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Abstract

In this theses a method for multiresolution image segmentation is implemented and

tested. The essence of the method is hierarchical region growing and pyramidal

multi resolution image representation. The relationship between pixels on different

pyramid levels is modeled by fuzzy membership function. The selection of the pa

rameters of the fuzzy membership function allows for fine-tuning the method to

specific segmentation objectives. The method is tested on recognition of microcal

cifications and nodules in mammographic images using normal mammograms with

superimposed synthetic objects and mammograms containing cancer.
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Chapter 1

Introduction

Breast cancer is currently the second cause (next to lung cancer) of cancer-related

mortality in the female population in the USA [1],[2]. It is estimated that 150,000

new cases of breast cancer were detected in 1990 and 44,000 deaths were caused by

it in the same year [1]. It is also predicted that these numbers will increase in the

future [3]. Early detection of breast cancer is the key to successful treatment ·and

reduction of mortality. Consequently, routine mammograms are recommended for

a large percentage of the female population as the most reliable detection method.

On average, a mammogram can detect breast cancer two years before it is palpa

ble. Studies have shown that properly administered mammograms can reduce the

overall mortality from breast cancer in specific groups of the population by 30%.

Consequently, NCr has chosen breast cancer screening as one of its high priorities for

the year 2000. One of the major obstacles towards achieving this goal is high cost

of the procedure. Part of this cost is associated with mammogram reading, which

is performed by highly skilled experts. Considering that, typically, there are four

mammograms associated with an individual, a viable means of reducing the cost is

1
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to replace a part of the manual readings by automated, computer-based mamrpo

gram analysis. In addition, automation offers consistency in performance since it is

not subject to fatigue.

Automated mammogram analysis has attracted considerable attention of re

searchers over the past two decades [4]. Due to complexity of the problem, re

searchers have considered specific subproblems. Some of them attempt to automat

ically detect and classify abnormal regions of the breast, such as circumscribed or

stellate lesions. The others attempt to detect and classify microcalcification, which

are present in 30 - 50% of breast carcinomas [5]. The proposed solutions may be

classified in two majcr categories: computer detection systems (CDS) and a com

puter classification systems (CCS). Differences between them are as follows. CDS

.attempt to find areas of abnormality in mammograms and report their location.

CCS have a broader scope; they not only have the role of reporting the location of

abnormalities, but also classifying those abnormalities into malignant or benign [4].

This work concentrates on the problem of mammogram segmentation and de

tection of abnormalities and thus is classified as a CDS.

Segmentation of a mammogram should output two types of regions: potentially

cancerous regions and normal regions. Variations within the limits of normality of

highly textured breast tissue pose an obstacle in achieving this objective. Cancerous

changes may be very subtle, of low contra~t, and with hazy borders. Consequently,

cancerous changes are frequently less visible than v~riations in the normal tissue.

Highly textured backgrounds in mammograms dictate selection of image segmen

tation methods that are successful in dealing with texture regions. Multi-resolution

pyramid based image segmentation [6], [7] is chosen as the basis of the work de

scribed in this thesis. The concept of pyramid based segmentation was proposed

earlier [8] for detection of fine details in complex texture backgrounds and is based

2



on fuzzy set theory. The method was proved successful in segmenting low resolu

tion mammograms containing large tumors, as described in [9]. In this thesis, fuzzy

pyramid linking was modified to detect subtle intensity changes and small detail

(microcalcifications) .

The thesis is organized as follows. Chapter 2 is a review of recent work in the

area of computer mammography. Chapter 3 describes the fuzzy pyramid linking

method. Modificati.ons of the method and parameter selection for segmentation of

mammograms are described in Chapter 4. In Chapter 5 performance evaluation of

the fuzzy pyramid linking method is presented.

3



Chapter 2

Review of Related Work in

Computer Aided Mammography

Recently, automated mammogram analysis has attracted a number of researchers

the field of computer image processing. Due to complexity of the problem, specific

subproblems are considered. One group of researchers is concerned with detection of

abnormal regions in a breast such as lesions and masses; another group is concerned

with detection of microcalcification. Both of the groups are involved in the design of

CDSs. In contrast) a number of researchers have made an effort to classify abnormal

areas as malignant or benign) and they are involved in building a cess. The

difference between CDSs and cess is that former report if there are abnormalities

in mammograms and where they are located) while the later in addition determines

if the abnormalities are malignant or benign. Stewart et al. [4] argued that CDSs

are more likely to influence medical care in the near future.
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2.1. COMPUTER ANALYSIS OF MAMMOGRAMS CONTAINING MASSES

2.1 Computer Analysis of Mammograms Con

taining Masses

In this section we review systems that detect and classify masses in mammographic

images in chronological order. The earliest work involving computers in mammo

gram analysis was done by Winsberg et ai. in 1967 [10] who tried to locate breast

lesions by comparison of the left and the right breasts. Mammograms were digitized

to a pixel dimension of 0.14 X 0.14 mm and 8 gray levels. A digitized mammogram

was divided into 64 small regions (windows) to allow comparison between the same

regions in the left and right breast. Each region was characterized by four vectors

derived from the light intensities in the region. Area, distribution, contiguity, and

uniformity vectors were calculated for each grey level. The vector sets for the two

breasts were then combined and differences were analyzed resulting in detection of

abnormal areas. The method was able to detect lesions in selected cases.

Ackerman et ai. [11] in 1973 published a paper describing 36 mammogram

properties of lesions in benign and malignant breast disease cases. A list of properties

was compiled, in order of the importance, by a radiologist. The most important

properties were: mass diameter, percentage of peripheral fat, mass border and the

number of suspicious areas. This properties were later used by other researchers

[12], [13] to incorporate some form of knowledge in their systems.

Kimme et ai. [12] described first fully-automatic detection and classification sys

tem in 1975. The procedure is applied on the breast tissue of the mammogram only

and as a first step the white halo is detected. Second, both left and right breasts

were partitioned into rectangles of fixed dimensions of breast tissue so that regions

of similar tissue could be compared with one another. Then, ten statistics features

5
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2.1. COMPUTER ANALYSIS OF MAMMOGRAMS CONTAINING MASSES

of the regions were calculated. Finally, the differences between the features of cor

responding rectangles in two breasts were analyzed. They started with resolution of

200 dots per inch (dpi) and then reduced it twice to lower the storage requirements.

