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Abstract

This paper reports on water chemistry data gathered at several sites across a

small, medium-relief agricultural catchment in East-central Pennsylvania and their

analysis using semi-empirical models that link these observations to spatial data

generated using GIS. The chemistry data set includes measurements ofnitrate,

phosphate, and other solute concentrations at the JPouths ofthe branches of the main

stream and 10 tributaries over a 14-month period. These data were modeled using a

modified rating curve approach, a log-linearized regression method that separates the

dependence of concentrations on the temporal variables flow and season from the

dependence on spatial variables. The model showed a statistically significant dependence

of nitrate concentrations on farm extent, extent ofnon-riparian forest, extent ofnear­

stream saturated sediments, and length of tributary at different gradient ranges. The effect

of length and gradient suggested that catchments with different morphological

characteristics have differing capacities to attenuate nitrate loads from the land..

Specifically, catchments with more oftheir stream length at a low gradient have a greater

potential to develop biogeochemical sinks for nitrate in the near-stream and in-stream

environment than do catchments dominated by high gradient streams. The change in

ratios of different catchment concentrations with temporal variables (fixed space) showed

a pattern consistent with the inferred catchment-dependence of processing. The results

also suggest that the width of riparian vegetated buffer alone was not a good proxy for the

nitrate attenuation potential of a subcatchment, due to the varying presence or absence of

near-stream saturated sediments in subcatchments.



1. Introduction:

1.1 Non-Point Source Pollution Concerns

Stream length and gradient are good indexes of a catchment's potential for

attenuating nitrate inputs in low-order headwater catchments. The development of

seasonally- or permanently-saturated flood- plain soils creates areas ofhigh redox

gradient that are conducive to denitrification ofwaters passing through from land to

stream. In the medium-relief, hill-lands of east-central Pennsylvania these sediment

accumulations form in low gradient stretches of first-order streams and in second or

higher-order catchments, where energy has subsided enough for the stream to deposit

some of its load. Lower gradient streams also provide a longer transit time, either

through lower velocity alone, or, more importantly, through mechanisms of retention,

such as woody debris dams or pool and riffle sequences, which allow sediment to

accumulate and water to increase its residence time in the system. The longer transit time

and sediment accumulations provide an environment more conducive to in-stream

denitrification than do high-gradient, high velocity, bedrock-strath streams.

Landscape properties must be examined as directly as possible to understand the

effect of spatial variability on the biogeochemical transformation processes of

catchments. The method we present here involves the use of a solute-rating curve to

separate flow and time from space. One rating curve, with regression-determined varying

amplitude, is used for all of the subcatchments in a third-order basin, and GIS generated

spatial data are used as continuous variables to account for variations in catchment

~ sources and sinks-processes contributing to differences in stream nitrate concentration.

The separation of space and time is necessary to clearly understand spatio-temporal
2



variability of catchment processes in a view toward gauging the total impact of specific

land-uses in various settings.

,Even though water quality is clearly correlated with land-use (Hynes, 1969;

Worrall and Burt, 1999; Correl, 1982), few tools have been developed for land use

planning to simply but effectively monitor and evaluate changes in water quality and to

predict impacts on water quality stemming from future changes. It is relatively simple to

gauge impacts from point-source discharges into surface waters, but non-point source

loadings, which build their effect cumulatively along the length of a stream and which

characterize agricultural activities, are complex and difficult to predict. Not only are the

flow paths from land to water difficult to predict, butthere are often extensive

biogeochemical transformations involved during transport as well. This complexity,

combined with the limited monetary resources of farmers for infrastructure changes,

makes it essential to have a realistic·but pragmatic approach to controlling agricultural

discharges into surface waters; one which can only be drawn from in-depth,

interdisciplinary understanding of the biogeochemical cycles of impacting chemical

elements and the effects on those cycles of the various environments encountered by the

elements while in-transport.

Antropogenic eutrophication of surface waters in modern times, due to excessive

loading ofnutrient species, primarily nitrogen and phosphorus, has led to public concern

and government legislation (e.g. Public Law 92-500 and section 319 of the Clean Water

and Air act) requiring local and regional planning authorities to develop and implement

plans to manage surface water quality (Karr and Schlosser, 1978). The recent movement

from the EPA to impose total maximum daily load (TMDL) allocations to non-point
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pollutant sources, including agriculture, silviculture, and forestry, has increased pressure

to regulate or control non-point source pollution (Slaughter, 1999).

