, a

competition is run to determine which classifiers will become active, in case there is a thresh-

old to the number of classifiers that can be active at any given time step. The probability that

a classifier can then become active is:

(2.4)

where P(i) is the probability that classifier i will win the competition, j ranges over all the

31

bidding classifiers at time step t, P;(t) is the effective bid of a classifier and is depned as:

Pi(t) = Pi(t)bj~power * bidratio/f!power (2.5)

where bidpower is used to change the probability distribution used to selecting classifiers

and effpower is used to allow specialist classifiers to win as opposed to generalists. The high

er the bidpower, the higher the probability that those classifiers that have highest bid rates

will win the competition. The effective bid is used to introduce some additional randomness

into the selection process so that all cl~ssifiers get a chance to post messages, providing for

a redistribution of strength among the biddingclassifiers (otherwise the selection would be

deterministic and biased). It is important to note. that all classifiers should be given a chance

to post messages since even though they may not have high strengths, they may contribute

to providing a useful solution to the problem on hand.

2.5 Modifying the Classifier List

In order for adaption to occur, the classifier system must have a mechanism

that will change its knowledge base. This knowledge encoded in the chromosomes has to be

modified. Two mechanisms are used for this. One is the credit assignment algorithm and the

other is the discovery algorithm. As mentioned earlier, each classifierhas a strengthparame

ter associated with it. The greater the strength, the greater the "survival probabilities" of that

classifier. Classifiers with low strength values are considered as not being useful to the sys

tern's learning process and are thus discarded. In addition to credit assignment and discovery

algorithms, taxes are applied to classifiers to reallocate strength.

2.5.1 Credit Assignment: the Bucket Brigade Algorithm

32

Classifier system have to reward those classifiers that have shown someutil-
\

ity to the task: being learned. However, when doing this, two very important factors have to

be taken into consideration [10]. First of, the classifiers in the classifier list in a time step (or

major cycle) t are "stage-setters'~ for other classifiers in time step t + 1, t + 2, In other

words, ~urrent classifiers determine what the future classifier list will look like\ince they
,"

encode the attributes of any future chromosomes, as defmed by the schema model. As the

classifier list is refmed, certain schemata become stronger than others and their presence

within the knowledge base increases rapidly until there is complete convergence towards

those schemata. The chromosomes that contain those schemata become stronger,since they

generate profits bypaying outpartoftheir strength in order topostmessages butgetting more

heavily recompensed when they have posted their m~ssages.

Another issue is that the environment with which the classifier system inter-

faces with is of a dynamic sort, making it difficult to maintain a knowledge base that can

handle abrupt changes. This element ofuncertainty is present within all ofthe rules and must

be handled successfully.

The bucket brigade algorithm is designed to cope with these problems. The

algorithm can be understood in economic terms. The economy is composed of a great num

ber of classifiers where each classifier performs transactions with its peers. Specifically,

there are certain suppliers for ~classifier, those that post messages that satisfy the classifiers'

conditions, and there are consumers for a classifier, those who have their conditions matched

when the classifier fIres its action and posts a message on the message list. Once a classifier

wins abidding competition, it has to pay some ofits strength to those classifiers that supplied

the matching :tlJ.e~~ag~s._Qnce theclassifierbecomes active and posts messages, it is remu-

nerated by those classifiers that will have their conditions satisfIed by it.

In addition to the payments (bids) that the classifier gets when it posts mes-

sages, it also gets an environmental reward. In otherwords, the environment can be specified

33

so that after producing a beneficial effect, the classifier: system as a whole gets rewarded for

that. For example, if a classifier system correctly detects a possible network failure before

. the disaster takes place, the system may get rewarded by an amount that compensates it for

having prevented a significant loss. Hence, the strength of a given classifier is modified in

the following manner:

Sdt + 1) = S;(t) + R(t) + Pi(t) -B(i) (2.6)

where Si(t + 1) is the strength of the classifier at time step t + 1, Set) is the str~ngth at the

current time step, R(t) is the reward received from the environment, Pdt) is the summation

of the bids made to classifier i for having matched their conditions, and Bdt) is the amount

the classifierhas to pay to its suppliers. The above equation can also be seen in the following

fashion:

S;(t + 1) = S;(t) + R;(t) -B(i) (2.7)

for the classifier posting messages·and

Sit + 1) =Sit) + aB(j), (2.8)

for the suppliers to the winning classifier.

Notice that achain ofproducers and consumers is formed here [10]. Specifically, the classifi

er list becomes more robust and complete as consumers and their respective consumers build

the classifiers and become strongyr. The last consumers in this chain are those that transact

directly with the environment and receive payoff from it. If this chain of consumers is not

one that can successfully work with the environment, then that chain is broken up and

eventually replaced by stronger, more profitable rules. Thus, the bucket brigade attempts to

maintain a repository of highly prof~table and remunerative rules in the knowledge base at

34

all times.

-2.5.2 TaXes

There are a number of taxes that classifiers have to pay at a given time step

(after each major cycle) that cause classifiers to remain productive and generate actions ap- "

propriate to the learningprocess. Taxes are applied at a rate R and and the strength ofa classi

fier is affected in the following mann~r after each time step:

strengthj(t + 1) =strength,;{t) - [strengthj(t) *R J (2.9)

where i is the classifier being taxed.

The first tax that is applied is the head tax which is used to stimulate classifi

ers that do not typically bid to do so. These classifiers are not contributing in any way to the

task being solved. Therefore, their strength is reduced in order to warn them of their ineffi

ciency. Ifsuch warning will be ofno use, these classifiers will be replaced by other classifiers

introduced by the discovery algorithms.

A bid tax is applied to all bidding classifiers at a given time step. The purpose

of this tax is to promote specialized classifiers over generalized classifiers that may bid all

the time since their conditions get satisfied easily at every major cycle. In this way, special

ized classifiers that may actually contribute useful infonnation about the current state of the

environmentwill~e to enter the bidding competition. This also controls the prema

ture convergence problem towards the generalized rules by pennittingother; more pertinent

rules to participate.

The third tax that is applied, the producer tax, is paid by those classifiers that

post messages during a time step. This tax tries to accomplish the same goal as the bid tax,

35

attempting to discredit overly generalized classifiers that tend to remain iIi the classifier list

for a long time without getting environmental rewards. This sort of permanent memory is

eliininated by applying to classifier i the tax R: .

m{t)
Ri(t) = maxproducertax * [~ JProducenaxpow (2.10)

where maxproducertax is the maximum producer tax that can be applied, mi is the 'number

of messages classifier i produced at time t, M is the maximum size of the message list, and

producertaxpow is used to magnify the effect of the tax.

2.6 Genetic Algorithms: The Discovery Method

In or~er for learning to take place within the classifier system, there must be

some mechanism to provide dynamic behavior. Genetic algorithms accomplish this by tak

ing the classifier list at every time step and selecting those classifiers that are the strongest

within the classifier list. Those classifiers are then modified, creating new ones which would

replace the weakest ones.
.

Genetic algorithms are an appropriate discovery approach for classifier sys-

tems since they are robust and can handle a number of different problems [23]. In other

words, genetic algorithms provide a trade-offbetween exploitation and exploration ofvari

ous domains. While trying to be explore new concepts, genetic algorithms also attempt to

exploit those that are available. In this way, more domains can be searched without worrying

about problems that commonly face optimization methods. One such problem is that ofpre-

mature convergence. Optimizing too quickly often causes the search to end surreptitiously

without fmding the desired optima. Holland [35] gives a good description of genetic algo-

36

rithms and their function in the optimization of the schema search space.

2.6.1 Genetic A1gorjtbms and their Operation

The classifier system consists of a population of classifiers, each composed

of a condition and action strings, called chromosomes. The chromosomes are defmed by the

genotype. The genotype defmes the structure of a chromosome (i.e., how the chromosome

looks like, or its gene structure). Each classifier can be evaluated (or decoded) to a given val

ue. This is called thephenotype ofthe classifier and is determined by the genotype. The phe

notype is also used to determine the behavior of the classifier. Each position in the chromo

.some is called a gene and the value of the gene is the called the allele and the position of the

gene is called the locus. Figure 2.7 shows such a relationship, that Stork et al. describe [69],

among the genetic algorithm constituents and their effects on the functioning of the algo

rithm. Note how this figure shows the effects ofadaption in the system. The system gets input

from the environment, matches it with its internal "memory" which is encoded in the fonn

of genotypes. These in tum produce system behavior which then affects the structure of the

"memory".

In such a system, the classifiers within the population have to compete in or

der to survive (to preserve the best classifiers in the system). The genetic algorithm process

consists mainly of three steps:

1. Select a pair of classifiers from the population according to their

strength (select those classifiers that have greatest strengths). The

genotype of the parents (those classifiers being selected) defines

the offsprings' traits

2. Apply the genetic operators on the selected pairs.

37

-
~

~ ,

genotype

r

phenotype

,
behavior

Ir

selection ,

'f

reproduction

~
"

-
Figure 2.7 The Genetic Algorithm Behavior Mechanism

From: Stork, David G., Jackson, Bernie and Scott Walker "Non-Qptimality" in
Langton, Christopher G., Taylor, Charles, Farmer, J. Doyne, and Steen Rasmus
sen. Artificial Life IT: A Proceedings Volume in the Santa Fe Institute Studies in

the Sciences of Complexity. Redwood City, CA: Addison-Wesley (1992)

3.· Replace the weakest classifiers by the resulting classifiers from

Step 2.

Figure 2.8 gives a graphical illustration ofhow this is done. Assume that a set G(t) ofM clas

sifiers {Cj, C2, C3, ..., CM} is in the classifier system at time t. Each classifier has strength

38

. . JI:·I!111BIII.illll
(/---------Classifie;L~t--------------- -----------.... ,

condition condition action 1

00101010

10100110

11010101

01010101

•
•
•

11101011 01001100
•
•
•

3

4

1

1 01010101 01010101 10100110
2 0101010000010101 0010101 Select classifiers
3 0001010001110101 11010101 based on
4 1010001111100001 01010101 strength

• •
• •

••
11101011 01001100

n

1010001011100101 01010101

n
'.... _/------------------------------------

_/

-----==--- -==========-/
()I01010100000 0101 00101010 Apply crossoyer ..,o1010100 00010001 0010101Oj

I 10100011111 001 01010101 operator 101O0?11 11100101 010101011

1 parents offsprings I
I I
I I
I
I 0101010000010001 00101010 Apply mutation ~01dlO10000010000 001010101

11010001111100101 01010101 operator 10100010 11100101 010101011

r J

'~~~=======--~~~==========---:
(/0101010000010000 00101010 Classifier List ')
I condition conditio action
I

Figure 2.8 Genetic Algorithms in Classifier Systems

39

S(Cj, t). The genetic algorithm then proceeds to-modify the classifier list in the following

manner [10]:

1. Compute the average strengthS(t) from all the classifiers in G(t)

and assign the value S(Ci, t)/S(t) to the classifiers.

2. Assign a probability Pi proportional to the above value to each

classifier in G(t). Use Pi to select n pairs of classifiers from G(t).

3. Apply the crossover and mutation operators on the pairs of classi

fiers selected. Crossover is applied by randomly selecting a locus j

and then switching the remaining bits in the string between the two

pairs. The CFS-C systems allows switching to occur in the entire

classifier (so that the two conditions strings and action string are

crossed over as one string) or just in the condition strings. Then

apply the mutation operator which selects an allele and replaces it

given a Poisson distribution.

4. Replace the classifiers in the classifier list that have the least

strength with the new ones generated.

5. Go to Step 1.

By modifying the classifier list, genetic algorithms handle schemata and

therefore affect the building block mechanism of classifier systems. A schemata H (some

times called hyperplane in literature) may have m samples in the population G(t) at any given

time, denoted as m =m(H, t). After each major cycle, probabilities (pi's) of being selected

for being crossed over and mutated are computed and applied to the schemata survival.

Therefore, at the next time step t + 1 the number of schemata in the classifier list is going

to be:

40

m(H, t + 1) =m(H, t) * S(H, t)/S(t) *n

where n is the number of classifiers that are selected for replacement.

2.6.2 Other Operators that Complement the Genetic Algorithm

(2.11)

There are a number of other discovery algorithms that aid the genetic algo

rithm and the generation of classifiers. The reasoning here is that the classifier system must

be able to be updated with environmental feedback at all times, and the genetic algorithm

sometimes cannot handle novel situations.

The Cover Detector Messages algorithm is used when there are no detector

messages that can be matched in a major cycle [56]. In such a case, which occurs especially

when a population is initialized, the classifier list is modified to accommodate the detector

messages-.The tilsk is managed by checking ifat a major cycle rules bid for amessage in the

message list M but no message is matched by the conditions of the classifiers and then mak

ing acopy of all those classifiers and assigning aprobability relative to the bid. Ifno classifi-

ers bid for any messages inM, then select aparent classifier that matches more closely ames-
. --

sage in M. To do this, a counter is kept of the number of loci that are similar between the

message and the condition of the parent classifier. The higher the count for a classifier, the

greater the chances that that classifier will be selected. Then, modify the conditions of the

copied classifiers to match the detector message. This will, ofcourse, occur in the successive

time step.

Another algorithm that is used by Riolo is the Cover Effectors Operator. This

operator is triggered when the system is incapable ofproducing behavior (matching any of

the effectors) or when the actions of the classifiers are too similar. In this latter case, those

actions would keep on matching the conditions ofcertain classifiers, making them the stron-

41

gest and leading to the premature convergence of the knowledge base. When, during a time

step, the classifier system fails to produce system behavior (i.e., emit an effector), the.Cover

Effectors Operator will select the classifiers that bid to have their actions posted. It copies

them and randomly modifies the action chromosome by randomly changing a don't care

symbol to a zero or one so that they will more closely match an effector.

There also two opera~ors for chaining classifiers together. This concept was

purported by Booker et al. [10] and is implemented in CFS-C. The chaining of classifiers

is a useful building block strategy. It is not always possible to have one classifier represent

an entire concept in a problem-solving situation. Rather, as supported by the concept of

emergence in classifier systems, a number of classifiers permit the construction of "trains

of thought." Triggered Chaining Operators cause one classifier to be coupled with another

one. This means that the action ofone classifier will satisfy the condition of another one. To

accomplish this, a classifierC2 must make aprofit (which is the reward the classifi~rreceived

minus how much itpaid in bids) attime step t and another classifier Cj must have been active

.at time step t -1. The chaining operator would thus modify the action string of Cj to make

it match one of the conditions of C2 .

Another operator that is used is the Low-Bidders Operator. The genetic algo

rithm modifies those rules that have the highest strengths. But there can be cases where clas-

sifiers exist that do not have much strength and are never modified, keeping on producing

system behavior even when not desired. In such case, the classifier system will check to see

which rules bid below a certain threshold (determined using the strength of the classifier).

The amount a classifier bids is a reflection of its strength. Thus, in selecting the low-bidders,

the Low-Bidders Operator selects the poorly-performing-classifiers and modifies their ac

tions randomly. The reasoning here is that the classifiers' conditions may be adequate to the

problem being solved, but the action that the classifier is generating is not appropriate and

42

therefore does not produce acceptable behavior.

2.6.3 Genetic Algorithms jand Appropriate Usage
/

Genetic algorithms are appropriate for usage in classifier systems for their

robustness in optimizing anumberofdomains, as I explainedbefore. However, genetic algo

rithms are also better suited for learning in nonlinear environments since they do not require

a monitor during the learning process. Specifically, the environment often displays chaotic

behavior and the learning systems must be able to deal with such realistic problems. Some

systems, such as neural networks, require a monitor to evaluate the output of the network.

A feedback mechanism is needed to analyze the output and send it back for re-processing

in case the output was not acceptable (via such devices as back-propagation). Genetic algo

_","- rithms, on the other hand, have no such need and perform well in those cases. This clearly

adds to their efficacy and robustness.

Genetic algorithms have, in fact, been used in developing hybrid systems to

aid connectionist systems in this aspect. Various models have been developed and seem to

be very successful [6] [66]. The advantages tracked in such cases also include the fact that

genetic algorithms are good for global sampling rather than local sampling. This is benefi-

cial iflarge search spaces have to be searched, which is very possible especially in cases with

neural networks with large hidden units, leading to a high dimensionality. Genetic algo

rithms have also been employed in optimizing the networks [51].

Finally, genetic algorithms are appropriate for usage in classifier systems and

.__Qther_artificiallife-(evolutionary-)..sy-5tems-sinGe-they-provide-the-neededflexibility-and-dy-----------

namics to develop complex systems. Other optimization techniques tend to be less efficient

from the evolutionary standpoint, due to the data structures that genetic algorithms use and

the operations that can be performed on them. The data structures allow the encapsulation

43

of many different types of problems and their manipulation. This flexibility was desired by

John von Neumann, claiming that for a complex system to evolve, the mechanisms on which

it is built should not be delimiters 48]. Bec [5] and others followed the von Neumann ideal.

2.7 Parallelism and Emergence

Classifier systems fit the category of biological, physical, psychological

computational systems found in connectionist systems, cellular automata, ecologies, etc.

These systems purport the view that some mechanism exists thatproduces growth ofknowl

edge in time. This view is further enhanced when the concept of sub-symbolic processing

is understood. Classifier systems, like connectionist systems, are sub-symbolic systems

since computation is performed on very low-level elements rather than high-level symb~ls

as in expert systems. Specifically, classifiersystems build their representations on sequences

of bits rather than words.

To build these representations, the appropriate architecture is indispensable.

The bits ofinformation are to fit like pieces in apuzzle, and time is an important factor. Paral

lel architectures become important in classifier systems since they canprocess the classifiers

in a distributed fashion. This leads to the emergence of knowledge within a given domain.

2.7.1 Emergence

The concept of emergence is not new. Roger Schank has addressed the issue

in the concept of storytelling. According to him, the mind stored information in distributed

fashion. Each bit of information is in itselfnot significant, but when recalled for telling sto

ries, all of the information is put together in a perspicacious fashion, producing knowledge.

44

(
Marvin Minsky also confnmed such a resolution when he wrote:

How can intelligence emerge from non-intelligence? .. One
can build a mind from many little parts each mindless by it
self. I'll call "Society of Mind" this scheme in which a mind
is made of smaller processes. We'll call them agents. Each
agent by itselfcan do some simple thing which needs no mind
or thought at all. Yet where we join those agents in societies
in certain very special ways-that leads to true intelligence.5

In classifier sy~tems, each classifier is one intelligent unit. The classifier encodes informa

tion about the environment at a given time. However, thy inforination thatitprovides is clear

ly not complete since one classifier cannot encode the state of the entire environment. This

is due to the dynamics ofthe environment and the many possible state the environment could

be in. The classifier list could, therefore, be thought of a short-term memory containing dif

ferent representations (schemata) ofhow the environment might look like. In order to select

the real or actual state of the environment and represent it in behavioral terms, the classifier

system has to extract the appropriate representations and, in a sense, converge towards one .,

solution. This is an emergent process since the system accumulates information and places

it together in a comprehensible fashion.

Self-organization of the classifier system occurs via emergence, where in-

formation is gathered and converged to represent the environment as closely as possible. The

classifier list is continuously updated until it is fully organized.

Emergence can be thought ofa selective process. It is an operation which re-

quires gathering those pieces ofknowledge which are most appropriate for representing the
---- -----~ ---------- -------~------ -------------

environment and generating the appropriate behavior (matching conditions and firing ac

tions). The more information is available for scrutiny, the more focused and precise will the

5. Minsky, Marvin. Society of Mind. p.17

45

representation be and more adequate the resulting behavior.

2.7.2 Parallelism

Parallelism in classifier systems occurs in a number ofways [21]. First of all,

the bits ofmessages being matched are done so simultimeously. Second, the messages match

classifier conditions at the same time (one or more messages on the classifier l~t matching

one or more classifier conditions). Third, more than one classifier can be active at any given

time step once the competition is run for the strongest classifiers. Fourth, parallelism occurs

at the genetic algorithms level. Here, implicitparallelism identifies the situation where each

n-gene chromosome can actually represent 2n schematas. Specifically, consider a schema

H from a population ofclassifiers G(t) at time step t. Ifm(H, t) denotes the number ofschema

H in G(t) at time t, then the selection of the schema can be written as [27]:

S(H, t)
M(H,t + 1) = S(G,t)M(H,t) (2.12)

where S(H, t) is the average strength of the chromosomes that are in both the schemaH and

the classifierpopulation G(t) and S(G, t) are those bit strings that are present only in the popu

lation G(t). This equation shows that the as chromosomes are found illH, H grows exponen-

tially. Thus, for n-gene chromosomes in a population of N chromosomes, from 2n to N2n

schemata can be found.

