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ABSTRACf

Because of the importance of the effects of waves in nearshore coastal

locations, it is necessary to have accurate and reliable nearshore wave information to

depend upon for coastal design. Offshore wave data is often available for many

coastal locations, but wave data in the nearshore is scarce. Usually, this offshore wave

information is propagated into the nearshore through the implementation of a

monochromatic analysis. A more accurate method for detennining nearshore wave
I

information may lie in the implementation of a directional spectral wave propagation

analysis which includes variations in wave frequency and propagation direction. This

type of analysis will better simulate wave propagation.

. Two computer models developed by the U.S. Army Corps of Engineers are

considered in this report. RCPWAVE is designed to perform a monochromatic wave

propagation where STWAVE is designed to perform a directional spectral wave

propagation. A third method, the component method, which performs directional

spectral wave propagation with the use of RCPWAVE, will also be employed.

Conclusions from this investigation show the importance of considering the

frequency/direction spread in a wave propagation. analysis. With respect to a

monochromatic propagation analysis, significantly different nearshore peak periods and

nearshore mean propagation directions are generated by a d~ctional spectral

propagation analysis. It is concluded from the results obtained herein that one should

1



consider a directional spectral wave propagation method when entering into a coastal

design problem.
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1.0 INTRODUCTION

1.1 Engineering Problem

An important concern for coastal design is determining the design wave

conditions at the proposed structure location. A typical design wave is defmed by a .

wave height, wave period, and wave propagation direction. Deep water wave

conditions are usually readily available; however, the problem lies in transforming

these deep water conditions as the waves propagate into the nearshore where coastal

structures are located.

This basic design problem is illustrated in Figure 1.1 where point A indicates

the deep water wave conditions and point B represents the nearshore conditions at the

structure. The lines approaching the shoreline perpendicularly are wave orthogonals.
which indicate the refracted wave pattern for a monochromatic wave. The distance

--'

between these orthogonals is uniform in deep water, point A, but as they enter the

nearshore, this spacing can increase or decrease as a function of the bathymetry.
i

Refraction plus shoaling effects change th~ height and direction of individual waves

as they approach the shore. Use of a single representative wave in this analysis will

not likely produce results that are adequately representative of the nearshore

transfonnation of a directional wave spectrum.

3
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1.2 Scope of Investigation

Presently, the most common method for obtaining nearshore wave conditions

is through the ~plementation of a monochromatic wave propagation analysis. A

monochromatic analysis uses one representative wave condition and moves this wave

across the site bathymetry into the nearshore. In a true coastal environment, the wave

conditions entering a site are not simply defmed by one wave height, one wave period,

and one wave direction, but are composed of a directional spectrum of waves covering

a range of frequencies and directions. An example of such a wave condition is given

in Figure 1.2. This shows the spectral energy, S(f,6), versus both frequency and

propagation direction. This wave spectrum was obtained from a U.S. Army Corps of

Engineers operated directional wave gage array located in Duck, North Carolina. The

spectral peak is representative of the spectral peak period and propagation direction.

The scope of this investigation is to compare the resulting nearshore wave

conditions from a monochromatic wave propagation with those from a directional

spectral wave propagation to discover the impact of neglecting variations in frequency
'\

and propagation direction. Specifically, this investigation will include a comparison

between monochromatic propagation versus directional spectral propagation as it

relates to wave height, wave propagation direction, and wave period at the nearshore

location. The analysis of these wave conditions will include the effects of refraction,

shoaling, and diffraction.

5
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1.3 General Wave Theory Concepts

This section contains a summary of selected wave theory concepts required as

background to the material presented in this thesis. For further discussion of these

concepts see Dean and Dalrymple (1984) and Sorensen (1993).

When neglecting changes due to bottom and surface effects, such as wind and

bottom friction, as well as wave reflection, the change in height and direction of a

wave as it moves into the nearshore are caused by three mechanisms: refraction,

shoaling, and diffraction. Wave refraction is due to variations in wave celerity along

the wave crest: because of this variation, the wave will refract toward areas of lower

celerity. This concept can be further clarified by giving its relation to wave energy.

Equation 1.1 shows that the wave energy per unit crest width is directly a function of

the wave height squared.

where:

E = yJl2L
8

(1.1)

E

Y
H
L

wave energy per unit crest width
specific weight
wave height
wave length

In Figure 1.1, The wave orthogonals have a constant deep water spacing, Bo• As the

wave propagates into the nearshore, these orthogonals bend, or refract, as a result of

the local bathymetry, and the energy density between these orthogonals increases or

decreases owing to a convergence or divergenc~ in the wave orthogonal paths.

7



Introducing Equation 1.2, it is therefore pbssible to relate this orthogonal spacing with

wave refraction, by a refraction coefficient defmed as:

where:

(1.2)

refraction coefficient
deep water orthogonal spacing
orthogonal spacing

A refraction coefficient greater than 1 is indicative of a convergence of energy and an

increase in wave height at the nearshore location; whereas a value less than 1 is

indicative of a divergence in energy and a decrease in wave height.

Wave shoaling is directly a function of the relative depth: th~ water depth over

the wave length (d/L). As a wave moves into the nearshore, it begins to feel bottom,

or shoal. Equation 1.3 defmes the shoaling coefficient, Ks' which is an indicator of

the change in wave height caused by shoaling.

