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ABSTRACT 

 

 

 

 

As the microprocessors are moving towards having more cores on a single chip (multi-

core), the software programs that run on those chips are also increasingly becoming 

parallel/multi-threaded.  At the heart of multi-threaded programming is the use of 

synchronization mechanisms to control access to the critical sections.  There are various 

methods that can be employed to achieve this goal.  Some are lock based, whereas others 

are not.  The use of synchronization mechanism can affect the overall speed of a multi-

threaded program.  In our project, we studied the performances of various 

synchronization mechanisms like POSIX thread locks, TestAndSet, Oyama-locks, and 

Software-Transactional-Memory using an open source distributed memory caching 

system called memcached.  After evaluating the performance of various benchmarks, we 

found that all the three lock based methods perform equally well at a high concurrency 

level.  There are some other interesting observations as well which are mentioned here.  

Also mentioned are some of the limitations of our custom developed library routines for 

generating the benchmarks, and possible enhancements in the future along with other 

future work.  
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Chapter 1: INTRODUCTION 

Everyone would agree on the fact that: no other technology industry has grown 

more rapidly than Computer and Telecommunication industries within the past few 

decades.  Since the advent of integrated circuit, the computer industry started flourishing 

at an ever increasing rate.  In computer-hardware chip manufacturing domain, Moore's 

law continued to “hold true for more than half a century”.[1]  First there were single-core 

microprocessors, and then came dual core, quad-core, hexa-core, and so on.  Even in the 

era of single-core microprocessors, some high-end systems like servers used to have 

multiple such CPUs on their motherboard thereby forming a multiprocessor machine.  As 

the underlying hardware technologies evolved, so did the software running on top.  The 

evolution of multitasking, multithreading, and similar terms is very nicely explained on 

Wikipedia website which is put together in the following quote: 

“A computer programming method called multitasking, in which 

multiple tasks (also called processes) are performed during the same 

period of time started to become popular.  As multitasking greatly 

improved the throughput of computers, programmers started to implement 

applications as sets of co-operating processes (e. g., one process 

gathering input data, one process processing input data, and one process 

writing out results on disk). This, however, required some tools to allow 

processes to efficiently exchange data.  Threads were born from the idea 

that the most efficient way for cooperating processes to exchange data 

would be to share their entire memory space. Thus, threads are basically 

processes that run in the same memory context.  Various concurrent 

computing techniques are used to avoid potential problems caused by 

multiple tasks (or threads) attempting to access the same (shared) 

resource at the same time”. [2] 

 

The concurrent computing techniques mentioned in the quote are basically various 

mechanisms to achieve synchronization between threads trying to access a sensitive 

shared region of code (called critical-section).  The study of some of these 

synchronization mechanisms forms the primary focus of our research work. 



3 

 

 

1.1: What is it all about? 

Since the evolution of multi-threaded programming techniques, software 

programmers started to make use of it.  The reason was of course, its advantages even in 

the time of single-core/single-processor systems.  With the inception of 

multiprocessor/multi-core systems, multi-threaded programming has become an 

increasingly common practice.  "A multithreaded program (usually) runs faster on 

computer systems that have multiple CPUs, CPUs with multiple cores or across a cluster 

of machines— because the threads of the program naturally lend themselves to truly 

concurrent execution".[3]  A key concept in a multi-threaded program when run on a 

multi-core/multiprocessor system is the synchronization mechanisms used to handle 

sensitive pieces of code called critical sections.  "A critical section is a piece of code that 

accesses a shared resource (data structure or device) that must not be concurrently 

accessed by more than one thread of execution".[4]  The performance of a multi-threaded 

program can be greatly influenced by the underlying synchronization mechanism, and 

this fact makes the basis of our project. 

1.2: Synchronization Mechanisms  

 The process of accessing the critical-sections in a concurrent or multithreaded 

software program is handled by using a synchronization mechanism.  One such method is 

using semaphores.  Another one is a mutex lock, which is very similar to a (binary) 

semaphore in many aspects.  Mutex lock seems to be one of the most popular and 

common methods for protecting critical sections of a code.  From the following chapters, 

it can be seen that most of our project work was comprised of converting (POSIX) mutex 
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locks to various other synchronization mechanism.  Apart from these two, there are other 

mechanisms such as MCS-Queue [26] locks, Oyama-locks [11], Flat-Combining [12], 

TestAndSet/Test&TestAndSet [27] locks, and some others.  These all are more or less 

similar in a way, since they all are based upon the concept of locking for achieving 

synchronization.  There is an API support such as OpenMP™ [28] which is available for 

shared-memory multiprocessing/multi-threaded programming, which hides the details of 

the underlying synchronization mechanisms from the programmers. Unlike the rest, a 

mechanism called Software-Transactional-Memory (STM) is modeled based on the 

concept of database transactions.  STM provides an interesting alternative to the 

traditional synchronization mechanisms, and is a unique candidate for benchmarking 

against the mutex-locks in our project.  The other candidates are 

Test&TestAndSet/TestAndSet locks and Oyama-locks.  We have provided further details 

about each of these mechanisms in the following chapters. 

1.3: Project Goal 

The goal of our project is, to study and compare various synchronization 

mechanisms in an open source high-performance multi-threaded software, by modifying 

the existing synchronization mechanism(s) present in the software.  Memcached, “a 

high-performance distributed memory object caching system"[5], was chosen as our 

candidate for this project due to a number of reasons.  The requirement to test various 

synchronization mechanisms led us to implement other techniques such as: 

Test&TestAndSet locks, Oyama-locks, as well as Software-Transactional-Memory 

version by modifying the original (open) source code of memcached.  The prime goal of 

our project is neither memcached, nor locking mechanisms.  It is the study of difference 
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in performances between Pthread-mutex lock and various other synchronization 

mechanisms in memcached server. 

1.4: Memcached, what and why? 

 Memcached in simple terms can be explained as follows.  It is a memory-

object caching system composed of at least one server and one client application.  The 

client application(s) make requests to the server(s) for data objects (such as strings, 

numbers etc.) identified by unique keys for each object.  The server stores the objects in a 

<key, value> format in the main-memory (RAM) of the machine it is running on.  For a 

given request from the client, if the server finds the object in its memory using the 

supplied key, then it is considered a cache-hit and the data is returned immediately to the 

client.  On the other hand if an entry is not found in the server for that key (a cache-miss), 

then usually the client queries a database system for the same object.  Upon retrieving the 

data from the database system, generally it also issues a store command to the 

memcached server to store the object for a next retrieval.  Thus, the client applications 

can save time of querying the database system, in cases when the objects are found in the 

memcached servers.  A detailed description of memcached is provided in the following 

chapters. 