The ideal architecture for a parallel implementation of a classifier system

Fould ~~MultiRl~I!1s~~~on_St:l"~lgIlnMultipl~_Q~ta~J:ream(MIMD) rather than Singl~~ .. ~ n ••.••----1

Instruction Stream Multiple Data Stream (SIMD). Forrest [21] explains that SIMD architec-

tures are "coarse-grained", where each processor (CPU) in the system is powerful enough

46

and can compute large amounts of data6 and the processing among units is done synchro

nously. In aMIMD (or "fme-grained") architecturereachprocessor is not verypowerful and

the inter-PJ:'ocess communication is not rigidly defmed. TheMIMD architecture would favor

the cortceptofemergence. Each processor is small enough to process some information and

interact with other processes in reaching a cooperative solution. This removes the require-

ment that all classifiers ~ave to be simultaneously recalled (due to the synchronous charac

teristic ofSIMD systems). Only certaiIl classifiers will be activated, given the nonlinear be-

havior of the environment and the interactions among the activated classifiers cannot be in

any way anticipated. As a result, "fme-grained" implementation also tends to remove any

bias that there may be in favor of specific classifiers in the system in reaching system behav-

ior.

2.8 Trade-Off Between Knowledge and Search

Raymond Kurzweil [41] justly argues that the human brain is a very large re-

pository of information, where such information is retrieved and accessed via the parallel

architecture provided by the many neurons (100 billion) and the many more interconnections

that exist among them (l ,000). However, the analog computationprovided by the brain falls

short of the digital power of modem computers. This limitation forces the brain to retrieve

information that is pertinent to the current situation being considered on an analogical (or

associative) level in order to be able to face problems on a real-time basis. The brain, is in

addition, capable ofputting this knowledge together in a sensible fashion [62]. Computers,

on the otherhand, have amuch computational power, capable ofperforming searches within

.a given state· space much faster than the human brain. However, they lack the necessary

6. The nCUBE might represent such a machine with each processor having the power of an
Intel 386, while the MIMD architecture might be more like the Connection Machine.

47

amount of infonnation in order to produce applicable or significant results.

Classifier systems seem to provide a way in between these two extremes.

First ofall, classifier systems are capable ofencoding vast amounts ofknowledge within the
, .

rules. This is allowed by having a sequences ofbits within each condition or action represent

anumber.ofconcepts (schemata). Schemataaugment the number ofpossible representations

and provide for an even greater repository of information. Finally, chaining among various

rules further enriches the knowledge base of the classifier system, providing for interrela

tionships among different concepts.

But classifier systems are also adept at performing fast searches. Through

their parallel architecture, having many rules active simultaneously, classifier systems per-

fonn searches ofthe state space that consent real-time performance even given the large re-

pository ofknowledge. The rules appropriate to the problem being solved are extracted and

applied. The genetic algorithm also aids·in this search effort, modifying rules so that many

possible alterations are analyzed in a rapid and efficient fashion. An example of a parallel

implementation of classifier systems is *CFS, the iinplementation of the CFS-C program

on Thinking Machine's Connection Machine [59]. In this case, 65,000.classifiers were gen-

erated and each one was processed on a single processor. Each processor in this system does

not have extensive processing powers, but the combination of processors make *CFS gain

noticeable perfonnance, illustrating the concept of emergent computing.

Figure 2.9, modified from Kurzweil [41], shows where classifier systems

might stand in relation to some of the more traditional AI approaches. They would move to

a higher equiperformance isobar thanks to the greater computational power provided by the

parallel mechanisms. Classifier systems would move up along the equicost isobars due to

their additional capabilities in tenns ofthe amount oftheknowledge that can bemanipulated.

The outcome is greater search power accompanied by additional informative power, a goal

artificial intelligence systems of the future have to achieve more and more.

48

Immediate knowledge
(prepared)

Expert
10

3
systems

Search
High tech_ knowledge-,~__==(deliberate)

10°4------....Jt.--"'--~--------
10° 10' 102 103 104 105 106 107 108 109 10'0

Situations/ tasks
Figure 2.9: Trade-off between Knowledge (Rules) and Search (Tasks)

From: Kurzweil, Raymond. The Age of Intelligent Machines. Cambridge,
MA: Massachusetts Institute of Technology Press (1990)

49

CHAPTER 3

FINITE STATE MACHINE REDUCTION AND
COMMUNICATIONS PROTOCOL APPLICATION

Finite State Machines (FSMs) provide a good cognitive model ofleaming.

The FSM mechanism describes a model where certain states designate the condition of the

environment at any given time. It, thus, serves as an excellent example of how to simulate

an environment for learning purposes. The FSM receives inputs which make it change the

state it is in and produce an output (behavior). The desirable outcome in an FSM world is

to have the FSM always move to those states which provide the highest rewards or that are

simply more attractive. A reward can be viewed as a mechanism by which the environment

encourages further desirable behavior. For example, if a person invests money in a compa

ny's stock option in the stock market (the environment), any improvement in the company's

performance would lead to a rise in the stock's value. The stock market has generated a re

ward.

Accordingly, a classifier system interacting-with an FSM would use the re

ward as an indication of how it should act in the future. In using such a scl1eme, where the

classifier system can interact with an FSM, many domains can be simulated. Some interest

ing applications include Riolo's system where human category learning is studied [59] and

Zhou's system which teaches a robot how to move in an FSM world and avoid obstacles [76].

Finite State Machines, however, sometimes tend to have a great number of

states that may not be cortsequential or of any use. In addition, the environment contains a

number of states that can be represented by other ones. It is important to attempt to design

an environment (when possible) which performs better while not compromising its function.

Various procedures exist for the minimization of FSMs such as the k-equivalence analysis

50

[40]. Methods such as this one, however, use procedures that analyze the machines apriori

an~ are not capable of capturing the rather dynamic behavior of the environment. In order,

to accomplish this, the classifier system presented here attempts to analyze which states are

more useful in the FSM and which ones are not. A simple heuristic is used to function as the

judging factor in the FSM reduction task.

One such design task is found in communication protocol desi$ll' Commu

nication protocols are designed as FSMs and often have a great number of states that repre-

sent the protocol status. The more states there are, the more expensive the design in terms

of performance and cost. It is thus important to attempt to reduce as much as possible the

design complexity. This is a concern in many such information systems, where the system

at times reaches burdening levels of complexity.

3.0 The Finite State Machine World

The FSM used here is the FSWI model designed by Riolo [55]. The FSM

consists of a finite Markov process consisting of a number of states and payoff values

associated with those states. The Markov process's current state is used as a detectormessage

that is placed on the message list. Once the classifier system processes the input, it generates

output which causes it to modify the transition it will take next. In order to do this, the classi

fier system will internally "bid" for certain transitions as opposed to others, affecting the

movement in the world. Each state has a certain payoff associated with it and that payoff is

given to the classifier system as system reward.

3.0.1 The Markov Process

The Markov process is described in the following fashion:

51

1. A set of n states Si where i =0, 1,... , n

2. A set of payoff values v(Si) e 9\ assigned to the states Si

3. An alphabet ~ defined by the value r e 9\

4. A set €>fprobability matrices Per) where each entry pij(r) in per)

gives the probability of making a transition to state Sj, given that

the classifier is in state Si and the value r has been emitted by the

classifier system

5. A set of transitions Tij for each state Si defIning the transition from

state Si to state Sj

Each state Si in the Markov process is defined as a bit string in the classifier system. Specifi-

cally, each state has a unique value associated with it that identifies it from the other states
,

and this value is in bit-string (chromosomal) encoded format. This attribute string is used

as the detection mechanism. At every time step, the current state's attribute string is placed

on the message list indicating what state the system is in (ofcourse, other messages that clas-

sifiers fIre for satisfying conditions of other classiflers are also placed on the message list).

Each state has also associated with it a next best state the system may move to. This is useful

when designing a protocol since sequencing of states becomes important.

The system transits to a given state whenever the r value of the edge leading

to that state is emitted. To see how this works, the state diagram, derived from the one in

Chapter 1, can be used as an example. Figure 3.1 s~ows a FSM consisting offIve states. Note

that each 'state is defmedby a bit string (attribute list)used for placing}t_on the mess(ige list...

Whenever the system activates a effector messages (those starting with"10"

arid serving as the system 's'output mechanism), the system will tran,sit to a given state. Spe

cifically, the effector message will be decoded into an integer value representing the r value.

52

t:\
01001101010101 4

Figure 3.1 A Simple Finite State Machine Defining 'a Markov Process

Adapted from: Bachmann, Gregor V. "A General Transition Model for Protocols and Commu
nication Service" in IEEE Transactions on Communications, vol. COM-28, no. 4, (April 1980)

Each two bits of the message are translated into one bit using the following scheme:

oo~o

01 ~ 1

10~#

10~#.

Hence, when a detector is fired from the classifier list such as 1000000000010001, that trans-

lates to (using all the bits except the left-most two which serve as the tag for effector mes-

sages) 0000101, which decodes to the integer value 4 (using binary to decimal conversion).

Note that if a don't care symbol were used, such as in the message 100000000000000110,

that would produce more that one r value. This last effector could set r to a value in the set

53

{2, 3} since the effector decodes to 0000001#, allowing both" i 0" and "11".

The value r =4 will be set only if a bidding competition is won. Since there
~

may be a number of classifiers that will fire an effector message in any time step, the system

must determine which r value is the most desired at that time. In order to accomplish this,

the system uses a probabilistic approach whereby the amount each classifier bid to have its

message posted (or its intensity) is used as a determinant in whether that r value will be used.

As an example, ifthe system is in state 4, and two effectors are on the message list, one which

would like to set r to 3 with an intensity of 100, while the other wants to set it to 4 with an

intensity of 200, then it will be set to 4.

3.0.2 The Learning Process

The classifier system must learn what states are the most rewarding ones. In

fact, when the system goes to a given state, it will receive reward in the form ofpayoffvalues.

Each state has a reward associated with it. The system then distributes the reward to all the

classifiers that are active (i.e., fIre actions) during that time step. In doing this, the system

is trying to stimulate classifiers to generate r values that move the system to the higherpaying

states within the FSM. Hence, once the detection mechanism inputs the attribute list of a state

which is then matched by some classifier, the system must learn to generate an action string
,

that supports setting the r value to the next reachable high-paying state. Each classifier could

also set the action string to return to the same state in the condition string in case that state

also provides substantial rewards.

~~_ 1]1e learning I'roce~sjs_also_reflectIDtheemergenceofcoupled-chains [57J;

Specifically, a number ofclassifiers are chained together when the action ofone satisfies the

condition of another. In the FSM domain, learning is reinforced when a number ofclassifiers

satisfy the condition of another classifier that would fire an effector that would produce de-

54

sirable r values. Hence, if a clas~;ifier C would set the r value to 4 by firing its effector, then

classifier B might want to satisfy the condition of that classifier in order to make C fire its

action. At the same time,. another classifier A might want to satisfy B so that B will flIe its

action. These chains will last as long as their importance to the task is safeguarded. Once the j

states that classifier C supports lose relative payoff in relation to other states, the chain may

break down.

As the system is exposed to more environmental feedback, it discovers which

particular states provide the highest rewards of all. In such a case, it may well be that if there

is one specific state that has rewards greater than anyone else's, then the system will always

try to move to that state. This all depends on what the environmental (Markov process) input

is. Since the classifier system's behavior affects the environment directly, the environment

will tend to react in harmony to the classifier system, unless some chaotic element is

introduced.

Such a behavior is clearly synchronous to a cognitive approach since the sys

tem attempts to model the environment according to its own needs. The more the system

learns from the Markov process, the greater its ability to manipulate that process in its own

favor.

An important factor in any learning process is that it should not be precipi-

tous. The classifier system should not evaluate a subset of all states as the best states only

after a few time steps. It should have enough time to evaluate all states. In addition, the envi

ronment can change any time due to anomalous behavior, heavily influencing the relevance

of certain states to the Markov process. Hence, if 2 out of 5 states were important up to time

step t, those same states may become completely useless in the problem-solving task after

time step t due to a some event that modified the environment's behavior.

Classifier systems are equipped with a number of mechanisms that prevent

rapid convergence to a solution. The most important of these is incorporated in the Bucket

55

Brigade Algorithm (BBA). The BBA increments the strengths of classifiers gradually in or

der to support incremental learning. Hence, the system will not only learn gradually, but it

will also have time to modify its behavior iflater on the environment modifies its behavior.

A good description ofthe BBA and its traits as a graceful credit assignment method are given

by Sutton [70].

3.1 The Finite Space Reduction Task

Any Finite State Machine may be composed of a number of states that per

form a certain function. However, it often happens that some states might perform overlap-

ping function as other states and their functionality can, therefore, be encapsulated by other

states. Such a discovery would lead to a more simplified design ofan FSM system, reducing

not only the number of states, but also the transitions to those states.

In order to accomplish this task, a method has to be developed to learn which

states are really important to the FSM and how canthe FSM be reduced. The classifier system

here is put to test this problem and designate those states in the FSM that may not be needed.

3.1.1 The Reduction Task Approach

To approach taken here is to make the states prove their usefulness. In order

to do so, the state's visit count, or the number of times a state is transited to, is used to deter-

mine it worthiness. The classifier system increases the payoff attributed to each state, de

pending on how many times the state has been visited. Therefore, the payoff also determines

. -stateneeds;-The-following equation sliowsliow1liis OCcu.rs:

(V- - V .)k
Pi = Pi + (Const * I nun)

I (Vi - Vmin)k

j

56

(3.1)

Pi is the payoff value for state i, Const is some constant value, Vi is the visit count for state

i, Vmin is the lowest visit count among all states, and k is some value used to calibrate in-

creases in the payoff. The payoff value of the states are increased to give a qualitative esti

mate of the worthiness of that state. At the end of a task, the payoff values of the states are

analyzed and those n states that have the greatest payoff values are classified as being the

ones useful to the FSM.Note, however, that such a conclusion can only be preliminary, since

there are a number of other facts that detennine the legitimacy of a certain state in addition

to the payoff value. One such momentous element is state transition. Our model attempts to

reach a resolved based on the visits made to a state, which is not necessarily a conclusive

factor. It suggests, however, that the FSM might have to be redesigned to incorporate the

functions of less frequently visited states into those that are most often visited. There are a

number of applications that use the FSM paradigm which may find such suggestion useful

since there is a cost associated with having additional states.

3.2 Th-e-Pfotocol Environment

A communications protocol defmes the rules of a network that connects vari
I

ous communicating systems together. There are various layers ofcommunications that exist

within a certain protocol specification. One such specification is defmed by the Open Sys

tems Interconnection (OSI) Reference model ofthe International Organization for Standard-

ization (ISO) [38]. The functionality of the protocol is divided into 7 layers, each of which

__ . ~ealswith sp~cific asp~gts_of a communicationbetween_two-connected-stations.Figure3~2---

shows how the OSI looks like and what the various layers perform.

Each layer performs a certain task. For example, the presentation layer de

fmes the data formats and codes in an exchange, while the data-link layer assures reliable

57

User A UserB

nl - ~ I- -
nl ~ .'I

I ~ ~I

I • .1
I

I I I '- - I-- --I -, ---I

I - ~ I - ~I ,-_I
---I - -1 - I

,I
__ I

- - I - ~ I
- "'-1 :"'" --I r- ... I

I Interconnection m

Network

Physical

Session

Transport

Data-link

Applicatio

Presentatio

Figure 3.2 The Open Systems Interconnection

transfer of data via error detection and error recovery. A good description of the OSI model

is given by Green [26].

Each protocol can be specified as a Finite State Machine, defining exactly in

what stage of communication the system is in. Figure 3.1 illustrates such a protocol.

3.2.1 The Protocol Specifications

The communications protocol models the environment that the classifier sys

tem uses. The protocol is defmed as a rule set that contains a series of input/output sequences.

There are a number of possible inputs and outputs that can be generated, depending on the

protocol, causing the environment to change its state as a consequence. The classifier system

relies on such changes to display its behavior.

As an example, this thesis uses an FSM protocol that was developed by Ha

shem et al [31] which is used for conformance testing of the data-linklayer of the ISDN D

channel. The protocol defined by Hashem at al. consists of a total of 12 states, 3 of which
,

58

exist only for testing the reliability of the protocol. There are a number of possible inputs

to each state and a number ofpossible outputs. There is also a list of transitions. The transi

tions are specified as:

current_state: next_state WHEN (input, output).

The inputs and outputs represent actual data that the data-link layers Illanipulates. Therefore,

the datamust meet certain syntactic and semantic requirements. In a communication session,

data is sent from Oj1e station to another in a sequential fashion, such as requesting to send

data, sending it, and acknowledging it. The data also has to conform to certain specifications

such as size and content.

Transitions can be eithervalid, inopportune, or illegal. Valid transitions exist

when a certain input is expected, while inopportune inputs are received that are correct syn

tactically, but do not arrive at the desired time. illegal inputs are received when the input does

not contain the desired data. Appendix A defmes some of the data and the state defmitions.

3.2.2 Reduction of the Protocol

There are great number of protocols defming communication between two

entities. The more complex the protocol for each entity, the more computational overhead

there is and the higher delay in communication. It, thus, becomes necessary to reduce the

protocol to some design that couldp~6v!Q~_aIllQ~e_effici~ntform to repres~mthe_pfQtQC:ol.
...-,--_..-~~---_'_'- -- ------ -_._--_._._._~ .

Such a design would focus on combining certain states that may be transited

to given the same or similar conditions or combining a number of states infrequently visited.

The classifier system must determine which states are not transited to frequently, and there-

59

fore do not provide high returns to the protocols performance. The task then involves deter-

(a)

(b)

Figure 3.3 Reduction of a Communications Protocol
In (a) the original protocol is shown while in (b) the reduced

protocol is derived.

Adapted from: Bochmann, Gregor V. "A General Transition Model for Protocols and Commu
-meation Service"-in IEEE Transactions on Communications, vol. COM,-28, no. 4, (April 1980)

mining whether those states that have beentagged as not generating highpayoffs can be com...

bined, as a~esult ofsimilar transitions. It will also be able to study whether certain transitions

60

can be modified so that the protocol still performs its functions as set forth initially, but does

so with a fewer number of states. In other words, rather than having more states, it may be

better to have one state performing the functions of a number of other states with additional

transitions to that state. A very simple example, just for illustrative pwposes, is the one

shown in Figure 3.3. Her~, the protocol that was shown in Chapter 1 is displayed in part (a).

, This protocol has two states that defme the acknowledgment of some message. However, the

two states could be combined into one that captures the functionality of the two separate

states. The transitions then are le,ft to decide when to leave those states. Some logic could

then be built within the state that would allow the input/output sequences that define the pro

tocol to function as desired. In any case, unique input/output sequences exist for all the states

of the protocol, and only the logic within the states defines which output to take given the

input received.

61

-.. J

CHAPTER 4

EMPIRICAL RESULTS FOR THE FINITE STATE
MACHINE REDUCTION TASK

The concepts for which this work is done have now been laid out. It is ap

propriate to observe what results can be derived from the prescribed methodology. The clas

sifier system is put to test to see if the Finite State Machines to which it presents can be re

duced.

This chapter presents a number of different results that were derived both

from the Finite State Machine minimizationperspective and also from classifier systems and

their performance in this domain. Due to the fact that no other machine learning systems

have been employed in this domain, the results that are derived cannot be compared to other

learning systems and therefore, one cannot readily assess how classifier systems perform

here. There are, however? a number of different test sets that have been generated to give a

better grasp of the value and quality of the results gathered. Specifically, such test sets pro

vide benchmarks to test the efficacy and robustness of the classifier system in this domain.

4.ftTestingProcedures for the Finite State Machine Task

A gradual refinement strategy was used in this paper to identify a method by

which FSMs could be generated and appropriate tests could be performed on them. First of

62

all, in order to generalize our contribution, the FSM is not restricted to a specific domain.

In order to do that, FSMs have been generated randomly using uniform distributions. This.
r .

includes random initial payoffs, random state attribute values, and random number oftransi-

tions.

4.0.1 Preliminary Tests

The test sets that were developed w,ere based on randomly generated FSMs

using uniform distributions. The number of states generated was set to 18 for computational

purposes. The software was run on an IBM RS/6000 model 950 and could handle 18 states

comfortably. The attribute strings for the 18 states were also randomly generated using

binary values. The payoffs were generated using a unifonn distribution [0, 327]. The number

of transitions were generated using a uniform distribution from 0 to 24. Finally, the next best

states were produced using a uniform distribution from 0 to 18.

Initially, various machines were generated to test the robustness ofthe classi

fier system in its interaction with the FSM environment. The classifier system's major cycle

Population 200 Sharerew 1

Bid k .0.10 Crowdfax 1

Bidpow 1 Mutprop 0.05

Brpow 1 k 1.0

Effpow 6 Const 2.0

Headtax 0.0005 Maxproducertax 0.00

Biiltax 0.000 Producertaxpow 1.5
-

Fbidtax 0.02 Crossover prob. 0.5

Table 4.1 Parameter Settings for the Classifier System

63

was run for 12,800 generation in order to make it interact sufficiently with the FSM domain.

Some of the parameter settings that were used ~e shown in Table 4.1.

All the parameters are described in Chapter 2, except for k and Const which

are described in equation 3.1. The crossover probability is for crossing over entire classifiers

rather than each chromosome. Figure 4.1 shows the results for the 18 states that were tested.

~
14 15 16 17 18

!1IB
5 64 7 8 9 10 11 12 13

State Number
Figure 4.1 Final Payoff Values for a Finite State Machine Using

Five Different Initial Payoff Values
_, •• _ •• _ .. _ _..". _._ • .- •• _0 _.__.-

~
2 31

4000r------------------------,
3600 K S S S S S S S S S 51 } Different payoff

.values for
3200 I····,.·,.···,.·.·.·.·,······.·.·.······.·.·.·,··,.·.·.·.··.·.·.·.·.·.·······.·.1 all states
2800

~ 2400
;j"j

~2000
~ 1600

1200

800

400

o

The results reflect the payoff values at cycle 12,800 for a randomly generated FSM with five'

different randomly generated initial payoff values. One will notice that the classifier system

demonstrates quite robust behavior to the initial payoff values.

