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Abstract

The ultimate goal of the study ofleg length discrepancies is the development of

prosthetic and orthotic devices that equalize both the height difference as well as the

transient shockwaves that travel up the tibia during the first 50 milliseconds of impact.

In order to achieve this goal, a preliminary study of the etiology, treatment, and

effects oflimb length inequality was performed. This condition has many causes, '

ranging from genetics to disease, paralysis, radiation damage, and trauma to the growth

plates. The overall effect is the shortening, or in some cases, the lengthening, of one of

the legs resulting in a tilt of the pelvis. This, in turn, causes a wide array of

biomechanical problems over the person's lifetime, such as lower back and knee pain,

sciatica, and osteoarthritis. Treatment for this condition depends on the severity. Shoe

lifts are used for mild discrepancies, while surgical operations like bone resection and

growth inhibition are used for larger ones.

The elements of the gait cycle were examined, as well as the relationships

between walking velocity with cadence and impact acceleration using a non-invasive

accelerometer strapped to the tibial tuberosity of the subject's leg. It was found that a

direct relationship exists between walking velocity and cadence. In addition, a direct

relationship between impact acceleration also exi~ts, but this is partly due to the
~. ,

",...,.".".c==;;" i~, ;n;~:.~c0~tr1bliti6Ii'of angular tibiarmotion:t()'l]fe~totahneasured ::~fcceletati6n;wliicli;IS'~()rt"the' .

order of 0.6 g at a walking speed of 2.2 m/sec.

Finally, a comparison between tibial strain measurements and impact acceleration

I



was made in order to establish a correlation between the two. Both non-invasive

accelerometer measurements and invasive tibial strain gage measurements were used. In

this study, a fairly strong negative correlation was found for both walking (-0.68) and

running (-0.74).

Further work in this field will serve to verify the results obtained in this work, as

well as establish a direct relationship between the degree of discrepancy and the

acceleration due to impact.

,
_~<:..... ~.·.~n~~~i;/kl-e!~~·,_~o __ .' :_,,~~'~'':'" ~ .1'; ',> ". _ ":I~"~'-~ '~J;;:~~;·~-:'~·&~}-Stj~.~·l?;:~~~~~::;::~:.·'~ l';V;.'P(::,~.;'i·~
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Chapter 1: Introduction

The phenomenon of leg length discrepancy, otherwise known as leg length

inequality or anisomelia, is a common finding in the majority of the world's population.

It is defined as a bilateral asymmetry in the lower limbs which, in the majority of cases, is

not significant, but can nonetheless contribute to numerous degenerative joint di'seases

and chronic pain over the course of a person's lifetime [2, 8, 9, 12, 14, 17, 18, 19,26,27,

28,30,32].

There are three primary categories of leg length inequality. Functional leg length

inequallfy may be caused by a rotated pelvis or pelvic obliquity, caused by soft tissue

shortening, joint contractures, or axial misalignments, such as scoliosis [2, 17, 18,32].

As a result, the foot on the "short" side is externally rotated into the valgus position, and a

collapsed arch is a common result. The posterior iliac spine is higher on the functionally

shoner siae,·wliiTelower orillie longer side. Ailatomlcai leg le~gth inequality occurs

when there is an actual difference in the overall lengths of the tibia and femur such that

one leg is literally shorter than the other. As a result of this, the anterior and posterior

iliac crests are lower on the shorter side, causing the spinal column to compensate, often

causing scoliosis.. In some cases, foot positioning can serve to compensate for the

c'· _,~,.:,~ ~ .• , _'. ".:::_~4.i~eren~~cas3Y~n,"~~-pm!1~!~?,~~~~,~I,l~ps_ed~ch.e~on.theJongeJ,;;sid~canoecut,
.. - . .-' '_.-~- ;"""-"'-""'-'>"."""-~" ',;' ... ,.1:::".:,':...I"; •. !,,' ... 'n,-:'"";§..... '''~:'-:_'-"":'".''-'~'•..• ~; ....-•... ~.•~__ ~,,_,'.;.;;..._ .'~_-"-"<~'''"':".:l~l~'_'_~

- .

causing a functional shortening of the longer side to attempt to make up for some of the

discrepancy. "Environmental" leg length inequality is caused by outside, man~made

factors, now that running has become a popular activity in today' s society. While

3



running, the part of the road closer to the sidewalk is constantly lower than the surface

closer to the middle ofthe road. As a result, an uneven running surface is presented to

the runner, and may cause a temporary discrepancy. The treatment for this is simple;

runners merely have to alternate the direction in which they travel [2, 17, 18, 32].

1.1 Etiology

The etiological factors associated with leg length discrepancies are diverse, most

~

ofwhich affect the person during the growth process. The vast majority of cases is

congenital - Gaused by the individual's genetics, which, in some cases, causes one leg to

be naturally longer or shorter than the other [18, 19,27,28,30]. The majority of those

with leg length discrepancies have a shorter left leg. It is suggested that this is a direct

result of the normal position of the child in utero, in which the left side of the fetus is

pressed against the vertebrae of the mother. In addition, approximately two thirds of third
, ~

trimester fetuses have their left leg crossed over their right, increasing stress in the hip,

knee, and epiphyseal growth areas [2]. Increased stress, in the epiphyseal growth plates

are known to affect growth [10, 18,31].

The remainder of cases are caused by acquired means, the most common ofwhich

is physeal injury. The physis is a cartilaginous growth area for bones, located on the

proximal and distal ends ofboth the femur and the tibia (Figure 1.1). Each area has a

different growth rate. During childhood,. the inner layer ofthe physi~ ossifies, while the
. - .

outer raSer gfows'ln:brecartilage.· This process continues untiLadulthQod,...whenJhe

physis fuses with the rest of the bone, causing growth arrest. Irreparable damage to any
...~ •••---- -.- ~~~"'- • - ----~•._--- .. , -_._-- _-.- _•• _.~., .o- __~_-;,.__ ._ --....- --_•• ~._-•••_.~ --.- _ _'~.-..--.- .;: ---... "' ,_.. - _._ .. _.,........_:."' __ , _._. __ :_.;', __ .-...••~..,:.""_-.. ••J ""

............. ." .•~-'- "'.-...' c,; . .....- ... ;"', .......--..,,..... ..._' ....-J •....,...., ...... :..'.;:.
--. , _....:--- .. "._'-"'-"--'-~"" __.~-
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of the physeal areas during the growth process

can cause premature growth arrest in that physis,

stunting the growth of that leg. Most injuries of

this type are caused by either severe burns or

fractures along the physis, by either breakage or

compression. While there are a number of

different types of fractures and breaks that can

occur in this area, not all of them have the

potential to cause growth arrest. Only those

Femoral
Growth Plate

Tibial
Growth Plate

which cross the physis are dangerous, since
Figure 1.1- Growth platesof the
femur and tibia near the knee joint

during .the healing process they have a tendency to form a bony bridge across the area

(Fi.gure 1.2). Growth arrest will occur in these cases because the bridge ties the growth

region to the rest of the bone [18, 19,28,30].

Some types of fractures such as miniinally aisphiced proxiIriarfractiliesand

5



femoral fractures in young children can cause the opposite effect: growth stimulation. It

is due to the increased blood flow to the area of injury as a natural part of the healing

process. This effect has been known to last for up to two years after the time of injury

[19].

While trauma to the growth plate can cause physeal arrest, a number of other

conditions, including disease and paralysis, can cause epiphyseal growth dysfunction. An

infection ofthe epiphysis or areas adjacent to it, such as septic arthritis, osteomyelitis

about the femur and tibia, or tuberculosis in the hip, knee, and foot can cause the

destruction of physeaJ. cells or the development of a bony bridge across the bone and

physis, causing physeal arrest, or in some cases destroying the physis altogether [18, 19,

30]. In some cases of chronic osteomyelitis, however, it has been observed that the

increased blood flow due to infection can cause increased growth of that leg, presumably

because of the increased vascular activity [18, 19,30].

Tumors, such as osteochondroma, giant celLtumors, Ollier's disease,ancl--

Recklinghausen have also been known to cause growth problems ifpresent in the physeal

areas. The destruction of the physis can be caused by the invasion of a tumor. Ifpresent

in the cartilage cells of the growth plate, growth potential can actually be stolen away

from the bone. Some tumors, especially vascular malformations that involve large.

portions ofthe limb, produce incr,eased growth in all areas of the leg.. Such vascular

growth inducing tumors include neurofibromatosis, fibrous displasia, and Wilms's

6
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potential to Kill the healthy osteocytes and blood vessels in the bone, halting growth in

that region, usually taking years to repair [18, 19].

Muscle paralysis is yet another cause of leg length discrepancy cases, due to the

prolonged amount of immobilization involved. In addition to that caused by trauma,

poliomyelitis - a viral disease which affects the nervous system causing paralysis and

atrophy in the legs - has long been known to contribute to the occurrence of leg length

discrepancies in young children as well as adults. Bone growth depends on compression

forces created by standing, walking, and running, which are severely diminished, if not

absent altogether in paralysis cases. This lack of activity has the potential to cause some

ofthe same growth difficulties described earlier [18; 19, 28].

1.2 Measurement

When a leg length discrepancy is suspected, a measurement of its degree of

•

severity is made. Certain degrees of accuracy can be obtained, depending upon what type

-- - --of-measurement isused.-l'heclinicaLmethodinvolv:e&l1le_asJJrillg_the distance fromJhe __

anterior superior iliac spine to the tip ofthe medial malleolis using a tape measure [2, 17,

19,27,28]. In these cases, finding ineqUreSs than 1.25 cm (1/211
) is very

difficult because of the presence of skin and fat over these bony prominences. Another

approach to this is to measure the distance form the anterior superior iliac spine to the

;'~~',.d>,."":,;·c",:, .• ,.~,.",,Jlq~!i!llM~;.l1!i.wjll~Ug~ign~j.Q£~~'J\.l?6¥~~i£l!dP,Ci>.ID_t~.QnJ!l,~aP',gE.Y:,[2.71;~J}}};)thy&S~,~§ 8~¥!.i,~c:~;;';';9·5"''''m-~''i'
_ _.,-=.-;:,.0" .. ' --";"·T...,.. ...'·-:-~.:;...,,,·... ~ •.• ': ._,.,. --_,-,,-.- _._="'U' -- •• ~ . .'

patjent is examined at arms length, and the height of the pelvic brims are compared [2,

.,inexpensive and easy way to get a rough picture of the degree of discrepancy.
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In the cases in which the differences are more subtle, the radiological method is

far more reliable, albeit slightly more hazardous to one's health. The patient stands with

the feet 15 to 20 cm apart while X-rays of the pelvis are taken, with the beam focused on

the femoral heads. The differences in their heights, in most cases, indicate a leg length

discrepancy. This assumes, however, that the discrepancy is anatomic and not caused by

joint contractures. The accuracy of such a measurement is within 3 mm. This is the best,

most reliable method when clinical measurements would not provide enough information

[17, 19,28].

