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Abstract

- Researchers have .developed Space-Time Adaptive Proéessing (STAR)
schemes to cope with the clutter 'spec.:tral épreading that occurs for a radar
mounted on a moving platform. vAnaI'ys'is shows fdily adaptive schemes have -
great pofential when_tested 'withfsimula‘tions of homogeneous environments,
‘.but the possible inaccurate estimation of the covariance matrix in a non-
homogeneous environment has prompted investigation of partially adaptive
STAP (PSTAP) schenﬁes.v A general formulation of a PSTAP algorithm is
defined and several specific cases ar‘epdescribed.' Performance is evaluated
using @ measured data set . The results indicate thét the joint-domain localized

and the extended factored approach PSTAP algorithms grovide -good

pen‘o_rmancé while operating in a realistic non-homogeneous environment.



Chapter 1

Introduction

In airborne radar, the detection of targets is often limited by ground
clutter and other forms of interference. 'Platform motion causes Dopplef shifts
in the ground clutter that makes Doppler filtering alone ineffective. In such
cases Space-Time Adaptive Processing (STAP) offers a potential solution.

STAP has been an active research topic for at least the last two
decades. Much of the interest was génerated by the results in [1] and [2].
Since then several algorithms have been proposed and evaluated using
simulated radar data. With the recent improvements in phased array antenna
and digital s’ignél proceésing technology, a STAP-based radar system is
becoming an attractive alternative for detection of airborne targets in clutter, as
compared to classical low-sidelobe beamforming [3].

Current STAP research efforts [4] are focused on a number of
interesting issues. Performance evaluation of several competing STAP
approaches is the topic of -this thesis. In most previous research, STAP
schemes were evaluated using optimistic simulated data or 'byman'ipulati‘ng
stationary platform meaéurements to simulate motion. While simulated data is
very useful in the development and analysis of‘ élgorithms, a‘ more complete

evaluation includes using actual recorded radar data. Thus, in this thesis, we
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~ compare various STAP schemes using actual-méas.ured airborne data. A
general formulation of a useful class of STAP processing approaches, which
includes most linear processing schemes, is developed vv‘vh’ich unifies the
schemes considered.

| Assume the radar transmits a coherent bljrst of M pulses at a constant
pulse repetition frequency fi= 1T, where T; is the pulsefkepetition-interval
(PRI). The ti)me interval over which the waveform returns are collected is
commonly referredk to as the coherent-processing-interval (CPl). The radar
antenna used is an array antenna with N identical elerhents. For each PRI, L
time samples are collected to cover the range intervals. Denote the
observation corresponding to the it antenna element at the i pulse for k'
range cell as Xijx. |’t is_convenient to denbte the part of the datacube which

represents the k'™ range cell of the datacube as

X, = Koo Xoanr s Xnaso Xeze = Xnmas | )
where a' denotes the transpose of the vector a . We will refer to Xk as a
space-time snapshot.
A simple set of STAP schemes that have been suggested can be
represénted as an inner product of the conjugate of a weight vector w and the

vector Xk. This inner product

2= w"X, | (2)



4pr6duces the cofnplex quéntity z whose magnitudé is often compared to a
threshold to make a decision. The weight vector w may depend on the
estiméted interference—plus-nois'e énvironment and on the target of interest. In
the well-know sample matrix inversfon (SMI) algorithm [2] for example, a

popular fully adaptive algorithm, the weight vector is given, to within a scale

factor, as

w=R""V(S) 3

where R is the estimated interference-plus-noise covariance matrix. The
‘estimate is based on a set of reference data, typically chosen from the
surrounding range cells. V(S) is the normalized target response (Xk for a
target observed without clutter or noise) [5]. In the case where the interference |
statistics are known or the estimated covériance matrix is exactly equal to the
true covariance matrix, SMI can achieve optimal perfdrmanée. A fully adaptive
STAP scheme, like SMI,. requires the formation of an NM by NM covariancé '
‘matrix which can be a problem. Even for moderate M and N, the
computational cost of the computation of R becomes excessive in real-time
implementations. As a result, réduced complexity approaches called partially .
adaptive STAP (PSTAP) have been developed whose computatiohal cost is
substantially smaller. Some exarﬁples of reduced complexity approaches are |

given in the next éhapter.»



