
Lehigh University
Lehigh Preserve

Theses and Dissertations

1994

Reducing page-fault delays in a MIMD distributed
virtual shared memory
Thomas P. Browne
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Browne, Thomas P., "Reducing page-fault delays in a MIMD distributed virtual shared memory" (1994). Theses and Dissertations.
Paper 327.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228647126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/327?utm_source=preserve.lehigh.edu%2Fetd%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


AUTHOR:

. Browne, Thomas P.

TITLE:

Reducing Page-Fault

Delays in a MIMD

Distributed Virtual Shared

Memory

DATE: October 9,1994



Reducing Page-Fault Delays in a IvllMD Distributed Virtual Shared Memory

by

Thomas P. Browne

A Thesis

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Computer Science

Lehigh University

August 11, 1994





ACKNOWLEDGEMENTS

I would like to thank Professor Spezialetti for all her help and encouragement

during the past year on this thesis as well as with my master's program in general.

My thanks also to Ali Erkan for his help with communication protocols and his

communication routine library which were used in some of the timing programs that I

used for this paper.

iii



TABLE OF CONTENTS

O. Abstract 1

1. Introduction to Distributed Virtual Shared Memory (DVSM) 2

2. The Page Fault Problem in DVSM 4

3. SPMD Solution to Reduce Page Fault Delays 7

4. Problems Resulting from MThID Applications 10

5. 1\.1llv1D System Model 12

6. 1\.1llv1D Solution without Consistency Concerns 15

7. 1\.1llv1D Solution with Consistency Concerns 25

8. Conclusions and Future Work 30
p;

9. References . 31

10. Appendix: Tables and Figures 33

11. Vita 36

iv



O. Abstract

With the growing use ofnetworks of personal computers and workstations,

creating applications which can take advantage ofusing more than one machine on the

network has become more practical and desirable. The use of a distributed virtual

memOlY shared across machines of the network would present the programmer with a

familiar environment for program control and synchronization. However, most

distributed virtual shared memories suffer serious perfonnance problems due to the

delays caused by memory page faults on local machines.

This paper suggests an approach to minimize these delays through an educated

allocation of the physical memory as local permanent memory, virtual pennanent

memory and temporary or "cache" memory, and through a careful distribution of

memOlY pages amongst: the machines. A step by step process to reduce delays through

the duplication of shared memory pages is presented, along with a set of conditions for

detennining which pages to duplicate and when to stop adding pages into the

permanent memory.

The paper then suggests a method for handling page fault requests through a

pre-determined priority and a process for determining these priorities in an attempt to

equalize the delay on each node in the network.

- 1 --



1. Introduction to Distributed Virtual Shared MemoO'

With the greater affordability and power of workstations currently available,

networks of small workstations are becoming more prevalent in business world

environments. If several machines on a network were able to work together on a single

problem, their combined resources could provide a considerable performance

improvement when compared with solving the problem using only a single workstation.

Such co-operation between nodes, however, would require that more than one machine

have access to certain parts of data.

This desire to have machines co-operate efficiently led to the development of a

distributed virtual shared memoI)' (or DVSM) model. This model provides the system

with a view ofa single shared address space which is available to some (or all) of the

machines in the network. The application programmer can access this memoI)' just as
if it were local memoI)', but the same data would be available to all of the machines in

the DVSM environment. However, there is not an actual physically shared memOl)' in

the network. This view of a shared memoI)' is provided through the distribution of

memoI)' amongst the local physical memories of the machines and a communication

system which supports the exchange and update of this data between machines.

The advantage of a DVSM is that it provides the programmer with a familiar

environment for the exchang~ ofdata and the synchronization ofprocesses, as well as

often resulting in more understandable code. A DVSM relieves the programmer of the

necessity of dealing with low level communication protocols which are often more

complex than other communication techniques, such as parameter passing, and result in

confusing code when compared to the virtual memoI)' environment.

The most important consideration in a DVSM system is that it must guarantee a

coherent view ofthe shared data across all of the machines. In other words, like

-- 2-·



hardware caches, a read to any active copy of the data on any of the machines in the

network must always return the same value -- the value of the last update to that shared

address. In their paper [7], Kessler and Livny suggest four major ideas that DVSM

algorithms use to maintain the abstraction of a coherent memory:

(1) The [DVSM] is partitioned into pages, the granularity
afforded by virtual memory.

(2) The page is the unit on which coherency is maintained.
Writes to a given page are strictly ordered and eventually
propagated to all nodes.

(3) Copies of each page of the [DVSM] will exist on one or
more nodes as per the coherency constraints. At any
time at least one copy of each page exists.

(4) Virtual Memory hardware is used to restrict access to
shared data.

It is in the handling of these memory pages and in maintaining the system's

coherency that DVSMs experience significant communication delays which can

degrade their perfonnance.

-- 3-



2, The Pase Fault Problem in nYSM

While a DVSM environment makes work easier for the programmer, a shared

virtual memory has one serious problem that is not a consideration with a physical

shared memory multiprocessor systems: the connnunication delays incurred by the

system.

There are two properties of a DVSM that require connnunication over the

network, and therefore delays. First, a DVSM needs to share data with other machines

in the network, and secondly it must assure that the data is consistent across the entire

network.

The first property is encOlmtered when one workstation requires data from a

portion of the shared memory which the workstation does not currently hold, or what is

known as a read page-fault. Whenever a program needs to access a remote page of

memory, the DVSM system needs to determine who has a current copy of that page,

and then requests a transfer of that memory across the network. However, unlike

hardware caclle handling, the amount of data transferred is usually on the order of

kilobytes as opposed to only a few words. The transfer of this much data can result in

considerable delays especially on a congested or unreliable network.

