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Abstract

Barrel shifters are arithmetic and logic circuits that may be utilized to shift or rotate data

in a general-purpose microprocessor or digital signal processor. This thesis proposes and

analyzes various methods of implementing barrel shifters. The purpose of this thesis is to

understand the tradeoffs of various barrel shifter design approaches in order to recognize where

each may be most useful.

Each design is a compromise between gate count and critical path latency. In an attempt

to reduce both, the proposed designs utilize a number of innovative design techniques. The

techniques can be divided into two categories: those addressing uni-directional result computation

and those providing the logic necessary to implement all operations with' uni-directional hardware

support. Four design schemes were employed to test each of the techniques; Mux-based Data

Reversal, Mask-based Data Reversal, Mask-based Two's Complement, and Mask-based One's

Complement. The mux-based and mask-based descriptor indicates the uni-directional result

computation method, while the rest specify the mechanism used to emulate bi-directional

operations with uni-directional hardware support.

Analysis of each design reveals some unique fmdings. First of all, the designs using the

two's complement and one's complement mechanisms were found to have a critical path latency

much higher than expected, thus they are of very limited use unless the shift/rotate amount arrives

earlier than the data to be shifted or rotated. Second, the optimal designs were found to be the

Mux-based Data Reversal and Mask-based Data Reversal approaches. Each had comparable

area-delay products. If gate count minimization is the primary concern, then the mux-based

approach is preferred. Likewise, critical path latency minimization is achieved with the mask

based approach. Thus, no single design is preferred for all circumstances. Instead, use is highly

dependent on the particular demands placed on the circuit.
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Chapter 1- Introduction

1.1 Operations

A barrel shifter primarily offers five operations; rotate right, rotate left, shift right logical,

shift left logical, and shift right arithmetic. Occasionally, the shift left arithmetic operation is also

included, but it is not supported in the designs detailed here due to its infrequent use.

1.1.1 Rotate

A rotate is a cyclic shift either to the left or right. This means that as bits are shifted out

of the data vector on one side, they are shifted into the data vector on the other side. During this

process, all bits from the input are routed to the output. Their position in the output, however, is

not necessarily the same as it was in the input.

As shown in Figure 1.1, a k-bit rotate right moves k low order bits to the most significant

end of the bit vector. Likewise, as shown in Figure 1.2, a k-bit rotate left moves k high order bits

to the least significant end of the bit vector. The remaining (n-k) bits are shifted so as to fill the

void left by the k bits shifted in a cyclic manner.

n-1 o n-1 o

Figure 1.1: Rotate Right Figure 1.2: Rotate Left

An example of the rotate right can be seen in Figure 1.3 where a 32-bit word of data has a

low order byte rotated right. As can be seen, this byte is moved into the most significant portion

2



of the word. The remaining bits are simply shifted to the right. This fills the void left by the byte

moved and simultaneously creates a void in the high order bit region for the rotated byte to be

placed. In a similar fashion, Figure 1.4 demonstrates the manner in which a high order byte is

moved into the low order region of the word during a rotate left. In both instances, a byte of data

is moved from one end of the word to the other with the rest of the word reorienting itself to

accommodate this alteration.

31

111101011010110011110101

Figure 1.3: Rotate Right by 8 Example

1.1.2 Shift Right Logical

o
101011001111010110101100

Figure 1.4: Rotate Left by 8 Example

The shift right logical operation is much like a rotate right, but without the k low order

bits being moved to a high order position. Instead, the low order bits are removed. The

remaining (n-k) bits are shifted to the right so as to fill the void created by the loss of the low

order bits. The void created in the high order region by this shift is filled with zeros. Figure 1.5

illustrates this process and Figure 1.6 is an example of a shift right logical by 8 operation. As can

n-1 o 31

111101011010110011110101

14-8 -+1.

Figure 1.5: Shift Right Logical

3

Figure 1.6: Shift Right Logical by 8
Example



be seen, the low order byte is removed from the result and the remaining bits are shifted over.

The high order bits are set to zero. As such, a shift right logical operation approximates division

by 2k on unsigned data, where the result is truncated.

1.1.3 Shift Left Logical

The shift left logical operation is similar to the shift right logical operation. The

difference, of course, lies in the direction of the shift, which, in this case, is to the left. As such,

the k high order bits are removed from the high order region so that the remaining (n-k) bits can

be shifted to the left k places. The void created in the low order region is then filled with zeros,

as shown in Figure 1.7. Figure 1.8 demonstrates this operation. In this example, the high order

byte is removed. The rest of the data is shifted to the left to fill this void. The void created in the

low order region is then filled with zeros. Therefore, this command corresponds to a

multiplication by 2k in those cases where the block of data being dropped is all zeros.

o
101011001111010110101100

o

n-k

n-1

Figure 1.7: Shift Left Logical Figure 1.8: Shift Left Logical by 8
Example

1.1.4 Shift Right Arithmetic

The shift right arithmetic operation is similar to the right shift logical operation except for

the fact that the bits used to fill the high order region are not necessarily zero. These bits are

4



instead dependent on the sign bit, the most significant bit, of the data. The sign bit is used as the

fill bit, as shown in Figure 1.9. As such, a shift right arithmetic operation maintains the sign of

the data. Figure 1.10 demonstrates this operation with a sign bit of one. As can be seen, once the

data is arithmetically right shifted, the sign bit with a value of one is used to fill the high order

region. Thus, the shift right arithmetic operation approximates division by 2k on two's

complement data, where the result is truncated.

11101011010110011110101

11101011010110011110101

on-1

Figure 1.9: Shift Right Arithmetic Figure 1.10: Shift Right Arithmetic by 8
Example

1.1.5 Shift Left Arithmetic

The shift left arithmetic operation is a combination of the actions taken by the shift right

arithmetic and shift left logical operations. As shown in Figure 1.11, the shift left arithmetic

operation maintains the sign bit by excluding it from the shift. The (n-k-l) low order bits are

shifted to the left k spaces. The k high order bits, excluding the sign bit, make up the region

shifted out of the data vector. The void created in the low order region is filled with zeros. An

example of this operation is shown in Figure 1.12. This operation corresponds to multiplication

by 2k on two's complement data, as long as each of the k-bits shifted out of the data vector is

equal to the sign bit. Due to the limited use of this operation, it is not supported in the designs

analyzed in this thesis.

5



n-1

n-k-1

Figure 1.11: Shift Left Arithmetic

1.2 Flags

o o
01011001111010110101100

23

Figure 1.12: Shift Left Arithmetic by 8
Example

Barrel shifters often produce flags that indicate special conditions. The two most

common are the zero and overflow flags.

1.2.1 Zero Flag

The zero flag is a simple I-bit flag that indicates whether the result of the operation

performed has a value of zero. A value of one indicates that the result is zero, while a zero

indicates a non-zero result. This flag is useful when the result is used in an equality test with

zero, as is done in some processors, or when the result of a shift/rotate operation sets the

processor condition codes.

1.2.2 Overflow Flag

The overflow flag is also a I-bit flag. It is used to indicate a sign bit change during a left

shift operation. More specifically, if the shift were to be implemented as successive I-bit shifts,

then overflow is said to occur if at any point during the process, the bit passing over the sign bit

location is different than the original sign bit. Overflow is indicated by a value of one. The

overflow flag is useful when one needs to know if the true result cannot be represented using n

bits.

6



Chapter 2 - Previous Research

This section concentrates on techniques previously applied to barrel shifter designs that

may offer insight as to which design direction has the highest potential for current research. As

such, many designs will be reviewed so as to gain an understanding of what each offers and what

can be learned from the various approaches. In these designs, data is an n-bit vector where n is an

integer power of two.

2.1 Uni-directional ShiftlRotate Mechanisms

When performing a shift in a single direction, there are multiple approaches that can be

taken in terms of design. First, a shift of any magnitude can be computed as a number of

successive I-bit shifts. A shift register accomplishes this. This is, however, not entirely practical

due to its inefficiencies in terms of delay and the fact that the delay is dependent on the amount of

the shift. The latter creates problems for analysis and scheduling, which one would like to avoid.

Second, a shift can be performed in whole with a single shift equal to the shift amount.

This would be the quickest method of performing the shift if only a single shift amount were

allowed. That is not the case, however, so a design would require that all possible shift amounts

be available. A selection mechanism would then be required to select the shift of the proper

amount. This is impractical due to its cost inefficiencies.

Finally, a cross between the previous approaches is proposed. With this method, a shift is

performed by breaking it into stages less than the whole amount and greater than one. This is

done in such a way that a shift of any amount is possible through a linear combination of the shift

amounts offered. In this manner, more of the overall shift is performed in every step, which

reduces the number of required steps, while simultaneously allowing shifts of any value.

7



Fortunately, such a breakdown already exists in the structure of an unsigned binary

number. Specifically, an unsigned binary number is inherently a breakdown into powers of two.

Any number can therefore be represented as a sum ofpowers of two. If this breakdown is applied

to how a shift is performed, then given an n-bit data value, only lo~(n) bits are required to

. represent any allowed shift. As such, the shift can be broken into lo~(n) stages [I], [2]. Even if.

n is very large, this value will still be relatively small.

Therefore, a shifter using this natural breakdown of the shift amount has lo~(n) rows of

multiplexors. Each row performs a shift by an amount equal to an integer power of two. For

example, the shift amounts for n equal to 8 are: 1,2, and 4. It does not so much matter what order

these shifts are performed, but that the correct bit from the shift amount is used to control the

multiplexors of its stage. All of the designs presented will use structures of this sort. This type of

shifter is often called a barrel shifter.

2.1.1 Logical Right Shifter

A Logical Right Shifter using the aforementioned approach is shown in Figure 2.1. The

first row corresponds to a shift of one, while the last row corresponds to a shift of four. As

required, zeros fill the high order region. Hence, interconnects route zero into the high order

multiplexors. The value s_amt[x] represents the bit in position x of the shift amount, and as such

represents the value 2x •

8



o data[7] data[6] data[5] data[4] data[3] data[2] data[1] data[O]

out[7] out[6] out[5] out[4] out[3] out[2] out[1] out[O]

Figure 2.1: Logical Right Shifter

2.1.2 Right Rotator

A Right Rotator is very similar to a Logical Right Shifter. The difference between the

two lies in the manner in which interconnect lines are placed. In particular, since all of the input

bits are routed to the output, there is no longer a need for interconnect lines carrying the zero

signal. Instead, interconnect. lines need to be inserted to enable routing· of the low order bits from

each row to the high order region so that rotate can occur. Figure 2.2 shows a Right Rotator. The

change to a rotator from a shifter has no impact on the theoretical cost or delay. The longer

interconnect lines of the rotator, however, can increase both area and delay.

9



data[7] data[6] data[5] data[4] data[3] data[2] data[1] data[O]

out[7] out[6] out[5] out[4] out[3] out[2] out[1] out[O]

Figure 2.2: Right Rotator

2.2 Bi-directional ShiftlRotate Mechanisms

In this section, designs that perform either a shift, a rotate, or both in the right and left

directions are explored. The designs offer insight into the approaches taken to design a barrel

shifter with the capability to perform some or all of the operations described in Section 1.1.

2.2.1 Series Bi-directional Logical Shifter

The Series Bi-directional Logical Shifter utilizes two sequential uni-directional shifters to

accommodate the ability to shift logically either to the right or left [3]. This is accomplished by

having one of these shifters operate in the right direction and the other in the left direction. For

any given shift, only one shifter will actually alter the data. The other will simply operate as a

pass through, or perform a zero shift. As such,· the design allows for bi-directional shifts to take

place, albeit with slightly more than twice the hardware.

10



o data[7] data[6] data[5] data[4] data[3] data[2] data[1] data[O] right

out[7] out[6] out[5] out[4] out[3] out[2] out[1] out[O]

Figure 2.3: Series Bi-directional Logical Shifter

As one can see from Figure 2.3, the fIrst shifter in the series operates in the right

direction. If the desired operation is a right shift, then the logic will pass the shift amount to the

multiplexors that actually accomplish the shift. Otherwise, the multiplexors receive a logic low

and simply pass the input onto the second shifter. The second shifter is much like the fIrst except

for the fact that it shifts towards the left. If the operation signals a left shift, then the shift amount

is passed to the multiplexors in order for the shift to occur. The result of this second shifter is the

result of the entire unit.

11



From a cost analysis point of view, this design is fairly costly. Table 2.1 lists the cost of

this design and two designs yet to be mentioned. As can be seen, this design has 210~(n)

multiplexors in the critical path. The design as a whole requires 2nlo~(n) multiplexors.

Therefore, it is easily seen that this design is costly, but its relative cost will be more easily seen

after reviewing the next two designs.

Version AND(2 input) NOT MUX(2-to-l)

o 2Iog2(n)

o log2(n)+1
o log2(n)+2

log2(n )+1 2n log2(n )
o n+2n log2(n)

o 2n+n log2(n)

Total Components

Components on the Critical Delay Path

Approx. Area-Delay Product - MUX(2 to 1)

~eri~-J3i¥diI:¢i:1ti(ji.:i3J:@)gi~t:~l,1~ftet:}:: .',>

Pafullel·.:ai;mrecnoilalLO·ical·Sliifteri ;" .•.•·., ,.,"",.,.,._"''',.. ,.. ,.,g." .. , "', ..,,.'~~

Table 2.1: Components Counts and Critical Delay Paths for Bi-directional Logical Shifters

2.2.2 Parallel Bi-directional Logical Shifter

As in the aforementioned Series Bi-directional Logical Shifter, the Parallel Bi-directional

Logical Shifter also utilizes two uni-directional shifters, one for the right direction and another for

the left. These units, however, are placed in parallel as opposed to in series [3]. In this manner,

both a right and left shift are computed simultaneously. A multiplexor following these shifters

then selects the result from the shifter operating in the desired direction.

As shown in Figure 2.4, the shifter on the left performs the right shift, while the shifter on

the right performs the left shift. The output of each shifter is routed to a row of multiplexors that

use the control signal right to select the properly shifted data.

12
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o data[7] data[6] data[5] data[4] data[3] data[2] data[1] data[O]

o
.q--r- Sf amt[O]

Sf_amt[1]

Sf_amt[2]

fight

out[?] out[6] out[5] out[4] out[3] out[2] out[1] out[O]

Figure 2.4: Parallel Bi-directional Logical Shifter



Referring back to Table 2.1, it can be seen that the critical path delay of this unit is

reduced to 10~(n)+1 multiplexors. The cost has, however, risen to 2nlo~(n)+n multiplexors due

to the inclusion of the multiplexors to select the proper shift result. Therefore, while the delay is

reduced, the cost is increased. This ambiguity is resolved by using. the area-delay product, a

metric unifying the competing attributes of cost and delay, to compare the designs. Since 2-to-l

multiplexors dominate the design, they are the only component used to compute the area-delay

product. In this case, the area-delay product for the Parallel Bi-directional Logical Shifter is less

than that for the Series Bi-directional Logical Shifter. Therefore, the reduction in delay

dominates the increase in cost.

2.2.3 Data Reversal Bi-directional Logical Shifter

The previous two designs offer solutions by using two uni-directional shifters.

Understandably, they are expensive solutions due to their redundant nature. A more efficient

design would use only a single shifter. Offering only a single shifter means that a shift operation

can only operate in a single direction. There must then exist a mechanism to adjust the data so

that the shift in the supported direction alters the data in a manner conducive to accomplishing the

shift in the reverse direction. The Data Reversal Bi-directional Logical Shifter offers such a

mechanism.

This design reveals that a solution is to reverse the order of the bits in the data if it is to

be shifted in the direction opposite to that which the single shifter supports both before and after

the shifter [1], [2], [3], [4]. In this manner, the data is manipulated so that a right shift with two

bit reversals performs the desired left shift. Therefore, as seen in Figure 2.5, a bi-directional

logical shifter is achieved while utilizing only a single uni-directional shifter.