1.3 Effects

Leg length inequality can cause a wide variety ofphysical and biomechanical

problems during any and all stages of life. Symptoms range from mild and unnoticed to
I

severe and debilitating, depending on the severity of discrepancy. The most commonly

reported problems are: back and knee pain, pelvic tilt, sciatica, stress fractures,

32].

One ofthe most noticeable effects of anisomelia is an asymmetry in gait, present

even in people with inequalities as little as 1 cm. For the purpose of energy conservation,

people with limb length inequalities must physically step down onto the shorter limb and

,;;..;,,~~,~.:~.:;:.;;.,~~~;,:-~~;:vault:overcthe·dOhg~r!.Qm~::d.JJring,th~,g~Jt.~~cl~.,,~,,[,~~~Q.tJ~s:gh~~~~e.;~~~,~q_!ll~4,~;~;;;~;:C=.~; ~.~i~~:::

right - left and left - right heel strikes is not the same. Research has shown that this time

~"--="C""<~-~·n<"~"'~'~"~--"diffefenceis·lnd~eet-allireceftIn'Ctiofi'ofthe'degreei)fdiscrep~cy~in,the-subjeGt;=As4he--~-=~".c~~.,,>C,"~'"

inequality increases, so does the asymmetry in heel strike time [14, 19]. Some patients (

8
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who have had corrective surgery show some of the same asymmetry in some cases. This

can be attributed to the fact that while their overall discrepancies have been corrected,

their individual femoral and tibial lengths remain different, placing the knee at different

levels. The leg.with the knee lower on the leg naturally swings slightly faster than its

counterpart, thus causing either a faster swing time for that component of gait, or an

increased effort on the patient's part to equalize swing times [19].

Patients with leg length inequalities may be subject to an abnormally high

incidence of stress fractures. As the impact ofwalking is attenuated in the legs,

microfractures form. These fractures are constantly created and healed in a continuous

cycle which is stable below a certain threshold. For some severe discrepancies, the

greater force acting on the longer leg exceeds this threshold, thus increasing the risk of

the development of stress fractures on that side [14,.17].

Pelvic tilt is a fairly common finding in c~ses of leg length inequalities, which

- Urifortunatelygives rise to a vast array of associative symptoms ranging from mild to

severe. Like gait inequality, pelvic tilt is a direct function of discrepancy. In some cases,

this tilt can cause a functional scoliosis, which is concave to the side ofthe longer limb.

This is a compensatory mechanism that helps maintain the center of gi~vity. However, in

approximately 1/3 ofthe cases, the curve is opposite to the direction of compensation,

'/'~~'~'3~,,~,,~~.;,;.~;:~~1!.~r~~I~,.~2jlh~Q~tt:f~~at s"o.~e fo~~.of~coliosis that develop may be a result of ~
,- - . ,.",.._,,~';.,<:l_<.-,-~ .. _:;;;:~.~ - ,~:-,:,:,,,,,,,,=:_-,,-~.:~\.,,~~~j~~~~~'~~).:::~':-;~j':~-'~·:~_~~;;h:'';·:::·,,,:,,,:':-:;':'~~':..~:;:,~ .C:"';~':~":':;"';:.:".: .~;,,~"'''''': ..!,>.Oi-~ •.•,\"eJ~C:-:;',,;,,:::.;

locomotion, like walking and running, and not just standing [19].

occurrence of sciatica and possibly lower back pain. Sciatic~ commonly occurs on the

9
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concave side of the scoliotic spine, in which the pressure caused by the curvature of the

spine can put pressure on the dorasl sensory nerve root [17]. The pelvic tilt and spinal

curve also places a constant stress on the muscles, tissues, and ligaments of the lower

back, hip, and knees, causing asymmetric muscle tension in those areas. While there is

conflicting evidence at this point as to whether or not leg length discrepancies are a direct

cause of lower back, knee, and hip pain, it would serve to explain cases in which they are

present [2, 9, 17, 18, 19,28,32].

The most debilitating effect oflimb

length inequality is the osteoarthritis that can

develop over the course of the patient's

lifetime due to uneven force distribution on

the legs. Osteoarthritis is a degenerative joint

disease characterized by the thinning and

eventual disappearance of the articular

cartilage. The commonly occurring pelvic tilt

causes a shift of the center of gravity onto the

side of the longer limb, thereby reducing the

contact area of the joint surface on that side

(Figure 1.3). This phenomenon i,s called Figure 1.3 - Uncovering of the hip joints
.... _ ._ _ _ __ _ (reproduced fro'm [20])
~-:'-~:':-';':':.';::l ...--:,~~';.:~«':t"~';':";· '. J ','.. '.':--' :'~'-'~;·""'::.:-:'::~"j'.;il.itJ:Uu..':;:r";~~~;"~;_,·i:-~~_,,....,,..-'"'_,,>,::::~~:;'~:;;>''':,:,iq:r'~~'':'4_f"_i:.;~_'_):-'I_t\·,!:S;~;:':S~C::,.,-·~S~?~~~;~:'{:,:·~;_'(~;~:f.:d2::~~~EJ1iZ.~:}"JY~~~~·:~'FVi':~;<'~~';r;~:..._.,...;,>~\¥:~ "!k-:'";"'-'::.-='~;';-':-:"l~

"uncovering" [18,-19]. If this occurs, the stress per unit ar~a increases on that joint,""" .
,

causing hip pain and increased wear and deterioration of the cartilaginous joint surfaces.



[2,9, 17,28,30,32]. In addition, the loss of cartilage over the course oftime has been

hypothesized to increase the difference in leg lengths above what was there previously,

thus worsening the situation. The unequal stresses on the long side can also cause

cartilage degeneration in the knee joints, thus creating the same conditions for

osteoarthritis there as well [9, 12, 19]. This may also be one of the causes of knee pain in

some subjects.

The formation ofminor bone deformities in the spine have been directly

correlated with pelvic obliquity and functional scoliosis. These are usually characterized

by concavities in the lower end plates ofvertebrae located in the upper lumbar region.

These concavities are asymmetrically oriented towards the convex side ofthe curved

spine. Lumbar deformities are more often found in patients with slightly more significant

discrepancies of above 9 mm [8].

From the preceding information, it is relatively easy to observe the cascading

trend of symptoms-for-people-afflicted-with-anisomelia.-Gonnected with the pelvic tilt

which serves to compensate for the difference, there is a host of other biomechanical

problems that may arise, in some cases worsening the situation. One can also easily see

why there would be numerous methods of treating or eliminating this condition.

1.4 Treatment

The ultimate goal of treating leg length discrepancies is their equality at full

. _:.;~···;:~M~tlliitY~~6';~cCO~lls1nllls,~'do'Ctors'·Ifi~~x~r'6'ise~tfcertainllfuo1ffi.t~fliffiihg·hi-imy!::=~·:;~~··~--:c::-,,;n~{;",1

treatment method that is chosen. In some cases, however, equalizing the leg lengths

would thr.ow the foot or pelvis o_ut of their alignments, merely moving-the ptoblem

11
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somewhere else. In order to avoid this, the existing deformities are analyzed first, as they

may affect the outcome of the treatment [8, 28, 30].

The choice of treatment depends largely on the magnitude ofthe discrepancy,

which can be categorized by way of severity. Mild leg length discrepancies range from

approximately 0 to 3 cm, moderate ranges from about 3 cm to 6 cm, while severe is

anything above 6 cm [17, 27]. There is, of course, some variation among members of the

medical community on what threshold lengths exist between severity levels, but they are

almost always categorized in such'a way that they roughly coincide with treatment

methods [14, 19].

Within each severity range, several options exist which are used depending upon

the age or physical condition of the patient [30]. Discrepancies ofless than two

centimeters are quite common in adults and usually not significantly symptomatic.

Children with discrepancies such as this are usually not treated in the hope that the

.- -

difference will represent such a small fraction ofthe total leg length that it will not pose

any significant problem. Shoe lifts are prescribed for those for whom the small

differences will create a noticeable limp [2, 14,27].

For discrepancies between 2 to 5 cm, a number of options are available. Shoe lifts

are commonly prescribed for smaller discrepancies, up to 5 cm. This is slightly less

desirable than correction, as it does not correct the problem, but it has the distinct

advantage of one ofthe only low - cost, non-surgical solutions capable of improving gait.
«

Larger lift~ ...::-fuQseg~~,l:it~LthAA5C'cIn:-3!:~_Alp.\O§ta1)VaysJ~.~S,~aRthe,4iscrepancy·jtselfin;';0"::;'';V!,'C;'oo:,:;.;,
~,..~,>,"-.::::'I~:':;.~!~·i';",,'-~~.:.l:"-?~,:';;;7_"F.:1.:::t~~:"-"~~ ,:;_"::::o.;;;-;~ •.,,,-."., ,\-"''"~.... ,;-<f'~ '.' - -. - , - , ""',

. -
order to avoid subjecting the patient's ankle to inversion stresses, causing strains [2, 19,

12



26,27,28,30].

