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Abstract

Image compression is no longer a theoretical curiosity, it's now a practical

requirement in many data systems·.

A detailed review of some important image compression techniques is presented,

with more concentration on Vector Quantization (VQ), Disceret Cosine

·Transform (DCT), and Vector Transform Coding (VTC)._

In practice, compressed data are transmitted through different media,

where these data are exposed to many kinds of channel noise.Therefore,

understanding the effects of channel noise on compression techniques is very

important in many aspects, for instance, it helps in designing better encoder

and decoder, optimization of the coding schemes, and more. In this thesis a

study of channel noise (with uniform distribution) effects on three specific

coding schemes, VQ, DCT, and VTC, is presented. Depending on this study, a

ranking of fhe three techniques is presented.

Further study can be considered with different noise distribution, e.g.,

Gaussian distribution. 'The same:. procedure in evaluating these three
~,

techniques can be applied to other coding schemes.

Abstract 1



Chapter 1

Introduction

. The aim of this study is to present the effect of applying channel noise on three

specific coding techniques, used currently in digital image compression.

Finally, comparing the performance of these three techniques under such

kind of noise, and suggesting future directions for researches in this issue.

1.1 The information revolution

We live in a world in which electronic communication is so commonplace

thaLwe__pick~up-our-cordless telephones without a-second thought-Yet tln~

importance of such communication in today's world is so crucial that we cannot

imagine modern society without it. We are now in an era of change, which some

Chapter 1: Introduction 2



"people refer to as the imormation age, much like the era - more than 100 years

ago - when the world underwent drastic changes because of the industrial

revolution. From now on, the prosperity and continued development of modern

nations will depend primarily on the originating and disseminating' of

information, rather than of manufactured goods [44]. For example the GulfWar

in 1990, demonstrate the importance of having the lead in information transfer

through, different places and times, furthermore, the rules of T.Y. in bringing

the actions and atmosphere of that war to our living room, were very clear.

This gives an idea about how is the information effecting our daily life,

besides, almost every day we hear about, or read about, new concepts such as

Electronic-mail, ISDN\ Teleconferencing, HDTy2
, MULTI-MEDIA3

, and more.

Furthermore, images are a form of information that has a specially

relevant role for human [4], this shows the importance of better understanding

of processing digital images (including compression), to get the optimum

possible output.

1 .... ..
Integi-ated Services Digital Network.

2
High Definition TeleVision

3 .
Utilization of video, speech, written words in one environment, Multimedia combines components from many

sources. The creation part of the process involves a wide variety of equipments. The playback system requires a CD-ROM
drive, an audio board, and speakers, along with a PC with an appropriate interface and display and enough storage (8) .

Chapter 1: Introduction 3



1.2 Historical Background

Interest in image compression dates back more than 25 years. The initial

focus of research efforts in this field was on the development of analog methods

for reducing video transmission bandwidth, a process called bandwidth

compression. The advent of the digital computer and subsequent development

of advance integrated circuits, however, caused interest to shift from analog to

digital comp!ession approaches. With the adoption of several key international

image compres·sion standards, the field is now poised for sigrtificant growth

through the practical application of the theoretic work that began in the 1940's

when C. E. Shannon and others first formulated the probabilistic view of

information and it's representation, transmission, and compression [19] .

Over the years, the need for image compression has grown steadily.

Currently, it is recognized as an "enabling technology." For example, image

compression has been and continues to be crucial to the growth of multimedia

computing. In addition, it is the natural technology for handling the increasing

spatial resolutions of today's imaging sensors and evolVlng broadcast teleVision

standards. Furthermore, image compression plays an extremely important role

Chapter 1: Introduction:' 4



in many important and diverse- ,applications, lncluding televideo-conferencing,

remote sensing4
, document and medical imaging, facsimile transmission (FAX),

and the control of remotely piloted vehicles rn. military, space, and hazardous

waste control applications. In short, an ever-expanding number of applications

depend on efficient manipulation, storage, and transmission of binary, gray 

scale, or color images [13].

4
Remote Sensing is the use of satellite imagery for weather and other earth-resources application [19] ,

Chapter 1: Introduction 5



1.3 Need for compressing digital ima~es

Image compreSSIOn is no longer a theoretical curiosity- it is now a·

practical requirement in many data systems, with the advance in electronic

technology, it is now possible to implement in hardware many image

compression techniques that formally were executed only on large-scale general

purpose digital computers[16] .

In the last few years there has been a growing interest in applying image

·compression techniques to actual image and communication systems in the

commercial sector ( compression of'hewspaper page for transmission ), in the

military ( video compression for remotely piloted vehicles ), and in government

agencies, such as NASA ( image compression for spacecraft ). In each potential

application there is a need to learn what compression techniques are available

how they operate, and what the implementation considerations are for each

technique [16].

Moreover, with the continuing growth of modern communications

technology, demand for image transmission and storage is increasing rapidly.

Advances in computer technology for mass storage and digital process have

paved the way for implementing advance data compression techniques to

improve the efficiency of transmission and storage of images [9].

Therefore, with the understanding of the fact that an enormous amount

Chapter 1: Introduction 6



of data is produced 'Yhen for example a 2-D light intensity function is sampled

and quantized to create a digital image. In fact, the amount of data generated

may be so great that it results, in impractical storage, processing, and

communications requirements [13].

Furthermore, image compression address the problem of reducing the

amount required to represent a digital image. The underlying basis of the

reduction process is the removal of redundant data. From a mathematical

viewpoint, this amount to transforming a 2-D pixel array into a statistically

uncorrelated data set. The transformation is applied prior to storage or

transmission of image. At sometlme,tli~ compressed image is decompressed to

1.3.1 Types of compression

Data ( including images) - compression techniques, can be divided into

two major families: Lossy and Lossless .

Lossy data compression concedes a certain loss of accuracy in exchange for
~$"

greatly increased -compression.~~<bII1pression proves effective when applied

t? graphics, images, and sp~ech.!Most lossy compression techniques can be

-adjusted to-different-quality-levels,giving-a-higher-accUt~:fcyiIi-excliaiige-forless

effective compression [16].

Lossless compression consists of those techniques that guaranteed to

,
Chapter 1: Introduction 7



generate an exact duplicate of"the input data stream after a compress/expand

cycle. This is the type of compression used when storing data base, records, and

word processing files. In these applications the loss of even a single bit could be

catastrophic, as for example in the case of medical records [16].

1.4 Fundamentals of digital image compression

The term data compression refers to the process of reducing the amount

of data required to represent a given quantity of information. A clear distinction

must be made between data and information. They are not synonymous. In fact,
,

data are the means by which information is conveyed. Various amounts of data

may be used to represent the same amount of information [13].

Data redundancy is a central issue in digital image compression. It is not

an abstract concept but a mathematically quantifable entity. Ifn 1 and n 2 denote

a number of information carrying units in two data sets that represent the same

information, the relative data redundancy RD of the first data set ( the one

characterized by n1 ) can be defined as

= 1__1
CR

where CR" commonly called the compression ratio, is

( 1.1 )

Chapter 1: Introduction 8



( 1.2 )

second data set) the first representation of the information contains no

redundant data.

When n2 ~ n1 , CR -+ 00 and RD -+ 1, implying significant compression and. highly

redundant data. In final case, n2~ n 1 ,CR -+ 0 and RD -+ 00, indicating that the

second data set contains much more data than the original representation. This

of course, is normally undesirable case of data expansion. In general, CR and RD

lie in the open intervals (0, 00 ) and (- 00 , 1), respectively. A practical

compression ratio such as 10 ( or 10 : 1) means that the first data set has 10

information carrying units ( e.g., bits) for every 1 unit in the second or

compressed data set. The corresponding redundancy of 0.9 implies that 90

percent of the data in the first data set is redundant.

In digital image compreSSIOn, three basic data redundancies can be

identified and exploited : coding redundancy, interpixel redundancy, and

psychovisual redundancy. Data compression is achieved when one or more of

these redundancies are reduced or eliminated [13].

Chapter 1: Introduction 9



1.4.1 Coding redundancy

A code is a system of symbols (letters, numbers, bits, and the like) used

to represent a body of information or set of events. Each pieces of information

or event is assigned a sequence of code symbols, called a code word. The number

of symbols in each code word is it's length.

In general coding redundancy is present when the codes assigned to a set

of events (e.g., gray- level values) have not been selected to take full advantage

of the probabilities of the events [13].

1.4.2 Interpixel redundancy

It is another important form of data redundancy, one directly related to

the interpixel correlation within an image. Because the value of any given pixel

can be reasonably predicated from the value of its neighbors, the information

carried by individual pixels is relatively small. Much of the visual contribution

of a single pixel to an image is redundant; .it could have been guessed on the

basis of it's neighbors values. A variety of names have been coined to refer to

these interpixel dependencies, including spatial redundancy, geometric

redundancy, and intraframe redundancy. The term interpixel redundancy

encompasses them all [13].

Chapter 1: Introduction 10



1.4.3 Psychovisual redundancy

This type of redundancy needs more explanation, it can be defined

as follows: The brightness of a region, as perceived by eye, depends on factors

other than simply the light reflected by the region. For example, intensity

variations can be perceived in an 'area of constant~tensity. Such phenomena

result from the fact that eye does not respond with equal sensitivity to all visual

information. Certain information simply has less relative importance than other

information in normal .. visual processing. This information is said to be

psychovisually redundant. It can be eliminated without significantly impairing

the quality of image perception [13].

Psychovisual redundancy IS fundamentally different from the

redundancies discussed earlier. Unlike coding and interpixel redundancy,

psychovisual redundancy is associated with real quantifiable visual information.

Its elimination is possible only because the information itself is not essential for

normal visual processing. Since the elimination ofpsychovisually redundant data

results in a loss of quantitative information, it commonly referred as

quantization. This terminology is consistent with the normal usage of the word.

Which generally means the mapping of a broad range of input valU@fi to limited

Chapter 1: Introduction 11



nu~ber of output values. AB it is an irreversible operation (visual information

is lost ), quantization results in lossy data compression [13].

1.4.4 Fidelity criteria

AB noted previously, removal of psychovisually redundant data results in

a loss of real or quantitative visual information. Because information of interest

may be lost, a reproducible means quantifying the nature and extent of

information loss is highly desirable. Two general classes of criteria are used as

basis for such an assessment:

(1) Objective fidelity criteria.

(2) Subjective fidelity criteria.

Objective fidelity criteria:

When the level of information loss can be expressed as a function of the

original image and the compressed and the decompressed output image, it said

to be based on an objective fidelity criterion. A good example is the root-mean

square (rms) error between an input and output image.

Let f(x,y) represent an input image and let f(x,y) denote an approximation of

f(x,y) after compressing and decompressing. For any value ofx, y, the error e(x,y)

between f(x,y) and i (x,y) can be defined as

Chapter 1: Introduction 12



e(x,y) ;= ](x,y) - j(x,y)

so that the total error between the two images is

M-l N-l

L :E [/(x,Y)-ftx,y)]
x=O y=o

(1.3)

(1.4)

where the images are M x N: The root -mean-square error, erms , between f(x,y)

and {(x,y) then is the square root of the squared error averaged over the M x N

array, or

erms

M-l N-l 1

;= [_1L L [./(x,y) - j(X,y)]2]2
MN x=O y=O

(1.5)

A closely related objective fidelity criterion is the mean-square signal-to-noise

.
ratio of the compressed-decompressed image. If f (x,y) is considered (by a simple

arrangement of the terms in Eq. 1.3 ) to be the sum of the original image f(x,y),

and the noise signal e(x,y) l the root-mean-squared signal-to-noise ratio of the

output image, denotes SNR rmsl is

Chapter 1: Introduction 13



SNRrms =

Subjective fidelity criteria:

M-l N-l

.L L ./(X,y)2
.%=0 y=O

M-l N-l

L L rfexS) - .ftX,y)]2
.%=0 y=O

(1.6)

Although objective fidelity criteria offer a simple and convenient

mechanism for evaluating information loss (the quality of reproduction), most

decompressed images ultimately are viewed by human beings. Consequently,

measuring image quality by the subjective evaluations of human observer often

is more appropriate. This can be done by showing a "typical" decompressed

image to an appropriate group of viewers and then averaging their evaluations.

The evaluations may be made using an absolute rating scale or by means of side-

by-side comparisons of f(x,y) and f (x,y). Table 1.1 shows one possible absolute

rating scale. For the case of side-by-side comparisons the rating could be like.

{-3,-2,-1,O,1,2,3}, representing the subjective evaluation { much worse, worse,

slightly worse, the same, slightly better, better, much better}, respectively. In either

case, th~ evaluations are said to be based on subjective fidelity criteria [13].

Chapter 1: Introduction 14



ValUe . Ra.tirtg Description

1 Excellent An image of extremely high quality, as
good as you could desire.

Fine
..

An Image of high quality,providing .
. enjoyable viewing.· Interference is not
objectionable.

3 Passable An image of acceptable quality,
interference is not objectionable.

4 1\r • 1
l .. An image ofpoor quality; y()u wish you

could improve it. Int~rference

.. somewhat objectiona.ble.

5

6

Inferior

Unusable

A very poor image, but you could·
watch it. Objectionable interference is
definitely present.

An images so bad that you could not
watch it.

Table Ll : Television Allocations Study Organization Rating Scale

(From Frendendall and Behl;"end [1960]).

1.5 Image Compression Models

As Fig 1.1 shows, an image compression system consists of two distinct

structural bloc~s: an encoder and decoder. An input image f(x,Y) is fed into the

encoder, which creates a set of symbols from the input data. After transmission

over the channel, the encoded representation is fed to the decoder, where a

reconstructed output ((x,y) is generated [13].