14



As Table 2.1 reveals, the delay of this design is larger than that of the Parallel Bi

directional Logical Shifter, but less than that of the Series Bi-directional Logical Shifter. In terms

of cost, this design uses fewer gates than the others. The area-delay product shows that this

method is preferred to the others. In other words, the decreased cost outweighs the increased

delay, which is the opposite of what was seen between the Series Bi-directional Logical Shifter

and the Parallel Bi-directional Logical Shifter.

data[7] data[6] data[5] data[4] data[3] data[2] data[1] data[O]

left

0-..........,

s_amt[O]

left

out[7] out[6] out[5] out[4] out[3] out[2] out[1] out[O]

Figure 2.5: Data Reversal Bi-directional Logical Shifter
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2.2.4 One's Complement Bi-directional Rotator

Just as the aforementioned Data Reversal Bi-directional Logical Shifter manipulates the

data so as to require only a single shifter, the One's Complement Bi-directional Rotator

manipulates the rotate amount to accomplish the same goal. This is done by supporting one

rotate direction directly and handling the opposite case by calculating the amount that the data

must be rotated in the supported direction to emulate a rotate in the opposite direction.

To truly realize this requires that the value (n-r_amt) be calculated, where n is the width

of the input data and r_amt is the rotate amount [5]. When n is an integer power of two, this

becomes a computation of the two's complement of the rotate amount. Computing the two's

complement, however, is slow due to the carry propagation involved. As such, a different

approach is taken. Instead of computing the two's complement, the one's complement of the

rotate amount is determined [3]. This computation is more easily accomplished, requiring only a

simple inversion of the rotate amount bits. Since the one's complement value is off by one, the

result may need to be rotated by one for correction. To remedy this, an extra rotate-by-one stage

is added to the rotator. This can be seen in Figure 2.6, which shows how an additional rotate is

performed for a rotate left when the unit supports rotate right. In addition, the control for the

multiplexors has been altered so that the inverse ofthe rotate amount is taken for a rotate left.

The One's Complement Bi-directional Rotator requires only a single additional row of

multiplexors, as opposed to the two additional rows used in the Data Reversal Bi-directional

Logical Shifter. As such, the cost is less since the logical XOR gates are generally no more

complicated than a multiplexor. The other concern, critical path latency, also decreases. By

placing the additional multiplexor stage at the beginning of the unit, the proper rotate amount can

be calculated without incurring a delay penalty, as the computation should be complete by the

time it is required. Since the rotator does not differ in theoretical gate count or critical path

16



latency, introduction of the unit into the comparison does not compromise the ability to evaluate

the varying designs.

data[7] data[6] data[5] data[4] data[3] data[2] data[1] data[O] left

out[7] out[6] out[5] out[4] out[3] out[2] out[1] 6ut[0]

Figure 2.6: One's Complement Bi-directional Rotator

2.2.5 Masking Rotating Shifter

While the previous designs offer insight into the creation of an efficient bi-directional

mechanism for shifts and rotates, they do not offer insight into how all the required operations

can be implemented in a single unit. The Masking Rotating Shifter offers that. By using masks

to manipulate th~ results of a rotate, it is possible to emulate logical and arithmetic shifts [6].

To accomplish this, the design starts by determining the rotation count, which is the

amount the data must be rotated to the right, as shown in Figure 2.7. For left oriented operations,

this value is the two's complement of the shift amount, otherwise, it is simply the original shift

amount. This value is passed onto the mask decode stage and the rotator. The rotator is a single
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right rotator. It is the rotator result that will be altered through the use of masks. The mask is

computed in the mask decode stage. Setting the shift amount high order bits to one and the

remaining bits to zero constructs the mask. Once the mask and the rotator result are known, they

are passed into a logic stage that computes the fmal result through application of the mask to the

rotator result. Using two control signals, the logic is able to manipulate the rotator result and the

mask so as to compute the desired shift.

shift amount

right ~---l

arithmetic __-j

data[n-1]

logic

result

data

Figure 2.7: Masking Rotating Shifter

In particular, the shift right logical operation is computed by taking the bit-wise logical

AND of the rotator result with the inverse of the mask. The shift left logical operation is

computed by taking the bit-wise logical AND of the rotator result with the mask. The right shift

arithmetic operation has similar computation details associated with it, however, the precise

computation depends on the sign bit of the data. In the case where this bit is a one, the result is

computed by taking the bit-wise logical OR of the rotator result with the mask. In the case where

the sign bit is a zero, the result is computed by taking the bit-wise logical AND of the rotator

result with the inverse ofthe mask, just as in the case ofthe shift right logical operation.
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right rotator. It is the rotator result that will be altered through the use of masks. The mask is

computed in the mask decode stage. Setting the shift amount high order bits to one and the

remaining bits to zero constructs the mask. Once the mask and the rotator result are known, they
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Figure 2.7: Masking Rotating Shifter

In particular, the shift right logical operation is computed by taking the bit-wise logical

AND of the rotator result with the inverse of the mask. The shift left logical operation is

computed by taking the bit-wise logical AND of the rotator result with the mask. The right shift

arithmetic operation has similar computation details associated with it, however, the precise

computation depends on the sign bit of the data. In the case where this bit is a one, the result is

computed by taking the bit-wise logical OR of the rotator result with the mask. In the case where

the sign bit is a zero, the result is computed by taking the bit-wise logical AND of the rotator

result with the inverse of the mask, just as in the case of the shift right logical operation.
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It is difficult to judge cost given so few implementation details. The approach to this

design, however, is the most useful piece of information gained since it offers a method to design

a complete barrel shifter, not yet explored.

2.3 Shift Operation Zero Flag

As previously discussed, the zero flag indicates when the result of an operation yields a

value of zero. Typically, this calculation is performed at the end of the unit since a shift operation

has the capability to do more than simply reorder the data bits. While this is certainly acceptable,

it is inefficient since any delay associated with its calculation adds directly to the delay of the

overall unit. Instead, the zero flag should be calculated in parallel with the result computation so

that the delay penalty can be avoided. This is accomplished by fITst determining what bits from

the input data exist in the result. Since the task of the barrel shifter is to determine both what bits

will remain from the data and their position, there is considerable work to do. The computation

for the zero flag, however, does not require that the position of the bits be known, only what bits

will be in the result. By taking advantage of this distinction, it is possible to compute the zero

flag in parallel to the result computation [7].

The process enabling such a calculation relies on masks. Essentially, a mask Z is used to

suppress those bits that are known not to exist in the final result. The manner in which the mask

Z is computed depends on the operation being carried out. For a shift right logical operation, the

mask Z has shift/rotate amount high order bits set to zero with ones in the other bit positions. The

bit-wise logical AND of the input data with the mask Z is then taken, thus forcing to zero those

bits that do not exist in the result. The logical OR is taken of that result, which is then inverted to

complete the zero flag computation. An output of one indicates a result of zero. This process is

illustrated in Figure 2.8.
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In order to adapt this method to the shift left logical operation, the mask Z is generated

such that shift/rotate amount low order bits are set to zero with ones in the other bit positions.

The remaining steps are identical t() the right shift logical operation. The masks, as they apply to

both logical shifts, are related in that each is the reverse of the other. This is due to the fact that

the bits being removed are on opposite sides of the data vector.

data[7] data[6] data[5] data[4] data[3] data[2] data[1] data[O]

Z[7] Z[6] Z[5] Z[4] Z[3] Z[2] Z[1] Z[O]

zero flag

Figure 2.8: Zero Flag Calculation

The shift right arithmetic operation does not differ from the shift right logical operation.

Since the maximum allowed shift amount is (n-l) bits, the sign bit of the data during a shift right

arithmetic operation cannot be shifted off. Therefore, there is no need to take notice of the fact

that either a zero or the sign bit is shifted in since it makes no difference to the computation of the

zero flag.

2.4 Overflow Flag

The overflow flag is generally more complicated to compute than the zero flag. This is

due to the fact that it does not represent the presence of a given state, but rather a transition. As
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such, its calculation requires careful attention to the left shift process. There is a method,

however, to implement this flag rather painlessly through the use of a mask.

This method, shown in Figure 2.9, selects either the input data or its inverse such that the

most significant bit is a one. Knowing that the most significant bit is a one and that it is not

needed later, however, implies that it does not need to be explicitly calculated, so it is not.

Simultaneously, a mask F is computed. The mask is constructed by placing shift-amount zeros in

the high order region while filling the low order region with ones. The bit-wise logical OR of the

selected data with the mask is then taken. This process highlights overflow causing conditions.

These (n-I) bits are logically AND'd together and then inverted [8]. This value represents the

overflow flag. A value of one signifies that overflow has occurred. This process is illustrated in

the example given in Table 2.2.

data[6] data[5] data[4] data[3] data[2] data[1] data[O]

k
M~~ I

overflow flag

Figure 2.9: Previous Overflow Flag Calculation
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It is also possible to implement this design such that the data is selected so that the most

significant bit is a zero. Once again, knowing the value of the most significant bit in advance

suggests that its calculation can be removed. The mask is then computed as having the high order

region filled with shift-amount ones while the low order region is filled with zeros. This is the

inverse of the previous mask computation. Instead of taking the bit-wise logical OR, the bit-wise

logical AND of the selected data with the mask is taken. Likewise, this result is logically OR'd

together. As before, an output of one indicates that overflow has occurred. An example of this

process is shown in Table 2.3.

Operation. ·IData
Overflow Flag Calculation Method 1 11101101

-Data 00010010
Mux Data 1101101
Calculate F 0011111
(Mux Data)+F 1111111
Calculate Overflow Flag 1111111->1->0

IShifURotate Amount
2

Table 2.2: Overflow Flag Calculation Method 1 Example

Operation IData
Overflow Flag Calculation Method 2 11101101

-Data 00010010
Mux Data 0010010
Calculate F 1100000
(Mux Data)*F 0000000
Calculate Overflow Flag 0000000->0

IShifURotate Amount
2

Table 2.3: Overflow Flag Calculation Method 2 Example
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It is also possible to implement this design such that the data is selected so that the most

significant bit is a zero. Once again, knowing the value of the most significant bit in advance

suggests that its calculation can be removed. The mask is then computed as having the high order

region filled with shift-amount ones while the low order region is filled with zeros. This is the

inverse of the previous mask computation. Instead of taking the bit-wise logical OR, the bit-wise

logical AND of the selected data with the mask is taken. Likewise, this result is logically OR'd

together. As before, an output of one indicates that overflow has occurred. An example of this

process is shown in Table 2.3.

Operation IData IShift/Rotate Amount
Overflow Flag Calculation Method 1 11101101 2

Step ]Value ..
-Data 00010010
Mux Data 1101101
Calculate F 0011111
(Mux Data)+F 1111111
Calculate Overflow Flag 1111111->1->0

Table 2.2: Overflow Flag CalculatIOn Method I Example

Operation IData IShift/Rotate Amount
Overflow Flag Calculation Method 2 11101101 2

Step (Value
-Data 00010010
Mux Data 0010010
Calculate F - 1100000
(Mux Data)*F 0000000
Calculate Overflow Flag 0000000->0

Table 2.3: Overflow Flag CalculatIOn Method 2 Example
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Chapter 3 - Current Research

Current research examines four approaches to the problem of designing an optimal barrel

shifter. As such, various design techniques will be applied in an attempt to understand what

optimizations provide the most improvement. Many of these optimizations will· have roots in

previous designs, but are expanded to satisfy the imposed demands.

Each of the following four designs take three inputs: an n-bit data vector where n is an

integer power of two, a lo~(n)-bit shift/rotate (SIR) amount vector, and a 3-bit operation code

(opcode) vector. Each bit from the opcode designates a specific aspect of the operation. In

particular, the separation is right/left, rotate/shift, and arithmetic/logical. The output of each

design varies somewhat, as some implement flags that others do not. All output, however, an n

bit result vector. The two flags that are occasionally added are the zero flag and the overflow

flag, each 1 bit.

3.1 Mux-based Data Reversal

3.1.1 Design Overview

The Mux-based Data Reversal design utilizes some of the simpler design ideas reviewed.

Due to this, it represents a conservative approach to barrel shifter design as it strives for cost

minimization. As such, it is this model that all other designs are compared to in the forthcoming

analysis. As the name reveals, this design primarily utilizes multiplexors in addition to the

aforementioned data reversal mechanism to carryout its operations.

As shown in Figure 3.1, the design overview is very straightforward. This is due in part

to the fact that the R calculation encompasses the majority of the desired functionality. It is this

unit that actually implements the shifts and rotates. The mux data reversal unit of the design

helps to simplify this computation, as does the S calculation.
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1

1
calculate R =
shift/rotate

n

result

Figure 3.1: Mux-based Data Reversal

As previously mentioned, the mux data reversal units reverse the order of the input data

so that a left oriented operation may be emulated through the use of right oriented hardware.

Likewise, the result is reversed so as to undo the original reversal. The S calculation computes

the value that will be used to fill in the vacated regions during a shift. For logical shifts this is a

zero, while for the arithmetic right shift, it is dependent on the sign bit of the data. In particular, S

is zero in all cases except when both the sign bit of the data is a one and the operation is an

arithmetic right shift.
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Figure 3.1: Mux-based Data Reversal

As previously mentioned, the mux data reversal units reverse the order of the input data

so that a left oriented operation may be emulated through the use of right oriented hardware.

Likewise, the result is reversed so as to undo the original reversal. The S calculation computes

the value that will be used to fill in the vacated regions during a shift. For logical shifts this is a

zero, while for the arithmetic right shift, it is dependent on the sign bit of the data. In particular, S

is zero in all cases except when both the sign bit of the data is a one and the operation is an

arithmetic right shift.
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in[7] in[6] in[5] in[4] in[3] in[2] in[1] in[O]
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rotate

Sf_amt[1]

S
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out[7] out[6] out[5] out[4] out[3] out[2] out[1] out[O]

Figure 3.2: Right ShifterlRotator

The right shifter/rotator, as shown in Figure 3.2, is a combination of the logical right

shifter and the right rotator with alterations made enabling the arithmetic right shift operation.

This is accomplished by adding a pad calculation before every row of multiplexors. This

computation determines which bits are used to fill voids created in the high order region by the

shifting of data out of the low order region. In the case of a rotate, the bits shifted out are placed

in the high order region and thus constitute the pad. For a shift, the fill bit, S, makes up the pad.
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The pad, once calculated, is then used during any non-zero shift/rotate on that level. In

partiCular, the pad makes up the high order region of the multiplexed result, while the low order

region is filled with those bits of the input not forced out by the shift. If the shift/rotate amount is

zero, then the input is simply passed through. This process repeats itself lo~(n) times. Each

time, the pad size is adjusted to match the particular shift/rotate amount of that particular row.

Once this process is complete, the result is sent to a mux data reversal unit that reverses the

actions of the first mux data reversal unit. In this manner, the result is put into the correct form.

3.1.2 Zero Flag

The zero flag often adds additional delay to the design since its computation is typically

based on the result. In a few cases, however, including this one, it is possible to begin calculation

of the zero flag before the fmal result is known and without costly additional logic. This is

possible since the fmal step, the data reversal, does not alter the contents of the result, just the

order. Therefore, computation of the zero flag can begin once the shifter/rotator is complete, as

shown in Figure 3.3.

While the computation is allowed to begin earlier than it would otherwise have started, it

does not necessitate that the zero flag is known before or at the time of completion of the mux

data reversal unit. It is still very much possible, and highly probable in cases where n is of even

moderate size, that the zero flag computation will increase the design's overall delay. This is due

to the implementation of both the mux data reversal and zero flag units. The mux data reversal

unit, as mentioned, uses a single row of multiplexors. The zero flag, however, uses a tree of

logical OR gates followed by a NOT gate so that an output of one signals a zero result. As such,

there exist many sizes of n that would require a logical OR tree of a depth greater than that of a

multiplexor, thus increasing the critical path delay of the unit as a whole. Therefore, while the
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calculation of the zero flag is optimized in terms of the delay it imposes, it is not possible to

completely erase its impact.