Hand et at. [13] in 1979 described a procedure for locating suspicious areas in a

mammogram. Original image of 1400 X 1029 pixels was reduced by replacing each
.r

10 X 10 window, called Primary Resolution Cell (PRC), with 14 parameters describ-

ing the PRC. These parameters measured intensity, roughness, and directionality

within the PRC. The breast boundary was chosen by setting thresholds for three

intensities and directional parameters in a PRC. Parameters were then combined to

measure 'circle-likeness' and 'star-likeness' of objects in the PRC. A combination

of intensity, circle and star-likeness were used to generate the 'activity' parameter,

one for each breast. Then subtracting the activity parameter of one of the breasts

from that of the other defines the suspicious parameters. These parameters were

run through the low-pass filter and thresholded. Corresponding areas were marked

as SUSpICIOUS.

Similar approach was taken by Semmlow et at. [14] who further extended the

Hand et at. work to classification. They used 16-level gray scale images and ex

tracted PRC. Four parameters were calculated from PRCs: one represented inten

sity, one roughness, and other two directionality. The outline of the breast was

determined by first locating the nipple using a spatial filter and then applying the

Sobel's edge detector. Suspicious areas were detected similarly as described in [13]

by using activity and suspicious parameters. Feature extraction was employed and

cluster analysis was performed to facilitate classificatiop..

Gale et at. [15] investigated important mammographic signs of malignancy. The

objective was to discriminate between malignant and benign disease. Study showed

that 12 out of the initial 39 signs were important in discrimination. This conclusion

was important, because it allowed for simplification of the classification rule.

6



2.2. COMPUTER ANALYSIS OF MAMMOGRAMS WITH MICRO CALCIFICATIONS

Brzakovic et al. [9] introduced a system for automatic detection and analysis

of benign and malignant carcinomas in mammograms. Described procedure split

processing in two stages. First, homogeneous regions were distinguished from the

background by using fuzzy pyramid linking and thresholding. The second stage

classified the segmented objects into three classes: benign, malignant, and normal.

Classification was performed by using Bayes classifiers and deterministic rules ap

plied in a hierarchical structure. The structure was organized in such a way that

simplest measurements (such as size and shape compactness) were situated at the

top and the procedure continued only if a reliable classification could not be made

with these measurements. The complexity of measurements increased at lower lev

els.

2.2 Computer Analysis of Mammograms with

Microcalcifications

In 1978 Hoyer and Spiesberger [16] described a system which attempted to detect

masses as well as calcifications.They worked with fairly large resolution of 1000dpi.

Program first found the outline of the breast considering the grey level differences

between pixels in both the horizontal and vertical directions. When these differences

were larger than the threshold, the pixels were marked as the breast outline. Next,

extraction of texture features was performed for windows of the specified sizes and

features were compared. Calcifications were detected by investigation of the central

pixel in a 19 x 19 window (covering 0.5 x 0.5mm) which was moved over image. If

the central pixel was a local bright spot then the pixel was marked as a location of

a possible calcification. After completition the initial marking of locations, the test

for compactness and brightness was run in order to reduce the number of potential

7



2.2. COMPUTER ANALYSIS OF MAMMOGRAMS WITH MICRO CALCIFICATIONS

calcifications leaving only true calcifications.

Some authors were more interested in computer aided enhancement than actual

classification. Chan et at. [17] obtained a "difference image" by subtracting a signal

suppressed version of the original image from the enhanced version. In order to get

a signal enhanced image, they applied a matching filter to the image. The signal

suppressed image was generated by applying a median filter. The difference image

was then thresholded in two different modes: global, where the gray levels above

the threshold value were retained, and local, in which the local statistics within a

square window of 51 x 51 pixels were used to determine a dynamic threshold value.

At the end signal extraction was achieved through the use of a boundary detection
.'

procedure and the area thresholding criterion derived from known characteristics of

micro-calcifications.

Olsen et at. [18] studied the image properties of breast micro-calcifications and

tried to discriminate benign from malignant calcifications. They digitized 48 mam

mograms to a pixel dimension of 0.21 x 0.21 mm and at 256 grey levels. First,

an analysis program provided general image statistics such as histogram, intensity

averages, medians and standard deviations, and then another program located calci

fications. On the basis of coordinate locations the following features were identified:

calcification size, calcification intensity, average grey level of regions surrounding

the calcification, cluster size, etc.

One of the recent attempts to detect micro-calcification clusters was done by

Bankman et at. [19]. Their work is based on consideration that the m,:mmogram

images are 3-D landscapes where the brightness of the mammogram is represented

by the elevation of the landscape. Because micro-calcifications are relatively brighter

than their immediate surroundings, they appear as prominent peaks that stand out

with respect to the local surrounding. The algorithm first generates the contour

8



2.2. COMPUTER ANALYSIS OF MAMMOGRAMS WITH MICRO CALCIFICATIONS

map of the image with iso-intensity contours obtained by thresholding. In the con

tour map, each peak is represented by a nested set of contours. Contours whose
J

areas are too large to be parts of micro-calcification are disregarded. Each peak

is characterized by a sequence of contour areas. Then, final decision is made after

extracting and classifying 5 features from the area sequence of peaks: departure,

prominence, steepness, distinctness, and compactness. For the discrimination be

tween micro-calcifications the Bayesian classifier was used.

9
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Chapter 3

Texture Image Segmentation

This chapter describes the fuzzy pyramid linking method. First, the notion of

pyramids and pyramid linking is described in Sections 3.1.1 and 3.1.2, respectively.

Next, the details of fuzzy pyramid linking and the role of specific parameters are

discussed in Section 3.2.

3.1 Pyramid-based Image Segmentation

The segmentation methods employing pyramids are in essence hierarchical region

growing methods that use efficient multi-resolution image representation. In the

following section common characteristics of methods that fall into this category was

reviewed.

3.1.1 Image Pyramids

An image pyramid is a convenient and efficient representation of an image at multiple

resolutions. It is created by using the original image 10 of dimensions 2n x 2n as

the base of the pyramid. Each subsequent level of the pyramid, II ... In, is a

10



3.1. PYRAMID-BASED IMAGE SEGMENTATION

square array which is half the dimension of its predecessor. These arrays are lower

resolution representations of the original image. The top level In of the pyramid is

a 1 x 1 array. An element (node) of the array II (l > 0) is obtained by a weighted

averaging of the 11- 1 nodes within a k x k neighborhood. A pyramid is created

using a specific weighting scheme. Subsequently, a pyramid may be redefined using··

an algorithm. This section discusses pyramid creation, and S,ection 3.1.2 reviews

algorithms for redefining pyramid structures.