The graph inFigure 4.1 helps in easily distinguishing useful states. For exam-

pIe, states 3, 6, and 15 appear to produce very low payoffs, raising questions as to their use-

fulness to the FSM. The FSM could be reduced by removing those states and attempting a

new design that would incorporate the functions of those sta~sillother states.
- -------- .------

There are occasions, however, that its become difficult to select the states that

may be removed. One such instance is illustrated in Figure 4.2. The results in this case show

that there exists only one state (i.e., 18) that can be possibly discarded, but the automata is

64

Different payoff
values for
all states

3600r---------:---------------,

~ ~: :::,::":::~:}
~

~ 2000

1600

1200

800

400

o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

State Number

Figure 4.2 Final Payoff Values for a Finite State Machine Using
Five Different Initial Payoff Values

quite robust otherwise. Therefore, such machine may already be reduced to start with.

4.0.2 Parameter Settings

In order to develop a method that is capable of confidently discriminating

useful states from "useless" ones, the greatest difference in payoff values must be sought. _

Inother words, the greater the difference between the payoffvalues ofthe high-payoffstates

and the low-payoff states, the greater the reliance in eliminating those states.

A number of tests were developed to provide this additional tooL The differ-

ent test sets utilized a number of different parameter settings of the classifier system. These

are shown in Table 4.2. The parameters were selected on the basis of their ability to success-

fully discriminate among states. They include:

1. mutprop - The mutation probability which controls how often a

chromosome's allele will be mutated and therefore additionally

diversified.

65

2. bid_k - The bid factor represents the percentage of the strength a

classifier will lose in case it bids for another classifier but that

classifier fails to post a message.

I

3. crowdfac - The crowding factor is the variable that controls how

how m~y classifiers will be selected for each classifier to be re-
•

placed. When a weak classifier is to be removed from the classifier

list, more than one can be chosen as a substitute.

"._.,j::;:!::::i::::;:;i:::::i::i:;:i:::::::[::::i::::::::::::::::::::::::::::::::::::::;:i:llllliillllll:::II.i;;:::;:iiii:::::::i:i:i:i:iii:iii;:ii:\iiijiiii:;ii:ii:i:i:[:\ii:iii:::i::i:i:i::\i:ii:i

mutprop bid k crowdfac

1 0.05 0.10 1

2 0.05 0.10 6

3 0.05 0.20 1

4 0.05 0.20 6

5 0.10 0.10 1

6 0.10 0.10 6

7 0.10 0.20 1

8 0.10 0.20 6

9 Average of above results

Table 4.2 Test S~t for FSM'
-,

All three parameters have the capability of strongly affecting the premature convergence

problem. In other words, there must be someway of avoiding the classifier list of quickly

converging towards a solution. This criteria is indispensable if the best possible FSM must

be designed. The environment exhibits nonlinear behavior and in order to capture any alter-

ations in its conduct, the classifier system must be exposed to sufficient interaction. It may

66

happen, for example, that a states x might be initially very relevant to the FSM, but then, due

to some endogenous force, statex's 'strength drops due to changed circumstances. The classi-

fier system must be able to adjust to such abrupt phenomena.

Eight different parameter settings have been generated as seen in Table 4.1.

From these, the best settings have to selected.

4.0.3 Results with Modified Parameter Settings

4500r----------------- --,

Parameter Setting
bSSSSSSSSSSS! 1

2
3

j....:.j.:.....:••.:.:.•.:.,••••;;:.:...:.:.;:.::.;:;.:.:;:;;.:.:.:::.:.::;.:;.;:::.•;;:;::.) 4

5
@::tCJ:J:£:JGJ::£CJ:J:JCJI) 6
!·;."·;·;."w;::,:<.".;.;.:.;.;.:<.:.".;.:.;."....:.,!i>:-;.;.,,....;."J 7
I?;<;<;?~<;<;<;<;?;?;?;<l 8
!2;,,?...n;""'''?..VtJl 9

4000

3500

3000

1500

1000

500

o
123 4 6 7 8 9 10 11 12 13 14 15 16 17 18

••••>.

State Number
Figure 4.3 Payoff Values at Major Cycle 12,800 Using Eight Different

Parameter Setting Combinations

67

The parameter settings strongly affect the behavior of the classifier system

and its ability to determine what states are relevant to the FSM. Figure 4.3 gives the results

• 1 2 3 4 5 6 7 8 9

1 1678 1794 1749 1548 1~81 1634 1653 1714 1706
-

2 3071 3118 3159 3023 2929 3303 3246 3083 3216

3 454 249 521 332 439 340 511 297 392

4 954 964 1165 995 1045 961 889 986 994

5 1332 1384 1563 1347 1616 1491 1644 1632 1501

6 324 384 320 426 351 404 321 336 358

7 1200 1123 1203 1172 996 1421 1118 1205 1179

8 1217 1252 1165 1149 1254 1232 1148 1304 1215

9 772 783 948 797 831 610 912 629 785

10 1374 1521 1353 1266 1198 1587 1414 1457 1396

11 1639 1966 1814 1919 . "1709 1427 1788 1479 1717

12 3195 3551 3394 3255 3731 3548 3337 3487 3437

13 3403 3331 28.74 3316 3087 2933 3182 3164 3161

14 1828 1595 1391 1526 1461 1485 1540 1466 1536

15 292 313 416 238 264 262 320 328 304

16 1957 1729 1619 1623 2039 1629 1574 1430 1700

17 2603 2584 2753 2523 2492 2630 2532 2511 2578

19 618 725 658 623 633 562 874 778 683
-' . ~

Table 4.3 Payoff Values for FSM States at Major Cycle 12800 Using Different Values
for mutprop, bid k, and crowdfac

68

360,------------------_
= 3001----------
~ 2401------------
~ 180 1----------
e 1201---
Q

c1::: 601-----
= 0Q
;: -60
~

'5:-120
Q-180

-240
-300 L- --'-- ----'

8721 345 6
Parameter Setting

Figure 4.4 Deviations from the Mean of Payoff Values for FSM State 12

140 ,...-----------------------,
120 1-----------------------1

= 100 1------
~

~ 80 1--------
~ 601-----
g 40 1------
~ 20 1--------
.~ 0 f--""""".".",...----'-""'--.S -20 1----------
~ -40 1---------

Q -60 1---------
-80 L...--- --'

123 4 5 6 7 8
Parameter Setting

Figure 4.5 Deviations from the Mean of Payoff Values for FSM State 15

for a randomly generated FSM and its payoffvalues at major cycle 12,800 using the parame-

ter settings in Table 4.2.Note that there are some observable differences among the different

settings. To better view the above result, the mean value for the 8 combinations was com-

putedand ~erv~dasabasisfor thevariance analysis. Table 4.3 displays the numerical results

for Figure 4.3.

Using the mean value (parameter setting 9 of Table 4.2), the deviations from

that mean were computed. Column 9 ofTable 4.3 gives the mean values. The deviation from

69

the mean values for state 12,with the highest meanpayoffvalue, and state 15,with the lowest

meanpayoffvalue, are shown in Figures 4.4 and 4.5, respectively. These figures show which

parameter setting provided the greatest discriminatory effects. A complete analysis for all

--1 2 3 4 5 6 7 8 9

1 -28 -145 62 -40 -169 -34 21 2 -13

2 88 -98 -143 -30 -117 26 -56 37 -2

3 43 -57 129 171 62 -38 24 -50 163

4 -158 -193 -60 1 -154 68 -7 -66 12

5 175 -287 47 51 115 -7 -183 39 46

6 -72 87 -52 -33 -10 46 242 17 -175

7 -53 30 119 -105 143 -37 -61 -67 127

8 8 -133 -95 -8 131 -22 26 89 -156

10 11 4.2 13 14 15 16 17 18

1 -22' -78 -242 242 292 -12 257 25 -65

2 125 249 114 170 59 9 286 6 42

3 -43 97 -43 -287 -145 112 -81 175 -25

4 -130 202 -182 155 -10 -66 -77 -55 -60

5 -198 -8 294 -74 -75 -40 339 -86 -50

6 191 -290 111 -228 -51 -42 -71 52 -121

7 18 71 -100 21 4 16 -126 -46 241

8 61 -238 50 3 -70 24 . ~270 -67 95....

Table 4.4 Deviations from the Mean of Payoff Values for the FSM at Major Cycle 12800

70

18 states is shown in Table 4.4. Using this latter table and computing the sum of deviation

from the mean, three of the 8 parameter setting combinations were chosen to guide future

experimentation. These are shown in Table 4.5.

1 2 3 4 5 6 7

Above Mean 901 1211 976 438 1106 746 790

Below Mean 1130 446 769 1218 1018 1145 595

Variance $i~lfjli~ 1657 1745 1656 fll411: riLl8!: 1385

8

487

1059

1546

Table 4.5 Best Parameter Settings

4.0.4 Selecting the best Parameter Settings

Now that the number ofparameter setting combinations has been narrowed

down, the best one among them has to be selected. Specifically, the three parameter setting

combinations were put to the test again using three randomly generated FSMs and three dif

ferent randomly generated payoff values for each FSM. The best combination of settings is

found by the testing.

First of all, a heuristic was used here to discriminate among states. Out of the

18 states used, those ten with the highest mean payoff values were regarded as useful and

the remaining eight as not contributing to the FSM design. This formed two sets of states.

Figures 4.6 and 4.7 show the results for the fIrst FSM tested using two out of three of the

initial payoffvalues used. It is easy to see that no matter what the initial payoffvalues, almost

the same results are achieved. This result was observed in all three automata. From these re-

sults, a variance analysis was carried out-to identify the best parameter setting combination.

Table 4.6 shows the deviation results for the fIrst FSM used and its first set of payoffvalues.

'J.!1e deviations are from the mean values in the fIfth column. Using this table, all the positive

71

1

4500 r---r:============;--:---.:.-------~
4000 Parameter Settings

h'ssssssss, 1
3500 5

~ 3000 iiI: \ ..., j ~

!~~~~ I >

:~~~ I!~ I II. I ! I II Ll Iow...-""-"-"~_aUl<a;,;u:,~J...JOA;"'-""""IW..J,Jl~
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

State Number
Figure 4.6 Payoff Values at Major Cycle 12,800 for FSM 1 with Payoff Set 1

deviations and negative deviations were summed up for both sets of states (i.e., the best 10

and worst 8) and for each of the different parameter settings. The mean values were then

.computed for the summations. Finally, deviations from the mean were calculated.

The results for the same FSM ofTable 4.6 are displayed in Table 4.7 .Foreach

2 31

4000 r-------r======;;:;:::::;;;;---------i
3600 Parameter Settings

ISssssssssSI 1
3200

2800 ~

~ :~ (-~'"._~~.~." 9 I
~ 1600 ~

1200 ::~ ,.:~: :,::::::;::
'. ::=:1 'i

800 i:: !!i .:. iii . i...,..1::...:I...:..:. f ::

40~~~1;L.-1~1L.-;I'l..l.JIi 1lRl:l1-Ull.dJlIlli-+aIIlII'li:LJ..1SRlI~I.~ll..J..Jlll'1IZLt:~_I=i:LU1~lI::i:LliDllai:l...l~r..-,~::\'~:\jL1.Ji'alLIl
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

State Number
Figure 4.7 Payoff Values at Major Cycle 12,800 for FSM 1 with Payoff Set 1

parameter setting combination, 1, 5, and 6, the mean values where computed for the 8 worst

72

states, the 10 best, and the two sets combined. The deviations were then used to carry out

the discriminatory analysis.

1 5 6 Mean 1 5 6

1 1678 1881 1634 1731 -53 150 -97

2 3071 2929 3303 3101 -30 -172 202

3 454 439 340 411 43 28 -71

4 954 1045 961 986 -32 59 -25

5 1332 1616 1491 1479 -147 137 12

6 324 351 404 359 -35 -8 45

7 1200 996 1421 1205 '-5 -209 216

8 1217 1254 1232 1234 -17 20 -2

9 772 831 610 737 35 94 -127

10 1374 1198 1587 1386 -12 -188 201

11 i639 1709 1437 1595 44 114 -158

12 3195 3731 3548 3491 -296 240 57

13 3403 3087 2933 3141 262 -54 -208

14 1828 1461 1485 1591 237 -130 -106

15 292 264 262 272 20 -8 -10

16 1957 2039 1629 1875 82 164 -246

17 2603 2492 2630 2575 28 -83 55

18 618 633 562 604 14 29 -4

Table 4.6 Parameter Settings for FSM 1Problem 1, Including Deviations from the Mean

73

Thus, for parameter setting 1 and state set 8, the mean payoff was 728 and

the deviation 369. The deviation ranged from 359 (728 - 369) to 1097 (728 +369). For the

same parameter setting but state set 10, the mean was 2208 with a standard deviation of787.

10 2208 787 1421 2995

18 1550 977 573 2527

8 719 349 370 1068

10 2219 809 1410 3028

18 1553 992 561 2545

8 724 431 293 1155

10 2167 840 1337 3007

18 1526 997 529 2523

L

6

5

------8 728 369 359 1097

Table 4.7 Results of Discriminatory Analysis for Different Parameter Settings and State
Sets from FSM 1 Pro1?lem 1

The range in this case was from 1421 to' 2995. The upper range of state set 8 was subtracted

from the upper range of state set 10 (1421-1097) giving the gap of deviation between the

two states which was 324 in this case. The greater the gap, the more the classifier system

discriminates between the higher-payoffvalue states and the lower-payoffvalue states. This

is, ofcourse, a desired factor since the more discrimination there is, the better the confidence

in eliminating states. Hence, in Table 4.7, parameter setting 5 gives the best results since it

differentiates the most between the two sets.

Table 4.8 contains the discrimination results for all three FSMs and the differ-

ent payoffvalues. Note that parameter setting 1provides the greatest amount ofdiscrimina

tion between the two state sets since the gap in the payoffvalues of the two sets is the greatest

74

using that setting. In addition, parameter setting 1 also proves to be the most robust since the

variation in gap sizes is more constant than in the other two cases. For example, parameter

settings 5and 6have values as low as 9and 19 for problem 3-2, while setting 1remains much

higher.

- .
1

5

6

324 291 345 230 205 201 116 124

342 246 340 172 122 249 105 9

182 306 350 153 288 282 47 19

Table 4.8 Results of Discriminatory Analysis for all Tests

50 1886

37 1622

83 1710

Therefore, the best parameter setting for the tests thus conducted consists of

using a bid k of 0.10, a mutprop of .05, and a crowdfac of 1. Using these values, an FSM

can be designed containing only essential states. The states that the classifier system will

identify as "below mean", should be eliminated, if possible.

4.0.5 Using Different Heuristics

The machines that have been used up to now have used a number of heuris

tics. In order to increase the confidence in the results provided by the classifier system, a

number of different machines were generated using a number of heuristics.

First of all, up to now the states ofthe FSM were divided into two sets consist

ing-ofthose with the lower payoff values (8 of them) and those' with higher payoff values

(10 of them). In order to modify the above configuration of sets, the combination was modi-

fled to include 10 states in the low payoffset and 8 states in the high payoffset. Such a diversi-

fication would allow checking the robustness ofthe classifier system in discriminating states,

75

even when they are subdivided into variable sets.

In addition, different unifonn probabilities were used for generating the

FSMs. Table 4.9 displays the two different set sizes using the unifonn probability used up

to now, namely, 0 to 327 for the payoffvalues and 0 to 24 for the number oftransitions. Table

4.10, on the other hand, uses a range of0 to 250 for payoffvalues and Oto 18 for the number

1-1-1 1-1-2 1-1-3 1-2-1 1-2-2 1-2-3 1-3-1 1-3-2 1-3-3

8/10

10/8

386

486

486

439

157

259

154

212

79

48

55

126

415

389

442

344

341

311

Table 4.9 Gap Sizes for Three Different FSMs Using Two Different Payoff Sets with
Random Unifonns [0,327] for Payoffs and [0, 24] for Transitions

of transitions. Finally, Table 4.11 uses a unifonn probability ofO-rot5iHorthe-payuffvalues----

and°to 12foi-the number oftransitions. Each of the tables are divided into three sub-groups

of machines representing different, randomly generated FSMs. Hence, in Table 4.9, FSMs

1-1-1, 1-1-2, and 1-1-3 all use the same randomly generated machine but have different

payoffvalues,while FSMs 1-2-1, 1-2-2, and 1-2-3 use a different randomly generated ma-

chine, and so on.

2-1-1 2-1-2 2-1-3 2-2-1 2-2-2 2-2-3 2-3-1 2-3-2 2-3-3

8/10

10/8

114

109

157

164

202

221

574

460

595

458

365

255

347

367

320

348

351

424

Table 4~lO Gap Sizes fot Three Different FSMs Using-Two Different Payoff Sets with
Random Unifonns [0,250] for Payoffs and [0, 18] for Transitions

The results show that whether the 8/10 combination is used (which is the one

used in all the tests) or the 10/8 combination, the gap sizes remain positive. However, the

76

default hierarchies, since those classifiers would keep on being chosen as replacements. To

avoid this problem, a number of rules can be selected for replacement randomly, so that the

bias is reduced and other classifiers that may appear to be triYial~ the task being solved will

have a chance to remain in the classifier list for future use. These latter classifiers could in-

deed become very useful at some future time. The crowding factor specifies how many of

these classifiers will be entered in the replacement pool.

Figure 4.8 shows how the different parameter settings fared with the conver-

/

16

14

12

8

6

4

2

Test set #1----

12010020 40 60 80
Cycle Number (Hundreds)

Figure 4.8 ConvergC?n~eof State l'ayoffValues Using a Threshold of 1000 .

gence problem. The graph shows the number ofstates whose payoffvalue exceeded a thresh

old of 1000 at each cycle step. Thus, the more the graph is skewed to the left, the worse the

premature convergence problem. From the figure, it is possible to see that the winning pa-

78

rameter setting combination (in black) converges nicely, representing almost an average of

the other ones. Another tool is that of sharing rewards. Each time the classifier system pro

duces a desired output, such as going to a state that has a higher payoffvalue, then the envi

ronment generates a reward so that the system will continue to produce such behavior. The

classifier system can be controlled so that the reward will be shared only by those classifiers

that posted the message and activated an effector or it will be shared among all the classifiers

that were active when the system produced its behavior. Sharing among all active classifiers

may help some ofthe weaker classifiers to remain in case they may be needed for future use.

4.2 Protocol Analysis

Now that the parameter setting combination has been selected, the testing can

be done on the 'communications protocol. Appendix A gives a brief description of the proto

col and its design. There are 12 states in the model. A number of the states represent timers

that are activated when data is not received. The states that represent these timers are clearly

not as important as those that actually represent the current state of the communication, but

must be included in the analysis since they still represent the status of the protocol (e. g., data

not received).

4.2.1 Protocol Reduction

The classifier system, using the parameter settings 1, was run using the proto

col as its environment. Two different initial payoff strategies were used. One with fixed pay

off values (set to 100.00) and the other using a random uniform strategy from ato 327. The

results are shown in Figure 4.9. Note that the difference between the two is almost trivial,

signalling that the classifier system can recognize useful states even in the presence ofsome

79

10000

9000

8000

7000

t: 60QOQ ,
~

~ 5000

4000

3000

2000
r-..
r-..
r-..
r-..

1000

0
1 2 "3' 4 4.1 5 5.1 6 6.1 7 8 9

State Number

Figure 4.9 Payoff Values at Major Cycle 12,800 using the
Communications Protocol

IS S S S 5 S S 5 S \.

i am : c g Bm: : I

Random initial payoff values
Non-random initial payoff values

"noise", This robust behavior can be attributed to the fact that certain states are rarely used,

no matter what their initial payoff values are.

The LAPD protocol defined here has a number of states that could be classi

fied as being used infrequently. States 5 through 9 in this case might be considered as not

contributing to the protocol design as a whole. These states are transited to when a data pack-

et is not received in sequence (stl!tes 5 and 5.1), when a busy signal is received from the re

ceiving end (states 6 and 6.1), or when a timer expires.(states 7, 8, and 9). The timer could

probably be combined into a single state and a logic could be set up to still provide the ap

propriate transitions. Minimizing the protocol would save on design costs in this case.

The result here achieved can also be used as a test for the classifier system's

80

learning ability. It would be logical to assume that states such as the ones that have been pin

pointed by the classifier system would be rarely visited. Hence, the classifier system has

learned to identify them correctly. The learning that has taken place can be observed by the
I

number of schemata in the classifier list that support each state. Figure 4.10 shows the num-

50

40

~
~ 30
C.I

t:I.)

~

o

~ 20
,Q

8
i.

10

o~ 'I. -
1 2 3 4 4.1 5 5.1 6 6.1 7 8 9

State Number
Figure 4.10 Number of Classifier Schematain the Classifier List

Supporting Each State at Cycle Step 1000

ber of schemata supporting the protocol states while Figure 4.11 shows the same figure su

perimposed payoffvalues in the non"""'1'andom case. Figure 4.11 shows that once learning is

complete, the classifier list converges towards the states with the highest payoff values.