Finding ways to improve the performance of shared memory systems has been

the focus of a lot of research [2-4,6-10, 12-14]. One of the ways discussed, and the

one this paper considers, is the initial reading of additional data at the start of execution.

The reading ofadditional pages before execution will reduce the need for later

communication as so~e of the page faults that shared memory accesses would have

generated have been eliminated and combined into one communication. Since the

overhead of connnunication is often a significant part of the overall connnunication

-- 4 --

..



delay (see Table 1), any reduction in the number of actual page faults will result in an

improved perfonnance.

The maintenance of data consistency amongst multiple copies of shared data

also results in considerable communication overhead. This overhead, a write page

fault, results when a process attempts to write to the shared memory. Unlike a read

fault, this overhead is encountered whether the writing process already has a copy of

the memory page or not Whenever any page of the shared memory is changed, the

shared memory system must guarantee that all other active copies of the page are either

made consistent with the new data, or that they are removed from the system so that

the now invalid data will no longer be used.

While there are some similarities between the behavior of shared memory and

hardware caches, techniques for maintaining consistency in caches may not work well

in a shared memory environment. A common approach to cache coherence is to

update the main memory copy of the block, and then "invalidate" all of the cache

copies, so no one will use the now out-of-date information. While this performs

satisfactorily for hardware caches, a shared virtual memory often deals with a much

larger amount of information that would be invalidated -- as much as several kilobytes

as opposed to only a few bytes. The result is that any further access to the data on that

page, even the data that was not changed, will generate additional read page-fault and
.>..-

will require the entire page to be resent over the network.

In a cache, this delay is sufficiently short, because only a small amount of

"correct" data has been invalidated, and there will likely be few accesses to that data.

In a shared memory system however, there is a far greater chance of that page being

needed again on one or more nodes, thus generating new page-faults, and increasing

the amount of time lost to communication delays.

-- 5 --



This indicates that an approach other than page invalidation should be

considered. Wilson, LaRowe and Teller [14] demonstrate that in most cases an update

based scheme will perfonn better than a page invalidation scheme for a DVSM

even if the actual delay of performing the updates takes longer than the invalidation

message would because it will no.! generate the additional number ofpage-faults that

the invalidation would incur.

These schemes will be co~idered in more depth in section five, where a system

model for evaluating these proposals will be discussed.

-- 6-



3. SPMD Solution to Reduce Paee Fault Delays

Reducing the overall delay in program execution resulting from page fault

communication was the basis of work by Clancey and Francioni at Nfichigan

Technological University. Their work [3], though, presents a simplified system

which assumes that the same program is executing on each !lode ofthe network,

although such an assumption is never stated. The results of examining this single

program - multiple data environment will be used to extend the ideas to a more

general :MIMD system in sections 6 and 7.

Clancey and Francioni present a system where local memory is partitioned into

two areas: the "home set" and the "copy set". The "home set" is the collection of

pages that are owned by that node, and that will always be available on that node for

the duration of the program execution -- there is no migration ofpage ownership across

the network. The "copy set" is that portion ofmemory that is used for temporary

storage of faulted for pages. All page replacement occurs in the copy set, never in the

home set, and only occur as a result of page faults.

In order to better understand the behavior of their techniques and measure their

gain, a general equation representing the total length of time to service all of the page

faults was derived [3]:

Costmethod = rmethod <'Is +Xmethod thop) + OHmethod (1)

. where rmethod = total number of page faults using the distribution

method
'Is = the time required by the faulting node and the home node

oftheJ~ulted-for page to service the fault
Xmethod = the average round-trip distance in hops from the

faulting node to the home node
thop = average internode transmit time of a message

OHmethod = overhead time required to implement the distribution

method

--7 --



The first method Clancey and Francioni propose forimproving performance is
.,

derived from this equation. Since many programs exhibit a consistent pattern of

memory accesses even with different data sets, this behavior could be used to attempt

to reduce the number of page faults. Ifa certain page is often faulted for by a

program, it generates a lot of network messages, and therefore delays, which would

not occur if the page had been in the home set initially. Ifa page were initially loaded

on each node, it would never generate a page fault. The overhead oftransferring that

page would have only been incurred once at the start of execution. Initially loading a

faulted for page reduces the total number of page faults by some factor, rbs' Because

each node is running the same program, similar behavior is expected on each computer,

and the page can be duplicated on every node so that a page fault is never generated in

the system.

However, if a page is added to the home set of a node, then the corresponding

copy set must be reduced by one page since there is a constant amount of available

memory. Reducing the size of the copy set, though, can generate new page faults due

to ne~ page replacements that are required. The number of these new page faults, res'

could outweigh the benefit of the page duplication by causing page thrashing in the

copy set.

The performance gained by this technique is dependent on how many \

more page faults are eliminated by the duplication of a page in the home set than are

generated by the reduction in the copy set size. Ifduplicating a page creates more page

faults than it removes, performance will suffer, and even. if the number of page faults is

very close there would be a slight performance loss due to the added overhead of

loading the page on every node. The number of pages that can be duplicated in this

manner before this performance loss occurs varies between applications.

-- 8 --



The second technique that Clancey and Francioni present has its basis in the

distributed computing idea of load balancing. When a node generates a page fault, not

only is its own program delayed, but it forces a delay in the execution of the node that

has to service the request. Load balancing suggest that ideally this delay should be

distributed equally over all of the nodes so that no single process is delayed

extraordinarily by servicing.requests, and thus resulting in a slower execution of the

entire system.

The cost associated with this technique is in a one time analysis of determining

if there is a consistent behavior in the pages that are requested independent of the data

set. Determining this can be done by running the program multiple times with different
'-'

types ofdata sets and seeing ifa pattern ofpages faulted for occurs. Ifno pattern can

be determined than this technique can not be used; however, if there is a tendency for

the same pages to be faulted for more often than others, this method can be applied.