The selection of different weighting schemes for pyramid creation yields different

types of pyramids. A convenient approach to choosing weights is to use a Gaus

sian weighted averaging technique. The image pyramid thus created is known as a

Gaussian pyramid [20]. The Gaussian pyramid was utilized in this work and the

following discussion is limited to this pyramid; more general discussion on pyramids

can be found in [21].

The creation of each level, Ie, l = 1,2, ... , n, in the Gaussian pyramid is obtained

by convolving the image one level below, II-I, with a 4 X 4 Gaussian mask w(p, q);

therefore, an element at location (i, j) at level l is created from elements at level

l - 1 using

Our implementation is based on the idea of the Hierarchical Discrete Correlation

(HDC) [22]. Among various implementations of HDC involving odd or even neigh

borhoods the even neighborhood size was chosen. The selection was made based on

the fact that the even neighborhood: (i) requires fewer calculations (computations

are carried-out over neighborhood 4 X 4, rather than 5 X 5), and (ii) offers advantages

in linking procedures. The reduced size pyramid is generated by retaining every sec

ond pixel at each of the levels. The relationships between pixels at different levels

of the pyramid for 1-D case are shown in Figure 3.1. The extension to a 2-D case

11



3.1. PYRAMID-BASED IMAGE SEGMENTATION
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Figure 3.1: Even Hierarchical Discrete Correlation in a 1-D case. Relationships
between successive levels of pyramid. Values a and b denote weights of the Gaussian
mask.

is straightforward. It should be noted that the Gaussian mask must be separable,

normalized, and symmetric [20].

3.1.2 Pyramid Linking

Linking is the process by which nodes belonging to a given level of the pyramid are

connected with nodes at adjacent levels, i.e., links establish relationships between

pixels at different resolutions. Links are first used to redefine the pyramid iteratively

and then to segment the image by replacing the nodes at levell - 1 by the nodes at

levell.

Since each Gaussian pyramid level is created by convolving the 4 X 4 weight

mask with the preceding level of the pyramid, there exists a predetermined spatial

relationship between nodes at two adjacent levels. From Equation (1) it follows that

each node at levell, l > 0, has a 4 X 4 array of candidate child nodes at levell - 1.

Conversely, for each node at levell, l < n -1, there exists a 2 X 2 array of can'didate

12



3.1. PYRAMID-BASED IMAGE SEGMENTATION

parent nodes at level 1+ 1. The links are established for all child nodes in the

pyramid starting with the base of the pyramid and using a chosen link algorithm.

The pyramid is redefined iteratively and new links are determined. The pyramid

structure converges once the links within the pyramid stabilize.

Image segmentation can be achieved upon convergence by mappiI).g the lower

resolution image at the apex of the pyramid onto the original image at the base of

the pyramid by following the linking paths through the intermediate levels. This

form of segmentation by hierarchical region growing results in a number of regions

equal to or less than the number of nodes at the apex of the pyramid, provided that

there are no constraints limiting the propagation of the apex nodes to the base of

the pyramid.

Various algorithms have been proposed for linking nodes at adjacent levels of

the pyramid. Some of the proposed algorithms link a child node to the parent

node that is the most similar based on a chosen property, e.g., intensity. These

algorithms are frequently referred to as hard linking. In this thesis, a different al

gorithm is proposed. Difference is that a child node is linked to all four candidate

parent nodes. This algorithm differs from hard linking in that it allows connections

between intensities that differ significantly, and the strength of the link is a function

of the absolute difference between the value of a child node and its candidate parent

node. By choosing different functions determining the strength of the link, various

levels of detail can be extracted from texture images. It should be noted that this

approach allows obtaining results identical to hard pyramid linking when choosing

a particular type of linking function and/or its parameters.

13



3.2. FUZZY PYRAMID LINKING

3.2 Fuzzy Pyramid Linking

The linking algorithm used in this work is detailed in Section 3.2.1, followed by a

discussion on the selection of the linking function (Section 3.2.2) and its parameters

(Section 3.2.3).

3.2.1 Algorithm for Redefining Pyramid and Segmenta-

tion

The algorithm described in this section was proposed by Sufi [23]. The algorithm

uses the following variables are defined for the linking and ensuing iterative pyramid

redefining process:

• t/(i,j): the local image property (in this paper intensity);

• p/(i, j): the pointerto the node's parent one level above having the maximum

link strength, hereafter referred to as the maximum link;

• s/(i, j): the strength value of the link between the parent and the child nodes.

The iterations proceed in the following manner:

1. For levell = 0 set

so(i,j) = 1 and to(i,j) = Io(i,j).

2. For each levell from 1 to n - 1 set

s/(i,j) = L s/-l(i',j')¢i,j,il,jl,
i'j'

where <Pi,j,i',j' denotes the strength of the link between the node (i,j) at level

l and its child (i', j') at levell - 1,

14
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3.2. FUZZY PYRAMID LINKING

and

tl(i,j) = 'Etl-l(i',j')¢>i,i,il,j',
i'jI

with summations performed over all children of the node.

3. For each node at levell, for 0 ~ 1 < n - 2, the pointer PI(i,j) points to the

parent node at levell +1 that has the maximum link strength among the four

candidate parent nodes. If two or more parents have the same link strength, a

link is chosen randomly; however, if either link existed in the previous iteration,

the link remains unchanged.

4. Once the links have propagated to the top of the pyramid the value of every

node, except those at level 0, is recomputed in the following manner:

5. If no link is reassigned during the current iteration, it is assumed that a steady

state has been reached. If any number of links have been reassigned during

the current iteration, the procedure is repeated starting from Step 2.

Upon reaching steady state, image segmentation is achieved in one top-down

pass beginning from level n - 1. In this pass, a child node at levell is replaced by

the parent node pointed to by PI(i,j). The proposed algorithm limits the propaga

tion of the links for specific nodes by requiring that the links between the child and

parent nodes (pointed by PI(i,j)) exceed a specified threshold 7.