The schemes which estimate the interference-plus-noise statistics
typically require a large set of independent and identically distributed (iid)
reference data vectors to achieve an accurate estimation. This requirement
may be unrealistic, since measurerﬁents [6] indicate tr;at multi-channel
airborne radar clutter data is 'often éeverely‘ non-homog‘énec:us. For this
reason the reference da;ta set available for estimation of clutter statistics is
usually quite small. Therefore it is important to know how different (STAP
algdrithms perform for such cases.

In Chapter 2 we define a general STAP scheme and give‘a detailed
description of several specific approaches. Pefformance comparisons based
on measﬁred airborne radar data are presented in Chapter 3. Conclusions are

given in Chapter 4.



Chapter 2

Some Reduced Complexity STAP Schemes

~ STAP is an active research area and new schemes are continually being
developed. In order to éompare schemes, »a standard terminology is useful.
Hére, we will mainly follow the terminology used in [5]. We caution the reader
that other terminology also appe‘érs in the literature. We first define a general
formulation of PSTAP processing approach which encompasses many
existing PSTAP algorithms. Next we describe eight specific approaches which

are included in the general formulation. They are

1. Adaptive Displaced’Phase‘-Centered‘Antenna (ADPCA)
2.- Subarraying ADPCA (BDPCA) |
3. Beamspace ADPCA (BeamAD)

4. Factored Post Dop‘pler (FTS)

5. Subarraying FTS (BFTS)

6. Extended‘ Factored Approached (EFA)

7. Subarraying EFA (BEFA)

8. Joint-domain Localized Approach‘ (JDL)



2.1 General STAP Approach

Consider the transformations

X(p)=(a, ®B,FX,.;  p=0,1,2,...,P-1 )
where Xy is the space-time snapshot from the k™ range ‘cel'l ain'd Ap and Bp
are scheme-dependent matrices. The operatidns in (4) can be interpreted as
a pre-processor applied to the received signals. This pre-processing
generates data for the adaptive proceséing to follow. Note that P vectors are
produced by the operations in (4). Typically, the pre-pro¢essing in (4)
performs a coordinate transformation and a selection operation.

We describe the adaptive processing on the p™ vector as

N

v, ()= S'R;"(p) X p)/ @ ©)

where

k+Q/2+1 ~

) )

i=k-Q/2-1}=k-1K k+1

RP)-g

<

and S is a scheme-dependent steering vector. Ry(p) is the interferenbe-plus-
noise covariance matrix estimated from Q adjacent range cells, excluding the
cell-under-test and the two closest range cells. Note that (5) resembles the

SMI scheme de‘fined in (2) and (3). Further, based on accepted principleé, the



covariance matrix estimation of an r x r matrix like Rx(p) nominally requires
Q = 2r iid seéondary data. The term @ in the denominator of (5) is the

normalization to provide CFAR in homogeneous clutter and is given by
®=S"R'S (7)

In different schemes, yk(p) may or may not be the final output of
ihterest. If yk(p) is the final output of interest, its magnitﬁde will be compared to
a threshold to decide if signal is present. For cases where }yk(p) will be
processed further, we assemble the complex outputs from each adaptive

processor as

Yi = [y, @by, ).y P-1 (8)
and compute
Zim = 1Y, (9)
which we call post-processing (after adaptive processing). Typically, fr, is the
m™ column of a PxP filter matrix F, and Zxm is the final output whose

magnitude will be compared to a threshold to produce a decision.

2.2 ADPCA and its beamspace version

Define a set of P sub-CPIs Xi(p), p=0,...,P-1 in the k™" snapshot.

Each sub-CPI contains possible sign'al returns from Ks pulses and all N

8



" elements. Fig. 1 shows two different ways to form the sub-CPlIs. As indicated
in Fig. 1,‘ implémentation (a) does not overlap pulses.' Given M p.tilses ina CPI
where M can be divided by K implementation (a‘)‘generatés i°=MIKt sub-
CPls. The 0™ sub-CPI consists of pulses 0, ..., K1 and the pt sub-CPI
consists of pulses pK, oy pK¢+K¢-1. Implementation (.b) forms the sub-CPls
by using‘fhe'same pulse returns in several sub-CPIs. Given M pulses in a CPI,
implementation (b) generates P=M-K¢+1 sub-CPls. The 0™ sub-CPI consists
of pulses 0, ..., Ki-1 and the p™ sub-CPI consists of pulses p, o pHKe1. In
Fig.1, Keis set to 3 and in implementation (b), neighboring sub-CPls overlap 2
pulses. Of course, other'overlaps are possible.