To achieve.the best performance, the number of page fault requests serviced by

each machine in the network should be about equal. An arbitrary distribution ofpages

across the network is unlikely to result in the optimal selection. Pages .should be

distributed so that the pages which caused the most faults are all on different nodes.

This distribution will attempt to minimize the longest amount of time that anyone node

spends servicing page faults rather than executing its own process.

Clancey and Francioni implemented these two techniques separately and

recorded performance improvement ranging from 2% to 80% by duplicating pages and

from 2% to 6.1% by reorganizing the distribution of pages across the network.

-- 9 .-



4. Problems Resultins from MIMD Applications

While the techniques proposed by Clancey and Francioni work for a SPMD

application, in the more general and flexible :MIMI> environment, there are some

important considerations that their methods do not address. Most of these

considerations result from the fact that in a :MIMI> environment, each node could be

executing a different program with a completely different behavior than other

programs. In a SPMD application, it is assumed that most of the nodes will follow a

similar faulting behavior. In MIMD environments however, each node has a different

program with different memory requirements and faulting pattern:'" Therefore the

duplication ofpages on each node could result in data that is never used being stored

on machines at the expense ofmore useful information.

Another major difference between SPMD and MIMD environments is the type

of information that the shared memory stores. In a SPMD environment, the program

instructions as well as some data will be in the shared memory, since all nodes must use

the same program. Most data is kept locally on each machine, and only critical data or

synchronization flags are usually stored in the shared memory.

In a MIMD environment though, each node is running a different program.

The instructions therefore wouldn't need to be in the shared memory since no other

node is likely to use them. However, unless each node has some fonn of local

permanent storage, for instance a local hard drive or floppy disk, the program

instru~tions will need to be read through the network, probably from a file server. In a

MIMI) system, it is primarily the data which is shared by all of the nodes that is stored

in the virtual memory. Since different types of information (instructions and data) are

stored in different locations (file server and shared memory) a:MIMI> system has to .

consider different types ofpage faults.

-10 --



The different types ofpage faults result in different delays on the system. In

SPMD, all page faults result only in the access of memory on a remote machine. In

MllvID, page faults looking fo~ data will still only access remote memory, but when

there is a page fault resulting from needing program instructions, there is the additional

i/o delay of reading from storage besides the regular communication delay to a remote

machine. Therefore when considering how to reduce delays, rather than just reducing

-page faults, the types ofpage faults being generated and eliminated need to be

examined.

Another major cQnsideration for a MllvID environment is the data coherency

problem.' In SPMD, most of the shared memory is ~rogram code, which is not

changed. Most data is stored locally, with only important data that is needed by all of

the machines in the shared memory. Since most of the shared information is

instructions, there are probably few writes to the shared memory, reducing the

importance of an "efficient" coherence protocol. With very f~w changes to memory, a

simple invalidat~ scheme might be sufficient.

In :MIMD environments, the shared memory is made up almost entirely of data.

Depending on the application, there might be a significant number ofwrites to the

shared memory. For that reason, an inefficient coherence protocol would drastically

hurt performance as a large number ofunnecessary messages and page-faults might be

generated. As an application becomes more write intensive, the importance of the

coherency protocol increases.

The need for different pages by each node, the different delays caused by the

two different types ofpage faults, and maintaining the consistency of data across a

changing number of machines are the three main considerations in reducing the page

fault delays in a MIMD system that are not as crucial in a SPMD environment.

--11-



/'

5. MIMI> System Model

Before examining how techniques similar to those proposed for SPMD could

be used in a MIMD environment, this author makes some assumptions about the

machines on the network, the properties of the communication network, the memory

handling of the machines and the shared memory.system implementation:

1. Fot this analysis, a system ofN identical.computers which are
connected by a single high-speed backbone along with a single
file server is considered [Figure 1].

2. Each of these N computers has a finite amount of physical memory
which is large enough to allow for efficient execution ofmost
applications using paging ofmemory. In other words, most
applications can not fit entirely in memory, and will generate some
number of page-fault requestS. Each user workstation is assumed
to have only one user process at a time.

3. None of the user workstations have any form ofpermanent storage.
All stored files reside on the network file selVer.

4. The file setver is not a user workstation, and has no application
processes on it. The file setver's only purpose is to setvice requests
for stored data from a central location.

The communication behavior of the network needs to be considered next.

1. All inter-process communication occurs on a single communication
backbone via message passing. There is no physical shared memory,
or alternative method of data transmission besides the backbone.

2. The communication backbone allows one message at a time to be
transmitted. Requests for control of the backbone are executed
sequentially in the order the requests were· made to either the high
priority queue or the low priority queue, which are maintained by
the hardware controller of the backbone. Page requests are
queued at a low priority, while responses to page requests are
queued at a higher priority. This priority scheme assures that data
will be made available to a requestor as soon as possible, allowing
execution of those processes which have been delayed the longest
to resume as soon as possible.

-- 12--



3. The backbone supports a multi-casting protocol so that a single
message can be accessed off the network by some, or all, of the
workstations in the network.

4. Each workstation is assumed to have network hardware which
examines the messages on the network and detennines ifa message
is for that workstation without slowing down the execution of the
main Cpu. Only if the message is directed for that workstation is
the processing of the CPU interrupted while the message is handled
and acknowledged. .

5. The backbone is considered efficient -- there is no significant delay
in message transmission once control has been granted, and the
distance between workstations on the network has negligible effect
on the time of transmission.

6. The communication network is assumed to be robust. No messages
are lost or corrupted during transmission although the network
recognizes such problems if they occur. Re-transmissions are not
required often enough to add significantly to the network delay.

The memory behavior of the local machines and the shared-memory system,

also needs to be considered.