3.2.2 Modeling Strength of the Link

The choice of the function ¢>, representing the strength of the link, determines the

flexibility of the pyramid segmentation. Various monotonically decreasing functions

15



3.2. FUZZY PYRAMID LINKING

were considered by Sufi [23] for modeling the strength of the link, including the

linear-like, sigmoid-like, and fuzzy membership functions. Characteristics of the

class of images to be segmented combined with the objectives of segmentation de

termine the best type of function. Considering Fisher ratios and false detections,

the fuzzy membership function was found to be the most flexible of the three [23].

The linking algorithm employing this function is appropriately called fuzzy pyramid

linking.

The fuzzy membership function is widely used in various applications based on

the fuzzy set theory [24]. In these applications the objective is to establish imprecise

relationships between objects and concepts, as is the case in this work. Therefore,

the strength of the link between nodes (i, j) and (i', j') is modeled by

where

¢i,j,i"Au; a, (3,,,) = 1 - S(u; a, (3,,,), (3.2)

o for u ::; a

2 (U-c<) 2 for a ::; u ::; (3
S(u;a,(3,,,) = "y-c< 2 (3.3)

1 - 2 (~) for (3 ::; u ::; ,
"y-c<

1 for u 2,

and u = II/(i,j) - I/_1(i',j')I. The parameters a and, determine the shape of the

function, and (3 = ~. Values of ¢i,j,i',j' range between 0 and 1, and the assignment

of specific values is determined by the selection of a and". The roles of these two

parameters are discussed in the next section.

The function ¢i,j,i',j/ described by Equations (2) and (3), makes the proposed

pyramid linking method a special case of fuzzy isodata clustering [23]. Consequently,

based on the convergence of fuzzy isodata clustering [25], the proposed pyramid

linking is convergent [23]. (The relationship between pyramid linking and isodata

clustering is discussed by Kasif and Rosenfeld [26].)
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3.2. FUZZY PYRAMID LINKING

3.2.3 Parameter Selection: General Concerns

The discussion in this section is divided into two parts. First, the selection of the

parameters for the fuzzy membership function is discussed. These parameters in

clude a and 'Y, both of which determine how the pyramid is redefined in the iterative

process. Next, we discuss parameter selection for segmentation (that follows the it

erative process). The segmentation parameters include the threshold value T and

the level of pyramid from which segmentation starts. The following discussion con

centrates on general considerations, while the specific selection of parameters for

segmenting mammograms is described in Sections 4.1-4.3.

Parameters for defining the pyramid

Parameters a and 'Y determine how intensities are weighted when generating

the next level of the pyramid. Specifically, parameter a determines the difference

between pixel values at adjacent levels below which the link strength is 1; while

'Y is the difference above which the link strength is O. Combined they determine

how much child nodes that differ from the parent node in the previous iteration

contribute to the value of that parent node in the next iteration. Physically, it

makes sense to assign relatively small integer values to a, e.g., a = 0,1,2, ... 5, and

considerably larger integer values to 'Y. The general considerations in choosing the

values for these parameters are as follows.

Parameter 0:. Since parameter 0: allows two pixel values It and 11- 1 (at levels l

and l-l, respectively) to be considered as having the same value if III-It-II ::; 0:, the

selection of this parameter is dictated by (i) expected noise level and (ii) minimum

contrast, !Lc, to be detected. Generally, parameter a should satisfy 0: << !Lc and it

should be larger than the expected variations due to noise. The tw--;considerations
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3.2. FUZZY PYRAMID LINKING

may be conflicting. However, noise effects are of lesser importance due to the fact

that through multiresolution processing the noise effects are reduced. Therefore,

minimum contrast is the dominating criterion for selecting a. It should be noted

that the selection of a in general does not impact the results significantly. We have

obtained consistent results by employing 0 ::; a ::; 15 for different classes of images,

including mammograms [8],[9].

Parameter 'Y. The impact of this parameter is significant as it has two effects:

(i) it determines the intensity difference 111 - 11-11 beyond which two pixels are

unrelated, and (ii) it determines the weight values for parent (II) and child (II-d

nodes satisfying a < 111-11- 1 \ < 'Y. If 'Y is chosen close to a, function <p [Equation (2)]

approaches a step function and the proposed algorithm approaches hard pyramid

linking. This selection is appropriate when sharp edges are present and accurate

segmentation is the objective. On the other hand, when objects are of low contrast,

it is necessary to choose larger values for 'Y. It should be noted that 'Y can be chosen

larger than the number of intensities in an image, thus implying that all intensities

are related and allowing all child nodes to contribute on an almost equal basis to

the parent node. The specific value for 'Y should be chosen based on the distribution

of intensities in an image (image histogram) and the objective of segmentation, i.e.,

expected variations within statistically homogeneous regions.

Segmentation parameters

The segmentation results using the fuzzy pyramid structure are strongly influ

enced by the level from which segmentation starts and the threshold value T. The

impact of the two is as follows.

Pyramid Level. The level of the pyramid from -which the segmentation starts

determines the maximum number of regions that can be detected in an image when
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3.2. FUZZY PYRAMID LINKING

replacing child nodes with the parent nodes, starting from the top of the pyramid

and going to the bottom and assuming that the maximum links exceed the threshold

value. Fuzzy pyramid linking allows for the creation of a potentially larger number

of regions since some pixels may retain their original values (and are not replaced)

due to thresholding.

Threshold value T. This parameter is the most critical and decides whether

a child node can be replaced by a parent node in the segmentation procedure.

Therefore, it determines the final number of regions in the segmented image since

the maximum links whose values are below the threshold value do not propagate

down to the base of the pyramid. Generally, 0 ::; T ::; 1, and high values of the

maximum links are associated with homogeneous regions, while low values appear

around edges. Choosing a small T allows practically all links to propagate, thus

generating few regions in a segmented image. On the other hand, large values of

T do not allow most of the maximum links to propagate, and the segmented image

resembles the low-pass filtered original image. The range of the maximum links in

an image is determined by the image intensities and the selection of 1. Therefore, it

is appropriate to choose threshold value adaptively after studying the histogram of

the maximum links for a specific image and taking into consideration the objectives

of image segmentation.