There are three primary surgical procedures used to correct moderate leg length

differences. The first is epiphysiodesis, or growth inhibition. The location of the

operation is performed on either the distal end of the femur or the proximal end of the

tibia, where 38% or 27% of the total leg growth can be stopped, respectively. The

purpose of this method is to arrest the growth at one physis, thus slowing the overall

growth of that leg, allowing the shorter one to catch up in such a way that when growth

finally ceases, the legs will be of equal length. The procedure involves removing a block

damage, varus and valgus deformities, and unequal

such an operation include possible saphenous nerve

postoperative immobilization. The disadvantages of

low morbidity, ease of performance, and no

bony bridge across the physis, arresting growth in that

advantages, such as a high degree of accuracy (within

area (Figure 1.4). Epiphysiodesis has several

ofbone from the medial and lateral parts of the growth

plate, and replacing it at a 90 degree angle to create a

-1 cmtotal-leg inequality), low-risk, high success rate,

Figure 1.4 - Epiphysiodesis
. on the femur and tibia

';;"i~~;;'~~~~'~".':;:' ,.c,,,,~'::::;:~t::~~:~~~41~'~f~~Rkting;)1:o.J.Tl.~t~f~i&~~~~~":':.;~,., .. ,,,.;,._,,:.~;:: '.;"~'.":'" "'~«'t:~:.~,,~-~;,!,·::.;._ =~ .'.,
. , ~

considering the total limb length and not the individual length's of the tibia and femur

or late will result in over- or undercorrection [19, 26, 27, 30].
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Limb shortening, or resection osteotomy, is the second method used to treat

moderate discrepancies. It is an option available for adults, late teenagers who have

completed the growth process, or children whose growth patterns cannot be confidently

predicted. In many discrepancy cases, it is more desirable to wait until full maturity

before any type of corrective measures are used, thus eliminating the guesswork involved

with predicting the total leg lengths. This operation is almost always performed on the

femur, in which 5-6 cm can be safely removed. It can also be done on the tibia, in which

2-3 cm can be removed, but there is a higher risk of neurovascular complications and

nonunion. The procedure involves the cutting of a section ofeither the femur or the tibia

and using either a blade plate or rod to hold the bones in place until they heal. The leg

then heals like a normal break wound. This is a very attractive option, especially due to

its lack of guesswork, low complication, and no real need for postoperative

immobilization. The negative aspects, however, include the thickening of the longer limb

after shortening,.bulging-ofmuscles.around-the operation-site,neurovasculardisorders;-- - ...

and muscle weakness. In addition, since the shorter leg is usually the thinner one, the

possible thickening ofthe shortened leg will accentuate this difference. Even so,

resection osteotomies appear to be the safest and most reliable method for less severe

discrepancies [19,26,27,30].

<"

,5;:'~'o~~'",~--,.O~C"- ~""'V"''':J"' --._="TheJbircl.m~fu.9ftHhX~,tl!L~tap..11~g,.!§, ~..~x.:.p~EiJn~ntaJ_process, using the idea that
.. ..... ' "7

T?-'" ._-". ::'" _... :";' .-.':~-: _-, -~ ,: -,> __ ~~~ .:~=:._:,,,:.:~:::;;)~~:~i~l'~'~'''''~~~~~~~-- ~.I_.,: ';.·T_;~::::~_~_.' ··~-_-!">~-~'-:;-,~_o~~>;. :._".r.~D _~4'~~~';{'ZkO'-'~~.f- .•~;::.~;~._.--=; ':=:~-~:~-~>~f~~~o-~:~:~;~~~~~~~,:,~~~:·~.

locally applied pressure inhibits physeal growth. Again, this process is performed at the

·., .. i"<,,,~s~,,~~,~':~c·2'gT~:WtlNll:eas,~4eterD1iDed];Y;iWW:,~u~h:iilhl~irfoIiIs:.(ie$:f~4:.:14i:Ii~9~~~:s:mx~1Y~~r~::.: 'ii'::~~:::'~;:':

insertion of a number of staples across the physis, medially and laterally, to halt its
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growth (Figure 1.5). Once removed, growth resumes. The obvious advantages to such a

method is the amount of direct control over the physeal growth. The staples can be

removed as soon as the proper leg length equality has been achieved. However, there

have been numerous reports ofpartial or total failure using this technique. Reports of

shortening and angulation of the longer leg, unpredictable growth spurts, and possible

physeal arrest during the insertion or removal have all been cited as the present dangers;

It is thought that more research must be done before this method is to be safely

considered [19, 27, 30].

There are fewer options available for those who suffer from severe leg length

discrepancies. Limb lengthening, also called distraction osteogenesis, is usually one. of

the only courses of action open to patients who suffer from discrepancies between five

and fifteen centimeters [19, 26, 27, 30]. This method is used as a last resort, when all

other methods (such as a combination of epiphysiodesis and shoe lifts) have failed. It is

most often done when the patient has reached adolescence but before growth has ceased.

The procedure begins with an osteotomy, or cutting of the leg bone. This can be done to

either the tibia or the femur, depending on the amount of lengthening desired. In most

cases, up to 5 cm can be obtained from the tibia, and up to 8 cm can be obtained from the

femur. Once the leg is cut, pins are inserted into their proximal and distal ends. Then, by
\

means 9fan externally'mounted machine, a-slow distraction force is applied. There is
....~',,:::~""'-"'-;, ...,.:.'::" ~·;·;::-C:7::;;;:-;~';;';';'·.:,,~·~ ..•.

usually·8. residual 'discrepancy ofabbl.ir2:t6JC1riin-mostcasesj~and·for·i:lifferencesof· ..•,.".,., .~"""'~,_
. ' . . I .

'-""",!,-(.;.",,~-,.,.. •.~. .....,..~~=_..?ver 6 cm, this process may have to be repeated several times, or used in conjuncti,on
,>::'~I.-::;·"~:'.~ti/-:-:.· .:-:--:. .... -:-~_.:....~~~: '. ::'..i':;'_""".';'.,~'~~~:~, ';?-~~:;'.~-; ~.',~:·::/·;'{.:;:'..7r~S::~.;f'! :~~;',,?'~~N:';'\.~-:--.,:,-. '~,~. {;--:~;-:'~'_, '~:'_~:::, ", '_ ,.', 't

with resection ~st~~t~~;t~'~~;;~B~~~~i;tr<;';r'ThI;15rtce~§1tff6WWUflllefg1ifaIid''''~ j~;;C:'i'n1>f<Yli"i'~n[:,~
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proportions of the person to be maintained and avoids surgery on the longer side, which

effectively makes the normal side abnormal in most cases. In addition, the patient is

ambulatory and can apply partial weight bearing during the lengthening process. Angular

deformities, refractures, physeal arrest, articular cartilage damage, long term weakness,

and morbidity are the most common side effects of such an operation. Unfortunately, it is

one of the only methods known capable ofhandling such a severe discrepancy [19,26,

27,30].

Discrepancies over 15 em are usually not amenable to lengthening, shortening, or

any other operative method mentioned above [26]. In the majority of cases, prosthetic

devises are used to compensate for the difference. This is a method of last resort for

those with deformed or functionally useless feet and those whose discrepancies exceed 15

to 20 em. The process usually involves partial removal of the shorter limb or, in some

cases, a Van Ness rotationplasty, in which the ankle is turned around and placed at the

same level as the knee on the longer leg is located. Once this is completed, the prostliefic~

fitting can begin. The benefits of the process are quite simple. There is one

hospitalization and one operation. Younger children who are chosen to have this done

adapt very well to their prosthetics, and get used to them quickly, establishing a fairly

normal gait. Unfortunately, it is also very emotionally trying for the entire family -

especially if the children are older. However, this_process has the ability to completely

:~~7'~"~;7~.~.~.- ..:'Dj~±~it~ili~p~~~I~mi ~~~~~~-~~··~~:,~~~~t~~§crepancY·Tr9~·171·.-~·:····c:~:~': ..:;;:. :"~':;:~'::/'~"";';.~ :..,.,",··:'C:C";·i",~.z",:,:.·.'·'~';"";;O·;.t~::· ·T'.:- :::::'

Other methods haye been theorized to stimulate growth in the physeal region

,?'"0';"::":_·:-~:'·:':';'C:"·\¥illioutilie·need:for- sUrgical operatfoii~i"One area, which reimdns unexplored at this ,.
\ . ~".
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time, is the possibility of electromagnetic growth stimulation [19, 30]. Another method,

proposed by Wolff in 1892, involved subjecting the shorter leg to a constant tension,

which is known to stimulate growth in the physis. This idea was extended in the 20th

century into a procedure called "distraction epiphyseolysis", in which a trans skeletal

distractor is mounted onto the leg to provide the distraction force, thus eliminating the

need for surgical operation [19, 27, 30].

1.5 Present and Future Focus

This work dedicated to the study of leg length discrepancies will start with a

description of gait analysis, moving to the investigation ofthe relationships among

various gait parameters, such as that between walking velocity and cadence, walking

velocity and impact acceleration, and the correlation factor between bone mounted strain

gage and skin mounted accelerometer measurements. The work will then progress to

provide a reliable way to isolate the contribution of heel impact to the total measured

tibial acceleration.

Further work will be done to analyze the correlation between severity of leg length

discrepancy to the force of impact on both legs. If a correlation is found, then the next

step will be to find a method to equalize these forces in order to establish both a uniform

gait and equal impact forces.

17



Chapter 2: Elements of the Gait Cycle

2.1 Introduction

For the purpose of analyzing the gait process, the human body can be divided into

two sections: the passenger and the locomotor (Figure 2.1). The passenger, which

consists of the head, neck, trunk, and arms, comprises approximately 70% of the total

body weight, with the center of gravity located just in front of the 1<Jh thoracic vertebra,

approximately 33 centimeters above the hip joints on the average person. Coordinated

muscle activity in this section maintains vertical alignment [24, 25].

Passenger
Section

. Locomotor
Section

____ Lumbosacral joint

Hip joint

Knee
joint

Subtalar Ankle .
join~ .joint

:"":,'_:, .3'JZ"'z;.., .·::eB·~·="~·"'·"{';';':;:' ~';"'-''bE/>''';'~ _;"'i~""""'::"";':;;:'-':";::;":"~·:" ""';;'~·"c··0S:'::·:·.:M.eia1ars~pli.alai1i~lil:'-::;"·;'-':>::.·~:~";:~!.::..-:;;;::-.;.::':,,,;::;;;,:c.--.:.c;·;':".~."··":;:':"·:07P: '::"=::~
joint
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Balance of the passenger is heavily dependent upon support from the locomotor

section, which consists of the two legs and the pelvis. The pelvis can be thought of as the

bridge between the two, since it serves as the support for the passenger and the link

between the legs for the locomotor. There is a total of 11 joints in this half, and their

motion is controlled by 57 muscles. Each of the bony segments, such as the pelvis, thigh,

shank, foot, and toes, act as levers as each limb alternately assumes responsibility for the

support and forward progression of the passenger section. After passing the weight of the

passenger to the opposite leg, the limb swings forward to once again accept the total

upper body weight during the next gait cycle [24, 25].

2.2 Functional Patterns and Objectives of Gait Cycle

Learning to walk occurs at a very early age for virtually every person such that it

soon becomes an almost unconscious activity. However, there are several functional

objectives that the human body's locomotor system must fulfill each time any kind of

2.2.1 Propulsion

The first and the most obvious functionalobjective is that ofpropulsion. The

main objective ofwalking is to move the body forward so that it may go from one place

to another. The primary propelling force that causes this forward motion is the constant

falling ofbody weight. The mobility present at the base ofthe supporting limb due to the
~~~:< __-:' ,"!,:'-~}' >.:::'~-;;:~~;; ::.:. -.. '.y..;-::::::.:> '-~: :~::--:tq.:_';.~ ~~::_: ;~~_':::-\;~ __ '_:L;;'::I:~-{~!~~; ·':';'j--:_~;;;,,~ .....-'C~ .• o,~~::"":, ". "~_~'':'". ''--. ~""!_~~_"I:>o_<.•,-.-.....>_,l_~ '~:;_:=:-.--"-:: ';;:~_.:,::' ':-':'!::- ~ :~""""'."_"'_~"':_...i7;=-~";;;~ :~.~,._,~=q:~:_ .. :.~-__-.~;'-.;..'.:=~,:::-_'~~~::;.--::.;~:-:,=.:-~_:_~.~. ::;::;;;;~~~:.'~'.<~:~-=-:r-==-:

presence of the heel, ankle, and forefoot is critical to t4e freedom of this ~f(ee fall".