The pre-processing we have just described can be but into the

framework of (4). Bp is set to Iy which is an NxN identity matrix and

OP(Kt”h)‘Kt
A= I | (10)

o(M“Kt_pKr*‘ph)"Kt
where the notation Oqm refers to an gxm matrix of zeros. h indicates the
number of pulses which are overlapped. In implementation (a) h is set to be
zero and in imple‘mentation ‘(b) h is set to bé Ki-1. Ap is an MxK; selection
- matrix. |
- The adaptive processing in ADPCA is described by %5) Mth the
steering vector | k
'$-5,85, o

9 .



where S is the Nx1 spatial steering vector [5], St is a Kix1 vector, which is
composed of the binomial coefficients, with each coefficient altered in sign

(start with positive). As a particular example, we have
S, =(-20) (12)

for a three pulse case.

K element
_— Y element ’
___________________________ Stb-CPIO feeecimeeescsamemnmmeamennann-oz SUD-CPIO
e & 8 e o : e ¢ & @ .
: R 1. 5 o1 ) ¢
S T T T ' i T TR LI
: ' Ph o ecmieiimccesascmassasnanereoih, SUD-CPI2
‘8 & @& @ . FEE T T S S ) . 1)
eeeeremessecesmmecassamans . T S ‘0
foTmmomemmemeees Cosmmseemts Suh-CPIL E:-‘ """""""""""""""" e
e e e e Hie el
[ L] L L .E [ ] » [ ] L ) [ 3
* & & » oE I S S e . !
] [ ] L ] [ ] L ] | L ] [ ] L ] »
* + 2 @ . * &+ 2+ @ .
H /Pulst
{2} < . ‘ (b}

Figure 1) ADPCA sub-CPI formation

Typically, post-processing as described in (8) and (9) is erhployed in ADPCA.
In ADPCA F is a matrix corresponding to a Doppler filter bank, and £y, is the

filter corresponding to the m™ Doppler frequency. Typically F is a DFT matrix

10



and this Doppler processing can then be efficiently implemented by computing
an FFT. Zxm, the final outbut for Doppler bin m; is comparéd to a threshold to
make a decision if one is' testing for a target with the Doppler frequency
corresponding to this Doppler bin. |

Subafrayihg ADPCA and beamspace ADPCA are both beamspace
versions of ADPCA. B, is used as a beamformer rﬁatrix to produce Ks < N
number of beam outputs. We focus on Ks=3 in this thesis.

_In subarraying ADPCA the beamformer matrix

g, O 0
g, 9o
: g, .
B,=G=|gy, 9o | (13)
| v - G
| 0 0 Oy-1 |
is employed in (4) , where g = (g0, 91, 92 - - - gN-.1)T is a vector of scalar

components and. N'= N-Ks+1 . The vector g can be any of the popular
windows or tapering from the DSP [7] or radar [8] Iiterafure. Here we take g as
either a uniform window or the hamming windov_v in our tests. Uniform window
gave better results than hamming window so we present results for uniform g
.vector. |

: ‘Each vector produced by the pre-processing (4) will be adaptively
proCessed as’in (5) whe.re

11



'$=(,8G)'S, (14)
with Se Chbéén'as .the steering vector used in adaptive processing of ADPCA .
T_he p'bst 'précessing is same as-in ADPCl:\: ’
| Béa;ﬁspace ADPCA is identical to s‘L;barraying ADPCA but with Bp= G =[
f.\'.;1, fn2 . .. fuks 1, where fiyy j=1, . . ., Ks are those columns of NxN DFT

matrix cbrresponding to Ks particular angle bins.