3

n

calculate S

calculate R =
shift/rotate

zero flag

n

result

1

Figure 3.3: Mux-based Data Reversal with Zero Flag

3.1.3 Overflow Flag

Unlike the zero flag with its simple computation, the overflow flag is quite complicated

to compute due to its measure of a transition, not a state. As such, it needs to be included in the

internal workings of the shifter/rotator so that it can monitor the shift/rotate process with the least

amount of additional hardware. To this end, it has been integrated into the unit as shown in

Figure 3.4. The rest of the design remains the same.
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Figure 3.4: Mux-based Data Reversal with Zero and Overflow Flags

In order to add the overflow computation to the shifter/rotator without increasing the

delay, it is necessary to detect overflow in parallel with the shift/rotate operation. This process is

detailed in Figure 3.5. Here, it can be seen that the overflow flag is computed in a series of steps

corresponding to the breakdown within the shifter/rotator. Each step uses a number of

multiplexors equal to the number used in the pad computation at the same level. These

multiplexors, during a shift, select those bits that pass beyond or onto the data's sign bit, which

during a shift left operation inhabits the least significant bit position of the input to the right
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Figure 3.4: Mux-based Data Reversal with Zero and Overflow Flags

In order to add the overflow computation to the shifter/rotator without increasing the

delay. it is necessary to detect overflow in parallel with the shift/rotate operation. This process is

detailed in Figure 3.5. Here, it can be seen that the overflow flag is computed in a series of steps

corresponding to the breakdown within the shifter/rotator. Each step uses a number of

multiplexors equal to the number used in the pad computation at the same level. These

multiplexors. during a shift, select those bits that pass beyond or onto the data's sign bit. which

during a shift left operation inhabits the least significant bit position of the input to the right
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Figure 3,5: Right Shifter/Rotator with Overflow Flag



shifter/rotator. In those cases where a shift does not involve a particular level, the multiplexors

select the sign bit. The selected bits are then logically XOR'd with the sign bit. In this manner,

only when both a shift occurs and a bit differs from the sign bit will overflow be signaled. As

such, these bits are logically OR'd together so as to detect any overflow condition existing at the

particular level.

This process is repeated for each level of the shifter/rotator. Each level result is then

logically OR'd with the result from the previous level and passed to the next level until all bits

have essentially been logically OR'd together. A high order result signals that overflow has

occurred given that the operation is a left shift.

It is not by coincidence that examination of this structure reveals that delay is minimized

along the overflow computation path. This is achieved by placing the most computationally

involved overflow level at the top, to be performed fIrst. In this manner, it has ample time to

complete since its result is not needed immediately. This is due to the fact that the subsequent

level has its own work to do before it is ready for the result. The fmal level involves the least

amount of work since it needs only to be logically OR'd with the result of the previous level,

which by this point should be complete. To build this structure in this style requires that the

shifter/rotator be designed with the overflow computation in mind. One can see that this is not a

trivial design layout, but rather one that has been designed with cost and delay in mind from the

start.

3.1.4 Examples

Now that the mechanisms behind the design are known, a few examples are shown to

demonstrate the exact manner in which each operation is performed. Each example shows the
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outputs of· the subunits from the design diagrams so that the manner in which the result is

computed is easily seen.

Version
Mux-based Data Reversal

IOperation
Rotate Right

IData IShift/Rotate Amount
10100110 2

Mux data reversal
Calculate S = arithmetic*data[n-I]
Calculate R = ShiftlRotate
Mux data reversal
Result

Calculate Zero Flag

10100110
0*1=0
10101001
10101001
10101001

o

Calculate Overflow Flag 0
Table 3.1: Mux-based Data Reversal Rotate Right Example

IOperationVersion
Mux-based Data Reversal

Mux data reversal
Calculate S = arithmetic*data[n-I]
Calculate R = ShiftlRotate
Mux data reversal
Result

Calculate Zero Flag

Rotate Left

01100101
0*1=0
01011001
10011010
10011010

o

IData IShift/Rotate Amount
10100110 2

Calculate Overflow Flag 0
Table 3.2: Mux-based Data Reversal Rotate Left Example
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INTENTIONAL SECOND EXPOSURE

outputs of the subunits from the design diagrams so that the manner In which the result IS

computed is easily seen.

Version IOperation IData IShift/Rotate Amount
Mux-based Data Reversal Rotate Right 10100110 2

Step IVal~e

Mux data reversal 10100110
Calculate S = arithmetic*data[n-l] 0*1=0
Calculate R = Shift/Rotate 10101001
Mux data reversal 10101001
Result 10101001

Calculate Zero Flag 0

Calculate Overflow Flag 0
Table 3.1: Mux-based Data Reversal Rotate Right Example

Version IOperation IData IShift/Rotate Amount
Mux-based Data Reversal Rotate Left 10100110 2

Step IValue
Mux data reversal 01100101
Calculate S = arithmetic*data[n-I] 0*1=0
Calculate R = Shift/Rotate 01011001
Mux data reversal 10011010
Result 10011010

Calculate Zero Flag 0

Calculate Overflow Flag 0
Table 3.2: Mux-based Data Reversal Rotate Left Example
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Version
Mux-based Data Reversal

IOperation
Shift Right Logical

IData IShift/Rotate Amount
10100110 2

Mux data reversal
Calculate S =arithmetic*data[n-l]
Calculate R = ShiftlRotate
Mux data reversal
Result

Calculate Zero Flag

10100110
0*1=0
00101001
00101001
00101001

o

Calculate Overflow Flag 0

Table 3.3: Mux-based Data Reversal Shift Right Logical Example

Version IOperation IData IShift/Rotate Amount
Mux-based Data Reversal Shift Left Logical 10100110 2

Mux data reversal
Calculate S = arithmetic*data[n-l]
Calculate R = ShiftlRotate
Mux data reversal
Result

Calculate Zero Flag

01100101
0*1=0
00011001
10011000
10011000

o

Calculate Overflow Flag 1

Table 3.4: Mux-based Data Reversal Shift Left Logical Example

Version IOperation IData IShift/Rotate Amount
Mux-based Data Reversal

Mux data reversal
Calculate S = arithmetic*data[n-l]
Calculate R = Shift/Rotate
Mux data reversal
Result

Calculate Zero Flag

Shift Right Arithmetic 10100110 2

10100110
1*1=1
11101001
11101001
11101001

o

Calculate Overflow Flag .~ 0

Table 3.5: Mux-based Data Reversal Shift Right Arithmetic Example
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Version IOperation IData IShift/Rotate Amount
Mux-based Data Reversal Shift Right Logical 10100110 2

Step ·IValue ... ..ii ...................... ·i..... i.. i

Mux data reversal 10100110
Calculate S = arithmetic*data[I1-I] 0*1=0
Calculate R = Shift/Rotate 00101001
Mux data reversal 00101001
Result 00101001

Calculate Zero Flag 0

Calculate Overflow Flag 0
Table 3.3: Mux-based Data Reversal Shift Right Logical Example

Version IOperation IData IShift/Rotate Amount
Mux-based Data Reversal Shift Left Logical 10100110 2

Step IValue
Mux data reversal 01100101
Calculate S = arithmetic*data[11-1] 0*1=0
Calculate R = Shift/Rotate 00011001
Mux data reversal 10011000
Result 10011000

Calculate Zero Flag 0

Calculate Overflow Flag 1
Table 3.4: Mux-based Data Reversal Shift Left Logical Example

Version IOperation IData IShift/Rotate Amount
Mux-based Data Reversal Shift Right Arithmetic 10100110 2

Step IValue -
Mux data reversal 10100110
Calculate S = arithmetic*data[I1-I] 1*1=1
Calculate R = Shift/Rotate 11101001
Mux data reversal 11101001
Result 11101001

Calculate Zero Flag 0

Calculate Overflow Flag 0
Table 3.5: Mux-based Data Reversal ShIft Right ArIthmetIc Example
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3.2 Mask-based Data Reversal

3.2.1 Design Overview

The Mask-based Data Reversal design is a combination of the Data Reversal Bi

directional Logical Shifter and the Masking Rotating Shifter. It utilizes the data reversal

mechanism to emulate left oriented operations with right oriented hardware. In addition, the

masking operations are used to derive all results from some base form. The base form is that of

the rotate since it maintains all bits throughout its computation and correctly orders those bits.

Application of the mask manipulates the base form so as to replicate shift operations. A rotate

operation requires no manipulation.

Figure 3.6 illustrates a block overview of the design. Many of the components from the

previous design are carried over. As mentioned, this design utilizes a mux data reversal unit that

is the same as before. In addition, the calculation of the fill bit, S, is also done in the same

manner. This is, however, where the similarities end. The most clearly visible change is the

creation of a computation path in parallel with the rotate. This path computes the mask P that

will ultimately be applied to the rotate result. Since a multitude of factors must be considered in

the mask computation, it is constructed in a step manner to highlight each contributing factor.

The first component, mask F, is an n-bit vector containing shift/rotate amount zeros left

justified and the remaining bits filled with ones. This mask corresponds directly to a logical right

shift since its application will void bits by forcing them to zero. To make this flag universally

applicable, so as to later avoid a selection mechanism, requires that it be modified further. This

modification is made in the calculation of P. The mask P is the result of taking the bit-wise

logical OR of the mask F with the rotate signal, P=F+rotate. In this manner, if the operation is a

rotate, then application of the mask makes no changes to the rotate result.
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Finally, an intermediate result T is calculated which is the fmal result without the second

mux data reversal unit applied to undo the first. It is within this calculation that the mask is

applied to the rotate result. T is computed by first taking the bit-wise logical OR of the mask P

with the rotate result R. Simultaneously, the logical AND of S with the inverse of P, Ii, is taken.

These two results are then bit-wise logically OR'd together, T =R*P+S* P.

1 2

calculate F

n

1

n

calculate R =
rotate

n

calculateT

n

mux data reversal

n

result

1

1

Figure 3.6: Mask-based Data Reversal

In this manner, P is used to force to zero those bits from the rotate result corresponding to

shifted in zeros in the fmal result. Likewise, Ii is used to fill those bit positions voided by the
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Finally, an intermediate result T is calculated which is the final result without the second

mux data reversal unit applied to undo the first. It is within this calculation that the mask is

applied to the rotate result. T is computed by first taking the bit-wise logical OR of the mask P

with the rotate result R. Simultaneously, the logical AND of S with the inverse of P, P. is taken.

These two results are then bit-wise logically OR'd together, T = R*P+S* P.

2

calculate F

calculate R =
rotate

calculate S

n

n

calculate T

n

• mux data reversal

n

result

Figure 3.6: Mask-based Data Reversal

In this manner, P is used to force to zero those bits from the rotate result corresponding to

shifted in zeros in the final result. Likewise, P is used to fill those bit positions voided by the .
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application of P with the value of S. As a reminder, S is only one when both the sign bit of the

data is a one and the operation is an arithmetic shift. As such, this part of the calculation of T

only alters the result if a shift right arithmetic operation is being performed. For a rotate

operation, P is the zero vector since P is a vector of ones.

Therefore, all operation calculations pass through the mask application despite their

differences. This is possible since the applied mask is built around the current operation. Once

the calculation of the intermediate result T is known, it is passed to a mux data reversal unit to

undo the previous mux data reversal unit.

3.2.2 Mask F Generator

As was previously mentioned, the mask F is composed of shift/rotate amount zeros left

justified with the remaining bits filled with ones. The mechanism to create this value relies upon

the shift/rotate amount to create the mask F. The generator of the mask F utilizes a recursive

structure. With this approach, creating an n-bit mask F requires first that an (n/2)-bit mask F be

generated. Figure 3.7 shows the structure used to create a 16-bit mask. It is clearly visible that

the structure begins by using the inverse of the least significant bit from the shift/rotate amount.

It is also clear that a one always constitutes the least significant bit of the mask F. This bit is not,

however, used in the recursive structure but instead concatenated upon mask completion.

If we consider the construction of a 2-bit mask for data of the same length and take into

account the restriction that the maximum shift amount is equal to (n-l), then one can see how the

mask is simply the inverse of the shift amount bit followed by a one. There are only two

possibilities for the mask and the same number for the shift amount. In this manner, construction

of a 2-bit mask F is complete and the base case for the recursive structure is set. An n-bit mask is

computed using the previous mask minus the appended one. This value is used twice. First, each
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bit is logically AND'd with the inverse of the next least significant bit from the shift/rotate

amount. Second, each bit is logically OR'd with the inverse of the next least significant bit from

the shift/rotate amount. The 'second intermediate result is then concatenated to the first with the

inverse of the next least significant shift/rotate amount bit occupying a position between them.

Finally, concatenation of a one onto the low order side completes construction of any n-bit mask

F. Now that both the base condition and the intermediate steps have been described, it is easy to

see how the mask is constructed.

3.2.3 Zero Flag

The zero flag for this design could be implemented in the exact same manner as was done

in the Mux-based Data Reversal design. To do so, however, would be inefficient since there

exists a mechanism to perform this calculation even earlier, so as to completely avoid additional

latency, without requiring a substantial increase in cost. This mechanism is a direct derivation of

that used in the Shift Operation Zero Flag, described in Section 2.3. The difference between that

mechanism and the one employed here is that instead of manipulating the mask so that it applies

to the operation, the data the mask is applied to is manipulated. In particular, advantage is taken

of the fact that the mux data reversal unit is already formatting the data so that it applies to a right

oriented operation. In this manner, additional work is minimized.

Therefore, the zero flag calculation is the same as that shown in Figure 2.8, but with the

input data replaced with the result of the mux data reversal unit and the mask Z computed as the

reverse of the mask P. The reverse of the mask P is used since it is applied to the mux data

reversal unit's output before it has been rotated. As such, the bits that will be voided are on the

side opposite to which the mask P is designed for. As before, an output of one signals a zero

result. Figure 3.8 shows the integration of the zero flag unit into the design.
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Figure 3.8: Mask-based Data Reversal with Zero Flag

3.2.4 Overflow Flag

The overflow flag, like the zero flag, can benefit from the use of masks. One such

method was presented previously. An enhancement of that method, however, has been

implemented instead. This overflow computation method is derived from the observation that

only a few select bits are able to cause an overflow condition to arise during a left shift. As such,

if these bits can be isolated, then they can be examined for signaling an overflow. To this end,

the mask is used to illuminate those bits that are of concern.
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3.2.4 Overflow Flag

The overflow flag, like the zeJ:o flag, can benefit from the use of masks. One such

method was presented previously. An enhancement of that method, however. has been

implemented instead. This overflow computation method is derived from the observation that

only a few select bits are able to cause an overflow condition to arise during a left shift. As such,

if these bits can be isolated, then they can be examined for signaling an ov~rflow. To this end,

the mask is used to illuminate those bits that are of concern.
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Figure 3.9: Mask-based Data Reversal with Zero and Overflow Flags

Figure 3.9 reveals the manner in which the overflow computation has been inserted into

the design. It resides in a path parallel to that of the rotate and mask generation units. The

computation is broken into two stages. The ftrst step of the process is to calculate the logical

XOR of the (n-l) low order data bits with the sign bit of the data. This operation determines what

bits could cause an overflow if passed over the most signiftcant bit during a logical left shift. In

the second stage, this result is then logically AND'd with the inverse of the (n-l) high order bits

of the mask F. The mask F has shift/rotate amount left justifted zeros, which means that its

inverse has shift/rotate amount left justifted ones.

By shifting this value to the right by one, a value is obtained where the ones are in the

same bit positions as those bits from the data that will ultimately pass onto or beyond the sign bit

of the data. The logical AND operation thus highlights those positions that may cause an
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Figure 3.9 reveals the manner in which the overflow computation has been inserted into

the design. It resides in a path parallel to that of the rotate and mask generation units. The

computation is broken into two stages. The first step of the process is to calculate the logical

XOR of the (11-1) low order data bits with the sign bit of the data. This operation determines what

bits could cause an overflow if passed over the most significant bit during a logical left shift. In

the second stage. this result is then logically AND'd with the inverse of the (11-1) high order bits

of the mask F. The mask F has shift/rotate amount left justified zeros, which means that its

inverse has shift/rotate amount left justified ones.

By shifting this value to the right by one, a value is obtained where the ones are in the

same bit positions as those bits from the data that will ultimately pass onto or beyond the sign bit

of the data. The logical AND operation thus highlights those positions that may cause an
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overflow. The logical OR network that follows then determines if an overflow has occurred.