~~~;~~~;i~~:;'~~~:~~'-~:::~;~'PIese;ji)iP}~~~EYY':~£9~~~-*~1Q.~B..JP£~pg~~t1Pg~f~~m;g;~~!,~~~~~;.;ii~:~;,~~::~~;:;~~~;;,~:;;,;.~~;

extended'. The secondary propellin& force is the forward swing ofthe free leg. The
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change ofposition and alignment provides an additional force as the momentum due to

body weight decreases in the supporting limb. Once the body has moved forward, it is

supported by the swing limb which has now assumed a stance position. This process

continues cyclically and alternately with both limbs exchanging'foles of supporter and

momentum generator [13, 24, 25].

2.2.2 Stability

There are also significant challenges to stability when a person stands and walks.

For example, the center of gravity is in the passenger segment ofthe body in which 70%

of the total body weight is located. This means that only 30% ofthe total body weight is

supporting the rest. The magnitude and direction of instability is a direct function of the

extent to which the center of gravity is out of line with the rest of the joint vectors. In

addition to this, the bones in the human body are long-andthin, with round, smoothjoint

surfaces. This characteristic gives the body significant mobility at the price of stability.

. _Due to these two factors, theupper-part-of-the-body-will-faltifilie]oiilts' -centers 01· - -

gravity are out ofline with one another to any degree [24,25].

There are a number of compensatory mechanisms present in the human body in

order to counteract the unstable equilibrium inherent in standing, walking, or running.

There are a total of three forces acting on the joint of the body when in any kind ofweight

bearing mode. There is the falling ofthe body weight due to instability, the tension in- the

,~~"""- .---S~l~:_-.'._ :.~.........c.;~"~- ~- ~ ~ .. .. -":~:~~~":_..tJ;.';:·- -~,,;:. -::: ::~~~.,':~'~ .....~.\ :~":::-_'" -!'-;;l:::·:-::'~~X:~;--'~S:.:::-'''c'-'''~':·'-~_ -} ,;~)ti:·: ~_~:-. _'~.'_:_--.,_,. '~"!,-~-~._:.;;':~;';.:'~.::_~~;;,,;:~.~\-_. ~:"'7':': ~ :_:':';';'~""\'";,:::~ ..-.;"'- " -,-:~'.f,,:-'· ":r;, 5,:·:....... '-- .,-_.."~.:.:_:,~:;;}=.\:.~:;:>;~:-~~'" 1~~-.-.7':i.....",':';;'.;.

ligaments, and the muscle activity in order to counteract this falling.
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When walking, the body lacks any form ofpassive stability that would be present during

quiet standing. The body moves from behind to ahead of the supporting foot, and the

area of support moves from the heel to the forefoot. During one complete gait cycle,

different parts of the locomotor system serve to counteract the constantly changing source

and direction of instability. Upon initial loading ofthe stance, or weight bearing, limb,

the extensor muscles restrain the fall of the body weight. As the body weight progresses

past the ankle, instability occurs once again. This time, the weight is restrained by the

plantar flexor muscles. These muscles counteract the forces due to both gravity and

forward momentum. Thus, an increase in walking speed puts a greater demand on the

muscles that control deceleration and increase overall dynamic stability [24, 25].

When standing still, the entire body weight is supported by both legs. Loss of one

of the legs by swinging it forward or lifting it up causes the center of gravity to become

eccentric relative to the line of support. There is an instinctual contraction of the hip

establishing stability in this position [24, 25].

2.2.3 Shock Absorption

The repetitive nature and impact associated with walking has required that shock

absorption be another objective ofmuscle activity during the gait cycle. It takes place in

three areas ofthe locomotor system: the ankle, knee, and the hip.
, "

degree flexion as the forefoot "free falls" to the ground. The pretibial muscle restrains
, ~

T·7';"'·'C-.--.-:·,;····~,:-:-.-y·:?·,~:,o;ThiS::fuotiQ.it~:~!~~ng. this'rate off1exion.""This"actiQn..~J~Q,n~~Jl£~~.tl:1~.,mt~c9f»,~~;ght~ ,'.c"7:C.,,~--=--::"'::'.~~:.'.::~~
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transfer in the forward direction [13].

The largest amount of shock absorption occurs in the knee. As the pretibial

muscle restrains the fall of the foot, it forces the rest of the leg to follow the foot. This

causes a forward roll in the muscle, causing knee flexion because the joint center is in

front of the body vector. The quadriceps then react to this by decelerating the rate of knee

flexion [13,24,25].

The hip reaction to impact is the immediate unloading of the other leg for swing.

The removal of support causes a drop in the pelvis on that side, which is countered by the

stance limb's abductor muscles. As the hip motion and loading is countered in this way,

the shock of impact is absorbed by the muscle action in the knees and ankle. Thus, the

total load on the hip joint is reduced significantly [13,24,25].

2.2.4 Conservation ofEnergy

During gait, the center of gravity moves both horizontally and vertically in a

-somewhat'sinusoidal'fashib-n-(Figure-2~2):- -'fhis· curve,-in-anaverage-person,is -about-2.2-···

times longer than their leg length. As the amplitude ofthis arc increases, so does the

energy expenditure associated with the gait cycle. Several mechanisms conserve energy

to the body by flattening this curve, thus reducing the amount of flexion and extension

necessary in the hip and legs [13].

The first of these components is pelvic rotation. The pelvis rotates by

~'-':''''~;::'':':'~~'_J~_':_ ~-~.";;;.I: -_ .. ,_ •."-,,:,,~,,,,,",,,,----,.~.,.' , .b

.-_ appro~~ateIy"4-aeg~~~:saooufllie'\fe~icaraxiS"'cbrrespondifig-with,the'line~of>=·:lt'-s"'::"7:;;;;;':;"~>'~::;::::_::_';:;;;'"

progression, and increases in frequency linearly as speed increases. This serves to flatten

--.-C',-'" ., " ,.; '.; :~thearcthe:center:Qfgr~vityjra¥~1~J?Y~:e.I~,¥at4J.g:fu~J~1.l4~gf;tlt.~:;~.~~}p.~~o~~:-'''-'''':'',c''~C-';''''i,:
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Figure 2.2 - Sinusoidal motion ofthe center of gravity
with no energy conservation mechanisms present
(reproduced from [13])

Figure 2.3 - Sinusoidal motion of the center of gravity with .
pelvic rotation (reproduced from [13])
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intersections of the adjoining cycles less abrupt (Figure 2.3). Addit{onally, the

magnitude of the ground reaction forces as well as the force required to change the

direction of the center of gravity is decreased [13].

In addition to pelvic rotation, there is also a tilting motion in the coronal plane on

-
the side opposite to the weight bearing limb. The magnitude of this listing is about 5

degrees on either side. In order to compensate for this, the knee joint of the swinging

limb must bend in order to gain clearance from the ground. This, like the pelvic rotation,

lowers the center of gravity and flattens the peaks ofthe arcs (Figure 2.4). It also serves

as a shock absorbing mechanism by allowing some ofthe force due to impact to rotate the

pelvis to a small degree [13].

/
Figure 2.4 -,Sinusoidal motioQ. of.the center of gravity with
pelvic tilt (reproduced from [13])
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When walking, the thorax and shoulders rotate back and forth, approximately 180

degrees out ofphase with the hip motion. This produces an arm swing in the same

shoulder which appears to have an overall balancing effect which smooths out forward

progression. It has also been illustrated that thoracic rotation decreases in the overall

energy expenditure [13].

Upon impact of the foot with the floor, the knee begins to flex by about 15

degrees. In addition, the presence ofthe foot and ankle allows the pathway of the knee to

remain horizontal, allowing the knee flexion to smooth out the pathway of the hip. Thus,

the flexion ofthe knee as well as the presence ofthe foot and ankle joints to serve as

rockers serve to smooth out the discontinuities at the arc intersections (Figure 2.5) [13] .

.......................

Figure 2.5 -. S~nusoidal motion of the center of gravity with
knee flexion (reproduced from""I13]) .
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2.3 The Gait Process

2.3.1 Cycle Divisions

The gait process can be broken up in to several components corresponding to the

different loading characteristics that take place during each cycle, with minor variation

among individuals. As these cycles are broken up into divisions, it is important to note

that due to the symmetrical nature ofthe process under analysis, a complete cycle can be

thought of as the actions that bring one leg from initial contact with the ground through

the swing and back to initial contact again.

The stance phase is the first of two primary divisions and constitutes 60% of the

total cycle. It begins with initial double stance which initiates the gait cycle (10%). Both

feet are on the floor after initial contact, and there is an unequal sharing ofthe body

weight by both feet, with more weight being supported by the front limb. What follows is

a period of single limb support, while the opposite foot is lifted for its swing phase

(40%). This is also calledsingle stance, as the body's entire weight is being completely

,
supported by one leg. The duration of the single stance phase also gives a good

indication of the support capability of that limb in a loading situation. The final part 0"0

this phase is called terminal double limb stance (10%), which begins with floor contact

with the other foot. It continues until the original stance limb is lifted for swing. The

advances towards double limb stance to restart the cycle [24,25].

--2.3.2 Phases

.' ,
~.. . .-' -:, -,

In the previous section, the entire gait cycle was outlined in terms ofphases· and..
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general actions during each of them. It is now important to examine the action and

reaction ofthe body during each of these divisions in order to gain a more detailed

understanding ofhow, when, and why each of the muscle actions take place.

In the double stance phase, there is an abrupt transfer ofbody weight from a limb

of stable alignment to one of an Unstable alignment. Thus, four functional patterns must

be maintained, as mentioned earlier: forward progression, stability, shock absorption, and

conservation of energy.