There are some important reasons for making memcached as our software of 

choice.  First of all it's an open-source software written in C language.  Second, it is a 

multi-threaded software implemented using only POSIX Thread (Pthread) mutex locks 

for synchronization.  Also, there are various benchmarking tools (especially memslap, a 

memcached client software) available for benchmarking the memcached server.  The 

server running memcached under a heavy load can be run to saturate the CPU usage on 
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the system on which it runs.  In order, to modify the synchronization mechanisms one has 

to look only for the Pthread-mutex locks.  Last and the most important reason for 

choosing memcached is that, it was a preferred choice for testing on a hardware based 

Transactional Memory system.[25]  Even though memcached uses only mutex locks for 

guarding its critical-sections, there are different types of critical-sections.  Some are very 

short lived, whereas others are a little more time consuming.  On the other hand, there are 

some critical-sections which fit into producer-consumer scenario.  Such critical-sections 

could have been guarded by using semaphores for better performance.   
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Chapter 2: MEMCACHED 

In this chapter, we explore memcached in some more detail.  As mentioned 

before, "Memcached is a free & open source, high-performance, distributed memory 

object caching system". [5] It is intended to use for speeding up dynamic web-

applications which generally rely on the underlying database system for generating their 

content.  Memcached is an in-memory key-value store for small chunks of arbitrary data 

(strings, objects) from results of database calls, API calls, or page rendering.  Thus, 

memcached alleviates the load on the database by fulfilling the query request from the 

main memory, where the response of the query is usually cached.  If and only if the 

content of the main-memory contains stale or no data (cache-miss), then the query 

request is forwarded to the database system.  Thus, memcached system only helps in a 

high cache-hit scenario.  On the other hand if almost every client request results in a 

memcached server cache-miss, then the performance will actually degrade instead of 

improving.  There is a good amount of documentation that is available on the internet for 

various aspects of memcached system.  Our work focuses on the synchronization related 

areas of the underlying multithreaded programming.  However, in order to understand the 

synchronization related logic, it is helpful to know the basic internal design of the 

software.  The next section explains the basic functionality of the software, followed by a 

section for some internal details of the server. 

2.1: Functionality 

Memcached is a distributed memory object caching system.  It makes use of 

primary memory (RAM) of a computer to cache (store) frequently used (unmodified) 

data-objects of (usually) a web-application so that in case of a cache-hit, the datum can be 
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found in the main-memory instead of the database.  It allows any arbitrary format of the 

data to be stored, and uses (key, value) pair for each datum.  A unique key of maximum 

250 bytes in size indentifies a unique data-object/string.  Memcached clients should be 

configured for proper operation of the system.  The decision of sending a particular data-

object to one of the servers in a group (if there is more than one server) is made by an 

algorithm inside the memcached-client.  So in other words, memcached is a double level 

hashing system.  The first or client-level hash function determines the exact-server where 

a particular data-object resides, if there is more than one.  This decision is solely taken 

based on the content of the key (out of the key, value pair) using the logic in the client 

library.  A memcached client library (libmemcached) implements "A modular and 

consistent method of object distribution.  Objects are stored on servers by hashing keys. 

The hash value maps the key to a particular server". [8] Once, the data-object reaches the 

designated server, it is stored in a second or server-level hash table on that particular 

server.  The servers do not require having any knowledge of the other servers.  

Memcached API provides various features to insert/update and delete data from the 

memcached server-cache.  The server stores the data in so called slab-pages, each of one 

Megabytes size by default (or they can be of some other custom size).  There are various 

slab-classes for different data-object sizes.  Each slab-class contains various numbers of 

slab-pages, which in turn contain a set of fixed-sized chunks.  The data-objects are stored 

in these chunks, one item per chunk.  Hence, different slab-classes need to have different 

chunk-sizes in their slab-pages, even though the size of the slab-pages is the same across 

all the slab-classes.  A slab-page with a small chunk size can have many chunks, whereas 

the ones with the largest chunk size (same as slab-page size) can only have one chunk per 
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slab-page.  Figure-1 (source: [6]) provides a visual illustration of the same for one 

Kilobytes sized slab-pages. 

 

Figure-1 (Memcached storage structure) 

2.2: Internals 

Now that we know the basic functionality of memcached server (and clients), let 

us see how the memcached server is designed internally to fulfill those requirements.  

Memcached uses worker-thread based multithreading for better and faster concurrent 
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performance.   After starting, the main thread creates multiple worker threads.  The 

number of worker-threads can be specified by a command line option (-t), and it defaults 

to four.  In addition to that, it also creates two maintenance-threads.  One of those is used 

for managing the size of an internal hash table, while the other is used for rebalancing the 

slab-memory allocation.  Memcached uses libevent[31] library to handle multiple 

network connections (TCP and/or UDP).  Libevent is an asynchronous event notification 

library, which provides a set of APIs to execute a callback function when a specific event 

takes place.   

Since it is beyond the scope of our project to explain the internals of memcached 

server in a great detail, the flow of logic from the source code is explained here in a very 

abstract manner.  Like any C-program, the main function of memcached.c file marks the 

beginning.  It is followed by reading a plethora of command-line arguments given by the 

user/administrator for customization.  The arguments are stored in related variables, or 

some appropriate actions are taken.  There are also various custom header files and other 

c-program files which are used in addition to some library header files.  After that, a 

libevent instance in the main-thread is created.  Here it is used to handle a large number 

of concurrent network connections.  Now it creates the main worker threads based on the 

number of threads specified by the command line parameter "-t" or (four by default).  It is 

followed by creating a maintenance thread for maintaining an internal hash table.  A slab-

maintenance thread is also created for slab-class related management.  Either UNIX 

socket can be used, or TCP and UDP both listening sockets are created together (default 

port number is 11211).  Then the program waits in an infinite event-loop waiting for 
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serving the client-requests.  In the event of an interrupt signal (for stopping the server), it 

calls some cleanup functions before exiting. 

2.3: Synchronization  

The synchronization between various threads for guarding the simultaneous 

access to critical section of memcached server is achieved by using POSIX mutex locks 

(Pthread).  It is the POSIX standards for threads. "The standard, POSIX.1c, Threads 

extensions (IEEE Std 1003.1c-1995), defines an API for creating and manipulating 

threads." [7] In addition to protecting the critical sections, mutex variables are also used 

to synchronize condition-variables.  Condition-variables are explained later in this 

section. 