Chapter 1: Introduction 15



'1 (x,y)

SOURCE
ENCODER

CHANNEL
ENCODER

EncodeI __

CHANNEL CHANNEL
DECODER

Decoder

SOURCE
DECODER

Figure. 1.1 : A general compression system model.

Both the encoder and decoder shown in Fig. 1.1 consist of two subblocks. The

encoder is made up of a source encoder, which removes input redundancies, and

channel encoder, which increase, the noise immunity of the source encoder's

output. On the other side, the decoder also includes a channel decoder followed

by a source decoder. If the channel is noise free (not prone to error), the channel

encoder and decoder are omitted [13].
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Channel Errors (noise):

According to Fig. 1.1 The channel encoder and decoder play an important

role in the overall encoding-decoding process when the channel is noisy.

They are designed to reduced the impact of channel noise by inserting a

controlled form of redundancy into the source encoded data.

As the output of the source encoder contains little redundancy, it would be

highly sensitive to transmission noise without the addition of this "controlled

redundancy" [13]. In practice, error correcting bits are appended to quantized

samples before encoding to compensate for channel errors. Often, the error

correcting codes used are designed to reduce the probability of bit errors, and

for simplicity, equal protection is provided to all the samples.

To account for channel errors, one has to add redundancy to the input. On the

other hand, the data compression techniques tend to remove the redundancy in

the source data.

Thus a proper tradeoff between source coding (redundancy removal) and

channel coding (redundancy injection) has to be achieved in the design of data

compre;sion system [9].

In this study; the effects of one type of channel noise distribution, which is the

uniform distribution, on three coding technique namely: Vector Quantization,

Discrete Cosine Transform, and Vector Transform Coding, will be investigated.

Chapter 1: Introduction 17



Chapter 2

Vector Quantization

Vector quantization was introduced in the late 1970's as a scheme for

effectively mapping a sequence of vectors into a digital sequence of numbers.

The technique employed uses a multidimensional extension of a simple

algorithm by Lloyd due to Lide, Buzo, and Gray.

A vector quantizer ( block quantizer, K-dimensiorial quantizer, block

source code, or matrix quantizer) consists of a reproduction alphabet or

codebook Y = {~i; i = 1,2,...N} of N codewords together with a mapping Q(.)

that assigns to each K-dimensional real value input vector x a codeword ~i€ Y.

Chapter 2: Vector Quantization 18



For waveform coding, the codewords· ~i' should be similar to the source

vectors x-that is, the codewords should be also K-dimensional real-value vectors.

~ .
In the pattern recognition literature, the codewords are called the reference

patterns or templates.- The size N of the codebook is also called the number of

levels and it determines the encoding rate.

A vector quantizer can also be seen as a combination of two functions::

an encoder, which observes a particular input vector x and generates the

- address i of the codeword ~i specified by Q(x) ,and a matching

decoder, which uses this address to generate the reproduction vector ~i . When

x is quantized as ~i a quantization error results with respect to a distortion

measure d(x, ~i ).

The distortion measure represents the penalty or cost associated. with

.reproducing vector x by ~i' Then the best mapping Q(.) is the one that

minimizes d(x,~) ,the square error distortion [1] .

2.1 Definition of Vector Quantization

A vector quantizer can be defined as a mapping Q of K-dimensional

Euclidean space Rk into a finite subset Y of Rk
• Thus,

Chapter 2: Vector Quantization 19
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Where Y = (~i; i = 1,2,...,N) is the set of the reproduction vectors and N the

number of vectors in Y. It can be also seen as a combination of two functions::

an encoder, which views the input vector x and generates the address of the

reproduction vector specified by Q(x) , and a decoder, which uses this address

to generate the reproduction vector ~ [19].

2.2 Memoryless Vector Quantization

Vector quantization is a method for the mapping of an input sequence of

vectors into another sequence of discrete vectors (as stated in the previous

section). The goal in such operation is data compression.

The simplest VQ is the memoryless vector quantizer. With this type,

instead of quantizing scalars individually, as in PCM, they are combined'in

blocks and then jointly quantized. In this respect, memoryless VQ is a

. generalization of PCM to the multidimensional case [4].

Data compression is achieved because a short code is assigned to each

discrete vector, and only the code needs to be transmitted or stored. As shown

in Figure 2.1, each vector in the input sequence is mapped, using nearest

neighbor rule, to a discrete vector, the index of disceret vector is coded and

transmitted. At the decoding stage, the discrete vector is looked up in the table

Chapter 2: Vector Quantization 20



using the transmitted or stored code [4].

output

Table
lookup

Codebook
table

(ROM)

;;

II
wmmmmm~11:-:-:-:<-:-:-:-:-:"o"X-:<-:-:-:-:«-:

Channel m-----,

mindex
mNearest

Neighbor
Rule

Codebook
table

(ROM)