This result must then be logically AND'd with the left shift signal. All of this can be seen in

Figure 3.10. Table 3.6 reveals synthesis results for this and the previous approach described in

Section 2.4. As can be seen, the current method not only has a lower cost, but a reduced latency

as well.

in[6] in[5] in[4] in[3] in[2] in[1] in[O]

in[7] --.....I----+-+-~J_+_-_e_i'---....+_____4Il_+__.

left shift

Overflow Flag

Figure 3.10: Current Overflow Flag Calculation

40



INTENrIONAL~ECOND ExposURE

ovedlow. The logical OR network that follows then determines if an overflow has occurred.

This result must then be logically AND'd with the left shift signal. All of this can be seen in

Figure 3.10. Table 3.6 reveals synthesis results for this and the previous approach described in

Section 2.4. As can be seen, the current method not only has a lower cost, but a reduced latency

as well.

in[6] in[5] in[4] in[3] in[2] in[1] in[O]

in[7] ---..-+----tI--+-+-1I----_..+---lH-....-f-----,

left shift

Overflow Flag

Figure 3.10: Current Overflow Flag Calculation

128
805 gates
1.76 ns
855 gates
1.79 ns

8

48 gates 58 I gates

Area

Version

Current Method Delay

Previous Method Delay

45 gates
1.06 nS

49 gates
1.28 ns

I-----+~-~~-f:

40



3.2.5 Examples

As was done with the Mux-based Data Reversal approach, examples are given to better

illustrate the design at work.

Version
Mask-based Data Reversal

IOperation
Rotate Right

IData IShift/Rotate Amount
10100110 2

Mux data reversal
Calculate F
Calculate R = Rotate
Calculate P = F + rotate
Calculate P
Calculate S = arithmetic*data[n -1]
Calculate T = R*P+S* P
Mux left/rightMux data reversal
Result

Calculate Z = P reversed
Calculate Zero Flag

10100110
00111111
10101001
00111111+1=11111111
00000000
0*1=0
10101001*11111111+0*00000000=101011001
10101001
10101001

11111111
10100110*11111111=10100110->0

Calculate data[(n-2)..O] xor data[n-1] 1011001
Calculate Overflow Flag 1011001*11 00000=1 000000->1 *0=0

Table 3.7: Mask-based Data Reversal Rotate Right Example
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3.2.5 Examples

As was done with the Mux-based Data Reversal approach, examples are given to better

illustrate the design at work.

Version IOperation IData IShift/Rotate Amount
Mask-based Data Reversal Rotate Right 10100110 2

Step IValu~

Mux data reversal 10100110
Calculate F 00111111
Calculate R = Rotate 10101001
Calculate P = F + rotate 00111111+1=11111111
Calculate P 00000000
Calculate S = arithmetic*data[n-l] 0*1=0
Calculate T = R*P+S* P 10101001*11111111+0*00000000=101011001
Mux left/rightMux data reversal 10101001
Result 10101001

Calculate Z = P reversed 11111111
Calculate Zero Flag 10100110*11111111=10100110->0

Calculate data[(n-2)..O] xor data[n-l] 1011001
Calculate Overflow Flag 1011001 *11 00000=1 000000->1 *0=0

Table 3.7: Mask-based Data Reversal Rotate RIght Example
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Version
Mask-based Data Reversal

IOperation
Rotate Left

IData IShift/Rotate Amount
10100110 2

Mux data reversal
Calculate F
Calculate R = Rotate
Calculate P = F + rotate
Calculate P
Calculate S = arithmetic*data[n-l]
Calculate T = R*P+S* P
Mux data reversal
Result

Calculate Z = P reversed
Calculate Zero Flag

01100101
00111111
01011001
00111111+1=11111111
00000000
0*1=0
01011001*11111111+0*00000000=01011001
10011010
10011010

11111111
01100101*11111111=01100101->0

Calculate data[(n -2)..0] xor data[n -1] 1011001
Calculate Overflow Flag 1011001*11 00000=1 000000->1 *0=0

Table 3.8: Mask-based Data Reversal Rotate Left Example

Version
Mask-based Data Reversal

IOperation
Shift Right Logical

IData IShift/Rotate Amount
10100110 2

Mux data reversal
CalculateF
Calculate R = Rotate
Calculate P =F + rotate
Calculate P
Calculate S = arithmetic*data[n-l]
Calculate T = R*P+S* Ii
Mux data reversal
Result

Calculate Z = P reversed
Calculate Zero Flag

10100110
00111111
10101001
00111111+0=00111111
11000000
0*1=0
10101001*00111111+0*11000000=00101001
00101001
00101001

11111100
10100110*11111100=10100100->0

Calculate data[(n -2)..0] xor data[n -1] 1011001
Calculate Overflow Flag 1011001*1100000=1000000->1*0=0

Table 3.9: Mask-based Data Reversal Shift Right Logical Example
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i

Version IOperation I Data IShift/Rotate Amount
Mask-based Data Reversal Rotate Left 10100110 2

Step < IValue .... ............. ..........
Mux data reversal 01100101
Calculate F 00111111
Calculate R = Rotate 01011001
Calculate P = F + rotate 00111111+1=11111111
Calculate P 00000000
Calculate S = arithmeti(:*data[n-l] 0*1=0
Calculate T = R*P+S* P 01011001*11111111+0*00000000=01011001
Mux data reversal 10011010
Result 10011010

Calculate Z = P reversed 11111111
Calculate Zero Flag 01100101*11111111=01100101->0

Calculate data[(n-2)..O] xor data[n-l] 1011001
Calculate Overflow Flag 1011001 *11 00000=1 000000->1 *0=0

Table 3.8: Mask-based Data Reversal Rotate Left Example

Version 'Operation ,Data 'Shift/Rotate Amount
Mask-based Data Reversal Shift Right Logical 10100110 2

Step IValue
Mux data reversal 10100110
Calculate F 00111111
Calculate R = Rotate 10101001
Calculate P = F + rotate 00111111+0=00111111
Calculate P 11000000
Calculate S = arithmetic*data[n-I] 0*1=0
Calculate T = R*P+S* P 10101001*00111111+0*11000000=00101001
Mux data reversal 00101001
Result 00101001

-
Calculate Z = P reversed 11111100
Calculate Zero Flag 10100110*11111100=10100100->0

Calculate data[(n-2)..O] xor data[n-l] 1011001
Calculate Overflow Flag 1011001*1100000=1000000->1*0=0

Table 3.9: Mask-based Data Reversal Shift Right LogIcal Example
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Version
Mask-based Data Reversal

IOperation
Shift Left Logical

IData IShift/Rotate Amount
10100110 2

Mux data reversal
Calculate F
Calculate R = Rotate
Calculate P = F + rotate
Calculate P
Calculate S = arithmetic*data[n -1]
Calculate T = R*P+S* P
Mux data reversal
Result

Calculate Z = P reversed
Calculate Zero Flag

01100101
00111111
01011001
00111111+0=00111111
11000000
0*1=0
01011001*00111111+0*11000000=00011001
10011000
10011000

11111100
11111100*01100101=01100100->0

Calculate data[(n -2)..0] xor data[n -1] 1011001
Calculate Overflow Flag 1011001*11 00000=1 000000->1 *1 =1

Table 3.10: Mask-based Data Reversal Shift Left Logical Example

Version
Mask-based Data Reversal

IOperation I Data IShift/Rotate Amount
Shift Right Arithmetic 10100110 2

Mux data reversal
Calculate F
Calculate R = Rotate
Calculate P = F + rotate
Calculate P
Calculate S = arithmeti<tdata[n-1]
Calculate T = R*P+S* P
Mux data reversal
Result

Calculate Z = P reversed
Calculate Zero Flag

10100110
00111111
10101001
00111111+0=00111111
11000000
1*1=1
10101001*00111111+1*11000000=11101001
11101001
11101001

11111100
11111100*10100110=10100100->0

Calculate data[(n -2)..0] xor data[n -1] 1011001
Calculate Overflow Flag 1011001*11 00000=1000000->1 *0=0

Table 3.11: Mask-based Data Reversal Shift Right Arithmetic Example
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Version IOperation IData IShift/Rotate Amount
Mask-based Data Reversal Shift Left Logical 10100110 2

Step lVall.l4:l. > /.i ...... .... ... ......... .
Mux data reversal 01100101
Calculate F 00111111
Calculate R = Rotate 01011001
Calculate P = F + rotate 00111111+0=00111111
Calculate P 11000000
Calculate S = arithmetic:"data[n-I] 0*1=0
Calculate T = R*P+S* P 01011001*00111111+0*11000000=00011001
Mux data reversal 10011000
Result 10011000

Calculate Z = P reversed 11111100
Calculate Zero Flag 11111100*01100101=01100100->0

Calculate data[(n-2)..O] xor dataln-I] 1011001
Calculate Overflow Flag 1011001*1100000=1000000->1*1=1

Table 3.10: Mask-based Data Reversal ShIft Left LogIcal Example

Version 'Operation IData IShift/Rotate Amount
Mask-based Data Reversal Shift Right Arithmetic 10100110 2

Step IValue
Mux data reversal 10100110
Calculate F 00111111
Calculate R = Rotate 10101001
Calculate P = F + rotate 00111111+0=00111111
Calculate P 11000000
Calculate S = arithmetic:"data[n-I] 1*1=1
Calculate T = R*P+S* P 10101001*00111111+1*11000000=11101001
Mux data reversal 11101001
Result 11J01001

Calculate Z = P reversed 11111100
Calculate Zero Flag 11111100*10100110=10100100->0

Calculate data[(n-2)..O] xor data[n-I] 1011001
Calculate Overflow Flag 1011001*1100000=1000000->1*0=0

Table 3.11: Mask-based Data Reversal ShIft RIght ArIthmetIC Example
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3.3 Mask-based Two's Complement

3.3.1 Design Overview

The Mask-based Two's Complement design is very much like the previous design. A

difference does exist, however, instead of manipulating the data of left oriented operations so that

right oriented hardware operates on it correctly, the shift/rotate amount is manipulated. In this

manner, the data is rotated to the right until it is as though it were rotated left. A mask is again

used to manipulate the rotate result in order to obtain a result for a different operation.

2

n n

calculate S

1

calculate R =
rotate

n

calculate T

n

result

Figure 3.11: Mask-based Two's Complement
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3.3 Mask-based Two's Complement

3.3.1 Design Overview

The Mask-based Two's Complement design is very much like the previous design. A

difference does exist, however, instead of manipulating the data of left oriented operations so that

right oriented hardware operates on it correctly, the shift/rotate amount is manipulated. In this

manner, the data is rotated to the right until it is as though it were rotated left. A mask is again

used to manipulate the rotate result in order to obtain a result for a different operation.
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The design overview can be seen in Figure 3.11. The S calculation unit and rotator are

the same as before, as is the mask F generator. That is, however, all that remains unchanged from

the previous design. This design starts by calculating the two's complement of the shift/rotate

amount. This value is equal to (n-shift/rotate amount), which is the value that left oriented

operations must shift the data to the right. Once this value is known, the shift/rotate amount is

selected that corresponds to the operation direction. This value is then used in the rotator and for

mask generation. The mask F generator uses the same procedure as the previous method in

calculating the mask.

While the mask F still applies directly to a shift right· logical operation, due to the

changes in the way the shift is performed, it is not directly applicable to the shift left logical

operation as well. Instead, the inverse of F corresponds with that operation. Therefore,

calculation of the modified mask P is much more complex and involved. .In this computation, the

correct orientation of F is selected for a given shift direction. In addition, two other factors are

logically OR'd with this value. The first is the rotate signal which is used to alter the mask so it

can be used in rotate operations as well, just as was done before. The second is a signal

indicating whether or not the shift/rotate amount is zero. This is a one if the shift/rotate amount is

zero and a zero otherwise. This series of operations is expressed in the equation P=

(right*F+left* F) + (rotate + SIR amount zero).

This last value, the shift/rotate amount zero, is required to properly set the mask if the

operation is a shift left logical operation with a shift/rotate amount of zero. This is due in part to

the fact that the two's complement of zero is zero. Additionally, the mask was designed for

applications actually involving a non-zero shift/rotate amount, which this does not. As such, this

is a simple workaround which requires little additional hardware since it is only a logical OR tree

with a trailing inverter for a bit vector of length lo~(n).
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The fmal result is calculated as T. It is of the same form as the previous calculation.

This was maintained at the expense of a more complicated mask P computation. As before, the

mask P is bit-wise logically AND'd with the rotate result, R. At the same time, the value S is

logically AND'd with the inverse of P. These two values are then bit-wise logically OR'd

together, T=R*P+S* P.

3.3.2 Two's Complement

The unit computing the two's complement is a carry ripple structure, as is evident in

Figure 3.12. It operates by inverting the shift/rotate amount and then using half-adders to add a

one to this value. Normally, such a unit would have such high latency that it would not even be

considered. Since only the two's complement of the shift/rotate amount is needed, which is

lo~(n)-bits wide, the amount of the delay may be much less than one would initially assume.

This unit could be replaced with one incorporating carry lookahead logic, but analysis has

showed that there is no noticeable gain from doing so. This is due to the small width of the

shift/rotate value. As such, the carry ripple unit is kept. This does nothing for the fact that the

unit, in any form, is in the critical delay path and is slow.

The only positive aspect from using this device is that it negates the need for a data

reversal unit that, while not terribly costly in terms of hardware required, is so in terms of the

number and length of signal paths required in any implementation. Generally, this concern only

matters when the manufacturing process is of a particularly fme type.
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Figure 3.12: Two's Complement Unit

3.3.3 Zero Flag

This unit computes the zero flag in a manner very similar to that of the Mask-based Data

Reversal design. Some modifications, however, were required to account for the altered mask

construction and the fact that a mux data reversal unit is not used. Figure 3.13 shows how the

zero flag computation is added to the design.

As seen, the input to the zero flag computation unit is the data directly from the input, not

from a mux data reversal unit as was done before. The mask Z is computed as before by simply

reversing the bit order of the mask P. The changes made to the P mask computation make it

suitable for application to the zero flag computation. The remainder of the zero flag calculation

remains as before.
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Figure 3.13: Mask-based Two's Complement with Zero Flag

3.3.4 Register Load Optimized

In some implementations, the data for a shift/rotate operation is in a register. As such, a

certain amount of delay is induced into the execution of such a command for the retrieval of the

register's data. Since the shift/rotate amount is often an immediate value in the instruction, it is

usable as soon as the instruction is decoded. It is therefore apparent that there exists a period of

time in the execution of the instruction where the shift/rotate amount is available, but the data to

be shifted/rotated is not. This time is often wasted, as nothing is being done.
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3.3.4 Register Load Optimized

In some implementations, the data for a shift/rotate operation is in a register. As such, a

certain amount of delay is induced into the execution of such a command for the retrieval of the

register's data. Since the shift/rotate amount is often an immediate value in the instruction. it is

usable as soon as the instruction is decoded. It is therefore apparent that there exists a period of

time in the execution of the instruction where the shift/rotate amount is available, but the data to

be shifted/rotated is not. This time is often wasted, as nothing is being done.
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It is possible, however, to do some work during this period that will lower the critical

path delay of the instruction. If it is assumed that any implementation will break down the design

into components no longer in delay than the rotator, then there is that much time to accomplish

work before the register's value is known. For the case of the Mask-based Two's Complement

design, it is possible to calculate the two's complement value and perform the subsequent

selection of the proper shift/rotate amount. This can be seen in Tables 3.12 and 3.13. Table 3.12

illustrates the cost of the rotator used and 3.13 illustrates the cost of the two's complement

computation and the subsequent selection mechanism. It is clear that the two's complement

calculation and the following selection can be done in an amount of time slightly less than that of

the rotator.

As such, this calculation can be performed while the data is being retrieved. Since these

two tasks are major components to the critical path delay of the design as a whole, their removal

from the execution stage should reap a significant benefit.

Version
'J" --c ..•.•...•..... ::. <...~,.:,,-.'<, ",.->..-

2'~·.c()fuklement*·
shiftJrotate.lllUx Delay

Therefore, in those cases where the instruction is structured so that the data is retrieved

from a register, and the shift/rotate amount is an immediate, it is beneficial to use this design.

