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Abstract

The decreasing price and increasing power of FPGA's has made it practical

to use an FPGA-based processor core in low production systems instead of using

an existing microprocessor. Often, these systems emulate a popular processor and

have application-specific peripherals implemented on-chip by the system designer.

Most of these systems use powerful, 32-bit processors and are designed to do large

amounts of DSP. But for low-end applications where processing power is not an

issue, microcontrollers still dominate the industry. Additionally, many of these

microcontrollers are derived from aging architectures, not designed with Internet

communications in mind.

This thesis proposes a new, low-end microprocessor core with two major design

goals. The first is that it has to be very simple. It should only support a minimal

instruction set and be esily implemented on a low-end FPGA. The second goal is

that despite the fact that a very minimal processor design is proposed, it must be

powerful enough to communicate on the Internet.

"



Chapter 1

Introduction

This chapter serv:es as an introduction to embedded microprocessors. It first defines

what is an embedded processor and then presents a justification for exploring low-

end, embedded processor architectures. Next, some related work in the area of

. FPGA-based processors, systems-on-a-chip (SOC's), and Internet Protocol (IP) for

microcontrollers will be presented. An outline of the remaining chapters of the thesis

will conclude this chapter.

1.1 Overview of Embedded Processors

An embedded processor is a specializ~d microprocessor designed for use in a low

cost system where a considerably more powerful PC or workstation processor would

.
be impractical because of its cost, complexity, or 'power requirements. The realm

1



of embedded pro'cessors includes high-end application specific instruction processors

(ASIP's) that are used in personal data devices, digital signal processors (DSP's) in

cellular phones and other arithmetically intensive applications, and microcontrollers,

which are most often used for controlling electro-mechanical systems or monitoring

sensors.

It is with microcontrollers that this thesis is primarily concerned. Most are 8

or 16-bit machines that tend to run at clock frequencies less than 20 MHz. They

are perfect for I/O intensive systems where speed is not a primary design goal.

j Although many of the most popular microcontroller architectures have remained

largely unchanged for the last 20 years, they are still a relevant topic because of their

wide variety if uses. Additionally, microcontroller sales made up 75% by volume of

all microprocessors sold in 2002 [1].

In recent years, a major push has been made to make common appliances" smart"

or "net-enabled." That is, allow them to communicate with each other or to a home

PC, often using the Internet as the medium for that communication. The goal of

this thesis is not to answer why one would want to put their toaster on the Internet,

as this has already been done [2]. However, the ability of current microcontrollers

to perform meaningful communication on the Internet is questionable.

2



1.2 Related Work

1.2.1 Microcontrollers and the Internet

There are several projects with the goal to give "TCPlIP functionality" to some

of the more common 8-bit microcontrollers using the Crystal CS8900a Ethernet

interface. The CS8900a is immensely popular for this type of application because it

supports 8-bit data access mode and -is available as a low cost, single chip solution.

A Norwegian consulting company, Systor Vest, manufactures CS8900a Ethernet

modules and provides sample code for interfacing it with the Microchip PIC16C74

and the Atmel Atmega103 microcontroller [3]. Both example systems implemen~ the

Internet Control Message Protocol (ICMP) echo service, more commonly known as

"ping." Although the Atmel microcontroller could easily handle a much larger por

tion of the IP stack, nothing more was implemented. On the other hand, their

Microchip demonstration system could barely handle ICMP. It shares a problem

common to many microcontrollers: it cannot address enough data memory to im

plement anything more complicated than network layer protocols such as IP and

ICMP.

Using a CS8900a module similar to that manufactured by Systor Vest, two stu

dents at the University of California Riverside created a small system that uses

an Intel 8051 microcontroller to communicate on the Internet [4]. Their system

measures the room temperature and then sends it to another computer as a Unix

3



Datagram Protocol (UDP) packet. Although their UDP functionality is incomplete

(send only) and they did not implement Address Resolution Protocol (ARP), their

system is significant for two reasons. First, they are using the Intel 8051, which is

often touted as "the world's most popular microcontroller," which also suffers from

the low memory problem. The more important contribution is that they demon-

strate a practical system where a very small, low power microcontroller needs to

communicate on the Internet.

1.2.2 FPGA-based Processors

Relevant to the thesis as a whole but not to the idea of microcontroller-Internet

communications is the growing popularity of using soft processor cores in embedded

"systems. A designer can purchase the rights to use a well-tested processor core,

download the hardware description language (HDL) source code (usually VHDL or

Verilog), and then customize the design to their specific needs. Often, a designer will

add on-chip peripherals or perhaps some specialized DSP functional units. Once the

design is done, the customized processor can be synthesized and fabricated. More

typically, it is implemented on an FPGA to "future proof' the system - the processor

itself can be changed or upgraded as new requirements for the system are introduced.

For high performance embedded systems, two companies that produce notewor-

thy soft cores are Tensilica Inc. (http://www.tensilica.com) and ARC International

4



(http://www.arc.com). Both the Tensilica Xtensa and the ARCtangent are 32

bit RISC processor cores designed for use in embedded systems. They are highly

customizable; an embedded system designer can add multiply-accumulate units,

choose among different integer multipliers, add single or double precision floating

point units, and even choose the byte ordering scheme (big or little endian).

For low-end embedded systems where microcontrollers would be appropriate, the

cores offered by Tensilica and ARC are overkill. The licensing fees are too expensive,

not to mention the cost of the high gate count FPGA's that would be required. To

make these low-end systems economically viable, the best choice for the designers is

to use a free core from a website such as OpenCores (http://www.opencores.org).

There are dozens of simple microcontroller cores and peripherals available, many of

which can be implemented on inexpensive, low gate count FPGA's.

Particularly relevant to this thesis is the XSOC system-on-a-chip that uses the

xr16 core developed by Jan Gray that was originally designed in a series of magazine

articles [5], [6], [7]. The xr16 core is a 16-bit, pipelined RISC core targeted for

tlie same development platform as the proposed processor to be introduced in the

following chapter. Although a very well designed processor, the xr16 has a few flaws

that make it less than ideal for use as a microcontroller. First, it was designed as

part of a full SOC. It doesn't have peripheral I/O specific instructions, nor was it

meant to interface with external chips. The second problem is that the XSOC can

only address 64 KB of memory and I/O space. Considering that the onboard video

5



controller shares memory with the processor, this leaves on 32 KB of memory or

I/O space available for programs and data. Finally, there is a licensing issue with
,

the XSOC. It is restricted for use only for educational or non-commercial ventures

[7], which prevents it from being widely used in production systems.

1.3 Organization of Thesis

This thesis explores a new microcontroller architecture that is powerful enough to

communicate on the Internet, yet simple enough to be implemented on an inexpen-

sive FPGA. Chapter 2 will examine the design goalsand constraints,~~e processor,

as well as area and delay figures for the FPGA on which it is implemented. Chapter

3 is 'a discussion of the processor's instruction set architecture (ISA), including de-

tails about its capabilities and internal architecture. Chapter 4 takes a look at how

to interface the processor with an Ethernet module and other chips, and presents

an example system to demonstrate its functionality. Chapter 5 will then conclude

the thesis with a look at some limitations of the processor and suggests some future

work to improve upon these limitations.

6



Chapter 2

Overview of the EmRISC16

Processor

Now the thesis will propose a new microcontroller. design, the 16-bit Embedded RISC

Processor (EmRISC16). Since subsequent chapters will focus on the implementation

and functionality of the processor, this chapter is concerned with its design decisions.

In particular, Chapter 2 will discuss the design goals for the EmRISC16, some

constraints placed on the new design, and finally some details of its first FPGA

implementation.

7



Table 2.1: EmRISC16 Features

18-bit Address Bus
16-bit Data Bus
16 General Purpose Registers
2 External Interrupts
von Neumann Architecture
47 Instructions: ALU, Branch, and I/O
No Multiplication nor Division Ops
No On-core Peripherals

2.1 Design Goals

As eluded to in Chapter 1, the overall goal of the EmRISC16 processor is twofold.
.,

First, it has to be powerful enough to perform significant communication on the

Internet. This thesis defines significant Internet communication as not only the

ability to interface with a high-speed network adapter (such as Ethernet), but also

the ability to implement transport and session layer protocols such as TCP/IP

or UDP/IP. The second goal is that the processor core has to be simple enough

to implement on a low-cost FPGA, allowing room for it to be customized with

additional on-chip peripherals.

A summary of the EmRISCI6's capabilities is shown in Table 2.1. To support

the goal of Internet communications over Ethernet, a lot of memory is needed handle

incoming and outgoing packets. Using an 18-bit instead of 16-bit address bus allows

for the much needed 256 K of address space. Additionally, external address and data

buses are required to interface with an Ethernet adapter. A port-based, Harvard

8
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architecture as used by many microcontrollers would be inadequate. Therefore, a

von Neumann architecture with no internal memory was chosen.