2.3 FTS and subarraying FTS

- In factored post-Doppler STAP [5], Doppler processing is first performed
on each spatial channel. Let the Doppler filter applied to each spatial .channel
be represented by fp. (a target is assumed to have the Doppler frequency
corresponding to this filter). For convenience collect the Doppler filters in the
MxM matrix Fu=[ fo, f1, ...,fu.1]. Then the pre-processing is described by (4)
with Ap=f;,, P=M, and Bg=Iy. This pre-processing transforms the signal into
Dopplér space. In this case a single pulse at a time is processed (K¢ =1) and p
indicates the index of Doppler bin in question. To test for a target in only one
particular Doppler bin only the calculations for a single p are necessary. Next,
the adaptive processing in (5) is employed with the steering vector defined as

: in (11) Here.é=sg, since Kt is 1. As for most of the STAP schemes we

diéCu’ss, taperi‘ng could be applied to the Steering vector [5]. Post-processing:

12 .



is not usually employed and |yk(p)| is. compared to a threshold to test for a

target in the p* Doppler bin. | -
Subarraying FTS is identical to FTS but with B,= G as described in

(13). The adaptive processing is as in FTS with the steering vector defined in

(14). Here S¢ is the steering vector that is used in the adaptive processing of

FTS. Post processing is not employed.
2.4 EFA and subarraying EFA a

The extended factored approach ~(EFA) [9] is a slight extension of the
factored post-Doppler approach. In EFA, adaptive processing is applied to
several adjacent Doppler bins instead of just one. Thus, the pre—processing

perfofms both transformation and selection. In the case considered here,
| where the scheme adapts over 3 adjacent bins, the pre-processing can be
describéd asin (4) with Ap=Jp=[fp4, fp, fs1] and By=In.

The other quantities are set in a similar manner aé for factored post-
Doppler STAP but with the new A,. For example, the steering ve¢tor is

- obtained from

s=(a, ®B,}'V(S) 19)

13 .



where V(S) is the normalized target response as used in (3). As for FTS
usually only one yk(p) is tested. ’By selecting f, tq correspond to the target
Doppler frequency under consideration, the steering vector can be defined as
in (11) with S¢=10, 1, 01" .

In subarraying EFA, the pre-processing is the same as with EFA but
‘with B,,,sét as in (13). The adaptive processing is defined as in (5) with S as in

(15).

2.5 Joint-domai‘nt localized approach (JDL)

In JDL [10], the pre-processor performs two dimensional
.transformation and selection. The data is transformed from the space-time
domain into the. angle—Dopplér domain. This pre-processing can be described
as in (4), with Ag=[fm,1, fm2, ..., fmud, where fm; j=1, ..., K¢ are K; columns of
an MxM DFT matrix and with Bp=G=[fn1, fnz, ..., faxs ], where foyj=1, ..., Ks
are Ks columns of NxN DFT matrix. As for FTS and EFA, only the post
processing corresponding to a single p must be calculated to test for a target
at a particular normélized Doppler and angular frequency. In this case, only
one yi(p) is tested.

Ifwe focus on K@ Ks =3 and consider the case where the target to be
detected has the Doppler 'frequeri'cy corresponding to fmz2 and the spatial

ffequehcy corresponding to fx2, then the adaptive processing is performed as

14



described in (5) with

s=[0 1 o]ojo 1 0] | (16)

More precisely, the steering vector has all its entries equal to zero except
for the one corresponding to the spatial and Doppler frequency of the target.
Since only a single adaptive processing is performed, no pbst-processing is

employed for JDL.

15



Chapter 3

Real Data Performance

To test the STAP algorithms described in secfion 2, we use data that
‘comes from ihe Multi-Channel Airborne Radar Measurements (MCARM)
- database flight 5 acquisition 575. See [6] and [11] for detailed information
about;the MCARM program and the data. For each experiment, a single‘
- target signal with amplitude 0.05, a particular normalized Doppler frequency
and a particular normalized spatial frequency wes inserted in a particular
range bin. Reference data are selected from consecutive range cells on each
side pf the cell-under-test, excluding the Cell-under-te_st and the two closest
cells. We employ normalized test statistics as in (5), which provide a constant
false alarm rate (CFAR) characteristic for homogenous clutter [12]. The
parameters used in each of the STAP algorithms studied are given in the
Appendix.