Some implementations, however, have instructions in which the shift/rotate amount is from a
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It is possible, however, to do some work during this period that will lower the critical

path delay of the instruction. If it is assumed that any implementation wilI break down the design

into components no longer in delay than the rotator, then there is that much time to accomplish

work before the register's value is known. For the case of the Mask-based Two's Complement

design, it is possible to calculate the two's complement value and perform the subsequent

selection of the proper shift/rotate amount. This can be seen in Tables 3.12 and 3.13. Table 3.12

illustrates the cost of the rotator used and 3.13 illustrates the cost of the two' s complement

computation and the subsequent selection mechanism. It is clear that the two's complement

calculation and the following selection can be done in an amount of time slightly less than that of

the rotator.

As such. this calculation can be performed while the data is being retrieved. Since these

two tasks are major components to the critical path delay of the design as a whole, their removal

from the execution stage should reap a significant benefit.

Version

Rotator

Optimized Report 8
Area Area 45gates

Delay 1.06ns
Delay Area 49 gates

Delay 1.28 ns
Table 3.12: Rotator Cost

128
805 gates
1.76ns
855 gates
1.79 ns

Version - Optimized Renort 8 128
Area Area 18i~tf6S 54 gates

2's Complement + Delay 0.8711s 2.12 ns
shift/rotate mux Delay Area 20 gates 68'gates

Delay 0.85 ns 1.58ns .
Table 3.13: Two's Complement and Shift/Rotate Mux Cost

Therefore, in those cases where the instruction is structured so that the data is retrieved

from a register, and the shift/rotate amount is an immediate, it is beneficial to use this design.

Some implementations, however, have instructions in which the shift/rotate amount is from a
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register. In this case, the proposed alterations have no benefit since both the shift/rotate amount

and the data are available simultaneously.

3.3.5 Examples

As before, examples are given to better illustrate the process that this design implements.

A second example ofthe shift left logical operation is given to highlight the special case of when

the shift/rotate amount is zero.

Version
Mask-based Two's Complement

IOperation
Rotate Right

IData ·IShiftiRotate Amount
10100110 2

Calculate 2's complement ofshift/rotate amount 110
Mux shift/rotate amount 010
Calculate F 00111111
Calculate F 11000000
Calculate shift/rotate amount zero 0
Calculate P =(right*F+left* F)+(rotate+S/R amount zero) 1*00111111 +0*11 000000+1 +0=11111111
Calculate P 00000000
Calculate R =Rotate . 10101001
Calculate S =arithmetic*data[n -I] 0*1=0
Calculate T = R*P+S* Ii 10101001*11111111+0*00000000=10101001
Result 10101001

Calculate Z = P reversed 11111111
Calculate Zero Flag 11111111*10100110=10100110->0

Table 3.14: Mask-based Two's Complement Rotate Right Example
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register. In this case, the proposed alterations have no benefit since both the shift/rotate amount

and the data are available simultaneously.

3.3.5 Examples

As before, examples are given to better illustrate the process that this design implements.

A second example of the shift left logical operation is given to highlight the special case of when

the shift/rotate amount is zero.

Version IOperation IData IShift/Rotate Amount
Mask-based Two's Complement Rotate Right 10100110 2

Step IValue
Calculate 2's complement of shift/rotate amount 110
Mux shift/rotate amount 010
Calculate F 00111111
Calculate F 11000000
Calculate shill/rotate amount zero 0
Calculate P = (right*F+lcft* y.")+(rotatc+S/R amount zero) 1*00111111+0*11000000+1 +0=11111111
Calculatc P 00000000
Calculate R = Rotate 10101001
Calculate S = arithmetic*data[n-I] 0*1=0
Calculatc T ~ R*P+S* P 10101001*11111111+0*00000000=10101001
Result 10101001

Calculate Z = P reversed 11111111
Calculate Zero Flag 11111111*10100110=10100110->0

Table 3.14: Mask-based Twos Complement Rotate RIght Example
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Version
Mask-based Two's Complement

IOperation
Rotate Left

IData IShift/Rotate Amount
10100110 2

Calculate 2's complement ofshift/rotate amount 110
Mux shift/rotate amount 110
Calculate F 00000011
Calculate F 11111100
Calculate shift/rotate amount zero 0
Calculate P =(right*F+left* F)+(rotate+S/R amount zero) 0*00000011+1*11111100+1+0=11111111
Calculate P 00000000
Calculate R=Rotate 10011010
Calculate S = arithmetic*data[n -1] 0*1 =0
Calculate T = R*P+S* P 10011010*11111111+0*00000000=10011010
Result 10011010

Calculate Z =P reversed 11111111
Calculate Zero Flag 11111111*10100110=10100110->0

Table 3.15: Mask-based Two's Complement Rotate Left Example

Version
Mask-based Two's Complement

IOperation
Shift Right Logical

IData IShift/Rotate Amount
10100110 2

Calculate 2's complement ofshift/rotate amount 110
Mux shift/rotate amount 010
Calculate F 00111111
Calculate Ii 11000000
Calculate shift/rotate amount zero 0
Calculate P =(right*F+left* F)+(rotate+S/R amount zero) 1*00111111 +0*11000000+0+0=00111111
Calculate P 11000000
Calculate R = Rotate 10101001
Calculate S =arithmetic*data[n -1] 0*1 =0
Calculate T = R*P+S* P 10101001*00111111+0*11000000=00101001
Result 00101001

Calculate Z = P reversed 11111100
Calculate Zero Flag 11111100*10100110=10100100->0

Table 3.16: Mask-based Two's Complement Shift Right Logical Example
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Version IOperation IData IShiftlRotate Amount
Mask-based Two's Complement Rotate Left 10100110 2

[step -'. IValue ...... ..... ...• ... ... . .......
Calculate 2"s complement of shift/rotate amount 110
Mux shift/rotate amount 110
Calculate F 00000011
Calculatc F 11111100
Calculate shift/rotate amount zero 0
Calculate P = (right*F+left* F)+(rotate+S/R amount zero) 0*00000011+1*11111100+1+0=11111111
Calculate P 00000000
Calculate R ~ Rotate 10011010
Calculate S = arithmetic*dataln-l] 0*1=0
Calculate T = R*P+S* P 10011010*11111111+0*00000000=10011010
Result 10011010

Calculatc Z = P reversed 11111111
Calculate Zcro Flag 11111111*10100110=10100110->0

Table 3.15: Mask-based Two's Complement Rotate Left Example

Version IOperation IOata IShiftlRotate Amount
Mask-based Two's Complement Shift Right Logical 10100110 2

Step lValue
Calculate 2"s complement of shift/rotate amount 110
Mux shift/rotate amount 010
Calculate F 00111111
Calculate F 11000000
Calculate shift/rotate amount zero 0
Calculate P = (right*F+left* F)+(rotate+S/R amount zero) 1*00111111+0*11000000+0+0=00111111
Calculate P 11000000
Calculate R = Rotate 10101001
Calculate S = arithmetic*data[n-I] 0*1=0
Calculate T·= R*P+S* P 10101001*00111111+0*11000000=00101001
Result 00101001

Calculate Z = P reversed 11111100
Calculate Zero Flag 11111100*10100110=10100100->0

Table 3.16: Mask-based Twos Complement ShIft Right Logical Example
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Version
Mask-based Two's Complement

IOperation
Shift Left Logical

I Data IShift/Rotate Amount
10100110 2

Calculate 2's complement ofshift/rotate amount 110
Mux shift/rotate amount 110
Calculate F 00000011
Calculate Ii 11111100
Calculate shift/rotate amount zero 0
Calculate P = (right*F+left* F)+(rotatetSIR amount zero) 0*00000011+1*11111100+0+0=11111100
Calculate P 00000011
CalculateR=Rotate 10011010
Calculate S = arithmetic*data[n-I] 0*1=0
Calculate T = R*P+S* P 10011010*11111100+0*00000011=1 0011 000
Result 10011000

Calculate Z = P reversed 00111111
Calculate Zero Flag 00111111*10100110=00100110->0

Table 3.17: Mask-based Two's Complement Shift Left Logical Example 1

Version
Mask-based Two's Complement

IOperation IData IShift/Rotate Amount
Shift Right Arithmetic 10100110 2

Calculate 2's complement ofshift/rotate amount 110
Mux shift/rotate amount 010
Calculate F 00111111
Calculate Ii 11000000
Calculate shift/rotate amount zero 0
Calculate P = (right*F+left* F)+(rotate+S/R amount zero) 1*00111111+0*11000000+0+0=00111111
Calculate P 11000000
Calculate R= Rotate 10101001
Calculate S = arithmetic*data[n -1] 1*1 =1
Calculate T = R*P+S* P 10101001*00111111+1*11000000=11101001
Result 11101001

Calculate Z = P reversed 11111100
Calculate Zero Flag 11111100*10100110=101 001 00->0

Table 3.18: Mask-based Two's Complement Shift Right Arithmetic Example

52



INTENTIONAL SECOND EXPOSURE

Version IOperation IData . IShift/Rotate Amount
Mask-based Two's Complement Shift Left Logical 10100110 2

Step ... ·IValue ........ .. . ....

Calculate 2's complement ofshift/rotate amount 110
Mux shift/rotate amount 110
Calculate F 00000011
Calculate f· 11111100
Calculate shift/rotate amount zero 0
Calculate P = (right*F+left* f)+(rotatc+S/R amount zero) 0*00000011+1*11111100+0+0=11111100
Calculate P 00000011
Calculate R = Rotate 10011010
Calculate S = arithmetie*data[n -I J 0*1=0
Calculate T = R*P+S* P 10011010*11111100+0*00000011=10011000
Result 10011000

Calculate Z = P reversed 00111111
Calculate Zero Flag 00111111*10100110=00100110->0

Table 3.17: Mask-based Two's Complement Shift Left Logical Example 1

Version IOperation IData IShift/Rotate Amount
Mask-based Two's Complement Shift Right Arithmetic 10100110 2

Step IValue
Calculate 2's complement ofshift/rotate amount 110
Mux shift/rotate amount 010
Calculate F 00111111
Calculate r 11000000
Calculate shift/rotate amount zero 0
Calculate P ~ (right*F+left* F)+(rotatc+S/R amount zero) 1*00111111+0*11000000+0+0=00111111
Calculate P 11000000
Calculate R = Rotate 10101001
Calculate S = arithmetic*data[n -I] 1*1 =1
Calculate T = R*P+S* j> 10101001*00111111+1*11000000=11101001
Result 11101001

Calculate Z = P reversed 11111100
Calculate Zero Flag 11111100*10100110=10100100->0

Table 3.18: Mask-based Two's Complement Shift Right Anthmetlc Example
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Version
Mask-based Two's Complement

IOperation
Shift Left Logical

IData IShifURotateAmount
10100110 0

Calculate 2's complement ofshift/rotate amount 000
Mux shift/rotate amount 000
Calculate F 11111111
Calculate F 00000000
Calculate shift/rotate amount zero 1
Calculate P = (right*F+left* F)+(rotate+S/R amount zero) 1*00111111+0*11000000+0+1=11111111
Calculate P 00000000
Calculate R= Rotate 10100110
Calculate S= arithmetic*data[n-l] 0*1=0
Calculate T = R*P+S* P 10100110*11111111+0*00000000=10100110
Result 10100110

Calculate Z = P reversed 11111111
Calculate Zero Flag 11111111*10100110=10100110->0

Table 3.19: Mask-based Two's Complement Shift Left Logical Example 2

3.4 Mask-based One's Complement

3.4.1 Design Overview

This version of the barrel shifter is a derivative of the Mask-based Two's Complement

design. The motivation for this change is that the unit responsible for computing the two's

complement of the shift/rotate amount is quite slow in its ability to perform that calculation. In

particular, the unit uses a ripple carry structure. Analysis of a unit designed specifically with

lookahead logic to decrease the delay of the computation, however, showed no noticeable

reduction. As such, the ripple structure was kept and the delay problem persisted. Therefore,

since there is no real way of optimizing the unit as it stands, the only course of action is to alter

the computation performed and then correct any calculation resulting from this altered

computation.

This is where the one's complement of the shift/rotate amount comes into effect. Instead

of the two's complement being computed, the one's complement is computed. The one's

complement is of course a simple inversion of the bits. The one's complement, however, is off
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INTENTIONAL SECOND EXPOSURE

Version IOperation IData IShiftlRotate Amount
Mask-based Two's Complement Shift Left Logical 10100110 0

Step < lValue . : .. :. ...: ..... : ...

Calculate 2's complement ofshift/rotate amount 000
Mux shift/rotate amount 000
Calculate F 11111111
Calculate f 00000000
Calculate shilt/rotate amount zero 1
Calculate P = (right*F+left* F)+(rotatc+S/R amount zero) 1*00111111+0*11000000+0+1=11111111
Calculate ji 00000000
Calculatc R = Rotatc 10100110
Calculatc S = arithmetic*data[I/-11 0*1=0
Calculate T = R*P+S* P 10100110*11111111+0*00000000=10100110
Result 10100110

Calculate Z = P reversed 11111111
Calculate Zcro Flag 11111111*10100110=10100110->0

Table 3.19: Mask-based Two's Complement Shift Left Logical Example 2

3.4 Mask-based One's Complement

3.4.1 Design Overview

This version of the barrel shifter is a derivative of the Mask-based Two's Complement

design. The motivation for this change is that the unit responsible for computing the two's

complement of the shift/rotate amount is quite slow in its ability to perform that calculation. In

particular, the unit uses a ripple carry structure. Analysis of a unit designed specifically with

lookahead logic to decrease the delay of the computation, however, showed no noticeable

reduction. As such. the ripple structure was kept and the delay problem persisted. Therefore,

since there is no real way of optimizing the unit as it stands, the only course of action is to alter

the computation performed and then correct any calculation resulting from this a,ltered

computation.

This is where the one's complement of the shift/rotate amount comes into effect. Instead

of the two's complement being computed, the one's complement is computed. The one's

complement is of course a simple inversion of the bits. The one's complement, .however, is off
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by 1. Figure 3.14 shows the design using the one's complement computation. As can be seen, its

introduction has necessitated the introduction of a few units. They are meant to correct for the

inaccuracy that is inherent to the one's complement.

In addition, a unit has been added directly after the mask F calculation unit. This unit

logically shifts the mask F right by one if the operation is left oriented. This sets the F mask with

the proper number of leading zeros. If not adjusted, it would have one less than that which is

required. The F mask generator with the additional logical shift can be seen in Figure 3.15.

2

n

mux right rotate
L.-----Jt by 1

n

calculate S

1

mux correct shift/rotate amount
n

calculate F

n

mux right shift F by 1

n

n

calculateT

n

result

calculate R =
rotate

n

Figure 3.14: Mask-based One's Complement
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by 1. Figure 3.14 shows the design using the one's complement computation. As can be seen, its

introduction has necessitated the introduction of a few units. They are meant to correct for the

inaccuracy that is inherent to the one's complement.

In addition, a unit has been added directly after the mask F calculation unit. This unit

logically shifts the mask F right by one if the operation is left oriented. This sets the F mask with

the proper number of leading zeros. If not adjusted, it would have one less than that which is

required. The F mask generator with the additional logical shift can be seen in Figure 3.15.
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Figure 3.14: Mask-based One's Complement
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In addition to the change in the calculation of the mask F, there is a change in the

computation of the rotator result as well. As with the mask F, an additional multiplexor row is

needed. In this case, the multiplexors perform a rotate right by one if the operation is left

oriented. These multiplexors have been placed at the beginning of the unit since the left signal is

immediately available, while the selected shift/rotate amount is not. In this manner, it should be

ready by the time the added multiplexor row is fmished. This can be seen in Figure 2.6, which is

similar to the rotator used here except it uses a multiplexor to select the proper shift/rotate

amount, not logical XOR gates.

The last noticeable difference between this design and the two's complement version is

that the shift/rotate amount zero flag is no longer required. The alteration to the mask F

computation means that this value is no longer needed. As such, it is dropped from the design.

3.4.2 Zero Flag

Integration of the zero flag computation into this design does not differ in any way from

the Mask-based Two's Complement design. This can be seen in Figure 3.16.