A lock is “a synchronization mechanism for enforcing limits on access to a 

resource in an environment where there are many threads of execution” [23].  Or, if we 

consider a quote:  

“A  number  of  mainly  independent  sequential-cyclic  processes 

with  restricted  means  of  communication  with  each  other  can be  

made  in  such  a  way  that  at  any  moment  one  and  only  one of  them  

is  engaged   in  the  ‘critical  section’  of  its  cycle.”[24],  

 

then a mutex lock might signify the restricted means of communication.  The POSIX 

library provides two functions to acquire a mutex-lock, viz. pthread_mutex_lock and 

pthread_mutex_trylock.  The former one is a blocking function, whereas the later is a 

non-blocking one.  By blocking it means that when a thread tries to acquire a mutex-lock 

by (calling the former function) which is currently held by another thread, the calling 

thread will block until the mutex-lock is available to it.  The calling (blocked) thread will 

actually yield its share of CPU resources to another thread if needed, thereby saving 

valuable resources from being wasted in just waiting for a lock to be released.  The 
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blocked thread wakes up only when it has actually acquired the mutex-lock for which it 

was waiting.  Thus using the first version of the locking functions (pthread_mutex_lock) 

saves CPU resources from being underutilized, by yielding to other threads.  The second 

function (pthread_mutex_trylock) on the other hand is a non-blocking function, which 

means that it immediately returns a value based on the status of the mutex-lock.  As the 

name suggests it tries to acquire a lock and if it fails to do that, it will return an 

appropriate error.  If it is successful in acquiring the lock, it will return 0 and the calling 

thread would be the owner of the lock.  It is almost always the case that a thread cannot 

continue its operation until it has acquired the mutex-lock which it is trying to own.  

Hence, when using the trylock version, the thread has to continuously keep trying to 

acquire the lock in a loop.  Such an implementation is called spin-lock or spinning.  

During spinning, the thread uses CPU cycles to execute the trylock function, and does not 

yield the CPU-resources to other threads.  Although it seems wastage of CPU resources, 

using spin-locks has its advantages as well.     

In case of yielding, the calling thread has to be put to a blocked state by the 

underlying operating system.  This management of thread-state in itself causes some 

delay, which is usually much smaller than the time for which the tread blocks.  However, 

in case where the critical-section being accessed is very small, there is a greater chance of 

having the block-time comparable to the time it takes to manage the states of the thread.  

In other words, by the time the calling thread is put to blocked-state after doing the 

internal processing for pthread_mutex_lock function, another thread holding the lock 

would have already released the lock.  This extra overhead can be disadvantageous.  In 

such a case, spinning proves to be a better option.  Spinning is like a polling mechanism, 
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where the thread does not have to change its state from running-state to any other state 

(unless preempted by the scheduler).  If at first, the thread calling pthread_mutex_trylock 

finds out that it could not acquire the lock; during a few next iterations it is likely to grab 

the mutex-lock.  Thus, depending upon the program implementation at hand, both 

yielding and spinning can have their pros and cons. 

The programmers of memcached anticipated many situations where try-lock 

(spinning) is more effective.  They created an inline wrapper function called mutex_lock 

(defined in a header file memcached.h).  This function internally uses spinning using a 

pthread_mutex_trylock function in a while loop, on the mutex-lock parameter passed as a 

pointer.  This wrapper function is used mostly with the fine-grained cache_lock mutex-

lock, and is also used with some other locks guarding small critical-sections.  At the heart 

of both spinning and yielding Pthread-lock functions, lies a hardware level atomic 

instructions like TestAndSet or CompareAndSwap. 

2.3.1: Lock types 

The mutex-locks for synchronization also falls under two categories, viz. fine-

grained and coarse-grained locks.  Fine-grained locks are the ones which are used to 

guard small critical-sections, usually at multiple places in the program.  These provide 

better concurrency, but need more efforts from programmers in terms of programming 

complexity.  Coarse-grained locks on the other hand are used to guard relatively bigger 

sized critical sections.  These provide less concurrency, but need fewer efforts from 

programmers in terms of programming complexity.  Sometimes, the boundary between a 

coarse-grained and a fine-grained lock is a blurred one. 

2.3.2: Conditional synchronization 
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There are situations in a multithreaded program when a given thread cannot 

proceed with its execution until certain condition has been satisfied.  Take for instance 

the case of a program in which, a master thread is waiting for some kind of (sub) results 

generated by many slave/worker threads.  The master-thread is supposed to display the 

addition of all the sub-results as the final output.  Unless, all the worker-threads have 

generated their results, the master-thread cannot continue to the final step without 

producing invalid results.  The master-thread could be designed to spin continuously on a 

volatile variable indicating the number of worker-threads finishing their job.  Or, it can 

wait for the worker-threads to signal the (sleeping or blocked) master-thread when the 

last-worker thread finishes its job.  The later choice is more efficient in terms of CPU 

cycle utilization, and forms the basis of condition-variables. 

A condition-variable is "a data object that allows a thread to suspend execution 

until a certain event or condition occurs."[9, Pg. 179]  Each condition variable is used in 

conjunction with a corresponding mutex variable.  There are a few condition-variables 

used in memcached server.  The main ones are maintenence_cond, and init_cond.  The 

first one is used to wait on certain conditions in the two maintenance threads (one for the 

hash-table management and the other for slab-page maintenance).  The mutex variable 

used with it is cache_lock.  The second one is used only during the initialization phase 

with init_lock as the associated mutex variable. 

2.3.3: How is it used in memcached?  

There are about twelve mutex variables used by the memcached server.  The most 

prominent ones are stats_lock, cache_lock, conn_lock, slabs_lock, and init_lock.  

Following is a brief description of each: 
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stats_lock: it guards the critical sections containing the variables which store the status of 

the server. 

 

cache_lock: it guards the cache operations like slab memory and hash table access. 

 

conn_lock: it guards the connection list during concurrent access. 

 

slabs_lock: it guards the slab-memory allocator. 

 

init_lock: it is used only during the initialization of threads, for helping condition-

variable named init_cond.  The condition ensures that all the threads are set-up properly 

during the initialization state. 
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Chapter 3: RESEARCH WORK DETAILS 

 After having introduced the software that is in center of our research work, it is 

time to get into other details about the research work. 

3.1: Available options 

 In concurrent programming, sharing some data among various threads is the 

biggest issue.  As we have seen in the introduction chapter, there are different ways in 

which thread synchronization can be handled.  In the case of locking techniques, the code 

needs to be effectively serialized in order to process such critical sections.  There are 

some other methods such as STM (and Oyama-Fusion [10]) execute critical sections 

effectively in parallel, especially in cases where the critical sections are coarse grained.  

For some of the options open-source libraries or mature implementations are available, 

while the others are more at academic research level. 

 Due to various constraints, we had decided to choose Test&TestAndSet (TAS), 

Oyama-locks (OYAMA), and Software-Transactional-Memory (STM) as our final 

candidates for implementation.  TAS is very similar to the default Pthread mutex locks 

(PTHREAD) in terms of principle of operation, and could be implemented without much 

programming efforts.  OYAMA locking on the other hand is much more different than 

PTHREAD locks, and required a custom implementation based on their proposed 

algorithm.  We couldn't find any readily available open source libraries for OYAMA, 

especially one which was readable and capable of being used in our code.  So, we 

decided to implement our own library functions for OYAMA.  Implementing library 

functions is not the only change required for OYAMA.  Every critical section was needed 
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to be modified in terms of a function-call for being passed to OYAMA library functions.  