Again, we must specify that the result that is produced by the classifier system is based on

the transitions and visitations to those states. The "support" for the winning states can then

be used for actually deciding whether the reduction of those states would be acceptable and

plausible.

Related to the support for certain states by the classifiers is the increase in the

strengths (or fitnesses) ofthe classifiers. A growth in strength is a sign that learning is taking

81

80 r-r------------~

70

S 60

~ 50
'5
~ 40o .
~
Q,l

,.Q 30
5
=Z 20

10

o

K S S S $ $ S I Payoff
____ Number of Schemata

10000

9000

8000

7000

6000
~

5000 ~
~

4000 ~

3000

2000

1000

1 2 3 4 4.1 5 5.1 6 6.1 7 8 9
State Number

Figure 4.11 Number of Classifier Schemata in the Classifier List
Supporting Each State at Cycle Step 12,000 Superimposed with

the Payoff for those States at the Same Time

16000

14000

12000
;l

~OOOO
~.....
~ 8000
ell
~

~ 6000
<

4000

2000

20' 40 60 80 100

Cycles (Hundreds)

Figure 4.12 Flow of Strength in Classifier List

place and that the classifier system is "confident" in the solution it is reaching. The growth

82

in classifier strength is mapped in Figure 4.12. Note that the graph increases constantly with

no disruption, marking the confidence the classifier system has in the problem solving task.

4.2.2 Protocol State Convergence

. As it was with the generic automata that were tested earlier in this chapter,

in minimizing the communi~ationsprotocol attention must be paid to rapid convergence.

Figure 4.13 shows the convergence of the classifier list towards the final set of states using

~ 8
00
c.,.

o 6
t

,Q

E
i 4

2

(V· - VmJPj=Pj+(Const* I)

2)V; - vmJ
j

Pi =Pi + 1
O~-------------------'
o 20 40 60 80 100 120

Cycles (Hundreds)

Figure 4.13 Convergence of Payoff Values for Protocol
Using Three Different Heuristics

a threshold value of 500.

The figure shows two different curves each representing the heuristic that

was used in increasing the payoff value. The first one, which uses equation 3.1, is used in

all the testing done so far. It is the one that provides a very gradual convergence and does

83

not discriminate as much as the other one. In fac~, the other equation, Pi =Pi + 1, causes the

system to very quickly converge towards a solution which wouldeliminate most ofthe states.

Such a solution wo~d not be very realistic. It is desirable to reduce the number of states in

the design, but up to a certain limit. OtherWise, the functionality would certainly be compro-
,;-;j

mised. Figure 4.14 roves a second way of looking at the convergence problem. The figure

7200
s2

s1

s4

4t;i(I!~ s:31

o~... dlJBii__.: ~l
o 20 40 60 80 100 120 140 160 180 20~~

Cycles (Hundreds)
Figure 4.14 Increase in Payoff Values for Protocol

800

2400

3200

1600

4800

5600

6400

~

~ 4000

~

shows how quickly the payoffvalues for the states increase. Note that three states very quick

ly receive high payoffs for they are the most commonly visited ones. Others increase gradu

ally while a few remaining ones have almost no growth in payoff.

4.2.3 Perturbation and its Effects

84

, It was; mentioned that the environment at times displays nonlinear behavior,

which affects the peIformance of the classifier system. The perfonnance is especiallyaf

fected when the system has been interacting with the environment for along time and learn-,

ing has taken place to a great extent. If the environment is perturbed, the classifier system

must adapt to the change and leam again, even though the classifier list may have already

converged to a certain extent.

To see how such an event can affect the system's behavior, the payoffvalues

of the states were randomly changed and re-mapped using the same probabilistic approach

used to assign them initially. The simulated perturbation was injected half way through the

run. Figure 4.15 shows the growth in fitness of classifiers that support two states. State 2 is

s

20000

10000

70000

60000

~50000
~
~ 40000

30000

2 4 6 8 10 12
Cycles (Thousands)

Figure 4.15 Comparison of Fitness of two Classifiers
Supporting States 2 and 6.1 with no Perturbation

the state that receives the highest payoff during a normal run while state 6.1 is one of the

low-payoffstates. State 2receives payoffquickly and its fitness increases rapidly while state

90000

80000.

85

6.1 increases more slowly. In addition, the area that is dashed represents a discontinuous

growth in state 6.1's curve since no classifiers existed in the classifier list in support of that

state.

Figure 4.16 shows the same two states but with the perturbation introduced

2 4 6 8 10 12
Cycles (Thousands)

Figure 4.16 Comparison of Fitness of Classifiers
Supporting States 2 and 6.1 in Presence of Perturbation

I

90000

80000

70000
s2

60000

: 50000
b.O
I:
.; 40000
tIJ

30000

20000 4IlIS8il4lllS8il

10000

after cycle 6000. Note that the fitnesses fall to almost their initial values and then start in-

creasing again. But, in addition, sPite 6.1 's curve rises almost as fast as state 2. That signifies

that the initial payoff may have moved in favor of state 6.1. But the classifier soon learns of

the greater importance of state 2 and that curve starts growing faster.

4.2.4 Rewards

86

280

240
.c
'SiJ
= 200QJ

""....
Cf.)

QJ
160~

co=

""QJ
~

-< 120

80

40

00

Rewards are essential for the classifier system to carry out its task properly.

If no reward is received, the classifier system cannot determine whether it is ~scriminating

properly among states. This is aproblem thatexists in many learning systems. Connectionist

systems, for example, include a "tutor" that check the output that the network produces and

see if the output is correct.

Figure 4.17 shows how the average fitness of the classifiers in the classifier

20 40 60 80 100
Cycles (Hundreds)

Figure 4.17 Flow of Strength in Classifier List
with no Rewards Received

list in the absence ofrewards. Clearly, when no rewards are received, the system loses a sense

of the worthiness of states and cannot successfully determine which states should be allowed

into the protocol design. Ifon the other hand a reward mechanism exists and guides the sys

tem, then the design benefits from the advice that the system produces.

Sharing rewards can also affects system perfonnance to. When rewards are

shared among all active classifiers in the classifier list, the fitness of the list is enhanced on

87

the average, allowing classifiers that are weaker to remain in the list for a longer period of

time. A more aggressive strategy·would allocate the reward only to classifiers that post their

actions andproduce effectors. Such a"greedy" approach would quickly eliminate weak clas

sifiers and lead to a much more rapid convergence of the classifier list. This may be desired

in environments that are deterministic and are not affected by abrupt changes. Such environ-

ments are not too commonplace, however.

The communications protocol, in fact, can often be affected by sudden
-../

changes and the classifier system must adapt to them. Figure 4.18 shows the difference in
I

the average fitness of the classifiersbetween an approach that recompenses all active classifi-

Not Share Rewards
Share Rewards

54000

48000

.:42000
bJl
~6000....

CIl

t30000e
~4000

18000

12000

6000

o0 20 40 60 80 100
Cycles (Hundreds)

Figure 4.18 Difference in Fitness Between aStrategy·
which Shared Rewards Among all Active Classifiers and

One that Does Not

'ers and one that does not. For the most part, sharing rewards allows the average fitness to

be higher than in the case were no rewards are shared. The tests that have been performed

88

up to now have utilized the greedy approach since the intenthas been to discriminate the most

r among protocol states. In addition, in this simulated environment, the amount of perturba

tion is trivial, even though it could be induced, as was shown before.

89

CHAPTERS

CONCLUSION

The results thus achieved demonstrate that the classifier system learning

methodology can successfully identify states within a Finite State Machines that can be elim

inated' reducing the complexity of the machine. As specified earlier, the classifier system

functions more as an advisor than an implementor. In other words, theclassifier system can

only advise an FSM designer (for a specified domain such as communicationprotocols) what

are the states in the system that could be removed without compromising the functioning of

the machine. If the machine is then affected in its functionality, then the reduction cannot

take place.

5.0 Results

The reduction procedure consisted of identifying what parameter settings

would provide the greatest discriminatory results between the two sets of states (low payoff

and high payoff) in the FSM.

Successful reduction requires that the classifier system be able to bias more

towards those states that generate the higher payoffs. The greater the discrimination, the

more confident the results. In Chapter 4 a discriminatory analysis was carried out which

served to test this confidence. The mean payoff were computed for 9 different FSM, each

with three different payoff sets. From these, the standard deviation were computed and the

gap separating the lower range ofthe high payoffstates and the higher range ofthe low payoff

states was computed. The gap served to identify the amount of discrimination displayed by

the classifier system.

90

Another way of analyzing this infonnation is to consider what percentage of·

the range of deviation for all 18 states the gap covers. In other words, how much does the

classifier system separate the two sets of states from one another? The greater the gap, the

more the two sets of states are apart and the more confident the solution.

This type ofanalysis is carried out inTables 5.1, 5.2, and 5.3 which are related

to Tables 4.9, 4.10, and 4.11, respectively. The tables show the percentage that the discrimi

natory gap covers range of deviation for the payoff values for the 18 states of the FSM.

Hence, ifthe meanfor one ofthe machines for all 18 states were 1000 which a standard devi-

ation of250, then the total range of deviation would be (1000 - 250) + (1000 + 250) = 2000.

JrS~f:

1-1-1 1-1-2 1-1-3 1-2-1 1-2-2 1-2-3 1-3-1 1-3-2 1-3-3

8/10 12 15 5 5 3 2 13 14 11

10/8 15 14 8 7 2 4 12 11 10

Table 5.1 Gap Sizes as a Percentage of the Range of Deviation of Payoff Values for
Three Different FSMs Using Two Different Payoff Sets with Random Uniforms [0, 327]

for Payoffs and [0, 24] for Transitions

If the gap were 200, then the percentage that the gap covers is 10%. This number gives a

qualitative estimate of how much discriminatory power the classifier system produces.

)f$MY

2-1-1 2-1-2 2-1-3 2-2-1 2-2-2 2-2-3 2-3-1 2-3-2 2-3-3

8/10 3 5 6 19 19 12 11 10 11

10/8 4 5 7 15 15 8 11 11 13

Table 5.2 Gap Sizes as a Percentage of the Range of Deviation of Payoff Values for
Three Different FSMs Using Two DUferent Payoff Sets with Random Uniforms [0, 250]

for Payoffs and [0, 18] for Transitions

91

fmd a better configuration. The system could then learn to identify such problems in a num

ber networks and attempt to provide similar solutions, if acceptable.

A more challenging task, derived from the above, would be to fmd out how

the network could be expanded in case the network is already at high capacity. The classifier

system would have to analyze the load and determine an appropriate new configuration.

5.2 Classifier Systems Revisited

The above results that have been achieved are encouraging and demonstrate

the capabilities that classifier systems have in interacting with different environments and

solving different types ofproblems. However, there are anumber ofways to make them work

more effectively.

First of all, a number of different strategies could be used for'crossover and

mutation, that have recently shown greater success than the traditional operators used in

CFS-C. A number of different crossover operators have been proposed, including single

arithmetic crossover, whole arithmetic crossover [44], partially mapped crossover, order

crossover, cycle crossover, andposition-based crossover [67]. Some mutation techniques in

clude boundary mutation, non-uniform mutation [44], swap, reverse, and remove-and-rein

sert [41]. These techniques could prove to be more appropriate for the learning process, gen

erating more robust behavior.

A second way of improving classifier system performance might be of that

of incorporating the concepts of synthetic systems [52]. Classifier systems demonstrate sim

ulation systems, where the genetic classifiers and the environment with which they interact

are simulated. Specifically, classifier systems are designed a priori with an understanding

of what the internal configuration of the system is and what the environment looks like. But

this may not be sufficient. Rather, there may be a need to introduce some elasticity, allowing

93

classifier systems to be independent of the design specifications. One example might be that

ofthe population size in the classifier system, which is fixed. But fIxing the number ofclassi

fIer allowed might greatly influence the performance of the system, because at a given time

the classifier system may need some of the classifiers that are being replaced. This is espe

cially true when an elitist strategy is used, attempting to maintain the strongest classifiers at

every time step. But as it was mentioned. very often weak classifiers may be needed in the

future, and a simple heuristic that randomly keeps a few for future use may not be sufficient.

. Rather, the classifier list should be able to grow and shrink, depending on the status of the

environment with which it interacts and the relevance of the classifiers.

The environment can also be synthesized. The environment does not change

only its state or co~dition,but also its appearance. In such an environment, the classifier sys

tem must be able to update its representation ofthe environment at all times. This is one way

of learning too, characterized by learning to recognize diverse phenomena.

Third, the incorporation oflong-term memory would be helpful in the classi

fIer systems. Zhou [77] already implemented such a system using an associative memory.

Another mechanism that can be used is that developed by Beale et al. [4]. This implementa

tion uses a distributed associative memory for storing information that is classified during

a run of their connectionist system. The memory is composed of amatrix that consist of a

number of vectors (representing the size of the memory) to which the input vector (or in the

classifier system, the detector) would be matched. If a perfect match occurs between the in

put vector and a vector that was stored, that vector is recalled. Otherwise, the closest match

is used by counting the number of bits that match between the two vectors. The vector with

the highest match is then recalled. Beale et al. describe the memory in the following fashion:

1. A memory matrix Mij

2. An input vector (detector) Ai

94

3. A class vector (the vector in memory) Cj

When the system is learning, the memory stores all the vectors in memory:

otherwise
V i,j

and during recall, the vectors are fetched back:

i

Recalled vector Rj = I Mpj *Ap Vj
p=o

This can easily be applied to classifier systems since the population could be initialized using

the above method. Rather than randomly generating the population, a detector could capture

the current status of the environment (used as the input vector to the memory) and recall

stored classifiers. The above equations wo~ld have to be modified to include the don't care

symbol #. Ifenough classifiers cannot be recalled using this method, the remain~gmembers

of the population could be generated randomly. Even in such case, the learning process could

be greatly improved.

These and other extensions to classifier systems may prove to greatly in-
. \

crease their learning capability and enhance their robustness in a number of different do-

main. The ultimate goal would be to have a classifier system that can adapt to a number of

environments. The technology to date does not provide such flexibility, even though its gen-

erality could be a powerful tooL

95

REFERENCES

[1] Ackley, David, and Micheal Littman "Interactions Between Learning and Evolution" in
Langton, Christopher G., Taylor, Charles, Farmer, 1. Doyne, and Steen Rasmussen. Artifi
cial Life II: AProceedin~s Volume in the Santa Fe Institute Studies in the Sciences of Com
plexity. Redwood City, CA: Addison-Wesley (1~92), pp. 487-510

[2] Antonisse, Hendrik James and K. S. Keller "Genetic Operators for High-Level Knowl
edge Representations" in John 1. Grefenstette (Editor). Genetic Algorithms and their Ap
plications: Proceedin~s of the Second International Conference on Genetic Algorithms.
Hillsdale, NJ: Lawrence Erlbaum Associates (1987)

[3] Antonisse, Hendrik James "A Grammar-'-Based Genetic Algorithm" in Gregory I.E.
Rawlins (Editor) Foundations ofGenetic AI~orithms. San Mateo, CA: Morgan Kaufmann
Publishers (1991)

[4] Beale, Russell, Finlay, Janet, Austin, James, and MichealHarrison "User Modelling by
Classification: a Neural-'-based Approach" in Taylorl I. G. and C. L. T. Mannion (Editors)
New Developments in NeuralComputin~ lOP (1989), pp. 103-110

[5] Be~, Louis "Elementsd'Epistemologie Fabulatoire." in Langton, Christopher G., Taylor,
Charles, Farmer, I. Doyne, and Steen Rasmussen. Artificial Life II: A Proceedings Volume
in the Santa Fe Institute Studies in the Sciences Qf CQmplexity. Redwood 'City, CA: Addi-

, " " '.,

son-Wesley (1992), pp. 799-81.2 . .

.' "

[6] Belew, Richard K., McInemey~John, and NicoIN~·Schra~dolph."Evolving Networks:
Using the Genetic Algorithm with Connectionist Learning". in Langton, Christopher G.,
Taylor, Charles, Farmer, I. Doyne, and Steen Rasmussen. Artificial Life II: A Proceedings
Volume in the Santa Fe Institute Studies in the Sciences Qf Complexity. Redwood City, CA:
Addison-Wesley (1992), pp.511-548 .

[7] Bochmann, Gregor V. "A General Transition Model for Protocols and COI11l}1unication
Service" in IEEE Transactions on Communications, vol. COM-28, no. 4, (April 1980)

[8] Booker, Lashon B. "Classifier Systems that Learn Internal World Models" in Machine
Learning, 3, (1988), pp.161~192 (

[9] Booker, Lashon B. "Improving the Performance ofGenetic Algorithms'in ClassifierSys-

96

. ,

terns" in Proceedings Qrthe Third InternatiQnal CQnference Qn Genetic AI~Qrithms. San Ma
teQ, CA: MQrgan Kaufman Publishers (1989)

[10] BQQker, LashQn B., GQldberg, David E., and JQhn H. HQlland "Classifier Systems and
.Genetic AlgQrithms" in Artijiciallntelligence, 40 (1989) pp. 235-282

[11] BQQker, LashQn B. "Representing Attribute-Based CQncepts in a Classifier System" in
GregQry i.E. Rawlins (Editor) FQundatiQns QfGenetic AlgQrithms. San MateQ, CA: MQrgan
Kaufmann Publishers (1991)

[12] CarbQnell, lG. ~'Leaniingby AnalQgy: FQrmulating and Generalizing Plans frQm Past
Experience" In Michalski, R.S., CarbQnell, lG., and Mitchell, T.M. (EditQrs). Machine
Learning: An Artificial Intelli~ehce ApprQach, VQl. 1, San MateQ, CA: MQrgan Kaufman
Publishing (1983)

[13] Cariani, Peter ",Emergence and Artificial Life" in LangtQn, ChristQpher G., TaylQr,
Charles, Farmer, J. DQyne, and Steen Rasmussen. Artificial Life II: A PrQceedings VQlume
in the Santa Fe Institute Studies in the Sciences Qf CQmplexity. RedwQQd City, CA: Addi
sQn-Wesley (1992), pp. 775-779

[14] CQhQQn,1. P., Hegde, S.U., Martin, W. N., and D. Richards "Punctuated Equilibria: A
Parallel Genetic AlgQrithm" in JQhn l Grefenstette (EditQr). Genetic AlgQrithms and their
ApplicatiQns: PrQceedin~s Qf the SecQnd InternatiQnal CQnference Qn Genetic AlgQrithms.
Hillsdale, NJ: Lawrence Erlbaum AssQciates (1987)

[15] DavidQr, Yuval. Genetic Al~Qrithms and RQbQtics: A Heuristic Strategy fQr Optimiza
tiM. Teaneck, NJ: WQrld Scientific (1991)

[16] Davis, Lawrence. HandbQQk QfGenetic AI~Qrithms. New YQrk: Van NQstrand ReinhQld
(1991)

[17] DeJQng, Kenneth A. "Genetic-AlgQrithm-Based Learning" in Michalski, R.S., and Y.
KQdratQff (EditQrs). Machine Learning: An Artificial Intelligence ApprQach, VQl. 3, San
MateQ, CA: MQrgan Kaufman Publishing (1990)

[18] DhillQn, Balbir S. Reliability En~ineeringin Systems Design and OperatiQn. New YQrk,
NY: Van NQstrand ReinhQld (1983)

[19] DQlan, Charles P. and Micheal G. Dyer "TQwards the EVQlutiQn Qf SymbQls" in JQhn J.

97

Grefenstette (Editor). Genetic AI&orithms and their Applications: Proceedings of the Se

cond International Conference on Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum

Associates (1987)

[20] Elman, Jeffrey L. "Distributed Representations, Simple Recurrent Networks, and

Grammatical Structures" in Machine Learning, 7, (1991), pp. 195-225

[21] Forrest, Stephanie. Parallelism and ProfmlIl1J11in& in Classifier Systems. San Mateo,

CA: Morgan Kaufmann Publishers (1991)

[22] Frey, Peter W. and David J. Slate "Letter Recognition Using Holland-8tyle Adaptive

Classifiers" in Machine Learning, 6, (1991), pp. 161-182

[23] Goldberg, D. E. Genetic Algorithms in Search. Optimization. and Machine Learning.
Reading, MA: Addison-Wesley (1989)

,"

[24] Goldberg, David E., Earickson, Jeff A., and Robert E. Smith "SGA-Cube: A Simple
Genetic Algorithm for nCUBE 2 Hypercube Parallel Computers" The Clearinghouse for Ge

netic Algorithms TCGA Report No. 91005, Department ofEngineering Mechanics, Univer

sity of Alabama, Tuscaloosa, Alabama (1991)

[25] Goldberg, S.H. and J. A. Mouton, Jr. "A Base for Portable Communications Software"

in IBM Systems Journal, vol. 30 no. 3 (1991)

[26] Green, Paul E. (Editor) Computer Network Architectures and Protocols. New York,

NY: Plenum Press (1982)

[27] Greene, David Perry and Stephen F. Smith "A Genetic System for Learning Models of

Consumer Choice" in John J. Grefenstette (Editor). Genetic Algorithms and their Applica

tions: Proceedings of the Second International Conference on Genetic Algorithms. Hills

dale, NJ: Lawrence Erlbaum Associates (1987)

[28] Grefenstette, John J. "Genetic Algorithms and Their Applications" in Kent, A. and J.G.