l
~~

~~~~~~b:~ :iilii~ibH~I~

input
vector

Figure 2.1: Block diagram of memoryless VQ.

Mathematically, memoryless vector quantization consists of two

mapping:The encoder which assigns to each input vector x = (xO'xl'''''xk) a

channel symbol y (x) in some channel symbol set M, and a decoder assIgning to
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each channel symbol in M a value in the reproduction alphabet A. The channel

symbol set can be assumed as the space of all 2R binary R-dimensional vectors.

The reproduction alphabet A is a subset of the input vector space. With M

elements in M, R = log2 M is the rate of the quantizer in bits per vector, and

r = R/k is the rate in bits per sample, where k is the number of elements in the

vector samples (xo>x1, ... ,Xk_1). In an image compression system the vectors can be

consecutive subrasters and the samples typically are pixel values [4J.

An important characteristic to note here is that in the case of PCM only integer 

number of bits per sample is possible, whereas VQ allows fractionQ.1 values. This

limits the bits per sample in PCM to 1 bit per sample or more, but VQ can have

less than 1 bit per sample [4].

Since the goal of this quantization is data compression, the minimization needed

is a "good" reproduction with the lowest bit rate R. To quantify this "good"

reproduction, a measure of distortion is needed [4].

Distortion

A distortion measure d is an assignment of a cost d(x,~) of reproducing

any input vector x as a reproduction vector ~ . Given such a distortion

measure, we can quantify the performance of a system by an average distortion

Ed(x,~) between the input and the final reproduction: A system will be good if

it yields a small average distortion [2].
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In practice, the important average is the long term sample average or time

average

n-l

lim! L d(Xi,Xi)
n-H1O n i=O

(2.2)

provided, of course, that the limit makes sense. Ideally a distortion measure

should be tractable to permit analysis, computable so that it can be evaluated

in real time and used in minimum distortion systems, and subjectively

meaningful so that large or small quantitative distortion measures correlate

with bad and good subjective quality [2].

The squared error distortion measure:

Here the input and :reproduction spaces are K-dimensional Euclidean

space

d(x, X)
k-l

L (Xi - Xi)2,
i=O

(2.3)

the square of euclidean distance between vectors. This is the simplest distortion

measure and the most common for waveform coding. It's a common practice to
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measure the perform~:gceof a system by the signal - to- noise ratio (or signal -

to - quantization - noise ratio )

SNR 1010 EG~tf)
glO E[d(x,x)]

(2.4)

This corresponds to normalizing the average distortion by the average energy

and plotting it on a logarithmic scale: Large(small) SNR corresponds to small

(large) average distortion [2].

The long term average distortion, as stated above, is what must be

minimized. For a stationary and ergodic process, the limiting time average is the

mathematical expectation. Although the mathematical expectation is useful for

developing theoretical results for performance, it is not very useful for the

design of the quantizer since the statistics of the vector sources are not

generally known. In the case of images, there isn't any generally accepted

accurate probability distribution. Therefore, a common approach is to use a long

series of images as a training sequence. Given a way to calculate the average

distortion in the images of the training set of a vector quantizer, design a code

that minimizes this average distortion [4].

For a stationary and ergodic process, the training sequence approach

average should be very close to the expected value. But real sources are not

always stationary and ergodic. Nonetheless, if a sufficiently long training

sequence is used, the resulting code should preform almost as well on new data
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from the same source as it did for the training sequence. A sufficient condition

for this to be true is that the source be asymptotically mean stationary, it is not

required for it to be stationary and ergodic [4].

properties o'-optimal quantizers

Two necessary conditions for a VQ to be optimal follow easily using the

same logic as in Lloyd's [7] classical development for optimal PCM with a mean

square error distortion measure [4]:

1. The encoder that minimizes the av"erage distortion is the one that

selects the code that yields the minimum distortion at the output. This means

that the best encoder doses nearest neighbor mapping.

2. The decoder that minimizes the average distortion is the one that

assigns to each code the geI1eralized centroid 'of fill the input vectors that at the
,

encoder result in that code.

The fact that the encoder can be optimized for the decoder and vice versa

formed the basis of Lloyd's original optimal PCM design algorithm for a scalar

random variable with a known probability density function and a squared error

distortion. The general VQ design algorithms considered are bases on the simple

observation that Lloyd's basic development is valid for vectors, for sample

distributions, and for a verity of distortion measure. The only requirement on

the distortion measure is the one that can computEPthe centroid. The basic
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algorithm is the following [2]:

Step O. Given: A training sequence and an initial decoder.

Step 1. Encode the training sequence using the given decoder minimum

distortion rule. If the average distortion is small enough, quit.

Step 2. Replace the old reproduction vector of each codeword by the

centroid of all training vectors which were mapped into that codeword in step

1. Go to 1.

Each step of the algorithm must either reduce average distortion or leave

it unchanged. The algorithm is usually stopped when the relative distortion

decrease falls below some small threshold. It should be emphasized that such

iterative improvement algorithms may not in general Yield truly optimum

codes.

It is known that the algorithm will yield locally optimum quantizers, but in

general there may be numerous such codes and many may 'yield poor

performance. (see, e.g., [2] ) It often useful therefore to enhance the.

potential by providing it with good initial codebooks, and by trYing it on several

different initial codebooks [2].
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Initial codebooks

" The basic design algorithm is an iterative improvement algorithm and

requires an initial code to improve. Two basic approaches have been developed:

One can start with a simple codebook of the correct size or one can start with

small codebook and recursively construct larger ones [2].

Random codes

The simplest example of the first technique is: Use the first 2R vectors in

the training sequence as the initial codebook. An obvious modification more

natural for highly correlated data is to select several widely spaced words from

the training sequence [2].

Product codes

Another example of the first approaches is to use a scalar code such as a

uniform quanti~er k times in succession and then prune the resulting vector

codebook down to the correct size. The mathematical model for such a code is

a product code. Which can be explained as follows:

Say we have a collection of codebooks, Cj , i = O,l, ...,m-l, each consisting of M j

vectors of dimension kj , and having rate Rj = log2 M j bits per vector. Then the

product codebook C is define as the collection of all M = nMt possible

concatena~ions of m words drawn successively from ~e m codebooks C j • The
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m-l

dimension of the product codebook is, k = L kj the sum of the dimensions of the
j=O

component codebooks. The products code IS denoted mathematically as a

Cartesian products:

m-l

C = X Cj = {allvectors ofthefonn (XOxl"" ,Xm- 1);
1=0 '

xj in C(, i = O,l,···,m - I}
(2.5)

Thus, for example, usmg a scalar quantizer with rate R/K, k times in

successiGn yields a product k-dimensional vector quantizer of rate R bits per

vector. This product code can be used as initial code for the design algorithm [2].

In the waveform coding applications where the reproduction and input

alphabet are the same (k-dimensional Euclidean space) an alternative product

code provides a means of growing better initial guesses from smaller

dimensional codes [2]. Begin with a scalar quantizer Co and use a two -

dimensional product code Co X Co as an initial guess for designing a two -

dimensional VQ. On completion of the design we have a two-dimensional code,

C2
• From an initial guess for a three-dimensional code as all possible pairs from

C2 and scalars from Co, that is, use the product code C2 XCo as an initial guess.

Continuing in this way, given a good k-l dimensional VQ described as codebook

Ck
.
1

, an initial guess for a k-dimensional code design is the product code Ck
•
1 X

Co' One can use such product code constructions with a different initial scalar
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. code Co, such as those produced by the scalar version of the splitting algorithm

[2].

Splitting

In this algorithm, instead of constructing long codes from smaller

dimensional codes, we can construct a sequence of bigger codes having a fixed

dimension using a " splitting" technique [7], [9J~ This method can be used for

any fixed dimension, including scalar codes.

In this technique one first finds the optimum 0 rate code - the centroid of the

entire training sequence, as depicted on Fig. 2.2a. For a two-dimensional input

. alphabet. This single codeword is then split to form two codewords (Fig. 2.2b).

For example, the energy can be perturbed slightly to form a second distance

word or one might purposefully find a word distant from the first.

It is convenient to have the original codewords a member of the new pair to

ensure that the distortion will not increase. The algorithm is then run to get a

good rate 1 bit per vector code as indicated in Fig. 2.2c. The design continues

in this way in stages as shown: The final code of one stage is split to form an

initial code for the next [2].

.,
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b)

c) d)

o
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e)

Figure 2.2: Splitting algorithm

The Figure 2.2, can be explained as follows:

Alarge code is defined in stages: at each stage each codeword of a small code is
I
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split into two new codewords, giving an initial codebook of twice the size. The

algorithm is run to get a new better codebook. In part (a) Rate 0: The centroid

of the entire training sequence. Part (b) Initial Rate 1: The one codewprd is split

to form an initial guess for a two-word code. Part (c) Final Rate 1: The

algorithm produces a good code with two words. The dotted lines indicate the

Voroni regions. Part (d) Initial Rate 2: The two words are split to form an

initial guess for a four-word code. Part (e) Final Rate 2: The algorithm is run

to produce a final four word code [2].

2.3 Variation of Memoryless Vector Quantization

In this section some of the variations of memoryless vector quantization

will be investigated, keeping in mind that these variations are aimed at

reducing

the computation or memory requirement of a full search memoryless VQ [2].

Tree-searched VQ

Tree-searched VQ is a natural byproduct of the splitting algorithm for

generating initial code guesses. We focus on the case of a binary tree, but more

general tree will provide better performance while retaining a significant
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reduction in complexity [2].
" .,

Suppose we have 8: good rate 1 code as in Figure 2.2c and we form a new

rate two code by splitting the two co'dewords as in Figure 2.2d. Instead of

running a full search VQ design on the resulting 4-word codebook, however, we

divide the training sequence in two pieces;---collecting together all those vectors

encoded into a common word in the 1 bit codebook, that is, all of the training

sequence vectors in a common cell of the Voronoi partition. For each of these

subsequances of training vectors, we then find a good I-bit code using the.. /'
. . I'

..//

algorithm. The final codebook (so far) consists of thefour codewords in the two

I-bit codebooks designed for the two subsequances. A tree-searched encoder

selects one of the words not by an ordinary full search of this codebook, but

instead it uses the first one bit codebook designed on the whole sequence to

select a second code and it then picks. the best word in the second code. This

encoder can then be used to further subdivide the training sequence and

construct even better codebooks for subsequances. The encoder operation is

shown in Figure 2.3 [2].

The tree is designed one layer at a time: each new layer being designed

so that the new codebook available from each node is good for the vectors

encoded into the node. Observe that there are 2R possible reproduction vectors

as in the full search VQ, but now R binary searches are made instead of a single

2R
- ary search. In addition, the encoder storagerequirement has doubled.
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Figure 2.3: Tree-searched VQ.

The search, however, is much more efficient if done sequentially than is a full

search. Thus, one may trade performance for efficiency of implementation.
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Nonbinary trees can also be used where at the ith layer codebooks of rate Ri are

used and the overall rate is then ~i Rj • Other techniques can be used to design

tree-searched codes. For example, Adoul et al. [3] use a separating hyper-plane

approach. Another approach is to begin with a full search codebook and to

design a tree-search into the codebook. One technique for accomplishing this is

to first group the codewords into close disjoint pairs and then from the centroid

of the pairs as the node label of the immediate ancestor of the pair. One th~n

works backwards through the tree, always grouping close pairs. Ideally. one

would like a general design technique for obtaining a tree search into an

arbitrary VQ codebook with only a small loss of average distortion [2].

The Figure 2.3, can be explained as follows: A binary encoder tree is

shown for a three-dimensional one bit per sample VQ. The encoder makes a

succession of R minimum distortion choice from binary codebooks, where the

available codebook at each level consists of labels of nodes in the next level. The

labels of the nodes of the final layer are the actual reproduction codewords. At

each node the encoder chooses the minimum distortion available label and, if the

new index is a 0 (1), sends a channel symbol of 0 (1) and advances up (down) to

the next node. After R binary selections the complete channel codeword has

been sent and the reproduction codeword specified to the decoder [2].
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Multistep VQ

A multistep VQ is a tree-searched VQ where only a single small codebook

is stored for each layer of the tree instead of a different codebook for each node

of each layer.

Such codes provide the computation reduction of tree-searched codes while

reducing the storage requirements below that of even ordinary VQ [2].

The first example of such a code was the multistage codebook. For the simplicity

we again confine interest to codes which make a sequence of binary decisions.

The first layer code is designed as in the tree-searched case. This codebook is

used to encode the training sequence and then a training sequence of error or

reslaual vectors is formed. FoFwaveftn'm-cm:iing applications the error vectors

are simplYQthe difference of the input vectors and their codewords.

The algorithm is then run to design a binary VQ for this vector training

sequence of coding errors. The reconstruction for these two bits is then formed

by combining the two codewords. For waveform coding this is accomplished by

adding the first codeword to the error codeword. This reproduction can then be

used to form a "finer" error vector and a code designed for it. Thus an input

vector is encoded in stages as with the tree-searched code, but now only R

binary codebooks and hence 2R total codewords need to be stored. Observed that

there are still 2f? possible final codewords, but we have not needed this much

storage because the code can be reconstructed by addlng different combinations

of a smaller set of words. A multistage VQ is depecated in the figure 2.4.
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In figure 2.4, the input vector is first encoded by one VQ and an error vector is

formed. The second VQ then encodes the error vector. The two channel symbols

from the two VQ's together form the complete channel symbols for·the entire