Using the guidelines described in this section, we have adapted the fuzzy pyramid

linking algorithm to mammogram segmentation. The selection of specific parameters
L-.

and utilization of the algorithm is described in the next chapter.
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Chapter 4

Mammogram Segmentation

This chapter is divided into three parts. First, Section 4.1 discusses the charac

teristics of mammogram images and the appropriate selection of parameters 0: and

"/. Sections 4.2 and 4.3 detail the utilization of fuzzy pyramid linking for detecting

microcalcifications and nodules, respectively. These sections discuss the strategies

employed, the appropriate pyramid level to start segmentation, and the selection of

parameter T. The segmentation procedures used for extracting microcalcifications

and nodules are summarized in Table 1.

4.1 Selection of Fuzzy Membership Function Pa

rameters

Generally, useful parts of mammogram images (breast region) are highly textured

and contain a narrow range of gray levels; e.g., when digitized to 256 gray levels

their histograms contain about 100 different intensities and typically the histograms

are unimodal. The presence of cancerous changes is statistically. insignificant except
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4.1. SELECTION OF FUZZY MEMBERSHIP FUNCTION PARAMETERS

m cases of advanced cancer, which are of little interest in massive screening of

mammograms. Noise arising from digitization is relatively low and of less concern

than highly textured and varying characteristics of the normal breast tissue.

The objective of segmentation is to detect objects of low contrast (nodules)

that vary in shape and size, and very small objects of somewhat higher contrast

(microcalcifications). Taking into account these objectives, the characteristics of

mammograms, and the general discussion in Section 3.2.3, a = 1 is chosen. This

selection is primarily motivated by our desire to detect objects of low contrast. As

already mentioned, the results are stable for a range of values of a, and we have

experimented with a ~ a ~ 15 without noticing significant difference in the results.

The selection of low values of a has little impact on digitization noise, which is taken

care of by the very natur.e of multiresolution processing.

Considering that the range of gray levels is relatively low and that relationships

between all intensities exist, , = 100 is chosen, thus allowing all intensities to be

weighted similarly and creating a truly fuzzy relationship between pixels at different

pyramid levels. All images discussed in this thesis were processed using the same

values of parameters a and ,. Therefore, it is implicitly assumed that each of the

images is subject to low noise level, the objects of interest are of low contrast and

practically all intensities in an image are related. If either of these assumptions are

violated it is necessary to choose different parameters using guidelines in Section

3.2.3.

Since there are only a few sharp intensity transitions in mammograms, my se

lection of values for parameters a and, results in the maximum links close to 1 for

most of the pixels. The only exceptions are very small objects, such as microcalcifi

cations, which have somewhat smaller maximum links. It should be noted that all

of the processed mammograms that contain no microcalcifications have high maxi

mum links. Two typical histograms of the maximum links are shown, together with
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4.1. SELECTION OF FUZZY MEMBERSHIP FUNCTION PARAMETERS

Table 4.1: Selection of parameters for extracting microcalcifications and nodules

~ objective ~ # of images used 11inks{1}~ T !level(2}

microcalcifications 2 NP l. 100. ¢rinl3J 4x4
NP l. 100. ¢rm +8(4) 4x4

small nodules 2 NP l. 100. ¢~5) 4x4
NP l. 100. ¢~6J 4x4

~ large nodules ~ 1 ~o.

(1) NP-utilize only nodes whose maximum links do not propagate from the top
of the pyramid; P-utilize only nodes whose maximum links propagate from the top
of the pyramid.
(2) Level is chosen based on corresponding image size (actual level depends on the
initial size of the image).
(3) Choose ¢min such that at K = 40 nodes have links smaller than ¢min.

(4) Choose 8 such that 2K nodes have links smaller than ¢min +8.
(5) Choose ¢1 such that K = 2A nodes have links smaller than ¢1
(A is the expected maximum area of the objects of interest).
(6) Choose ¢2 such that 2K = 4A nodes have links smaller than ¢1 (A is the expected
maximum area of the objects of interest).
(7) the chosen level is of size 2n

/ VA x 2n / VA; 2n x 2n is the image size.
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4.2. DETECTION OF MICROCALCIFICATIONS USING FUZZY PYRAMID LINKING

corresponding images, in Figure 4.1. The difference between the two images is that

the image in Figure 4.l(a) contains more texture variation, in comparison to image

in Figure 4.1(b).

4.2 Detection of Microcalcifications Using Fuzzy

Pyramid Linking

Individual microcalcifications are typically small, sometimes only one pixel in size,

and vary slightly in intensity from the surrounding area. Therefore, the microcal

cifications are associated with pyramid nodes that have J;elatively small maximum

links close to the base of the pyramid. When choosing low values for threshold T,

with selection of parameters a and 'Y described in Section 4.1, most of the child

nodes will be replaced by the parent nodes, thus generating large uniform regions in

the segmented images. Only pixels corresponding to edges and small objects, such

as individual microcalcifications, retain their original intensities in the segmented

image. The two groups of pixels can be easily differentiated since the groups cor

responding to edge pixels increase in size when T is increased, while small objects

retain their shape and size. Consequently, microcalcifications are detected in the

following three steps.

1. Upon pyramid convergence, generate histogram of the maximum links

¢mao:(i,j, i/,j'), and determine the minimum value of the maximum links ¢min.

It should be noted that it is necessary to quantize values of ¢mao:. A slightly

larger value is chosen for ¢min if the number of nodes associated with the true

minimum is very small. The value ¢min is chosen such that at least K = 40

nodes have ¢mao: :::; ¢min.
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(a)

(b)

Figure 4.1: Examples of typical histograms of maximum links (shown on logarithmic
scale): (a) textured mammogram and its maximum link histogram, and (b) relatively
uniform mammogram and its maximum link histogram.
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(a)

(b)

Figure 4.1: Examples of typical histograms of maximum links (shown on logarithmic

scale): (a) textured mammogram and its maximum link histogram, and (b) rclati\'cl\'

uniform mammogram and its maximum link histogram.
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2. Generate segmented image, 1.0 , using 70 = 4Jmin . Next, generate segmented

image, 101 , using 71 = 4Jmin +8, where 8 is chosen such that at least 2K nodes

have 4Jmax ::; 71'

3. Compare 1.0 and 101 and determine if there are pixel groupings in two images

that have not changed size. Extract these pixels and generate segmented image

containing potential microcalcifications. Retain in segmented image only the

pixels whose maximum links did not allow them to be replaced by pixels at

the very top of the pyramid.