3.4.3 Examples

Now that the mechanisms behind the design are known, a few examples are shown to

demonstrate the exact manner in which each operation is performed. Each example shows the

outputs of the subunits from the design diagrams so that the manner in which the result is

computed is easily seen.
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Version
Mask-based One's Complement

IOperation
Rotate Right

IDatalShift/Rotate Amount
10100110 2

I « ~ ~ ,~ •• • • " , ."- _ • " ' • - '" ,'.

i:-:~\ c , • • <, ~ \' .,~ ~. "~, , •• ,oJ

Calculate l's complement ofshIft/rotate amOlmt
Mux shift/rotate amount
Calculate F
Mux right shift F by 1
Calculate F
Calculate P = (right*F+left* F)+rotate
Calculate Ii
Mux right rotate by 1
Calculate R = Rotate
Calculate S =arithmetic*data[n-l]
Calculate T =R*P+S* Ii
Result

101
010
00111111
00111111
11000000
1*00111111+0*11000000+1=11111111
00000000
10100110
10101001
0*1=0
10101001*11111111+0*00000000=10101001
10101001

Calculate Z = P reversed 11111111
Calculate Zero Flag 11111111*10100110=10100110->0

Table 3.20: Mask-based One's Complement Rotate Right Example

Version
Mask-based One's Complement

IOperation
Rotate Left

IData IShift/Rotate Amount
10100110 2

Calculate l's complement ofshift/rotate amount
Mux shift/rotate amount
Calculate F
Mux right shift F by 1
Calculate F
Calculate P = (right*F+left* F)+rotate
Calculate Ii
Mux right rotate by 1
Calculate R = Rotate
Calculate S = arithmetic*data[n-l]
Calculate T = R*P+S* Ii
Result

101
101
00000111
00000011
11111100
0*00000011+1*11111100+1+11111111
00000000
01010011
10011010
0*1=0
10011010*11111111+0*00000000=10011010
10011010

Calculate Z = P reversed 11111111
Calculate Zero Flag 11111111*10100110=10100110->0

Table 3.21: Mask-based One's Complement Rotate Left Example
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Version IOperation lData IShift/Rotate Amount
Mask-based One's Complement Rotate Right 10100110 2

Step ,- ... ....Value ... .-> . ...... ... ..........
Calculate I 's complement of shift/rotate amount 101
Mux shift/rotate amount 010
Calculate F 00111111
Mux right 2hift F by I 00111111
Calculate F 11000000
Calculate P = (right*F+lelt* F)+rotate 1*00111111+0*11000000+1=11111111
Calculate P 00000000
Mux right rotate by I 10100110
Calculate R = Rotate 10101001
Calculate S = arithmetic*dataln-I] 0*1=0
Calculate T = R*P+S* P 10101001*11111111+0*00000000=10101001
Result 10101001

Calculate 7. = P reversed 11111111
Calculate Zero Flag 11111111*10100110=10100110->0

Table 3.20: Mask-based One's Complement Rotate Right Example

Version IOperation lData ....Shift/Rotate Amount
Mask-based One's Complement Rotate Left 10100110 2

Step IValue
Calculate I-s complement of shift/rotate amount 101
Mux shilt/rotate amount 101
Calculate F 00000111
Mux right shill F by I 00000011
Calculate F 11111100
Calculate P = (right*F+IcIt* F)+rotate 0*00000011+1*11111100+1+11111111
Calculate P 00000000
Mux right rotate by I 01010011
Calculate R "" Rotate 10011010
Calculate S = arithmetic*data[n-I] 0*1=0
Calculate T ~ R*P+S* P 10011010*11111111+0*00000000=10011010
Result 10011010

Calculate Z = P reversed 11111111
Calculate 7.ero Flag 11111111*10100110=10100110->0

Table 3.2\: Mask-based 9ne's Complement Rotate Left Example
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Version
Mask-based One's Complement

.IOperation
Shift Right Logical

IData IShift/Rotate Amount
10100110 2

Calculate 1'8 complement ofshift/rotate amount
Mux shift/rotate amount
Calculate F
Mux right shift F by 1
Calculate F
Calculate P = (right*F+left* F)+rotate
Calculate P
Mux right rotate by I
Calculate R =Rotate
Calculate S = arithmetic*data[n-l]
Calculate T = R*P+S* P
Result

101
010
00111111
00111111
11000000
1*00111111+0*11000000+0=00111111
11000000
10100110
10101001
0*1=0
10101001*00111111+0*11000000=00101001
00101001

Calculate Z = P reversed 11111100
Calculate Zero Flag 11111100*10100110=10100100->0

Table 3.22: Mask-based One's Complement Shift Right Logical Example

Version
Mask-based One's Complement

IOperation
Shift Left Logical

IData IShift/Rotate Amount
10100110 2

Calculate I's complement ofshift/rotate amount
Mux shift/rotate amount
Calculate F
Mux right shift F by 1
Calculate F
Calculate P = (right*F+left* F)+rotate
Calculate P
Mux right rotate by I
Calculate R = Rotate
Calculate S = arithmetic*data[n-l]
Calculate T = R*P+S* P
Result

101
101
00000111
00000011
11111100
0*00000011+1*11111100+0=11111100
00000011
01010011
10011010
0*1=0
10011010*11111100+0*00000011=10011000
10011000

Calculate Z = P reversed 00111111
Calculate Zero Flag 00111111*10100110=00100110->0

Table 3.23: Mask-based One's Complement Shift Left Logical Example
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Version IOperation IData IShift/Rotate Amount
Mask-based One's Complement Shift Right Logical 10100110 2

Steo F > !Value' ..' ';T ,i' i·. F'/ :.....
Calculate I's complement ofshi ft/rotate amount 101
Mux shift/rotate amount 010
Calculate F 00111111
Mux right shill F by I 00111111
Calculate F 11000000
Calculate ~= (right*F+lell* F)+rotate 1*00111111+0*11000000+0=00111111
Calculate P 11000000
Mux right rotate by I 10100110
Calculate R = Rotate 10101001
Calculate S = arithmetic*dataln-I] 0*1=0
Calculate T = R*P+S* P 10101001*00111111+0*11000000=00101001
Result 00101001

Calculate Z = P reversed 11111100
Calculate Zero Flag 11111100*10100110=10100100->0

Table 3.22: Mask-based One's Complement ShIft RIght LogIcal Example

Version IOperation IData IShift/Rotate Amount
Mask-based One's Complement Shift Left Logical 10100110 2

Step IValue
Calculate I's complement ofshift/rotate amount 101
Mux shift/rotate amount 101
Calculate F 00000111
Mux right shill F by I 00000011
Calculate F 11111100
Calculate ~= (right*F+left* F)+rotate 0*00000011+1*11111100+0=11111100
Calculate P 00000011
Mux right rotate by I 01010011
Calculate-R = Rotate 10011010
Calculate S ~ arithmetic*dataln-I] 0*1=0
Calculate T = R*P+S* P 10011010*11111100+0*00000011=10011000
Result 10011000

Calculate Z = P reversed 00111111
Calculate Zero Flag 00111111*10100110=00100110->0

Table 3.23: Mask-based Qne's Complement ShIft Left LogIcal Example
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Version
Mask-based One's Complement

IOperation IData IShift/Rotate Amount
Shift Right Arithmetic 10100110 2

CalcUlate l's complement ofshift/rotate amount
Mux shift/rotate amount
Calculate F
Mux right shift F by 1
Calculate F
Calculate P = (right*F+left* F)+rotate
Calculate P
Mux right rotate by 1
Calculate R = Rotate
Calculate S = arithmetic*data[n-l]
Calculate T = R*P+S* P
Result

101
010
00111111
00111111
11000000
1*00111111+0*11000000+0=00111111
11000000
10100110
10101001
1*1=1
10101001*00111111+1*11000000=11101001
11101001

Calculate Z = P reversed 11111100
Calculate Zero Flag 11111100*10100110=10100100->0

Table 3.24: Mask-based One's Complement Shift Right Arithmetic Example
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Version IOperation IData IShift/Rotate Amount
Mask-based One's Complement Shift Right Arithmetic 10100110 2

Slen!'",;;"· ,tit ... .......... > , ... , ;-;-/

Calculate l's complement of shift/rotate amount 101
Mux shift/rotate amount 010
Calculate F 00111111
Mux right shift F by 1 00111111
Calculate F 11000000
Calculate P = (right*F+left* F)+rotate 1*00111111+0*11000000+0=00111111
Calculate P 11000000
Mux right rotate by I 10100110
Calculate R = Rotate 10101001
Calculate S ~ arithmetic*data[n-I] 1*1 =1
Calculate T = R*P+S* P 10101001*00111111+1*11000000=11101001
Result 11101001

Calculate Z ~ P revcrsed 11111100
Calculate Zero Flag 11111100*10100110=10100100->0

Table 3.24: Mask-based One's Complement ShIft RIght ArtthmetIc Example



Chapter 4 - Results

4.1 Estimates for Component Count and Number of Components on

Critical Path

Theoretical component count and number of components on the critical path for each

design are estimated and given in Tables 4.1 through 4.4. The designs have been decomposed

into the following basic components: AND, OR, NOT, Multiplexor, and XOR. In addition, each

design is divided into subunits. Each block of the respective design's overview diagram

constitutes a subunit in the table. In some cases the number of components on the critical path

could not be computed since the relative weighting of components was unknown. In these cases,

no estimate is given. The number of components on the critical path of every subunit, however,

is given, and therefore, one has the information to judge what stages are the most costly.

4.2 Synthesis Results for Area and Delay

Synthesis was performed on structural-level VHDL models. These models were

generated with Java programs, one per design, which took as an argument the data width. The

data width had to be a power of2.

Each VHDL model was synthesized at standard effort for both the lca300k ASIC, a

O.6~m gate array library, and the Xilinx Spartan FPGA. In addition, each design was optimized

twice, once for area and once for delay. These results are presented in Tables 4.5 through 4.8 for

data input widths of: 8, 16,32, 64, and 128-bits. For each table, a ~lue highlight indicates which

design and optimization has the smallest area-delay product for a particular data width. A purple

highlight indicates for a particular design the optimization that provides the smallest area-delay

product.
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Stage

Mux data reversal 0 0 0 n 0
Calculate S = arithmetic*data[n -1] 1 0 0 0 0

Base ICalculate R = ShiftJRotate 0 0 0 n 19(n )+n-l 0
Mux data reversal 0 0 0 n 0
Total I 0 0 3n+nlg(nH 0

0 n-l 1 0 0
1 n-l 1 3n +n 19(n )-1 0

1 n 1 n-l n-l
2 2n-l 2 4n+nlg(n)-2 n-l

Number ofComponents on Critical Path
Mux data reversal 0 0 0 1 0
Calculate S = arithmetic*data[n-1] 1 0 0 0 0

0\
Base Icalculate R = ShiftJRotate 0 0 2Ig(n) 0N 0

Mux data reversal 0 0 0 1 0
Total 0 0 0 2Ig(n)+2 0

0 19(n) 1 0 0

Overflow Calculate Overflow Fla:
Flag Total

Table 4.1: Mux-based Data Reversal Theoretical Gate Count and Delay Measure



·
INTENTIONAL SECOND EXPOSURE

0\
N

Version Type Stage IAND(2-input) OR(2-input) NOT MUX(2 to 1) XOR
Component Counts

Mux data reversal 0 0 0 n 0
Calculate S = arithmetic*data[n -1] 1 0 0 0 0

Base Calculate R = Shift/Rotate 0 0 0 n 19(n )+n-I 0
Mux data reversal 0 0 0 n 0
Total 1 0 0 3n +n 19(n )-1 0

Z Fl JCalculate Zero Flag 0 /1-1 1 0 0

1 ero aglTotal 1 n-l 1 3n +n Ig(n )-1 0
~.

~ Overflow Calculate Overflow Flag 1 n 1 n-l n -I

~ Flag Total 2 2n-l 2 4n +n Ig(n )-2 n -1
Q Number ofComponents on Critical Path"d

J Mux data reversal 0 0 0 1 0
Calculate S = arithmetic*data[/1-I] 1 0 0 0 0

~ Base Calculate R = Shift/Rotate 0 0 0 21g(n) 0
Mux data reversal 0 0 0 1 0
Total 0 0 0 2lg(n )+2 0

Z Fl ICalculate Zero Flag 0 Ig(/1 ) I 0 0
ero ag TOtal - - - - -

OverflowlCalculate Overflow Flag - - - - -

Flag Total - - - - -

Table 4.1: Mux-based Data Reversal Theoretical Gate Count and Delay Measure



MUX(2-to-l) XOR
.ent Counts

Mux data reversal 0 0 0 n 0
Calculate F n-lg(n)-J n-lg(n)-l Ig(n) 0 0
Calculate R ~ Rotate 0 0 0 nlg(n) 0
Calculate P ~ F + rotate 0 n 0 0 0
Calculate P 0 0 n 0 0
Calculate S ~ arithmetic*data[n-I] I 0 0 0 0
Calculate T ~ R*P+S* P 2n n 0 0 0
Mux data reversal 0 0 0 n 0
Total 3n-lg(n) 3n-lg(n)-1 n+lg(n) 2n+nlg(n) 0

0 0 0 0 0
n n-1 1 0 0
4n-lg(n) 4n-lg(n)-2 n+lg(n)+1 2n+n1g(n) 0

Overflow
Calculate data[(n-2).. O] xor data[n-1] 0 n-I

Flag
Calculate Overflow FJa n-1 0
Total 5n-1 n-1

0\ Mux data reversal 0 0 0w
Calculate F 19(n)-I 0 0
Calculate R ~ Rotate 0 0 0
Calculate P ~ F + rotate 0 I 0

Base ICalculate P 0 0 0
Calculate S ~ arithmetic*data[n-1] 1 0 0
Calculate T ~ R*P+S* P 1 1 0
Mux data reversal 0 0 0
Total

Calculate Z ~ P reversed
I~

0 0 0 0
Zero Flaglcalculate Zero Flag Ig(n) J 0 0

Total

Overflow Calculate data[(n-2).. O] xor data[n-J] 0 0 I
FJa Calculate Overflow Fla 0 0 0

g Total

Table 4.2: Mask-based Data Reversal Theoretical Gate Count and Delay Measure



INTENTIONAL SECOND EXPOSURE

0\
W

Version Tvoe I Stage IAND(2-input) ORI2·input) NOT MUXI2-to-l) XOR
Component Counts

Mux data reversal 0 0 0 n 0
Calculate F n -Ig(n )-1 n-Ig(n )-1 19(n) 0 0
Calculate R = Rotate 0 0 0 nlg(n) 0
Calculate P = F + rotate 0 n 0 0 0

Base Calculate P 0 0 n 0 0
Calculate S = arithmetic*data[n -1] 1 0 0 0 0
Calculate T = R*P+S* P 2n n 0 0 0
Mux data reversal 0 0 0 n 0
Total 3n-lg(n) 3n-lg(n )-1 n+lg(n) 2n+nlg(n) 0

Calculate Z = P reversed 0 0 0 0 0
Zero Flag Calculate Zero Flao n n-1 1 0 0

]
Total 4n-lg(n) 4n-lg(n)-2 n+lg(n )+1 2n+nlg(n) 0

>
Overflow

Calculate data[(n -2).0] xor data[n -1] 0 0 0 0 n-l
~ Calculate Overflow Flag n-I n-2 n-l 0 0

~
Flag

Total 5n-lg(n)-1 511-lg(n )-4 2n+lg(n) 2n+l1lg(n) . n-1

1
Number ofComponents on Critical Path

Mux data reversal 0 0 0 1 0
"i' Calculate F Ig(I1)-1 0 I 0 0

~ Calculate R = Rotate 0 0 0 19(n) 0
Calculate P = F + rotate 0 I 0 0 0

Base Calculate P 0 0 I 0 0
Calculate S = arithmctic*dataln-l] I 0 0 0 0
Calculate T = R*P+S* P I I 0 0 0
Mux data reversal 0 0 0 I 0
Total - -

"'---
Calculate Z = P reversed 0 0 0 0 0

Zero Flag Calculate Zero Flag 1 Ig(l1) I 0 0
Total -

Overflow Calculate data[(n -2)" 0] xor dataln-l] 0 0 - 0 0 1
I Calculate Overflow Fla~ I Ig(n) 0 0 0