encoder. The decoder adds together the corresponding reproduction vectors.
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Figure 2.4: Multistage VQ with 2 Stages
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Gain/shape VQ

In this type, different VQ's are used to code the "gain" and "shape" of a

waveform. "Shape" is defined as the input vector normalized by a "gain" term.

Another possibility-especially for images where the sample mean of pixel

intensities ina small region is slowly varying-is to scalary quantize the sample

mean of the vector, then subtract the coded sample mean from all samples in

the vector, and finally VQ the vector.

A variation of this scheme is to convert each vector to another vector with

zero mean and unit standard deviation, then they can be Memoryless VQ with

LBG algorithm. The mean and standard deviation can be scalar quantized and

sent with the vector codes. Also, a VQ can be used for that later statistical

information.

Separating mean VQ

This is another example of product code, where a sample mean instead

of an energy term is removed [7]. To understand the basic idea behind this type

of VQ, consider this: define the sample mean <x> of a k-dimensional vector

by.k-lL::~ xj In a separated mean VQ one first uses a scalar quantizer to code

the sample mean of a vector, then the coded sample mean is subtracted from all

the components of the input vector to form a new vector with
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Figure 2.5: Separating Mean VQ.

approximately zero sample mean. This new vector is then quantized. Such a

system is depicted in Figure 2.5. The basic motivation here is that in image

coding the sample mean ofpixel intensities in small rectangular block represents

a relatively slowly varying average background value of pixel intensity around

which there is a variation [2].
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The figure explaine~ how the separating mean VQ is working: The

sample mean of the input vector is computed, scalar quantized, and the

subtracted from each-component-ofthe input vectoT:-The resulting vector with

approximately zero sample mean is then vector quantized. The decoder adds the

coded sample mean to all components of the shape vector.

Lattice VQ

This type of VQ can be defined as a k-dimensional generalization of the

scalar uniform quantizer. A lattice quantizer is a quantizer whose codewords

form a subset of a lattice. A lattice in k-dimensional space is a collection of all

vectors of the form y = L:;:; al, ,where n is less than or equal to k, where

. eo, •••,en
_1 are a set of linearly independent vectors in R k

, and where the a j are

arbitrary integers [2].

2.4 Memory Vector Quantization

An improvement to the memoryless VQ can be incorporated by adding

a memory. It' s important to note that information theory implies that the

memoryless VQ can preform arbitrarily close to the optimal data compression.

Therefore, VQ's with memory can preform no better than memoryless VQ,

but the complexity (space and time) of a memoryless VQ using larger vectors
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can preGlude it's use for a given distortion specification, where a less complex

VQ using vectors with memory can meet the specified distortion level [4].

In this section three types of the memory VQ will be introduced:

Feedback VQ, 'Finite-State VQ, and Vector Predictive Quantization.

Feedback Vector Quantizers

The simplest way to do this, is by choosing a different codebook for each

vector, depending on the previous vectors. The decoder need to know which

codebook to use for each vector it has to decode. This can be accomplished in

several ways. If the encoder chooses the codebook based on its previous outputs,

the decoder can track the same selections. This is called feedback vector

quantization, while if the codebook selection is transmitted explicitly, then it is

called adaptive vector quantization.

Feedback vector quantization can be considered as a generalization of the scalar

adaptive quantizer with backward estimation.

The adaptive vector quantization can be considered as a vector generalization

of the scalar quantizer with forward estimation.
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The feedback VQ can be described as follows: The encoder and the decoder can

be considered to have a state. For each distinct state there can be a different

codebook associated with that state. Both the encoder and the

decoder start from the same· state. When the encoder outputs the first code, it

uses it to determine the next state. When the decoder receives the code it

correctly decodes it since it is in the same state that the encoder was to encode

it, and it uses the received code to transition to the next state. As long as the
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decoder can track the encoder states, the decoding is correctly preformed. But

the big drawback of this approach is that if an error occurs and the decoder

loses tr~ck of the state of the encoder, the results from the decoder are invalid

from that point and on. A solution is to have a periodic reset on the states, or

error control [4].
,

It has not been stated that the number of states has to be finite, but in the

cases where it is, the system is called a Finite-State VQ, and it is suitable for

. VLSI implementation.

Finite-State Vector Quantization (FSVQ)

A general procedure for designing a FSVQ can be outlined as follows [14]:

1. Design an initial set of state codebooks and an arbitrary next-state

function.

2. Given the next state function, use a variation of the LBG algorithm to

attempt to improve the state codebooksL-

The variation of the LBG algorithm is a slight extension to include the states

of the system. When replacing all the reproduction vectors by the centroids of

the vectors that mapped into them, take into account the state of system, that

e

is, calculate all the centroids for each state separately and substitute them for

the reproduction vectors separately for each state.

The procurement of the initial set of codebooks is a difficult matter.

A possible approach is to use the LBG algorithm to design an initial codebook.
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·
Then partition the training sequence by grouping all the training vectors that

,
" ,

follows the onesthatmapfogether. For each group the LBG algorithm is now

used to design it's codebook. A more detailed description can be found in [14].

For image coding several approaches to designing a FSVQ have been

proposed, one mentioned in [19] uses a state transitioh function based on a

classifier using intensity and geometric correlations between neighboring blocks

[14].

Vector Predictive Quantization

The vector generalization of DPCM is the vector predictive quantizer

(VPQ). A predicator is used to forecast the next vector, based on previous

vectors, and only the error in this predication needs to be transmitted. The

predicator can be simply the last vector, or an average of the last two vectors.

The LBG algorithm can be used to design a VQ for prediction error sequence.

For image coding a possible approach is making use of a classifier to separate

the blocks into categories and use a separate predictor and error codebook for

each category [4].
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2.5 Image Coding using Vector Quantization

A fundamental goal of data compression is to reduce the bit rate for

transmission or data storage while maintain an acceptable fidelity or image

quality. Numerous bandwidth compression techniques have been devolved, such

as DPCM, Transform Coding, hybrid coding, and adaptive versiogs of these

techniques in response to the growth of image-processing methods. These

techniques usually exploit the psychovisual as well as statistical redundancies

in the image data to reduce the bit rate [5].

One deficiency with all .of the conventional coding techniques is that

quantization is preformed on individual real - valued samples of waveforms or

i

pixels of images. These techniques are not optimal since the processed samples

are still somehow correlated or dependent. Therefore, and according to

Shannon's rate-distortion theory, a better performance is always achievable in

theory by coding vectors instead of scalars.

The rest of this chapter will be devoted for the applications of VQ to

images in the spatial domain, the predicative domain, the transform domain,

and combinations of ~hese known as hybrid domains.
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2.5.1 Spatial Vector Quantization (SVQ)

In this domain adaptive and nonadaptive vector quantizers have been

designed to code single fame images. The basic concept involves partitioning an

image to two-dimensional vectors. Each vector is then compared to a set of

standard vector templates stored in a ROM, and a codeword identifying the best

match is then transmitted. The receiver reconstructs the image using the

corresponding templates in place of the original vectors [19].

Classified VQ

At very low bit rates, the edges of the image can be severely distorted,

because there aren't enough vectors to reproduce all possible orientations of an

image. If the vectors are preclassified by their orientations and then vector

quantized with an appropriate codebook, an improvement is achieved, in spite

of the overhead incurred to indicate the vector class.

This approach can be extended to using a larger number of classes. Appropriate

codebooks for each class can be constructed with the LBG algorithm. An
'-,

example of the classes can be : horiz~ntal edges, vertical edges, 45° edges, nQ

edge, significant gradient but on edge, shades, textures, etc. An improvement is .

to use different coding depending on the character of the block; Gain/Shape VQ

for edge blocks, VQ on the DCT (Disceret Cosine Transform) coefficients for

blocks with moderate gradient, etc.
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One aspect that has not been considered until now is the fact that a fixed

block size is not necessarily optimum throughout the picture, the classification

can further subdivide complex blocks (containing several edges) and leave some

big blocks (shade or textures) undivided. For a better performance, a split

merge segmentation technique can be used to define the subblocks [4].

Code Replenishment VQ

A simple approach to avoid having a fixed codebook for the whole image

is to subdivide the image in blocks of several vectors, a codebook is created for

each subimage, each created codebook is transmitted along with the codewords

for the vectors in that subblock. But this approach suffers from several

problems: redundant vectors among subimages are multiply transmitted, there

is too much side information to transmit (all codebooks), the computation

requirements are too great (create all new codebooks)'

Another approach to replenishing the codebooks is not to change the

whole codebook each time, instead only change a part of it. A measure of the

distortion for each transmitted vector is taken, and if the distortion is too great,

instead of transmitting the codeword, this vector is given another codeword and

is added to the codeword.

If the coding is preformed on a series of images, then it is possible to
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generate a codebook only for the first image and transmit it along with the

codewords for this first image. For the following images, if a codeword for a

vector does not change from the previous image, it is not necessary to transmit.

Although the images in a sequence have a tendency to remain very similar,

a codebook replenishment is necessary to handle the changing statistics of the

image. But the image sequence h~s a dramatic change it is better to create a

new codebook [4] .

Hierarchical VQ

An important point that has been ignored in adaptive SVQ is that the

block size is constant throughout the encoding process. A better technique which

could lower the bit rate significantly is to use variable block length. One such

technique was introduced by Nasrabadi [42] called adaptive hierarchical VQ. In

this coding technique, a quad-tree algorithm [19] is first used to partition the

image into blocks of size 2 x 2, 4 x 4, 8 x 8, and 16 x 16. This information about

partitioning the image is represented by a quad - tree and is counted as the side

information to transmitted. In ,the coding process, the small blocks, 2 x 2 and

4 x 4, are coded by using a typical SVQ (shape vector quantizer). The larger

blocks representing constant. patterns are encoded by applying VQ in

transform domain. Many of the high frequency coefficients can be discarded and

thus the effective dimension ofthe blocks is reduced for computational purposes.
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Intrafram VQ

In an image sequence, succeSSIve frames are usually very highly

correlated. A simple intraframe coding system that only transmits the intensity

of the pixels that change between succeSSIve frames is known as a frame

replenishment coding system [19].

2.5.2 Predictive Vector Quantization

In the previous section, we considered zero memory vector quantization

of scalar random variables . However, since the consecutive vectors are

statistically dependent, better performance can be achieved if interveetor

correlation is incorporated in the encoder . The function of such technique is

exactly the same as that of the feedback VQ and it's variation in FSVQ ,

outlined in in section 2.4.

2.5.4 Binary Vector Quantizer (BVQ)

Facsimile Coding Using BVQ

Digital images 'such as business letters and documents, weather maps ,

and engineering drawings, etc.,are nominally two-tone (black and white).
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Efficient coding for the digital transmission or storage of two-tone images has

been accomplished by a number of techniqu~s such as run length coding and

entropy coding of the original data. One such technique employs entropy coding:.

is obtained by dividing the original images into blocks of N pixels, transmitting
. '~

short codewords for more frequent vectors and long one for less ones. This can

be implemented using Huffman coding scheme, but the design and

implementation of that code will be very complicated since they required the

evaluation of joint and conditional probabilities and a large lookup table for the

storage of the codewords.·

One possible way to increase the compression factor safely is to allow some

image degradation in the coding process [19]. For a given vector size , only a

small subset of all possible pixel patterns of the block is allowed. Any pattern

which is not allowed is replaced by the pattern in the allowed subset that

matches it most closely. This is known as a binary vector quantizer and·

codebook could be designed using the LBG algorithm.

Block Truncation Coding Using Binary Vector Quantization

Recently, a new technique called block truncation coding (BTC) has been

developed [11], [16]. This technique uses a one-bit nonparametric quantizer,

adaptive over local regions of the image. In general , the picture is divided into

N x N blocks which are coded individually, each into a two-level signal. The
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level, a and b , for each block are chosen such that the first two sample

moments are preserved. These are given by :

a

b

x-

x-

-r-;
a~~

(2.6)

(2.7)

where x and a are the mean and the standard deviations of the block,

respectively, q is the number of samples greater then
- 2
X , and m =N is the

number of samples in the block. Each block is then described by the values of

x , a , and an M x N bit plane consisting of l's and O's indicating whether the

pixel has value above or below x [19].

2.5.5 Subband Vector Quantizers

Subband coding of images introduced by Woods and GINeil [42] employed

DPCM to encode each band. But VQ can be employed here too, where it exploits

the redundancies between the spectral bands. The vectors would be taken as one
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sample for each of the bands, that is , the dimension of the vectors would be the

number of bands [4].

51



Chapter 3

Transform Coding

Disceret transform coding is a technique that takes blocks of pixels from

the image and transforms them to another domain, which is different from the

pixel intensity domain [4].

3.1 Definition of Transform Coding

In transform coding, a reversible, linear transform is used to map the

image into a set of transform coefficients, which are then quantized and coded.
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For most natural Images, a significa;nt number of coefficients had small

magnitudes and can be coarsely quantized(or discarded entirely) with little

image distortion. Figure 3.1 shows a typical transform coding system.

Input
image
(N x N)

Construct
nxn

subimages

FOlWard ;~
transform ~