1. Each workstation has its own physical memory which is handled
in pages of a definite, unchanging size. Any portion of this memory
mayor may not be allocated into the shared memory of the entire
system.

2. The shared memory system allows each workstation to contribute a
different amount of memory to the system, depending on that
workstations needs. This allows better optimization of the entire
system.

3. There is some mechanism on each workstation that allows memory
pages to be indicated as permanent -- such pages will never be
considered for removal during a page replacement operation and will
always be resident for the duration of the application.

4. The shared memory system provides each workstation with a
permanent table which for each page(of shared memory lists all
of the nodes in the network that the page permanently resides on.

-- 13 --



<--.

" 5. The page replacement policy of the entire system is a least recently
used (LRU) algorithm.

One assumption is made about the applications - that each page of the shared

memory is used on at least two different workstations within the time of the application.·
. 1

This prohibits the perfonnance degradation of adding shared memory overhead to data

that should have been kept in local memory on the only machine that needed it.

With these basics of a network and system, analysis ofhow to apply the SPMD

ideas to a :MllvID system is possible.

-- 14 --



6. MIMD Solution without Consistency Concerns

To simplifY the analysis, first consider a situation where data ~nsistency

problems never occur. Such a situation could occur, for example, in an application

where all the data is initially generated and updated by one process. Only after all

updates are completed is the data then used by multiple workstations in a read-only

situation. Since no data is shared until all changes to the shared memory are complete,

there is no danger ofusing outdated information, and since there is only one process

making updates, there is no race condition or synchronization problem of assuring the
t;l

proper ordering ofupdates.

One example of such an application system is in the area of image processing

and pattern recognition. In pattern recognition, images must often be filtered to

examine only the relevant data, segmented into regions where the desired patterns

might exist, and finally each region needs to be examined in detail. Ifan image is

loaded into the shared memory of the system, one workstation might be responsible for

""performing all of the filtering, and updating ofthe image. This'same workstation

would then examine the image for important regions and isolate them -- a process

known as image segmentation. Only after these regions, which might overlap [see

Figure 1], have been identified would other workstations begin the task of attempting to

recognize some feature within the region. In fact, any application where a large

amount of data is processed sequentially, and the results are examined in individual

discrete parts or as a whole by different techniques that do not change the data, would

qualify as this type of system.

The techniques being applied are attempting to minimize the average delay to

" the system. On any node there are two types of delays that will be encountered - the
'"

-- 15 --



total delay that occurs from waiting on page faults, Twait' and the total delay that arises

from servicing page faults from other nodes, Tser

So, the total delay can be expressed as:

Cost = Twait + Tser (2)

The delay incWTed in servicing a single request is the time it takes for a node to

recognize a request, create the reply and send the reply to the requesting node. This is

the same delay as is encountered by the requesting node except for the amount of time

it takes to generate the initial request message and transmit it over the network. Since

the entire delay for the request can be measured, and has been in Table 2 [Remote

Memory Access Time], and the time for creating and sending a short request message

has also been identified in Table 1 [Data Transmission Time], the delay of servicing a

single request is the difference in time between the delay in the requesting node, and

the amount of time it takes the servicing node to receive the request. The total delay to

the servicing node can be expressed as:

Tser = Nreq >I< (Tmem - Tretl (3)

where Nreq is the number of,requests serviced by a node, Tmem is the delay incWTed

by a node faulting for a page of shared memory (generating and sending a request, as

well as waiting for the reply to be created and transmitted), and Treq is the time.

required to generate and send a short request message across the network.

Since there are two types of page faults, the total delay that these faults generate

is dependent not only on the number offaults, but on the type of each fault. Each fault

for program instructions will incur a delay to access the file server, while each fault for

shared memory will incur a delay to access remote memory. Both of these times can

be measured [Table 2]. The total delay from page faults can be written as:

-16 --



Twait = (Fp '" TfileJ + (Fm '" Tmem) (4)

where Fp is the number of page faults for program instructions, Tfile is the delay of

requesting and reading one page from the file server and Fm is the number ofpage

faults for shared memory that occurred.

In considering the initial distribution ofpages, two requirements must be met.

First, all nodes are loaded with the first page ofprogram instructions -- it is assumed

that this page will include the actual starting instruction for the program. Second, every

page of the shared memory must belong in the "home set" of at least one workstation.

In order to determine which pages of the shared memory, should be placed on

which workstation, it is necessary to know how many times each workstation faults for

each page. This requires multiple executions of the entire application with different

pages being assigned to each workstation every time. Every workstation must have

been missing each page during at least one of these executions so it can be determined

roughly how many times it will be faulted for -- this is only an approximation because

page faults might change based on which pages were included in the home set.

In order to meet the requirement ofhaving each page of shared memory on at

least one workstation, a page is initially assigned to the home set of the node that

faulted for it the most. This will eliminate the most number of page faults possible, as

well as reducing the number of service requests that will be required of the home node.

Since each node has different behavior, and will be responsible for varying amounts of

page faults and requests serviced, each node will have a different cost. This delay can

be expressed as:

Costi = (Fp,i* TfileJ + (Fm,i '" TmemJ + (Nreq,i '" (Tmem - TrerlJ (5)

for each noqe i in the network.

-- 17--



When considering the effect of loading an additional page on a workstation, the

effect of adding another program page is different from adding a page of shared

memory.