Considering that a mammogram may contain nodules or other bright regions,

segmentation is started at the pyramid level that has size 4 X 4, thus allowing

the existence of 16 homogeneous regions. The choice of parameter K in Step 1 is

determined by the expected number of pixels corresponding to microcalcifications,

and K should be larger than that number. The selection of 8 in Step 2 should be

such that 101 contains observable differences relative to 1.0 . If 70 = 71, i.e., more than

2K pixels are associated with 4Jmin , the next value of 4Jmax is chosen for 71' Neither

of the values K or 8 is critical for the success of the method; however, the above

guidelines keep the algorithm in Step 3 simple. The evaluation of the performance

of this method on mammograms containing microcalcifications as well as normal

mammograms containing synthetically superimposed microcalcifications is described

and quantitatively summarized in Chapter 5. The evaluation incorporates both the

ability to detect microcalcifications as well as false alarms.
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4.3 Detection of Nodules Using Fuzzy Pyramid

Linking

Nodules, benign and malignant, are generally characterized by higher intensities

(relatively to the surrounding tissue) and are relatively homogeneous, at least in the

center. However, they may have ill-defined boundaries. In contrast to microcalcifi

cations, the nodules are relatively large. Depending on the size of the nodules we

propose two approaches. The first is used for the detection of small nodules and

uses the procedure described in Section 4.2. The only difference is that in Steps 1

and 2 the threshold values TO and T1 are chosen differently, based on the expected

maximum size of the object, A. Value TO is chosen such that K = 2A nodes have

the maximum links smaller than this value. The threshold value T1 is chosen such

that 2K nodes have the maximum links smaller than T1.

A different version of fuzzy pyramid linking is used for the detection of larger

objects. There are two basic differences, the level from which the segmentation starts

and the selection of parameter T. The first is dictated by the size of the objects

to be detected. The smaller the objects, the lower the level of pyramid is chosen;

practically, this means that it is appropriate to choose the level of pyramid which

allows the object "to be seen". Since objective is to detect homogeneous regions, it

is necessary that all links propagate through the pyramid. The image of interest, in

contrast to microcalcification detection where we are interested only in pixels whose

links did not propagate from the top of the pyramid, is the image where all pixels

were replaced by the pixels at the top of the pyramid (i.e., the level from which the

segmentation has started). The nodules are extracted in the following three steps.

1. Choose T < ¢min and perform segmentation as described in Section 4.2.
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2. Linearly scale and threshold the result. (In this work the thresholding algo

rithm described in [27] is used.)

3. Check the size, intensity characteristics, and shape of each remaining object.

Extract objects that are less than the specified size (in our case 1/10 of the

total image size), have higher values than the image mean, and have a relatively

circular shape (we have used the measure of compactness). These objects are

potential nodules.

The simple reasoning is employed in the third step; more sophisticated considera

tions, like complex shape analysis, can eliminate most of the false alarms.
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Chapter 5

Performance Evaluation

Performance evaluations were carried out using: (i) synthetically generated objects

superimposed on normal mammograms and (ii) digitized mammogram images. The

experiments with synthetically generated objects were ,carried out on two differ

ent backgrounds (normal mammograms), and the each object was placed at five or

more locations in the image, and the results were averaged for different locations.

Total of 89 real mammograms were used for the evaluation; 50 of the mammograms

were normal, 27 contained microcalcifications, and 12 contained nodules. All im

ages were processed by subdividing a mammogram into non-overlapping windows

of size 256 X 256 and integrating the individual results. The specific experiments

and results are described in the following. First, Section 5.1 describes synthetic

object generation, and Sections 5.2 and 5.3 summarize the results for detection of

microcalcifications and nodules, respectively.
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5.1. SYNTHETIC IMAGE GENERATION

(a) (b)

Figure 5.1: Two normal mammograms that were used as the background for su
perimposing synthetic objects: (a) low textured background, (b) highly textured
background.

5.1 Synthetic Image Generation

The superposition of synthetically generated objects on real mammograms provides

for an objective study of capabilities of the method regarding contrast, size, and

shape of objects. The error estimation in this case is accurate since the truth

images are known precisely.

Normal mammograms of varying texture complexity were used as the back

ground for the study. The complete sets of experiments were carried out using two

mammograms, shown in Figure 5.1, as the background. These two mammograms

were chosen because they represent extremes in complexity of generic textures in

the given sample set of images. The mammogram shown in Figure 5.1(a) is char

acterized by limited variation in intensity, while the mammogram shown in Figure

5.1(b) is highly textured and a more challenging background for the tests.

Two sets of experiments were carried out. The first set pertains to establishing
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(a) ( b)

Figure 5.1: Two normal mammograms that were used as the background f(lr su

pemnposmg synthetic objects: (a) low textured background, (b) highly textured
background.

5.1 Synthetic Image Generation

The superposition of synthetically generated objects on real mammograms pf()vides

for an objective study of capabilities of the method regarding contrast, size. and

shape of objects. The error estimation in this case is accurate since the truth

images are known precisely.

:"ormal mammogr~ms of varymg texture complexity were used as the back

ground for the study. The complete sets of experiments were carried out using t\\"o

mammograms, shown in Figure 5.1, as the background. These two mammograms

were chosen because they represent extremes in complexity ()f generic textures in

the given sample set of images. The mammogram shown in Figure 5.1 (a) is char-

acterized by limited variation in intensity, while the mammogram shown in Figure

5.1 (b) is highly textured and a more challenging background f()r the tests.

Two sets of experiments were carried out. The first set pertains tn establishing
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the capability of the proposed method to detect microcalcification, and the objective

of the second set was to evaluate the performance when detecting larger low con

trast objects, simulating nodules (benign and malignant). In both cases the objects

were modeled in the same way, and by using different placement rules and specific

parameters different classes of objects were generated.

Object Model

An object in all experiments was modeled by an ellipse with a specified major

axis, minor axis, and the angle w between the major axis and the x-axis (horizontal

axis). By varying the ratio of the two axes the objects could vary from circular to

very elongated ellipses of varying w centered at the same point. A star-like structure

encountered in some nodules, was generated by a number of elongated ellipses of

varying w. Microcalcifications were modeled by a pattern of small circular objects

placed in a spiral fashion around a specified center (the number of objects was

varied).

Object Edges

In order to allow natural variation in edge location, edges of each object were

deformed using a random number generator (and a specified seed); pixels werr= either

removed or added to the individual edge locations depending on if the number re

turned by the random number generator was odd or even. By repeatedly performing

edge deformation, an object was deformed as desired.