For each example, we provide plots of tne magnitude of the
normalized test statiéties for a set of range bins including the target range. We .
- judge a scheme by how large the test statistic is at the target range in
comparison to other ranges. :

~ In the first example, we inserted a target at range bin 150 for the

cases shown in Table 1. The location of the'targets and an estimate of the

16



clutter (plus noise) power spectral density (psd) are illlhustrated in Fig. 2. As
\}isible from Fig. 2, the psd estimate used is rather crude and is provided to
give a rough description of the clutter environment. In the estimate no
neighboring range »cells are averaged and blackman windowing is used.
Some of the artifacts can be removed by averaging, but this was not

considered necessary in this case.

Case Nonnalized Doppler Normalized,Spa‘tiaIv

Frequency - Frequency
a -0.2656 -0.2656
b -0.0312 ~-0.0312
c 0.125 0.203
d | -0.0312 -0.1875
e -0.0312 0.203
f | 03593 | 01875
g -0.1875 0.3593

Table 1) Test cases for each example.

A summary of the results is given in Table 2.‘ Fig. 3 through Fig. 9
‘ present the results for most of the schémes tested. FTS and subarraying FTS
generally perform poorly, so their results are not shown. In- this example,
‘generally ;JDL provi'des‘ best.results. JDL is best in every case éxcept case»s‘ d
and e. In case d',' BeamAD slightly outperforms JDL ‘and ADPCA, but the

17



difference is quite small. In case e, EFA outperforms the others, howeyer JDL
also performs well. The éppafently I’arge interference near a normalized
Doppler frequency of -0.0312 indicated by Fig.2 could be the reason why JDL
is not best in these two case;. Thése are apparently difﬁculfl;:ases where no
scheme can really eicel. Table 2 shows that case b is also quite difficult, but
here JDL performs much bétter than the other schemes. The extra clutter
ridges in ng. 2 are discussed in [13], and [14]-

In the second 'eX'ampIe,' we inserted a target at range bin 350. We
p'resent reéults for the same cases in Table 1. The best three schemes for all
the cases are given in Table 3. The location of the targets and an estimate of
the clutter psd is given in Fig. 10. The normalized test statistics for the six best
schemes tested for each case in Table 1 are given in Figurés 11 through 17.
The resuits indicate that none df the schemes always outperforms all the
othérs. However post-Doppler algorithms are genefally better than pre-
Doppler algorithms. Either JDL or EFA were best in all but case b. In case b,
where the target is inserted in the largest clutter of all cases, BEFA is only
slightly better than EFA and JDL.

Next, we inserted a target at range bin 415. We present results for the
same cases és in preVious examples. The location of the targets and an
estimate of the clutter de is given in Fig. .18. A summary of the results is |n '
Table 4. Here for Case_s 'b, c, d, f, and g either JDL, -or'BEFAvp'rovide best

performance. -In the other cases, EFA is best and JDL also performs well. JDL

18



performs well in every case except case b. Even in this case, its performance
is not bad. EFA and its beamspace version are best in some cases and near-
best in others. ADPCA and its beamspacé version give good performance in
number of cases, but these schemes were never best in ’this example.

* Finally, we test the same cases as before when the target is inserted in
range bin 500. The locations of the targets énd an estimate of the clutter psd is
given in Fig. 19. A summary of fhe results is given in Table 5. Again JDL, AEFA'
and BEFA outperform the other algorithms excepi for case e where ADPCA is

best.

19



Normalized doppler frequency

Y 0 05
Normalized spatial frequency

Figure 2) Power spectrum plot of range 150

Case: | Normalized Doppler | Normalized The3best | D Figure
Frequency Spatial schemes
Frequency '

‘a JDL | 36
-0.2656 -0.2656 BEFA 25 3

BeamAD 16

b A |JDL - | 10
-0.0312 -0.0312 4

c JDL 30
0.125 0.203 EFA 12 | &

d BeamAD 8
-0.0312 -0.1875 JDL 7 6

ADPCA 6

e EFA 20
-0.0312 0.203 JDL 12 7

BeamAD 5

f JDL 43
0.3593 -0.1875 EFA 38 8

BeamAD 30

g JDL 38
-0.1875 0.3593 BEFA 18 9

: BeamAD -7

Table 2) The three best schemes for all the cases when the target is inserted at range 150.
" (D is the approximate difference between the normalized test statistic at the target and the
largest peak in the normalized test statistic at some other range)
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Normalized doppler frequency