. K, = ~ 2:
where:

(1.3)

shoaling coefficient
deep water wave length
ratio between wave group celerity and wave celerity

8



Combining the effects of both wave refraction and wave shoaling in Equation 1.4, the

wave height at the nearshore location can be determined.

H-==KKH r s
o

-(1.4)

In Equation 1.4, Ho represents the deep water wave height and KA is called the

combined refraction and shoaling coefficient.

Because there are areas of energy convergence and divergence along the

nearshore wave crest as a result of refraction, there is a tendency for this energy to

move along the wave crest to achieve a uniform energy spread. This energy transfer

along the wave crest is known as wave diffraction caused by local bathymetry. Wave

diffraction allows the wave to approach a constant wave height along its crest. To

combine the effects of wave diffraction with those from wave refraction, a solution

must be developed for the three-dimensional Laplace equation:

&4> 0 &4> 0 &4> 0 0
--+--+-- ==

Bx2 By 2 Bz2

where:

<Po three-dimensional complex velocity potential
x, y horizontal coordinate directions
z vertical coordinate direction

9
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In order to obtain a solution to Equation 1.5, boundary conditions including bottom,

surface, and lateral conditions must be implemented.

10



· 2.0 NUMERICAL APPROACH

Two numerical models developed by the U.S. Anny Corps of Engineers are

considered for use in the comparison of monochromatic wave propagation~

RCPWAVE~ versus directional spectral wave propagation~ STWAVE. The following

sections briefly describe these models. Please refer to the Coastal Modeling System

(CMS) User's Manual (Cialone et al. (1992)) if a more detailed explanation is desired.

A third numerical approach~ a component analysis~ will be discussed for use in the

analysis of directional spectral wave propagation.

2.1 RCPWAVE

The Regional Coastal Processes Wave Propagation Model (RCPWAVE) is a

fmite difference based computer model which simulates monochromatic~ linear wave

propagation. This model may be used to generate a fIrst-order analysis of wave

characteristics as they change when propagating over variable coastal bathymetry.

2.1.1 Model Theory

RCPWAVE applies both the mild slope equation~ Berkhoff (1972)~ and the

conservation of waves equation~ which may be found in Dean and Dalrymple (1984).

The mild slope equation~ given in Equation 2.1~ is based upon an irrotational~ linear~

simple harmonic wave system and is applicable from deep water up to the breaker

zone.

11



where:

~[CC B<PO]+~[CC B<PO]+a
2

CgcP ==0
ax g ax ay g ay C 0

wave celerity
wave group celerity
two-dimensional complex velocity potential
wave angular frequency (2rt/T)
wave period

(2.1)

The equation includes not only refraction and shoaling but also diffraction resulting

from the local bathymetry by employing a two-dimensional form of Equation 1.5

along with a bottom boundary condition to be integrated over water depth.

RCPWAVE does not include diffraction as a result of coastal structures. The two-

dimensional complex velocity potential is a function of wave height and can thus be

related to the combined refraction and shoaling coefficient via Equation 1.4.

The conservation of waves equation, given in Equation 2.2, expresses the wave

irrotationality and balances the number of waves coming into a horizontal space,

defmed by x and y, with the number of waves exiting the same horizontal space.

a(k sinO)
ax

a(k cosO) == 0
ay

12
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where:

k

e

wave number where:

cr = gk tanh(km

. g acceleration due to gravity
d water depth

wave propagation direction as defmed in Figure 2.1

Because the scope of the project only includes the use of RCPWAVE in the

analysis of wave propagation outside of the surf zone, the methods employed in the

<f

model for wave propagation within the surf zone will not be discussed.

2.1.2 Model Assumptions
c:..

The model's most limiting factor lies in its assumption of a linear,

monochromatic, short wave system This assumption allows the model to simulate

steady state wave propagation including the effects of refraction, diffraction, and

shoaling resulting from the site bathymetry. RCPWAVE neglects wave reflection

outside of the surf zone.

2.1.3 Input Requirements

RCPWAVE requires the user to provide deep. water wave conditions including

wave height, period, and propagation direction. In addition, the user needs to provide

detailed site bathymetry.

13
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2.1.4 Model Computation

Using a fInite difference method through a computational grid similar to that _

shown in Figure 2.2, RCPWAVE is able to generate solutions to Equations 2.1 and

2.2. Using the deep water wave conditions, the model fIrst generates initial estimat~s

of both the wave and wave group celerities, wave angle, and wave height for all

computational grid points. Because they are directly a function of the wave number

and wave period, the initial estimates for the wave and wave group celerities are

obtained by employing the defInition of the wave number stated previously. The

initial guess for the wave angle is calculated from Snell's Law:

sin0 l _ sin°2-----
~ c;

where:

(2.3)

wave propagation directions at locations 1 and 2
wave celerity at locations 1 and 2

Snell's law gives a relationship between the deep water approach angle and celerity and

the nearshore approach angle and celerity if the bottom contours are shore parallel.

..
First estimates of the wave height are obtained from the product of the deep water

wave height, the refraction coefficient, and the shoaling coefficient, where the

refraction and shoaling coefficients are based upon the initial estimates of the wave

number and the approach angle. The fmal values of these parameters are then solved

15
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for through an iterative fInite difference process. After a solution has been found for

all computational grid points along the offshore row, RCPWAVE repeats the procedure

for the next consecutive row. This continues until the model has generated results for

each computational point.