On a given node ~ if the most faulted for program page is loaded into the

permanent memory, the total number offaults for program pages, Fp,i' will be reduced

by a factor ofFp,eJim' the number oftimes that program page was faulted for. As·in

the SPMD system, adding an additional page to the permanent set will reduce the

available copy set though, generating new page faults. These new page faults will be

some mix offaults for program pages generated by adding a program page to the home

set, FPp' and faults for shared data pages generated by duplicating a program page,

FPm,

The delays eliminated and generated can be expressed by the fonnu1as:

Telim = Fp,eiim >I< Tfile (6)

Tgen = (FPp >I< TfileJ + (FPm >I< Tmem) (7)

Since both Tfile and Tmem are measurable, it is possible to define a ratio R such that:

R = Tfile / Tmem (8)

Since this algorithm is trying to reduce the delay in the system, a new program

page should only be loaded into the home set if the delay eliminated is greater than the.
delay generated by reducing the copy set. By combining this relationship with

equations 6, 7 and 8, it can be determined that the program page in question should

only be added to the home set if the following condition is met:

Fp,elim > FPp + (FPm / R) (9)

On the other hand, if the most faulted for shared memory page was added to

the home set of node ~ the number ofmemory page faults F .will be reduced by them,l

number offaults that page had generated, Fm, eJim' This reduces the total delay by:

--18 -

!



Te/im = Fm,e/im >Ie Tmem (10)

As in the program page case, a new delay will also be introduced because of page faults

generated by the reduced copy set where FMp is the number of additional program

page faults and FMm is the number of additional shared memory page faults. This

delay is of the same form as equation 7.

Following the same logic as in the previous example, a shared data page should

only be duplicated if the delays eliminated are greater than the delays created by the

smaller copy set. Using equations 7, 8 and 10, this relationship can be expressed as:

Fm,eiim > (FMp >Ie R) + FMm (11)

So in order to duplicate a page of shared memory, it needs to not only eliminate more

faults than it creates, it has to eliminate enough faults to counter the added delay of

accessing the:file server instead of shared memory.

Following these two relationships (equations 9 and 11), pages should be added

to a workstation one at a time until these relationships fail. At that point, the maximum

number ofpage faults has been eliminated, and the :final total delay ofa node can be
.

expressed by combining equations 5, 6, 7, and 10:

Cost = Tfi/e >Ie (Fp - Fp,e/im + FPp + FMpJ + Tmem >Ie (Fm - Fm,eiim + FPm +

FMmJ + Tser

Cost = Tmem >Ie (R >Ie (Fp - Fp,e/im + FJ) + Fm,i - Fm,e/im + F'mJ + Tser (12)

whereFp= FPp+FMpandF'm = FPm+FMm (13,14)

As long as the relationships 9 and 11 were followed, it can be demonstrated that

this process will reduce the total delays due to page faults. By substitution in equation

12 the following relationship can be derived:

Fp,e/jm > FPp + (FPm I R) (9)

FPp < Fp,e/im - (FPm I R)

--19 -



Cost = Tmem '" (R '" (Fp - Fp,elim + FJ) + Fm,i - Fm,elim + F'mJ + Tser (12)

by substitution

Cost < Tmem * (R *(Fp -Pp,elim + Fp,elim - (FPn/R) + FMpJ + Fm -Fm,elim +

F'mJ+Tser

Cost < Tmem '" (R '" (Fp - (FPn/R) ,+ FMpJ + Fm - Fm,elim + F'mJ + Tser

Cost < Tmem '" ((R '" FpJ - FPm + (R- '" FlvfpJ + Fm - Fm,elim + F'mJ + Tser

Cost < Tmem >I< ((R >I< FpJ -FPm + (R >I< FMpJ + Fm -Fm,elim + FPm + FMmJ +

Tser

Cost < Tmem '" ((R >I< FpJ + (R *FMpJ + Fm - Fm,elim + FMmJ + Tser

Fm,elim > (R '" FMpJ + FMm (11)

FMm < Fm,elim - (R '* FMp)

by substitution

Cost < Tmem '* ((R >I< FpJ + (R '* FMpJ + Fm - Fm,elim + Fm,elim - (R '* FMpJ) +

Tser

--vCost < Tmem ... (R ... Fp + FmJ + Tser (15)

Since the initial cost was of the fonn Tmem ... (R ... Fp + FmJ + Tser' the total '

delay has been reduced as long as the relationships above are followed.

So far, only the delays for page fault requests have been considered. By

duplicating shared memory pages, the delay do to servicing page faults from other

workstations might also be affected since a node besides the original node might now

be able to handle the request: There are several possible schemes for detennining

which node should handle a page request ifmore than one workstation has that page in

its home set, including nearest neighbor, random selection, queues of servicing nodes

and pre-defined priority.

In a nearest neighbor scheme, the node nearest the requesting node would

service the request. In this backbone network however, there is no significant

-- 20-



difference in the communication time between any two workstations, so there is only a

negligible benefit of choosing one workstation over the other. The only benefit would

be that all of the requests could be split amongst the duplicating workstations reducing

the load on each machine. However this technique does not consider the current load

already on a workstation, so it might be sending requests to an already overloaded

node.

In random selection, the requesting node would.r~domly ~h09se amongst the

nodes that own the desired page [as is stored in the table provided by the shared

memory system] and request the page from that node. This has the same benefit that

nearest neighbor does in that it provides for splitting the load of servicing requests over

multiple workstations. However, it suffers from'the same drawback in that nodes that

are already very busy might be sent more work by this technique. The benefit of this

technique is can not be expressed algebraically since it is not possible to predict where

work will actually be sent.

In a scheme based on keeping queues of servicing nodes, the theory is that a Jist

of all the nodes with each page is kept either locally or centrally. Each time a fault for

a given page occurs, the first node on the Jist services the request, and is then placed at

the end of the Jist. This would provide the most even distribution of requests for each

page amongst nodes that have a given page. Unfortunately, it is difficult to keep the

global Jist without forcing each request to check a table stored at one central location,

creating a communication bottleneck as workstations need to request where the page is

before they can actually request the page -- resulting in two request-reply pairs per

page-fault.