.Williams (Editors). The Encyclopedia of Computer Science and Technology, volume 21,

Marcel De~er (1990)

[29] Grefenstette, John J., Ramsey, Connie L., and Schultz, Alan C. "Learning Sequential

Decision Rules Using Simulation Models and Competition" in Machine Learning, 5 (1990),

pp.355-381

98

[30] Grefenstette, John J. "Strategy Acquisition with Genetic Algorithms" in Handbook of
Genetic Algorithms. New York:'Van Nostrand Reinhold (1991)

[31] Hashem, Mostafa S. and M. Umit Uyar "Protocol Modeling for Conforinance Testing:
Case Study for the ISDN LAPD Protocol" in AT&T Technical Journal, vol 69, no 1. (Janu
ary/February 1990)

[32] Hillard, M. R., Liepins, G. E., Palmer, Mark, Morrow, Micheal, and Jon Richardson "A
Classifier-based System for Discovering Scheduling Heuristics" in John J. Grefenstette
(Editor). Genetic AIg:orithms and their A1wlications: Proceedings ofthe Second Internation
al Conference on Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum Associates (1987)

[33] Holland, John H. Adaption in Natural and Artificial Systems. Ann Arbor, MI: The Uni
versity of Michigan Press (1975)

[34] Holland, John J. "A Cognitive System with Powers of Generalization and Adaption".
Unpublished manuscript, DepartJpent ofComputer andCommunication Sciences, Universi
ty of Michigan, Ann Arbor, MI (1977)

[35] Holland, John H. "Escaping Brittleness: The Possibilities of General Purpose Learnin
gAlgorithms Applied to Parallel Rule-Based Systems" in Michalski, R.S., Carbonell, J.G.,
and Mitchell, T.M. (Editors). Machine Learning: An Artificial Intelligence Approach, Vol.
2, San Mateo, CA: Morgan Kaufman Publishing (1986)

[36] HollaI!d, John H., Holyoak, Keith 1., Nisbett, Richard E., and Thagard, Paul R. Induc
tion: Processes of Inference. Learning. and Discoyery. Cambridge, MA: Massachusetts
Institute of Technolo'gy Press (1986)

i

[37] Holland, John H. "Genetic Algorithms and Classifier Systems: Foundations and Future
Directions" in John 1. Grefenstette (Editor). Genetic Algorithms and their Applications: Pro
ceedings of the Second International Conference on Genetic Algorithms. Hillsdale, NJ:
Lawrence Erlbaum Associates (1987)

[381ISorrC97/SC21, "Informag()n processing systems - Open systems interconnection,
Basic Reference Model" in ISO 7498. Geneva, Switzerland: International Organization for
Standardization (1984)

[39] Jog, Prasanna, and Dirk Van Gucht "Parallelisation of Probabilistic Sequential Search

99

Algorithms" in John J. Grefenstette (Editor). Genetic AI&Qrithms and their Applications:
Proceedings of the Second International Conference on Genetic Algorithms. Hillsdale, NJ:
Lawrence Erlbaum Associates (1987) .

[40] Kohavi, Zvi Switchin& and Finite Automata Theory. New York, NY: McGraw-Hill
Book Compay (1978)

[41] Kurzweil, Raymond. The A&e ofIntelli&ent Machines. Cambridge, MA: Massachusetts
Institute of Technology Press (1990)

[42] Manderick, Bernard, de Weger, Mark, and Pief Spiessens "The Genetic Algorithm and
the Structure of the Fitness Landscape" in Belew, Richard K. and Lashon B. Booker (Edi
tors). Proceedings of the Fourth International Conference on Genetic Algorithms. San Ma
teo, CA: Morgan Kaufmann Publishers (1991), pp. 324-333

[43] Matwin, Stan, Szapiro, Tom, andHaigh, Karen "Genetic Algorithms Approach to a Ne
gotiation Support System" IEEE"Transactions on Systems, Man, and Cybernetics, vol. 21,
No.1 (January/February 1991), pp. 102-114

[44] Michalewicz, Zbigniew, and Cezary Z. Janikow "Handling Constraints in Genetic Al
gorithms" in Belew, Richard K. and Lashon B. Booker (Editors). Proceedings of the Fourth
International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Pub
lishers (1991), pp. 324-333

[45] Minsky, Marvin. "A Framework for Representing Knowledge" in P.H. Winston (Edi
tor). The Psychology of Computer Vision. New York: McGraw-Hill (1975)

[46] Minsky, Marvin. Society of Mind. New York: Simon and Schuster Publishers (1986)

[47] Montana, DavidJ. "Empirical Learning Using Rule Threshold Optimization for Detec
tion of Events in Synthetic Images" in Machine Learning,S, (1990), pp. 427-450

[48] von Neumann, John Theory of Self-Reproducing Automata. Edited by Arthur W.
Burks. Urbana, IL: University ofminois Press (1966) .

[49] Nussbaumer, Henri. Computer Communication Systems. Volume 1, Data Circuits, Er
ror Detection, Data Links. New York: John Wiley & Sons (1990)

[50] Pettey, ChrisilaB., Leuze, Micheal R., and John 1. Grefenstette "A Parallel Genetic AI-

100

gorithm" in John 1. Grefenstette (Editor). Genetic AIl:orithms and their Applications: Pro
ceedings of the Second International Conference on Genetic Algorithms. Hillsd8.Ie, NJ:
Lawrence Erlbaum Associates (1987)

[51] Radcliffe, Nicholas 1. "Genetic Set Recombination and its Application to Neural Net
work Topology Optimization" Tecbinal Report EPCC TR9121 of the Edinburgh Parallel
Computing Center: University of Edinburgh (1991)

[52] Radcliffe, Nicholas J. "Equivalence Class Analysis of Genetic Algorithms" Techinal
Report EPCC TR9003 of the Edinburgh Parallel Computing Center: University of Edin
burgh (1990)

[53] Ray, Thomas S. "An Approach to the Synthesis of Life" in Langton, Christopher G.,
Taylor, Charles, Farmer, 1. Doyne, and Steen Rasmussen. Artificial Life II: A Proceedings
Volume in the Santa Fe Institute Studies in the Sciences of Complexity. Redwood City, CA:
Addison-Wesley (1992), pp. 371-408

[54] Riolo, Rick L. "LETSEQ1: An Implement;ation of the CFS-C Classifier System in a
Task Domain that Involves Learning to Predict Letter Sequences" Logic of Computers
Group: University of Michigan (1988)

[55] Riolo, Rick L. "CFS-C/FSW1: An Implementation ofthe CFS-C ClassifierSystem in a
task Domain that Involves Learning to Traverse a Finite State World" Logic of Computers
Group: University of Michigan (1988)

[56] Riolo, Rick L. "CFS-C: A Package of Domain Independent Subroutines for Imple
menting Classifier Systems in Arbitrary, User-Defined Environments" Logic of Computers
Group:University of Michigan (1988)

[57] Riolo, Rick L. "The Emergence ofCoupled Sequences ofClassifiers" in Proceedings of
the Third International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kauf
man Publishers (1989)

[58] Riolo, Rick L. "The Emergence Qfl)efaultBiemrchies in Learning Classifier Systems"
in Proceedings of the Third Internatfonal Conference on Genetic Algorithms. San Mateo,
CA: Morgan Kaufman Publishers (1989)

[59] Riolo, Rick L. "Modeling Simple Human Category Learning with a Classifier System"
in Belew, Richard K. and Lashon B. Booker (Editors). Proceedings of the Fourth Interna-

101

tional Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers
(1991),pp.324-333

[60] Robertson, George G. "Parallel Implementation of Genetic Algorithms in a Classifier
System" in John 1. Grefenstette (Editor). Genetic Algorithms and their Applications: Pro
ceedings of the Second International Conference on Genetic Algorithms. Hillsdale, NJ:
Lawrence Erlbaum Associates (1987)

[61] Sannier, Adrain V. n, and Erik D. Goodman "Genetic Learning Procedures in Distrib
uted Environments" in John J. Grefenstette (Editor). Genetic Algorithms and their Applica
tions: Proceedings of the Second International Conference on Genetic Algorithms. Hills
dale, NJ: Lawrence Erlbaum Associates (1987)

[62] Schank. Roger C. Real and Artificial Memories. New York, NY: Scribner's & Sons
(1990)

[63] Shaefer, Craig G. "The ARGOT Strategy: Adaptive Representation Genetic Optimizer
Technique" in John 1. Grefenstette (Editor). Genetic Algorithms and their Applications: Pro
ceedings of the Second International Conference on Genetic Algorithms. Hillsdale, NJ:
Lawrence Erlbaum Associates (1987)

[64] Smith, S.P. "A Learning System Based on Genetic Adaptive Algorithms" Ph.D. Dis
sertation, Department of Computer Science, University of Pittsburgh, Pittsburg, PA. (1980)

[65] Smith, S.P. "Flexible Learning of Problem Solving Heuristics Through Adaptive
Search" in Proceedings of the Eighth International Joint Conference on Artificial
Intelligence, Karlsruhe, Germany (1983)

[66] Spears, William M. and Kenneth Dejong "Using Neural Networks and Genetic Algo
rithms as Heuristic for NP-complete Problems" in International Joint Conference on Neural
Networks, volume I, Hillsdale, NJ: Lawrence Erlbaum Associates (1990), pp. 118-125

[67] Starkweather, T, McDaniel, S. Mathias, K. Whitley D., and C. Whitley "A Comparison
of Genetic Sequencing Operators" in Belew, Richard K. and Lashon B. Booker (Editors).
Proceedings of the Fourth International Conference on Genetic Algorithms. San Mateo, CA:
Morgan Kaufmann Publishers (1991), pp. 324-333

[68] Stein, Richard M. "Real Artificial Life" Byte (January 1991), pp. 289-297

102

[69] Storkt David G. t Jacksont Bernie and Scott Walker "Non-Qptimality" in Langton,
Christopher G.t Taylort CharIeSt Farmer, 1. Doynet and Steen Rasmussen. Artificial Life II:
A Proceedings Volume in the Santa Fe Institute Studies in the Sciences of Complexity. Red
wood CitYt CA: Addison-Wesley (1992), pp. 409-430

[70] Suttont Richard S. "Learning to Predict by the Methods of Temporal Differences" in
Machine Learning, 3 (1988)t pp.9-44

[71] Taneset Reiko "Parallel Genetic Algorithm for a Hypercubet' in ohn 1. Grefenstette
(Editor). Genetic Algorithms and their Applications: Proceedings ofthe Second Internation
al Conference on Genetic Algorithms. Hillsdalet NJ: Lawrence Erlbaum Associates (1987)

[72] Taylort Charles E. "'Fleshing Quf Artificial Life Ir' in Langton, Christopher G., Tay
lor, CharIeSt Farmer, 1. Doyne, and Steen Rasmussen. Artificial Life II: A Proceedings Vol
ume in the Santa Fe Institute Studies in the Sciences of Complexity. Redwood City, CA: Ad
dison-Wesley (1992), pp. 25-38"

[73] WilsontStewart W. "Knowlegde Growth in an Artificial Animat" in Proceedings of the
Fourth Yale Workshop on Applications of Adaptive Systems (1985)

[74] Wilson, Stewart W. "Classifier System Learning of a Boolean Function" Research
Memo RIS-27rt Cambridge, MA: Rowland Institute for Science (1986)

[75] WilsontStev:artW and David E. Gold~rg "A Critical Review ofClassifier Systems" in
Proceedings ofthe Third International Conference on Genetic Algorithms. San Mateo, CA:
Morgan Kaufman Publishers (1989)

[76] Zhou, Harry H. "CSM: A Computational Model of Cumulative Learning" Machine
Learningt 5 (1990), pp.383-406

[77] Zhou, Harry H. "CSM: A Genetic Classifier System with Memory for Learning by
Analogy" Ph.D. Dissertationt Computer Science Department: Vanderbilt University (1987)

103

APPENDIX A

PROTOCOL ENVIRONMENT SPECIFICATION

The specifications for the FSM used in this thesis are given by Hashem et al [31].

Here a few relevant features are described.

The protocol defmes a networking system where information is carried via packets,

orframes. However, different kinds of frames exist. One frame is sent to the receiver (i.e.,

user A sends to user B) to establish connection, called sabme. Another frame, the I-frame,

contains the actualpacketofinformation being sent. Each I-frame is usually part ofsequence

of such frames part of an entire message being sent across the network. Each I-frame con

tains a number, N(S), identifying the frame's position in the sequence of frames. Finally, a

disc frame exists to disconnect the communication, or logical link, which defines the me

dium where the transfer of the data actually occurs. There exist also a number of timers that

assure system functioning. The TIOO timer assures that once an I-frame is sent to the receiv

er, the receiver acknowledges its receipt after some time. The 1'203 timer is used to prevent

the system from remaining idle indefmitely. Bad frames can also be transmitted for anumber

of reasons [31]. Table A.1 defines the states as they are defined by Hashem et al.

A number of frames are defined for this protocol. There also a number of input and

output service primitives that designate the state of the communication at any stage. A num

ber of other frames are added by Hashem et al. for the testing of the protocol. The specifics

of the above will not be discussed here. The intent, rather, is to give a general idea of what

theprotocollooks like and how itis defined in the classifier system.

The text that follows shows how the environment is defmed in CFS-C and for this

particle application. Please note that in the transitions section, the text in italics is not part

of the file designating the environment. It is included here to show the transitions defined

104

in the protocol. All the state specifications and the transitions are derived from Hashem et

al. [31].

Table A.I Data-Link Layer State Descriptions

105

Each state is represented as a chromosome consisting of 16 bits. The left-most two

bits, which are set to '00' defme the type of the chromosome, which in this case are detectors

since the system updates its classifier list and by checking what the current state of the FSM

is.

Each state definition is given as numl, num2, chromosome, where numl is the identification
I

of the state, num2 is 'the visit cou~t, which is set to 0 for all states except for the first one,

which is the initial state. The chromosome follows.

The payoffsfollow as a pair state, payoff!, where the payoff in this case is equal

across all states since all the states in the protocol are important to start with.

The transitions--of the FSM are defined as sl, r, s2, p, where sl is the current state

the system is in, r is the r value that leads to that state (edge value), s2 is the state the edge

leads to, and p is the probability that the system will move to that state.

Finally, the effector values are given. The first effector defines the effector that usu-

ally determines the r value. Thefe are cases, however; that the system will not generate an

effector. In such cases, a default effector is used that will keep the classifier system interact-

ing with the environment.

; The number of states followed by the initial state followed by a threshold value
12,0,500
; These are the states and their equivalents in the LAPD model:
; Classifier System State LAPD State Description

o
1
2
3
4
5
6
7
8

sl
s2
s3
s4
s4.1
s5
s5.l
s6
s6.l

Initial state
Await EST
AwaitREL
MFESTNORM
MF EST NORM WITH WINDOW CLOSED
MFESTREJ

•. MF EST REI WITH WINDOW CLOSED
MF EST BUSY
MF EST BUSY WITH WINDOW CLOSED

106

valid
valid
inopportune
inopportune
inopportune
inopportune
timer

valid
inopportune
inopportune
inopportune
inopportune
valid
timer
timer

inopportune
inopportune
Vf;llid
valid
valid
valid
timer
timer

;TM REC NORM
TMRECREJ
TM REC BUSY

WHEN (uaJ1, 13_e10)
WHEN (dmJ1, 13_e10)
WHEN (sabmeyl, dmJ1)
WHEN (sabmeyO, dm.JD)
WHEN (discy1, uaJl)
WHEN (discyO, ua.JD)
WHEN (timeout_f200, 13_e7)

WHEN (dmJ1, 13_e7)
WHEN (sabmeyO, ua.JD)
WHEN (sabmey1, uaJ1)
WHEN (discyO, dm.JD)
WHEN (discy1, dmJl)
WHEN (uaJ1, 13_e9)
WHEN (timeout_t200, sabmeyl)
WHEN (timeout_t200_N200, 13_e7)

WHEN (discyO, dm.JD)
WHEN (discy1, dmJ1)
WHEN (sabmey1, uaJl_13_e8)
WHEt:' (sabmeyO, ua.JDj3_e8)
WHEN (13 el, sabmeyl)
WHEl;I (dmJo, sabmeyl)
WHEN (timeout_t200, null)
WHEN (timeout t203, null), -

9 87
10 88

; 11 89
0, 1, 0000 0000 0010 0001
1, 0, 0000 00000100 0001
2, 0, 0000 0000 01010101
3, 0, 0000 0101 0101 0101
4,0,0000 0101 oooi 0100
5,0,0001 0001 01000101
6,0, 0001010100010101
7,0,0000 0100 oooi 0101
8,0, 0001 0101 0001 0101
9,0,0000 0000 0010 0110
10,0,0000 0000 0100 0001
11,0,0000 0000 0100 0011
ENDSTATES
0,100/1,100/2,100/3,100/4,100/5,100/6,100/7,100/8,100/ 9,100/10,100/11,100
ENDPAYOFFS
; State 81
0,1,0,1
0,2,0,1
0,3, 3,1
0,4,3,1
0,5, 1,1
0,6, 1,1
0,7,0,1
0,8, 0,1
; State 82
1,9,0,1
1,10, 1,1
1,11, 1,1
1,1, 1,1
1,2, 1,1
1,12,3,1
1,13, 1,1
1,14, 0,1
; State 83
2,15, 0,1
2,16,0,1
2,17,2,1
2,18,2,1
2,19,2,1
2,20,2,1
2,21,2,1

107

2,22,0,1
; State s4
3,4,3,1
3,3,3,1
3,23,0,1
3,24,0,1
3,5, 1,1
3,25,2,1
3,26,5,1
3,27,3,1
3,28,4,1
3,29,3,1
3,6, 1,1
3,30,2,1
3,31, 1,1
3,32, 1,1
3,33,3,1
3,34,3,1
3,35,3,1
3,36,4,1
3,37,4,1
"3,38,3,1
3,39,3,1
3,40,3,1
3,41, 3,1
3,42,3,1
3,43,3,1
3,44,3,1
3,45,3,1
3,46,3,1
3,47,3,1
3,48,3,1
3,49,3,1
3,50, 1,1
3,51,9,1
3,52,3,1
; State s4.1
4,4,3,1
4,3, 3,1~ "
4,23, 0,1
4,24, 0,1
4,5,1,1
4,25,2,1
4,26,8,1

WHEN (timeout_t200_N200, discyl)

WHEN (sabmeyO, uaJDj3_e8)
WHEN,(sabmeyl, uaJl_13_e8)
WHEN(discyO, uaJD_13_e7)
WHEl.'l (discyl, uaJlj3_e7)
WHEN(13_el,sabmeyl)
WHEN (13_e2, discyl)
WHEN (13_e3, rnryO)
WHEN (13_e5, iyO)
WHEN (13_e6_max, iyO)
"WHEN(13_e6,iyO)
WHEN (dmJD, sabmeyl)
WHEN (dmJI, sabmeyl)
WHEN (frmrfl, sabmeyl)
WHEN (frmrJI, sabmeyl)
WHEN(iyl,rrJl_13_ell)
WHEN (iyO, rrfl_13_ell)
WHEN (iyO_cond, iyOj3_ell)
WHEN (iyO_unexp_ns, rejfl)
WHEN (iyl_unexp_ns, rejJl)
WHEN (rryO, null)
WHEN (rrfl, null)
WHEN (rrJI, null)
WHEN (rryl, rrJ1)
WHEN (rnryO, null)
WHEN (rnrJD, null)
WHEN (rnrJl, null)
WHEN (rnryl, rrJl)
WHEN (rejyO, null)
WHEN (rejJD, null)
WHEN (rejJl, null)
WHEN (rejyl, rrJl)
WHEN (badJrame, sabmeyl)
WHEN (timeout:.J200, rryl)
WHEN (timeout_t203, rryl)

WHEN (sabmeyO, uaJD_13_e8)
WHEN (sabmeyl, uaJl~13~e8)
WHEN (discyO, uaJO_13_e7)
WHEN (discyl, uaJl_13_e7)
WHEN (13_el, sabmeyl)
WHEN (13_e2, discyl)
WHEN(13_e3,rnryO)

108

timer

valid
valid
valid
valid
valid
valid
valid
valid
valid
valid
inopportune
inopportune
inopportune
inopportune
valid
valid
valid
inopportune
inopportune
valid
valid
inopportune
valid
valid
valid
inopportune
valid
valid
valid
inopportune
valid
illegal
timer
timer

valid
valid
inopportune
inopportune
inopportune
inopportune
inopportune

4,53,4,1
4,6, 1,1
4,30, 1,1
4,31,1,1
4,32, 1,1
4,33,4,1
4,34,4,1
4,54,3,1
4,55,3,1
4,56,3,1
4,57,3,1
4,58,3,1
4,59,3,1
4,60,3,1
4,61,3,1
4,62,3,1
4,63,3,1
4,64,3,1
4,36,6,1
4,37,6,1
4,38,4,1
4~39, 4,1
4,40,4,1
4,41,4,1
4,42,4,1
4,43,4,1
4,44,4,1
4,45,4,1
4,46,4,1
4,47,4,1
4,48,4,1
4,49,4,1
4,50,1,1
4,51,6,1
4,52,4,1
; State s5
5,23,0,1
5,24,0,1
5,4,3,1
5,3,3,1
5,6, 1,1
5,50, 1,1
5,31, 1,1
5,32, 1,1