2.1.5 Generated Output

The output produced by RCPWAVE includes the following:

• wave height
• wave propagation direction

• wave number

The model will generate any of these quantities, with a two decimal place accuracy,

for any specifIed block of computational grid cells. The combined refraction and

shoaling coefficient can then be calculated from the given deep water wave height and

calculated nearshore wave height using quation 1.4.

2.2 STWAVE

STWAVE is a fmite-difference computer model applied on a computational

grid to simulate spectral wave energy propagation through the nearshore. The model

may be used to analyze directional wave energy spectra propagation.

17



2.2.1 Model Theory

The model is based on the spectral energy balance equation given in Equation
"

2.4, where each energy term represents a change in energy density, or energy per unit

surface area, with respect to time without including the specific weight term (see

Sorensen (1993)).

S. +5 +5 = asr./,fJ) +C ·vS(f.fJ)
m n1 ds at g ,

where:

Sin wind input energy
Sill nonlinear wave-wave interaction energy transfer
Sds energy dissipation by wind and bottom friction
S(f,8) directional wave spectrum where:

(2.4)

f
e
t
V

wave frequency
deviance from the mean direction as defmed in Figure 2.3
time
differential operator:

a :- a :-
- 1 + }ax ay

In essence, the spectral energy balance equation calculates wave growth and change

in spectral energy with both time and space.

18
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2.2.2 Model Assumptions

Many of the terms in the spectral energy balance equation are eliminated due

to the assumptions made to simplify STWAVE for efficiency. The following is a list

of these assumptions:

1. only wave energy directed into the computational grid is of
importance; therefore, wave energy directed out of the grid is
neglected.

2. time variation of wave energy at any point in the computational
grid is so slow that when compared with the required time for
wave propagation through the grid, this energy change is
negligible.

3. the model neglects the wave generation, nonlinear transfer, and
dissipation terms.

Assumption 3 implies that there is no wave growth or decay within the computational

grid; therefore, the left hand side of Equation 2.3 is zero. Also, Assumption 2

indicates that there is no time variation in wave energy within the computational grid

allowing the fIrst term on the right hand side of Equation 2.4 to equal zero. The

reduced version of the spectral energy balance equation solved in STWAVE is:

(2.5)

Equation 2.5 indicates that any spectral energy change in one coordinate direction is

equally balanced by a change in the other coordinate direction so as to allow the net

change to be zero.

20



2.2.3 Model Computation

STWAVE requires wave characteristics and bottom bathymetry as input. The

model allows much flexibility in the input format of the wave characteristics and

allows. the bathymetry to be either constant or vari~ble.

To meet the model assumptions, the computational grid used must be small

enough that wave propagation through the grid will occur in 30 minutes or less.

STWAVE assigns the offshore column of the grid with the input boundary condition

spectrum and then generates new spectral infonnation along each consecutive column

within the gri~ by including energy changes due to shoaling and refraction between

each column.

As Figure 2.4 indicates, the directional spectrum at each grid point is divided

into components through the use of frequency and direction bands. In Figure 2.4, each

semicircular ring is a frequency band and each pie shape delineated by approach

directions is a direction band. Each component is then propagated separately to the

next column by employing fmite difference operations to the spectral energy balance

equation. When all frequency direction components from one column are propagated

through to the next column, they are recombined to fonn a directional spectrum at

each grid point !ilong the new column. After the spectral infonnation of a column is

complete, STWAVE analyzes the column for wave breaking. l If it is determined that

breaking occurs, the energy which is lost during breaking is removed from the

spectrum; therefore limiting the energy in the new spectrum generated in the

consecutive columns (Davis et al. (1991)).

21
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The following output is produced by STWAVE for each desired point within

the computational grid:

• energy based significant wave height

• spectral peak period
• mean spectral propagation direction
• wave frequency spectrum
• wave frequency-direction spectrum

Using the significant wave height for the nearshore pointt a combined refraction and

shoaling coefficient is determined from Equation 1.4.

2.2.4 Model Operation

ill the attempt to use STWAVE for directional spectral wave propagationt

problems were encountered. The generated output yielded unreasonable results. After

acquiring assistance from the Coastal Engineering Research Center of the U.S. Army

Corps of Engineerst it was concluded that the problems could not be resolved without

an extensive effort and; thereforet STWAVE will not be used further in this

investigation. The U.S. Army Corps of Engineers is currently improving STWAVEt

and when the program proves to be user-friendlYt it could become state-of-the-art for

spectral wave propagation analysis.

2.3 Component Analysis

The component analysis generates an effective combined refraction and

shoaling coefficient of a transformed directional spectrum by dividing it into a number

23



of frequency/direction components as depicted in Figure 2.4. Each component is then

propagated across the bathymetric grid to produce a representative refraction and

shoaling coefficient owing to propagation across the grid. The results can then be

combined to yield the resulting transformed directional spectrum.