Iflocal queues were kept on each node and only its own faults were circled on

that Jist, there is the danger that all of the requesting nodes will make requests to

-- 21 --



workstation P at the same time, and then they will all make requests to workstation Q at

the same time and repeat this same pattern resulting in temporary bottlenecks at each of

the SeMcing workstations, and increasing the delays as each requesting node has to

wait for all the replies to be sent.

All three of these techniques have one other fault. They are looking at

distributing the work for each page across all of the available nodes. However ifone

page is faulted for very often, then even splitting this work could result in significant

delays since the servicing node might have other sharedmemo~s which it is also

getting a portion of the requests to service. The final technique ofpre-defined priority

attempts to address this problem.

The theory behind the pre-defined priority scheme is very different from the

basis of the three other schemes. Where the other techniques attempt to equally divide

the load of each page across all the nodes that have it, pre-oefined priority looks at all

of the workstations and tries to equalize the total delay in each node. This technique

requires that a measure of the total delay for each node be maintained. Since Tmem

and TfiJe are measurable and the final number ofpage faults after page duplication can

be determined, the value of Twait for each node can be calculated.

Tser is the variable that can be changed in an attempt to equalize the total delay,

Cost, over the system. Rather than trying to split all of the requests for t~e same page

across the network, pre-defined priority assigns pages to specific nodes and that node

then serves all requests for that page. By determining the average number of times a

page is faulted for through multiple executions of the application, a_pattern might be

found that will allow workstations with a lower delay seMce more requests than the

workstations that are already heavily delayed.

- 22--



J

In order to accomplish this, a record is kept of the "total current delay" that has

been assigned to a workstation already. Initially this is the delay caused by the page

faults that node generates. To this factor, the delay of servicing requests that have been

assigned to the node will be added. First, ifany page of shared memory exists only on

one node, that node is assigned to service all requests for that page, and this delay is

included into the "total current delay" record. After all of the single copy pages have

been assigned, the remaining pages are assigned in decreasing order ofpage faults that

have to be serviced. Perfonning the technique in this order allows the largest delay

encountered to be assigned as early as possible so that the delay on that node can be

equalized by assigning later pages to other nodes. In order, each page is assigned to the

node owning that page which has the lowest total current delay. The delay for these

requests is then added to the workstation's total current delay, making it less likely to

accept another page. This algorithm is performed until each page of the shared

memory has been assigned to a workstation.

Unfortunately, since there is no control of the initial page distribution, this

technique could still result in an imbalance in the average delay of the system -- some

node could finish with a total current delay much higher, or much lower than most of

the network. This imbalance can be fine tuned ifnecessary to try and equalize the

performance.

Ifa node is delayed much less than most of the system, the last page of shared

memory that had been duplicated can be removed from the home set of that node. A

more faulted for page can then be placed into the shared memory. Thit'node can then

be assigned to service requests for the new page. This removes a heavy delay from

another node and moves it to this less delayed node. In addition to the new service

requests, more page faults will be generated as it will need to request the page that had

-- 23 --



been removed ·from the home set. While this will result in a few more requests to the

node that will have to service requests, but the less delayed workstation will be delayed

more and the node that had been servicing the requests will be reduced in an attempt to

better distribute the load of the delay across the network.

Ifa node is heavily delayed, and there is no node that is less delayed than all of

the other workstations, there are still some techniques which rilight give some benefit.

Ifthe node is delayed because it is forced to wait often, and is still required to service

requests because it has th~only copy of a page of shared memory, these pages can be

duplicated on other nodes, thus eliminating the delays on the loaded workstation even

as it will force greater delays on the network. If the node is delayed mainly because of
-'

servicing requests for particular pages, these pages can also be split across other nodes.

This technique will sometimes fail however since there will be applications

when the pattern ofpage faults is so random that a different page is faulted for many

times during each execution. If that happens, an already busy node might become even

more seriously delayed. This is a problem, however, that can not be solved with Ii

static priority scheme.

-- 24--



7. MIMD Solution with Consistency Concerns

With a technique usable for a simple read-only application, it becomes easier to

examine a more complex system where writing to the shared data pages is not limited,

giving rise to concerns about maintaining data consistency. Maintaining data

consistency is very important in any form of shared memory and has been the focus of

research of many people [1, 2, 5-12]. In many cases, this research has focused on

physical shared memory multiprocessor systems, but in a virtual shared memory the

efficiency of the coherency protocol becomes more vital because the delays inherent in

the required communication is greater.

Since the methods given in section 6 only consider the reads and page faults to

the system, the added consideration ofmaintaining consistency does not change these

procedures, but merely adds another delay into the total delay of the system.

Therefore, it is not necessary to consider whether page faults are for reads or writes

when attempting to reduce page faults as they will be treated in the same mariner.

There are a number of common methods of guaranteeing data consistency

within a system. This paper will consider four of them: ownership migration,

invalidation, pessimistic write-through, and optimistic write-through.

In the usual implementation of ownership migration [10-12], the system keeps

only one copy ofthe shared memory as allowing writes to the data. The workstation

that owns the write-enabled page of memory also keeps track of every node that has a

copy of that page. When a node that does not own the write-enabled page needs to

write to that page, the workstation sends a message to the owner of the page and

requests ownership. If the owner is not writing to the page, it will transfer the write

enable permission to the requesting page along with the list of all copies of that page. If

-- 25 --



the owner is writing, the requesting node must wait until the owner is ready to transfer

the page.

There are problems with this solution though, relating to the fact that ownership,

is associated with pages. If two nodes are attempting a series ofwrites to discrete sets

of memory locations that happen to reside on the same page, either one process will be

forced to wait for the entire series of writes by the other node to be completed before

being granted contro~ or ownership will thrash back and forth between the two

processes resulting in increased traffic on the communication network.