~~~~~~~'S~)'S'S~'S$$ ..i
Encoder

Compressed
image

'li
Symbol :t

=.J
~~1

Inverse ii1
transform ~~~

~~~~~~~~~~~K-«~~~~~~~I;
Decoder

Merge
nxn

subimage

Decompressed
image

Figure 3.1 : A transform coding system
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the decoder implements the inverse sequence of steps (with the exception of

quantization functic;m) of the encoder, which preforms four relatively

straightforward operations subimage decomposition, transformation,

quantization, and coding. An N x N input image first is subdivided into

subimages of size n x n. which are then transformed to generate (N/n)2 n x n

subimages transform arrays. The goal of the transformation process is to

decorrelate the pixels of each subimage, or to pack as much information as

possible into the smallest number of transform coefficients. The quantization

stage then selectively eliminates or more coarsely quantizes the coefficients that

carry the least information. These coefficients have the smallest impact on

reconstructed subimage quality. The encoding process terminates by coding the

quantized coefficients. Any or all of the transform encoding steps can be adapted

to local image content, called adaptive transform coding , or fixed for all

subimages, called nonadaptive transform coding [7].

The important characteristics that can make this approach useful for image

coding are:

- Correlation reduction property : the transform decorrlates the

coefficients in the given block.

- Energy compaction property : the energy is concentrated in fewer

coefficients [21].

This allows the use of two mechanisms to achieve bit-rate reduction:

II Some of the transform coefficients can be discarded because they
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contribute very little to the perceived image content.

. I] Some of the transform coefficients can be coarsely quantized and that

does not degrade the picture quality dramatically.

Transform Coding techniques are generally expensive computationally,

but for low bit/rate applications, they usually perform better than other simpler

techniques, like waveform coding.

In a simple transform image coding system, a block of pixels from the

original image {(n1 ,nJ first undergoes the linear transform, which yield the

transform coefficients Tjkl'Is), and it is then quantized to Before

storage or transmission the quantized coefficients Tj..k1,'s) are assigned to

binary codewords. This is repeated for all blocks that make up the image.

The decoding stage recovers the transform coefficients, Tf.kl' Is) ,from

the codewords, and performs the inverse· transform to obtain Jcn1,n2), the

recovered block. All the blocks together make the recovered image [4].

3.2 Image Coding Transforms

The choice of a particular transform in a given application depends on the

amount of reconstruction error that can be tolerated and the computational

resources available. Compression is achieved during the quantization of the
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transformed coefficients (not during the transformation step).

For im~ge coding the useful transforms are linear and can be expressed

as,

Nt -1 N2 -1

T/kl'"k 2) = L L ((nl'n2) a(nl'n2,k1,k2)

n\ =0 n2 =0

Nt -1 N2 -1

f(n l'n2) = L L T/kl'k2) b(nl'n2,kl'k2)

k\=Ok2 =0

(3.1)

(3.2)

wherea(nl,n2'kl,k~ are the orthonormal basis functions that define the

transform, and b(n1,n2'kI,kJ defines the inverse transform. It is possible to look

at {(n1,nJ as a linear combination of the basis functions b(nl,n2'kI,k~, where

Tfkl,k~ are amplitudes of these basis functions in the linear combination.

Furthermore, it is possible to interpret the coefficients Tfkl,k~ as amplitudes

of generalized spectral components when the basis functions have some form of

sinusoidal behavior.

The general form presented above can be tremendously expenSIve

computationally, therefore it is often simplified to the case when the

transformation is separable. In the separable case, the transform can be

expressed as,

Nt -1 N.-l

T/kl'k 2) = L L f(n l'n2) aR(nl'k 1) ac(n 2,k2)

n, =0 n.=O

(3.3)
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N,-l N2 -1

f(nl·,nZ) L L T/kl'kz) bR(nl'kl) bc(nz,kz)
k, = 0 k2 = 0

(3.4)

bJnz,k;) are the column basis functions. It is now possible to preform I-D

transforms on the columns, followed by another 1-D transform on the rows,

N1-l N2 - i

T/kl'kz) = L [.E f(nl'nZ)aR(nl'kl)]aC(nz,kz)
n, =0 n

2
=0

N1-I N2 -1

f(nl,nZ) L [L T/kl,kz)bR(nl'kl)]bc(nz,k2)
k, =0 k2 =0

(3.5)

(3.6)

With separable basis functions, the computation can be reduced by orders of

magnitude, compared to direct computation. For some of the· popular

transforms, additional computational savings are achieved due to the behavior

of the basis functions.

An example of a separable discrete linear transform-whose transform

coefficients can be interpreted as spectral components is the Discrete Fourier

Transform (DFT),
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(3.7)

(3.8)

An important characteristic of the transforms that have been used for image

coding is the property that coefficients with small magnitude contribute only
"

small amount of energy to the signal [21].

From the energy compaction point of view, the best transform is the

Karhunen-Loeve Transform (KLT) [32]. In the KLT the basis functions are real,

The KLT transform is important more theoretically than practically,

because of the difficulties involved. Th basis functions depend on the image

characteristics, and must be calculated for each different image. In general there

is no computationally efficient algorithm to calculate the transform coefficients.
\ .

For these and other difficulties the KLT is rarely used in image coding,

and also because the DCT (Discrete Cosine Transform) is very close to the KTL

performance in images which are highly correlated.

With images that exhibit "nearly stationary" statistics, it is found that

their KLT basis function are very similar to the ones obtained for the KLT of

highly correlated first order Markov processes [12]. And of the transforms
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considered for image coding, the DCT also shows very similar basis fun<;tions.

This seems to be part of the reason of the good performance observed for DCT

[32] in image coding applications. Considering the performance and the

computation cost, the DCT is considered the best choice [21].

3.3 Variations of Image Coding Transforms

3.3.1 Transform Vector Quantization (VTQ)

The purpose of transform coding is to convert statistically dependent or

correlated picture elements into independent or uncorrected coefficients [6]-[29].

Because of the computational complexity an image is usually divided into

subimages of reasonable size and then a one- or two-dimensional unitary

transform is preformed on each subimage. The transformed coefficients are then

nonuniformly quantized by a scalar quantizer. The quantization levels are given

by a bit assignment matrix in which some of the high-frequency coefficients are

discarded. The same bit assignment matrix is stored at the receiver or is

transmitted for each image [16] .

Adaptive Transform Coding Using Vector Quantization

In adaptive transform coders several bit assignment matrices are
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designed. Each subblock of the image is then classified into one of several classes

"'~

according to the activity content of the block and coded by the appropriate bit

assignment matrix. VQ in the transform domain in the above manner where

each sub-block is considered as a vector has only one advantage, that is, the ac

coefficients have a well-behaved Laplacian distribution which could be exploited

in the design of the codebook.

Interframe Transform Vector Quantization (lTVQ)

When several frames are to be compressed, the complexity for three-

dimensional coding is very large. One approach is to use two-dimensional

transform coding in the two spatial directions, and use a vector quantizer in the

temporal dimension. The dimension of the vector used in this temporal

direction should be adaptive, since image sequences can have little change over

some time, but they can have drastic changes at other times [4].

Other transforms that have been considered for image coding are:

Discrete Fourier Transform (DFT). The DFT has been mentioned above,

and it have been used in some ea~ly image coding system [43]. But the DFT

does not achieve an energy compaction as good as the DCT. The reason DFT has

worse energy compaction then the DCT is due to the sharp discontinuity that

occurs at the block boundary, which contributes energy to the high frequency
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components [21]. The DCTdoes not present this artificial discontinuity [4].

Discrete Sine Transform (DST). The DST is defined by

(3.10)

It has found use in the case of Recursive Block Coding [12], where the image

information is separated into two components, and one component typically has

it's KLT basis functions very similar to basis functions of DST [4].

Slant Transform. The slant transform is thought to better approximate the

local behavior of the image, and therefore provide better energy compaction [32].

It is similar to the DCT and the performance is not much different in most

useful cases. But the DCT is preferred, although there is an efficient algorithm

to calculate the Slant Transform.

Walsh-Hadamard Transform (WHT). This transform can be constructed

recursively, starting from HI = 1 then,

(3.11)

Then the column vectors of the T matrix are the basis functions of the

WHT, where
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an example of N=4

1
T=-H{NN (3.12)

1 1 1 1

1 1 -1 1 -1 (3.13)T = -
2 1 1 -1 -1

\; 1 -1 -1 1

In the WHT the concept of frequency is called sequency and is defined as the

number of zero crossing divided by two. To have the coefficients ordered by

decreasing energy content it is necessary to use sequancy ordered WHT [32].

The uses of only + l's and -l's in the WHT transform makes it very fast, but the

energy compaction is not as good as the DFT or DCT [4].

Haar Transform. The Haar transform basis functions contain only + l's,-l's,

and zeros. This allows very fast computation, since the operations are very

simple, but the energy compaction performance is not very good [4].

Lapped Orthogonal Transform (LOT). This transform attempts to reduce

the blocking effect that appears in the DeT when the bit rate is very low.

In this transform, the basis functions form adjacent blocks overlap, that

is, for a 1-D block ofN samples, N coefficients are calculated that map the block

into a set of N basis functions. But these basis functions have more than N
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samples each [41]. The LOT greatly reduces the block to block discontinuities

compared to the DCT at low bit rates, and a fast algorithm (30 % slower than
,

a simi}ar DCT) has been implemented [25].

3.4 Discrete Cosine Transform (DCT)

Most practical transform coding systems are based on the DCT, which

provides a good compromise between information packing ability and

"

computational complexity. In fact, the properties of the DCT have proved to be

of such practical value that it has qecome the international standard for

transform coding system. Compared to other input independent transforms, it

has the advantages of having been implemented in a single integrated circuit,

packing the most information into the fewest coefficients5 (for ~ost natural

images), and minimizing the blocklike appearance, called blocking artifact, that

results when the boundaries between subimages become visible. This last

~

property is particularly important in comparisons with the other sinusoidal

transforms. Take for example,the DFT , the implicit n-point periodicity gives

rise to boundary discontinuities that result in substantial high-frequency

transform content. When the DFT transform coefficients are truncated or

15
Ahmed et at (1974) first noticed that KLT basis images (functions) of a first-order Markov image source closely

resemble the DCT's basis images. AB the correlation between adjacent pixels approaches one, the input dependent KLT basis
images become identical to the input independent DCT basis images (Clark (1985)) [19].

Chapter 3 : Transform Coding 63



quantized, Gibbs phenomenon6 causes the boundary points to take on erroneous

values, which appear in an image as blocking artifact. That is, the boundaries

between adjacentsubimages become visible because the boundary pixels of

subimages assume the mean values of discontinuities formed at the boundary

points. The DCT reduces this effect, because it's implicit 2n-points periodicity

dose not inherently produce boundary discontinuities.

An important point to mention here, is that the KLT, not the DCT, is the

optimal transform in an information packing sense. That is, the KLT minimizes

the mean -square error for any input image and any number of retained
"

coefficients. However, because the KLT is data dependent, obtaining the KLT

basis images for each subimage, in general, is a nontrivial computational task.

For this reason, the KLT is seldom used in practice. Instead, a transform, such

. as the DCT, whose basis images are fixed (input independent), normally is

selected.

The DCT is defined as,

(3.14)

(3.15)

where

6 The phenomenon, occurs because the Fourier transform fails to converge uniformly-at discontinuities. At

discontinuities, Fourier expansions take the mean values.
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1
k = 0- , (3.16)1

w1(k1) = 2

1, ~ k
1
~ N

1
- 1

1-,
2

k = 02 (3.17)

Subimage size selection

The usual approach is to divide the image into blocks. These blocks are

then transformed independently. Since each block is processed independently,

the coding can take advantage of this and be adaptive to the local image

characteristics within each block. The blocking also reduces the intensive

computations, and the memory requirements are also reduced, since only one

block is needed in memory at a time. Another advantage of this is that to allows

parallel implementations, where each processor operates on individual blocks [4].

Typical block sizes are 8 x 8 and 16 x 16 . The energy compaction

improves as the block size is increased, but the average energy compaction does

not improve much with block size above 8 x 8 [32].
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Bit allocation

In most transform coding systems, the retained coefficients are selected

on the basis of maximum variance, called zonal coding, or on the basis of

m§Ximum magnitude, called threshold coding, The over all process of

truncating,. quantizing, and coding the coefficients of a transformed subimage

is commonly called bit allocation. Therefore, the available bits must be decided

among all the blocks and coefficients as to provide the best image at that bit-

rate. Typically in DCT the variance is much greater in low frequency

coefficients, and they need more bits to be accurately described, while the high

frequency coefficients can be coarsely quantized [4].

Zonal coding of coefficients

The energy compaction resulting from the transformation allows the

discarding of many of the coefficients, which in part is responsible for the

compression achieve~. qne approach for reducing the number of coefficients,is

to consider zonal coding. Within the block of transformed coefficients, a zone

with the important coefficients is selected, and all the other coefficients are

discarded. Only the coefficients within the selected zone are coded, the discarded

coefficients are assumed to be zero. The shape and the size of the zone is

affected by many factors, including the transform used and the available number

of bits in which to fit the code. The zones selected are those that have been

shown to contribute most to the image perception, typically the low frequency
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coefficients [4].

We can understand zonal coding based on information theory concept of

viewing information as uncertainty. Therefore, the transform coefficients of

maximum variance carry the most image information and should be retained in

the coding process [19].

Threshold coding of coefficients

An adaptive method that is also used is threshold coding. It adapts to

local block statistics. Now the coefficients resulting from the -transform are

compared to some. defined threshold, and only those above the threshold are

coded; the rest are discarded. Threshold has an advantage over zo:p.al coding in

that sometimes a coefficient outside of zone is large and important, and zonal

coding would just discard it, just the same as ifit were not important. Threshold