2.3.1 Theory

The component analysis is modeled after Goda (1985) where the resulting

refraction and shoaling coefficient is given by the following equation:

where:

(2.6)

(K)(Jeff
emiD, emax

effective combined refraction and shoaling coefficient
maximum and minimum deviations from the mean direction
of wave propagation
zero moment of wave spectrum

Equation 2.6 is derived from Equation 1.4 where the wave height is found using the

defInition of the directional spectral energy density function. The directional spectral

energy density serves as a weighting parameter by giving more emphasis to the

combined refraction and shoaling coefficients generated near the spectral peak wave

conditions and less weight with further deviation from these conditions. Reviewing

the relationship between the refraction and shoaling coefficient and the wave height,

Equation 1.4, as well as the defInition of wave energy, Equation 1.1, it is necessary

24



to use the square of the directional spectral energy function as the weighting function

so as to be representative of the wave height.

Simplifying Equation 2.6 by using summation operations yields the following:

and

where:

M N

(Kj(s )eff= L L (AE )!J(Kj(s )t
i=l j=l

m f f S(f,O)dJdf
AE= 0ij =_t._f_t._9 _

m lmn 9rnaxo f f S(f,O)dJ df
fmin 9rnin

AE relative energy of the wave component
moij zero moment of wave spectrum for section ij

(2.7)

(2.8)

This form allows the directional spectrum to be divided into components, each

representing an incremental change in spectral energy, frequency, and direction.

2.3.2 Computation

To apply the component method of determining combined refraction and

shoaling to a directional spectrum, the spectrum needs to be divided into segments by

the us~ of frequency and direction bands with spacings Af and A6, respectively, as

depicted in Figure 2.4.
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Each segment is represented by a specific frequency and specific direction that

can be used as input into RCPWAVE. The representative frequency, fjj, is taken as

the frequency at the centroid of the representative energy volume~ whereas, the

representative direction, ejj , is approximated as the direction at the center of the

direction increment, Ae. This is illustrated in Figure 2.5.

The relative energy for each wave component is the ratio between the volume

under the spectral energy density surface with respect to the frequency and direction

increments and the total volume under the spectral surface. It is computed by

integrating over both frequency and direction as shown in Equation 2.7.

The nearshore spectral peak period and mean spectral propagation direction is

obtained by recombining the directional spectrum and fmding the first moment of the

wave spectrum, mh with respect to frequency and to propagation direction. Equation

2.9 illustrates this for the determination of the nearshore mean spectral propagation

direction, emean•

lJ = m1

me:m m
o

frnu (Jrnu

f f lJstf,lJ)dfdJ
fmin (Jmin

= -::=.----::==------
frnu (Jrnu

f f stf,lJ)dfdJ
~n (Jwn

(2.9)
~

/

Using the nearshore directional spectral energy density, Equation 2.9 gives the

nearshore mean propagation direction based on the centroid of the energy distribution.
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For ease of computation, Equation 2.9 is approximated with summations in Equation

2.10.

M N H~

" " (J. -!LD..f. D..(J ..
~~ J 8 1J 1J

(J 1=1 ]=1
mean = ---"--------

M N H~

" " -!LD..f. D..(J ..LiLi 8 1J 1J
i=1 j=1

(2.10)

The wave heights and propagation directions for each wave component entered into

Equation 2.10 are obtained from the RCPWAVE output. A similar method is

employed for generating the nearshore spectral peak wave period.

2.3.3 STWAVE Comparison

There are several similarities between the component analysis and STWAVE.

Both divide the deep water input directional spectrum into segments by introducing

frequency and direction bands, both include refraction and shoaling effects as the

component is propagated into the nearshore, and both recombine the segments to give

a combined refraction and shoaling coefficient representative of the nearshore

directional spectrum.

There are two fundamental differences between the two approaches. Firstly,

STWAVE performs a bookkeeping operation as the component is moved from column

to column, but the component analysis only recombines the components when the

nearshore point of interest is reached. The method employed by STWAVE may yield
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a more accurate solution; however the level of this higher accuracy can be deemed

insignificant.

The second difference lies in the treatment of bottom induced wave diffraction.

The component method employs the mild slope equation to each spectral component

as it is propagated to the next grid cell. This procedure concurrently solves for wave

refraction and wave diffraction. In contrast to the component method, as each spectral

energy component in STWAVE is propagated to the next grid cell, it is modified to

include the effects of shoaling and pure refraction only. After the energy component

has been moved it is adjusted to include bottom wave diffraction effects.

29



J

3.0 MODEL EXPERIMENT

In order to compare monochromatic wave propagation versus directional

spectral wave propagation, a fundamental test site is simulated based upon empirical

beach profile equations developed through field studies. The wave conditions analyzed

are chosen such as to represent typical design wave conditions. The following sections

detail the experiment hydrography and wave conditions.

3.1 Hydrography

)

To simplify the hypothetical experiment site, the bottom hydrography is

generalized to eliminate effects from local bathymetric characteristics. The experiment

site bathymetry is based on an empirical beach profile first introduced by Bruun (1954)

and stated in Equation 3.1 (see Work (1991)).

h(y)=Ay 2/3

y distance offshore from the still water line
heY) water depth at y with respect to the mean water line
A scale parameter

(3.1)

The scale parameter in Equation 3.1 is dependent on sediment grain size. Based on

numerous beach profiles, Dean (1987) and Moore (1982) developed the relationship,

given in Figure 3.1, between both the sediment size or fall velocity and the scale

parameter.
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Using a sediment diameter, D, of 0.5 mm yields a scale parameter, A, equal to

0.125 m1/3. The generated beach profile extends from deep water into a 5 meter water

depth and is given in Figure 3.2. The bathymetry is held constant with respect to the

longshore direction so as to provide uniform hydrography through the implementation

of shore parallel contours.