The initial contact of the foot with the ground takes place during the fIrst 2% of

the cycle, starting as soon as the heel touches the ground (Figure 2.6). During this stage,
t

the hip is flexed, the knee is extended, and the ankle is dorsi flexed to neutral. At this

time, the other limb is at the end of its terminal stance. Upon initial contact, the body

-,

J\
Figfffe 2.6 - Initial contact
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responds to the change in load distribution (0-10%). Again, this occurs upon initial floor

contact, and continues until the other foot is lifted to begin its swing. At this time, the

body weight is transferred to the forward limb, while the knee is flexed for shock

absorption. The ankle is plantar flexed in order to limit the action of the heel rocker by

slowly bringing the forefoot to the floor. At this stage, the opposite limb is in its pre-

swing stage (Figure 2.7) [13,24,25].
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Figure 2.7 - Loading response phase

The loading response ofthe front leg has brought the body to the beginning of the

single limb support phase. It begins when the opposite foot is lifted off of the ground,

-
c:'c:. •:._.__.:-'-~_ .. - ... and CQ!lthmes until the same foot touches the floor again. During this phase of the cycle,
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one limb is solely responsible for supporting the entire body weight and its forward

pro-gression. During the first halfof the single limb support phase, called midstance (10-
~~~1.(J:.."'1.f."f"Y!:2~'2f~?~~r:;:~.'·~~,,--'!~~r;·..--,:··~;o:-~~=-·
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30%), the opposite foot is lifted up and continues to move forward until the body weight

is aligned over the forefoot. The swing limb advances over the supporting limb by way of

ankle dorsiflexion, while the knee and hip extend. The opposite limb advances through

its midswing phase (Figure 2.8). In the second half of single limb support, called

1\·.·.·,·., ,, ,· ,, ,· ,, .· ., ,, ., ', ', ', '
\ ~, ,
\ .
\ \
\ \
\ \, ', ', '. ', ,, ,, ., ..,, ...'. ,,.....
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Figure 2.8 - Midstance phase

terminal stance (30-50%), the center of gravity moves ahead of the forefoot. The heel

begins to rise as the limb advances over the forefoot rocker. The knee increases its

extension and begins to flex slightly. The increased hip extension that takes place puts

whilethe weight supporting limb is now prepared for advancement (Figure 2.9) [B, 24,

25].
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Figure 2.9 - Terminal stance phase

There are four phases of limb advancement: pre-swing, initial swing, mid-swing,

and terminal swing. The pre-swing phase (50-60%) is the second interval of the gait

cycle that involved double.stance.-Jtbegins whenJhe_Qppp~it~ foot makes_~onta_cl1Vi.th

the floor and begins its loading'response. The ankle of the swing limb plantar flexes, the

knee flexes, and the hip loses its extension (Figure 2.10). During the initial swing (60-

73%), the foot is lifted off of the ground and the limb is advanc~dby flexion in both the·

hip and knee. The limb advances until it is opposite the stance foot, which is now in mid-

stance (Figure 2.11). Once the feetareJinedup,il\.the sagittal plane, the mid-swing phase..
-_._.,~_._- - .

begins (73-87%). The swing limb, which is now anterior to the body weight line, is

advanced further by increased hip flexion. The knee extends in response to the influence

of gravity, while the ankle dorsiflexe.s to a neutral position.' This continues until the
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swinging limb is forward and the tibia is vertical. The opposite limb is still in its mid

stance phase (Figure 2.12). The final interval of swing, the terminal swing (87-100%),

.begins with a vertical tibia. Increased extension of the knee causes further limb

advancement. The hip maintains its flexion, while the ankle is still dorsiflexed to neutral.

Limb advancement is completed when the leg is ahead ofthe thigh and the foot makes

"free fall" contact with the floor. The other limb is in terminal stance at the end of this

phase (Figure 2.13) [13, 24, 25].

__ __ • .tt::11__

· ....... '.....In..· ,
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Chapter 3: Experimental Methods

The underlying focus ofthis work is the study ofleg length discrepancies. Fisrt it

was important to establish the primary causes, biomechanical effects, and methods of

treatment for this condition. In addition, a summary ofthe elements of the gait cycle was

required in order to establish a basic understanding of the joint and muscle activity during

the stance and swing phases. The primary goal of research, however, is to determine how

the impact due to heel strike as well as the loading response of the legs changes as a result

ofmild, moderate, or severe discrepancies. In order to measure these quantities,

acceleration measurements from a small skin mounted accelerometer will be used. It has

been shown that the resulting error arising from having the measuring device mounted on

the skin rather than in the bone is less than 5%. Error in this range is acceptable for this

type ofmeasurement [34].

In order to use acceleration as a basis for measurement, it is important to

understand its relationships with other parameters of gait, such as walking velocity,

angular motion ofthe tibia, and the loading response ofthe tibia at the time of impact.

For this to be effectively determined, different methods ofmeasurement must be used. A

kinematic analysis using position markers will yield the angular motion ofthe tibia during

the gait cycle. Surgically mounted strain gages on the upper tibia will be used in order to

~~ ...,;~;' '~,,=c'~:E2~~fu~~titetli~{re~ctid~cf-;;rc-~"s~ii1'lli6C"tibi~':afuihg";ili~~riri~~f'iriipi~::tfe~~CWif{b~·,::~~,,·e:~~0:~C~"'':O':~7 .:-?C;~

compared to accelerometer measurements in order to find a correlationJ?~jweYlljhe two..
'---~-'-::--;---:-.::.-:-:-::.-::.-;-=::;::~::.--_~-::;- ..':'"~-.:::--;=-;:;:;:::::.-~;;,.-..;:;~:-....::-;;:;~;:-.7.:.:;::-:;-::=;:.:-;;::-,;-_:-...-::-.~;:.:;:::----:.:::::;:--.7....::.~.::..:;==.-:-~~_:::-~;::;-:;:,...:::.,;~-::.:.:.-;:;.-:-_--~...:-~~.:",.::.:.-:~;:~-~:~~~-;~.::-:;''--:''''''---'';''"':'''~--._._--'''., ..
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3.1 Non-Invasive Accelerometer Measurements

The use of non-invasive techniques to obtain information about ground reaction

forces and the acceleration due to impact is the most ideal, as it requires no surgical

procedures on the subject and takes very little time to prepare for data collection. This

allows for many sets of data to be recorded during a given session.

The use of accelerometers placed on the leg during the gait cycle allows for the

measurement ofthe magnitude of acceleration due to heel strike that occurs once per

cycle. By comparing the impact acceleration at different walking speeds, the relationship

between the two parameters can be determined. It is anticipated that this method will

eventually be used to compare the difference in heel strike acceleration differences in

people afflicted with varying degrees of leg length inequality.

3.1.1 Experimental Apparatus and Procedure

All of the non-invasive accelerometer measurements were made in the Taylor

Gymnasium at Lehigh University. A small (2 g) accelerometer was affixed to the tibial

tuberosity (immediately below the patella) of the subject's right leg using & simple

canvas strap. The transducer was mounted to the strap by way of a small aluminum

brace, which allowed it to remain vertical during the mounting process. The transducer,

which gave an output of 10 mV per g, was connected to an amplifier which boosted the

signal by a factor of 100. The amplifier was powered by a 27 V DC power supply. The

~'O,<""'j""'·iS".>;;;2~"~"$::-";·;~-;:ari1plifie&?slgftar-WifS:th~n~hf'tO:"'i;g'bnverfer;i~1ffclfIi1aae;tlrgaata:>"teIid~bl~C':b)?tlie-'::::",:";:,.,"~,.,.,, .•.":;'_·"·.t'"""7':;:."~

.computer. The computer converted the data fr~!!1 ~al2g!()~!g!!~~t~Lr~t~_QLL~.z, or . ",._,_ "",;;c.:::-,,::
.. -:-:--:":::::':--~·:~--:''::'=':::::=~:-:_-==-_-:=-~:--:,:.:'::3~~:;:~.;:;~~~:7c::~:::~:,"'-:::;:~--- ::-::.~--=.----":..,.--.,..., ""--~-"'\~ - --_ ... -- --.- .. _:,,,-~:,:::-:, .~---~~~-----_:" ,'- --'-_."~ -_.,-.
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Figure 3.1- Experimental setup for non-invasive
acceleration measurements

for each trial.

A total of seventeen subjects - all healthy, unfatigued males, were chosen to

-participate-in this experiment.-Each-subjectwalk~d orr a treadmil1_~.0i"ye different

speeds: .89, 1.11, 1.33, 1.55, and 1.78 m1sec (2, 2.5, 3, 3.5, and 4 mph). The data taking

process for one trial took approximately one minute. In this time, between 8 - 12 heel

strikes were recorded onto the computer, depending on the walking speed.

3.1.2 Data Reduction and Analysis

The data was recorded as a text file on the computer, and Was processed using a
=?",,';".;':::>'",': ,-...~:c'_ .. ,~,-::·~o~.:.:.: ..•-_ J'~":"'~'''''''''';;~'''.r-,:,-:~.:;_~ ,0-"", ". ;:-.~::;_ ,,'-~ _~"'~=';:':'.~~ -~"_"'_ ,_\"'_''':~' :'~"~:';:." ....-.•.•_::..:;;."I".'.~ ...... ' •.__ .._- _.-:;::,-~:' ._~_'-_:c:,"~_--'-_ _~ '_ '~''''<-<~> ,~. .•••,. __.__ _ _

peak finding program. Eachtrial was graphed individually in an exploded~l~:;:'the-" .,-.
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underlying tissue in the hip, knee, an,d ankle joints, a device consisting of two wooden

and acceleration averages were statistically significant or, in other words, from the same

parent group of data, an analysis ofvariances (ANOVA) was performed on each

individual set of data.ANOVA·calculates the standard deviation among all of the data

points in each set and then compares it to the average standard deviation among each set

as a whole. Once the analysis was performed, the heel strike times and accelerations

were each averaged, normalized for each trial in order to take into account variances

among the subjects, and graphed as a function ofwalking velocity with error bars to take

standard deviation into account.

3.2 Kinematics

Kinematic analysis using position markers is used in order to trace the path ofthe

joints in motion during the gait cycle. From the position data which is recorded onto a

.computer, information about the angular and translational velocities and accelerations can

be found. This method is used in order to determine the contribution of angular motion

ofthe tibia during.tb~mowent ofheel strike.
/

3.2.1 Experimental Apparatus. and Procedure
. / .

. .
Positional data of the s~bject was taken using the Ariel Performance Analysis

System (APAS). Retroreflective markers were affixed to the subject's body using

athletic tape. One was placed on the rotation axis of the hip, the knee, the plantar and

dorsiflexion axis of the ~e, the heel, the top of the head, and the rockerjoint of the 5th

. .
~..,.....-=,,.k'''':'''''~':~-::''r''':;;''''::''''''~:t-:''t~~ _..... _ _ :.":-", '". . _ _ _ ."". __ _ __. _ _ _ ~

_~ __ "_ .. _c.... ___to~_(figiire'J.2f "Iii 'oraet"to minimize themovement-ofthemarkers-re1ative to the--·~·<

====:~-::-_-.:._. 7:-:-:-=­
.. .-,_..... ~._._--~ .. _.::~~~-~--==--=.-"-:-:~ ------~-=.-~""-=

~ ... - ···roasanaa: hinge aligned \\lith the ·t6t[tiol1axisoft1ie-ki1ee\vas~affaCMa't(t-llieiD.irRers;;ih=:·""'7=""-:::C'~'~c'E'~
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Figure 3.2 - Retroreflective marker positions on the locomotor
section

order to constrain their movement. Thus, the hip-knee and knee-ankle distances were