Edge Profiles

Generally, objects of interest in mammograms do not have sharp edges and blend

with the surrounding area. Therefore, we have chosen to model object edges using

the ramp edge model, in contrast to the step edge model. The ramp edge model

allows a gradual transition of intensities and a blending of objects and backgrounds.

An object was assigned a chosen intensity, i, and the object edge profiles were

changed into ramps of specified profile. The center of the ramp was placed on the
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physical edge of the object, and the intensities gradually changed starting from the

inside of the object. (Clearly, there is a relationship between object size (in particular

minor axis) and possible width of the ramp.) Finally, the object is superimposed

on the chosen background. It should be noted that the true edge locations remain

unchanged relative to the step edges since the ramp is centered at the step edge.

Therefore, the truth images correspond to the step edge model. An object may be

subjected to Gaussian noise of specified mean and standard deviation prior to being

superimposed onto the background image.

By changing the intensity, i, incrementally, identical images with varying object

contrast were generated for the purpose of studying the sensitivity of the proposed

method to contrast. By keeping the intensity the same and changing the values of

the major and minor axes, the sensitivity of the proposed method to object shape

was studied. In both studies the objects were placed 'at various locations in the same

image, and the errors were averaged for different placements in order to countereffect

the impact of specific background intensities.

5.2 Detection of Microcalcifications

It is well established that microcalcifications are one of the earliest signs of po

tential cancerous changes in breast tissue [28]. Physically, microcalcifications have

dimensions between .1-1. mm (in mammograms), implying that they are guaranteed

to be correctly digitized when using a resolution of at least 50pm. Mammograms

digitized at lower resolutions may still show the presence of microcalcificationsj

however, the contrast between the microcalcifications and the surrounding tissue is

much lower, and in some cases, depending on resolution, the microcalcifications are

blended into surrounding tissue (through digitization) and are not detectable in the

digitized images. The results obtained when applying the fuzzy pyramid linking
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algorithm (Section 4.2) to synthetic microcalcifications and real microcalcifications

are described in the following.

Synthetic micro calcifications

A limited number of available mammograms containing microcalcifications has

motivated us to perform these experiments. In addition, some of the available mam

mograms were oflower resolution than required; therefore, we could not draw any

reliable conclusions based on them. The primary objective of our expe~entswas

to determine the lowest contrast for which the method was able to correctly detect

. the synthetic objects. The experiments were carried out by generating clusters of

objects ranging individually in diameter from 1 to 3 pixels and placing identical

clusters over a normal mammogram at different locations. Different locations were

chosen in order to avoid the impact of neighboring intensities that may make de

tection easier in some cases. The results were averaged for different locations. The

contrast of a cluster of objects was varied relative to the mean of the image region

in predetermined steps.

The performance of the method varied with the complexity of the texture back

ground. The method was able to correctly detect objects placed on the background

in Figure 5.1(b) up to a contrast difference of 15 (between the region mean and the

objects). By further lowering the contr~st, the number of pixels that the method

could not detect increased, and finally at contrast difference 10 only 60% of pixels

were correctly detected. The average standard deviation of the background was in

this case 9.5. In the case of the background shown in Figure 5.1(a), which is less

textured, the method was able to detect the synthetic objects correctly for contrasts

up to 10. By decreasing contrast to 9, the number of correctly detected pixels was

reduced to 80%. The average standard deviation of the background was in this

case 5.3. In either of the cases, the method did not detect any false positives. Two

examples of superimposed objects, the truth images, and the obtained results are
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shown in Figure 5.2.

The superposition of synthetic objects allowed evaluating the method's capa

bilities to detect objects that are small and have specific contrast; however, the

background in the experiments differs from the case of detecting microcalcifications

in high resolution mammograms in that the latter is expected to show more varia

tions in the intensities of the normal tissue. However, the expected variations are

relatively small and, as discussed in Section 3.2.3, are unlikely to significantly impact
'8.

the results.

Real Microcalcifications

The performance of the method was evaluated on two sets of images. The first

set contained 17 mammograms containing microcalcifications and 50 normal mam

mograms. This set was supplied by the University of South Florida and was accom

panied by the corresponding truth images. These images were of considerably lower

resolution than required by the sampling theorem and physical size of individual

microcalcifications. The results on these images are as follows:

• The method has detected the presence of microcalcifications in 13 images (out

of 17) in the same regions as in the accompanying truth images.

• The method has detected fewer individual microcalcifications than the truth

images point at in the cluster regions. (On average, one out of four individual

microcalcifications indicated in the truth images was missed.)

• No false positives were detected in any of the normal mammograms.

• No microcalcifications were detected in 4 images (out of 17) labelled as con

taining microcalcifications, and in another image (out of the remaining 13) no

microcalcifications were detected in one of the regions pointed at by the truth

image.
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Figure 5.2: Two examples of superimposed synthetic microcalcifications on normal
mammograms. The regions where the objects were superimposed are shown en
larged, together with the truth images and the segmentation results (left to right).
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Figure 5.2: Two examples of superimposed synthetic II1icrocalcificiltiolls Oil ll(lrIllil]

TIlaTllmograms. The regions where the objects were superilll/lllsed are showll ell·

larged, t.ogether vvit.h the truth images ilnd t.he segmentat.ioll result.s (Idt. to right).
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It should be noted that in cases where no mf~~ocalcifications were detected, careful. ~

examination on pixel level shows no presence of visible small bright objects.

The second set of mammograms consisted of 10 images digitized at resolution

of .1 mm. In order to achieve required resolution the mammograms were digi

tized in parts. Each digitized mammogram was verified by the medical expert to

contain both macrocalcifications and microcalcifications. The diameter of macro-

calcifications varied from 4 to 6 pixels (area varied 12 - 25 pixels); the diameter of

microcalcifications was 1 - 2 pixels (area varied 1 - 3 pixels). The results are as

follows:

• The presence of macrocalcifications was correctly detected in all cases.

• The presence of some microcalcifications was detected in all cases.

• An average of 2 false positives (2 pixels) were detected in cases when micro

calcifications are present in an image.

• Up to 50% of individual microcalcifications were missed if

contrast, relative to the neighboring pixels, was below 15

an individual microcalcification was adjacent to a small dark region on

only one of its sides.