Also consistent with the goal of creating a processor powerful enough for Internet

communications is the choice to make EmRISCI6, as the name implies, a 16-bit

system. All the registers are 16 bits wide, as is the data bus. Often, an Internet

application needs to keep track of numbers much larger than 256; Ethernet frames

can be up to 1518 bytes in length. Various fields in the IP header require two bytes

of storage such as the length, identifier, and checksum.

Finally, it was crucial that the EmRISC16 core not include any peripherals be

yond what is necessary for a 16-bit RISC processor to adequately function. This

maximizes the number of ways that someone could customize an implementation

of it with whatever supporting circuitry is desired. Cascading interrupt controllers,

parallel and serial ports, or other specialized hardware can be added with minimal

difficulty.

2.2 Constraints

The goal of implementing EmRISC16 on a low-cost FPGA imposes many constraints

on what features can be included as part of the processor. The most significant of

these is the amount of logic that can fit on a small FPGA. It would be impossible to

include multiplication or division hardware. Also, many of the processor's functional

9



units need to be as simple as possible - a tradeoff of execution speed for more FPGA

logic blocks.

Besides the area constraints imposed by FPGA's, there is a set number of pins on

an FPGA's package, many of which are dedicated to power, ground, or programming

the chip. Furthermore, the first incarnation of EmRISC16 is implemented on a

development board, which has its own pin restrictions. There are often memory

chips, displays, and PC interface ports, all connected to the FPGA that dictate how

the user accessible pins can be used.

A final constraint on FPGA implementation of the EmRISC16 processor is that

it is limited by how fast the FPGA can be clocked. IC's implemented on FPGA's

are going to be considerably slower than those fabricated on a silicon die. Also,

just because a particular FPGA advertises that it can be clocked at a certain rate

does not mean that a design implemented on it can run at that rate. This number

refers to the speed that a single logic gate or flip-flop can operate without generating

glitches. Said another way, a design with a 10 gate maximum delay can be clocked

at 1/10 of the advertised rate.

2.3 Implementation

Because of it's availability and low cost, the EmRISC16 processor is implemented

on an XS40-010XL+ Prototyping Board manufactured by the XESS Corporation

10



Table 2.2: Logic Capacity of the Xilinx XC4010XL FPGA

Max Logic Gates 10,000
Max RAM Bits 12,800
Typical Gate Range 7,000 - 20,000
Total Flip-Flops 1,120

(http://www.xess.com). It features a Xilinx XC4010XL FPGA, 128 K of SRAM, a

programmable clock generator, a 7 segement display, an Intel 8031 microcontroller,

PS/2 and VGA ports, and a parallel port for interfacing with a PC. Although the

board has been discontinued by XESS, it used to sell for $209, making it one of the

cheapest, albeit low-end, FPGA development systems available.

The XC4010XL is a relatively low-end, low-cost FPGA. It operates at 3.3 V and

can be clocked no higher than 100MHz. It has a total of 400 Common Logic Blocks

(CLB's) and 61 I/O Blocks (lOB's) [8]. A CLB on this FPGA consists of 2, 4-input

lookup tables (LUT's) and 2 D flip-flops. An lOB contains an input buffer and D

flip-flop and an output buffer and D flip-flop. Also available are 880 tristate buffers

(TBUF's) and 8 global clock buffers (BUFGLS's). Table 2.2 shows an estimation of

how much logic it can support [8]. The version of the chip used on the XESS board

is an 84 pin package, and only 61 of these pins may be used in a design.

Synthesis and implementation results for the EmRISC16 on the XC4010XL are

presented in Table 2.3. Synthesis was performed using Xilinx Foundation 2.1i, Stu-

dent Edition. Note that although the processor could be clocked at. almost 9.5 MHz,

11



Table 2.3: EmRISC16 Synthesis Results

Number of CLB's 399 out of 400
86 Flip-flops
637 4-input LUT's
224 3-input LUT's
32 Dual Port RAM's

Number of lOB's 48 out of 65
14 Flip-flops
oLatches

Number of TBUF's 88 out of 880
Number of BUFGLS's 2 out of 8
Total Equivalent Gate Count 10,008 "
Maximum Frequency 9.453 MHz

the processor is usually run at exactly 9.0 MHz.

12
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Chapter 3

The EmRISC16 Instruction Set

Architecture

This chapter presents in detail the Instruction Set Architecture (ISA) of the Em-

RISC16 processor core. First, the capabilities of the processor are examined: what
" .

operations it supports, and on what types of data it can operate. Next, an in-depth

look at each of the different functional units will be presented.. The chapter will

conclude with a brief overview of the EmRISC16 assembly language.

3.1 Operational Capabilities

The EmRISC16 ISA is many ways a little brother to the DLX Architecture [9]. It

only supports 8- and 16-bit data types, is not pipelined, and has no floating point

13



unit. However, it has a similiar instruction set that implements most of the key

operations needed for a modern RISC processor.

3.1.1 Registers

Sixteen 16-bit registers comprise the EmRISC16 register file: rO, rl, ... , r15; the

value of rO is always O. Three other registers can also be indirectly modified by

the programmer. They are the Program Counter (PC), the Interrupt Program

Counter (INTPC), and Enable Interrupts Bit (EIB). Both the PC and INTPC are

18-bit registers that control program flow., PC always contains the address of the

next byte to be fetched, while the INTPC will store the value of the PC when an

external interrupt or trap occurs. The EIB can be set or cleared to enable or disable

interrupts.

3.1.2 Data and Addressing

The EmRISC16 processor operates exclusively on 16-bit data words. However, when

performing memory or I/O operations, it supports both 8-bit bytes and 16-bit words.

This is done by providing instructions to sign-extend or zero-fill the high byte when

reading bytes, and to write either the most signifcant or least significant byte of a

register when performing a store. Also, note that l6-bit memory and I/O operations

use Big Endian byte ordering.

The only data addressing modes supported by the processor is displacement.

14



That is, all memory and I/O operations refer to an address by providing an 18-

bit base address and a register name that acts as a 16-bit offset to that address.

Register deferred addressing can be achieved by providing 0 as the base address.

Likewise, direct addressing is done by using rO as the offset register. In addition

to the displacement mode offered by the memory and I/O operations, all of the

ALU operations support a destination register and two operand registers, commonly

known as register addressing mode. Most of them also support the use of a 16-bit

f'
constant instead of a second operand, known as immediate addressing mode.

Program addressing is also very simple in the EmRISC16 architecture. All ad-

dresses are 18-bit immediates, removing the need to support PC-relative branches.

Thus, a call to an address will refer to a full 18-bit address. A jump to an address

stored in a register will result in the register's value shifted 2 bits the left being

stored in the PC.

3.1.3 EmRISC16 Operations

The EmRISC16 ISA supports four types of operations: memory and I/O, ALU,

branches and jumps, and system control. The memory and I/O operations are the

loads and stores; currently implemented are instructions to read and write both

bytes and 16-bit words to and from memory. Also, an I/O read and I/O write in-

struction were created to support slower, 8-bit periperhals. ALU operations consist

15



of the usual meddly of data manipulation operations: addition, subtraction, logi

cal and arithmetic shifts, boolean operations, and numeric comparison operators.

The branch and jummp instructions allow for subroutine calls, address and register

jumps, and conditional brnaches. Finally, system control operations refer to the

instructions that might be used by a real-time operating system (RTOS). These

are the are the instructions that are used for managing interrupts and halting the

processor. The full instruction set is provided in Appendix A.

3.2 Functional Units

As shown in Figure 3.1, the EmRISC16 processor consists of six functional units: the

Fetch and Decode Unit, the Register File, the Arithmetic Logic Unit, the Program

Counter, the Memory and I/O Unit, and the Processor Control. The first five units

define the architecture and implement the various instructions. The sixth one is

the control unit that is responsible for timing external signals and clocking registers

when appropriate.

3.2.1 Fetch and Decode Unit

As its name suggests, the Fetch and Decode Unit (FDU) is responsible for fetching

instructions from external memory and decoding them into signals usable by the rest

of the system. It is shown in Figure 3.2. The FDU expects to be read data from an

16



I
"

I, ..
.. u~

~~~ Ilh
""~
~~l~.

!~

Ii
j.. ~

! !f ~§? ;1
~.. ~! ~

"' ~ .-
j J~ a.m ,'Ii:
l • iii

~
.,
:5

!i! .2

~
~

j
1

i
oil

I

I ~ggg

~~~
W;;:r;;:r~w

f~nH
I

~H
~.~ ~u~~

~'li:t~I~1 .. ~~.~.~ ·iii~ I

J

---,--- ,--',..,------

!f L I ~
• I

.j ~

, ~
"---~" "",,,,,,,,-,; : ~---- -_._-_.-.,--,,'-,,;_. __._~

---- --",_. ----
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8-bit external memory (either a ROM or an SRAM), and that all the instructions

are 32-bit aligned.