coding would find it important and would code it. But in threshold coding the

location of the coded coefficients is not known in advance, therefore the location

of coefficients has to be coded too, which slightly increases overhead [4].

3.4.1 Distortions in DCT

DCT transform coding is a lossy technique, it is necessary to consider

what form this loss takes.
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The effect of quantizing the transform coefficients produces quantization

noise. The character of quantization noise in transform coded images is different

from the one in waveform coding. One characteristic is the loss in detail due to

the high frequency components being-small and getting discarded(by zonal or

threshold coding); the images appear blurred compared to the original.

When the coefficients are quantized too coarsely, the image shows a

notice~ble graininess.

If within a block there is a smooth area, and a high detail busy area, the

quantization error in the resulting high frequency coefficients(to account for the

detail),will show as a distortion pattern on the smooth area [4].

3.5 JPEG standard

The JPEG standard is named after the Joint Photographic Experts

Group, which developed it, joint refers to the collaboration between ISO and

CCITT.

The standard addresses the needs for continuous-tone still -image

applications such as desktop publishing, photovideotex,graphic art, or medical

imaging.

The standard developed is really a family of image compreSSIOn

techniques rather than a single image compression algorithm. It provides several

modes. that allow sequential encoding, progressive encoding, hierarchical
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encoding and lossless encoding.

Sequential encoding takes the image and encodes it in a single left-to-

right, top-to-bottom scan.

Progressive encoding makes it possible for the decoder to show the image

as it is being built up, adding detail as the decoding progresses.

In hierarchial encoding lower resolution versions of the image are

accessible without needing to decompress the whole image. This is useful for

browsing image collections, or for low resolution displays.

.The lossless method is based on a DPCM scheme, followed by an entropy-

coder.

Figure 3.2 will illustrate the general idea of JPEG lossy compression.

~H i'i'

Coefficients q ~\ Lossless I
.~[

Quantization ...",,--,(, Compression .~i~

-J ---J

Figure 3.2 : JPEG lossy compression
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Only the Baseline sequential coder-decoder (codec) will be discussed here,

which has been the only JPEG codec implemented widely. The Baseline

sequential algorithm specifies that the image has to be broken down into 8 x 8

blocks. A DCT on each block results in 64 coefficients, which are quantized

through a quantization table. Finally, the quantized coefficients are run length

and huffman, or arithmetic coded [4].

Preprocessing

Color images can be represented in different color systems where the

image is made up of several components (RGB,CMYK,YUV), and grayscale

images are considered as having a single component. Each color-component is

coded separately. For efficient compression it may desirable to convert the image

to a different color system before encoding it. Gamma adjustments may also be

performed here.

neT transform

"> The different components of the image are then divided into 8 x 8 non-

overlapping blocks. The sequence of 8 x 8 blocks goes then through a DCT

transformation. The resulting 64 coefficients represent the spatial frequency

contents of the block. The zero frequency component is called the DC coefficient,

the rest are the AC coefficients.
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· Quantization'" .-

The coefficients are now uniformly quantized usmg a 64 elements

quantization table. Quantization is defined as the division of each DCT

coefficient by it's corresponding quantizer step size ( in the quantization table).

followed by rounding to the nearest integer. The quantization table can specify

a different step size for each coefficient. This is the way the' process discards

information which is not visually significant.

Before the quantization step, no loss of information has taken place

(assuming(full precision in the operations). It is the quantization step that

introduces the loss in the image. If the image has more than one component,

each one can have·its quantization table.

Figure 3.3: The path of the zig-zag sequence
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Coefficient reordering

Mter the coefficients have been quantized, the AC coefficients p.re
-,

reorganized as a linear array in ascending order of frequency. This IS

accomplished by scanning the AC coefficients in the block in a zigzag route

starting from the lower frequency coefficients towards the highest frequency

ones. Considering the 8 x 8 block of coefficients with the DC coefficient (0,0),

and the highest frequency coefficient (7,7). Figure 3.3 illustrate the scanning

process.

Coding of DC coefficients

The DC coefficients are treated differently. Because there is usually still

a strong correlation between the average values (DC coefficients) of adjacent

blocks, each DC coefficient is encoded as the difference from the DC coefficient

of the previous block.

Entropy coding of AC coefficients

Finally, all quantized AC coefficients in the order specified and the DC

coefficients differences are entropy coded to achieve further compression

losslessly. Two alternatives can be used: Huffman or arithmetic encoding.

In the Baseline sequential codec each non-zero AC coefficient IS

represented by the a runlength of zero AC coefficients and its nonzero value.

This sequence of runlength/nonzero-coefficient is then Huffman coded [4].
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Decoding

Decompression IS roughly the inverse from compreSSlOn, but some

additional steps may be taken to produce a better output image.

Briefly, these are the steps followed:

I] Huffman or arithmetic decoding of the coefficient sequence.

[] Quantization descaling and zigzag reordering of the elements in each

8 x 8 block.

CJ Assemble the image from the 8 x 8 blocks.

I] Inverse DCT transformation of each 8 x 8 block.

EI Interpolation of subsampled components (if any) to recreate the correct

sized raster. At this point a pixel image of the original dimensions has been

recreated.

III If color, space reconversion when need~d (e.g., YCbCr to RGB). Gamma
"

adjustment may also be performed here.
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Chapter 4

Vector Transform Coding

Recently a new transform was introduced for image compression, the

Vector Transform.

This transform operates on block$ of vectors, unlike the "scalar transforms"

which operate on blocks of scalars.

ro introduce the concept of the Vector Transform, it is useful to examine

the analogy between some scalar and vector techniques. ~

PCM takes a sequence of discrete samples and quantizes them. If a

sequence of vector is taken and jointly quantized, it is called memoryless VQ.

Therefore, memoryless VQ can be seen as the vector generalization of PCM.

In DPCM a sequence of samples is taken, and only the error of the

predicted value for the next sample, is coded. When"compressing a sequence of
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vectors, where the next vector is predicted from preVIOUS vectors, and the

difference is coded, the technique is called Predictive,.VQ. Thus, Predictive VQ

can be considered a vector generalization of DPCM.

In the transform coding, as discussed in the previous chapter, a sequence

of samples is taken and transformed to another domain, where they quantized.

It is possible now to see that Vector Transform is generalization of that to th~

vector case.

A sequence of vectors is transformed into another set of vectors of a

different domain. Then this set ofvectors can be vector quantized (VQ),resulting

in a sequence of codewords.

To recover the image, the codewords are looked up in a table, and the

resulting vectors are inverse-transformed into the recovered sequence of vectors

that describes the image [20]. Figure 4.1 illustrate Image coding using the

Vector Transform scheme [20].

Input
Image Vector

transform m
~~l

'--::ml~~~~rn~~~::rn::,,::::m:J.:::::::..~.::::::'$.m.::::::.~&

Lookup .11

table :~

'--:ml==~J.l?::::::::::::::::::::::::':-:::::::::::::::::::::~

w. output
:~~: Image

Inverse :it
Vector .l*

Transform :l~
:~~:

'--~~::::~:m::::~m::::::::=~.«:::m::::::..~~::::-:;m:::=if

Figure 4.1 : Image Coding using the Vector Transform
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4.1 Vector Transform

Consider a set of N vectors { xO'xl'x2, ... ,XN _1 } where each vector has N/2

. T .
elements, Xn=[Xo,n'Xl,n,~,n""'X(N/2)-1,n] wIth n=O,1,2, ...,N-1. The vector transform

(4.1)

(4.2)

(4.3)

with this properties:

1.
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2.

W'::: I

3.

"4..

(4.5)

(4.6)

5. If N is a power of 2, i.e. N= 2\ then

N-l {NI if q mod(N) ::: 0
S ::: L WIk

:::

k=O 0 if q mod(N) "* 0

(4.8)

Properties 1 through 4 are easy to understand and a proof of property 5

can be found in [20].

With the properties mentioned above it can be shown that {xn } and {Xk }

form a transform pair. Recalling the definition of the vector transform,

N-l

_l_LX~Wk
IN n=O

(4.9)

If {.in} is the inverse transform of {Xk } above, then it must be true that

.in ::: xn for n=O,1,2, ...,N-1.

and using property 5
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,T
X ;::

n

N-l
,T _ 1 ~ XTnr-nk

xk - -- LJ nt'Y

fNk=O .

N-l N-l

_1_ L _1_:E x~wnmw-nk

fNk=O fNm=o

N-l N-l

;:: ~ L X~L wm-n)k
Nm=o k=O

(4.10)

(4.11)

(4.12)

N-l ;:: {NOI if (m .:. n) mod(N) ;:: 0
S ;:: L wm-n)k

k=O if (m - n) mod(N) :I: 0

(4.13)

. ,T 1 T T
only when m=n then S =NI, thus xn ;:: -xmNI ;:: xn for n=0,1,2, ...,N-1.

N

It is certain that (m-n) mod(N) = 0 only occurs when m = n because both

m,n E {0,1,2,... ,N-1} which implies -N < m-n <N [20].

4.2 Statistical properties of Vector Transform

With the Vector Transform now defined, it's properties can be discussed.

Scalar transforms like the DCT has the energy packing property which allows

compression by reducing the energy content on some coefficien.ts and thus
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making it possible to discard them, or coarsely quantize them. Also, the

transform coefficients are less correlated which allows efficient coding even if

performed separately.

The Vector Transform also shows similar properties. The set of

transformed vectors are less correlated than the set of data vectors. The set of

transform vectors have their energy concentrated in a few of the vectors, other

vectors contribute very little to the total energy.

It has been shown [20] that for a simplified 2-D model of pixels

correlations, 91% of the energy is concentrated in vectors Xo' Xl' and X7, for

N=8. it is also shown that correlations between vectors in the transform domain

is much less than that of correlations between the data vectors. The simplified

2-D model of pixel correlation is based on these assumptions:

11 The correlation is separable into the product of horizontal and vertical

correlations.

a Both -horizontal and vertical-" processes as first order Markov

process.

a The one-step correlation coefficient is p in both directions.

The vector set is taken from the image raster as N horizontally adjacent

vectors. These vectors are N/2 pixels long and are taken as columns of the

raster. For the results mentioned above p = 0.9L
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4.3 VQ in the Vector Transform domain

As. mentioned above, pixels from an image are grouped into vectors of

length N/2, and sets of N vectors are then Vector Transformed into sets of N

transf~rm vectors. Mter !he Vector Transform, the number of vectors is still the

same as in the original image. But since now some of these vectors are much

less important than others, it is possible to compress the image by Vector

Quantizing these transform vectors with codebooks sized appropriately for their

contribution to the energy content of the image.

Several algorithms have been considered for the codebook size allocation,

and their design [20].

A simple extension of an algorithm proposed for bit allocation in lIscalarll

transform coding [20] results in this formula for the number of bits allocated to

the kth transform vector Xk :

N 1 Nrr/2-1 2 1~ Nrr/2-1 2

= -R + - (log2 OJ,k - - L.J log2 OJ,k)
2 2 i=O Nk=O i=O

(4.14)

where a~k is the variance of the ith element of the kth transform vector. Then

N codebooks can be created with the LBG algorithm [20] where the kth codebook

has 2
b

t; entries.

",-"
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Another approach is to allocate bit directly using the transform vectors.

It is based on the relation between the VQ distortion and the entropy of the

codebook [20]. The derived bit allocation formula is [20],

where

N/2-1

~ = L ofk
i=O

(4.15)

(4.16)

Again, once the codebook size is known, the LBG algorithm is used to

create the codebooks.

But the LBG algorithm allows another approach. In the cases where it is

difficult to obtain a relationship between distortion and the number of

quantization levels in a close form, it is still possible to use the LBG algorithm.

The LBG algorithm can create a codebook Ck for the transform vector Xk

given a distortion measure Dk for a specified number of bits bk • The objective

is minimize the average distortion,

N-l 2
Uk

D = L -Dk
k=O N

(4.17)

If the distortion measure Dk is complicated function of bk ' the

minimization of D can be a very complex nonlinear problem [20]. But the

number of codebooks is constant (N) and the total number of bits to allocate is
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fixed

( LZ:~ hI; = canst). This makes the search space finite; an exhaustive search is

feasible.

Start with a bit allocation { bk }, and create k codebooks, one for each

transform vector. Compute th_e average distortion as defined above. Repeat this
,

for all possible bi allocations { bk }, and keep the one with the lowest average

distortion D.

Finally, it is possible to incorporate the iteration for bit allocation into

LBG algorithm. This modified LBG algorithm follows [20],

1. For k=0,1,2, ... ,N-l, set bk=O, Sk=l, and Ck= { centroid of Xkof the

training data }.

2

2. Compute the weighted distortion Ok Dk for each k using a distortion
N

measure of choice.

3. For each k, split the reproduction vector in Ck into two vectors and

optimize Ck with Sk = 2(i.e., bk=l).

2

4. Compute the weighted distortion Ok Dk , again for each k.
N

5. Let Do1d and Dnew be the first and second sets of weighted distortions,

respectively.

6. Let Bold and Bnew be the first and the second sets of bits allocations,
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respectively.

7. Let Cold and Cnew be the first and the second sets of codebooks,

respectively.

8. Take the difference of the two weighted distortions for each k and let

9. Identify the index k = ~ , which has the largest decrease in the

weighted distortion, i.e., akm = max { ak }.

10. Let bkm = bkm +1 in both Bold and Bnew •

11. Replace the codebook Ckm in Cold" with that in Cnew •

2

12. Replace the value of °km DJ;m in Dold with the corresponding value in
N

13. Split each reproduction vector in Ckm into two vectors, optimize Ckm

with double size, and replace Ckm in Cnew with the newly optimized Ckm •

2

14. Compute the weighted distortion °km Dkm of the new codebook Ckm and
N

put it in Dnew "

15. Take the difference of the two weighted distortions in Dold and Dnew

for the index km and replace the old value of akm with this new value.

16. Repeat steps 9-15 until the total number of bits in Bold equals the

predetermined value (N/2)R.

17. Cold now contains the codebooks to code the transform vectors.
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This modified algorithm produces a set of codebooks of the appropriate

SIzes.

Recent research in this area has showed the existence of other Vector

Transform, and a way to find them. The research for one with better energy

packing properties is expected to yield a better Vector Transform than the one

described here [20].
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CHAPTER 5

Comparsion

In this chapter we present the results of testing three coding schemes under

the influence of simulated channel noise with uniform distribution. These

coding schemes are: VECTOR QUANTIZATION, VECTOR TRANSFORM

CODING, and DISCRETE COSINE TRANSFORM.

5.1 Anatomy of the Test Process