So implementing OYAMA took a significant amount of our time and efforts.  According 

to the authors of OYAMA: "under their scheme parallel programs with potential 

synchronization bottlenecks run efficiently".[11]  Since the fundamental principle of 

operation in case of STM is much different than that of other lock-based methods, we 

decided to create separate branches in our source repository for implementing STM.  

Hence, our main trunk contained source code with options for all the three Non-STM 

methods viz. PTHREAD, TAS, and OYAMA.  Our aim was to be able to achieve a fine-

grained control over all the existing PTHREAD controlled critical sections, thereby 

enabling each one to be able to be controlled independently by one of PTHREAD, TAS, 

and OYAMA.  Of course, two critical sections protected by the same mutex-variable 

cannot have two different methods for achieving proper synchronization.  This was taken 

care of, by separately using a control file lehigh_config.h. 

3.2: Software tools and platform  

 The accuracy of the results of any software experiment always depends upon the 

underlying tools and hardware used.  It is the responsibility of the researchers to choose 

the most optimal environment for benchmarking.  In this section we provide a summary 

of the software and hardware technologies that we used while maintaining our budget 

restrictions. 

3.2.1: Hardware platform used 

 We used only one server for benchmarking against PTHREAD method.  So 

memcached server as well as memslap client, both were run on the same machine.  The 



18 

 

main reason for that is, we wanted to minimize network related delays.  In production 

environments using dedicated machines for memcached server is the norm, so 

multiprogramming and preemption are not real issues.  We believe that the workload 

generated by the client software (memslap) is a real/complex workload consisting of 

nested locking, clever functions, conditional synchronization, and different sizes of 

critical sections.  If an infinite sequence of requests is received by memcached (which 

means that we can use nuanced mechanisms), we still will have progress.  Also, since it 

had two processors, we made use of core-affinity to attach the server to one of the CPUs 

and the client to the other.  We believe that using in this manner justifies our benchmarks 

being affected only by various synchronization methods.  Again, since memcached is a 

look-aside system, we could tolerate some progress relaxations.  In our benchmarks, we 

did not try to further optimize the program.  For example, by careful existing partitioning 

of some operations per thread (like statistics gathering) and then combining the statistics 

when required, the original program could have been optimized.  Following table gives 

relevant details about our test server specification. 

HEADING/PARAMETER CORRESPONDING VALUE 

CPU/Processor Intel Xeon processors running at 2.66 GHz (Intel(R) Xeon(R) CPU  
X5650  @ 2.67GHz) 

No. of cores per CPU 6 

HyperThreading Yes (2 threads per core) 

No. of threads/CPU 12 

No. of CPUs 2 

Total threads 2 x 12 = 24 

Memory (RAM) 12287216 Kilobytes (12 Gigabytes) 

 

Table-1 (Benchmark server hardware specification) 
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3.2.2: Software used 

 In this section, we provide a list of software that were used in our research 

project.  Also, we provide a brief introduction of each one where required. 

Operating System: We used 64-bit Linux, Ubuntu 12.04.1 LTS, kernel: 3.2.0-29-generic 

SMP (x86_64 GNU/Linux) on the server. 

Subversion: Subversion version: 1.6.17 was used for revision control. 

Memcached:  We used version: 1.4.13 of memcached, and installed it from a 

compressed tar source file.  We added this code to our software repository, which we 

later modified to implement other techniques.  The original code was able to be compiled 

to a 64-bit executable file. 

Memslap: Version: 1.0 was used as the main benchmarking software. 

Mutrace: We used version: 0.2 of mutace, which is a mutex profiler.  This software was 

used to detect the statistics about Pthread mutex-locks used in the source code of 

memcached server.  

GCC: GNU Compiler Collection version: 4.7.1 was our choice of compiler system for 

compiling even our STM code, although some other implementations of STM are 

available.  The choice was made in order to achieve simplicity in coding STM branches.  

We are aware of the fact that STM is an experimental feature and might not give the 
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optimal performance.  We had to use gcc version >= 4.7 for compiling with STM support 

using fgnu-tm option. 

GDB: The GNU debugger version 7.4-2012.04 was used for debugging purpose. 

Perl/Bash Scripts: Some Perl (5.14.2 version) and Bash (version 4.2.24) scripts were 

used to run the benchmarks. 

3.3 Chosen synchronization options 

 Let us go into some more details of the three synchronization options that we have 

chosen for implementation. 

3.3.1: TestAndSet  

 TestAndSet lock is the first of our three choices. 

3.3.1.1: Overview of TestAndSet 

 TestAndSet lock is the one that is very similar to the default Pthread mutex locks.  

However it does not require a use of mutex lock.  It requires a hardware that supports an 

atomic test_and_set instruction on a shared (integer) variable at the assembly level.  Even 

Pthread mutex operations depend upon an underlying hardware support for atomic 

operation, but they operate somewhat like wrapper functions around the low level atomic 

operations.  The operations of TestAndSet locks can be explained as follows.  A 

test_and_set instruction takes the lock (integer) variable as its parameter which usually 

has 0 or 1 value.  It writes 1 to the lock variable and returns whatever was the previous 

value of the variable, in an atomic manner.  So, a lock can be implemented using 
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test_and_set by spinning continuously on the lock variable until it returns its previous 

value as 0.  This can happen only when the lock variable was initialized first time to 0, or 

when some other thread which held the lock wants to relinquish it by writing 0 to the lock 

variable.  When another thread writes a 0 to the lock variable, the spinning thread is 

guaranteed to see the 0 value before overwriting it to 1.  After that, the spinning loop is 

broken and the thread becomes the owner of the lock, as long as it doesn’t set the lock 

variable back to 0.  

 Although TestAndSet is simple in implementation, continuous use of test_and_set 

instruction in a loop can be expensive, since "it can lead to resource contention in busy 

lock (caused by bus locking and cache invalidation when test-and-set operation needs to 

access memory atomically)".[13]  In order to avoid this scenario, a similar technique 

called Test&TestAndSet is used.  The concept behind this is to avoid spinning on the lock 

variable using test_and_set instruction, but using a simple comparison operator.  When 

the value of the lock variable is found to be 0, then there is a much higher probability of 

acquiring the lock using test_and_set instruction.  This avoids the expensive test_and_set 

instruction from being run continuously while spinning. 