WHEN (13_e6, null)
WHEN (dmJO, sabmeyl)
WHEN (dmJI, sabmeyl)
WHEN (frmrfl, sabmeyl)
WHEN (frmrfl, sabmeyl)
WHEN (iyl, rrJI_13_ell)
WHEN (iyO, rrfl_13_ell)
WHEN (iyl_max, rrJI_13_ell)
WHEN ((pO_max, rrfl_13_ell)
WHEN (rryO_max, null)
WHEN (rrfl_max, null)
WHEN (rryl_max, null)
WHEN (rnryO_max, null)
WHEN (rnrJO_max, null)
WHEN (rnryl_max, null)
WHEN(rejyO_~, nul~

WHEN (rej.;/D_max, null)
WHEN (rejyl_max, null)
WHEN (iyO_unexp_ns, rejJO)
WHEN (iyl_unexp_ns, rejJI)
WHEN(rryO,nul~

WHEN (rrfl, null)
WHEN (rrJI, null)
WHEN (rryl, rrJI)
WHEN(rnryO,null)
WHEN (rnrJO, null)
WHEN (rnrJI, null)
WHEN (rnryl, rrJI)
WHEN (rejyO, null)
WHEiv(rejJO,nul~

WHEN (rejJI, null)
WHEN (rejyl, rrJ1)
WHEN (badJrame, sabmeyl)
WHEN(timeout_t200,rryl)
WHEN (timeout_t203, rryl)

WHEN (discyO, uaJO_13_e7)
WHEN (discyl, uaJIj3_e7)
WHEN (sabmeyO,uafl_13_e8)
WHEN (sabmeyl, uaJI_13_e8)_
WHEN (dmfl, sabmeyl)
WHEN (dmJI, sabmeyl)
WHEN (frmrJO, sabmeyl)
WHEN (frmrJI, sabmeyl)

109

inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
valid
valid
valid
valid
valid
valid
valid
valid
valid
valid
valid
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
illegal
timer
timer

valid
valid
valid
valid
inopportune
inopportune
inopportune
inopportune

5,5, 1,1 WHEN (13_el, sabmeyl) valid
5,25,2,1 WHEN (l3_e2, discyl) valid
5,26, 7,1 WHEN (l3_e3, rnryO) valid
5,27,5,1 WHEN (13_e5, iyO) valid
5,28,5,1 WHEN (13_e6, iyO) valid
5,29,6,1 WHEN (13_e6_max, iyO) valid
5,33,3,1 WHEN (iyl_rrJl_13_ell) valid
5,34,3,1 WHEN (iyO, rrJD_l3_ell) valid
5,35,3,1 WHEJ:I (iyO_cond, iyOj3_ell) valid
5,65,5,1 WHElj (iyO_unexp_ns, null) inopportune
5,66,5,1 WHEJ.V (iyl_unexp_ns, rrJl) inopportune
5,38, 5,1 WHEN-(rryO, null) inopportune
5,39,5,1 WHEN (rryl, rrJl) inopportune
5,40,5,1 WHEN (rr.JD, null) inopportune
5,41, 5,1 WHEN (rrJl, null) inopportune
5,42, 5~1 WHEN (rnryO, null) inopportune
5,43,5,1 WHEN (rnr.JD, null) inopportune
5,44,5,1 WHEN (rnrJl, null) inopportune
5,45,5,1 WHEN (rnryl, rrJl) inopportune
5,46,5,1 WHEN (rej.JD, null) inopportune
5,47,5,1 WHEN (rejJl, null) inopportune
5,48,5,1 WHEN(rejyO,null) inopportune
5,49,5,1 WHEN (rejyl, rrJl) inopportune
5,50, 1,1 WHEN (badJrame, sabmeyl) illegal
5,51,10,1 WHEN (timeoutJ200, rryl) timer

~'b 5,52,5,1 WHEN (timeout_t203, rryl) timer
; State s5.1
6,23,0,1 WHEN (discyO, ua.JD_13_e7) inopportune
6,24,0,1 WHEN (discyl, uaJl_13_e7) inopportune
6,4,3,1 WHEN (sabmeyO, uaJOj3_e8) valid
6,3,3,1 WHEN (sabmeyl, uaJl_13_e8) valid
6,54,5,1 WHEN (iyl_max, rrJlj3_ell) valid
6,55,5,1 WHEN (iyO_max, rrJOj 3_ell) valid
6,56,5,1 WHEN (rryO_max, null) valid
6,57,5,1 WHEN (rr.JD_max, null) valid
6,58,5,1 WHEN (rryl_max, null) valid
6,59,5,1 WHEN (rnryO_max, null) valid
6,60,5,1 WHEN (rnrJO_max, null) valid
6,61,5,1 WHEN(rnryl_max, null) valid
6,62,5,1 WHEN (rejyO_max, null) valid
6,63,5,1 WHEN(rejJO_max,nuI0 valid
6,64,5,1 WHEN (rejyl_max, null) valid
6,6,1,1 WHEN (dmJO, sabmeyl) inopportune
6,30, 1,1 WHEN (dmJI, sabmeyl) inopportune

110

6,31, 1,1
6,25,2,1
6,26,8,1
6,53,6,1
6,33,4,1
6,34,4,1
6,65,6,1
6,66,6,1
6,38,6,1
6,39,6,1
6,40,6,1
6,41, 6,1
6,42,6,1
6,43,6,1
6,44,6,1
6,45,6,1
6,46,6,1
6,47,6,1
6,48,6,1
6,49,6,1
6,50, 1,1
6,51,10,1
6,52,6,1
; State 86
7,23,0,1
7,24,0,1
7,5,1,1
7,25,2,1
7,67,3,1
7,68,5,1
7,69,. 5,1
7,70, 7,1
7,71,7,1
7,72,8,1
7,6, 1,1
7,30, 1,1
7,31, 1,1
7,32, 1,1
7,4,3,1
7,3,3,1
7,33,7,1
7,34, 7,1
7,73,7,1
7,74,7,1

WHEN (13...;.el, sabmeyl)
WHEN (l3_e2, discyl)
WHEN (l3_e3, rnryO)
WHEN (l3_e6, discyl)
WHEN (iyl, rrJlj3_ell)
WHEN(iyO, rrflj3_ell)
WHEN(iyO_unexp_ns,nuI0
WHEN (iyl_unexp_ns, rrJI)
WHEN (rryO, null)
WHEN (rryl, rrJ1)
WHEN (rrfl, null)
WHEN (rrJI, null)
WHEN (rnryO, null)
WHEN (nirfl, null) ,
WHEN (rnrJI, null)
WHEN (rnryl, rrJI)
WHEN (rejfl, null)
WHEN (rejJI, null)
WHEN (rejyO, nyU)
WHEN (rejyl, rrJI)
WHEN (badJrame, sabmeyl)
WHEN (timeout_t200, rryl)
WHEN (timeout_t203, rryl)

WHEN (discyO, uaflj3_e7)
WHEN (discyl, uaJl_13_e7)
WHEN (13_el, sabmeyl)
WHEN (13_e2, discyl)
WHEN(13_e4_condl,rryO)
WHEN(13_e4_cond2,rejyO)
WHEN(13_e4_cond3,rryO)
WHEN (13_e5, iyO)
WHEN (13 e6, iyO)
WHEN (13 e6 max, iyO)
WHEN (dmfl, sabmeyl)
WHEN (dmJI, sabmeyl)
WHEN (frmrJl, sabmeyl)
WHEN (frmrfl, sabmeyi)
WHEN (sabmeyD, uafl_13_e8)
WHEN (silbmeyl, udJl_13_ell)
WHEN (iyl, rnrJI_13_ell)
WHEN (iyO, rnrflj3_ell)
WHEN (iyO_unexp_ns, rnrfl)
WHEN (iyl_unexp_ns, rnrJl)

111

inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
ill'egal
timer
timer

valid
valid
valid
valid
valid
valid
valid
valid
valid
valid
inopportune
inopportune
inopportune
inopportune
valid
valid
inopportune
inopportune
inopportune
inopportune

7,38, 7,1
7,39,7,1
7,40, 7,1
7,41, 7,1,
7,42, 7,1
7,43, 7,1
7,44,7,1
7,45, 7,1
7,46,7,1
7,47, 7,1
7,48, 7,1
7,49, 7,1
7,50, 1,1
7,75,7,1
7,76, 11,1
; Stat s6.1
8,23,0,1
8,24,0,1
8,5, 1,1
8,25,2,1
8,67,4,1
8,68, 6,1
8,69,6,1
8,53,8,1
8,4,3,1
8,3,3,1
8,54,7,1
8,55,7,1
8,56, 7,1
8,57, 7,1
8,58,7,1
8,59, 7,1
8,60, 7,1
8,61, 7,1
8,62, 7,1
8,63, 7,1
8,64, 7,1
8,6, 1,1
8,30, 1,1
8,31, 1,1
8,32, 1,1
8,33, 8,1
8,34,8,1
8,73, 8,1

WHEN (rryO, null)
WHEN(rr~,null)

WHEN (rrJi, null)
WHEN (rryi, rnrJi)
WHEN (rnryO, null)
WHEN (rnr~, null)
WHEN (rnrJi, null)
WHEN (rnryi, rnrJi)
WHEN(rej~,null)

WHEN(rejJi,nall)
WHEN(rejyO,nul~

WHEN (rejyi, rnrJi)
WHEN (badJrame, sabmeyi)
WHEN (timeout_t203, rnryi)
WHEN (timeout t200, rnryi)

, -

WHEN (d,iscyO, ua~_13_e7)
WHEJ:V (discyi, uaJi_i3_e7)
WHEN (13_ei, sabmeyi)
WHEN (13_e2, discyi)
WHEN(i3_e4_condi,rr-p0)
WHEN (13_e4_cond2, rej-pO)
WHEN(i3_e4_cond3,rr-p0)
WHEN (i3_e6, null)
WHEN (sabmeyO, ua..fD_13_e8)
WHEN (sabmeyi, uaJi_i3_e8)
WHEN (iyi_max, rrJij3_ell)
WHEN (iyO_max, rr..fDj3_ell)
WHEN (rryO_mQX, null)
WHEN(rr-fO_max,nul~

WHEN (rryi_max, null)
WHEN (rnryO_max, null)
WHEN(rnr~_max,nul~

WHEN (rnryi_max, null)
WHEN (rej-pO_max, null)
WHEN (rej-fO_max, null)
WHEN (rejyi_max, null)
WHEN (dm~, sabmeyi)
.WHF,lj (dntJi, sabnzeyi)
WHEN (frmrJi, sabmeyi)
WHEN (frmryO, sabmeyI)
WHEN (iyI, rnrJi_i3_ell)
WHEN (iyO, rnrJO_i3_ell)
WHEN (iyO_unexp_ns, rnrJO)

112

!

valid
valid
valid
valid
valid
valid
valid
valid
valid
valid
valid
valid
illegal
timer
timer

valid
valid
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
valid
valid
valid
valid
valitJ..,

, valid
valid
valid
valid
valid
valid
valid
valid
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune

8,74,8,1
8,38, 8,1
8,39,8,1
8,40,8,1
8,41, 8,1
8,42,8,1
8,43,8,1
8,44,8,1
8,45,8,1
8,46,8,1
8,47,8,1
8,48,8,1
8,49,8,1
8,50, 1,1
8,75,8,1
8,79, 11,1
; State s7
9,23,0,1
9,24,0,1
9,6, 1,1
9,30, 1,1
9,31, 1,1
9,32, 1,1
9,5, 1,1
9,25,2,1
9,26, 11,1
9,4,3,1
9,3,3,1
9,33,9,1
9,34,9,1
9,36, 10,1
9,37, 10,1
9,38,9,1
9,39,9,1
9,40,3,1
9,41,9,1
9,42,9,1
9,43,9,1
9,44,3,1
9,45,9,1
9,46,9,1
9,47,9,1
9,48,3,1
9,49,9,1

WHEN (iyl_unexp_ns, rnrJl)
WHEN (rryO, null)
WHEN (rryl, rrJ1)
WHEN (rrfl, null)
WHEN(rrJl,nul~

WHEN(rnryO,nul~

WHEN (rnrfl, null)
WHEN (rnrJl, null)
WHEN (rnryl, rrJl)
WHEN (rejfl, null)
WHEN (rejJl, null)
WHEN (rejyO, null)
WHEN (rejyl, rrJl)
WHEN (badJrame, sabmeyl)
WHEN (timeout t203, rnryl)
WHEN (timeout_t200, rnryl)

WHEN (discyO, ua.JD_13_e7)
WHEN (discyl, uaJlj3_e7)
WHEN (dmfl, sabmeyl)
WHEN (dmJl, sabmeyl)..
WHEN (frmrJl, sabmeyl)
WHEN (frmryO, sabmeyl)
WHEN(13_el,sabmeyl)
WHEN (13_e2, discyl)
WHEN (13_e3, rnryO)
WHEN (sabmeyO, uaJOj3_e8)
WHEN (sabmeyl, uaJlj3_e8)
WHEN (iyl, rnrJl_13_ell)
WHEN (iyO, rnr.JD_13_ell)
WHEN (iyO_unexp_ns, rejfl)
WHEN(iyl_unexp_ns,~jJl)

WHEN (rryO, null)
WHEN (rryl, rrJl)
WHEN(rrfl,nul~

WHEN (rrJl, null)
WHEN(rnryO,nul~

WHEN (rnrfl, null)
WHEN(rnrJl, null)
WHEN (rnryl, rnrJl)
WHEN (rejJO, null)
WHEN (rejJl, null)
WHEN(rejyO,nul~

WHEN (rejyl, rrJl)

113

inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
inopportune
illegal
timer
timer

valid
valid
inopportune
inopportune
inopportune
inopportune
valid
valid
valid
valid
valid

-,.. ',;

valid
valid
inopportune
inopportune
inopportune
inopportune
valid
inopportune
inopportune
inopportune
valid
inopportune
inopportune
inopportune
valid
inopportune

9,50, 1,1
9,77, 1,1
9,78,9,1
; State s8
10,6, 1,1
10,30, 1,1
10,23,0,1
10,24,0,1
10,4,3,1
10,3,3,1
10,31, 1,1
10,32, 1,1
10,5, 1,1
10,25,2,1
10,26, 11,1
10,33,9,1
10,34,9,1
10,65, 10,1
10,66, 10,1
10,38, 10,1
1O,39,IQ,1
10,40,5,1
10,41, 10,1
10,42, 10,1
10,43, 10,1
10,44,5,1
10,45, 10,1
10,46,10,1
10,47, 10,1

.. 10,48, 10,1
10,49, 10,1
10,50, 1,1
10,77, 1,1
10,78, 10,1
; State s9
11,23,0,1
11,24,0,1
11,6, 1,1
11,30, 1,1
11,31, 1,1
11,32, 1,1
11,4,3,1
11,3,3,1
11,5, 1,1

WHEN (badJrame, sabmeyl)
WHEN (timeout_t200_N200, sabmeyl)
WHEN (timeout_t200,rryl)

WHEN (dmJO, sabmeyl)
WHEN (dmJl, sabmeyl)
WHEN (discyO, uaJO_13_e7)
WHEN (discyl, uaJl_13_e7)
WHEN (sabmeyO, uaJOj3_e8)
WHEN (sabmeyl, uaJl_13_e8)
WHEN (frmrJl, sabmeyl)
WHEN (frmryO, sabmeyl)
WHEN(l3_el,sabmeyl)
WHEN (13_e2, discyl)
WHEN (l3_e3, rnryO)
WHEN (iyl, rnrJl_l3_ell)
WHEN (iyO, rnrJDj3_ell)
WHEN (iyO_unexp_ns, null)
WHEN (iyl_unexp_ns, rrJl)
WHEN(rryO,nuI0
WHEN (rryl, rrJl)
WHEN (rrJO' null)

- WHEN (rrJl, null)
WHEN (rnryO, null)
WHEN (rnrfl, null)
WHEN (rnrJl, null)
WHEN (rnryl, rnrJl)
WHEN(rejJO,nuI0
WHEN (rejJl, null)
WHEN(rejyO,nuI0
WHEN (rejyl, rrJl)
WHEN (badJrame, sabmeyl)
WHEN(timeout_t200_N200,sabmeyl)
WHEN (timeout_t200, rryl)

WHEN (discyO, uaJO_13_e7)
WHEN (discyl, uaJl_13_e7)
WHEN (dmfl, sabmeyl)
WHEN (dmJl , sabmeyl)
WHEN (frmrJl, sabmeyl)
WHEN (frmryO, sabmeyl)
WHEN (sabmeyO, uaJOj3_e8)
WHEN (sabmeyl, uaJlj3_e8)
WHEN (13_el, sabmeyl)

114

illegal
timer
timer

inopportune
inopportune
inopportun~

inopportune
inopportune
inopportune
inopportune
inopportune
valid
valid
valid
valid
valid
inopportune
inopportune
inopportune
inopportune
valid
inopportune
inopportune
inopportune
valid
inopportune
inopportune
inopportune
valid
inopportune
illegal
timer
timer

valid
valid
inopportune
inopportune
inopportune
inopportune
valid
valid
valid

WHEN (13_e2, discyl)
WHEN (13_e4_condl, rryO)
WHEN (13_e4_cond2, rejyO)
WHEN(13_e4_cond3,rryO)
WHEN (iyl, rnrJl_13_ell)
WHEN (iyO, rnrJO_13_ell)
WHEN (iyO_unexp_ns, rnrJO)
WHEN (iyl_unexp_ns, rnrJl)
WHEN (rryO, null)
WHEN (rryl, rrJl)
WHEN (rrJO, null)
WHEN (rrJl, null)
WHEN (rnryO, null)
WHEN (rnrJO, null)
WHEN (rnrJl, null)
WHEN (rnryl, rnrJl)
WHEN (rejJO, null)
WHEN (rejJl, null)
WHEN (rejyO, null)
WHEN (rejyl, rrJl)
WHEN (badJrame, sabmeyl)
WHEN (timeout_t200, rnryl)
WHEN (timeout_t200_N200, sabmeyl)

11,25,2,1
11,67,9,1
11,68, 10,1
11,69, 10,1
11,33, 11,1
11,34, 11,1
11,73, 11,1
11,74,11,1
11,38, 11,1
11,39, 7,1
11,40, 11,1
11,41, 11,1
11,42, 11,1
11,43,7,1
11,44, 11,1
11,45, 11,1
11,46, 10,1
11,47,7,1
11,48,10,1
11,49, 11,1
11,50, 1,1
11,79, 11,1
11,80, 1,1
ENDTRANS
10## #### ## #### ##, Effectod, 0, °

-10## #### ## ## ## ##, Default, 0, 0
END-EFFS

115

valid
valid
valid
valid
valid
valid
inopportune
inopportune
inopportune
valid
inopportune
inopportune
inopportune
valid
inopportune
inopportune
inopportune
valid
inopportune
inopportune
illegal
timer
timer

APPENDIXB

THE CLASSIFIER LIST

The following text shows the classifier list at major cycle 1000. The first

number is an identification number assigned to the classifier. It is followed by the first condi

tion string, the state in the Finite State Machine that chromosome supports, the second condi

tion string, and the state that chromosome supports. The action sting follows the arrow and

is followed by the strength (fitness) of the classifier, its bidratio, and the support.