Fag 1T0tal _ - -
Table 4.2: Mask-based Data Reversal Theoretical Gate Count and Delay Measure



Stage IANDf2-inDut) ORi2-inDut) NOT MUX(2-to-I) XOR
Component Counts

Calculate 2's complement of shift/rotate amount 19(n )-1 0 Ig(n) 0 19(n)
Mux shift/rotate amount 0 0 0 Ig(n) 0
Calculate F n-lg(n )-1 n-lg(n )-1 Ig(n) 0 0
Calculate F 0 0 n 0 0
Calculate shift/rotate amount zero 0 Ig(n)-1 1 0 0

Base ICalculate P = (right*F+left* F)+(rotate+S/R amount zero) 0 n+l 0 n 0
Calculate P 0 0 n 0 0
Calculate R = Rotate 0 0 0 n 19(n) 0
Calculate S = arithmetic*data[n -I] 1 0 0 0 0
Calculate T = R*P+S* P 2n n 0 0 0
Total 3n-1 3n-1 2n +2Ig(n )+ I n +(n + I)lg(n) Ig(n)

Calculate Z = P reversed 0 0 0
Zero Flag Calculate Zero Fla n n-I I

Total 4n-l

~ Calculate 2's complement of shift/rotate amount Ig(n )-1 0 1 0 I
Mux shift/rotate amount 0 0 0 1 0
Calculate F Ig(n )-1 0 1 0 0
Calculate F 0 0 1 0 0
Calculate shift/rotate amount zero 0 Ilg(lg(n»l 1 0 0

Base ICalculate P = (right*F+left* F)+(rotate+S/R amount zero) 0 I 0 1 0
Calculate P 0 0 I 0 0
Calculate R = Rotate 0 0 0 Ig(n) 0
Calculate S = arJJhmetic*data[n -I] I 0 0 0 0
Calculate T = R*P+S* P 1 I 0 0 0
Total

Calculate Z = P reversed

I~
- 0 0 0 0

Zero FlaglCalculate Zero Flag 19(n) 1 0 0
Total

Table 4.3: Mask-based Two's Complement Theoretical Gate Count and Delay Measure



IJNTENTIONAL SECOND EXPOSURE

0\

""'"

Version Tvne I Stage IAND(2-input) OR(2-input) NOT MUX(2-to-l) XOR
Component Counts

Calculate 2's complement ofshift/rotate amount Ig(n )-1 0 Ig(n) 0 Ig(n)
Mux shift/rotate amount 0 0 0 Ig(n) 0
Calculate F n-lg(n )-1 n-Ig(n )-1 19(n) 0 0
Calculate F 0 0 n 0 0
Calculate shift/rotate amount zero 0 Ig(n )-1 I 0 0

Base Calculate P = (right*F+left* F)+(rotate+S/R amount zero) 0 n+l 0 n 0
Calculate P 0 0 n 0 a
Calculate R = Rotate 0 0 0 n 19(n) 0
Calculate S = arithmetic*data[n -1] I 0 0 0 0
Calculate T = R*P+S* P 2n n 0 0 0

ij Total 3n-1 3n-1 2n +21g(n)+ I n+(n+l)lg(n) Ig(n)

~ Calculate Z = P reversed 0 0 0 0 011
~ Zero Flag Calculate Zero Flag n n-l I 0 0

Q Total 4n-1 4n-2 2n +2Ig(n )+2 n+(n+l)lg(n) Ig(n)
TIl

Number of Components on Critical PathN

] Calculate 2's complement of shift/rotate amount Ig(n )-1 0 I 0 I

~
Mux shift/rotate amount 0 0 0 I 0

! Calculate F Ig(n)-1 0 1 0 0
Calculate F 0 0 1 0 0
Calculate shill/rotate amount zero 0 IIg(lg(nnl I 0 0

Base Calculate P = (right*F+lcft* F)+(rotate+S/R amount zero) 0 I 0 I 0
Calculate P 0 0 I 0 0
Calculate R = Rotate 0 0 0 Ig(n) 0
CalculateS-.,= arithmetic*data[n -I] 1 0 0 0 0
Calculate T = R* P+S* P I I 0 0 0
Total - - - - -

Calculate Z = P reversed 0 - 0 0 0 0
Zero Flag Calculate Zero Flag I Ig(n) 1 0 0

Total - - - - -
Table 4.3: Mask-based Two's Complement Theoretical Gate Count and Delay Measure



Table 4.4: Mask-based One's Complement Theoretical Gate Count and Delay Measure

o
o
o
o
o
o
o
o
o
o
o

o

o
o

XOR

3n+(n+I)lg(n) 0

o
o
o

n 0
o 0
n 0
o 0
n 0
nlg(n) 0
o 0
o 0

Calculate Z = P reversed 0 8 0 0 0
Zero FlaglCalculate Zero Fla I I n 1 0 0

Total

Stage

Calculate I 's complement of shift/rotate amount 0 0
Mux shift/rotate amount 0 0
Calculate F n -Ig(n )-1 n-lg(n )-1
Mux right shift Fby I 0 0
Calculate F 0 0 n

Base
ICalculate ~= (right*Hleft* F)+rotate 0 n 0
Calculate P 0 0 n
Mux right rotate by I 0 0 0
Calculate R = Rotate 0 0 0
Calculate S = arithmetic*data[n-Il 1 0 0
Calculate T = R*P+S* Ii 2n n 0
Total 3n -lg(n) 3n-lg(n )-1 2n+2Ig(n)

Calculate Z = P reversed 0
Zero Flag Calculate Zero Fla

Total

'"VI Calculate I's complement ofshift/rotate amount 0 0
Mux shift/rotate amount 0 0
Calculate F Ig(n)-I 0
Mux right shift F by I 0 0
Calculate F 0 0

Base
ICalculate ~= (right*Hleft* F)+rotate 0 I
Calculate P 0 0
Mux right rotate by I 0 0
Calculate R = Rotate 0 0
Cal~ate S = arithmetic*data[n-l] I 0
Calculate T = R*P+S* Ii I I
Total



IN....ENTIONAL SECOND EXPOSURE

C]\
V1

Version Type I Stage IAND(2-inouO ORt2-inouO NOT MUX(2-to-ll XOR
Component Counts

Calculate \'s complement of shift/rotate amount 0 0 19(n) 0 0
Mux shift/rotate amount 0 0 0 Ig(n) 0
Calculate F n-Ig(n)-\ n -lg(n )-1 19(n) 0 0
Mux right shift F by I 0 0 0 n 0
Calculate F 0 0 n 0 0

Base
Calculate P = (right*F+left* F)+rotate 0 n 0 n 0
Calculate P 0 0 n 0 0
Mux right rotate by \ 0 0 0 n 0
Calculate R = Rotate 0 0 0 n 19(n) 0
Calculate S = arithmetic*data[n-I] I 0 0 0 0
Calculate T = R*P+S* P 2n n 0 0 0

-=
Total 3n-lg(n) 3n-lg(n)-\ 2n+21g(n) 3n+(n+\)lg(n) 0

.~

l Calculate Z = P reversed 0 0 0 0 0
Zero Flag Calculate Zero Flag n n-I I 0 0

8 Total 4n-lg(n) 4n -Ig(n )-2 2n+2Ig(n)+ \ 3n+(n+I)lg(n) 0
'"~, Number of Components on Critical Path

] Calculate lOs complement of shift/rotate amount 0 0 I 0 0

~
Mux shift/rotate amount 0 0 0 \ 0

~
Calculate F Ig(n)-l 0 I 0 0
Mux right shift F by I 0 0 0 I 0
Calculate F 0 0 I 0 0

Base
Calculate P = (right*F+left* F)+rotate 0 \ 0 I 0
Calculate P 0 0 I 0 0
Mux right rotate by I 0 0 0 \ 0
Calculate R = Rotate 0 0 0 19(n) 0

~
Calculate S = arithmetic*data[n-l] I 0 0 0 0
Calculate T = R*P+S* P \ I 0 0 0
Total - - - - -

Calcul.ate Z = P reversed 0 - 0 0 0 0
Zero Flag Calculate Zero Flag 1 Ig(n) \ 0 0

Total - - - - -
Table 4.4: Mask-based One's Complement Theoretical Gate Count and Delay Measure

-



4.2.1 Designs Without Flags

Analysis of the synthesis results for the designs without any flags, shown in Table 4.5,

reveals that with the exception of the 8-bit case, the Mask-based Data Reversal design has a

smaller delay than the other three designs. The Mux-based Data Reversal design, however, has

the smallest area in all cases. Therefore, in four cases, it is difficult to say which design is

preferred. In order to resolve this ambiguity, the area-delay product is analyzed. It shows that the

optimal design depends on the bit-width of the input data. In particular, the Mux-based Data

Reversal design is preferred in those cases where the data width is either 8 or 16-bits. The Mask

based Data Reversal design is preferred for all other data widths. As such, the preferred design is

dependent on the input data width.

4.2.2 Designs with Zero Flag

When considering those designs only equipped with the zero flag, the Mask-based Data

Reversal design has the smallest delay for all data widths with the exception of the 8-bit case, as

shown in Table 4.6. Again, the Mux-based Data Reversal design hasthe smallest area for all data

widths. Analysis of the area-delay product reveals that the Mux-based Data Reversal design is

preferred for data widths less than or equal to 32-bits. Likewise, the Mask-based Data Reversal

design is preferred for data widths greater than 32-bits. The Mask-based Two's Complement and

Mask-based One's Complement designs have large delays. This factor dominates the area-delay

product making them extremely uncompetitive.

4.2.3 Designs with Zero and Overflow Flags

Comparison of those designs with both flags reveals that, with the exception of the 8-bit

case, the Mask-based Data Reversal design has a smaller delay than does the Mux-based Data
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Reversal design. Again, the Mux-based Data Reversal design has a smaller area than does the

Mask-based I?ata Reversal design for all data widths. The fact that the Mux-based Data Reversal

design has a smaller area-delay product in four out of five instances indicates that in general the

increase in the number of gates in the Mask-based Data Reversal design does not produce a

proportional savings in delay so as to produce a design with an equal area-delay product.

Therefore, the Mux-based Data Reversal design is preferred for all data widths except 64-bits.

This is shown in Table 4.7.

4.2.4 Register Load Optimized Mask-based Two's Complement

The Register Load Optimized Mask-based Two's Complement design has a delay less

than all other designs without flags. This, of course, assumes that every other design does no

work until all operands are available. If that condition is not held, then it may be that one of the

other designs fares better. Table 4.8 shows the synthesis results for this design.
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Table 4.5: Designs without Flags Area and Delay Synthesis Results

~

d- • ......... v~ ..

P
ASIC

Delay

Xilinx
Area

Spartan
FPGA

Delay

.IS
LSI Logic Area

~ lca300k

1i"" ASIC
Delay

~J XiIinx Area

~ Spartan
FPGA

Delay

--

c'!lil
LSI Logic Area

Ica300k

1i Ii ASIC
Delay

~-a
0\ I~~

Xilinx
Area

Q(l
Spartan
FPGA

Delay

.. LSI Logic Area

11l lca300k

J,t ASIC
Delay

l8 XiIinx
Area

Spartan
FPGA

Delay

279 gates
3.02 ns
66 gates; 59 CLBs; 0 H
32.55 ns
66 gates; 59 CLBs; 0 H
32.55 ns

676 gates
4.85 ns
147 gates; 132 CLBs; 0 H
32.55 ns
147 gates; 132 CLBs; 0 H
32.55 ns

1476 gates
7.08 ns
324 gates; 295 CLBs; 4 H
38.45 ns
324 gates; 315 CLBs; 16 H
35.34 ns

3203 gates
11.86 ns
700 gates; 652 CLBs; 16 H
41.54 ns
708 gates; 681 CLBs; 37 H
38.64 ns

6936 gates
19.20 ns
1528 gates; 1423 CLBS; 26 H
46.34 ns
1553 gates; 1522 CLBs; 74 H
40.94 ns



IINTENTIONAL SECOND EXPOSURE

ox
00

VerSIOn Synthesize Optimize Report 8 16 32 64 128

LSI Logle
Area Area 190 gates 446 gates 1022 gates 2302 gates 5118 gates

5 lca300k
Dela) 2.49 11S 3.16 ns 4.15 ns 5.5811S 8.2411S

Q- ASIC
Del a, Area 190 gates 446 gates 1022 gates 2303 gates 5119 gates

"'g e1 Delay 2.27 ns 2.99 ns 4.11 11S 4.49 ns 6.25ns
00 "" > Area Area 48 gates: 48 CLBs: 0 H 112 gates; 112 CLBs: 0 H 256 gates: 256 CLBs; 0 H 576 gates; 576 (LBs: 0 H 1280 gates: 1280 (LBs; 0 H
~cil Xili11x

Spartan
Delay 22.75 ns 25.3511S 27.9511S 30.55 ns 33.15 ns

~ Delay Area 48 gates: 48 CLBs: 0 H 112 gates: 112 CLBs: 0 H 256 gates: 256 CLBs; 0 H 576 gates: 576 CLBs; 0 H 1280 gates; 1280 CL Bs: 0 H
FPGA

Delay 22.75 11S 25.35 ns 27.9511S 30.55 ns 33.15 11S

LSI Logic Area Area 207 gates 482 gates 1097 gates 2487g~ 548()gates o'

S Dela, 2.52 ns 2.96 ns 3.40 n8 3.84ns 4.29ns
" lca300k0_ Dela, Area 2S 1 gates 576 gates 1283 gates 2855 gates 6087 gates

"E ~ ASIC Delay 2.56 ns 2.92 ns 3.45 ns 3.9611S 3.88 ns
00 "" > Area Area 48 gates: 47 CLBs; 6 H 114 gates: III CLBs: 14 H 262 gates: 256 CLBs: 30 H 612 gates: 577 CLBs: 44 H 1361 gates; 1279 CLBs: 87 H
~~ Xi lin,

~ Spartan
Dela) 25.54 ns 28.14 ns 30.74 ns 36.44 ns 388511S

Dela, Area 48 gates: 47 CLBs: 6 H 122 gates: 114 CLEs: 6 H 290 gates: 273 CLBs: 18 H 688 gates; 614 CLBs: 69 H 1382 gates; 1346 CLBs; 109 H
FPGA Delay 25.5411S 28.1411s 30.74 ns 42.24 ns 39.0411S

LSI Logic
Area Area 209 gates 541 gates 1195 gates 2606 gates 5677 gates

~- Ica300k
Delav 3.42 ns 5.03 ns 6.13 ns 8.42 ns 11.58 ns

." §
ASIC

Delay Area 263 gates 658 gates 1574 gates 3234 gates 5737 gates
~ E Delay 4.17 ns 5.83 ns 8.70 ns 15.9811s 25.29 ns
" "Jfo.. Area Area 59 gates: 48 CLBs: 0 H 133 gates; 109 CLBs: 1 H 298 gates: 248 CLBs: I H 643 gates: 560 CLBs: 20 1-1 1383 gates: 1257 CLBs: 61 H-" E Xilinx
~8 Spartan

Delay 31.95 ns 36.24 ns 40.55 ns 47.5411S 53.4411S
Dela, Area 66 gates: 66 CLBs: 16 H 164 gates; 13 7 CLEs: 32 11 394 gates: 337 CLBs: 65 H 937 gates: 783 CLBs: 162 H 1445 gates; 1451 CLBs; 233 H

FPGA Dela, 32.14 ns 33.64 ns 37.53 ns 38.44 ns 45.94 ns

LSI Logic
Area Area 272 gates 602 gates 1439 gates 3109 gates 6698 gates

Delay 2.70 ns 3.46 os 5.08 os 6.72 ns 9.75 os
~ § Ica300k

Dela, Area 279 gates 676 gates 1476 gates 3203 gates 6936 gates
~ E ASIC Delay 3.02 ns 4.85 ns 7.08 ns 11.86 os 19.20 ns
" "-'90.. Area Area 66 gatese 59 Cl.Ils: 0 H 147 gates: 132 CLBs: 0 H 324 gates: 295 (LBs: 4 H 700 gates: 652 CLBs: 16 H 1528 gates: 1423 CLBS: 26 H-" E Xilmx
~8 Spartan

Dela, 32.55 ns 32.55 ns 38.45 ns 41.54 os 46.34 os
Del",' An~a 66 gates: 59 CLBs. 0 II 147 gates: 132 CI.Bs: 0 H 324 gates: 315 CL.Bs: 16 H 708 gates: 681 CLBs; 37 H 1553 gates; 1522 CLBs: 74 H

FP(,A
Del'll' 32.55 ns 32.55 ns 35.3411S 38.64 ns 40.9411S

Table 4.5: Designs without Flags Area and Delay Synthesis Results
" ,



7769 gates
22.64 ns
1688 gates; 1503 CLBs; 101 H
79.10 ns
1766 gates; 1615 CLBs; 139 H
67.61 ns

Table 4.6: Designs with Zero Flag Area and Delay Synthesis Results

32 I gates 758 gates 1665 gates 3784 gates
3.64 ns 5.30 os 7.96 ns 13.40 ns
74 gates; 63 CLBs; 2 H 167 gates; 143 CLBs; 7 H 353 gates; 310 CLBs; 15 H 784 gates; 691 CLBs; 51 H
39.94 gates 51.64 ns 52.43 os 68.12 os
82 gates; 69 CLBs; 6 H 177 gates; 155 CLBs; 13 H 364 gates; 331 CLBs; 32 H 804 gates; 739 CLBs; 69 H
43.44ns 52.03ns 48.72ns 57.82ns

Delay

Area

Delay

Area

Area

Delay

Xilinx
Spartan
FPGA

Xilinx
Spartan
FPGA

Xilinx
Spartan
FPGA

eslZe

LSI Logic Area

Ica300k
ASIC Delay

Xilinx Area

Spartan
FPGA Delay

LSI Logic Area

1ca300k
ASIC Delay

LSI Logic Area

lca300k
ASIC Delay

LSI Logic

1ca300k Delay
ASIC

erSlOn

~-

IJ
~ 0..