3.2 Wave Conditions

Wave conditions are chosen so as to cover a range of frequencies and mean

propagation directions. Because the investigation is independent of the deep water

wave height, this is chosen as 1 meter for easy computation.

The wave conditions that will be analyzed are tabulated below:

I DEEP WATER WAVE CONDITIONS I
ICASE NUMBER I

MEAN DIRECTION (deg) 0 15 30 45 60 0 15 30 45 60

PERIOD (sec) 7 7 7 7 7 12 12 12 12 12

FREQUENCY (Hz) 0.14 0.14 0.14 0.14 0.14 0.08 0.08 0.08 0.08 0.08

able 1
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4.0 MONOCHROMATIC WAVE ANALYSIS

4.1 Conditions Analyzed

The wave conditions analyzed in this portion of the investigation are

represented by the deep water wave characteristics given in Table 1. These wave

characteristics each represent a different monochromatic wave system to be used in

analyzing monochromatic wave propagation.

4.2 RCPWAVE Analysis

Each set of deep water wave conditions, including wave height, wave period,

and wave propagation direction, is input directly into RCPWAVE. The model then

propagates the monochromatic wave through the test site bathymetry until the 5 meter

water depth is reached. At the nearshore 5 meter water depth, RCPWAVE generates

a wave height from which a combined refraction and shoaling coefficient is calculated

using Equation 1.4.

4.3 Results

For the ten test monochromatic wave conditions, RCPWAVE yields the

combined refraction and shoaling coefficients tabulated in Table 2.
r
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COMBINED REFRACTION AND SHOALING COEmCIENT - ~Ks
Monochromatic Propagation Analysis

Deep Water Propagation Deep Water Deep Water
Direction (deg) Tp = 7 seconds Tp = 12 seconds

0 0.91 1.00

15 0.91 0.99

30 0.89 0.95

45 0.86 0.88

60 0.78 0.76

able '2

For monochromatic wave propagation, the wave period remains constant as the wave

moves into the nearshore; therefore, the nearshore wave periods for the test conditions

are 7 seconds and 12 seconds. As the monochromatic wave system propagates into

the nearshore, refraction effects cause it to bend, yielding a new propagation direction.

The nearshore propagation direction for each test wave condition is given in Table 3.

NEARSHORE PROPAGATION DIRECTION (deg)
Monochromatic Propagation Analysis

Deep Water Propagation
Deep Water

Deep Water
Direction (deg)

Tp = 7 seconds
Tp = 12 seconds

0 0 0

15 13 8

30 25 16

45 37 24

60 47 29

able 3
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5.0 DIRECTIONAL SPECfRAL ANALYSIS

5.1 Conditions Analyzed

The wave conditions used in this section of the analysis are given in the form

of a directional spectrum, represented by a spectral energy density function. The

spectral peak wave conditions represented by these spectra are given in Table 1. Using

these significant conditions, directional spectra are generated through the use of a

spectral model: details of this modelling follow.

5.2 Directional Spectrum Generation

In order to analyze directional spectral wave propagation versus

monochromatic wave propagation, a directional system with wave conditions

equivalent to those of the monochromatic system must be developed. By

implementing a frequency spectral model along with significant wave characteristics,

this goal can be achieved. The following sections outline the chosen spectral model

and how it is modified to represent a directional system.

5.2.1 Frequency Spectrum

A JONSWAP (Joint North Sea Wave Program) one-dimensional spectra model

is utilized in the generation of a directional frequency spectrum. The JONSWAP

spectrum is defmed below:
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where:

Set) frequency spectrum energy density
fp peak frequency
u Phillip's parameter
y spectral peak shape factor
(J frequency shape factor

(5.1)

In Equation 5.1, a recommended value of 3.3 is used for the spectral peak shape factor,

y, and the frequency shape factor has values as follows:

(J = 0.07
(J = 0.09

when f < fp

when f > fp

The Phillip's parameter, u, is based on the following equation developed by Mitsuyasu

(1980):

where:

H =4g(aA)1/2£?mo p

Hmo significant wave height
A JONSWAP shape parameter

(5.2)

Equation 5.2 allows the JONSWAP spectrum to be plotted for a selected significant

wave height. The JONSWAP shape parameter is taken to be 1.96E-4 when calculated

from the JONSWAP model taking the spectral peak shape factor and frequency shape

factor values as defmed above (see Tucker (1991)). The JONSWAP spectra model

gives a spectral energy density distribution with respect to frequency similar to that in

Figure 5.1.

37



JONSWAP SPECTRUM

w
00

~-en

~

~

Figure 5.1

f

JONSWAP One-dimensional Spectra Model Distribution



To apply the JONSWAP spectrum, upper and lower cutoff frequencies are

employed. The recommended values of 0.3 and 3.0 times the peak frequency are used.

The generated one-dimensional frequency spectra for the 7 and 12 second peak period

systems are given in Figures 5.2 and 5.3.