--------

forced to be constant [3, 4].

The subject then walked on a treadmill at two speeds: 2.2 m/sec and ?.5 m/sec.

The position data was recorded using a video recorder and four electronically shuttered

cameras, which were zoomed into a 2 m by 1 m by 2 m viewing volume. Behind each

camera was a 1000 W lamp which illumina~ed the reflective markers and allowed the

cameras to pick up their position (Figure 3.3). Samples were taken at 50 Hz, and the

positional datais recorded and interpreted using the frame grabbing module ofthe APAS
. - .. ------.. ---..-- ----~---------.·.c,·~,-·_,_:_::"o.... ,,·_'_... -

system .[3,4].
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Figure 3.3 - Camera and treadmill placement for kinematic analysis

Once the position of each marker was plotted as a function of time, the angular

position and velocity measurements were obtained. The data analysis in this section was

done using Corel Quattro Pro Spreadsheet. The primary area of focus is the angular

velocity ofthe tibia over the gait cycle. Thus, the positions ofthe ankle and the knee

were plotted in both the x- and y- directions, and the expression for the tibial angle was

obtained using the expression:
\ ,
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respectively. A negative angle is when the

hip and knee are in flexion, while the

positive angle is when the hip and knee

are in extension, immediately before heel

strike (Figure 3.4). Each cycle of gait was

then isolated,

and the time ofheel strike determined.

This was done by interpreting the heel y -

displacement. Each minimum per cycle

corresponded to the heel making contact

X -Position

Figure 3.4 - Coordinate points for the hip,
knee, and ankle

with the walking surface. The times were recorded and matched with the corresponding

angle measurements at those times. From the

above angle calculation, the angular velocity

slop~s adjacent to each data point. The results

were plotted in order to fmd the instantaneous

angular velocity at the time of impact.

Combined with the computer

calculations to isolate the angular velocity, a
.,•• r. __............. ..:.- .•..•••• __ ._••"_ .• """"C.i,-••,~~,:,,~-.:':::;:;,,:;:

simulation was created using SDRC' s I-
.' .__ ._, ~, .....,...•• ..,. ~r··~····,q.lr:;-.dl· •.,.'1 ..';'"-- .l....:..-~.'\.:.:.-.-:.::::.=..:...:..:::.:::..--:=-.::::;~..:..--._""._.-~.~.:..::~:_~:~.:.:.-..:.....-_._..

DEAS CAD software. A simpl.e model was

designed (Figure 3.5)~ consisting oftwo long Figure 3.5 - I-DEAS rendedni~f
human leg
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cylinders to reproduce the femur and tibia, with a smaller, thicker cylinder for the hip. In

the Mechanism Design task, all of the instances were defined as rigid bodies and the

pelvis was grounded. Two revolute joints were placed at the intersection between the

tibia and femur, and the hip and knee. This type ofjoint provides only one rotational

degree of freedom. Thus the total mechanism has two degrees of freedom.

Using the experimental data, the individual knee and hip angles were calculated.

In order to obtain the individual angles, the previous equation was utilized to calculate the

angles ofthe hip

and tibia

relative to the vertical (Figure 3.6).

- -hi
I
I
I
I
I
I
i
I

Revolute 1

1: = e- o.

can be obtained merely by

subtracting the tibial angle with the

of the knee, 1:. The true knee angle

does not yet represent the true angle

-

depends upon the angle of the hip, it

However, since the tibia angle

x - PositionA'typical plot ofhip and knee angles

. t (·th I I 'ty Figure 3.6 - Hip, knee, and tibial angles 0, 8, andwere mpu WI angu ar ve OCI , .
..- .:. ·········· .. :····_········_·~···· .. ·'t·respectlvely "--,"'.....-_.- .
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measurements closest to the average) using the Cubic Spline option in the Function

Creation command. The plots of angle vs. time for the knee (Figure 3.7, Figure 3.8) and

hip (Figure 3.9, Figure 3.10) are shown. The mechanism was solved using I-DEAS'

internal mechanism solver. A total of 40 data points were input for walking at 2.2 m1sec,

and 37 were input for 2.5 m1sec. Each was solved using a mesh size of .1, or 10 solution

points per input data point.

3.3 Invasive Tibial Strain Gage Measurements

Invasive techniques are those which require some amount of surgery for the

mounting ofmeasuri~g apparati on the human body. A set of three strain gages mounted

onto the tibia is used in order to measure the strain present in the tibia during the stance

phase of the gait cycle. This information will be used to compare with the accelerometer

measurements to find a correlation between the two. If there is, then a simple, non-

invasive technique can be used to find the forces present in the tibia in place of a more

3.3.1 Experimental Apparatus and Procedure

Two different measuring mechanisms were used dUring this phase of the

experiment: a skin mounted accelerometer and a bone mounted strain gage set. The

accelerometer was, as previously mentioned, mounted onto an aluminum brace and then
.

-,'c'-,::',--....·.·---_, .._ .-~'" •.to,theJilJi.a,jwm~4i~t~lybel()W-!ll~Pa.t~U~h ..l>Y}~T,a.y.;9fE!,~MX~~~g,a-E.g~~L~9W!~.!J.J~;.1~&:":c"'._., ..".,, "';,<;c.,,<;.

. • ,·····_'--_ ..-··,'-,·-,,,.·~~'"1--y:-:J~r,-.;l'!i:~~·

The orientation was such that the wire was pointed upwards towards the belt line, making '" .-.". ...''':

it easier to tape to the leg to avoid entangling during the data acquisition phase. The

strain gage set, on the other hand, ~as surgically attached to the tibial bone itself,
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Figure 3.7 - Knee angle ys. time for a walking speed of 2.2 m/sec

O-,------.---,---'---r-------;,------,-----r---.-----,

-j!l +-=~=~+_-__h__-+'-----~___F-=---~-~~-..::..-F~~-----___j----___j

.Jr'\. J'" ~

-20 +-----l--__1--lJll.I~-\..-.-+_--,,..:.}f_V"-__1--4+\-_____I
....... / \ / \
(f)

~ -30 +----;---+-----iJF---+---"\~~-__t----f---+I\T_______I
~ / ~

~ -40 +---+---Hfr"----Ir------t---t----+-----I---'\.~--j

~ -50 +---+------tft-
I/
---Ir---__t_-__t--_+_-_t_-----J\\----1

C / l-
eu -60 +---+--i.l.~-__Ir---__t_-__t--_+_-_t_----.:\lr---J

~ J ~

-70 +------J'\..~r",,/"--___t__-"_+--_l_-_+_-__t--+_~f"___j--
-6J;l.

.~_._- .. '""'--..:.~-.")<,\','!".'1f'r'.'l:....:>-(

10.6 10.8 ·--···--~=-1·f·=~.·=~------=-iJ~2.==___--_-..1..1..4,
time (sec)

~

Figure 3.8 - Knee angle ys. time for awalking speed of2.5 m/sec

43



30

20

-(J) 10
Q)

~
C)

~ 0
"'-"
Q)

C)
c-10
ro

-20

.JL

/
..... .......... 1\

,I \
i \

t \

,J

I~ 'f

\ I
""~ I, 7

-30

11.4 11.6 11.8 12
time (sec)

12.2 12.4

Figure 3.9 - Hip angle vs. time for a walking speed of2.2 m/sec

30 ,-------r----,---.-----,---,------.-------.-------,

.~ ~~------- ~~ -I -f '"")~ ~~~ .......
20 +---+---::,f--+---+----..!!!L..-ll'l:-,\--+---+---+-----l

0010 I' \Q) +----If-----1f------+---+-~II\.~l----+---+-----j

~ I \..
C) r )
~ O-l---J'-l----l---+-----I----I~--l----+---

"'-" j 1\"Q)

~ -1 0 -1-_--l-_--I--_-I-__+-_-+--\--I----+--J~
ro ~ ]

r--. 1-'-20 +---:---+------l---+---+---l---_-\-~~-.",...._____1.........

10.8 11
time (sec)

,11.2 ., 11.4

Figtlre 3.10 - Hip angle vs. time for a walking" speed of2.5 m/sec.. . .

44



immediately below the patella as well. Three strain gages were mounted this way, and

positioned such that the center one was oriented vertically, while the other two were 45°

from the vertical. Thus, with both the accelerometer and strain gage, both the impact

acceleration due to walking and running as well as the reaction forces present in the tibia

during the time of impact are measured and recorded.

Multi Channel Tape Recorder

Amplifier Amplifier

Accelerometer Strain gage

Figure 3.11 - Experimental setup for non-invasive accelerometer and invasive
tibial strain measurements

The room in which the data acquisition took plac~ contained a force plate in the

floor, corinected to another cJ1almel in the tape rec,order (Figure 3.11). The subject

walked, and later ran, over the force plate by taking a total of three steps - one before the

force plate, one on it, and one after it. A total of 19-trials were performed in this manner,
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with each one differing only by the type of footwear used. Since the strain gage and

accelerometer measurements were made simultaneously, it is not thought that the change

in footwear has any effect on the correlation factor between the two.

Outputs from each strain gage and the accelerometer were sent through an

amplifier, which boosted the signal by a factor of 10, thus making the conversion factor

for the accelerometer 100 mV/g, and -10.43 microstrain/mV for the strain gage. The

amplified signals were then sent to a multi-channel tape recorder so that they could be

analyzed at a later time.

3.3.2 Data Reduction and Analysis

The multi-channel tape recorder was connected to a computer analog to digital

converter, with a two channel input. The first connected the input from the vertical strain

gage, while the second carried the data from the accelerometer. A computer program was

used in order to transform the analog data to millivolts and write it to an external data

-- .-

file. Once all of the information was transferred from the tape to individual data files, it

was filtered using an exponential smoothing function in Quattro Pro. This had to be done

in order to proceed to peak identification, which utilized the same peak location program

mentioned earlier.

The peaks were tagged and measured two ways. First, their magnitudes were

measured with reference to a baseline, or zero strain or acceleration value. The peak.to

peakvalues were also~recorded. This was done in order to more thoroughly estabHsh the

.elements of each measurement that cprrelated.'Yith one another.. Each.~~tQfpeaks, with .

their magnitudes and times, were again recorded in separate data files, which were
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imported into Microsoft Excel for analysis.

As mentioned earlier, there was a total of three steps per trial: the step before, on,

and after the force plate. Each of these steps was isolated and placed into its own

subgroup, and after eliminating peaks which did not register properly or did not appear at

all, a correlation analysis was performed.
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Chapter 4: Dependence of Impact Acceleration and Cadence

Upon Walking Velocity

4.1 Introduction and Theory

Along with the components of the gait cycle, there are also parameters that are

associated with the locomotive process. The most obvious of these is walking velocity,

which is merely the speed at which one walks. Free speed walking is the speed at which

a person normally walks, corresponding to the lowest amount of expended energy per

cycle. The duration of the walking cycle is the elapsed time between successive heel

strikes ofthe same foot. By definition, it is inversely related to cadence, which is defined

as the frequency ofheel strikes per second by the same foot. Stride length is the distance

between successive heel strikes of the same foot, while step length is the linear horizontal

distance between the line ofcenter of gravity and the heel upon impact with the ground

(Figure 4.1). These two parameters are directly proportional to walking velocity [20, 21,

22].

At the time of impact, the heel striking the ground subjects the leg to transient

shockwaves that travel up the tibia in the span ofapproximately 50 milliseconds. The

impact forces due to heel strikes as a result ofwalking and running are the major cause of