3.3.1.2: TestAndSet implementation 

 We have implemented TestAndSet/Test&TestAndSet locks using built-in gcc 

function __sync_lock_test_and_set.  Its prototype is as follows: 

type __sync_lock_test_and_set (type *ptr, type value, ...); 
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 "It writes value into *ptr, and returns the previous contents of *ptr".[14]  In this 

function we pass the value 1 as the second parameter, unlike the traditional test_and_set 

function in which we assumed that it will overwrite the value in the lock variable to 1 

during each call.  A sample from the program code for acquiring a TestAndSet lock looks 

like: 

while(__sync_lock_test_and_set(<address of a lock variable> ,1)) { } 

 

A code sample for acquiring a Test&TestAndSet looks like:  

while(__sync_lock_test_and_set(<address of a lock variable> ,1)) 
{ 
 while( <same lock variable's value> ); 
} 

 

A code sample for releasing a lock looks like:  

__sync_lock_release( <address of the lock variable> ); 

 

The above function simply sets the value of the lock variable to 0.  This is an optional 

function, and could be replaced by a simple assignment statement which sets the value of 

lock variable to 0.  We have used Test&TestAndSet lock everywhere, except while 

replacing Pthread mutex locks which used spinning instead of yielding.  The manner in 

which various synchronization methods are invoked is as follows.  Each occurrence of 

the original PTHREAD mutex critical section was embedded under the preprocessor 

directives #ifdef or #if defined.  For example, a critical section protected by stats_lock 

used "#if defined(CRITSEC_048_PTHREAD)".  If CRITSEC_048_PTHREAD was 

defined in the global header file, then PTHREAD method would be selected.  On the 

other hand, if CRITSEC_048_TAS was defined then TAS method would be executed due 
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to the next #elif defined(CRITSEC_048_TAS) directive and so on.  It is made sure that 

only one of the methods (PTHREAD, TAS, and OYAMA) is defined for each critical 

section.  It should be clear by now that, this method of controlling the synchronization 

options holds true for TAS and OYAMA as well.  For STM, we decided to create 

separate branches due to the complexity of the modifications involved. 

3.3.2: Oyama locks 

Oyama-lock was the method of synchronization for our next choice. 

3.3.2.1: Overview of Oyama 

 Oyama-lock is based on the paper by Oyama et al.[11] Before going into the 

details of Oyama-locks, it is better to first understand flat-combining logic.  According to 

the authors, flat-combining is "a new synchronization paradigm based on coarse 

locking".[12]  In simple terms, flat-combining is a technique in which concurrent 

contending threads co-operate with each other in terms of executing their critical 

sections.  A single thread which grabs a global-lock first gains a special status of being a 

combiner.  All other contending threads publish their work in a linked list known as 

publication-list.  The combiner thread executes on behalf of every other thread the 

functions that were requested by the waiting threads.  The waiting threads wait on their 

respective publication entries, till they get the results produced from their respective 

functions run by combiner thread.  Thus instead of wasting time in acquiring and 

releasing a lock by all the contending thread, it saves this time by co-operation between 

the thread holding a lock and the requesting threads. 
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 Oyama is very similar to flat-combining, except a few differences.  The central 

idea behind the implementation remains the same.  The thread which grabs a lock first 

among contending threads, becomes an owner thread.  The lock here doesn't mean a 

mutex-lock variable; instead it can be a shared integer.  Oyama requires a low level 

hardware support for two atomic instructions (or their equivalents), viz. 

compare_and_swap and swap.  These low level instructions are similar to the one in 

TestAndSet lock.  The other requesting threads send pointes to their respective critical-

section functions to the owner thread for executing on their behalf.  The owner thread 

performs the execution of all the requested functions, including its own function, and 

remains as an owner thread until all the requests are not satisfied. 

3.3.2.2: Oyama implementation 

 In order to implement Oyama-locks, we had to write our own library routines.  

The original algorithm is given in their research paper by Oyama et al.[11] The main 

routine that interfaces with the source code is oym_get_lock.  Following is its prototype: 

void oym_get_lock(volatile oym_mutex_t *mutex,void(*func)(void*), volatile void *args); 

 

 This function takes 3 parameters, viz. Oyama-lock variable, a pointer to functions, 

and a pointer to arguments of the function.  Oyama-lock is nothing but a 64 bit unsigned 

integer which can hold an 8 byte pointer value (since we used a 64 bit platform).  The 

argument pointer args is by default a void pointer (void*), which is usually type-casted to 

an array of multiple values.  Implementing Oyama-locks not only required creating 

library functions, but also making changes in the source code. We had to convert every 

critical section originally protected by PTHREAD lock into subroutines/functions.  In 
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other words, we created a wrapper function for every critical section in order to pass it as 

a parameter to oym_get_lock function.  Of course, corresponding arguments were also 

identified and passed in the form of an array accordingly along with the function pointers. 

3.3.2.3: Other thoughts 

 By looking at Oyama-locking method, we can think of Oyama Progress Property 

as the one in which, the system is guaranteed to make progress as long as the lock holder 

in not swapped out indefinitely.  One issue of a serious concern while using Oyama is 

that, the starvation caused by the lock-owner to other requesting threads in case of nested 

calls.  There are two type of situations which can cause starvation (or similar situation).  

 In one case, a thread (say T1) grabs the lock.  While working on its requested task 

too much work comes in, and so the thread never gets a chance to release its lock.  This 

case is not clearly a case of starvation, since thread-T1 finishes with its critical section 

but cannot move forward with further execution as long as all the pending requests are 

not finished.  Since memcached service is look-aside by nature, this situation should not 

affect much in our case. 

 In another case, a thread (say T1) grabs the lock A, and then the same thread 

grabs another lock B and gets stuck in processing requests for lock B as in the previous 

case.  Since T1 is stuck in processing work for lock B, those thread waiting for work 

done on lock A cannot make progress, and they starve.  In this case, the Oyama Progress 

Property is definitely lost.  The problem arises because of composition or nesting of 

Oyama-locks.  It is worth noticing that the same problem does not exist in Flat-

Combining. 
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3.3.3: STM  

 Our third and final choice to test synchronization mechanisms was Software-

Transactional-Memory.  Unlike the other two lock based methods; this one is based on 

the concept of atomic transactions from the database systems. 

3.3.3.1: STM overview 

 Software-Transactional-Memory is an alternative to lock-based synchronization 

mechanisms.  STM uses optimistic concurrency control.  Optimistic Concurrency Control 

methods are:“‘optimistic’  in  the  sense  that  they  rely  mainly  on  transaction  backup 

as a control  mechanism, ‘hoping’  that  conflicts  between  transactions  will  not  

occur”.[15]  In case of such systems, before committing each transaction verifies the data 

which it had accessed with their original values at the start of the transaction.  If any 

datum is modified, the transaction has to rollback.  This way of operation makes a huge 

impact on the manner in which programs are written for using STM.  It simplifies 

programming, since the programmers have to think in terms of atomic blocks instead of 

spending time in working with shared data management like identifying critical-sections, 

minimizing them, avoiding deadlock, and so on.  