Non-point source pollution from agricultural activity takes of the form of surface

and sub-surface runoff from agricultural land (Hynes, 1969; Pionke et al., 1999; Collins

et al. 1996), and includes pesticide, herbicide, and sediments, in addition to dissolved and

particulate Imtrient species. Many "conservation" farming techniques, such as

conservation tillage, contour plowing, and grassed waterways, have been proposed and

implemented to the ends of reducing inputs to surface waters. However, these

techniques, lumped together under the term "Best Management Practices" (BMPs), have

had relatively little scientific testing oftheir effectiveness on a watershed scale. Some

models have been created to predict effect of individual techniques, mostly sediment

transport models, but again, not in the context of the whole watershed (Hjelmfelt and

Wang, 1999).

Many of the chemical solutes draining into surface waters from agricultural areas

are nutrient elements (mostly nitrogen and phosphorus) and are thus highly biologically

reactive. This aspect of agricultural pollution dynamics makes it imperative to

understand the biogeochemical cycles that characterize the land-water interface, known

as the riparian zone, and also to understand how geomorphic controls on both the riparian

zone and stream channel will determine the type ofbiogeochemical processing that will

take place. These processes include uptake and conversion to biomass by both higher

plants and microbes, denitrification by bacteria, anion and cation exchange on clay and

humic colloids, and sedimentation and burial (Gregory, et al., 1991, Lowrance et al.,

1984; Peterjohn and Correll, 1983, Osbourne and Kovacic, 1993).

4



The complex nature of the multiple landscape and environmental interaction

involved, and the pressing need to fi-9-d practical solutions to non-point source loading

problems will require a combination of field data collection, spatial data generation, and

model development to test different scenarios of land management for their potential

benefits. This study is intended to add to a growing body of works that serve to elucidate

the nature of landscape and environmental interactions and their effect on solute transport

to surface waters. We combine field and laboratory analyses from a one year study of a

small group of low-order nested catchments with GIS spatial analysis and a combination

of statistical and mechanistic modeling techniques to examine the interaction of the

spheres oftime and space in their effects on nitrate concentrations in streams. We also

introduce the idea ofusing a single rating curve, generated from flow data at a USGS

steam-gauge and then adjusted in amplitude to fit individual subcatchment tributaries,

thus enabling a more detailed study of small-scale spatial variations. Finally, we will

examine relationships in the raw data of different sites that will serve validate

conclusions drawn from our statistical analysis, and hopefully illuminate the nature of the

processes occurring throughout the subcatchments. These methods may also serve as a

useful framework for studying other chemical species, or to look at a set of specific

spatial questions, such as the effectiveness ofvarious BMPs at reducing agricultural input

to streams.

5



1.2 Previous Work

Previous field studies ofnutrient inputs to surface water from agricultural land

have tended to be either spatially or temporally based, relying on either synoptic

("snapshot") sampling (Grayson et aI., 1997) or time series from a gauged weir or USGS

gauging station (Bilby, 1981). Studies have also tended to be done on large catchments,

which integrate many different processes and microenvironments into one sample

(Johnson et aI., 1997; Smith et aI., 2000). Few studies have looked at spatial variability

in the landscape and its correlation with stream chemistry in a small area of nested

catchments.

More recently attempts have been made to link spatial and temporal variables

together utilizing a log-linearized rating curve approach. Smith et al. (1997) used the a

rating curve approach that included seasonality and spatial variables as the basis for their

SPARROW model,though this was done at a very large scale (hydrologic cataloging

units over the conterminous United States), making it difficult to delineate subtle

differences in behavior ofvarying hydrogeomorphic environments and in the effects of

various different combinations of landscape factors. Potentially illuminating effects of

unique biogeochemical microenvironments may become obscured by larger regional

geologic, anthropogenic, or biotic signals at this large scale.