The EmRISC16 processor uses a fixed instruction length. All instructions are

exactly 32 bits in length and each operand (register, immediate, or address) has

a fixed location in the instruction word. Although this does waste some space in

memoruy, it makes the FDU an extremely simple unit and allows the encoding

of 16-bit immediates and 18-bit addresses into the instruction word. Each of the

instruction word formats is shown in Figure 3.3. Once the instruction word is

fetched, the six VHDL blocks on the far right of the schematic re-wire the outputs

of the four instruction registers into buses that carry the opcode and operands to

the rest of the functional units.

3.2.2 Register File

Shown in Figure 3.4, the Register File Unit contains the 16 general purpose registers.

Of these, register rO is used to represent O. In other words, anytime this register is

read a value of zero will be retured. This is done so that a memory access is not

necessary in order to set a register to 0 and is consistent with prevalent trends in

RISC architectures. Thus rO implementation does not require any flip-flops. It has a

few peculularities in its design because it is specially designed for implementation on

a Xilinx 4000 series FPGA. The most noticeable difference from a common register

18
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Opcode Rd Ra Rb Unused
6 4 4 4 14

a) ALU-Register Instruction Format

Opcode Rd Ra Unused Immed
6 4 4 2 16

b) ALU-Immedrate InstructIOn Format

IOp~ode~A~:r I
c) Memory-I/O Instruction Format

Opcode Unused Addr
6 8 18

d) Address Jump Instruction Format

IOp~ode~un~sed IIrn:ed I
e) Register Jump Instruction Format

f) CondItIOnal Branch InstructIOn Format

Opcode Unused Ra Address
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Opcode Rd Unused Address
6 4 4 18

g) Address Call Instruction Format

Opcode Rd Ra Unused
6 4 4 18

h) Register Call Instruction Format

Opcode Unused
6 26

1) Opcode Only Instruction Format

Figure 3.3: EmRISC16 Instruction Formats
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file is that the register contents are stored in dual ported RAM's instead of D flip

flops. The reason for this is that 16x1 bit RAM elements map nicely to Xilinx

LUT'~, much more efficiently than the 240 flip-flops that would be required. The

second difference is that this register file actually requires twice the storage that it

should. It is configured so that two registers could be read and a third written all in

the same clock cycle. To to this, the two source registers are each read from seperate

pairs of 16x8 bit RAM elements. The result of the operation is then written back

to both register sets simultaneously. The third oddity of the register file is that

although a value could be written to 1'0, it cannot be read because a multiplexer

will select a zero co~ant everytime 1'0 is requested. In practice, the assembler (see

Appendix C) will prevent the programmer from attempting such an operation.

3.2.3 Arithmetic Logic Unit

The ALU provides the datapaths needed to implement arithmetic, boolean logic,

shift, and conditional branch instructions. Figure 3.5 shows the three main subunits

that comprise the ALU. Element U97 signals the processor control whether or not

a branch shoudl be taken. It does this by making sure that the opcode is a branch

instruction, and then checking the value of the register to see whether or not it is

zero. Element U98 is written in VHDL and performs the various shift operations of

which the EmRISC16 processor is capable. They are arithmetic and logical shifts,

to either left or right, by any number of bit between 0 and 15, specified in either
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a register or an immeidate. The final subunit, U100, implements the arithmetic,

boolean, and comparison instructions. It is shown in more detail in Figure 3.6.

3.2.4 Program Counter Unit

The Program Counter Unit, Figure 3.7, manages from what address the processor

will fetch the next instruction. It mainly consists of the PC and INTPC registers, as

well as a multiplexer to select what value should next be latched into the PC. This

value can be any of six possibilities: PC+1, an address from the FDU, an address

from the Register File, the value of INTPC, Ox10 (interrupt A), or Ox20 (interrupt

B).

3.2.5 Memory and I/O Unit

Shown in Figure 3.8, the Memory and I/O Unit controls what address appears on

the address bus, and manages bytes moving to and from the Register File or FDU.

The adder (L31) finds the sum of a given register and an address from the FDU to

implement displacement address mode. Multiplexer L32 determines which of two

possible addresses appears on the address bus: an address from the PC for a fetch

operation, or an address from L31 for a load or store operation. Finally, VHDL

elements U88 and U89 perform the details of converting data types between bytes

and 16-bit words. Note that in this implementation of the EmRISC16 processor,

16-bit loads and stores are not supported and only an 8-bit external data bus is
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present. This is because the demonstration system presented in Chapter 4 does

not have any 16-bit peripherals. Additionally, this design choice makes 8 more pins

available for other uses.

3.2.6 Processor Control Unit

The Processor Control Unit (Figure 3.9) consists of three flip-flops and VHDL code

element U84. The upper two flip-flops are used as edge detectors to immediately

latch incoming interrupts as soon as the inputs their clocks transition to high. The

lower flip-flops is the EIB. Incoming interrupts are only processed if this bit is set.

The VHDL code element is a state machine that controls the clocking of most of the

processor's registers and outputs the read and write signals needed for peripheral

communications.

3.3 EmRISC16 Assembly Language

No processor would be particularly useful without an assembler, so this chapter con

cludes with an overview of the EmRISC16 assembly language, which was developed

as part of this thesis. As mentioned earlier, the EmRISC16 assembly language is

very similiar to DLX and its derivatives (such as MIPS). Each instruction is writ

ten in all lowercase, and register names are rO, r1, ... , r15. A Table 3.1 contains
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Table 3.1: Assembly Instruction Formats

Instruction Type Example Instruction Word Format
ALU-Register add r2, r3, r4 . Figure 3.3 a)
ALU-Immediate subci r5, r5, r1 Figure 3.3 b)
Memory-I/O sbh r3, Ox60(r1) Figure 3.3 c)
Address Jump ja OxO Figure 3.3 d)
Register Jump jr r15 r5,' r5, r1 Figure 3.3 e)
Conditional Branch bnez r1, OxlO Figure 3.3 f)
Address Call acall r15, Ox30 Figure 3.3 g)
Register Call rcall r14, r7 Figure 3.3 h)
Opcode Only de Figure 3.3 i)

a listing of the possible instruction formats. Both decimal and hexidecimal num-

bers are recognized; decimal numbers are written normally, but hexidecimal values

must be prefixed with "Ox." Labels must begin with an alphabetic character, but

the remainder of its characters can be alphanumeric. The last character of a label

must be a colon. The assembler also supports a number of directives for placing

and defining data. These are listed in Table 3.2. Also, the full instruction set is in

Appendix A. An example assembly program and corresponding Intel .HEX output

are provided in Figure 3.3. Details about how to obtain the assembler and example

programs are in Appendix C.
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Table 3.2: Assembler Directives

Directive Usage Description
.align n Align next address with n bytes
.org n Next address is n
.ds n Skip n bytes
.db n Define byte with value n at current address
.dw n Define 16-bit word with value n at current address
.set X n Add symbol X with value n to symbol table
.end Signals the assembler to stop

.set x 1 :0400000010000000EC
:0400040020000030A8

start: di :0400080000000000F4
ja prog :04000COOOOOOOOOOFO

:0400100000000000EC
.org Ox30 :0400140000000000E8

prog: :0400180000000000E4
acall r15, doadd :04001COOOOOOOOOOEO
halt :0400200000000000DC

:0400240000000000D8
doadd: addi r1, rO, x :0400280000000000D4

Ibu r2, y(rO) :04002COOOOOOOOOODO
add r3, r1, r2 :040030003BCOOO3899
jr r15 :0400340004000000C4

:0400380084400001FF
y: .db 2 :04003COO40800048B8

.end :0400400080C48000F8
:04004400243COOOO58
:0400480002000000B2
:OOOOOOO1FF

Figure 3.10: An EmRISC16 Assembly Program and Resulting Intel .HEX Code
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Chapter 4

Interfacing with the EmRISC16

Processor

Just as Chapter 3 discussed the ISA and internal architecture of the EmRISC16

processor core, this chapter will present the external features of the EmRISC16
. "

processor. Section 4.1 looks at how to use the processor with other peripherals:

the signals it generates and how they are timed. Then, Section 4.2 presents a full

implementaion of a system that uses the EmRISC16 processor to communicate over

the Internet.
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Table 4.1: EmRISC16 Core Pinout

Pin Name Purpose
CLK Clock signal
RST Reset signal
IRQA Interrupt A
IRQB Interrupt B
RD_ Read signal (active low)
WR_ Write signal (active low)
DBOUT_ Data output enable (active low)
ADDRJ3US[17:0] Address bus
DATAJ3USJ:N[7:0] Incoming data bus
DATAJ3US_OUT[7:0] Outgoing data bus

4.1 Memory and Peripheral Communications

As it was one the EmRISC16 processor's main design goals, it is an extremely simple

to interface it with other chips. Table 4.1 shows the pinout of the processor's core.