 STM is “a shared object which behaves like a memory that supports multiple 

changes to its addresses by means of transactions“.[16] STM in brief can be understood 

as follows.  The root of STM lies in atomic transactions.  A programmer encloses a piece 

of code in the form of a compound statement (similar to the critical sections in a lock-

based method), and annotates that block as an atomic block.  So, any operation that take 

place within that block of code can either fully completed (committed) or failed/aborted 
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(rolled-back).  Thus this atomic statement behaves like a database transaction.  Any 

changes made to variables by this block can be visible if and only if it commits.  If many 

threads start executing the same atomic block simultaneously, they all execute the same 

code and possibly modify the same variables.  Before committing a given thread, the 

STM logic verifies whether any other thread changed any of the variables that the current 

thread modified.  If there is no modification of variables by other threads, then and then 

only the current thread will commit and make permanent changes to the variables.  On 

the other hand, if any variable was modified by some other thread, then the transaction 

has to abort/rollback and tries again later from the beginning.  In case of a contention, the 

progress might be slow since the contending threads have to effectively serialize.  A 

major problem in using STM is use of non-reversible operations (like systemcalls, I/O 

etc.) inside the atomic transactions.  Since, these operations cannot be undone; the 

transactions cannot rollback/abort.  So, all STM implementations need to handle such 

non-reversible operations in some way or the other. 

3.3.3.2: STM implementation 

 As mentioned before, we used gcc compiler to utilize its new STM support.  

Initially, we wanted to convert all the critical sections of the original code to STM.  

However, due to various constraints and challenges paused by STM, we decided to create 

ten separate branches in our repository using STM.  Following table lists all the ten 

branches along with the progress we made in each one. 
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BRANCH MODIFICATIONS MADE 

001_memcached-1.4.13_no_cachelock_condvar Replaces only the conditional variables 
which are guarded by cache_lock 

002_memcached-1.4.13_stm_no_cachelock 001 + Replaces cache_lock mutex with 
atomic transactions whenever possible 

002_memcached-1.4.13_stm_no_slabslock 001 + Replaces slabs_lock mutex with 
transactions 

002_memcached-1.4.13_stm_no_statslock 001 + Replaces stats_lock mutex with 
transactions 

003_memcached-1.4.13_callable_everywhere 002_no_cachelock + Makes all function 
declarations in header files as 
transaction_callable 

004_memcached-1.4.13_no_asserts 003 + Removes/comments assert 
statements 

005_memcached-1.4.13_safe_refcount 004 + Makes reference counts 
transactional 

 006_memcached-1.4.13_slabs_lock 005 + Swaps lock orders in transactions 
that acquire slabs_lock 

007_memcached-1.4.13_nocl_nostatslock 006 + Replaces all stats_lock with 
transactions 

008_memcached-1.4.13_nocl_nosl_noslabslock 007 + Replaces all slabs_lock with 
transactions 

 

Table-2 (STM branches in subversion repository) 

 Before going further with STM implementation details, it is advisable to 

understand how STM is provided by gcc.  The atomic block explained before is 

implemented by __transaction_atomic keyword.  When it is placed before a compound 

statement, the statement becomes an atomic transaction.  Similarly, to take care of 

irreversible operations inside a transaction, there is a keyword called 

__transaction_relaxed.  Unlike atomic transactions, "the relaxed transactions may 

contain unsafe statements. Relaxed Transactions that execute unsafe statements may 

appear to interleave with non-transactional operations from other threads".[17] Also, as 

per the official documentation, "relaxed transactions cannot be cancelled. Irrevocable 

actions may limit the concurrency in an implementation; for example, they may cause the 
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implementation to not execute relaxed transactions concurrently with other 

transactions".[17]  It should be clear that, in an ideal scenario all the atomic blocks would 

be __transaction_atomic blocks.  We tried to convert the targeted PTHREAD locks to 

atomic-transactions first.  However, when the block of code contained irreversible actions 

(such as print statements, assert statements etc.), we had to convert those to relaxed-

transactions.  In addition to that, whenever a transaction safe function is used inside an 

atomic-transaction block, it should be declared as such with transaction_safe attribute.  

The exact syntax is:  

__attribute__((transaction_safe)) <function declaration/definition>; 

 

 STM using GCC 4.7 allows using different algorithms for the actual STM internal logic 

implementation.  This option can be specified by setting ITM_DEFAULT_METHOD, 

and ITM_METHODS environment variables to suitable values.  For example, we used 

two algorithms Orec-Eager/Orec-WT (value=ml_wt) and Serial-Irrevocable (value= 

serialirr).  The gcc implementation is explained in greater details on their official 

documentation page.[17] 

3.3.3.3: Other thoughts 

 STM implementation was one of the most challenging of all the three methods.  

The process of converting functions to transaction_safe and converting critical sections to 

atomic-transactions was a subtle one.  There are other challenging issues that we 

encountered as well, like converting reference counts to atomic transactions, making sure 

that the code is going to work with a non-Privatization safe algorithm like Orec-Eager 

that uses Orecs[18,19], and so on.  The privatization problem can be informally explained 
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as: "an action taken by a transaction that modifies program state in such a way that some 

previously shared data structure will henceforth be accessed by only one thread".[20]  

The main reason for these challenges was the fact that, we modified the existing code to 

make it work with STM.  The code was not originally designed with STM in mind.  

However, we think that without using STM in our project, it would have been of not 

much interest. 
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Chapter 4: PERFORMANCE EVALUATION 

 Now that we have mentioned the details about our research work setup, we move 

on to the next step which consists of the observation of the result. 

4.1: Setup environment and options 

 As described in the previous chapter, for benchmarking against the default 

synchronization method (PTHREAD) we have chosen three options viz. TestAndSet 

(TAS), Oyama-locks (OYAMA), and Software-Transactional-Memory (STM).  To use 

Non-STM methods (TAS, and OYAMA), we used our main trunk without creating 

separate branches in our subversion repository.  Since we used the preprocessor 

directives (#ifdef or #if defined etc.) to select a particular option for each critical section, 

we decided to create a control file named lehigh_config.h having the corresponding 

#define directives.  The main purpose of this file is to aggregate all the instances of a 

particular lock variable under a single controlling #define directive.  Otherwise, it would 

have been very difficult and inefficient to manage the synchronization methods for each 

critical section separately.  For instance, if in one of the critical sections protected by 

stats_lock, the method is PTHREAD and in another it is OYAMA, then it would be a 

major bug which might even go undetected after producing wrong results.  Using the 

control file, we had restricted the individual critical sections from being accessed directly.  

There is a single line which needs to be modified for each of the lock variables used.  As 

an example, defining PTHREAD_INIT_LOCK_CONTROL, 

TAS_INIT_LOCK_CONTROL, and OYAMA_INIT_LOCK_CONTROL (using #define 

directive) will set the critical sections for init_lock to Pthread, TestAndSet, and Oyama-
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lock respectively.  Only one of the 3 options is allowed to be chosen for each such mutex 

variable.  There are 12 such control lines for a total of 12 lock variables, one per each. 