In this paper we will provide a simple descriptive rating curve model, using a

flow dependence coupled to a seasonal signal (Cohn et aI., 1994) to separate the

components of time and space and thus analyze landscape effects on nitrate

concentrations in detail. One key innovation in our rating curve approach is our use of

one archetypal rating curve, generated from flow values at a USGS gauge downstream of

6
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the mother catchment, for all of the tributaries in the catchment. This one curve is then

adjusted in amplitude with regression-determined coefficients to fit the different sites.

This aspect allows greater flexibility to investigate more closely the spatial variability

among the subcatchments. Because we do not directly gauge each site, we are modeling

concentration instead of load, the variable commonly addressed in rating curve analyses

(Cohn et aI., 1994). We will apply this modeling approach to a data set collected from a

small agricultural medium-reliefwatershed to explore the effectiveness of catchments

with different spatial characteristics at ameliorating nitrate inputs from the land to the

stream..

In addition to the fine-scale spatial resolution, the study area, located in the

transition zone between montaine headwaters and lowland meandering streams and

comprised of 1st, 2nd, and 3rd order streams, presents a Ulli.que opportunity to study how

the geomorphic evolution of a fluvial valley (i.e. change from a straight and steep to a

shallow gradient, meandering stream) affects the potential {or biogeochemical

transformations of solutes in that catchment Lastly, we will examine the assumption of

singular rating curve shape by looking at time dependence of ratios between sites (fixed

space), and, using insights gained from our empirical model into the processes involved,

with a view toward mathematically characterizing the mechanistic relationships between

landscape and stream water chemistry, suggest a semi-mechanistic process-based model

to apply more universally.
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1.3 Temporal Effects on Stream Nitrate Concentration

1.3.1 Flow

A positive correlation between nitrate concentration and streamflow in northern

temperate, agriculturally-influenced systems has been well-documented in past studies

(Pionke, 1999; Cirmo and McDonnell, 1997) as streamflow contributions shift from

predominantly baseflow at low discharge to an increasing fraction of interflow (soil water

component) with high discharge. However there is also a dilution effect at peak storm

flow, presumably caused by a move from interflow to surface runoff resulting in dilution

of steam nitrate level during peak flows. Though there is an obvious spatial dependence

ofweather systems on regional scales, this can be regarded as a largely temporal effect as

flow varies over time according to weather patterns that generally encompass the whole

study area, an assumption especially valid in our small study area.

1.3.2 Seasonality

One of the strongest determinants ofbiological activity, in addition to

moisture levels,·is temperature. Temperate climates exhibit a considerable seasonal

cyclicity. This cyclicity affects nitrate transfer from land to water in two ways. During

the growing season (spring, summer, fall), plants in both the fields and riparian zones are

actively metabolizing and taking up nutrients, including nitrate, leaving less in the soil

pore waters. The process of microbial denitrification is an enzymatic one, making it

extremely sensitive to changes in temperature, the warm summers providing an

environment for more rapid denitrification in near-steam saturated zones, the stream

water column, and stream sediments than during cooler times of the year. These two

effects generally reinforce each other to yield lower nitrate levels during the summer and
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higher nitrate levels during the winter. Opposite seasonal patterns have been found in

unimpacted, low-nitrate sites (Mulholland, 1992). In these areas, temperature may be

regulating nitrate release through organic matter mineralization processes, which are

amplified at higher temperature. These systems are defined as nitrogen-limited, so

atmospherically deposited nitrogen will be rapidly assimilated into biomass, only to

released later during decomposition.

There are also more complex seasonal patterns, including senescence of crops and

litter decomposition, which will not be addressed in this study. Seasonality will be

treated as a sinusoidal variation above and below a mean, the amplitude and zero-points

ofwhich will be determined through regression analysis.

1.3.3 Yearly Variation in Nitrogen Pool

Outflow ofnitrate from a catchment is not dependent solely on recent inputs of

nitrogen to the fields. Fertilizer applications are gauged by estimates ofyearly losses of

soil nitrogen to crops and to the environment. However variations in weather patterns

from year to year cause fluctuations in the amount ofnitrogen taken up into the crops and

the amount leached from the fields. Drought years often lead to lower crop uptake, due

to stunted growth, and low leaching potential, due to lack ofwater throughput. These

factors will combine to result in a larger pool ofnitrogen in the soil the following year,

giving higher potential for mobilization ofnitrate to the stream (Wente et aI., in prep)

1.3.4 Long-Term Trends

Surface water solute concentrations may exhibit long-term trends of

aggradation or degradation as pools of soil nitrogen change, due to changes in mass



balance of inputs and outputs. These changes are usually slow and difficult to analyze

without a sufficiently long data set.