ThE;:re are very few pins since it doesn't support special bus protocols (ISA, PCI,

etc.), DMA, or DRAM. Quite simply, the processor communicates with other devices

by putting the desired address on the address bus and activating either the RD_ or

WR_ signals. The DBOUT_signal is used to put data on the bus a few clock cycles

before the peripheral is strobed by a falling WR_ pulse.

Perhaps the simplest peripheral communication that the EmRISC16 processor

core performs is the fetch operation, shown in Figure 4.1. The fetch expects to

communicate with an 8-bit wide memory device (SRAM or a ROM) and requires 8

clock cycles. The first, third, fifth, and seventh clock cycles assert the RD_ signal
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Figure 4.1: Instruction Fetch Timing

while internally the processor latches the data bytes on the positive clock edges.

During the even numbered cycles, the PC register is incremented and the RD_

signal is deasserted. It should be noted that many SRAM chips, such as the one

used on the Xess board, do not require the RD_ signal to be deasserted between

subsequent address changes. Although use of this feature could reduce the fetch

time to just 4 cycles, it may render the processor incompatible with other memory

chips.

For communicating with fast external peripherals such as memory chips, the

EmRISC16 processor uses the load and store instructions: lbu, lbs, lw, sbl, sbh,

and sw. These instructions assume that the device can handle RD_ and WR_ signal

assertions that are only one clock cycle in duration. The load instructions (Figure

4.2) all require 2 cycles beyond the 8 required for the instruction fetch. During the

9th cycle, the desired address is put on the address bus. Then in the 10th cycle,

the address is still held on the bus, the RD_ signal is asserted, and the data byte is

internally latched.

The store instructions (Figure 4.3) behave similiarly to the load instructions,
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Figure 4.2: Memory Load Timing
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Figure 4.3: Memory Store Timing

but require 11 cycles in stead of 10. On the 9th cycle the desired address is put on

the address bus and the outgoing byte is placed on the data bus. During the 10th

cycle the WR_ signal is asserted and the address is still held. The 11th clock cycle

is needed so that there is a period of time between when the WR_ is deasserted

and the RD_ is asserted for the fetch of the next instruction. Failure to insert this

extra cycle results in the fetch operation incorrectly reading the byte that was just

written.

Not originally part of the EmRISC16 ISA, the ior and iow instructions had to

be added to allow communication with very slow peripheral devices. In particular,

the CS8900a Ethernet adapter used in the demonstraton system requires RD_ and

WR_ pulses that are well over 100 ns in length. So instead of slowing down the

entire system to just 2 MHz, the ior and iow instructions were implemented.
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Figure 4.5: I/O Write Timing

The ior instruction, which reads a single byte from a peripheral, requires 12 clock

cyles. Like the load instructions, the address is put on the bus during the 9th cycle,

but is held through the 12th cycle. At the 10th cycle the RD_ signal is asserted and

also held through the 12th cycle. Data is actually latched by the processor during

the 12th clock cycle. Figure 4.4 shows the ior instruction timing.

The iow instruction, shown in Figure 4.5, also requires 12 clock cycles. The

desired address and data are put on their respective buses on the 9th through 12th

clock cycles. The WR_ signal is only asserted on the 12th clock cycle. The extra

clock cycle that was needed for the store instructions to deassert the WR_ is not

needed for the iow instruction. This is because the subsequent instruction fetch

would be from memory, not the slow peripheral to which a byte was just written.
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Figure 4.6: Interrupt Timing

Although not directly related to peripheral I/O operations, the timing of incom

ing interrupts deserve some mention. Incoming interrupts are always latched on the

rising edge of the interrupt's pulse. However, they are only processed if the EIB is

set and this processing occurs instead of performing an instruction fetch. Also note

that interrupt A always had priority over interrupt B.

Once an incoming interrupt pulse is latched, the EmRISC16 processor requires

three clock cycles to disable interrupts, save the current PC value in the INTPC

register, and write the proper interrupt vector to the PC (OxlO for A, Ox20 for

B). Figure 4.6 shows the processing of an interrrupt A. Although the interrupt

occured during an addi instruction, it is not processed until the current instruction

has finished execution. The vertical line in the figure indicates where the processor

starts handling the interrupt. After the 3 cycles for the interrupt, the processor

resumes fetching instructions at the new address.
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4.2 Demonstration System

In the previous chapters, this thesis has proposed and discussed the EmRISC16
.,

processor core with two main design goals. One, that it is powerful enough to

perform meaningful communication on the Internet. And two, that it is simple

enough to be implemented on an inexpensive FPGA. To prove that these goals

were in fact achieved, this section presents a demonstration system that uses the

EmRISC16 core to build a microcontroller that communicates using UDP/IP over

Ethernet.

4.2.1 Microcontroller Functionality

The first step to making the EmRISC16 processor core usable is to add some addi-

tional functionality to make it a microcontroller. By only defining the EmRISC16

core, any incarnation of the processor can have an endless number of different on-

chip peripherals. In the case of the demonstration system, two 8-bit ports (one input

and one output) were added, as well as some additional address decoding logic to

control the I/O ports and the external peripherals. Table 4.2 shows the additional

pins on the EmRISC16 processor, as it appears when implemented on the FPGA.

The UCRST is needed to hold the unused 8031 microcontroller that is on the Xess

XS-40 board in reset. Also note that the 8-bit output port was renamed to LED[7:0]

because it is used to drive to a 7-segment display. Figure 4.7 shows the top-level

schematic of what is implemented on the FPGA.
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Table 4.2: EmRISC16 Microcontroller Pinout

"

Pin Name Purpose
CLOCK Clock signal
RST Reset signal
IRQA Interrupt A
IRQB Interrupt B
RD_ Read signal (active low)
WR_ Write signal (active low)
A[16:0] Address bus
D[7:0] Data bus
SRCE_ SRAM chip enable (active low)
NETCE_ Network chip enable (active low)
PIN[7:0] 8-bit input port
LED[7:0] 8-bit output port (also 7-segment)
VCRST 8031 Reset

4.2.2 External Peripherals

Once the EmRISC16 processor core has been implemented as a microcontroller,

some off-chip peripherals were needed to complete the demonstration system. Al-

ready present on 'the XS-40 prototyping board is an Alliance Semiconductor AS7C31024,

which is a 128 KB SRAM. Also present on the board is the 7-segement display (con-

nected to the 8-bit output port) and a parallel port connector that can be connected

to a personal computer. The least significant 3 bits of the parallel port are connected

to the EmRISC16 RESET, IRQA, and IRQB. The other 5 bits are connected to the

correspoding bits of the 8-bit input port. The least significant 3 bits of the input

port are tied to ground. Finally, an Ethernet module had to be provided for Internet

communications. A Cirrus Logic CS8900a Ethernet module from Systor Vest. It
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Figure 4.8: Demonstration System

provides an 8-bit wide data bus interface and communicates on lOBASE-T Ethernet

at 10 Mbps. Figure 4.8 shows the relevant parts of the demonstration system and

Table 4.3 shows the corresponding memory map.

4.2.3 Demonstration Program

With all the hardware in place, all the remains for discussion is the demonstration

program. Written entirely in assembly, it uses just less than 5 KB for text and data
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Table 4.3: Demonstration System Memory Map

Address Range Peripheral
OxOOOOO - OxlFFFF 128 KB SRAM
Ox20000 - Ox2000E CS8900a Ethernet
Ox28000 8-bit Input Port
Ox30000 8-bit Output Port

memory. The majority of the code consists of drivers to provide layers 1 - 4 of the

OSI Network Architecture: Physical, Data link, Network, and Transport [10] and

[11]. The Physical layer is, of course, encapsulated entirely in the Ethernet Adapter.

The Data link layer consists of routines to send and receive Ethernet frames. The

Network layer provides two key functions: ARP, used to resolve IP addresses to

Ethernet MAC addresses, and partial IP functionality. IP packets can be sent and

received, but fragmentation is not supported. Therefore, all IP packets must be

smaller that 1500 bytes, which is the maximum frame size of Ethernet. Finally, the

Transport layer adds the ability to demultiplex packets according to a port number.

This is provided by implementing the UDP protocol.