5.2.2 Directional Spread

In the creation of a directional spectrum, the frequency spectrum must be varied

with respect to deviation from the mean propagation direction. The JONSWAP

spectrum can be spre~d directionally by introducing a directional spreading function:

where:

0(f,6)

5\f,0) =5\f )~f,0)

directional spreading function
defmed so:

J~f,0) df dJ = 1

(5.3)

Two directional spreading functions are considered for this investigation: the 'cosine

squared' function and the Mitsuyasu (1975) function.

The cosine squared directional spreading function is solely dependent on the

deviance from the mean propagation direction making it straight forward in

application. It is given by:
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(5.4)

Figure 5.4 demonstrates how this function distributes the spectral energy density with

deviance in direction. It should be noted that the energy density with respect to

frequency only changes in magnitude, not in shape, as the deviation ITom me mean~----

propagation direction is varied.

A more commonly used directional spreading function is the Mitsuyasu (1975)

function. This function, given by Equation 5.5, is dependent not only upon the

deviation from the mean propagation direction, but also upon deviation of frequency

from the peak frequency.

where:

s directional spectrum spreading factor:

(5.5)

when f < fp

when f > fp

smax maximum value of s
r mathematical gamma function

The maximum directional spectrum spreading factor increases as the wave steepness

decreases. Thus, it would have its largest value at the edge of a storm and decrease

continuously for swell propagating out from the storm. Goda (1985) recommends the
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average value of 25 for the term smax for swell with a short decay distance. A

representation of the Mitsuyasu (1975) spreading function is given in Figure 5.5.

As Figure 5.5 indicates, the spectral energy density is distributed more with

direction as the frequency deviates further from the peak frequency. In contrast to the

cosine squared distribution, in the Mitsuyasu (1975) distribution, the energy density

distribution with respect to frequency is not constant as the deviation from the mean

direction is varied.

5.3 Component Analysis

To obtain the effective combined refraction and shoaling coefficient for the

nearshore directional spectra, the component analysis detailed in Chapter 2 is utilized.

Both the directional spectra with a cosine squared distribution and the directional

spectra with a Mitsuyasu (1975) distribution are used; however, there is some

variation in the use of the component method for each directional distribution. The

following sections discuss the procedure used on each directional distribution.

5.3.1 Cosine Squared Directional Distribution

The component analysis requires the use of frequency and direction bands to

divide the directional spectrum into segments. This study uses 10 frequency bands

and 17 direction bands. The direction bands have an equal spacing of 10° covering

a directional spread from -85° to 85° about the mean propagation direction. Because
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the shape of the spectral energy density curve for a cosine squared directional

distribution does not change with direction, it is easiest to divide the directional

spectrum into components of equal energy with respect to frequency. This is

illustrated in Figure 5.6 where the spacing of the frequency bands is a maximum near

the edges of the spectrum and a minimum near the peak of the spectrum. By using

this type of a division of the spectrum, the relative energy term, aE, will only change

with deviance from the mean direction.

Once the spectrum has been divided into components, the relative energy of

each wave component is calculated from Equation 2.7 by direct integration using a

mathematical applications computer program, Mathcad 3.1. Then each component's

representative frequency, fij , is calculated again with the use of a Mathcad 3.1 to solve

Equation 5.6.

JJf S([,lJ)dJdf
fy. = _/:._f_/:.9 _

JJS([,lJ) dJdf
t:.f /:.9

(5.6)

The component's representative direction, aij' is taken at the center of the direction

increment.

The representative frequency and direction for each component is then

propagated into the nearshore using RCPWAVE. The resulting nearshore wave height

for each component is then converted into a combined refraction and shoaling

coefficient representative of the component, and Equation 2.6 is used to generate the
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effective combined refraction and shoaling coefficient for the nearshore location. The

resulting nearshore propagation directions are then used as input into Equation 2.10 to

determine the mean nearshore propagation direction. Each nearshore energy

component is still represented by the same representative frequency as its respective

deep water energy component. Using an equation similar Equation 2.10, the spectral

peak frequency representative of the nearshore energy spectrum can be determined.

5.3.2 Mitsuyasu (1975) Directional Distribution

Similar to the analysis on the cosine squared function, the component analysis

for a directional spectrum based on the Mitsuyasu (1975) function also uses 10

frequency bands and 17 direction bands and takes an equal direction band spacing of

10°. Unlike the cosine squared distribution, the frequency bands are equally spaced

yielding a different relative energy term for each component of the directional

spectrum.

Due to the complexity of the Mitsuyasu (1975) directional spreading function,

it is necessary to graphically approximate the representative frequency for each wave

component. Again, the representative direction is taken at the center of the direction

increment. The relative energy for each wave component is approximated with

Equation 5.7 which uses the representative spectral energy density of the wave

component, S(fjj,8 jj), as seen in Figure 2.5.
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EEAi AfJ Sf./ipfJJ
i=l j=l

(5.7)

The analysis then continues as with the cosine squared distribution resulting in an

effective combined refraction and shoaling coefficient for the nearshore spectrum.

5.4 Results

The effective combined refraction and shoaling coefficients generated for the

nearshore directional spectra are given in Table 4.

EFFECTIVE COMBINED REFRACTION AND SHOALING
COEmCIENT - (KrKJar

Directional Spectral Propagation Analysis

Deep Water Deep Water Tp = 7 seconds Deep Water Tp = 12 seconds
Propagation

Direction
(deg) Cosine Squared Mitsuyasu Cosine Squared Mitsuyasu

0 0.91 0.94 0.94 .98

15 0.92 0.93 0.96 .97

30 0.87 0.91 0.89 .92

45 0.82 0.88 0.82 .85

60 0.74 0.80 0.73 .75
able 4
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Table 5 gives the generated nearshore mean wave propagation direction calculated

from Equation 2.10.