1.4 Two-Dimensional Spatial Variables Affecting Nitrogen Transfer -Land Surface

.Cover

1.4.1 Areal Extent of Farming

The major source of excess nitrate coming from the land in any agricultural area is

from the farmland soil, be it pasture, feedlot, hayfield, or row-cropped field. To enable a

simpler analysis of spatial variability of sinks, we have limited our analysis to tributary

catchments that are row-crop and hay field dominated (>90% of farm area) and are

predominantly in agricultural land use (>56% ofland area). Tributaries are either first or

second order, by system of Strahler, (1950), so as to reduce complication ofmixing of

tributaries. We then assume even distribution of fertilizer on crop lands, so that

differences between nitrate levels in each catchment are due to differing extents of

agricultural use (source) and differing environments for biogeochemical transformation

(sinks), presumed to be primarily denitrification and biomass uptake in the riparian zone

and within the water column and sediments of the stream. This is a simplification of

sources and, owing to our more thorough treatment of spatial influences on sink­

environments, may bias the model's accuracy towards times when sinks become a more

dominant force in controlling the chemistry of the stream water.

1.4.2 Riparian Buffering:

Regardless ofnon-point source loading type, one of the main biogeochemical

influences shown to moderate land use effects is the extent of the riparian zone buffering

the stream from the land use in question. Previous studies in agricultural areas have
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shown a reduction of concentration ofnutrient species (i. e. both total and dissolved

nitrogen and phosphorus) in surface and subsurface flow moving through the riparian

zone towards the stream (Karr and Schlosser, 1978; Schlosser and Karr, 1981; Peterjohn

and Correll, 1984; Lowrance, et ai., 1984; Gregory, et ai., 1991; Osborne and Kovacic,

1993). These reductions encompassed a wide range of environment types and nutrient­

scouring effectiveness (see review in Osborne and Kovacic, 1993). The effect seemed to

be spread between N and P uptake and conversion to biomass by microbial life and

vegetation and denitrification in riparian soils. Different vegetation types, presumably

due to litter quality, root-microbe interactions, physical characteristics, and successional

stage, create different potentials for buffer effectiveness, as do different buffer

morphologies and slopes (e.g. seasonally waterlogged floodplain soils provide better

conditions for denitrification than do drier toeslope and hillslope soils - Gregory et ai.,

1991; Cirmo and McDonnell, 1997). In an unimpacted watershed with low nitrogen

concentrations, however, Mulholland (1992) showed riparian}one can be either a source

or a sink depending on redox conditions. Cirmo and McDonnell (1997) review studies

which have shown that near-stream saturated sediment zones and riparian wetlands are

active sites for nitrogen transformation, including removal by redox change of reactive

aqueous nitrate to unreactive evolved nitrogen gas (denitrification), uptake into and

sequestration in biomass, and and other redox changes, including ammonification and

nitrification, and point out that "N transformation and retention should occur where

hydraulic residence time is increased and'where saturated conditions prevail." This leads

to an inference that geomorphic characteristics (i.e. the shape ofthe valley and the

gradient of the stream) in a watershed may exert a control over the catchment's ability to

11



attenuate N inputs by regulating sediment accumulation and hydrology. There may also

be a significant difference in the attenuation potential ofhigh-gradient hillslope forested

riparian buffer versus a low-gradient wetland/saturated sediment or combination forested­

wetland riparian buffers, a distinction that has not been expressly addressed in previous

studies (Peterjohn and Corell, 1984; Lowrance et al., 1984; Osbourne and Kovacic,

1993), presumably because they were done on relatively flat landscapes (e.g. Illinois, and

the Maryland and Georgia coastal plains) compared to those addressed in this study.

1.4.3 Non-riparian Forest

Forests are areas where there is presumably no added nitrogen, save for

atmospheric deposition. In agricultural areas atmospheric deposition should be

inconsequential compared to fertilizer inputs. Depending on whether the forest areas are

aggrading or at steady state growth, they may act as a sink for nutrients or be neutral.