The main routine of the demonstration program uses the network drivers to per-

form some trivial tasks, mainly to show that all the EmRISC16 processor's features

are working. When the system comes out of reset, the first thing the program does is

initialize the CS8900a and display a '0' on the 7-segment to indicate that everything

is running. Once this has happened, it sends an ARP request to resolve IP address

192.168.0.1, the address of the computer with which it expected to communicate.
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The program then jumps into an infinite loop of handling incoming frames and in

terrupts. An interrupt A causes the system to send a UDPpacket stating "interrupt

A" and then disable the handling of future interrupts on A; this is necessary to that

it doesn't flood the network with UDP packets. An interrupt B re-enables interrupt

A. Incoming ARP requests for the systems IP address, 192.168.0.2 are handled, and

the first byte of incoming UDP packets on port 5000 is summed with the value on

the input port, then shown on the 7-segment display. The full assembly source is

included in Appendix B.
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Chapter 5

Conclusion

Since all the work that has been done to create the EmRISC16 processor has been

presented, the thesis will conclude with a few closing thoughts. First, the limitations

of the processor must be considered. Then with these problems identified, examine

how future versions of the processsor could be improved. Also, what other work

could be done in the realm of net-enabled, FPGA-based microprocessors?

5.1 Considerations

Although the EmRISC16 processor core achieves its primary goal of being simple

to implement, yet powerful enough to communicate on the Internet, it still leaves

much to be desired in the areas of performance and of capabilites. The processor's..,

performance suffers mainly because of its external data bus is currently only 8 bits
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wide instead of 16. Granted, this choice was made because of the availability of

8-bit devices. The XS-40 prototyping board uses an 8- instead of a 16-bit SRAM. In

addition, 16-bit versions of the CS8900a Ethernet module were not readily available

for purchase. A custom PCB board would have to be built.

The EmRISC16 core provides most of the functionality expected from a sim-

pie processor core. However, its incarnation as a microcontroller on an FPGA

leaves much to be desired. The two one-way 8-bit ports are acceptable, but two

bi-directional 8-bit ports w~uld be much better. In addition to I/O ports, the mi-

crocontroller needs one or two programmable interrupt timers. This is necessary

because many higher level communications protocols (such as TCP) require time-

out periods that cannot be easily implemented in software. Finally, a processor

designed for Internet communications needs to support some type of encryption.

Since most modern encryption algorithms require far more processing power than

the EmRISC16 can provide, an on-chip encrytpion peripheral is needed to provide

data security.

5.2 Future Research

In its current state, the EmRISC16 processor is well-suited for controlling a small

emmbedded system that receives orders and sends status requests over the Inter-

net using UDP/IP. It is also quite customizeable for a specific application because
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only the processor core is strictly defined; additional peripherals could be added as

needed, and alarger capacity FPGA can always be used. However, once a TCP/IP

stack is written for it the EmRISC16 can be used for a much wider variety of appli-
r'

cations.

A predicatable, but not very interesting application, would be to use the Em-

RISC16 in an embedded system that offered a web-based interface. Many embedded

systems already do this. A ready example are the broadband firewall/router boxes

that are currently available. Keeping in mind that the EmRISC16 is designed to be

implemented on an FPGA, why not explore the idea of field-upgradeable embedded

systems? Imagine using the EmRISC16 as the core of a small embedded system

that communicates on the Internet, but is in a location where it would be difficult

to access it for service. Assuming the hardware itself is intact, the system's Internet

interface could be used to download new software and hardware revisions from a

centralized server. Once the new versions have been downloaded, the EmRISC16

core re-programs its EEPROM's that contained the current software and hardware

bitstream1. The processor triggers a sytem-wide reset and comes back online with

all new software and hardware.

Also of great importantance to the EmRISC16's usefulness in embedded applica-

tions is the amount of power it consumes. Because it is implemented on an FPGA,

it consumes much more power than it would if implemented in silicon. Regardless,

1A bitstream is a binary file that tells an FPGA how to configure itself.
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/
a study of the EmRISC16's power consumption characteristics could show which

instructions consume the m013t, and perhaps suggest ways to improve it without

sacrificing too much performance.

47



Bibliography

[1] J. G. Ganssle, "Micro Minis," Embedded.com, March 2003.

[2] R. Southgate, "Toasty: A web enabled weather forecasting toaster."

http://www.dancing-man.com/robin/webhome/report2.htm. 2001.

[3] G. T. Desrosiers, "Interfacing to the ATmega and 8515 Microcontrollers."

http://www.embeddedethernet.com/appnotes/EmbEthAtmelSample.html,

1999.

[4] A. Gupta and P. Hoang, "An Internet Interface for Embedded Systems."

http://www.cs.ucr.edu/ vahid/sproj/udpip/, 2001.

[5] J. Gray, "Building a RISC System in an FPGA. Part 1: Tools, Instruction Set,

and Datapath," Circuit Cellar, vol. 116, March 2000.

[6] J. Gray, "Building a RISC System in an FPGA. Part 2: Pipeline and Control

Unit Design," Circuit Cellar, vol. 117, April 2000.

48



[7] J. Gray, "Building a RISC System in an FPGA. Part 3: System-on-a-Chip

Design," Circuit Cellar, vol. 118, May 2000.

[8] Xilinx, Inc., "XC4000E and XC4000X Series Field Programmable Gate Ar-

rays." http://www.xilinx.com/bvdocs/publications/4000.pdf. May 1999.

[9] J. Hennesey and D. Patterson, Computer Architecture: A Quantitative Ap
'v-

proach, Second Edition. San Francisco, CA: Morgan-Kauffman, 1996.

[10] L. L. Peterson and B. S. Davie, Computer Networks: A Systems Approach,

Second Edition. San Francisco, CA: Morgan-Kauffman, 2000.

[11] J. Bentham, TCPlIP Lean: Web Servers for Embedded Systems. Lawrence,

KS: CMP Books, 2000.

49



Appendix A

'nstruction Set

The full EmRISCI6 instruction set is provided in Tables A.I - A.4. Note that rd is

the destination register, ra is the first source register, and rb is the second. Addr

refers to an IS-bit address and Immed is a I6-bit constant.
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Table A.l: EmRISC16 Instruction Set: System Control Instructions

Instruction Opcode Clock Cycles Description
nop 0 9 no op
halt 1 9 halt
reI 3 9 return from exception and enable interrupts
di 4 9 disable interrupts
ei 5 9 enable interrupts
trap 6 10 software interrupt
rfe 7 9 return from exception

Table A.2: EmRISC16 Instruction Set: Branch and Jump Instructions

Instruction Opcode Clock Cycles Description
ja Addr 8 9 jump to Addr
Jr ra 9 9 jump to address in ra
acall rd, Addr E 10 call subroutine Addr and store PC in rd
rcall rd, ra F 10 call subroutine in ra and store PC in rd
beqz ra, Addr 18 9 branch equal to zero
bnez ra, Addr 19 9 branch not equal to zero

Table A.3: EmRISC16 Instruction Set: Memory and I/O Instructions

Instruction Opcode Clock Cycles Description
lbu rd, Addr(ra) 10 10 load byte unsigned
lbs rd, Addr(ra) 11 10 load byte signed
lw rd, Addr(ra) 12 10 load 16-bit word
ior rd, Addr(ra) 13 12 I/O read byte
sbl rd, Addr(ra) 14 11 store byte low
sbh rd, Addr(ra) 15 11 store byte high
sw rd, Addr(ra) 16 11 store 16-bit word
iow rd, Addr(ra ) 17 12 I/O write byte

( 51



Table A.4: EmRISC16 Instruction Set: ALU Instructions

Instruction Opcode Clock Cycles Description
add rd, ra, rb 20 9 add
addi rd, ra, Immed 21 9 add immediate
addc rd, ra, rb 22 9 add carry result
addci rd, ra, Immed 23 9 add carry result immediate
sub rd, ra, rb 24 9 subtract
subi rd, ra, Immed 25 9 subtract immediate
subc rd, ra, rb 26 9 subtract carry result
subci rd, ra, Immed 27 9 subtract carry result immediate
and rd, ra, rb 28 9 AND
andi rd, ra, Immed 29 9 AND immediate
or rd, ra, rb - 2A 9 OR
ori rd, ra, Immed 2B 9 OR immediate
xor rd, ra, rb 2C 9 XOR
xori rd, ra, Immed 2D 9 XOR immediate
lsI rd, ra, rb 30 9 logical shift left
IsH rd, ra, Immed 31 9 logical shift left immediate
lsr rd, ra, rb . 32 9 logical shift right
lsri rd, ra, Immed 33 9 logical shift right immediate
asr rd, ra, rb 36 9 arithmetic shift right
asri rd, ra, Immed 37 9 arithmetic shift right immediate
sIt rd, ra, rb 38 9 set less than
sle rd, ra, rb 39 9 set less than or equal
sgt rd, ra, rb 3A 9 set greater than
sge rd, ra, rb 3B 9 set greater than or equal
seq rd, ra, rb 3C 9 set equal
sne rd, ra, rb 3D 9 set not equal
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Appendix B

Demonstration Program

;i EmRisc16 UDP Demonstration
" By J. R. Petrus, jrp2~lehigh.edu

" 3/3/2003

ii conventions for ease of programming
;; rO is always zero (defined by architecture)
;i r15 is function return address