 The use of 12 independent lines (one per lock variable) each with 3 options 

(PTHREAD, TAS or OYAMA) can lead to 3^12 or 531441 combinations.  We call it a 

fine-grained control, as opposed to coarse-grained control in which a global define 

directive is used to override these 12 independent lines.  If a directive 

COARSE_GRAINED_PTHREAD is defined (using #define), then all the critical sections 

follow Pthread locking mechanism.  Use of COARSE_GRAINED_TAS and 

COARSE_GRAINED_OYAMA changes it to TestAndSet and Oyama respectively.  So 

using a coarse-grained control only 3 combinations can be achieved viz. all Pthread, all 

TestAndSet, and all Oyama.  Of course, it was impossible for us to blindly generate 

benchmarks against the default Pthread method for 531440 combinations.  Therefore, we 

took some other factors into consideration for choosing a few combinations. 

4.2: Various results 

 In this section we provide the results obtained by running our modified code(s) 

using the benchmarking software memslap.  In each of the tests, we used our memcached 

server to run with variable number of worker threads using -t command line option.  In 

all the graphs that we plotted, the X-axis consists of the number of server-threads.  Y-axis 

consists of average time (sum of 10 results divided by 10) in seconds it took to enter a 

total of 5,000,000 entries of random key/value pairs by memslap software during each of 

10 different times.  Since our test machine had two processors, each with 6 cores and 12 

threads (Intel HyperThreading), it was capable of running 24 threads in parallel.  We tried 
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to bind the server threads to lower numbered CPU cores/threads, and memslap threads to 

higher order CPU cores/threads using taskset command.  Our purpose was to produce 

results that are as much close to the real world scenario as possible.  The server was 

allocated 6 Gigabyte of ram for data caching. 

4.2.1: All non-STM (4, 8, 12 client threads) 

 The first benchmark that we ran against the default (all PTHREAD) configuration 

involved all-TAS and all-OYAMA configurations.  Since we almost always used server 

threads varying from 1 to 12 during each run, we decided to vary the number of client 

threads from 4, to 8, and then to 12.  Thus for each configuration of client-threads we 

generated 3 plot, one for each of the non-STM methods.  The result generated a total of 

3x3 = 9 line plots on the plotted graph for this benchmark.  The following table (table-3) 

lists more details about our selection. 

HEADING/PARAMETER CORRESPONDING VALUE 

No. of client threads 4, 8, and 12 

No. of server threads 1 to 12 

server CPU affinity 1 to 12 (0x00000FFF) 

client CPU affinity 13 to 24 (0x00FFF000) 

Branches All-PTHREAD, All-TAS, All-OYAMA 

Total line-plots 3 (total client configurations) x 3 (no. of branches) = 9 

 

Table-3 (Configuration for all non-STM 4, 8 & 12 client threads) 
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Figure-2 (Graph plot for all non-STM 4, 8 & 12 client threads) 

As found from the graph of figure-2, for higher number of client threads (8 and 12) the 

time taken to enter 5,000,000 records decreases with the increase in the number of server 

threads.  Also, for a given number of server-threads greater than 3, the time taken 

decreases with increase in the number of client threads.  After reaching to 12 client-

threads, the performance difference between PTHREAD, TAS and OYAMA diminishes.  

However, it is clearly visible in case of 4 and 8 client threads, that TAS and OYMA 

perform almost equally better than PTHREAD.  Also, it is worth noticing that for a small 

number of client threads (here 4), the performance is optimal when server threads are set 

to 2. 
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4.2.2: Combinations – 1 & 2 (4 client threads) 

 In this benchmark, we used two combinations against their respective main 

methods.  Our 1st combination consisted of setting stats_lock, slabs_lock, and cache_lock 

to TAS method while keeping others to PTHREAD.  We compared this plot against 

ALL-TAS mode.  In our 2nd combination, we set the same three locks to OYAMA while 

keeping others to PTHREAD.  We compare this against ALL-OYAMA.  Of course, the 

ALL-PTHRED line plot is provided for comparing all four line plots against the default 

method.  So in all, we present 5 line-plots here.  The reason for this comparison is the 

result from running mutrace on memcached in ALL-PTHREAD mode.  Following is a 

collection of various parts from the output of mutrace program showing the information 

about top 5 contending mutexes: 

mutrace: Showing statistics for process memcached (pid 16084). 
mutrace: 8247 mutexes used. 
 
Mutex #1726 (0x0x626f60) first referenced by: 
    /home/trv211/myroot/usr/lib/mutrace/libmutrace.so(pthread_mutex_init+0xf2) [0x7f4bdafe84b2] 
……………. 
Mutex #8192 (0x0x61ef20) first referenced by: 
    /home/trv211/myroot/usr/lib/mutrace/libmutrace.so(pthread_mutex_lock+0x49) 
[0x7f4bdafe86b9] 
…………… 
Mutex #2469 (0x0x627900) first referenced by: 
    /home/trv211/myroot/usr/lib/mutrace/libmutrace.so(pthread_mutex_init+0xf2) [0x7f4bdafe84b2] 
…………... 
Mutex #1675 (0x0x626ec0) first referenced by: 
    /home/trv211/myroot/usr/lib/mutrace/libmutrace.so(pthread_mutex_init+0xf2) [0x7f4bdafe84b2] 
…………….. 
Mutex #3930 (0x0x6222a0) first referenced by: 
    /home/trv211/myroot/usr/lib/mutrace/libmutrace.so(pthread_mutex_lock+0x49) 
[0x7f4bdafe86b9] 
……………. 
mutrace: Showing 10 most contended mutexes: 
 Mutex #   Locked  Changed    Cont. tot.Time[ms] avg.Time[ms] max.Time[ms]  Flags 
    1726       19       18       13        0.029        0.002        0.005 M-.--. 
    8192       41       31        2        0.009        0.000        0.001 M-.--. 
    2469 17031622 15432123        0    28077.633        0.002        3.992 M-.--. 
    1675 14633284  8098540        0     2794.728        0.000        3.985 M-.--. 
    3930  8211072  4996818        0     2502.469        0.000        0.812 M-.--. 
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This output was converted into readable variable names using gdb as follows: 

 (gdb) info symbol 0x626f60 : init_lock in section .bss 

 (gdb) info symbol 0x61ef20: conn_lock in section .bss 

 (gdb) info symbol 0x627900: cache_lock in section .bss 

 (gdb) info symbol 0x626ec0: stats_lock in section .bss 

 (gdb) info symbol 0x6222a0: slabs_lock in section .bss 

 

What we found is, the three locks mentioned here take the maximum time in their 

critical-sections and also fall under top 5 contending locks.  Therefore, we wanted to 

make sure that these three locks are mainly responsible for the delay in all-PTHREAD 

method when using 4 client threads.  By replacing these three culprits by TAS 

(combination-1), and OYAMA (combination-2), we expected that the performance 

should match to those of all-TAS and all-OYAMA respectively.  Table-4 gives the details 

of the configuration for this benchmark. 