Though there are small seasonal pulses ofdischarge from winter and spring

decomposition periods, the overall nitrate contribution ofa forest is much smaller than

that of agricultural fields (Correll, 1981). Also, certain combinations ofvegetation and

soils may encourage denitrifying bacterial communities, creating another potential sink

for nitrate moving from land to stream (Gregory et aI, 1991), depending on the

hydrologic proximity ofthe farm land to the forest or soils in question (Wente, 2000).

1.4.4 Residential Areas

The effect of residential land use on nitrate export depends strongly on

whether there is a sewage system in place or whether the houses are using septic drain

fields. Though little data is available as to the effect of residential non-point source

additions, pr,esumably nitrate export will be lower than from agricultural fields due to

12



denitrification and ammonification in the reducing conditions of the septic drainfield,

however this may vary according to the efficacy of the drainfield. A spot sample we

gathered at the emergence of a stream draining a housing development gave a nitrate

value about 50% lower than purely cropped + riparian forest catchments on that same

date (unpublished data). Residential areas also frequently use significant amounts of

lawn and garden fertilizers, but nitrate levels are expected to be between those of forested

and agricultural area.

1.5 Three-Dimension Spatial Variables affecting Nitrate Transfer- Geomorphology

1.5.1 Geomorphology and In-Stream Processing:

Lotic systems are, by their nature, dynamic, both physically and chemically. In

addition to differential treatment of loads from the land along the length of the stream,

there are also many chemical transformations within the water column and channel

sediments. These include transitions between solid and aqueous phases, aqueous and

gaseous phases, and between organic and inorganic species. Many ofthese processes are,

in a variety ofways, enhanced, regulated, catalyzed, or modified by the near-stream

habitat and the character of the streambed and surrounding sediments. Though the effect

of riparian buffers on nutrient loads flowing through them is well documented, little

information is available as to the influence of near-stream habitat on the processing of

waters already in the stream. Possibilities for effect center around biogeochemical

transformations within the hyporrhea and include anion and cation exchange with humic

and clay colloids, denitrification in sediments and in the water column, bacterial uptake

and utilization ofnutrients, and DOC export to stream waters from riparian soils (Grimm

et al., 1984; Cirmo and McDonnell, 1997).

13



Flow regimes along the length of a stream, dictated primarily by streambed

morphology and stream gradient, playa major role in processing of in-stream nutrients by

dictating the degree of oxidation or reduction in and accumulation of sediments in any

reach of stream and also the ability of algae and aquatic plants to establish themselves on

or along the streambed. Jt is only when bacteria in sediments have exhausted the supply

of dissolved oxygen that they will use nitrate as an electron acceptor in their energy­

generating metabolism. Thus mechanisms of flow retention, which provide slow­

moving, potentially reducing conditions, are critical to in-stream processing. We will use

stream gradient as a proxy for the tendency for a stream section to have mechanisms for

retention (the lower the gradient the more likely the build up ofwoody debris and

formation ofpools), and thus more possible zones with the reducing environment

necessary for efficient denitrification. Though this is a simplistic measure of in-stream

processes, it is one that can be acquired relatively easily for any area without a field

survey, and that is constant over a span of several years. A more detailed treatment of in­

stream processes and the effect ofnear-stream habitat on those processes is beyond the

scope of this study.

1.5.2 Geomorphology and Near-Stream Saturated Sediments - "the floodplain"

The strong biogeochemical effect of near-stream saturated sediments and

riparian wetlands on the chemistry ofwater passing through from the land to the stream

has been extensively observed, but the chemical complexity of these redox reactors defies

most modeling attempts (see review in Cirmo and McDonnell, 1997). The fate of

agricultural-level nitrate in these zones is, however, qualitatively certain. The near­

stream saturated zone, with its high carbon soils from litter accumulation and low oxygen

14



levels, provides an ideal environment for bacterial denitrification. The saturated region

expands and contracts with changes in both seasonal and episodic hydrologic conditions.

However, the areal exte1!t of this saturated zone depends on the slope of the land adjacent

to the stream. In the high relief streams, there is no floodplain sediment build up at all.