As mentioned above we have tested these three schemes under the influence

of channel noise with uniform distribution. The simulation of the channel

noise was implemented by flipping one bit (randomly) every specific number
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of bits, knowing as Bit Error Rate (BER).

The test consists of the different ,aspects , which can be explained as follows:

1) SCHEMES:

1oVEGTOR QUANTIZATION with 0.25 and 0.50 bit per pixel (bpp).

2.VECTOR TRANSFORM CODING with 0.25 and 0.50 bit per pixel (bpp).

3.DISCRETE COSINE TRANSFORM with 0.50 bit per pixel (bpp).

II) CHANNEL NOISE:

Different Bit Error Rates:

1 1 1 1 one bit
( ,--"." " . ).

1000 2000 10,000 50,000 whole compressed data

Ill) SIGNAL -TO-NOISE RATIO:
. .

Both types of SIN (rms and peak).

When calculating SIN we considered three different ways:

1oS/N for Original image us Quantized image.

2.SIN for Original image us Noisy image.

3.S/N for Quantized image us Noisy image.

The following pages present the results of the test under above conditions.
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Comparina VT,VQ abd OCT for Orianal vs Quantized imaaes

rms SNR for Orianal vs Quantized

VTbDD.50 31.4163
VQbDD.50 25.9387
VTbpp.25 21.9573
DCTbDP.50 20.9353
VQbDD.25 20.7503

peak SNR for Orianal-vs-Quantized

VTbpp.50 35.9821
VQbpp.50 29.3577
VTbDD.25 27.6348
DCTbpp.50 26.6251
VQbpp.25 22.8071

Table 5.1: Comparing Original image vs Quantized image.
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Figure 5.1 : Comparing Ordinal image vs Quantized image
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Comparin~ VT VQ abd OCT for Orianal vs Noisy images

rms SNR for Orianal vs Noisy

VTbpp.25 VTbbp.50 VQbpp.25 VQbpp.50 DCTbpp.50
BER=1/1000 21.3298 28.9548 20.4247 24.7967 19.3539
BER=1J2000 21.794 26.6001 20.6203 25.3373 19.9533
BER=113OOO 21.7729 29.6983 20.6695 25.4407 20.3618
BER=1/4000 21.812 30.987 20.686 25.6963 20.5143
BER=1/5000 21.8865 26.5357 20.7046 25.6936 20.1011
BER=lI6000 21.9172 30.2153 20.6988 25.7511 20.6421
BER=1nooo 21.8758 29.4352 20.7215 25.7578 20.7648
BER=lI6000 21.9403 31.3417 20.7175 25.6358 20.6142
BER=119000 21.8563 30.5361 20.7137 25.7241 20.8854
BER=1/10,000 21.9157 31.0439 20.7336 25.7234 20.8431
BER=1/SO,000 21.9559 31.4113 20.7463 25.9364 20.9309
one bit only 21.9566 31.4144 20.7463 25.9385 20.9335
no noise 21.9573 31.4163 20.7503 25.9387 20.9353

peak SNR for Orianal vs Noisy

VTbpp.25 VTbbp.50 VQbpp.25 VQbpp.50 DCTbpp.50
BER=1 11 000 27.0042 33.7455 22.4823 28.2154 25.0483
BER=1J2000 27.4707 31.8831 22.6777 28.7553 25.6392
BER=113OOO 27.4495 34.6413 22.7263 28.8588 26.0487
BER=1/4000 27.4887 35.5516 22.7428 29.1155 26.238
BER=1/5000 27.5636 31.4208 22.7609 29.1129 25.7832
BER=1/6000 27.5945 . 34.7807 22.7566 29.1691 26.3307
BER=1nOOO 27.5535 34.2763 22.778 29.1766 26.4538
BER=lIBOOO 27.6177 35.9075 22.7744 29.0548 26.3045
BER=119OOO 27.5332 35.9116 22.708 29.1432 26.5772
BER=1/10,000 27.5929 35.7244 22.79 29.1424 26.5324
BER=1/SO,000 27.6334 35.9771 22.803 29.3555 26.621
one bit only 27.6341 35.9803 22.803 29.3574 26.6235
no noise 27.6348 35.9821 22.8071 29.3577 26.6251

Table 5.2 : Comparing Original image vs Noisy image
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Comparing VT,VQ abd OCT for Quantized vs Noisy images

rms SNR for Quantized vs Noisv

VTbpp.25 VTbbp.50 VQbpp.25 VQbpp.50 DCTbpp.5~

BER=1/1000 29.9982 32.5948 31.88 31.1953 24.8707
BER=112OOO 35.9273 28.3292 36.2144 34.1313 27.1219
BER=113OOO 35.5081 34.5518 37.8998 35.2139 -- 29.5835
BER=1/4000 36.3998 41.3386 39.0355 38.2099 31.0188
BER=1/5000 39.7184 28.2893 40.3013 38.2867 27.864
BER=1/6000 42.559 36.4798 39.8629 39.5542 32.6071
BER=1f7000 39.1793 33.739 42.477 39.452 34.9885
BER=1/8000 45.8926 48.8606 42.1422 37.5003 32.3657
BER=119OOO 38.0372 37.8885 41.4747 38.9761 41.1982
BER=1/10,OOO 41.7201 41.829 44.6811 38.9047 38.0965
BER=1/50,OOO 56.6771 60.0356 51.7384 59.3713 50.4616
one bit only 60.3324 64.8734 51.7384 70.9737 57.7024

peak SNR for Quantized vs Noisv

VTbpp.25 VTbbp.50 VQbpp.25 VQbpp.50 DCTbpp.5(J
BER=1/1000 35.6726 37.3855 33.9377 34.6141 30.5651
BER=112OOO 41.6039 33.6123 38.2718 37.5493 32.8077
BER=113OOO 41.1847 39.4948 39.9566 38.632 35.2704
BER=1/4000 42.0765 45.9033 41.0923 41.629 36.7425
BER=1/5000 45.3956 33.1344 42.3575 41.706 33.5461
BER=1/8000 48.2364 41.0451 41.9207 42.9721 38.2957
BER=1f7000 44.857 38.5801 44.5335 42.8707 40.6775
BER=1/8000 51.57 53.4265 44.1991 40.9193 38.056
BER=119OOO 43.7141 43.2641 43.5318 42.3953 46.89
BER=1110,OOO 47.3973 46.5096 46.7375 42.3237 43.7859
BER=1/50,OOO 62.3546 64.6015 53.7951 62.7904 56.1517
one bit only 66.0099 69.4393 53.7951 74.3927 63.3924

Table 5.3: Comparing Quantized image vs Noisy image
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5.2 Conclusions

We can summarized the results of the above tests in the following table:

RANK CODING SCHEMES

4

5 (worst)

DCT with (0.50 bpp)

Table 5.4 : Final conclusion of the comparison

According to the above table, the Vector Transform with (0.50 bpp) comes in the

first place followed by the Vector Quantization with (0.50 bpp) in the second

place. Vector Transform with (0.25 hpp) takes the third position, while Discrete

.
Cosine Transform with (0.50 bpp) comes fourth. The worst performance under

such channel noise was by Vector Quantization scheme with (0.25 bpp).
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Important Points to mention:

13 Channel Noise used here is one with uniform distribution,

this open the doors for other types of channel noise to be investigated with their

effects on the above coding schemes.

[J The above schemes can be tested with different bit per pixel

rates.

[J Different BER (bit error rates) can be used to investigate the

performance of these schemes in high BER cases .

[J In the case of DCT scheme we introduced noise to the data

part only, because any change in the headers or indices ,makes the decoding

process impossible and we can not recover the data.
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Appendix A

Th following pages contains detail results of the tests on the specific three

coding schemes.

The term mER means Inverse of Bit Error Rate.

The term bpp means bit per pixel.

'-,

Appendix A 103



VECTOR QUANTIZATION

mER = 1000
Original Image: lady512.l
Quantized Image: ladyN1.25
Difference Image: out ~

max error = 142, min error = -129, rms error = 12.6239
max signal = 212, min signal = 44, rms signal = 132.564
peak SNR = 22.4823 (db), rms SNR = 20.4247 (db)

Original Image: lady.VQ25
Quantized Image: ladyN1.25
Difference Image: out
max error = 88, min error = -91, rms error = 3.37617
max signal = 212, min signal = 44, rms signal = 132.564
peak SNR = 33.9377 (db), rms SNR = 31.88 (db)

mER = 2000

Original Image: lady512.l
Quantized Image: ladyN2.25
Difference Image: out
max error = 142, min error = -129, rms error = 12.3431
max signal = 212, min signal = 44, rms signal = 132.568
peak SNR = 22.6777 (db), rms SNR = 20.6203 (db)

Original Image: lady.VQ25
Quantized Image: ladyN2.25
Difference Image: out
max error = 91, min error = -86, rms error = 2.04983
maX signal = 212, min signal = 44, rms signal = 132.568
peak SNR = 38.2718 (db), rms SNR = 36.2144 (db)

mER = 3000

Original Image: lady512.l
Quantized Image: ladyN3.25
Difference Image: out
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max error = 142, min error = -129, rms error = 12.2742
max signal = 212, min signal = 44, rms signal = 132.577
peak SNR = 22.7263 (db), rms SNR = 20.6695 (db)

Original Image: lady.VQ25
Quantized Image: ladyN3.25
Difference Image: out
max error = 88, min error = -84, rms error = 1.68842
max signal = 212, min signal = 44, rms signal = 132.577
peak SNR = 39.9566 (db), rms SNR = 37.8998 (db)

mER = 4000

Original Image: lady512.l
Quantized Image: ladyN4.25
Difference Image: out
max error = 142, min error = -129, rms error = 12.251
max signal = 212, min signal = 44, rms signal = 132.577
peak SNR = 22.7428 (db), rms SNR = 20.686 (db)

Original Image: lady.VQ25
Quantized Image: ladyN4.25
Difference Image: out
max error = 88, min error = -91, rms error = 1.48147
max signal = 212, min signal = 44, rms signal = 132.577
peak SNR = 41.0923 (db), rms SNR = 39.0355 (db)

mER = 5000

Original Image: lady512.l
Quantized Image: ladyN5.25
Difference Image: out
max error = 142, min error = -129, rms error = 12.2255
max signal = 212, min signal = 44, rms signal = 132.586
peak SNR = 22.7609 (db), rms SNR = 20.7046 (db)

Original Image: lady.VQ25
Quantized Image: ladyN5.25
Difference Image: out
max error = 91, min error = -84, rms error = 1.28066
max signal = 212, min signal = 44, rms signal = 132.586
peak SNR = 42.3575 (db), rms SNR = 40.3013 (db)
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IBER =6000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 142, min error = -129, rms error = 12.2315
max signal = 212, min signal = 44, rms signal = 132.562
peak SNR = 22.7566 (db), rms SNR = 20.6988 (db)

Original Image: lady.VQ25
Quantized Image: ladyN
Difference Image: out
max error = 88, min error = -53, rms error = 1.34671
max signal = 212, min signal = 44, rms signal = 132.562
peak SNR = 41.9207 (db), rms SNR = 39.8629 (db)

mER= 7000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 142; min error = -129, rms error = 12.2014
'max signal = 212, min signal = 44, rms signal = 132.581
peak SNR = 22.778 (db), rms SNR = 20.7215 (db)

Original Image: lady.VQ25
Quantized Image: ladyN
Difference Image: out
max error = 83, min error = -83, rms error = 0.996857
max signal = 212, min signal = 44, rms signal = 132.581
peak SNR = 44.5335 (db), rms SNR = 42.477 (db)

mER= 8000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 142, min error = -129, rms error = 12.2065
max signal = 212, min signal = 44, rms signal = lS2.576
peak SNR = 22.7744 (db), rms SNR = 20.7175 (db)
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Original Image: lady.VQ25
Quantized Image: ladyN
Difference Image: out
max error = 85, min error = -88, rms error -0,= 1.03599
max signal = 212, min signal = 44, rms signal = 132.576
peak SNR = 44.1991 (db), rms SNR = 42.1422 (db)

mER= 9000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 142, min error = -129, rms error = 12.2115
max signal = 212, min signal = 44, rms signal = 132.573
peak SNR = 22.7708 (db), rms SNR = 20.7137 (db)

Original Image: lady.VQ25
Quantized Image: ladyN
Difference Image: out
'max error = 86, min error = -88, rms error = 1.11871
max signal = 212, min signal = 44, rms signal = 132.573
peak SNR = 43.5318 (db), rms SNR = 41.4747 (db)

mER = 10000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 142, min error = -129, rms error = 12.1845
max signal = 212, min signal = 44, rms signal = 132.583
peak SNR = 22.79 (db), rms SNR = 20.7336 (db)

snr lady.VQ25 ladyN 512 512 out
Original Image: lady.VQ25
Quantized Image: ladyN
Difference Image: out
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max error = 49, min error = -53, rms error = 0.773452
max signal = 212, min signal = 44, rms signal = 132.583
peak SNR = 46.7375 (db), rms SNR = 44.6811 (db)

IBER= 50000 (ONE BIT ONLY)

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error =·142, min error = -129, rms error = 12.1663
max signal = 212, min signal = 44, rms signal = 132.579
peak SNR = 22.803 (db), rInS SNR = 20.7463 (db)

Original Image: lady.VQ25
Quantized Image: ladyN
Difference Image: out
max error = 0, min error = -47, rms error = 0.343206
max signal = 212, min signal = 44, rms signal = 132.579
peak SNR = 53.7951 (db), rms SNR = 51.7384 (db)
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VECTOR QUANTIZATION

.'

mER 1000

Original Image: lady512.l
Quantized Image: ladyN1.50
Difference Image: out ,
max error = 165, min error = -154, rms error = 7.65057
max signal = 228, min signal = 31, rms signal = 132.901
peak SNR = 28.2154 (db), rms SNR = 24.7967 (db)

Original Image: lady.VQ50
Quantized Image: ladyN1.50
Difference Image: out
max errOr = 166, min error = -138, rms error = 3.66237
max signal = 228, min signal = 31, rms signal = 132.901
peak SNR = 34.6141 (db), rms SNR = 31.1953 (db)

mER = 2000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out ,
max error = 167, min error = -162, rms error = 7.18952
max signal = 228, min signal = 31, rms signal = 132.913
peak SNR = 28.7553 (db), rms SNR = 25.3373 (db)

Original Image: lady.VQ50
Quantized Image: ladyN
Difference Image: out
max error = 162, min error = -158, rms error = 2.61217
max signal = 228, min signal = 31, rms signal = 132.913
peak SNR = 37.5493 (db), -rms SNR = 34.1313 (db)
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IBER = 3000

snr lady512.lladyN 512 512 out
Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 113, min error = -140, rms error = 7.10441
max signal = 228, min signal = 31, rms signal = 132.911
peak SNR = 28.8588 (db), rms SNR = 25.4407 (db)

Original Image: lady.VQ50
Quantized Image: ladyN
Difference Image: out
max error = 107, min error = -139, rms error = 2.30603
max signal = 228, min signal = 31, rms signal = 132.911
peak SNR = 38.632 (db), rms SNR = 35.2139 (db).

IBER =4000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 103, min error = -143, rms error = 6.89752
max signal = 228, min signal = 31, rms signal = 132.895
peak SNR = 29.1155 (db), rms SNR = 25.6963 (db)

Original Image: lady.VQ50
Quantized Image: ladyN
Difference Image: out
max error = 101, min error = -143, rms error = 1.63312
max signal = 228, min signal = 31, rms signal = 132.895
peak SNR = 41.629 (db), rms SNR = 38.2099 (db)

mER =5000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 136, min error = -132, rms error = 6.89958
max signal = 228, min signal = 31, rms signal = 132.893
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peak SNR = 29.1129 (db), rms SNR = 25.6936 (db)
Original Image: lady.VQ50
Quantized Image: ladyN
Difference Image: out

max error = 135, min error = -134, rms error = 1.61869
max signal = 228, min signal = 31, rms signal = 132.893
peak SNR = 41.706 (db), rms SNR = 38.2867 (db)

mER =6000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 104, min error = -153, rms error = 6.85508
max signal = 228, min signal = 31, rms signal = 132.913
peakSNR = 29.1691 (db), rms SNR = 25.7511 (db)

Original Image: lady.VQ50
Quantized Image: ladyN
Difference Image: out
max error = 103, min error = -1-41,-rms error = 1.39913
max signal = 228, min signal = 31, rms signal = 132.913
peak SNR = 42.9721 (db), rms SNR = 39.5542 (db)

mER =7000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 97, min error = -134, rms error = 6.84916
max signal = 228, min signal = 31, rms signal = 132.901
peak SNR = 29.1766 (db), rms SNR = 25.7578 (db)

Original Image: lady.VQ50
Quantized Image: ladyN
Difference Image: out
max error = 95, min error = -131, rms error = 1.41557
max signal = 228, min signal = 31, rms signal = 132.901
peak SNR = 42.8707 (db), rms SNR = 39.452 (db)
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mER = 8000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 121, min error = -153, rms error = 6.94588

max signal = 228, min signal = 31, rms signal = 132.897
peak SNR = 29.0548 (db), rms SNR = 25.6358 (db)

Original Image: lady.VQ50
Quantized Image: ladyN
Difference Image: out
max error = 119, min error = -148, rms error = 1.77215
max signal = 228, min signal = 31, rms signal = 132.897
peak SNR = 40.9193 (db), rms SNR = 37.5003 (db)

mER =9000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 118, min error = -110, rms error = 6.87552
max signal = 228, min signal = 31, rms signal = 132.895
peak SNR = 29.1432 (db), rms SNR = 25.7241 (db)

Original Image: lady.VQ50
Quantized Image: ladyN
Difference Image: out
max error = 123, min error = -105, rms error = 1.49522
max signal = 228, min signal = 31, rms signal = 132.895
peak SNR = 42.3953 (db), rms SNR = 38.9761 (db)

mER =10000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 151, min error = -143, rms error = 6.87616
max signal = 228, min signal = 31, rms signal = 132.898
peak SNR = 29.1424 (db), rms SNR = 25.7234 (db)
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Original Image: lady.VQ50
Quantized Image: ladyN
Difference Image: out ,
max error = 146, min error = -147, rms error = 1.50758
max signal = 228, min signal = 31, rms signal = 132.898
peak SNR = 42.3237 (db), rms SNR = 38.9047 (db)

mER =50000·(ONLY ONE BIT)

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 85, min error = -73, rms error = 6.70955
max signal = 228, min signal = 31, rms signal = 132.897 .
peak SNR = 29.3555 (db), rms SNR = 25.9364 (db)

Original Image: lady.VQ50
Quantized Image: ladyN
Difference Image: out
max error = 23, min error = -9, rms error = 0.142872
max signal = 228, min signal = 31, rms signal = 132.897
peak SNR = 62.7904 (db), rms SNR = 59.3713 (db) .
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Vector Transform

mER = 1000

Quantized Image: ladyN