Normalized spatial frequency

Figure 2) Power spectrum plot of range 150

Case | Normalized Doppler | Normalized The 3 best D Figure
Frequency Spatial schemes
Frequency

a JDL 36
-0.2656 -0.2656 BEFA 25 3

BeamAD 16

b JDL 10
-0.0312 -0.0312 4

c JDL 30
0.125 0.203 EFA 12 5

d BeamAD 8
-0.0312 -0.1875 JDL 7 6

ADPCA 6

e EFA 20
-0.0312 0.203 JDL 12 7

BeamAD 5

f JDL 43
0.3593 -0.1875 EFA 38 8

BeamAD 30

g JDL 38
-0.1875 0.3593 BEFA 18 9

BeamAD 7

Table 2) The three best schemes for all the cases when the target is inserted at range 150.
(D is the approximate difference between the normalized test statistic at the target and the
largest peak in the normalized test statistic at some other range)
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Figure 10) Power spectrum plot of range 350.
Case | Normalized Normalized Spatial | The 3best | D | Figure
Doppler Frequency | Frequency schemes
, : EFA 24
a - -0.2656 -0.2656 JDL 18 11
BEFA 5
: BEFA 15
b -0.0312 -0.0312 EFA 12 12
JDL 10
JDL 34
c 0.125 0.203 EFA 25 13
' BEFA 13
EFA 28
d -0.0312 -0.1875 JDL 20 | 14
' ADPCA 12
EFA 22
e -0.0312 0.203 JDL 18 15
ADPCA 7 -
—7 EFA 48
f 0.3593 -0.1875 JDL 43 16
BeamAD 24
: JDL 33
g <0.1875 0.3593 BEFA 18 17
‘ ' BeamAD 14

Table 3) The three best schemes for all the cases when the target is inserted at range 350.
(D is the approximate difference between the normalized test statistic at the target and the
largest peak in the normalized test statistic at some other range. '
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Figure 10) Power spectrum plot of range 350.
Case | Normalized Normalized Spatial | The 3best | D Figure
Doppler Frequency | Frequency schemes

EFA 24

a -0.2656 -0.2656 JDL 18 1

BEFA 5

BEFA 15

b -0.0312 -0.0312 EFA 12 12
JDL 10
JDL 34

c 0.125 0.203 EFA 25 13
BEFA 13
EFA 28

d -0.0312 -0.1875 JDL 20 14
ADPCA 12
: EFA 22

e -0.0312 0.203 JDL 18 15

ADPCA 7

EFA 48

f 0.3593 -0.1875 JDL 43 16
BeamAD 24
JDL 33

g -0.1875 0.3593 BEFA 18 17
. " BeamAD 14

Table 3) The three best schemes for all the cases when the target is inserted at range 350.
(D is the approximate difference between the normalized test statistic at the target and the
largest peak in the normalized test statistic at some other range.
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Normalized doppler frequency
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Figure 18) Power spectrum plot of range 415

Case | Normalized Doppler | Normalized Spatial | The 3 best D
Frequency | Frequency schemes

a EFA 25

-0.2656 -0.2656 JDL 22

ADPCA 12

b ' BEFA 25

-0.0312 -0.0312 BeamAD 18

EFA, ADPCA | 15

c BEFA 130

0.125 0.203 JDL 23

' v - | BeamAD 12

d JDL, BEFA | 20

-0.0312 -0.1875 BeamAD 18

EFA, ADPCA | 16

e o EFA 28

-0.0312 0.203 JDL 24

. ADPCA 15

f JDL 45

0.3593 -0.1875 " | BeamAD 35

, . BEFA "] 32

g JDL 42

- -0.1875 ' 0.3593 EFA 20

: ' BeamAD 18

Table 4) The three best schemes for all the cases when the target is inserted at range 415.
(D is the approximate difference between the normalized test statistic at the target and the
largest peak in the nonnalized test statistic at some other range)
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Normalized spatial frequency