Since sediments do not readily find places to deposit and are washed out easily in the fast

moving waters. The near- stream zone here will likely be an oxidizing zone with a

shallow, mineral soil.

Once a stream has cut down enough to slow down, lose energy, and start

depositing its load, there·can be build up of a floodplain with its saturated sediments and

high carbon content, conditions favoring denitrification. Typically, these areas will act as

a source for carbon and a sink for nitrate en route to the stream (David et aI., 1997;

Peterjohn and Correll, 1984), depending on their lateral extent, vegetation, and the valley

width profile. The wider and more gently sloping this area is, the longer the residence

time ofwater transiting through this environment and the greater the chances for

retention and/or biogeochemical transformation.

Again here, stream gradient is intertwined with a key issue in solute transport

and transformation. In the case of the riparian soils, nitrogen transformation processes

work strongly on water in transit to the stream from its non-point source, though the near­

stream environment expectedly has also been shown to influence in-stream chemical

environment and processes through diffusion and exchange with surrounding pore waters

(Grimm et aI., 1984).
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1.6 Model Theory

The combined influences of the above processes on the chemical composition

of stream water can be summarized in the form of a simple end-member mixing model

(Fig. 1). Thus, streamwater nitrate levels reflect what remains after stream system sinks

act on the mixture of flows entering it. In equation form, this can be written as:

(eq. 1)

The terms in equation 1 depend on temporal variables, particularly season and

discharge, in different ways. Among the three end member concentrations, the most

significant seasonal variations occur in the interflow end member since a) groundwater

temperatures are more stable and less influenced by surface processes and b) runoff likely

has variable and low concentrations. The partitioning of flows among the tiireepathways

is clearly a function of stream discharge, although not a monotonic function due to the

different flowpaths employed on the rising and receeding stages ofhigh flow events.

Finally, the extent to which stream-system sinks remove nitrate will depend on the

residence time ofwater within the system, which in turn will depend inversely on

discharge, and on season.
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2. Materials and Methods

2.1 Site Characterization

The Lyon Creek is a fourth order tributary, by the classification scheme of

Strahler (1950), to the Jordan Creek in the Lehigh River Basin ofEast-Central

Pennsylvania (fig 2. Its basin covers 19.4 km2 and has 31,558 linear meters of stream,

which is divided into two fault-bound branches separated by a ridge (fig. 3); see also

geologic map, fig. 20). The bedrock in the basin consists of Ordovician Martinsburg and

Hamburg sequence shales, and soils are developed from the shale parent material. The

dominant land use in the catchment is agriculture (68% ofthe land surface), but there are

some houses and residential developments (5%) and a few commercial lots «1%). The

remainder consists of riparian vegetation (14%), riparian wetlands (2.6%), and non-

riparian forest (9.9%) and roads «1 %), (fig. 3; Appendix 1).

Pennsylvania

Figure 2. The study area.

The Jordan Creek Basin

N.,
1 2' Min

Lyon Creek Basin
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Figure 3. Shaded-relief image ofLyon basin (from USGS digital orthophoto quarter-quad - Slatedale
NW).

streams
Riparian Saturated Soils
Residential
Nonrip forest
Riparian Buffer

P?cI! Farming

Figure 4. Land use in the Lyon Valley
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2.2 Sample Handling and Processing

Streamwater samples were collected in a 1-L Hel acid-washed high-density

polyethylene bottle (HDPE - Nalgene) using a method similar to an integrated depth

sampler, use of which was prohibited by shallow depth. The bottles were moved up and

down and side to side through the water column while filling to get a sample ofthe

stream water. No air was allowed in the bottle and the samples were immediately placed

on ice in a cooler and transported to the lab within 8h ofcollection for filtration and

treatment of subsamples. Two subsamples were vacuum filtered through 0.45 Ilm pre­

rinsed nylon membrane filters. One I25subsample was acidified to below pH 2 with 200

ilL of concentrated sulfuric acid for analysis ofmetallic cations, ammonia, and dissolved

organic carbon (DOC). A second filtered subsample was left unacidified for nitrate and

phosphate automated nutrient analysis, chloride and sulfate anion chromatography, and

colorimetric silica analysis. An unfiltered subsample was used for Gran-alkalinity

titration. Titrations were performed the day of sampling, nutrient analysis was performed

within 24 hours, and other analyses were performed within 30 days of the sampling, as

time permitted.