c '____~ ~]1!n_§Qlitits and degenerative joint diseases such as osteoarthritis later on in life [5, 15,
• __ ~---~-'---_._'~~---~_.-.. • '_'_0'- •.••• .~

as the wal~ng surface, the subject's fatigue, and possibly their walking or running
":,;:,"";.,.,,.
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Figure 4.1 - Stride and step length

velocity, which will be shown here. There are two distinct components making up the

total measured acceleration at the time ofheel strike: the impact of the heel with the

ground and the angular velocity ofthe tibia immediately prior to impact [15, 16].
,.

The influence ofwalking velocity on cadence and tibial acceleration will be

examined. Using a small skin - mounted accelerometer placed on the tibial tuberosity of
."

":.';'."'" ..!?~ r.ight ~eg, 15 subj~.cts were n.le~ured at differe~t ~a1king"~peed: T~e magnitude and

times oftheir impacts were measured usmg ,a peak finder program, and from this, the

velocity-cadence and velocity-acceleration relationships were found. The relationship
.. _-_._--_._-------------------------~--

between these two parameters is important to understand because of its use in
---~ -- - -----

--~ ------

--. ;.J:~..~'{,""
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determining the chances of the development of degenerative joint diseases in the legs and

the force distribution in the joints during the gait cycle.

The angular motion of the tibia causes an acceleration in the radial direction as

given by the following equation:

The negative sign is added because the acceleration is oriented in the distal, or outward,

direction. The sign convention used makes a positive value ofeto be when the knee and

hip are extended, immediately before heel strike, and a negative value ofeto be when

both are flexed. Thus, a positive value ofecorresponds to when the leg is swinging

forward, ahead ofthe center of gravity.

Thus, the total tibial acceleration is the sum ofthe angular velocity and impact

components:

Substituting the above expressions into the above equation, we obtain:

This equation can be rewritten in order to obtain the expression for impact acceleration in

,...
terms ofmeasurable quantities, since ~otal and ro are both measured experimenfally [16]:

The differentcomponents- of,rotal,measuredaeeeleration were isolated'using a" --_. --.

kinematic analysis system called APAS, which uses reflective markers attached to various

joints on the lower half of the body;speciflcally, the hip, knee, ankle, he~l, and toe [3,4].
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to analyze the contribution of each component to the total measured quantity. From this,

the true acceleration caused by heel impact with the ground was found using both

computer calculation and simulation.

4.2 Results and Discussion

The graph ofaverage normalized cadence and walking velocity in miles per hour

is shown below (Figure 4.2). It can be seen that there is a linear relationship between

walking velocity and cadence, with the slope of the line given by

C = 0.334v +0.696,

where C is the cadence, normalized for a walking speed of 0.89 m/sec (2 mph), and v is

the walking velocity in meters per second. The y - intercept is a significantly high value,
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FigUre 4.2 - Plot ofnormalized cadence vs. walking velocity
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and would suggest that even with a zero walking velocity, there is a positive value for the

cadence. This can be explained by the fact that at slower walking velocities, the natural

gait cycle becomes distorted, with more time spent in the single stance immediately after

heel strike. It is questionable whether or not the linear relationship illustrated in Figure

4.2 will be maintained as velocity is decreased further towards zero. In addition, for

higher velocities, in the range of2.44 - 2.66 m/sec (5.5 - 6 mph), the subject is no longer

capable of maintaining speed by walking, and must make the transition to jogging or

running. Because of the differences between these two phenomena, it does not make

sense to assume that this straight line continues to a normalized cadence value

significantly larger than 1.5 or 2.

The use of ANOVA served to prove that the difference between data from each

trial per person was statistically significant. This verifies that the data taken per trial was

not from the same parent group of data, and that there is a definite relationship between

the two variableS.
---_.... _._-- --- ---- --.- ---

The results of the above mentioned averages are graphed as shown (Figure 4.3).

The end result is that total tibial acceleration is linearly proportional to walking velocity,

with a slope ofthe line given by

A = 1.829v - 0.613,

where A is the total measured tibial acceleration and v is the speed of walking in·m/sec.
.. . '._. ..

-~""""""'"Jt~"~:'-:i:~:'J,n7;D'JjMUCh'.)liketffiatD~tWeen veloCity and,cadence,.tms equation implies'a ~~~i~~ar .

relationship as walking speed decreasestowatds zero. The direct relationship bet:veen.

~.~,-.,- ...
.",

,
velocity and impact acceleration is similar in nature to prior research done on the
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relationship between walking velocity and ground reaction forces, suggesting that there

may be a correlation between the two phenomena [1, 6].

The type of analysis perfonned with the collected data allowed for fairly

conststent-peakidentifying-and tagging-foreaGh-of-the-trials.--Some-small.errorJs_present _

here, however, since the data reduction was perfonned by hand. The impact times were

marked by tagging the maximum value ofthe shockwave that is measured by the

accelerometer. While the time to reach this maximum value should be consistent, it is a

strong function of the magnitude ofthe impact, which, as seen from the previous figure,
.'

can fluctuate significantly. The time difference ~ue to this change in magnitude is on-the.. _ I
_." ~ -,"~ . '...., ,

order of milliseconds, which is of the same order ofmagnitude as the variation seen in the

samples. The peak to peak value recorded may not adequately represent the heel strike

that took place at that time. Thus, itis safe to assume that this is the primary source of
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error.

The results from the position analysis using APAS can be seen below. Angular

position and velocity were plotted over the course of one complete gait cycle, with the

heel strike in the middle of the graph. Results are shown for a walking speed of 2.2 m/sec

(Figures 4.4,4.5). The angle of the tibia begins at a maximum position of about -60

degrees and a velocity of approximately 1.5 sec-I, representing the point at which the foot

is the furthest behind the center ofgravity, moving towards the vertical. The foot then

crosses the -yertical, directly below the center of gravity, achieving maximum positive

velocity. The tibial angle increases further until it reaches a maximum of about 20

degrees. At this point, the angular velocity is zero, as the body prepares for heel strike.

Impact with the ground occurs immediately after this, at an average angle of 6.079 ± 1.85

degrees and an average angular velocity of -4.115 ±0.226 sec-I. This is the point of

maximum negative angular velocity for the tibia. At the time ofheel strike, the tibial

. angle__then.mOye.sJlackJowardsJhe-yerticaLto a negative-quantityas-the-ankle-serves-as a---. --~-

rocker for the progression ofthe body weight. The angle gradually decreases as the knee

and hip are flexed and the foot is brought up to the starting position.

Measurements were also made at a walking speed of2.5 m/sec (Figures 4.6, 4.7).

While the overall trend for the progression ofthe tibial angle and angular velocity is the

__""'" same, their values atthe time of impact are ~ifferent. '.The 'average angle at impa.ct is- 1.69
.

±4.15 degrees, while the average angular velocity of -3.89 ± 0.48 sec-I.

All of the parameters ana variables have been obtained for the time of impact.
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The distance between the hip joint and the accelerometer is assumed to be on the order of

0.4 m, or 40 em. Substituting ro and einto the expression for impact acceleration, it is

seen that

for walking at a speed of 2.2 m/sec. The total contribution of gravity and angular motion

is 6.774 m/sec2
, or 0.69 times the acceleration due to gravity. The expression for walking

at 2.5 m/sec is

showing the contribution due to the angular motion of the tibia is 0.617 g. These

contributions are significant since the impact due to walking is on the order of2-3 g's.

The values are both larger than the measured contribution of 0.44 g at a walking speed of

1.5 m/sec made by Lafortune and Hennig [15], indicating a direct relationship between

walking speed and the contribution of angular motion of the tibia to total measured

acceleiitlon. The measurements taken at 2.5 m/sec, however, imply that while the

contribution may increase initially, it reaches a maximum at a specific walking velocity,

and then gradually decreases as speed increases until the gait cycle changes to ninning.

There are two primary sources ofuncertainty using this type ofmeasurement

technique. The first arises from isolating the time ofheel impact with the walking surface

~ way of fmding a minimum in heel y - disp!acement. .While this is a logical method,

Thus, it allows the corresponding values of tibial angle and angular velocity to be
~,~, ...~."~' ,-,.-. '-.~.-'.1~.'> ~"",,,,, . ....

erroneous. This is one of the possibilities when attempting to examine.the;·sow.:9~.of~he_ .
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large standard deviation for the second trial (2.5 m/sec). The second source of

uncertainty arises in the approximation of instantaneous tibial angular velocity. The

averaging of the adjacent slopes gives an approximation, but not the exact value at that

point. Both of these sources ofuncertainty are significant, but not essential to eliminate

in order to obtain an estimate -of the contribution of each component of impact to the total

measured value.

The results of the computer mechanism simulation can be seen in Figures 4.8 and

4.9 for a walking velocity of 2.2 m/sec, and Figures 4.10 and 4.11, which show the

angular velocities of the hip and knee joints for a walking velocity of2.5 m/sec.

Comparing it with the results obtained from the previous section, is can be seen that the

results are almost identical. Starting from the posterior position, the leg increases angular

velocity until it reaches a maximum immediately below the center of gravity. It then

decreases as it reaches its maximum positive angle and swings back slightly before the

the progression ofbody weight and then brought back to the beginning of the

measurement cycle.

At the time of impact, the angular velocity ofthe knee joint is -5.5 sec·! and -5.25

sec'! for walking speeds of2.2 and 2.5 m/sec, while the corresponding hip joint velocities

at the time of impact are 1 sec'!_f?~~~~:va~~? v::~?~i~~:s:.T~~.~l1!?-lHJ!!?:~.~~_~t~l~JR~",;",~_"
': __ ._ ~ .• ,."".,,'" ,~~•. _,.,.~_ • .",..,..,.,..;,:.-u-,,-- ~'- ~ .-" _~·.••,-.r_.'...., ,r"'. '.,' -' -.. - _. .

angular velocity of the tibia at the heel strike: ~4.5 sec·! for walking at 2.2 m/sec, and
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-4.25 sec·1 for walking at 2.5 m/sec. These values are slightly greater in magnitude than

the calculated averages of -4.12 and -3.89 sec·1 by factors of 8.5% and 8.47%,

respectively. These discrepancies have largely been accounted for in the previous