NEARSHORE MEAN SPECTRAL PROPAGATION DIRECTION (deg)
Directional Spectral Propagation Analysis

Deep Water Deep Water Tp = 7 seconds Deep Water Tp = 12 seconds
Propagation

Direction
(deg) Cosine Squared Mitsuyasu Cosine Squared Mitsuyasu

0 0 0 0 0

15 7 7 2 3

30 12 11 6 7

45 20 19 11 12

60 26 25 16 17

able j

Unlike with a monochromatic wave propagation, there are shifts in the peak

wave frequency as a directional spectrum is moved into the nearshore. These

nearshore peak wave frequen~; on the nearshore directional spectral

distribution, are given in Table 6 along with their respective peak wave periods.
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NEARSHORE SPECTRAL PEAK FREQUENCY AND PERIOD
Directional Spectral Propagation Analysis

Deep Water Tp = 7 seconds Deep Water Tp = 12 seconds

Deep Water Cosine
Mitsuyasu

Cosine
MitsuyasuPropagation Squared Squared

Direction
(deg) f Tp f Tp f Tp f Tp

(Hz) (sec) (Hz) (sec) (Hz) (sec) (Hz) (sec)

0 0.23 4.3 0.25 4.0 .12 8.0 .14 7.4

15 0.23 4.3 0.25 4.0 .12 8.1 .13 7.4

30 0.23 4.3 0.25 4.1 .12 8.1 .13 7.5

45 0.23 4.3 0.25 4.0 .12 8.1 .13 7.5

60 0.23 4.3 0.25 4.0 .12 8.1 .13 7.5

able 6

51



6.0 COMPARISON OF RESULTS

The following sections will discuss and compare the nearshore wave conditions

generated from both a monochromatic wave propagation analysis and a directional

spectral wave propagation analysis. Specifically~)these sections will include the

combined refraction and shoaling coefficients~ peak period~ and mean propagation

direction.

6.1 Nearshore Combined Refraction and Shoaling Coefficient

Figures 6.1 and 6.2 graphically illustrate the generated results for the nearshore

combined refraction and shoaling coefficients versus their respective deep water mean

propagation direction. Figure 6.1 is for the test wave conditions with a 7 second deep

water wave period~ while Figure 6.2 is for those test conditions with a 12 second deep

water period.

For the monochromatic systems as well as both directional spectral systems~ the

combined refraction coefficient follows a decreasing trend with respect to an increase

in the deep water mean propagation direction. The deviation between the two

approaches is most probably a result of the spectral energy lost from energy

propagation offshore. Each spectral energy component with a propagation direction

directed offshore is lost when the spectrum is moved into the nearshore. For the test

conditions having a 7 second deep water period~ this difference in the combined

refraction and shoaling coefficients generated from a directional spectral wave

propagation and those generated from a monochromatic wave propagation varies from
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0.01 to 0.04; whereas, for the 12 second deep water period, this difference varies from

0.01 to 0.06. The larger deep water period, 12 seconds, gives larger values of the

combined refraction and shoaling coefficient for smaller deep water mean propagation

directions, but as the deep water mean propagation direction is increased, the

coefficient for the larger period wave system approaches that generated for the smaller

period system, 7 seconds.

As these figures indicate, the directional spectral combined refraction and

shoaling coefficient is dependent upon the which directional spreading function is

employed. With respect to the monochromatic wave propagation analysis, the

directional spectral analysis using a cosine squared function generally yields lower

values for the combined refraction and shoaling coefficient for both deep water wave

periods.

With the cosine squared distribution, it should be noted that the decreasing

trend of the refraction and shoaling coefficient is broken around a mean propagation

direction of 15°. At this location, the combined refraction and shoaling term increases

approaching those values generated from the monochromatic propagation analysis, and

for the wave period of 7 seconds, this term becomes larger than its equivalent from the

monochromatic ~ystem.

The Mitsuyasu directional spreading function yields a continual decrease in the

combined refraction and shoaling coefficient as the deep water mean propagation

direction increases. With respect to the monochromatic propagation analysis, the

directional spectral propagation analysis employing this distribution gives consistently
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higher values for the shorter period wave cases and consistently lower values for the

larger period cases.

In comparing the results generated from the cosine squared distribution with

those generated from the Mitsuyasu distribution, it is necessary to consider the

treatment of each distribution' for this analysis. The procedure that is followed for

each distribution is given in Chapter 5. A more accurate method is employed for

obtaining result for the cosine squared distribution; whereas, an approximation method

is employed for the Mitsuyasu distribution. Because of this inconsistency, a

comparison between the generated results of these two directional distributions may

be inconclusive. However, it is clear that the type of directional distribution employed

can significantly effect the combined refraction and shoaling coefficient.