The second technique that is available is a combination invalidation and update

scheme [1]. As already discussed, an invalidation scheme is very inefficient because of

the number ofunnecessary page faults it generates. Assume that the network has a

page length of 1 Kb, and a word length of 4 bytes, there are 256 words on a page.

Under this combination scheme, a write to one word will require the update ofall other

nodes that have that page in their home set, and the invalidation of that page in copy

sets ofnodes. This invalidation will not only prevent the use of the outdated data, it

will prevent the use of 255 words of data that were still valid. Any access to those 255

words will now generate an additional page fault, even though the data the node had

was correct. Since the pages that have been invalidated would likely be used again, the

additional page faults will degrade the performance ofthe system.

The method of pessimistic write-through updates works on the premise that any

write is likely to create consistency problems, so no write to the system is allowed until
-

every other node in the network says it is all right to write, enforcing a strict definition

of coherence [1, 10, 11]. Any node that desires to write to the shared memory

broadcasts a message to all other nodes requesting permission for the write, and then

waits until it receives responses from all nodes. Each of the other nodes receives the

- 26--



request and detennines if the write can proceed. If the write does not interfere with the

node's own process, it replies to the requesting node that it may proceed, and continues

its own execution. If the write might cause conflicts because the node is using that

address, the non-requesting node needs to pause its own execution and allows the

writing node to proceed. After the requesting node receives replies from all other

nodes, it broadcasts the update, and then all processes are allowed to resume their

execution.

While this technique guarantees data consistency it is extremely inefficient. For

a single write, N+l messages are required -- 1 request, N-1 replies, and 1 write update.

This is not only an excessive delay to the writing node, but it also ties up the

communication network, prohibiting other messages from being sent.

The final method is an optimistic write-through update scheme [6, 10-12]. In

this technique, when a node wishes to write to shared memory, it broadcasts the update

to all other nodes [some implementations may delay this broadcast for better use of

the communication network]. Each workstation will read the message from the
.)

network and will update the page accordingly if the workstation has it in either its home

set or its copy set.

The problem inherent in this technique is that due to the communication delay,

a workstation might have already used the outdated value by the time it learns ofthe

change. To deal with this, each workstation maintains a small log in memory of the

instructions it has performed. When it receives a write, it examines this log to

determine if it has used the outdated value. Ifnot, execution can continue as normal.

Ifthe invalid data had already been used, the workstation must "rollback" and undo the

instructions that it performed with the invalid data and all instructions since that use. A

complication arises though in that this rollback might require the undoing ofa write that

-- 27 --



had been perfonned to the shared memory. This can result in the situation known in

distributed computing as cascading rollback. One write request can result in the

necessity to rollback other processes, which can force other rollbacks, which can force

still other rollbacks.

This technique however takes the optimistic approach that rollbacks will rarely

occur since a node is only forced to undo instructions if it had read .from the same

address being updated -- not just from the same page. Since each workstation is

running a different program, there is only a small chance that any two workstations will

be accessing the same memory address in the small amount of time that it takes for the

transmission of the update over the computer network. ,Even if such a conflict occurs 

and a rollback is required, a second rollback is only required ifa write to the shared

memory needs to be undone. Unless the application being considered is write intensive

to the shared memory, this situation becomes less likely, and with each rollback that is

required, the chance that another rollback will be required decreases. So this optimistic

approach assumes that this type of conflict will rarely occur, and allows the cascading

rollbacks to proceed if they are absolutely required.

The delay involved in a write under this scheme is relatively unifonn across the

network, assuming that there are very few roll backs. When the non-writing node

receives the request, it is delayed for the time it takes to receive the message and

perfonn the update, Tupd' The writing node on the other hand needs to delay for the

time it takes to send the short update message, Treq' If the number ofwrites on a node

i is Wi' and the total number ofwrites is W, the delay due to the consistency protocol

on node i can be expressed as:

Tconsistent,i = Wi '" Treq + (W - Wp '" Tupd (16)

./

-- 28-



~------------------,----------------

Unless there is some way to optimize the program to reduce the number of

writes in the system, or an even more optimistic approach is taken for grouping writes

before sending the update, there is no method of reducing this delay, so it does not

effect the decisions made in the duplication and placement of pages in the shared

memory.

\

-- 29--



8. Conclusions and Future Work

This paper demonstrates that the delays on a distributed virtual shared memory

Mllv.ID system can be reduced using techniques very similar to those ticst proposed by

Clancey and Francioni for a SPMD system. Through a pre-production use

examination of the memory behavior of an application system, pages of shared memory

and local memory can be assigned so as to distribute the expense of the shared memory

across the network as evenly as possible.

The reduction in the system delays is based on the number offaults that have

been removed as opposed to the page faults that have been generated by the change in

the system. By building the final configuration of the system step by step and re

evaluating its performance in terms of several relationships, this method will produce an

efficient, ifnot optimal configuration.

This method requires multiple executions ofthe system before the configuration

is complete. The amount of time that this method requires suggests that it would only

be ofvalue for large production systems where the same application is performed many

times on different sets of data.

Areas for future consideration would include an actual implementation of this

technique to measure the true effect on performance of these techniques; the

consideration ofa dynamic priority scheme for servicing page-fault requests, so that a

node can request to have its own priority either raised if its current load is less than

most ofthe network, or to have its priority lowered if it is being delayed seriously by

service requests; and the evaluation of the optimistic write-through coherency scheme

to determine how often rollbacks and cascading rollbacks will occur, and ifnecessary

determine solutions to these problems that will not seriously degrade the performance

of the entir~ system.

~

-- 30-



9, References

[lJ Lothar Borrrnann and Martin Herdieckerhotf, "A Coherency Model for
Virtually Shared Memory", Proceedings ofthe 1990 International Conference

on Parallel Processing, Vol Il, August 1990, 252-257.