., 8 bit ports

.set POUT

.set PIN
Ox30000
Ox28000

i i Ethernet interface
.set NET Ox20000
.set RxTxO Ox20000
.set RxTx1 Ox20002
.set TxCmd Ox20004
.set TxLen Ox20006
.set IStat Ox20008
.set PPPtr Ox2000A
.set PPDO Ox2000C
.set PPD1 Ox2000E

ii Internet Proto Type constants
.set ARPN Ox0806
.set IPN Ox0800
.set UDPN Ox11
.set IPVN Ox45 IPV4, hdr len = 5

i; Offsets
; i relative
.set
.set
.set
.set

that are related to ARP
to start of ethernet data
HTYPE 0 hardware type
PTYPE 2 protocol type
HWADL 4 hardware address length
PADL 5 IP address length
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.set ARPOP 6 ARP operation

.set Sm/A 8 sender m/ address

.set SIPA 14 sender IP address

.set THWA 18 target m/ address

.set 'TIPA 24 target IP address

.set . ARPLEN 42 ARP packet length

;; Offsets'that are related to IP
;; relative to start of Ethernet data
·set VHDRL 0 version and header length
· set "SERV 1 service precedence
·set IPLEN 2 total datagram length
·set IDENT 4 Identification number
·set FLAGS 6 IP flags
.set TTL 8 time to live
·set . PCOL 9 IP protocol, UDP=17
· set IPCSUM 10 checksum
·set IPSRC 12 Sender's IP address
.set IPDST 16 Receiver's IP address
·set IPDATA 20 the data, assuming no options

;; Offsets that are related to UDP
j; relative to start of Ethernet (not
.set S~CPORT 20
.set DSTPORT 22
·set UDPLEN 24
· setUDPCSUM 26
.set UDPDATA 28

j j Port numbers that we shall use
.set UDPRCV 5000
.set UDPSND 5001

IP) data
sender's UDP port
receiver's UDP port
length of UDP packet
UDP checksum
UDP data

listen for UDP on port 5000
will send to UDP port 5001

j; disable, interrupts for the moment (although the hardware
;; disables them by default on reset)
j j jump to the "main" program

start: di
ja prog

" allocate space for IntA and IntB
;; remember that interrupts have space for exactly 4
" instructions = 16 bytes each
.org Ox10

intA:
sbl rO, flagA(rO)
rei '

.org Ox20
intB:

sbl rO, flagB(rO)
rei

.org Ox30
prog:

j j light up the displ<1-Y with a 0
add r2, rO, rO
acall r15, 'led

;j initialize the 'net adapter
acall r15, NetInit
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;; we'll need to know the IP address of my laptop
;; so perform an ARP request
acall r15, ARPReq

;; now we can safely enable interrupts
addi r1, .rO, OxFF
sbl r1, flagA(rO)
sbl r1, flagB(rO)
ei

;; forever loop, processing frames and interrupts
eLoop:

;; check to see if interrupt A has occured
lbu r1, flagA(rO)
bnez r1, checkB
acall r15, intAf

checkB:
;; and for an interrupt B
lbu r1, flagB(rO)
bnez r1, checkNet
acall r15, intBf

checkNet:
acall r15, NetRecv

;; check the size in r1, if zero, try again
beqz r1, eLoo~

;; r1 != 0, therefore we have a frame
;; 1st see if ARP packet
addi r3, rO, ARPN
seq r4, r2, r3
beqz r4, IPHandle

;; it is ARP, let's handle it
acall r15, ARPFunc
ja eLoop

IPHandle:
addi r3, rO, IPN
seq r4, r2, r3
beqz r4, eLoop

;; it's an IP packet
acall r15, IPFunc
ja eLoop

led:
;; this subroutine looks at a value in r2
" and then writes what should be output
" to a 7-segment display to POUT
andi r2, r2, OxF
lbu r3, ledda(r2)
sbl r3, POUT(rO) light it up
jr r15

; i interrupt A handler
" when we get an intA, send a UDP packet to the laptop
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intAf:
i: 1st, make sure interrupt A is enabled
lbu r1, enableA(rO)
bnez r1, goA
jr r15

goA:
ii noy disable interrupt A until B occurs to
;: re-enable it
sbl rO, enableA(rO)

i: clear interrupt A
addi r1, rO, OxFF
sbl r1, flagA(rO)

add r14, rO, r15 i save the return PC

; i destination address, must make sure that
ii a valid one is present
lbu r1 , LAPHWAD(rO)
addi r2, rO, OxFF
sne r3 , r2, r1
bnez r3, goodHWAD
jr r14

goodHWAD:
addi ri, rO, LAPHWAD
addi r2, rO, FRAME
addi r3, rO, 6
acall r15, MemCopy

i i source address
addi r1, rO, MYHWAD
addi r2, rO, FSRC
addi r3 , rO, 6
acall r15, MemCopy

ii noy set the type of the frame, yhich is IP
addi r1 , rO, 1
addi r2, rO, IPN
sbh r2, FTYPE(rO)
sbl r2, FTYPE(ri)

;; that's all for Ethernet headers; noY need to do
II the IP headers

add ri, rO, rO

:: IPV4, len = 20
addi r2, rO, IPVN
sbl r2, FEDATA(r1)
addi r1 , r1, 1

:: service type is normal precedence
sbl rO, FEDATA(r1)
addi r1, r1, 1

i i length of our packet is IP hdrs + UDP hdrs + data
::20+8+11
addi r2, rO, 39
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sbh r2, FEDATA(r1)
addi r1, r1, 1
sbl r2, FEDATA(r1)
addi r1, r1, 1

;; IP ident number, we'll use 7
addi r2, rO, 7
sbh r2, FEDATA(r1)
addi r1, r1, 1
sbl r2, FEDATA(r1)
addi r1, r1, 1

;; flags & fragmentation offset
;; none = 0
sbh rO, FEDATA(r1)
addi r1, r1, 1
sbl rO, FEDATA(r1)
addi r1, r1, 1

;; time to live, 30 seconds
addi r2, rO, 30
sbl r2, FEDATA(r1)
addi r1, r1, 1

;; Pcol = UDP
addi r2, rO, UDPN
sbl r2, FEDATA(r1)
addi r1, r1, 1

;; checksum, handled by a different routine
addi r1, r1, 2

;; source address
addi r1, rO, MYIPAD
addi r2, rO, FEDATA
addi r2, r2, IPSRC
addi r3, rO, 4
acall r15, MemCopy

;; destination address
addi r1, rO, LAPIPAD
addi r2, rO, FEDATA
addi r2, r2, IPDST
addi r3, rO, 4
acall r15, MemCopy

;; IP headers are almost done; need to do checksum
addi r1, rO, FEDATA
acall r15, doIPCSum

;; now do the UDP headers
;; UDP source port
addi r1, rO, SRCPORT
addi r2, rO, UDPRCV
sbh r2, FEDATA(r1)
addi r1, r1, 1
sbl r2, FEDATA(r1)
addi r1, r1, 1

;; UDP destination port
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addi r2, rO, UDPSND
sbh r2, FEDATA(r1)
addi r1, r1, 1
sbl r2, FEDATA(r1)
addi r1, r1, 1

j j Datagram length (UPD headers + data length)
addi r2, rO, 19
sbh r2, FEDATA(r1)
addi r1, r1, 1
sbl r2, FEDATA(rl)
addi r1, r1, 1

ij don't bother with UDP checksum
addi r2, rO, OxFFFF
sbh r2, FEDATA(rl)
addi r1, r1, 1
sbl r2, FEDATA(rl)
addi r1, r1, 1

ii now let's send a message
addi r1, rO, msgA
addi r2, rO, FEDATA
addi r2, r2, UDPDATA
addi r3, rO, 11
acall r15, MemCopy

adcl,i r1, rO, 53
acall r15, NetSend
jr r14

ii interrupt B handler
ij when interrupt B occurs, re-enable the flag
ji that allows processing of interrupt A
ij this is needed so that we don't flood my laptop
ji with UDP packets

intBf:
" re-enable sending onintA
addi r1, rO, OxFF
sbl r1, enableA(rO)

j i clear intB
addi r1, rO, OxFF
sbl r1, flagB(rO)
jr r15

MemCopy:
" this subroutine is crucial to maintaining my sanity
j i src address = r1, target address = r2
jj length = r3 (in bytes)
jj this routine assumes the src and dest addresses
jj are within the first 64 K of memory

lbu r4, OxO(r1)
sbl r4, OxO(r2)
addi r1, r1, 1
addi r2, r2, 1
subi r3, r3, 1
bnez r3, MemCopy
jr r15
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Netlnit:
" this routine initializes the ethernet interface
" will use MAC address 0800BEEFBEEF

wait:

addi r1, rO, 1

ii force a reset on the chip
addi r2, rO, Ox0114
addi r3, rO, Ox0055
iow r2, PPPtr(rO)
lsri r2, r2, 8
iow r2, PPPtr(rl)
iow r3, PPDO(rO)
lsri r3, r3, 8
iow r3, PPDO(r1)

addi r2, rO, 10
subi r10, r10, 1
bnez r10, wait

ii setup our MAC address
" this is kinda strange - have to byte swap each
" 2-byte pair because the CS8900a is little
ii endian
addi r2, rO, Ox0158
addi r3, rO, Ox0008
iow r2, PPPtr(rO)
lsri r2, r2, 8
iow r2, PPPtr(r1)
iow r3, PPDO(rO)
lsri r3, r3, 8
iow r3, PPDO(r1)

addi r2, rO, Ox015A
addi r3, rO, OxEFBE
iow r2, PPPtr(rO)
lsri r2, r2, 8
iow r2, PPPtr(r1)
iow r3, PPDO(rO)
lsri r3, r3, 8
iow r3, PPDO(r1)

addi r2, rO, Ox015C
addi r3, rO, OxEFBE
iow r2, PPPtr(rO)
lsri r2, r2, 8
iow r2, PPPtr(r1)
iow r3, PPDO(rO)
lsri r3, r3, 8
iow r3, PPDO (r1)

ii setup the RxCtl
addi r2, rO, Ox0104
addi r3, rO, OxOD05
iow r2, PPPtr(rO)
lsri r2, r2, 8
iow r2, PPPtr(r1)
iow r3, PPDO(rO)
lsri r3, r3, 8
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iow r3, PPDO(r1)

;; setup the LineCtl
addi r2, rO, Ox0112
addi r3, rO, OxOOCO
iow r2, PPPtr(rO)
Isri r2, r2, 8
iow r2, PPPtr(r1)
iow r3, PPDO(rO)
Isri r3, r3, 8
iow r3, PPDO(r1)

jr r15

NetSend:
" this routine sends data starting at address FRAME
" the length to send is passed via r1
add r12, r1, rO

j j bid for buffer space
j j issue the Tx command
addi r1, rO, 1
addi r2, rO, OxOOCO
iow r2, TxCmd(rO)
Isri r2, r2, 8
iow r2, TxCmd(r1)

;j tell how long the frame is
iow r12, TxLen(rO)
Isri r13, r12, 8
iow r13, TxLen(r1)

;j wait until space is available
addi r2, rO, Ox0138
iow r2, PPPtr(rO)
Isri r2, r2, 8
iow r2, PPPtr(r1)

bidlp: ior r3, PPDO(rO) don't care about low byte
ior r3, PPDO(r1)
andi r3, r3, Ox0001
beqz r3, bidlp

/
txlp:

;; now write all the data stored at FRAME
add r13, rO, rO
Ibu r2, FRAME(r13)
iow r2, RxTxO(rO)
addi r13, r13, 1
Ibu r2, FRAME(r13)
iow r2, RxTxO(r1)
addi r13, r13, 1
sge r4, r13, r12
beqz r4, txlp

jr r15

NetRecv:
j; for the moment, this routine will poll the ethernet
" adapter and see if there are any frames waiting
" if no frames, return a length of 0 in r1
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i; if there is a frame, return its length in r1
; i and type in r2
;; Supported types are IP=Ox0800 and ARP=Ox0806

,,1st, poll the RxEvent
i; check the RxOK bit
addi r1, rO, 1
addi r2, rO, Ox0124
iow r2, PPPtr(rO)
lsri r2, r2, 8
iow r2, PPPtr(r1)

ior r4, PPDO(rO)
ior r3, PPDO(r1)

andi r3, r3, Ox0001

register and
bit #8

Low RxEvent byte
High RxEvent byte

i; if r3 == 1, then we have a frame
" otherwise, just return

bnez r3, gotFrame
add r1, rO, rO
jr r15

gotFrame:
" re-read the status from RxTxO, high byte first
j i but we don't really care what the value is
addi r1, rO, 1
ior r4, RxTxO(r1)
ior r3, RxTxO(rO)

" now we read the length of the frame
" and store it in r12

ior r3, RxTxO(r1)
ior r2, RxTxO(rO)
lsli r3, r3, 8
or r12, r2, r3

rxlp:

;; finally, read each byte from the adapter
;j and store it somewhere
add r5, rO, rO
ior r3, RxTxO(rO)
sbl r3, ETHIN(r5)
addi r5, r5, 1
ior r3, RxTxO(r1)
sbl r3, ETHIN(r5)
addi r5, r5, 1
sge r6, r5, r12
beqz r6, rxlp

;; return the size,
lbu r2, ITYPE(rO)
lbu r3, ITYPE(r1)
lsli r2, r2, 8
or r2, r2, r3
add r1, rO, r12

jr r15

type in ri, r2
MSB of type
LSB of type
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ARPFunc:
" this method handles ARP requests
., and ARP responses according to the following
;; if ARP request and asking my IP address
;; then tell the requester my IP &MAC
" if ARP response sent to me, then clearly
;; I want the sender's IP address for a UDP
;; packet I'm about to send

;; look at the ARP operation
addi. r1, rO, 1
addi r5, rO, ARPOP
addi r5, r5, 1
lbu r6, IEDATA(r5)

only care about the LSB of the OP

;; if r6==1, arp request; else arp response
seq r7, r6, r1
beqz r7, ARPRes

; ;. okay, we have an ARP request
" look at the target IP and see if it's mine

,,1st IP byte; r2 will be mine, r3 ~ill be target
add r5, rO, rO
addi r6, rO, TIPA
add r4, rO, rO
addi r8, rO, 4

ARPMatchLoop:
Ibu r2, MYIPAD(r5)
lbu r3, IEDATA(r6)
seq r7, r2, r3

bnez r7, ~RPReqMatch

jr r15

ARPReqMatch:

addi r5, r5, 1
addi -re, r6, 1
addi r4, r4, 1
seq r7, r4, r8
beqz r7, ARPMat'chLoop

IP address isn't mine

increment to check the next byte

inc the loop counter

)

;; if we got this far, then the target IP address is mine
;; next on the. list is to prepare our ARP
;; response

;; copy sender's MAC to DEST field of outgoing frame
addi r1, rO, IEDATA
addi r1, r1, SHWA
addi r2, rO, FRAME
addi r3, rO, 6
add r14, rO, r15 save the return PC-
acall r15, MemCopy

;; copy my MAC to the sender field of FRAME
addi r1, rO, MYHWAD
addi r2, rO, FSRC
addi r3, rO, 6
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acall r15, MemCopy

;; now set the type of the frame, which is ARPN
addi r1, rO, 1
addi r2, rO, ARPN
sbh r2, FTYPE(rO)
sbl r2, FTYPE(r1)

;; write the ARP headers to FRAME
add r1, rO, rO
addi r2, rO, 1 ; the HW type is Ethernet, Ox0001
sbh r2, FEDATA(r1)
addi r1, r1, 1
sbl r2, FEDATA(r1)
addi r1, r1, 1

addi r2, rO, IPN the Proto is IP
sbh r2, FEDATA(r1)
addi r1, r1, 1
sbl r2, FEDATA(r1)
addi r1, r1, 1

addi r2, rO, 6 HW address length is 6
sbl r2, FEDATA(r1)
addi r1, r1, 1

addi r2, rO, 4 IPv4 address length is 4
sbl r2, FEDATA(r1)
addi r1, r1, 1

;; write the ARP response operation, which is Ox0002
addi r1, rO, Ox0002
addi r2, rO, ARPOP
sbh r1, FEDATA(r2)
addi r2, r2, 1
sbl r1, FEDATA(r2)

;; write my HW and IP addresses to FRAME
;; this data can be copied from MYHWAD, MYIPAD (contiguous)
addi r1, rO, MYHWAD
addi r2, rO, FEDATA
addi r2, r2, SHWA
addi r3, rO, 10
acall r15, MemCopy

;; finally write the sender's HW and IP addresses
" to FRAME; this data is stored in
;; ETHIN + SHWA
addi r1, rO, IEDATA
addi r1, r1, SHWA
addi r2, rO, FEDATA
addi r2, r2, TRWA
addi r3, rO, 10
acall r15, MemCopy

;; now send the frame
addi r1, rO, ARPLEN
acall r15, NetSend

jr r14
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ARPRes:
" here's IIhere I handle ARP responses
" the first thing to do is make sure that
" my HW address is in the target field

;j r2 lIill be mine, r3 lIill be target
add r5, rO, rO
addi r6, rO, THWA
add r4, rO, rO
addi r8, rO, 6