6.2 Nearshore Peak Period

For the monochromatic wave propagation analysis, the peak wave period is

taken as a constant as the wave is propagated into the nearshore; however, when a

directional spectrum is propagated into the nearshore, shifts in spectral energy cause

changes in the peak wave period. The generated nearshore peak wave periods versus

the deep water mean propagation direction for the 10 test wave conditions are plotted

in Figures 6.3 and 6.4. Figure 6.3 represents the test conditions with a 7 second deep

water wave period, while Figure 6.4 represents the test conditions with a 12 second

deep water wave period.
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As both figures indicate the nearshore peak wave period holds constant as the

deep water propagation direction is varied for both the monochromatic propagation

analysis and the directional spectral wave propagation analysis. However, for both

deep water peak wave periods, the results generated by the directional spectral

propagation yield a lower peak period than that given by a monochromatic

propagation. This is indicative of a shift in spectral energy toward higher frequencies

as the wave spectrum is moved into the nearshore. Again, this is in part a function

of the spectral energy lost from propagation offshore.

When comparing the two directional distributions of the energy spectra against

each other, it is clear that their effects on the nearshore peak wave period prediction

are inconsequential. For both deep water peak periods, the cosine squared directional

distribution yields a higher value than that generated from the Mitsuyasu directional

distribution, but the magnitude of this difference may be considered negligible.

6.3 Nearshore Mean Propagation Direction

The nearshore mean propagation direction versus the deep water mean

propagation direction for the 7 second and 12 second deep water wave period test

conditions are presented in Figures 6.5 and 6.6, respectively. These figure indicate that

as the wave propagates into the nearshore its propagation direction moves toward 0° .

With respect to both directional spectral wave propagation analyses, the

monochromatic wave propagation analysis consistently predicts larger nearshore mean

propagation directions. The deviation of the results generated by, the monochromatic
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analysis from those generated by the directional spectral analysis increases as the deep

water propagation direction increases, with the maximum deviation between the two

analyses being over 200
• This deviation is much greater for the 7 seven second deep

water wave period test conditions than for the 12 second conditions. These results

indicate that a directional spectral wave propagation analysis yields more refractive

effects than a monochromatic wave propagation analysis. Again, this deviation in the
.~

generated results is a consequence of the spectral energy shifts included with the

directional spectral wave propagation analysis as well as a consequence of the spectral

energy lost from energy propagation offshore.

As with the nearshore peak wave period, the directional spreading function

applied to the energy spectrum has little effect on the fmal nearshore propagation

direction. As Figures 6.5 and 6.6 indicate the differences between the propagation

directions predicted using the cosine squared distribution and those predicted using the

Mitsuyasu distribution vary less than 2°. For the test conditions with a 7 second deep

water wave period, the cosine squared distribution yields slightly higher results than

those generated by the Mitsuyasu distribution. The opposite is true for the test

conditions based on a 12 second deep water wave period.
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7.0 CONCLUSIONS

7.1 Impact on Coastal Design

The significant wave condit-ions used in coastal design need to be selected so

as to best represent what is truly occurring in the field. These conditions should be

chosen so that the proposed design is conservative while remaining economically

efficient.

7.1.1 Wave Height

Wave height is important in coastal design because it generates the design

loading to the coastal structure. The results obtained in this investigation show that

a monochromatic wave propagation analysis will yield combined refraction and

shoaling coefficients similar to those generated from a directional spectral wave

propagation. These combined refraction and shoaling coefficients are directly related

to the nearshore wave height via Equation 1.4. For most test conditions, the

monochromatic wave propagation analysis gives slightly larger wave heights, yielding

a conservative estimate for the design wave height. When considering the accuracy

of the deep water wave conditions used as input into a propagation analysis, any

differences between the nearshore wave height prediction given from a monochromatic

analysis and that given from a directional spectral analysis are insignificant.
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7.1.2 Wave Period

A directional spectral wave propagation analysis \)'~onsistently generates

nearshore peak wave periods lower than those generated by a monochromatic

propagation analysis. The most significant impact of this with respect to engineering

design lies in the fact that a lower period, or higher frequency, effects the wave

steepness (HfL). Wave steepness is important when considering wave runup, beach

response, and breaking regime. An increase in wave period can also cause the loading

to a coastal structure to occur more frequently which can ultimately decrease the life

of the structure. It -is therefore important to consider the directional spectral

distribution of the wave energy in coastal design.

7.1.3 Wave Propagation Direction

The wave propagation direction is important in the prediction of coastal

sediment transport. As the wave propagation direction deviates further from 0° , the

sediment transport load increases. Because a directional spectral wave propagation

analysis, with respect to a monochromatic wave propagation analysis, significantly

reduces the nearshore wave propagation direction, it is important to consider its effects

in coastal design. A wave propagation direction generated by monochromatic analysis

may lead to gross over prediction of sediment transport rates which could result in an

economically inefficient coastal project. With respect to the nearshore wave

propagation direction, it is important to consider the directional variation in

propagation direction.
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7.2 Recommendations for Further Analysis

It is apparent that there is some discrepancy between the two directional

distributions used in the directional spectral wave propagation analysis; therefore t

further analysis should be conducted to eliminate this discrepancy. It is suggested that

the methods employed in this investigation be tested with directional spectral field data

so as to better indicate the importance of using a directional spectral design condition.

Because the conclusions made from this investigation indicate the importance

of variations in frequency and direction on coastal designt further investigation and

development is needed to produce a time and cost efficient method for obtaining

directional spectral wave conditions. Such an investigation could be based upon the

concepts developed in the STWAVE finite difference based model.
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