[2] H. Bunjevac, "Adaptive Algorithm For Distributed Shared Memory
Management", Proceedings ofthe 15th International Conference on
Information Technology Interfaces, June 1993, 245-250.

[3] Patrick M. Clancey and Joan M. Francioni, "Distribution of Pages in a
Distributed Virtual Memory", Proceedings ofthe 1990 International
Conference on Parallel Processing, Vol Il, August 1990, 258-263.

[4] Karim Harzallah and Kenneth C. Sevcik, "Hot Spot Analysis in Large Scale
Shared Memory Multiprocessors", Proceedings qfSupercomputing
'93 Conference, November 1993, 895-905.

[5] T.-S. Jou and R. Enbody, "A Scalable Snoopy Coherence Scheme on
Distributed Shared-Memory Multiprocessors", Proceedings ofSupercomputing
'92 Conference, November 1992,652-660.

[6] P. Keleher, A. L. Cox and W. Zwaenepoe~ "Lazy Release Consistency for
Software Distributed Shared Memory", Computer Architecture News, .

Vol 20, Issue 2, May 1992, 13-21.

[7] R. E. Kessler and Miron Livny, "An Analysis of Distributed Shared Memory
Algorithms", Proceedings ofthe 9th International Conference on Distributed
Computing Systems, May 1989, 498-505.

[8] T. Kolarik, "Cooperative Computing in Loosely-Coupled Distributed
Systems", Proceedings SHARE Europe Spring Meeting, Distributed
Applications, April 1993, 359-362.

[9] M. Mizuno, M. Ra~ G. Singh and M. L. Neilsen, "An Efficient
Implementation of Sequentially Consistent Distributed Shared Memories",
IFIP Transactions A, Vol: A-44, 1994, 145-154.

[10] B. Nitzberg and V. La, "Distributed Shared Memory: A Survey of Issues
and Algorithms", Computer, Vol 25, No.8, August 1991, 52-60.

-- 31 --



[11]

[12]

[13]

[14]

Umakishore Ramachandran, Mustaque Aharnad.and M. Yousef A. Khalidi,
"Coherence of Distributed Shared Memory: Unifying Synchronization and
Data Transfer", Proceedings ofthe 1989 International Conference on
Parallel Processing, Vol II, August 1989, 160-169.

•Michael Stumm and Songnian Zhou, "Algorithms Implementing Distributed
Shared Memory", Computer, Vol. 23, No.5, May 1990, 54-64.

Josep Torrellas, Monica S. Lam, and John L. Hennessy, "Shared Data
Placement Optimizations to Reduce Multiprocessor Cache Miss Rates",
Proceedings ofthe 1990 International Conference on Parallel Processing,
Vol Il, August 1990, 266-270.

Andrew W. Wilson Jr., Richard P. LaRowe Jr., Marc J. Teller, "Hardware
Assist for Distributed Shared Memory", Proceedings ofthe 13th International
Conference on Distributed Computing Systems, May 1993, 246-255.

-- 32--



Appendix: Tables and FiKures

Data Transmission Request & Data

Message Size Time Transmission Time

1 byte 175 uSeconds 1945 uSeconds

10 bytes 178 uSeconds 1972 uSeconds

100 bytes 215 uSeconds 2051 uSeconds

1 kilobyte 372 uSeconds 3331 uSeconds

2 kilobytes 830 uSeconds 4729 uSeconds

[Times based on 3000 trials on a network of Sunl4 workstations]

Table 1: Communication Delays Caused by Message Transmission

I File Server Access Remote Memory

PaQeSize Time Access Time Ratio
100 bytes 5506 uSeconds 2051 uSeconds 2.68
1 Kilobyte 5589 uSeconds 3331 uSeconds 1.68

2 Kilobytes 5725 uSeconds 4729 uSeconds 1.21

[Times Based on 3000 trial~ on a network ofSun/4 workstations]

Table 2: CfJmparison of File versus Remote Memory Page Fault Delays

-- 33 --



I..J.)
~

File Server Workstation 4

Disk Storage Local Memory

Tape Storage User Processes

'File Retrieval Shared Virtual Memory

Maintenance

IWorkstation 2 I Network Communication IWorkstation 6 I

I I I

IWorkstationl I IWorkstation 3 I IWorkstation 5 I IWorkstation N I

All Workstations have identical resources and responsibilities.

Figure 1. Network Configuration, Resources and Responsibilities



tN
VI

Image Processing Problem: Examination of Segmented Regions of an hnage

LEGEND: A - Segmentation Region 1

C - Segmentation Region 3

B - Segmentation Region 2

D - Overlap Regions

Figure 2: Sample of Multiple Readers of Shared Memory Data



Vita

Thomas Browne was born in Plainfield, New Jersey on January 26, 1967 to

Charles and Virginia Browne, and Ms lived in Allentown, Pennsylvania for most ofhis

life.

He graduated from Lehigh University in 1989 with a Bachelors of Science in

computer science and minors in theatre and applied mathematics. He graduated

summa cum laude and is a member ofPhi Beta Kappa.

He attended the University ofPittsburgh and graduated in 1992 with a Master

of Arts in technical theatre.

After completing his Masters degree in computei' science, Thomas plans to

pursue his PhD at Georgia Institute of Technology.

-- 36--




	Lehigh University
	Lehigh Preserve
	1994

	Reducing page-fault delays in a MIMD distributed virtual shared memory
	Thomas P. Browne
	Recommended Citation


	00248
	00249
	00251
	00252
	00253
	00254
	00255
	00256
	00257
	00258
	00259
	00260
	00261
	00262
	00263
	00264
	00265
	00266
	00267
	00268
	00269
	00270
	00271
	00272
	00273
	00274
	00275
	00276
	00277
	00278
	00279
	00280
	00281
	00282
	00283
	00284
	00285
	00286
	00287
	00288
	00289