It should be noted that the contrast of 15 between microcalcifications and the neigh

boring pixels is in agreement with findings for synthetic images. A bright pixel

neighboring with an individual dark pixel is perceived as a gray region at lower

resolution. If the mean of this region is close to the mean of the larger neighbor

hood, the bright pixel, i.e., the microcalcification, may be missed. In summary, the

method detects all calcifications of area larger than 2 pixels, and about 50% of the

smaller calcifications. Also, the method detects no false positives in images where no
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microcalcifications are present. Examples of detected microcalcifications are shown

itt Figure 5.3.

5.3 Detection of Nodules

As in the case of microcalcifications, we have performed two sets of experiments

using synthetic objects superimposed on normal mammograms and mammograms

containing irregular masses. The results are summarized in the following.

Synthetic Nodules

These experiments consisted in changing the shape, size, and contrast of objects

superimposed on normal mammograms in order to establish the sensitivity of the

proposed method. Generally, the method can tolerate significant variations of either

size or contrast. When the contrast dropped to 10 (relative to the region mean) in

cases of the average local standard deviation of 9.5 or when the minor axis dropped

below 10 in the same cases, the method has failed to accurately extract objects.

(The segmentation started from the level of size 8 X 8.) Further decrease of either

contrast to 8 or minor axis to 9 has resulted in the method's lack of ability to detect

objects of interest.

Also, the method has shown sensitivity to shape, and in cases of star-like objects

its accuracy was lower than in the case of round objects. However, the method has

failed for the same contrasts. (The size experiments do not apply to this case due

to the nature of the object.)

Real Nodules

A total of 12 images, supplied by the University of South Florida and labelled

irregular mass, were available for this study. The results are as follows:

• In 8 cases the method has detected nodules in agreement with the truth images.
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Figure 5.3: Two examples of mammograms containing microcalcifications. The
original image is shown on the left, and the detected microcalcifications are shown
enhanced on the right.
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Figure 5.3: Two examples of mammograms contaInIng microcalcific:at.io!1s. The

original image is shown on the left, and the detected rnic:rocalcifications arc shown
enhanced on the right.
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Except for the edge location, the agreement is on pixel to pixel basis.

• Regarding the edge location, there is an average disagreement for up to ±3

pixels per object.

• In the remaining 4 mammograms the method has detected only the rudiments

of the nodules, and more than 50% of object's pixels were missed.

• The method has detected false positives in 5 out of 50 normal mammograms.

The incidence of false positives can be reduced by post-processing that examines the

shape and intensity characteristics of the extracted objects. Examples of two de

tected nodules, the corresponding truth images, and the obtained results are shown

in Figure 5.4.

5.4 Advantages of the Proposed Method

Mammograms vary in density and complexity of texture background and therefore

require adaptive image processing methods. The proposed method shows unique

capability to detect objects that vary in size, shape and contrast. This is best

illustrated by the fact that the same method can be adapted for detection of both

microcalcifications and nodules. The method is proven to be a generalization of

the standard linking methods. In general, it outperforms the hard-linking methods

when the objects of interest do not have clearly defined boundaries [8], [23]. It is

adaptive and its sensitivity (with respect to intensity/texture variations and object

size) depends on the choice of the fuzzy linking function parameters and the choice

of the threshold value that allows replacement of a pixel value by the pixel value
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J

Figure 5.4: Two examples of mammograms containing irregular masses. From left to
right: mammogram, truth image, and segmentation results. The top images contains
the results obtained by combining outputs of the detected microcalcifications and
nodules, since this mammogram contains both (as shown by the truth image).
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Figure 5.4: Two examples of mammograms containing irregular masses. From left. t.o

right: mammogram, truth image, and segmentation results. The top images contains

t.he results obt.ained by combining output.s of the detected microcalcincations and

nodules, since this mammogram contains both (as shown by t.he t.ruth image).
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above. However, the relationship between parameters and performance is robust,

and a chosen set of parameter guarantees particular level of performance.

We have compared the performance of the proposed method to gray scale mor

phology [29] when detecting microcalcifications. The fuzzy pyramid linking yields

in general much lower rate of false positives, and in particular it does not detect

false positives in mammograms when no microcalcifications are present, in contrast

to morphological operators.

The most important advantage of the proposed method lies in the fact that the

parameters can be chosen to detect desired contrast and object size. Furthermore,

the parameters can be automatically adjusted to texture background. It is possible

to combine the outputs obtained with different parameters and assign confidence

to the final results based on the changes induced by different parameters of the

fuzzy linking function. When varying only the segmentation parameters, the pyra

mid needs to be generated only once, and the therefore the number of required

computations is small.
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Chapter 6

Conclusions

In this thesis multiresolution pyramid-based image segmentation was considered.

The fuzzy-pyramid linking algorithm was used for hierarchical image representa

tion and segmentation. The relationship between pixels at different pyramid levels

was modeled by the fuzzy-membership function. Changing the parameters of this

function allows for fine-tuning the method to specific characteristics of images being

processed.

The algorithm was tested on mammographic images with objectives: (i) to detect

nodules (objects of low contrasts that vary in shape and size) and (ii) microcalci

ficB:tions (very small objects of somewhat"higher contrast). For that purpose two

versions of the algorithm were developed. The two versions were evaluated in two

ways: (i) using synthetically generated objects superimposed on normal mammo

grams, and (ii) using mammogram images containing real microcalcifications and

nodules. Using synthetically generated objects we were able to precisely determine

parameters for the fuzzy membership function and the level from which pyramid

linking should start. It gave us useful information of method's capabilities and its

sensitivity to object size, shape, and contrast. In all cases the synthetic objects
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were detected when contrast difference between the objects and the background

was greater than 15 [6]. The real mammograms tests were carried out on 89 im

ages, 60% of which represented normal cases, 25% contained microcalcifications and

macrocalcifications, and the remaining 15% contained nodules. All macrocalcifica

tions were correctly detected and 75% of microcalcifications were correctly labeled

as suspicious. The algorithm found the presence of nodules in 65% of the cases..The

rate of false positives was 10%. It should be noted that the rate of false positives

can be reduced by post-processing that takes into consideration shape, dimension

and intensity characteristics of the extracted objects.

Preliminary results from the tests show potential in helping the medical experts

in early cancer detection. Presently, the method is extended to hierarchical region

splitting with objective to provide regions appropriate for comparison in mammo

gram follow-up [30].
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