Figure 18) Power spectrum plot of range 415

Case | Normalized Doppler | Normalized Spatial | The.3 best D
Frequency Frequency schemes

a EFA 25

-0.2656 -0.2656 JDL 22

ADPCA 12

b BEFA 25

-0.0312 -0.0312 BeamAD 18

EFA, ADPCA | 15

c BEFA 30

0.125 0.203 JDL 23

BeamAD 12

d JDL, BEFA 20

-0.0312 -0.1875 BeamAD 18

, EFA, ADPCA | 16

e EFA 28

-0.0312 0.203 JDL 24

_ ADPCA 15

f JDL 45

0.3593 -0.1875 BeamAD 35

BEFA 32

g JDL 42

-0.1875 0.3593 EFA 20

BeamAD 18

Table 4) The three best schemes for all the cases when the target is inserted at range 415.
(D is the approximate difference between the nommalized test statistic at the target and the
largest peak in the normalized test statistic at some other range)
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Figure 19) Power spectrum plot of range 500
Case ' | Normalized Doppler | Normalized Angle | The 3 best D
Frequency Frequency schemes.
a , JDL ' 32
’ -0.2656 -0.2656 EFA 13
: ADPCA 7
b ‘ JDL 22
-0.0312 -0.0312 EFA 20
BEFA 15
c : JDL 36
0125 0.203 - | BEFA 12
EFA, BeamAD | 7
d JDL ' 26
-0.0312 -0.1875 EFA 20
‘ ADPCA 10
e ADPCA 22 |
-0.0312 0.203 JDL 18
EFA 15
f » ' JDL 38
0.3593 -0.1875 EFA, BEFA 28
: ' BeamAD 23
g BEFA, JDL. 33
-0.1875 - 0.3593 BeamAD 17
~ EFA . 115

Table 5) The three best schemes for all the cases when the target is inserted at range 500.

(D is the approximate difference between the normalized test statistic at the target peak and
the largest peak in the normalized test statistic at some other range)
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-05 0 0.5
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Figure 19) Power spectrum plot of range 500

Case | Normalized Doppler | Normalized Angle | The 3 best D
Frequency Frequency schemes

a ' JDL 32

- 0.2656 -0.2656 EFA 13

ADPCA 7

b JDL 22

-0.0312 -0.0312 EFA 20

BEFA 16

Cc ’ JDL 36

0.125 0.203 BEFA 12

EFA, BeamAD | 7

d JDL 26

-0.0312 -0.1875 EFA . 20

ADPCA 10

e ADPCA 22

-0.0312 0.203 JDL 18

EFA 15

f JDL 38

0.3593 -0.1875 EFA, BEFA 28

BeamAD 23

g BEFA, JDL 33

-0.1875 0.3593 BeamAD 17

’ EFA 15

Table 5) The three best schemes for all the cases when the target is inserted at range 500.

(D is the approximate difference between the normalized test statistic at the target peak and
the largest peak in the normalized test statistic at some other range)
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Chapter 4
Conclusions

In our tests, JDL and EFA generally perform very well. Subarrayed EFA also

shows good performance in many situations. The common element these
schemes. share. is post Doppler processing. This type of ’processing, used in
the correct way, appears to be superior in these real data cases. This appears
to be-the major result of this_study. When there is a strong interference. near
the target, case d and e in Table 5 for example, ADPCA performs well and
sametimes outperforms all the other schemes. The reason appears to be
related to the extra whitening provided by its steering vector.

This is one of tlhe few STAP studies we haye seen which uses real
airborne radar measurements and thus we feel these results are interesting.
We aCknowledge that judgi}ng performance using measured data is difficult
since one can't directly extract probability of detection and probability of false
aklarm, the accepted measure of performance for radar ‘signal' detection
problems. However, measured data studies are still important to obtain a more
complete assessment of performance. In the current study we present
comparisons only for a particular configuration of each algorithm, but we haVe
tried to pick the most popular or at least a reasonable configuration for each
algorithm. We aéknowledge that the results may be differént for different -

configurations. Further we have tested the algorifhms for many different range
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bins for two different data sets (ﬂights) and based on these cases the results
given here appearvto be representative. However, we acknowledge that the
results could be much different for some data sets we have not tested.

We have obtained results for a fairly large number of different cases.
Due to space limitations we have provided only a limited set of results in this
thesis. We believe that further study using measured data is needed and we
hope to see more studies by other research groups on this topic. Hopefully
other data sources will become available and these can be compared to
results obtained‘, using the MCARM database. We believe that techniques for
assessing performance w1th measured data is itself a topic which deserves

attention.
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