HEADING/PARAMETER CORRESPONDING VALUE 

No. of client threads 4 

No. of server threads 1 to 12 

server CPU affinity 1 to 12 (0x00000FFF) 

client CPU affinity 13 to 24 (0x00FFF000) 

Branches  All-PTHRED, All-TAS, TAS + PTHREAD, All-OYAMA, OYAMA + 
PTHREAD 

Total line-plots 1(total client configurations) x 5 (no. of branches) = 5 

 

Table-4 (Configurations for combinations 1 & 2) 
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Figure-3 (Graph plot for combinations 1 & 2) 

As seen from the graph of figure-3, the three locks mentioned here are indeed mainly 

responsible for the delay in all-PTHREAD mode. 

4.2.3: STM Orec-wt (Orec-Eager) algorithm (12 client threads) 

  The next benchmark that we ran was using 10 different branches of STM code 

that we had created.  Here also we vary the number of server threads from 1 to 12, but 

keep the number of client threads constant to 12.  The STM algorithm that we used for 

this benchmark was Orec-Eager or Orec-WT.  In order to use this algorithm, we had to 

set ml_wt into the environment variables ITM_DEFAULT_METHOD, and 

ITM_METHODS.   The following table (table-5) gives the configuration details about 

this benchmark. 
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HEADING/PARAMETER CORRESPONDING VALUE 

No. of client threads 12 

No. of server threads 1 to 12 

server CPU affinity 1 to 12 (0x00000FFF) 

client CPU affinity 13 to 24 (0x00FFF000) 

Branches  All-10 STM branches (Orec-WT/Orec-Eager algorithm) 

Total line-plots 1(total client configurations) x 10(no. of branches) = 10 
 

Table-5 (Configurations for STM OrecWT algorithm) 

 

Figure-4 (Graph plot for STM OrecWT algorithm) 

Since GCC support for STM is "an experimental feature, with several parts being not 

optimized"[21], its performance was not comparable to that of TAS, PTHREAD or 

OYAMA.  Anyway, “The extent to which STM systems can be fast enough for use in 

practice remains a contentious research question in itself”.[22]  So, instead of comparing 
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with non-STM methods, we analyze the performance difference among the ten STM 

based branches that we had created in our subversion repository.  As described in table-2, 

we started from replacing the condition-variables guarded by cache_lock under the 

branch with its name starting with 001.  We continued to make changes in the original 

code in order to convert more locks into transactions.  As seen from the graph of figure-4, 

there is a significant difference in performance between line plots for branches starting 

with 007/008, and the rest of the branches.  At first we suspected that the percentage of 

relaxed transactions might have increased in the two branches.  However, we realized 

that the percentage of relaxed transactions was lower in the two branches than that in 

branch beginning with 003.  It was found that the penalty we paid in terms of time was 

because of the conversion of stats_lock into transactions. 

4.2.4: All STM default/serialirr algorithms (12 client threads) 

 This is very similar benchmark to the previous one, except that here we used 

SerialIrrevocable algorithm in STM by setting serialirr in the environment variables 

ITM_DEFAULT_METHOD, and ITM_METHODS.  The configuration details are 

mentioned in the following table (table-6). 

HEADING/PARAMETER CORRESPONDING VALUE 

No. of client threads 12 

No. of server threads 1 to 12 

server CPU affinity 1 to 12 (0x00000FFF) 

client CPU affinity 13 to 24 (0x00FFF000) 

Branches  All-10 STM branches (serialirr algorithm) 

Total line-plots 1(total client configurations) x 10(no. of branches) = 10 

 

Table-6 (Configuration for STM SerialIrrevocable algorithm) 
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Figure-5 (Graph plot for STM SerialIrrevocable algorithm) 

As seen from the graph of figure-5, it should be clear that SerialIrrevocable algorithm 

performs better than Orec-Eager, especially in the case of stats_lock related transactions 

which are introduced in the branches ending with 007 and 008.  This difference is clearly 

visible when compared with figure-4, where the time taken reaches to around 120 

seconds for 5 server threads in case of those two branches.  In case of other branches, 

there is not much performance difference between SerialIrrevocable and Orec-Eager 

algorithms. 
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Chapter 5: CONCLUSION AND FUTURE WORK 

 In the previous chapter, we analyzed the results of various benchmarks that we 

had conducted as a part of our project.  Of course, the benchmarks that we ran using 

different configurations were just a small subset of possibly limitless combinations.  

However, we think that these runs were sufficient in helping us to arrive to some basic 

conclusions about various synchronization mechanisms. 

 One interesting observation in case of non-STM methods was that, as the number 

of clients threads increases the performance of PTHREAD improves to be equal to that of 

TAS and OYAMA.  Also, for higher number of client threads (here greater than 7), the 

performance reaches to optimal value as soon as the number of server threads increase to 

3 or 4.  It implies that the software is efficient in terms of its design.  Also, we found that 

mutrace is a very effective tool in finding out the locks which are most contending, or the 

most time consuming.  Yet another interesting observation was in case of STM methods, 

where SerialIrrevocable was found to perform better than Orec-Eager, at least for the two 

branches that had stats_lock converted into transactions.  Except for those two branches, 

the performances of both the algorithms were almost identical.  So we conclude that 

stats_lock played a bigger role in decreasing the performance of memcached server using 

Orec-Eager algorithm under STM method.  That mutex lock is a fine grained mutex lock 

in the original source code.  However, it is used so frequently that it was among top five 

most contending locks as well in top three most time consuming mutexes, when we 

dynamically traced the original software using mutrace.   
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 Finally, we conclude that there is a lot of room for enhancements, which we are 

planning to incorporate into our future work.  First thing that we want to do in the future 

is to add some more lock based mechanisms like MCS locks, Fair locks, Ticket locks, 

and some others.  We also want to add back off feature in Test&TestAndSet locks, which 

can be tuned to find an optimal performance.  We are planning to test out the use of 

normalizing for having function calls.  The current implementation of Oyama-locks 

library is not optimized.  It uses malloc function which is time consuming.  We want to 

use thread local variables, and eliminate the use of malloc in the future implementation of 

Oyama library functions.  There is an equally great amount of work that is needed to be 

done on STM branches as a part of the future work.  In the future, we wish to use other 

more mature STM implementations, such as RSTM [29] or TinySTM [30].  In the present 

research work, we did not make much use of many command line options available in 

memcached server as well as in memslap client.  As far as possible, we continued to use 

the default options in both the cases.  We would like to apply more tuning to these 

software, in order to verify for any performance difference with a greater accuracy.   
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