Difference Image: out
max error = 100, min error = -115, rms error = 11.3849 '
max signal = 255, min signal = 0, rms signal = 132.684
peak SNR = 27.0042 (db), rms SNR = 21.3298 (db)

Quantized Image: ladyN
Difference Image: out
max error = 38, min error = -38, rms error = 4.19671
max signal = 255, min signal = 0, rms signal = 132.684
peak SNR = 35.6726 (db), rms SNR = 29.9982 (db)

mER = 2000

Original Image: lady512.I
Quantized Image: ladyN
Difference Image: out
max error = 100, min error = -115, rms error = 10.7896
max signal = 255, min signal = 0, rms signal = 132.65
peak SNR = 27.4707 (db), rms SNR = 21.794 (db)

Original Image: lady.vt25
Quantized Image: ladyN
Difference Image: out
max error = 22, min error = -22, rms error = 2.12004
max signal = 255, min signal = 0, rms signal = 132.65
peak SNR = 41.6039 (db), rms SNR = 35.9273 (db)

mER = 3000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 100, min error = -115, rms error = 10.816
max signal = 255, min signal = 0, rms signal = 132.65
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peak SNR = 27.4495 (db), rms SNR = 21.7729 (db)
Original Image: lady.vt25
Quantized Image: ladyN
Difference Image: out
max error = 36, min error = -36, rms error = 2.22487
max signal = 255, min signal = 0, rms signal = 132.65
peak SNR = 41.1847 (db), rms SNR = 35.5081 (db)

mER = 4000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 100, min error = -115, rms error = 10.7672
max signal = 255, min signal = 0; rms signal = 132.649
peak SNR = 27.4887 (db), rms SNR = 21.812 (db)

Original Image: lady.vt25
Quantized Image: ladyN
Difference Image: out
max error = 22, min error = -22, rms error = 2.00779
max signal = 255, min signal = 0, rms signal = 132.649
peak SNR = 42.0765 (db), rms SNR = 36.3998 (db)

mER = 5000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 100, min error = -115, rms error = 10.6748
max signal = 255, min signal = d, rms signal = 132.643
peak SNR = 27.5636 (db), rms SNR = 21.8865 (db)

Original Image: lady.vt25
Quantized Image: ladyN
Difference Image: out
max error = 23, min error = -23, rms error = 1.37013
max signal = 255, min signal = 0, rms signal = 132.643
peak SNR = 45.3956 (db), rms SNR = 39.7184 (db)
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IBER = 6000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error-= tOO~mirferror =- ·~1-15;rms error--=-lO;6369
max signal = 255, min signal = 0, rms signal = 132.639
peak SNR = 27.5945 (db), rms SNR = 21.9172 (db)

Original Image: lady.vt25
Quantized Image: ladyN
Difference Image: out
max error = 19, min error = -19, rms error = 0.98792
max signal = 255, min signal = 0, rms signal = 132.639
peak SNR = 48.2364 (db), rms SNR = 42.559 (db)

mER = 7000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 100, min error = -115, rms error = 10.6873
max signal = 255, ~in signal = 0, rms signal = 132.634
peak SNR = 27.5535 (db), rms SNR = 21.8758 (db)

Original Image: lady.vt25
Quantized Image: ladyN
Difference Image: out
max error = 32, min error = -32, rms error = 1.45778
max signal = 255, min signal = 0, rms signal = 132.634
peak SNR = 44.857 (db), rms SNR = 39.1793 (db)

mER = 8000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 100, min error = -115, rms error = 10.6086
max signal = 255, min signal = 0, rms signal = 132.639
peak SNR = 27.6177 (db), rms SNR = 21.9403 (db)

Original Image: lady.vt25
Quantized Image: ladyN
Difference Image: out
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max error = 11, min error = -11, rms error = 0.673038
max signal = 255, min signal = 0, rms signal = 132.639
peak SNR = 51.57 (db), rms SNR = 45.8926 (db)

mER == 9000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 100, min error = -115, rms error = 10.7123
max signal = 255, min signal = 0, rms signal = 132.647
peak SNR = 27.5332 (db), rms SNR = 21.8563 (db)

Original Image: lady.vt25
Quantized Image: ladyN
Difference Image: out
max error = 28, min error = -28, rms error = 1.66279
max signal = 255, min signal = 0, rms signal = 132.647
peak SNR = 43.7141 (db), rms SNR = 38.0372 (db)

mER = 10000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 100, min error = -115, rms error = 10.6389
max signal = 255, min signal = 0, rms signal = 132.641
peak SNR = 27.5929 (db), rms SNR = 21.9157 (db)

Original Image: lady.vt25
Quantized Image: ladyN
Difference Image: out
max error = 19, min error = -19, rms error = 1.08812
max signal = 255, min signal = 0, rms signal = 132.641
peak SNR = 47.3973 (db), rms SNR = 41.7201 (db)

mER = 50000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 100, min error = -115, rms error = 10.5893
max signal = 255, min signal = 0, rms signal = 132.637
peak SNR = 27.6334 (db), rms SNR = 21.9559 (db)
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Original Image: lady.vt25
Quantized Image: ladyN
Difference Image: out
max error = 8"min error = -8, rms error = 0.194451
max signal = 255, min signal = 0, rms signal = 132.637
peak SNR = 62.3546 (db), rms SNR = 56.6771 (db)

ONLY ONE BIT

Original Image: lady512.l
'Quantized Image: ladyN
Difference Image: out
max error = 100, min error = -115, rms error = 10.5886
max signal = 255, min signal = 0, rnis signal = 132.637
peak SNR = 27.6341 (db), rms SNR = 21.9566 (db) ,
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Vector Transform

mER = 1000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max: error = 47, min error = -40, rms error = 4.74611
max: signal = 247, min signal = 16, rms signal = 133.069
peak SNR = 33.7455 (db), rms SNR = 28.9548 (db)

Original Image: lady.vt50
Quantized Image: ladyN
Difference Image: out
max: error = 30, min error = -30, rms error = 3.12131
max: signal = 247, min signal = 16, rms signal = 133.069
peak SNR = 37.3855 (db), rms SNR = 32.5948 (db)

mER = 2000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max: error = 82, min error = -55, rms error = 6.21201
max: signal = 247, min signal = 3, rms signal = 132.812
peak SNR = 31.8831 (db), rms SNR = 26.6001 (db)

Original Image: lady.vt50
Quantized Image: ladyN
Difference Image: out
max error = 75, min error = -45, rms error = 5.09068
max signal = 247, min signal = 3, rms signal = 132.812
peak SNR = 33.6123 (db), rms SNR = 28.3292 (db)

mER = 3000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
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max error = 45, min error = -47, rms error = 4.35514
max signal = 247, min signal = 12, rms signal = 133.019
peak SNR = 34.6413 (db), rms SNR = 29.6983 (db)

Original Image: lady.vt50
Quantized Image: ladyN
Difference Image: out
max error = 37, min error = -37, rms error = 2.49072
max signal = 247, min signal = 12, rms signal = 133.019
peak SNR = 39.4948 (db), rms SNR = 34.5518 (db)

mER = 4000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 45, min error = -38, rms error = 3.75492
max signal = 247, min signal = 22, rms signal = 133.03
peak SNR = 35.5516 (db), rms SNR = 30.987 (db)

Original Image: lady.vt50
Quantized Image: ladyN
Difference Image: out
max error = 13, min error = -13, rms error = 1.1403
max signal = 247, min signal = 22, rms signal = 133.03
peak SNR = 45.9033 (db), rms SNR = 41.3386 (db)

mER = 5000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 89, min error = -58, rms error = 6.25629
max signal = 252, min signal = 19, rms signal = 132.771
peak SNR = 31.4208 (db), rms SNR = 26.5357 (db)

Original Image: lady.vt50
Quantized Image: ladyN
Difference Image: out
max error = 84, min error = -55, rms error = 5.13612
max signal = 252, min signal = 19, rms signal = 132.771
peak SNR = 33.1344 (db), rms SNR = 28.2493 (db)
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mER = 6000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 56, min error = -56, rms error = 4.10346
max signal = 247, min signal = 22, rms signal = 133.02
peak SNR = 34.7807 (db), rms SNR = 30.2153 (db)

Original Image: lady.vt50
Quantized Image: ladyN
Difference Image: out
-maX error' ~ 45, 'm-!!L-error = -45, rms error = 1.99493
max signal = 247, min signal = 22, rms signal = 133.02
peak SNR = 41.0451 (db), rms SNR = 36.4798 (db)

mER = 7000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 69, min error = -38, rms error = 4.48405
max signal = 248, min signal = 16, rms signal = 132.871
peak SNR = 34.2763 (db), rms SNR = 29.4352 (db)

Original Image: lady.vt50
Quantized Image: ladyN
Difference Image: out
max error = 37, min error = -20, rms error = 2.73201
max signal = 248, min signal = 16, rms signal = 132.871
peak SNR = 38.5801 (db), rms SNR = 33.739 (db)

mER = 8000

Original Image: lady512.1
Quantized Image: ladyN
Difference Image: out
max error = 45, min error = -38, rms error = 3.60418
max signal = 247, min signal = 22, rms sigI!al = 133.012
peak SNR = 35.9075 (db), rms SNR = 31.3417 (db)

Original Image: lady.vt50
Quantized Image: ladyN
Difference Image: out
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max error = 8, min error = -8, rms error = 0.479579
max signal = 247, min signal = 22, rms signal = 133.012
peak SNR = 53.4265 (db), rms SNR = 48.8606 (db)

IBER= 9000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 45, min erro.r = -38, rms error = 3.95473
max signal = 247, min signal = 0, rms signal = 133.021
peak SNlt = 35.9116 (db), rms SNR = 30.5361 (db)

Original Image: lady.vt50
Quantized Image: ladyN
Difference Image: out
max error = 30, min error- = -30, rms error = 1.69626
max signal = 247, min signal = 0, rms signal-= 133.021
peak SNR = 43.2641 (db), rms SNR = 37.8885 (db)

mER = 10000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 45, min error = -38, rms error = 3.73004
max signal = 247, min signal'= 19, rms signal = 133.017
peak SNR = 35.7244 (db), rms SNR = 31.0439 (db)

Original Image: lady.vt50
Quantized Image: ladyN
Difference Image: out
max error = 15, min error = -15, rms error. = 1.07759
max signal = 247, min signal = 19, rms signal = 133.017
peak SNR = 46.5096 (db), rms SNR = 41.829 (db)

mER = 50000

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 45, min error = -38, rms error = 3.57541
max signal = 247, min signal = 22, rms signal = 133.012
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peak SNR = 35.9771 (db), rms SNR = 31.4113 (db)
Original Image: lady.vt50
Quantized Image: ladyN
Difference Image: out
max error = 4, min error = -4, rms error = 0.132467
max signal = 247, min signal = 22, rms signal = 133.012
peak SNR = 64.6015 (db), rms SNR = 60.0356 (db)

ONE BIT ONLY

Original Image: lady512.l
Quantized Image: ladyN
Difference Image: out
max error = 45, min error = -38, rms error = 3.57413
max signal = 247, min signal = 22, rms signal = 133.012
peak SNR = 35.9803 (db), rms SNR = 31.4144 (db)

Original Image: lady.vt50
Quantized Image: ladyN
Difference Image: out
max error = 3, min error = -3, rms error = 0.0758959
max signal = 247, min signal = 22, rms signal = 133.012
peak SNR = 69.4393 (db), rms-8NR = 64.8734 (db)
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neT coding

(0.50 bmU

mER = 1000

Original Image: lady512.l
Quantized Image: lady43
Difference Image: out
max"error = 172,.min error = "-181, rms error = 14.2043
max signal = 255, min signal = 1, rms signal = 131.861
peak SNR = 25.0483 (db), rms SNR = 19.3539 (db)

Original Image: lady43.dct
Quantized Image: lady43
Difference Image: out
max error = 166, min error = -166, rms error = 7.52629
max signal = 255, min signal = 1, rms signal = 131.861
peak SNR = 30.5651 (db), rms SNR = 24.8707 (db)

mER = 2000

snr lady512.llady43 512 512 out
Original Image: lady512.l
Quantized Image: lady43
Difference Image: out
max error = 142, min error = -176, rms error = 13.2701
max signal = 255, min signal = 1, rms signal = 131.99
peak SNR = 25.6392 (db), rms SNR = 19.9533 (db)

Original Image: lady43.det
Quantized Image: lady43
Difference Image: out
max error = 127, min error = -127, rms error = 5.81362
max signal = 255, min signal = 1, rms signal =-131.99
peak SNR = 32.8077 (db), rms SNR = 27.1219 (db)
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IBER = 3000

Original Image: lady512.l
Quantized Image: lady43
Difference Image: out
max error = 141, min error = -186, rms error = 12.6589
max signal = 255,min signal = 1, rms signal = 131.974
peak SNR = 26.0487 (db), rms SNR = 20.3618 (db)

Original Image: lady43.dct ~

Quantized Image: lady43
Difference Image: out
max error = 126, min error = -127, rms error = 4.37836
max signal = 255, min signal = 1, rms signal = 131.974
peak SNR = 35.2704 (db), rms SNR = 29.5835 (db)

IBER = 4000

Original Image: lady512.l
Quantized Image: lady43
Difference Image: out
max error = 141, min error = -172, rms error = 12.4348
max signal = 255, min signal == 0, rms signal = 131.933
peak SNR = 26.238 (db), rms SNR = 20.5143 (db)

Original Image: lady43.dct
Quantized Image: lady43
Difference Image: out
max error = 126, min error = -127, rms error = 3.71034
max signal = 255, min signal = 0, rms signal = 131.933
peak SNR = 36.7425 (db), rms SNR = 31.0188 (db)

mER = 5000

Original Image: lady512.l
Quantized Image: lady43
Difference Image: out
max error = 141, min error = -172, rms error = 13.0519
max signal = 255, min signal = 1, rms signal = 132.047
peak SNR = 25.7832 (db), rms SNR = 20.1011 (db)
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Original Image: lady43.dct
Quantized Image: lady43
Difference Image: out
max error = 126, min error = -127, rms error = 5.33984
max signal = 255, min signal = 1, rms signal = 132.047
peak SNR = 33.5461 (db), rms SNR = 27.864 (db)

mER = 6000

Original Image: lady512.l
Quantized Image: lady43
Difference Image: out
max error = 141, min error = -153, rms error = 12.2546
max signal = 255, min signal = 1, rms signal = 131.949
peak SNR = 26.3307 (db), rms SNR = 20.6421 (db)

Original Image: lady43.dct
Quantized Image: lady43
Difference Image: out
max error = 127, min error = -127, rms error = 3.09066
max signal = 255, min signal = 1, rms signal = 131.949
peak SNR = 38.2957 (db), rms SNR = 32.6071 (db)

mER = 7000

Original Image: lady512.l
Quantized. Image: lady43
Difference1mage: out
max error =.141, min error = -157, rms error = 12.0821
max signal = 255, min signal = 1, rms signal = 131.942
peak SNR = 26.4538 (db), rms SNR = 20.7648 (db)

Original )mage: lady43.det
Quantized Image: lady43
Difference Image: out
max error = 60, min error = -127, rms error = 2.34941
max signal = 255, min signal = 1, rms signal = 131.942
peak SNR = 40.6775 (db), rms SNR = 34.9885 (db)
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mER = 8000

Original Image: lady512.l
Quantized Image: lady43
Difference Image: out
max error = 141, min error = -151, rms error = 12.2916
max signal = 255, min signal = 1, rms signal = 131.923
peak SNR = 26.3045 (db), rms SNR = 20.6142 (db)

Original Image: lady43.dct
Quantized Image: lady43
Difference Image: out
max error = 127, min error = -127, rms error = 3.17712
max signal = 255, min signal = 1, rms signal = 131.923
peak SNR = 38.056 (q.b), rms SNR = 32.3657 (db)

mER = 9000

Original Image: lady512.l
Quantized Image: lady43
Difference Image: out
max error = 141, min error = -133, rms error = 11.9117
max signal = 255, min signal = 1, rms signal = 131.901
peak SNR = 26.5772 (db), rms SNR = 20.8854 (db)

Original Image: lady43.dct
Quantized Image: lady43
Difference Image: out
max error = 61, min error = -15, rms error = 1.14904
max signal = 255, min signal = 1, rms signal = 131.901
peak SNR = 46.89 (db), rms SNR = 41.1982 (db)

mER = 10000

Original Image: 1ady512.l
Quantized Image: lady43
Difference Image: out ~

max error = 177, min error = -133, rms error = 11.9733
max signal = 255, min signal = 1, rms signal = 131.937
peak SNR = 26.5324 (db), rms SNR = 20.8431 (db)

Original Image: lady43.dct
Quantized Image: lady43
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Difference Image: out
max error = 107, min error = -107, rms error = 1.64263
max signal = 255, min 'signal = 1, rms signal = 131.937
peak SNR = 43.7859 (db), rms SNR = 38.0965 (db)

mER = 50000

Original Image: lady512.l
Quantized Image: lady43
Difference Image: out
max error = 141, min error = -133, rms error = 11.8518
max signal = 255, min signal = 1, rms signal = 131.926
peak SNR = 26.621 (db), rms SNR = 20.9309 (db)

Original Image: lady43.dct
Quantized linage: lady43
Difference Image: out
max error = 22, min error = -6, rms error = 0.395593
max signal = 255, min signal = 1, rms signal = 131.926
peak SNR = 56.1517 (db), rms SNR = 50.4616 (db)

ONLY ONE BIT.

Original Image: lady512.l
Quantized Image: lady43
Difference Image: out
max error = 141, min error = -133, rms error = 11.8484
max signal = 255, min signal = 1, rms signal = 131.927
peak SNR = 26.6235 (db), rms SNR = 20.9335 (db)

Original Image: lady43.det
Quantized Image: lady43
Difference Image: out
max error = 11, min error = 0, rms error = 0.171875
max signal = 255, min signal = 1, rms signal = 131.927
peak SNR = 63.3924 (db), rms SNR = 57.7024 (db)
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