Current Classifiers (cycle-step 1000):

819> 00 00#0 0100 #001 [1,10]; 00000001000##1 [1,10-11] --701 1000 10111101
987> 00 00#0 ,)l00 #001 [1,10]; 01 10001#111101 [] --7 10 11000010 1101
405> 00 0101 0101 01#1 [3]; 0# 0#010101 0#01 [3] --7 11 10011111 0111
373> 00 00#0 0100 #001 [1,10]; 10 11000010 1101 [] --7011000 1O11ll01
578> 00 0101 0101 01#1 [3]; 0# 0#01 0101 0#01 [3] --7 111001 l1ll 0111
877> 00 0101 010101#1 [31; 0# 0#01 QLO_LO#Ol [3J~ lLlOOlllU0111
648> 00 00000010 0001 [0]; 0000000010 000# [0] --7 10 1110 1010 llll
282> 00 00#0 0100 #001 [1,10]; 00000001000##1 [1,10-11] --7011000 10111101
333> 00 00#0 0100 #001 [1,10]; 01 1000 lOll 1101 [] --7 10 1100 0010 1101
531> 00 00#00100 #001 [1,10]; 00000001000##1 [1,10-11] --7011000 1011 1101
278> 00 00#0 0100 #001 [1,10]; 00000001000##1 [l,lO-ll] --7011000 10111101
992> 00 00#00100 #001 [1,10]; 01 1000 lOll 1101 [] --7 10 1100 0010 .1101
626> 00 0101 010101#1 [3]; 0# 0#01 0101 0#01 [3] --7 11 10011111 0111
835> 010001 0##00101 [5]; 010001 010# 0101 [5] --7 11 0011 1010 1111
1131> 00 0101 0101 01#1 [3]; 11 10011111 0111 [] --7 11 00000011 0110
431> 00 0000 0010 0001 [0]; 0000000010 000# [0] --7 10 1110 1010 llll
520> 00 00#00100 #001 [1,10]; 01 100010111101 [] --7 10 1100 0010 1101
891> 00 00#0 0100 #001 [1,10]; 0110001011 1101 [] --7 10 11000010 1101
747> 00 0101 010101#1 [3]; 0# 0#01 0101 0#01 [3] --7 1110011111 0111
217> 00 0000 0010 0001 [0]; 0000000010 000# [0] --7 10 1110 1010 l1ll
785> 00 00#0 0100 #001 [1,10]; 01 10001011 1101 [] --7 10 1100 0010 1101
1018> 00 00#0 0100 #001 [1,10]; 00000001000##1 [1,10-11] --7 011000 10111101
1012> 00 0000 0010 0001 [0]; 00 0000 0010 000# [0] --7 11 0110 1010 1111
1064>00000000100001 [0];0000000010000# [0] --711 1110 1011 lll1
553> 00 00#0 0100 #001 [1,10]; 01100010111101 [] --7 10 1100 0010 1101
1023> 0000#00100 #001 [1,10]; 01 1000 10111101 [] --7 10 11000010 1101
311> 00 00#0 0100 #001 [1,10]; 10 1100 0010 1101 [] --7 011000 lOll 1101
799> 00 0101 0101 01#1 [3]; 0# 0#01 0101 0#01 [3] --7 1110011111 0111
953> 00 0000 010101#1 [2]; 0000000101 0101 [2] --7 00 1110 1110 11#1
787> 00 00#00100 #001 [1,10]; 10 1100 0010 1101 [] --7 10 111110011101

116

,;

,

1043> 00 00#00100 #001 [1,10]; 011000 10111101 [] --7 10 11000010 llOl
1135> 00 00000010 0001 [0]; 0000000010 000# [0] --7 111110 11111111
532> 00 00#0 0100 #001 [1,10]; 01 1000 1011 1101 [] --7 10 11000010 1101
372> 00 00#0 0100 #001 [1,10]; 011000 10111101 [] --7 10 11000010 1101
997> 00 00#0 0100 #001 [1,10]; 01 1000 1011 1101 [] --7 10 11000010 1101
352> 00 00#0 0100 #001 [1,10]; 10 1010 0101 0011 [] --7 11110001011101
986> 00 00#0 0100 #001 [1,10]; 00000001000##1 [1,10-11] --7011000 10111101
622> 00 0000 010101#1 [2]; 0000000101 0101 [2] --7 10 1010 111111#1
671> 00 00#0 0100 #001 [1,10]; 011000 10111101 [] --7 10 llOO 0010 1101
909> 01 0001 0##00101 [5]; 010001 010# 0101 [5] --7 111010 0110 1111
985> 00 0101 0001 01#0 [4]; 00 #101 0#01 0100 [4] --7 00 0101 1101 1001
749> 00 0000 0101 01#1 [2]; 0000000101 0101 [2] --7 10 1010 1111 11#1
988> 00 00#0 0100 #001 [1,10]; 01 1000 1011 1101 [] --7 10 11000010 1101
436> 00 0000 0010 0001 [0]; 0000000010 000# [0] --7 10 000111111111
1080> 000101 0001 01#0 [4]; 00 #101 0#01 0100 [4] --700 1101 0111 0111
1099> 00 00#00100 #001 [1,10]; 011000 1011 1101 [] --7 10 11000010 1101
1081> 00 0101 0001 01#0 [4]; 00 #101 0#01 0100 [4] --701 0001 00000001
1020> 00 0000 0010 0001 [0]; 00 0000 0010 000# [0] --7 11 0011 0111 1111
378> 00 00#0 0100 0001 [1,10]; 10 1010 0101 0011 [] --7 l1ll00 01011101
376> 00 0000 0010 0001 [0]; 00000# 0010 000# [0] --7 10 1010 0101 0011
1151> 0000000010 0001 [0]; 0000000010 000# [0] --7 10 10011010 1011
812> 00 00#0 0100 #001 [1,10]; 10 11000010 1101 [] --7 10 1111 10011101
769> 00 00#0 0100 #001 [1,10]; 10 110000101101 [] --7 01 1000 1011 1101
644> 00 00#0 0010 #110 [9]; 00000000100##0 [9] --7 100011 0001 01ll
435> 0000#00010 #110 [9]; 00000000100##0 [9] --7 10 0011 0001 0111
822> 00 00#0 0100 #001 [1,10]; 10 11000010 1101 [] --7 10 ll1110011101
1106> 00 00#0 0100 #OOL[1,lO]; 00000001000##1[-1,10-11] --701 01001011 0011
366> 00 00#0 0100 #001 [1,10]; 01 1000 10111101 [] --7 10 llOO 0010 1101
811> 00 00#0 0100 #001 [1,10]; 01 1000 1011 1101 [] --7 10 11000010 1101
1048> 00 00#0 0100 #001 [1,10]; 00000001000##1 [1,10-11] --70110000011 1101
1161> 00 0101 0101 01#1 [3];' 00 1111 0000 111# [] --7 10 1111 ~111 0110
1160> 000000 0010 0001 [0]; 0000000010 000# [0]--7 00111100001111
1154> 00 00#00010 #110 [9]; 00000000100##0 [9] --7 100011 0001 0111
1152> 00 00#0 0100 #001 [1,10]; 0# 0#01 0101 0#01 [] --7 10 11000010 1101
P56> 00 0000 0010 0001 [0]; 100011 0010 0111 [] --7 10 1110 1010 1111
1153> 00 0101 0101 01#1 [3]; 01 1000 1011 1101 [] --700 11011011 0111
1157> 0000000101 01#1 [2]; 0000000101 0101 [2] --7000001 01000111
1147> 00 0101 0101 01#1 [3]; 11 1001 1111 0111 [] --7 11 00000011 0110
959> 01 0101 0001 01#1 [6,8]; 01 0101 0001 0101 [6,8] --7 10 1010 0100 11#1
1143> 00 0101 0101 01#1 [3]; 11 0011 1010 1111 [] --7 11 1001 0001 0100
386> 00 0101 010101#1 [3]; 0# 0#01 0101 0#01 [3] --7 10 1111 1111 0110
1136> 0000#00100 #001 [1,10]; 010100 1011 0011 [] --7011000 10111101
575> 0000000101 01#1 [2]; 0000000101 0101 [2] --7 10 1010 111111#1
1159> 00 00#0 0100 #001 [1,10]; 01 1000 1011 1101 0 --7 10 11000010 1101
1155>0000#00100#001[1,10]; 1011000010 1101 0--7 or 100010111101
1158> 00 00#0 0100 #001 [1,10]; 011000 1011 1101 0 --700 11000010 1101
1055> 00 00#0 0100 #001 [1,10]; 011000 1#11 1101 [] --7 11 00100011 0111
1126> 00 0000 0101 01#1 [2]; 0000000101 0101 [2] --7000001 01000111
1128> 00 0000 0101 01#1 [2]; 0000000101 0101 [2] --7 10 0010 0101 11#1
1127> 00 0000 0101 01#1 [2]; 0000000101 0101 [2] --7 11 00000111 0001
1063> 00 00#00100 #001 [1,10]; 00000001000##1 [1,10-11] --701 1111 1010 0001

117

1137> 00 00#0 0100 #001 [1,10]; 011000 1#111101 0 -7 10 11000010 1101
1112> 00 01010100 #1#1 0; 0# 0#0101010#01 [3] -71110011111 0111
1113> 0010#0 0101 0001 0; 00000001000##1 [1,10-11] -7 0110#000000000
1111> 00 00#0 0100 #001 [1,10]; 01 00000010000# 0 -7 10 1110 1010 1111
1110> 00 0000 0010 0001 [0]; 00 1000 10111101 [] -7 10 110000111101
1116> 00 01010101 01#1 [3]; 0# 0#01 01000##1 [5] -701100010111111
1146> 00 0101 0101 01#1 [3]; 0# 0#01 0101 0#01 [3] -7 1110011111 0111
1122> 00 0000 0101 01#1 [2]; 0000000101 0101 [2] -70010011001 0000
359> 00 00#0 0100 #001 [1,10]; 01 1000 10111101 [] -7 10 11000010 1101
1124> 00 0000 0101 01#1 [2]; 0000000101 0101 [2] -7 1110000011 0001
794> 00 00#0 0100 #001 [1,10]; 10 10100101 0011 [] -7 11 110001011101
1101> 00 0101 0101 01#1 [3]; 11 000001011101 [] -7 1110011111 0111
1093> 00 000000100001 [0]; 10 1111 0100 1101 [] -7 10 1110 1010 1111
1115> 00 00#0 0100 #001 [1,10]; 10 11000010 1101 0 -701 1000 10111101
1109> 00 00#0 0100 #001 [1,10]; 10 11000010 1101 0 -7 10 1t1110011101
1123> 00 0000 0101 01#1 [2]; 0000000101 0101 [2] -7 00 1011 0000 1110
943> 00 00#0 0010 #110 [9]; 0000000010 0##0 [9] -7 11 0000 1011 0111
1089> 01 0001 0##00101 [5]; 00 1101 0111 #110 [] -7 11 0011 1010 1111
1141> 00 00#0 0100 #001 [1,10]; 00000001000##1 [1,10-11] -70001000011 #001
1120> 00 0101 0101 01#1 [3]; 1110011111 0111 [] -7 11 00000011 0110
1138> 00 00#0 0100 #001 [1,10]; 00000001000##1 [1,10-11] -700 1001 0101 0010
1142> 010001 0##00101 [5]; 010001010# 0101 [5] -7 11 00111010 1111
1133> 01 0001 0##00101 [5]; 01 0001 010# 0101 [5] -7 11 0110 1110 1000
885> 00 00#0 0100 #001 [1,10]; 10 11000010 1101 [] -701 100010111111
964> 00 0000 0101 01#1 [2]; 0000000101 0101 [2] -700 1011 0110 11#1
1100> 00 00#0 0100 #001 [1,10]; 011000 1011 1101 0 -7 11 000001011101
1150> 00 0000 0010 0001 [0]; 0000000010 000# [0] -70011100010 0001
1075> 00 0101 0101 01#1 [3]; 0# 10000101 0101 0 -7 10 1110 111111#1
1074> 00 0101 0101 01#1 [3]; 11 0#01 0101 0#01 0 -7 1110011111 0111
1094> 00 0101 0001 01#0 [4]; 00 #1010#01 0100 [4] -7 10 0100 00111010
1062> 0010#00100 #001 0; 00000001000##1 [1,10-11] -7 0110#000000000
1088> 00 0101 0101 01#1 [3]; 1110011111 0111 [] -7 00 1101 0111 0110
1144> 00 0101 0101 01#1 [3]; 0# 0#0101010#01 [3] -7010001 00000111
1046> 00 0000 00'10 'ODD1 [0]; 00 0000 0010 000# [0] -7 01 1100 1110 1111
1061> 00 01010101 01#1 [3]; 0001110011 #110 [] -711100111110111
1077> 0000#00100 #001 [1,10]; 00000001000##1 [1,10-11] -701 10001010 1101
1149> 00 0000 0010 0001 [0]; 0000000010000# [0] -70101011010 1111
1148> 00 0000 0010 0001 [0]; 0000000010000# [0] -7 100101 0111 1010
1049> 00 0101 0101 01#1 [3]; 01100000111101 [] -7 111001 1111 0111
1130> 00 0101 0101 01#1 [3]; 0# 0#01 0101 0#01 [3] -7 10 0101 1001 0111
1134> 00 0101 0101 01#1 [3]; 0# 0#01 0101 0#01 [3] -7 111001 1111 0111
1132> 00 0101 0101 01#1 [3]; 0# 0#01 0101 0#01 [3] -7 11 10011111 0111
1035> 00 0000 0010 0001 [0]; 0001011001111# [] -700000001010011
1086> 00 0101 0101 01#1 [3]; 0# 0#01 0101 0#01 [3] -7 111001 1111 0111
1033>QQ 0101 010L01#L[3];-01 0001 0100 111#[] -71110011111 0111
103-1> 00 0000 0010 0001 [0]; 11 0010 0001 1101 [] -7 10 0001 1111 1111
1076> 00 00#0 0100.#001 [1,10]; 01 1000 1011 1101 [] -7 10 110000111101
1041> 00 0000 0010 0001 [0]; 11 0110 1010 111# [] -7 10 1110 1010 1111
678> 00 00#0 0100 #001 [1,10]; 10 1010 0101 0011 [] -7 11110001011101
1119> 0001010101 01#1 [3]; 0# 0#01 01010#01 [3] -7 10 11011111 0001
1087> 00 0101010101#1 [3]; 11100111110111 [] -710 1111 1111 0110

118

1103> 00 00#00100 #001 [1,10]; 00000001000##1 [1,1D-11] -7000011 01100100
1060> 00 01010101 01#1 [3]; 11 10011111 0111 0 -7000111 0011 0110
1054> 00 00#00100 #001 [1,10]; 01100010111101 0 -7001010 1100 1010
1011> 000101010101#1 [3]; 1110000101 0101 0 -7 10 1110 111111#1
1010> 00 0000 010101#1 [2]; 0000011111 0111 0 -7 111010 1110 0101
1040> 00 0000 0010 0001 [0]; 00 0000 0010 000# [0] -7 11 0110 1010 1111
1098> 0000#0 0100 #001 [1,10]; 00000001000##1 [1,1D-11] -701100010111101
1118> 00 0101010101#1 [3]; 0# 0#01 01010#01 [3] -7 10 01011001 0111
991> 0000#00100 #001 [1,10]; 01 010101101101 [] -701 1000 1011 1101
1117> 00 0101 010101#1 [3]; 0# 0#01 0101 0#01 [3] -70011011011 0111
993> 00 00#0 0010#110 [9]; 0000000010 0##0 [9] -711 0000 1011 0111
989> 00 00#0 0100 #001 [1,10]; 10 11000010 1101 [] -7 10 1111 1001 1101
977> 010001 0##0 0101 [5]; 10 0100 11111111 0 -7011000 1010 1100
569> 0000#00100 #001 [1,10]; 01 100010111101 [] -7 10 11000010 1101
981> 00 00010##00101 []; 01000# 0010 000# [] -70100000000 1100
978> 00 00#0 0011 01#1 []; 111001 1111 0111 [] -7 10 1010 1111 0110
796> 0000#00100 #001 [1,10]; 10 11000010 1101 [] -701 1000 1011 1101
917> 0000#00100 #001 [1,10]; 01 1000 10111101 [] -7 10 11000010 1101
911> 01 0001 0##00101 [5]; 01 0001 010# 0101 [5] -700 1111 0101 1111
1036> 00 00#0 0100 #001 [1,10]; 01 1000 10111101 [] -7000111 1110 1101
505> 00 00#0 0100 #001 [1,10]; 00000001000##1 [1,1D-11] -7011000 10111101
938> 00 0000 0010 0001 [0]; 10 0011 0010 0111 0 -7 10 1110 1010 1111
901> 000101 0101 01#1 [3]; 11 0011 1010 1111 0 -7 111001 0001 0100
928> 000000 01Q1 01#1 [2]; 000010 1111 #110 0 -7000111 0010 0010
1104> 00 0101 0101 01#1 [3]; 0# 0#01 #101 0#01 [3] -7 1110011111 0111
983> 01 0001 0##00101 [5]; 010001 010# 01#1 [5] -700 110001111111
509> 00 00#0 0100 #001 [1,10]; 01 1000 10111101 [] -7 10 11000010 1101
974> 00 00#0 0100 #001 [1,10]; 01 1000 10111101 [] -7 10 11000010 1101
1070> 00 0000 0010 0001 [0]; 0000000010 000# [0] -7011010 00111111
904> 00 0000 0010 0001 [0]; 111010 110111#1 [] -7 1000011111 1111
1027> 0000#00100 #001 [1,10]; 01 1000 1#11 1101 [] -7 10 11000010 1101
1009> 0000#00100 #001 [1,10]; 10 11000010 1101 [] -7 10 00001010 0100
886> 0100010##00101 [5]; 01 01000110 1111 0 -70011000111 1101
888> 000101 0101 01#1 [3]; 111000 1111 0111 0 -7 10 11111111 0110
961> 01 00010##00101 [5]; 010001010# 0101 [5] -7 11 0110 1110 1000
976> 01 0001 0##00101 [5]; 010001 010# 0101 [5] -7 10 010011111111
918> 0000#00100 #001 [1,10]; 10 11000010 11#1 [] -700 1000 1011 1101
1068> 00 0000 0010 0001 [0]; 00 0000 0010 000# [0] -7 11 1100, 1111 0010
676> 000000010101#1 [2]; 00000001010101 [2] -7 10 1010 0100 11#1
1006> 000101010101#1 [3]; 11 100111110111 [] -7 1001000010 0110
875> 0000#00100 #001 [1,10]; 10 1010 0101 0011 [] -7 100101 0101 1101
874> 000000010111#1 []; 010001 0000 11#1 [] -7 10 1010 1111 11#1
862> 000101 0101 01#1 [3]; 111001 1111 0111 0 -7 11 1010 11100101
277> 0000#00100 #001 [1,10]; 11 110001011101 [] -701 1000 1011 1101

.915>-01.00010##001OL[5]; 01000101-0# 0101 [5] -710010010111001
1030> 00 00#00100 #001 [1,10]; 00000001000##1 [1,1D-11] -7 11 0010 0001 1101
844> 000101 010101#1 [3]; 1110011111 0111 0 -7 10 11111111 0110
927> 000101 0101 01#1 [3]; 111001 1111 0111 0 -7000010 1111 0110
990> 0000#00100 #001 [1,10]; 10 11000010 1101 [] -701 0101 0110 1101
274> 00 0000 0010 0001 [0]; 00000# 0010 000# [0] -7 10 llliO 0101 0011
828> 00 0000 0010 0001 [0]; 0101010010 111# [] -7 10 1101 0111 0011

119

1082> 0001010101 01#1 [3]; 0# 0#0101010#01 [3] -7 10 0101000110#0
916> 01 0001 0##00101 [5]; 01 0001 010# 0101 [5] -701 010111011010
1004> 00 000000100001 [0]; 0000000010 000# [0] -701000111001111
1121> 0001010101 01#1 [3]; If0000 0011 #1100 -7 1110011111 0111
1059> 00 0101 0101 01#1 [3]; 0# 0#01 0101 0#01 [3] -7 01 0000 1000 1001 .
903> 000000010101#1 [2]; 00000001010101 [2] -7 111010 110111#1
522> 00 0000 0010 0001 [0]; 00000# 0010 000# [0] -7 10 1010 0101 0011
1032> 00 0000 0010 0001 [0]; 0000000010 000# [0] -701000101001111
1067> 00 0101 0101 01#1 [3]; 0# 0#0101010#01 [3] -7011101 0010 1011
1038> 00 00#0 0100 #001 [1,10]; 00000001000##1 [1,10-11] -700 1101 01000110
994> 00 0000 0010 0001 [0]; 0000000010000# [0] -7 100010 11000100
1025> 00 0000 0010 0001 [0]; 0000000010 000# [0] -70000011110 1101
718> 00 00#0 0100 #011 [11]; 00000001000011 [11] -7 10 11000010 1101
292> 0000#00100 #001 [1,10]; 01100010111101 [] -7 10 11000010 1101
770> 0000000010 0001 [0]; 00000# 0010 000# [0] -7 10 1010 01010011

,857> 00 00#0 0100 #001 [1,10]; 000000 or()(h}##l [1,10-11] -7011000 1011 1101
829> 00 0000 0010 0001 [0]; 00000# 0010 000# [0] -701 0110 10011011

Number of Classifiers: 200. Ave. strength 2129.47 (total 425894.94).

The following portion shows the classifier list at major cycle 12,000. Note that the list has

converged towards a much smaller number of states.