discussion of possible errors inherent in the spreadsheet analysis process.

4.3 Conclusions

There are numerous parameters associated with the phases of the gait cycle, such

as walking velocity, cadence, impact acceleration, and stride length. Understanding of

the relationships among them is highly beneficial in the context of experimental analysis.

The relationship between walking speed and steps per second, or cadence, was examined.

It was shown that a linear relationship does indeed exist between the two parameters

illustrating that as walking speed increases, cadence increases as well. These results

concur with prior research completed in the field [1, 7, 11,20,29].

During impact of the heel with the walking surface, there are two primary

components that are measured simultaneously. There is the acceleration due to impact,

and the acceleration caused by the angular motion of the tibia during swing and pre­

stance. Using the Ariel Performance Analysis System, SDRC's I-DEAS, and simple

trigonometry, the angular velocity of the tibia was isolated at the time of impact in order

to estimate the magnitudes ofthe above components.

It was established that angular motion contributes significantly to the total

measured acceleration. This contribution is somehow dependent upon the subject's

walking velocity. It would seem that, given the current data, that as walking speed

increases, angular acceleration decreases at the time of impact andthus its influence

61



if

decreases. Further study in this field is recommended, with special focus placed on

establishing a wider range of walking velocities in order to more effectively determine the

effect of walking velocity on impact angle and tibial angular velocity, as well as

increasing the sampling rate to 200-300 Hz, allowing for more precise identification of

the time and, consequently, more precise identification of angular position and velocity at

the time of impact.
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Chapter 5: Correlation Between Impact Acceleration and

Tibial Strain Measurements

5.1 Introduction

At the instant the heel strikes the walking surface during the gait cycle, a

shockwave travels up the tibia to the femur and the rest of the body. This shockwave is

highly dependent on the conditions ofthe walking surface, foo~ear, and the velocity at

which one walks [5, 15, 16,33]. Immediately after the impact occurs, the loading

response takes place; the center of gravity moves over the heel rocker as the leg that made

impact with the floor is now bearing the total weight of the locomotor section [3,4, 5, 6,

24].

Both phenomena - the shockwave through the tibia and the loading response of

the leg - occur at the~~e tiJ:!le. By tg;il!KQQth_asJgIl-"" I!1oJ.ll1ted _accelen>meter and_a ~~~---I

series ofbone mounted strain gages, it will be determined whether or not there is a direct

correlation between the acceleration due to impact and the forces present in the tibia. If

so, then it would be possible to extract force and strain measurements about the tibia by

way of an inexpensive, non-invasive technique.

5.2 Results and Discussion

The significant results of the analysis are shown below, and include data from

both 'Yalking and running (Figures 5.1, 5.2). It is shown that there is a fairly strong (-0.68

for walking, -0.74 for running) correlation between the -output from the accelerometer and
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the strain gage output during the first step taken prior to making contact with the force

Table 5.1 shows the time delay between the measured acceleration as measured by the

accelerometers and the strain measured by the strain gages. plate. Regression lines

through the data show that the relationship is linear, with the equation of the line given by

S = -228.0g - 1484

for walking and

S = -132.0g - 2500

for running, where g is the accelerometer output in g's and S is the output from the strain

gage in microstrains. Table 5.1 shows the time delay between the measured acceleration

walking

data pt strain data pt accel time (ms) avg stdev

1138 178.43 1066 163.4983 72

1012 221.16 987 255.57 25

956 187.56 914 268.8057 42
1336 187.41 1260 256.1085 76

951 204.37 904 305.152 47
1242 211.89 1216 234.267 26
-959 ---185:08-- 919 227:588- 40--

1081 165.5 1029 128.4712 52 47.5 18.853

running

data pt strain data pt accel time (ms) avg stdev

1101 269 1021 456.3261 80.
652.2062919 302 850 69

730 287 674 451.266 56

951 289 891 394.4073 60

985 329 921 881.5356 64

993. 343 .1 928 406.7475 65

798 330 706 613.72 92
'.' "1275 326 1199 652.545 76·

,-

923 313 859 678.34 64'

1077 402 982 . 1066 95 72.1 13.312

Table 5.1 - Time measurements for impact and tibial strain. .
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as measured by the accelerometers and the strain measured by the strain gages for both

walking and running. It can be seen that there is a clear time delay between the impact

acceleration and the loading response of the tibia, with an average time difference of 47.5

msec for walking and 72.1 msec for running.

The remaining data from both the second and third steps over the force plate for

walking and running, did not yield results that gave a clear correlation between strain and

acceleration, even after eliminating the false readings. A number of factors had the

potential to cause this condition, such as the subject's knowledge of the measuring

process. During the data acquisition phase, the subject was aware of the location of the

force plate and that the measurement was going to be taken at that location. Asa result, it

is possible that the anticipation of impact with the force plate has an effect on the overall

gait pattem prior to and during the time of impact. The step after impact, since it is after

the data that has been recorded, is erratic because of its perceived lack of signifIcance by

the suojecf. Tnus, It is likely that the only aspect of gait during the measurement period

that would show a correlation between the strain gage and accelerometer outputs·is the

first step.

5.3 Conclusions

Immediately after the heel makes contact with the ground, two phenomena take

place adjacent to- each oth~r inthe time domain. The first is a shoekwave, tr~veling

through the tibia and femur, as a result of the impact of the foot with the walking surface.
, (. ~ 11-' .

. ,

Immediately after impact, ,the weight bearing phase oftneleg begins. By-placirrg'w·'·
..

accelerometer and a,set of strain gages on the tibia, both the acceleration due to impact
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and the loading response of the leg can be measured. It has been shown that there is a

correlation (-0.68 for walking, -0.74 for running) between the peak to peak magnitude of

the strain gage output and the baseline magnitude of the accelerometer measurements.

This illustrates that it is possible to use a simple, inexpensive, and, most importantly,

non-invasive technique to measure the reaction forces of the tibia from the accelerometer

readings.

Further work is highly recommended to confirm the results obtained in this

section. A method alternative to having a subject walking over a force plate taking no

more than three steps per trial is desired. The ideal measurement technique that would

-yield the most consistent results would be to have the subject walking on a treadmill at

various speeds, with both strain gage and accelerometers connected. This would allow

much more than three data points per trial to be taken, and would allow for more

consistent results by allowing the subject to fall into a regular, relaxed walking style. The

only-difficulty-associated-withcontinuing research in-this-areais finoing suDjects willing--

to participate in the surgical procedure required to screw in the strain gage brace to the

tibia. If overcome, a more definitive correlation between these two parameters can be

found.

, .

~7 .
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Chapter 6: Conclusions

Leg length discrepancies are categorized as a functional or anatomic difference in

the lengths ofthe lower limbs caused by"disease, genetics, or trauma during growth. The

effects of this condition differ in severity depending upon the degree of length inequality.

For mild differences, there is often no significant biomechanical problem or complaint by

the subject. For more severe (5 cm and up) differences, the pelvic tilt commonly

associated with leg length discrepancies causes both immediate problems, such as lower

back and knee pain and gait asymmetry, and more long term problems, such as sciatica,

bursitis, and osteoarthritis caused by the change in the surface area ofthe hip joint in

contact with the pelvis.

Treatment also depends on the degree of severity and the age ofthe patient. For

mild differences (below 5 cm), shoe lifts are prescribed. While this does not take care of

the cause, it compensates for the difference in height and eliminates some of the gait

asymmetry. For moderate differences, such as those between 5 and 15 cm, resection

osteotomy, epiphysiodesis, or physeal stapling are often used. For those patients

suffering from severe discrepancies (15 cm and above), prosthetic fitting after amputation

is one of the only options available.

The ultimate goal of studying Jeg length discrepancies js the development of

orthotic and prosthetic devices to equalize the acceleration due to impact. In order'to

accomplish this, it was important to establish the c'auses, effects, and treatment of this "-

condition. Once established, the elements of the gait cycle were examined, as welra~'th~,:;r.~'i:,":F·"·"-:{"("'"
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relationship between walking velocity wIth other gaitparameters such as impact

acceleration, cadence, and tibial strain immediately after impact. It was found that a

direct relationship exists between walking velocity and impact acceleration, part of which

is due to the contribution to total measured accelerationby the angular motion ofthe

tibia. This quantity has been shown to contribute on the order of 0.6 g for a walIdng

speed of2.2 m/sec. In addition, a direct relationship was foundto exist between walking

velocity and cadence. It was found that as walking speed increased, the normalized

cadence of subjects increased as well. This trend is thought to decrease nonlinearly at

very low walking speeds before a normal gait cycle is reached. Through the use of

surgically applied strain gages and skin mounted accelerometers, a correlation was found

between impact acceleration and tibial strain at the moment of impact for walking (-0.68)

and running (-0.74). These results are encouraging, as it shows that a relationship can be

made between the impact acceleration and the tibial strain, thus making it possible for the

use of non invasive techniques for such a measurement in the future.

Further work and experiments in each ofthe above mentioned subjects is highly

recommended to verify the results found in this work. Additional experiments will

follow, such as the measurement ofthe change of impact acceleration as a function of

discrepancy. Orthotic devices will be individually studied, with particular focus on their

ability to provide proper shock absorption and gait equalization. The ultimate goal ofthis

will be the development oforthotic and prosthetic devices that not only restore proper leg~~

length, but also restore symmetry to the gait cycle and equalize the acceleration due to
. ..:r.::.;.~tft-£l;:,'"::O:·I"';lk~~0":~.:.~t~':':·:h\.:'J,:--:!.;~t\:i~I-:~~-,t-;',-,~ ...

impact.
, .
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