ARPMatcllLoop2 :
lbu r2, MYHWAD(r5)
lbu r3, IEDATA(r6)
seq r7, r2, r3

bnez r7, ARPResMatch
jr r15

ARPResMatch:

addi r5, r5, 1
addi r6, r6, 1
addi r4, r4, 1
seq r7, r4, r8
beqz r7, ARPMatchLoop2

MAC address isn't mine

increment to check the next byte

inc the loop counter

j; .if lie got this far, then the ARP response lias
;; meant for me; copy sender HW address of the response
;; to LAPHWAD

addi r1, rO, IEDATA
addi ri, r1, SHWA
addi r2, rO, LAPHWAD
add r14, ri5, rO
acall ri5, MemCopy

" don't need to do anything else
; j just return
jr ri4

ARPReq:
j; this routine is used to make an ARP request
" the actual response from the netllork is handled
j; inside of ARPFunc

add ri4, rO, ri5 ; save the return PC

j; broadcast to DEST field of outgoing frame
addi r3, rO, 6
addi r2, rO, OxFFFF
add ri, rO, rO

bcastlp:
sbh r2, FDEST(r1)
addi r1, ri, i
subi r3, r3, i
bnez r3, bcastlp
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jj copy my MAC to the sender field of FRAME
addi r1, rO, MYHWAD
addi r2, rO, FSRC
addi r3, rO, 6
acall r15, MemCopy

i j now set the type of the frame, which is ARPN
addi r1, rO, 1
addi r2, rO, ARPN
sbh r2, FTYPE(rO)
sbl r2, FTYPE(r1)

jj write the ARP headers to FRAME
add r1, rO, rO
addi r2, rO, 1 ; the HW type is Ethernet, Ox0001
sbh r2, FEDATA(r1)
addi r1, r1, 1
sbl r2, FEDATA(r1)
addi r1, r1, 1

addi r2. rO, IPN the Proto is IP
sbh r2, FEDATA(r1)
addi r1. r1, 1
sbl r2, FEDATA(r1)
addi r1. r1. 1

addi r2 i rO, 6 HW address length is 6
sbl r2, FEDATA(ri)
addi r1, r1, i

addi r2, rO, 4 IPv4 address length is 4
sbl r2, FEDATA(r1)
addi r1, r1, 1

ij write the ARP request operation, which is Ox0001
addi ri, rO, Ox0001
addi r2, rO, ARPOP
sbh r1, FEDATA(r2)
addi r2, r2, 1
sbl r1, FEDATA(r2)

ij write my HW and IP addresses to the sender field
j; this data can be copied from MYHWAD, MYIPAD (contiguous)
addi r1, rO, MYHWAD
addi r2, rO, FEDATA
addi r2, r2, SHWA
addi r3, rO, 10
acall r15, MemCopy

j; finally write O's for the target HW address
; j and my laptop as the target IP address
addi r3, rO, 6
addi r1, rO, THWA

zeroMAClp:
sbh rO, FEDATA(r1)
addi r1, r1, 1
subi r3, r3. 1
bnez r3, zeroMAClp
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IP address is 192.168.0.2
j my IP address

i IP in question

addi r1, rO, LAPIPAD
addi r2, rO, FEDATA
addi r2, r2, TIPA
addi r3, rO, 4
acall r15, MemCopy

;; nOli send the frame
addi r1, rO, ARPLEN
acall r15, NetSend

jr r14

IPFunc:
ii this routine handles incoming UDP packets as such:
ii verify dest IP and incoming port #
; j get first byte of UDP data, display on LED

" make sure dest
add r5, rO, rO
addi r6, rO, IPDST
add r4, rO, rO
addi r8, rO, 4

IPLoop:
lbu r2, MYIPAD(r5)
lbu r3, IEDATA(r6)
seq r7, r2, r3

bnez r7, IPMatch
jr r15 IP address isn't mine

IPMatch:
addi r5, r5, 1 increment to check the next byte
addi r6, r6, 1
addi r4, r4, 1 inc the loop counter
seq r7, r4, r8
beqz r7, IPLoop

;; the IP address is correct, nOli check for UDP protocol
addi r1, rO, UDPN
addi r2, rO, PCOL
lbu r3, IEDATA(r2)
seq r4, r1, r3
bnez r4, isUDP
jr r15

isUDP:
ii it is a UDP packeti so check for the proper port
;; on IIhich lie are listening
addi r1, rO, UDPRCV
addi r2, rO, DSTPORT
lbu r3, IEDATA(r2)
lsli r3, r3, 8
addi r2, r2, 1
lbu r4, IEDATA(r2)
or r3, r3, r4
seq r4, r1, r3
bnez r4, goodUDP
jr r15
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goodUDP:
ii ok , we have the UDP packet, we have now only to grab a byte
ii and display it plus the number read on PIN

addi rl, rO, UDPDATA
lbu r2, IEDATA(rl)

;; strobe the input port
sbl rO, PINerO)
lbu r3, PINerO)
lsri r3 , r3, 3
add r2, r2, r3
add r14, r15, rO
acall r15, led
jr r14

; strobe a value into PIN
; load PIN to r3

; r3 = r3 » 3

doIPCSum:
;; this routine calculates the IP checksum
ii input: rl is address of IP header
;; output: writes checksum to the IP header
i; assumes all other IP information already
ii in the header

II store the checksum in r2, use r3 as a counter
add r2, rO, rO
addi r3, rO, 20
add r7, rO, rl i backup original address

;; need to clear the checksum memory first
addi r6, rl, IPCSUM
sbl rO, OxO(r6)
sbl rO, Ox1(r6)

IPCSumLoop:
lbu r5, OxO(r7)
lbu r6, Ox1(r7)
IsH r5 , r5, 8
or r5, r5, r6
addi r7 I r7, 2
addc r6, r2, r5
add r2, r2, r5
add r2, r2, r6
subi r3 , r3, 2
bnez r3, IPCSumLoop

i; create the l's compliment of the result
xori r2, r2, OxFFFF

;i write the checksum to memory
addi r6, rl, IPCSUM
sbh r2, OxO(r6)
sbl r2, Ox1(r6)

jr r15

j; --------------------------------------
; i data memory starts here
;; --------------------------------------

II define 7 segment values
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ledda: .db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db

Ox77
Ox12
Ox5D
Ox5B
Ox3A
Ox6B
Ox6F
Ox52
Ox7F
Ox7B
Ox7E
Ox2F
Ox65
OxlF
Ox6D
Ox6C

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

,. flags that get cleared when an interrupt occurs
,. this is a hack because I have neither the
j j time nor the desire to implement a stack
,. on this demonstration program

flagA:
.db OxFF

flagB:
.db OxFF

,. interrupt A get disabled after occuring until
•• an interrupt on B occurs

enableA:
.db OxO

msgA:
;; message sent when interrupt A occurs
.db 105
.db 110
.db 116
.db 101
.db 114
.db 114
.db 117
.db 112
.db 116
.db 32
.db 65

MYHWAD:

MYIPAD:

;; my MAC
.db
.db
.db
.db
.db
.db

address
Ox08
OxOO
OxBE
OxEF
OxBE
OxEF

;; my IP
.db
.db
.db

address
192
168
o
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LAPIPAD:

.db 2

" laptop's IP address
.db 192
.db 168
.db 0
.db 1

LAPHWAD:
;; laptop's MAC address
.db OxFF
.db OxOO
.db OxOO
.db OxOO
.db OxOO
.db OxOO

outgoing Ethernet frame needs to go here

;; store the incoming frame here

FRAME:
FDEST:
FSRC:
FTYPE:
FEDATA:

ETHIN:
IDEST:
ISRC:
ITYPE:
IEDATA:

.end

.ds

.ds

.ds

.ds

.ds

.ds

.ds

.ds

6
6
2
1504

6
6
2
1504
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Appendix C

Project Files and Source Code

Availability

This source code referenced in this thesis is available for download from the World

Wide Web:

http://www.lehigh.edu/-jrp2/emrisc16.html

The files available include schematics, VHDL code, Xilinx Foundation 2.1i project

files, the EmRISC16 Assembler source, the demonstration assembly program, and

this document.
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Appendix D

Vita

James" J. R." Petrus was born in Butler, Pennsylvania on April 20, 1979 to James

and Janet Petrus. He entered Lehigh University in Fall 1997 and graduated summa

cum laude with a Bachelor of Science degree in computer engineering in June 200l.

Named a President's Scholar upon graduation, James accepted this award and con

tinued his studies at Lehigh University. He is currently working towards his Master

of Science in computer engineering, and expects to graduate in May 2003. During

his graduate years at Lehigh, James served as a teaching assistant for the Computer

Science and Engineering Department as well as a research assistant in Lehigh's

Vision and Software Technology Lab.

71



END OF

TITLE


	Lehigh University
	Lehigh Preserve
	2003

	EMRISC16 : an embedded risc microprocessor for low cost FPGA'S
	James R. Petrus
	Recommended Citation


	00015
	00016
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097