Current Classifiers (cycle-step 12000):

11058> 00 0000 0010 0001 [0]; 111010 1011111# 0 -7 111010 10111111
9279> 0000#0 0100 #001 [1,10]; 111010 1011111# 0 -7 111010 10111111
10906> 0001010101 01#1 [3]; 10 0000 11111011 0 -7000100 1111 0111
10719> 00 0000 0010 0001 [0]; 111010 1011111# 0 -7 111010 1011 1111
11238> 00 0000 0100 #001 [1,10]; 011000 10111101 [] -7 11 1010 10111111
11435> 00 0000 0100 #001 [1,10]; 111010 1011111# [] -7 111010 10111111
10994> 00 0000 0100 #001 [1,10]; 111010 1011111# [] -7 111010 10111111
11574> 00 0101 0101 01#1 [3]; 000100 1111 0111 [] -7 100000 11111011
11363> 00 0101 0101 01#1 [3]; 0# 0#01 0101 0#01 [3] -7000100 1111 0111
11436> 00 0000 0100 #001 [1,10]; 11 1010 1011111# [] -7 11 1010 10111111
11324> 000101 0101 01#1 [3]; 0# 0#01 0101 0#01 [3] -7000100 1111 0111
10736> 0000000100 #001 [1,10]; 00000001000##1 [1,10-11] -7011000 1011 1101
11478> 0000#0 0100 #001 [1,10]; 111010 1011111# [] -7 11 1010 1011 1111
11303> 00 0000 0100 #001 [1,10]; 00000001000##1 [1,10-11] -7011000 1011 1101
11125> 0000#00101 #101 [2]; 0000000101010# [2] -7Jl_101Q_HULll11
11349>0000000100#001 [I,Ia]; 111bIOHH1111# [] -7111010 10111111
11332> 00 00#0 0100 #001 [1,10]; 11 1010 1011 111# [] -7 11 1010 10111111
9861> 0000000100 #001 [1,10]; 01 1000 10111101 [] -7 111010 1011 1111
11576> 00 0000 0100 #001 [1,10]; 11 1010 1011111# [] -7 11 1010 10111nl
9176> 0000#00101 #101 [2]; 0000000101010# [2] -7 111010 1011 1111
10348> 0001010101 01#1 [3]; 100000 1111 1011 0 -700 DIDO 1111 0111
11388> 000101 0101 01#1 [3]; 10 0000 11111011 0 -7000100 1111 0111

120

10251> 00 01010101 O1#L [3]; 10000011111011 0 -70001001111 0111
11337> 00 0000 0010 0001 [0]; 1110101011111# 0 -7 111010 10111111
11212> 00 0000 0010 0001 [0]; 1110101011 111# 0 -7 111010 10111111
11246> 00 0101 010101#1 [3]; 0# 0#01 0101 0#01 [3] -70001001111 0111
10576> 00 0000 0100 #001 [1,10]; 00000001000##1 [1,10-11] -7011000 10111101
11358> 010001 010001#1 [5]; 01 0001 01000101 [5] -7 10 0000 11111011
11567> 000101 0101 01#1 [3]; 000100 1111 0111 0 -7 10 0000 1111 1011
11538> 0000000010 0001 [0]; 1110101011111# 0 -7 111010 10111111
11376> 00 0000 0010 0001 [0]; 111010 1011111# 0 -7 111010 10111111
11442> 00 0101 0101 01#1 [3]; 10 0000 11111011 0 -7_000100 1111 0111
11495> 00 00#0 0100 #001 [1,10]; 111010 1011111# [] -7 11 1010 10111111
11142> 00 0000 0010 0001 [0]; 0000000010 000# [0] -7 111010 10111111
11560> 00 0000 0010 0001 [0]; 111010 1011111# 0 -7 111010 10111111
10835> 00 00#0 0101 #101 [2]; 0000000101 010# [2] -7 111010 10111111
11440> 00 0101 0101 01#1 [3]; 000100 1111 0111 [] -7 100000 11111011
11476> 00 0101 010101#1 [3]; 000100 1111 0111 [] -7 10 0000 1111 1011
10213> 00 00000100 #001 [1,10]; 011000 10111101 [] -7 111010 1011 1111
10474> 00 0101010101#1 [3]; 000100 1111 0111 0 -7 10 0000 11111011
11329> 00 0101 010101#1 [3]; 10 0000 11111011 0 -7000100 1111 0111
li526> 00 0000 0100 #001 [1,10]; 111010 1011111# [] -7 11 1010 10111111
11432> 00 0101010101#1 [3]; 10 0000 11111011 0 -7000100 1111 0111
11610> 00 0000 0010 0001 [0]; 0000000010 000# [0] -7 111010 10111111
11005> 00 0101 0101 01#1 [3]; 10 0000 1111 1011 0 -7000100 1111 0111
11578> 00 0000 0100 #001 [1,10]; 111010 1011111# [] -7 111010 1011 1111
11566> 00 0101 0101 01#1 [3]; 0# 0#01 0101 0#01 [3] -7000100 1111 0111
11326> 00 0101 0101 01#1 [3]; 10 0000 1111 1011 0 -7000100 1111 0111
11345> 00 0000 0100 #001 [1,10]; 011000 10111101 [] -7 11 1010 1011 1111
11260> 00 0000 0010 0001 [0]; 111010 1011 111# 0 -7 111010 10111111
11499> 00 00#0 0101 #101 [2]; 0000000101 010# [2] -7 111010 10111111
11579> 00 0000 0010 0001 [0]; 1110101011111# 0 -7 111010 10111111
11564> 00 0000 0100 #001 [1,10]; 111010 1011111# [] -7 11 1010 10111111
9699> 00 00#00100 #001 (1,10]; 111010 1011111# 0 -7 111010 1011 1111
11028> 00 0101 0101 01#1 [3]; 10000011111011 0 -7000100 1111 0111
11447> 00 0101 010101#1 [3]; 100000 1111 1011 0 -7000100 1111 0111
11503> 0000000010 0001 [0]; 11 1010 1011 111# 0 -7 111010 1011 1111
10852> 00 00000010 0001 [0]; 111010 1011 111# 0 -7 111010 10111111
11130> 0000000010 0001 [0]; 11 10101011 111# [] -7 111010 10111111
9596> 00 0101 0101 01#1 [3]; 00010011110111 0 -7 10000011111011
9538> 00 0000 0100 #001 [1,10]; 011000 10111101 [] -7 111010 10111111
11545> 00 0000 0010 0001 [0]; 111010 1011 111# 0 -7 111010 lOtI 1111
11571> 000101 0101 01#1 [3]; 10 0000 1111 1011 0 -7000100 1111 0111
11620> 00 0101 0101 01#1 [3]; 0# 0#01 0101 0#01 [3] -70001001111 0111
10985> 00 00#0 0101 #101 [2]; 0000000101 010# [2] -7 111010 10111111
11249> 00 0000 0100 #001 [1,10]; 011000 10111101 [] -7 111010 10111111

~----~li'581>~OOOOOO 00T00001 [0]; 1110101011 111# [] -7 111010 10111111
11535> 00 0000 0010 0001 [0]; 111010 1011 111# 0 -7 1110'10 10111111
11516> 00 0101 010101#1 [3]; 0# 0#01 0101 0#01 [3] -7000100 1111 0111
11612> 00 0000 0100#001 [1,10]; 111010 1011111# [] -7111010 10111111
11540> 00 00#0 0100#001 [1,10]; 111010 1011111# [] -7111010 10111111
10673> 00 0101010101#1 [3]; 10 00001111 1011 0 -7000100 1111 0111
11187> 00 0101 0101 01#1 [3]; 0# 0#01 0101 0#01 [3] -7000100 1111 0111

121

11623> 00 0000 0010 0001 [0]; 11 001111101011 D-7 111010 10111111
11622> 00 0101 0101 01#1 [3]; 000100 1111 0111 [] -7 11 00111110 1011
11625> 00 0000 0010 0001 [0]; 111010 1011111# D-7 111010 10111111
11624> 00 00#0 0100 #001 [1,10]; 111010 1011111# D-7 111010 10111111
11544> 00 0000 0010 0001 [0]; 111010 1011111# D-7 111010 10111111
11615> 00 010100010100 [4]; 0000111100 1011 D-70110000101 0101
11609> 00 0000 0100 #001 [1,10]; 10 1001 0101 #011 D-7 01 010111101000
10266> 00 0000 0010 0110 [9]; 0000000010 011# [9] -7 111010 10111110
11554> 00 0000 0100 #001 [1,10]; 111010 1011111# [] -7 111010 10111111
11605> 00 0101010101#1 [3]; 011010 1101111# D-70001001111 0111
11616> 00 0101 0101 01#1 [3]; 000100 1111 0111 [] -700 1011 01100110
11392> 00 00#0 0100 #001 [1,10]; 111010 1011111# [] -7 11 1010 10111111
11599> 00 0000 0100 #001 [1,10]; 011000 10111101 [] -7 11 1010 10111111
11597> 00 0000 0100 #001 [1,10]; 0111000010 1011 [] -7 01100010111101
11595> 00 0000 0100 #001 [1,10]; 00000001000##1 [1,1D-11] -7 101010 0111 #011
11548> 00 0000 0100 #001 [1,10]; 111010 1011111# [] -7 11 1010 10111111
11621> 00 0101 0101 01#1 [3]; 000100 1111 0111 [] -7 1111000101 0001
11617> 00 0101 0101 01#1 [3]; 000100 1111 0111 [] -7 10 01111010 1011
11570> 01 0001 010001#1 [5]; 01 0001 01000101 [5] -7 100000 1111 1011
11569> 00 0101010101#1 [3]; 10000011111011 D-70001001111 0111
11594> 00 0000 0100 #001 [1,10]; 00000001000##1 [1,1D-11] -70101011110 1000
11583> 00 0101 0101 01#1 [3]; 01 0001 01000101 [] -7 10 000011111111
11582> 010001010001#1 [5]; 0001010110111# D-70001001111 0011
11472> 00 0000 0010 0001 [0]; 111010 1011111# D-7 111010 10111111
11614> 00 0101 0101 01#1 [3]; 000100 1111 0111 [] -70000111100 1011
11568> 00 0101 0101 01#1 [3]; 000100 1111 0111 [] -7 10 0000 1111 1011
11618> 00 0000 0100 #001 [1,10]; 00000001000##1 [1,1D-11] -7 0001111101 #000
11561> 00 0000 0010 0001 [0]; 111010 1011111# D-7 111010 10111111
10956> 00 01010101 01#1 [3]; 10 000011111011 D-70001001111 0111
11078> 00 0101 0101 01#1 [3]; 0# 0#0101010#01 [3] -700010011110111
10831> 00 0000 0100 #001 [1,10]; 111010 1011111# [] -7 111010 10111111
11533> 00 0000 0100 #001 [1,10]; 00 1111 1100 1011 [] -7 00 0100 1111 0111
11529> 00 0000 0100 0001 [1,10]; 111010 10111101 D-7 111010 10111111
11528> 00 0000 0010 #001 [0]; 011000 1011111# D-7 111010 10111111
11530> 00 0000 0100 #001 [1,10]; 01100001010#01 [] -7 111010 10111111
11448> 00 0101 0101 01#1 [3]; 000100 1111 0111 [] -7 10 00001111 1011
11525> 00 0000 0100 #001 [1,10]; 00 1010 10111011 D-7 01100010111101
11438> 00 0101 0101 01#1 [3]; 000100 1111 0111 [] -7 10 0000 1111 1011
11613> 00 00#0 0100 #001 [1,10]; 111010 1011111# [] -7 11 1010 10111111
11606> 00 0101 0101 01#1 [3]; 000100 1111 0111 [] -7 10 1000 1011 0111
11523> 00 0000 0100 #001 [1,10]; 111010 00001011 [] -7 01 100010111101
11519> 00 0101 0101 01#1 [3]; 11 1010 1111 1011 [] -7000100 1111 0111
11521> 00 0000 0010 #001 [0]; 01 1000 1011111# D-7 111010 1011 1111
11512> 00 0000 0010 0001 [0]; 11 000110111101 D-7 111010 10111111
11602>00000000100001 [0]; 111010 1011111# D-7 11101010111111
11506>~0-00101 0101 Ol#i [3];000101 0110 111# D-7000100 1111 0111
11443> 00 01010101 01#1 [3]; 10 0000 11111011 D-70001001111 0111
11598> 00 0000 0100 #001 [1,10]; 00000001000##1 [1,1D-11] -701 1000 1011 1101
11607> 00 0101 0101 01#1 [3]; 000100 1111 0111 [] -701 10000101 1010
11604> 00 0000 0010 0001 [0]; 111010 1011111# D-7011010 1101 1111
11493> 00 0101 0101 01#1 [3]; 01100011111011 D-7000100 1111 0111

122

11562> 00 0000 0010 0001 [0]; 111010 1011111# 0 -7 11 1010 10111111
11539> 00 0000 0010 0001 [0]; 111010 1011111# 0 -7 11 1010 10111111
10947> 00 0101010101#1 [3]; 10 0000 11111011 0 -7 00 0100 1111 0111
11464> 00 00#0 0100 #001 [1,10]; 10 1001 01011011 0 ~ 11 01011010 1001
11549> 00 0000 0100#001 [1,10]; 111010 1011111# 0 -7111010 10111111
11234> 00 0101 0101 01#1 [3]; 00 0100 1111 0111 0 -7 10 0000 11111011
11454> 00 0000 0100 #001 [1,10]; 10 0000 10111101 0 -7 111010 10111111
11593> 00 0101010101#1 [3]; 00 0100 1111 0111 [] -7 01 00011000 0011
11288> 00 0101 0101 01#1 [3]; 00 0100 1111 0111 0 -7 100000 1111 1011
11343> 00 0000 0100 #001 [1,10]; 00 11111100 1011 [] -701 1000 10111101
11603> 00 0000 0010 0001 [0]; 111010 1011111# 0 -7 111010 10111111
11600> 00 0000 0010 0001 [0]; 111010 1011111# 0 -7 011001 0110 1010
11515> 00 0101 0001 0100 [4]; 0# 0101 0001010# [4,6,8] -7011000 01010101
11527> 00 0000 0100 #001 [1,10]; 011000 10111101 [] -7 111010 10111111
11194> 000101010101#1 [3]; 0# 0#01 0101 0#01 [3] -7 00 0100 1111 0111
11592> 00 0101 0101 01#1 [3]; 00 0100 1111 0111 [] -7 10 11111001 01#0
11477> 00 0000 0100 #001 [1,10]; 011000 10111101 [] -7 111010 10111111
11589> 00 0000 0100 #001 [1,10]; 111010 1011111# [] -7 111010 10111111
11588> 00 00#0 0100 #001 [1,10]; 11 1010 1011111# [] -7 111010 10111111
11601> 00 0000 0010 0001 [0]; 111010 1011111# [] -700 1010 0000 0011
11423> 00 00#0 0101 #101 [2]; 111010 0101010# [] -7 111010 10111111
11409> 00 0000 0100 #1#1 []; 00 0100 11110111 0 -7 011000 1011 1101
11608> 00 0000 0100 #001 [1,10]; 00 0000 0100 0#=#1 [1,1G-11] -7 10 1001 0101 #011
11585> 00 0000 0100 #001 [1,10]; 111010 1011111# [] -7 111010 1000 1111
11041> 00 00#0 0100 #001 [1,10]; 111010 1011111# [] -7 11 1010 10111111
11552> 00 0000 0100 #001 [1,10]; 11 1010 1011111# [] -7 10 1110 01010111
10886> 00 00#0 0100#001 [1,10]; 11 1010 1011111# [] -7111010 10111111
11415> 01 0001 0100 01#1 [5]; 01 0001 0100 0101 [5] -7 11 1010 1010 1001
11584> 00 0000 0100 #001 [1,10]; 11 1010 1011111# [] -7 111001 0011 1111
11395> 00 0000 0010 0001 [0]; 11 1010 1011 111# 0 -7 11 1010 1011 1111
11586> 00 0000 0010 0001 [0]; 111010 1011111# [] -7 11 1010 1011 1111
11587> 00 0000 0010 0001 [0]; 11 1010 1011 111# 0 -7 11 1010 10111111
11517> 00 0101 0101 01#1 [3]; 00 0100 1111 0111 [] -7 10 0000 1111 1011
11522> 00 0101 010101#1 [3]; 10 0000 11111011 0 -700 0100 1111 0111
11416> 01 0001 0100 01#1 [5]; 01 0001 0100 0101 [5] -7 01 000110011011
11441> 00 0101 0101 01#1 [3]; 00 0100 1111 0111 [] -7 10 0000 11111011
11417> 00 0000 0100 #001 [1,10]; 01 1000 10111101 0 -7 01 1110 1110 1101
11406> 00 0000 0100 #001 [1,10]; 01 1000 10111101 [] -7 111010 1011 1111
11580> 00 0000 0010 0001 [0]; 11 1010 1011111# [] -7 111010 1011 1111
11439> 00 0101 0101 01#1 [3]; 10 0000 11111011 0 -7 00 0100 1111 0111
11590> 00 0101 0101 01#1 [3]; 00 0100 1111 0111 [] -7 10 0000 1111 1011
11235> 00 0101010101#1 [3]; 10 0000 11111011 0 -700 0100 1111 0111
11460> 00 0000 0100 #001 [1,10]; 11 1010 1011111# [] -7 111010 10111111
11299> 00 0000 0100 #001 [1,10]; 11 1010 1011111# [] -7 111010 10111111

·11396>0000#00100-#001 [1,10];111010 1011 111# [] -7 11 1010 1011 1111
11543> 00 0101 0101 01#1 [3]; 00 0100 1111 0111 [] -7 10 0000 1111 1011
11563> 00 0000 0010 0001 [0]; 111010 1011111# [] -7 111010 10111111
11354> 00 0101010101#1 [3]; 10 0000 11111011 0 -7 00 0100 1111 0111
11456> 00 0101010101#1 [3]; 10 0000 11111011 0 -700 0100 1111 0111
11397> 00 00#0 0100 #001 [1,10]; 11 1010 1011 111# [] -7 111010 1011 1111
11471> 00 0000 0010 0001 [0]; 11 1010 1011111# 0 -7 111010 10111111

123

11553> 00 0000 0100 #001 [1,10]; 11101# 1011111# [] -7 10 0100 0001 0000
11450> 00 0101010101#1 [3]; 10 0000 11111011 0 -7 00 0100 1111 0111
11558> 00 0000 0010 0001 [0]; 111010 1011 111# 0 -7 10 0010 1111 0101
11551> 00 00#0 0100 #001 [1,10]; 111010 1011111# [] -7 10 00111110 0001
11550> 00 00#0 0100 #001 [1,10]; 111010 1011111# 0 -7.01 0011 0001 0100
11158> 00 00#0 0101 #101 [2]; 00 0000 0101010# [2] -7 00 0110 10011111
11497> 00 0101 010101#1 [3]; 00 0100 1111 0111 0 -7 10 0000 1111 1011
11559> 00 0000 0010 0001 [0]; 11 1010 1011111# 0 -7 10 0011 0000 0000
11458> 00 0101 0101 01#1 [3]; 00 0100 l1lJ 0111 0 -7 111100 0101 0001
11403>00 0000 0100#001 [1,10]; 111010 1011111# 0 -711 1010 10111111
11556> 00 0000 0010 0001 [0]; 11 1010 1011 111# 0 -7 111010 1011 111t
11141> 00 0000 0100 #001 [1,10]; 01 1000 10111101 [] -7 11 0000 0110 #101
11485> 00 0000 0100 #001 [1,10]; 11 1010 1011111# [] -7 11 0000 0000 0101
11536> 00 0000 0010 0001 [0]; 111010 1011111# 0 -7 11 1010 1011 1111
11489> 00 0000 0100#001 [1,10]; 111010 1011111# [] -71110010000 1111
11486> 00 0000 0100 #001 [1,10]; 111010 1011 111# [] -7 10 10011010 0101
11484> 00 00#0 0100#001 [1,10]; 111010 1011111# [] -7 00 000111010011
11268> 00 0000 0010 0001 [0]; 111010 1011111# 0 -7 111010 10111111
10836> 00 0000 0010 0001 [0]; 111010 1011111# 0 -7 111010 10111111
11502> 00 0000 0010 0001 [0]; 111010 1011111# 0 -7 11 1001 1110 0101
11228> 00 0101 0101 01#1 [3]; 00 0100 1111 0111 [] -7 111010 0000 1011
11429> 00 0101 0101 01#1 [3]; 00 0100 1111 0111 [] -7 11 0101 0100 1100
11371> 00 0101 0101 01#1 [3]; 00 0100 1111 0111 [] -7 11 1100 0101 0001
11106> 00 0000 0100 #001 [1,10]; 11 1010 1011111# [] -7 11 1010 1011 1111
11333> 00 0000 0010 0001 [0]; 11 1010 1011 111# 0 -7 111010 1011 1111

Number of Classifiers: 200. Ave. strength 44151.51 (total 8830302.00).

124

VITA

Mr. Bijan Marjan,was born in Teheran, Iran on June 5, 1967 to Amir Hou

shang Marjan and Rosaria Salomone Marjan. He earned a B.A. in Computer Science and a

B.A. in Economics from Lehigh University in 1990. He has worked on a number ofprojects

while at Lehigh. These include computer-aided design for Ford Corporation while with the

Intelligent Systems Lab and computer-aided software engineering for McNEIL Consumer

Products Company, a Johnson and Johnson Company while with the Computer Integrated

Manufacturing Lab. Mr. Marjan intends to join Technology Systems Corporation in Bethle

hem, Pennsylvania and return to his home, Rome, Italy, after the completion ofsome training

in this country. Mr. Marjan's interests reside in artificial intelligence, machine learning, and

intelligent information systems. Mr. Marjan received a number of awards while at Lehigh

including the Graduate Student Leadership Award and is a member of IEEE, IEEE Comput

er Society, ACM, and ACM-8IGART, for which he served as Vice-Chairman of the Lehigh

Chapter.

125

	Lehigh University
	Lehigh Preserve
	1992

	An application of classifier systems to the reduction of finite state machines
	Bijan Marjan
	Recommended Citation

	00010
	00011
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113
	00114
	00115
	00116
	00117
	00118
	00119
	00120
	00121
	00122
	00123
	00124
	00125
	00126
	00127
	00128
	00129
	00130
	00131
	00132
	00133
	00134
	00135
	00136
	00137
	00138
	00139
	00140
	00141
	00142
	00143
	00144