~3

j]
1j

!
16
A~
~

!
1]
!

0\
\0



~TENnONALSECONDEXPOSURE

IVersIOn Synifiesize TOPiimlZelReport 16 32 64 12l(

Area

Delay

Delay'

~
Oil ..
~ rl.. >

i~

LSI Logic

Ica300k

ASIC

Xilin,

Spartan

FPGA

Area Area

Delav

Area

Delay
Area

Delav

Area
Delay

196 gates
2.82 ns
196 gates

2.64 ns
50 gates: 49 CLBs: 1 H
27.94 ns

50 gates: 49 CLBs: I H
27.94 ns

457 gates

3.64 ns

460 gates
3.53 ns
116 gates; 114 CLBs; 2 H
33.34 ns
117 gates; 115 CLBs; 0 H
31.65 ns

1043g~tes
4.62n5' •

1049 gates
4.66 ns

265 gates; 261 CLBs; 3 H
38.54 ns

265 gates; 261 CLBs; 4 H
35.74 ns

2344 gates

'6.21 ns

2421 gates
5.31 ns
593 gates; 585 CLBs; 8 H
41.14 ns
594 gates; 586 CLBs; 9 H
39.84 ns

5204 gates
9.01 ns

5229 gates
6.90 ns
1314 gates; 1297 CLBs; 17 H
45.23 ns
1317 gates; 1299 CLBs; 16 H
43.54 ns

LSI Logic Area

\ca300k
ASIC Delav

LSI Logic Area

\ca300k
ASIC Delay

I.S1 LogiC Area

\ca300k
ASIC Delay

0\
\C

oS
0_
." ..
1il rl
~~
~

~ E
." "
" E~~

~ S"
~8

~1l
] §
.-9"0.
~ §
;2U

Xilin,

Spartan

FPGA

Xilinx
Spartan

FPGA

Xllin,

Spartan

fPGA

Area

Delay

Are-a

Delay

Area

Delay

A~

~~

Area

~~

A~

~~

A~

~~

Area
Delay

Area
Delay

Area
Delay

Area
Delav
Area
Delay
Area
Delay

Area
Delay

Area

Delav

227 gates

2.85 ns
308 gates

2.89 ns

60 gates: 51 CLBs: 6 H
30.83 ns

64 gates; 57 CLBs: 6 H
25.54 ns

233 gates

4.10 ns
265 gates
4.44 ns

66 gates: 52 CLBs: 5 H
49.33 ns
86 gates: 71 CLBs: 15 I-I

42.54 ns

289 gates
3.15 ns

321 gates
3.64 ns
74 gates: 63 CLAs: 2 H
3994 gates

82 "ates: 69 CL.As: 6 H
4344'ffi.

512 gates

3.29 ns
678 gates

3.35 ns
123 gates; 117 CLBs; 18 H
34.33 ns

141 gates; 126 CLBs; 17 H
30.74 ns

645 gates

5.84 ns
755 gates
6.10 ns
150 gates; 118 CLBs; 10 H
47.23 ns
157 gates; 139 CLBs; 20 H
48.33 ns

641 gates

4.49 ns
758 gates

5.30 ns
167 gates: 143 CLBs: 7 H
51.64 ns
177 gates: 155 CLBs: 13 H
52.03 ns

1262 gates

4.IOns
1450 gates

3.86 ns
303 gates; 271 CLBs; 27 H
38.04 ns

335 gates; 288 CLBs; 49 H
38.54 ns

1296 gates
6.75 ns
1559 gates

8.67 ns
334 gates: 266 CLBs: 18 H
50.73 ns

371 gates: 329 CLBs: 79 H
52.03 ns
1400 gates

6.09 ns
1665 gates
7.96 ns

353 gates: 310 CLAs; 15 H
52.43 ns

364 gates: 331 CLAs: 32 H
48.72 ns

2741gates
4.54nS
3200 gates

4.26 ns
634 gates; 600CLBs; 71 H
46.43 ns

691 gates; 655 CLBs: 82 H
45.93 ns

2839 gates
10.66 ns
3222 gates
15.67 ns
688 gates; 605 CLBs; 83 H
52.03 ns

804 gates: 690 CLBs: 181 H
58.53 ns

3339 gates
7.94 ns
3784 gates
13.40ns
784'gates; 691 CLBs: 51 H
68.12 ns

804 gates: 739 CLAs: 691-1
57.82 ns

6Q27ga~
4.98n8
6960 gates

4.65 ns
1382 gates; 1331 CLBs: 156 H
47.72 ns
1542 gates; 1363 CLBs; 154 H
37.24 ns

6093 gates
14.17ns
7578 gates
21.51 ns

1564 gates; 1300 CLBs: 37 H
53.53 ns

1741 gates: 1531 CLBs: 181 H
61.13 ns
7111 gates

12.87 ns
7769 gates
22.64 ns

1688 gates: 1503 CLBs; 101 H
79.10 ns

1766 gates: 1615 CLBs; 139 H
67.61 ns

Table 4.6: Designs with Zero Flag Area and Delay Synthesis Results



.eDortthesize I Opllmtze
Area

Delay

Xilinx Area

Spartan
Delay

FPGA

LSI Logic Area

lca300k
Delay

ASIC

Area

Delay

Area
Delay
Area
Delay
Area
Delay
Area
Dela'
Area
Delay
Area
Delay
Area
Delay
Area
Delay

365 gates 815 gates
2.95 ns 3.41 ns
65 gates; 55 CLBs; 9 H 156 gates; 128 CLBs; 23 H '3'2'5-gates; 287 CLBs; 48 H 696 gates; 637 CLBs; III H
34,34ns 43,12ns 43,54ns 51.92ns
68 gates; 58 CLBs; 15 H 168 gates; 137 CLBs; 27 H 362 gates; 321 CLBs; 60 H 859 gates; 702 CLBs; 134 H
29,94 ns 33.43 ns 37,03 ns 41.82 ns

Table 4.7: Designs with Zero and Overflow Flags Area and Delay Synthesis Results

8745 gates
5.92 ns
1738 gates; 1469 CLBs; 187 H
67.79 ns
1965 gates; 1667 CLBs; 349 H
52.12 ns

Table 4.8: Register Load Optimized Mask-based Two's Complement Area and Delay Synthesis Result

ei><lrt
Area
Delay
Area 223-gates'"-~....' fM.•"~,,,. "~)'_:M.,c'·'_·.,153Tgaies---·--· -~---~5669 gates
Delay 2,34ns __~.2.37ns ~4.05ns

Area 54 gates; 44 CLBs; 0 H 126 gates; 104 CLBs; 1 H 288 gates; 241 CLBs; 1 H 645 gates; 547 CLBs; 0 H 1382 gates; 1233 CLBs; 38 H
Delay 25.05 ns 28.84 ns 32,55 ns 32,55 ns 36.15 ns
Area 61 gates; 62 CLBs; 16 H 157 gates; 135 CLBs; 32 H 385 gates; 327 CLBs; 64 H 883 gates; 767 CLBs; 150 H 1408 gates; 1426 CLBs; 212 H
Delay 25.44 ns - 28.84 ns 29.94 ns 32.54 ns 35.54 ns

Delay

AreaXilinx
Spartan
FPGA

,ynthesize I Uotlmlze

LSI Logic Area

1ca300k
ASIC Delay

-...l
o



INTENTIONAL SECOND EXPOSURE

erslOn Synthesize IOptimize I Report 16 3-1 64 128

Area

Delay

Delay

CLBs; 50 Ii

5888 gates
13.12 ns

6:90 rir ,
1510 gates;
46.13 ns
1519 gates; 1463 CLBs; 49 H
44.44 ns

2686 gates
7.74 ns

-'2792 gates
5.31 ns
691 gates; 665 CLBs; 23 Ii
42.03 ns
695 gates; 668 CLBs; 27 Ii
39.84 ns

1215 gates
4.98 ns
1242 gates
4.66ns
313 gates; 300 CLBs; 12 H
42.23 ns
315 gates; 302 CLBs; 13 Ii
36.64 ns

543l!ates
3.60 ns
565 gates
3.53 ns
137 gates; 132 CLBs; 5 H
35.03 ns
140 gates; 135 CLBs; 4 H
31.65 ns

239 gates
2.88 ns
253 gates
2.72 ns
60 gates; 58 CLBs; 3 H
28.34 ns
61 gates: 58 CLBs; 2 H
27.94 ns

Area Area
Delay
Area

Delay
Area
Delay
Area
Delay

Xilin,
Spartan
FPGA

LSI Logic
lea300k
ASIC

~
q-
1l "., ~

i~

LSI Logic Area

lca300k
ASIC Delay

~
q
... "
1;l ~

j~

~
Xilin,
Spartan
FPGA

Area

Delay

Area
Delay
Area
Delay
Area
Delay
Area
Delay

259 gates
2,85 ns
365 gates
2.95 ns
65 gates; 55 CLBs; 9 Ii
34,34 ns
68 gates; 58 CLBs; 15 H
29,94 ns

627 gates
3.39 ns
815 gates
3.41 ns
156 gates; 128 CLBs; 23 H
43.12 ns
168 gates; 137 CLBs; 27 H
33.43 ns

1632 gates
4.10 ns
1619 gates
3.86ns
325 gates; 287 CLBs; 48 Ii
43.54 ns
362 gates; 321 CLBs; 60 Ii
37.03 ns

3523 gates
4.54 os
3302 gates
4.28ns
696 gates; 637 CLBs; 111 Ii
51.92 ns
859 gates; 702 CLBs; 134 Ii
41.82 ns

7164 gates
6.62 ns
8745 gates
5.92 ns
1738 gates; 1469 CLBs; 187 H
67.79 ns
1965 gates; 1667 CLBs; 349 Ii
52.12 ns

Table 4.7: Designs with Zero and Overflow Flags Area and Delay Synthesis Results

-.l
o

; verSIOn ISyntheSize ptlmlze Keport ~ 1 JL b4 JL~

LSI Logic Area Area 189 gates 509 gates 1144 gates 2550 gates 5614 gates

.q.~ lea300k
Delay 2.21 ns 3.11 ns 3.14ns 3.59 ns 4.08 ns

Delay Area 223 gates 629 gates 1531 gates 3180 gates '" 5669 gates
1l ~ ASIC Delay 2.34 ns 2.05 ns 2.37 ns 2.73 ns 4,05 nsJ-
~!

Xiii", Area Area 54 gates; 44 CLBs: 0 Ii 126 gates; 104 CLBs; 1 J-I 288 gates; 241 CLBs; I H 645 gates; 547 CLBs; 0 Ii 1382 gates; 1233 CLBs; 38 H

Spartan
[)cla~' 25.05 ns 28,84ns 32,55 ns 32.55 ns 36,15 ns

Delay Area 61 gates; 62 CLBs; 16 H 157 gates; 135 CLBs; 32 Ii 385 gates; 327 CLBs; 64 Ii 883 gates; 767 CLBs; 150 H 1408 gates; 1426 CLBs; 212 H
FPGA Delay 25.44 ns 28.84 ns 29.94 ns 32.54 ns 35.54 ns

Table 4.8: Register Load Optimized Mask-based Two's Complement Area and Delay Synthesis Result

~



Chapter 5

Conclusions and Future Research

5.1 Conclusions

This thesis has presented four approaches to barrel shifter design. Each design is a

combination of techniques that affect two key factors. The fIrst is the mechanism used to enable

uni-directional operation support. The techniques used here are the mux-based and the mask

based approaches. The second mechanism is that which allows bi-directional operation support

via the fIrst's uni-directional hardware. The schemes used here are; data reversal, two's

complement, and one's complement. These techniques test the differences between adjusting the

data and manipulating the shift/rotate amount so that application leads to proper result

computation.

The goal of analyzing these approaches is to determine those techniques that minimize

gate count and critical path latency. After the designs were verifIed via simulation, they were

synthesized to both the lca300k ASIC and the Xilinx Spartan FPGA. Results indicate that the

Mux-based Data Reversal and the Mask-based Data Reversal approaches offer the best

combination of both goals. There is, however, no clearly superior design since each has a

comparable area-delay product and the Mux-based Data Reversal design has a lower gate count

than the Mask-based Data Reversal design, while having a larger critical path latency. As such,

use is dependent on individual demands of the hardware using the barrel shifter more than any

other absolute consideration. The Mask-based Two's Complement and the Mask-based One's

Complement designs proved to be too costly in both area and delay and are therefore of limited

use.
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5.2 Future Research

While this thesis focused on design optimizations to decrease both gate count and critical

path latency, there exist many additional avenues of exploration regarding this subject. They

range from design variations to implementation alterations. From a design perspective, one of the

more interesting avenues· is -the use of a signed, as opposed to unsigned, shift/rotate amount [9],

[10]. In this case, an additional direction signal is embedded in the shift/rotate amount as the sign

bit. This may either allow for the removal of the direction indicator from the opcode or create a

more versatile barrel shifter in that both direction signals are combined in order to determine the

true direction of the operation.

Another design alteration that may be considered is the support of data widths unequal to

an integer power of two. These data widths introduce complications since the methods used here

to ~mulate bi-directional operation with uni-directional hardware are not easily altered for these

data widths. It would, however, be useful to determine a method that supports these data widths

since there exist applications where data is not an integer power of two.

At a somewhat lower level, exploration of a physical level layout of the approaches may

make available some optimizations that were not accessible at the structural level. In particular,

multiplexor modeling optimizations not available before can be performed here. The gains, if

any, may provide insight into the designs not readily apparent. Of course, the importance of the

alterations at the structural level are just as important since no design should rely entirely upon

optimizations of this sort, as they are limited in their scope.

At an even lower level, one may wish to investigate the consequences of varying

implementation technologies. This thesis limited its scope to a O.61lm ASIC implementation.

TechnoJogy has since improved, however, making available much smaller manufacturing
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processes. These processes increase the relative cost of interconnects as line width begins to. .

dominate. It would be interesting to see if at these processes, whether or not the Mask-based

Two's Complement and Mask-based One's Complement become competitive to the other designs

since they avoid, where possible, long interconnects.

Finally, as more and more hardware is integrated into mobile devices, power becomes a

motivating factor. No power analysis was done for the designs, but it would be interesting to see

how they compare. In addition, if. this were to be combined with an analysis of multiple

implementation technologies, the end result may give insight as to how design and

implementation technology affect power consumption.
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