For some samples where only nutrient analyses were performed, samples were

taken in the same manner as the I-litre samples but using I25-ml HCI acid-washed

HOPE Nalgene bottles. The samples were kept on ice during transport and then filtered

through pre-rinsed GFF filters and kept at 4° C until analyzed (within 24h).
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2.3. Sample Analysis

Nutrient ion analyses for nitrate-N, ortho-phosphate (SRP), and ammonia-N

were performed on a Lachat/Zellwegger auto-analyzer. Chloride and sulfate anions were

analyzed by ion chromatography using a Dionex AS4 analytical column. Metallic

cations were analyzed using ICP atomic emission spectroscopy. Dissolved silica, as

H4Si04 was measured by molybdosilicate colorimetry. DOC was measured on a

Shimadzu TOC analyzer. All analyses were performed as' described in Standard Methods

(APHA, 1998). Gran-Alkalinity is calculated by titrating with O.IN HCI and plotting on

Gran curves (Gran, 1952).

Site measurements of pH, conductivity, DO, and temperature were made with

a Hydrolab Datasonde II datalogger, outfitted with a Scout field display. During a repair

period, a YSI O2meter, Orion pH meter, and Denver Instruments conductivity meter

were used.

2.4 Spatial Data Acquisition .:

GIS coverages were acquired or created for the study area. Sources included

the National Resource Conservation ~ervice, the Lehigh Valley Planning Commission

(LVPC), the Lehigh Earth Observatory, and the USGS. All coverages were

"groundtruthed" with spatially referenced USGS digital orthophoto quarter-quads, which

were ortho-corrected by the LYPC. Riparian buffer zones were delineated from aerial

photos and checked in the field for current accuracy. Land use was modified from a

LVPC land use map, using aerial photos and field observations. Subcatchments were

manually delineated using DEM-generated topo maps and USGS paper quads and their

boundaries digitized. The low-resolution of currently available DEMs precluded
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computer-generated watershed delineation and necessitated the use ofpaper maps for

reference. Saturated floodplain soils were digitized from county soil maps from the

DCNR. All spatial data used in the regressions were calculated from a combination of

ArcView and Arc/INFO GIS softwares, with the exception of the stream profiles, which

were generated using SigmaScan software. USGS 7.5 minute quad maps were digitally

scanned as TIFFs and put into SigmaScan along with markers on the map for distance.

The software allows calculation of area or distance by triangulating from three known

points. Profiles are generated by measuring the distance along the length ofthe stream

between each topographic contour (fixed rise).

2.5 Model Development

2.5.1 Descriptive Empirical Model

2.5.1.1 Approach

The mathematical model for data analysis was based on the log-linearized rating

curve approach (Cohn et aI., 1992). This approach is based on a solute's load being

proportional, either directly or inversely, to stream discharge. The rating curve can also

incorporate a seasonal signal into the curves of species that are temperature dependent,

like nitrate is.

The typical usage of the rating curve is to employ one curve for each site, with

concentration and instantaneous discharge being measure at each site for each sampling

date. In some cases, flow at a gauge downstream from the sampling site was used to

develop the rating curve (Smith et aI. 1997).

Our approach represents a departure from the one site - one curve approach.

We use one daily average flow value, downstream from the basin, to be a proxy for flow

22



in all of the subcatchments in the basin. We consider this approach reasonable due to the

small scale of our study area. We are exploring the hypothesis that within a limited area,

parameters of the rating curve are constant, with the exception of the (site-specific)

intercept. If that hypothesis were correct, then we could substitute in spatial variables for

the intercept parameter to find the causes of the differences in nitrate concentrations of

streams draining different catchments. A reduced precision of flow dependent fit is

expected, but the tradeoff is for an increased coverage of spatial variability.

To test whether our hypothesis of rating curve parameter constancy we utilize

an extended form of covariance analysis where a class variable for each site,j, is fitted

with a coefficient, Aj, to adjust the amplitude of our one rating curve to fit each sites data

(eq 2). The class variable approach gives us the best possible fit of a single, amplitude-

adjusted rating curve to the data set, and thus tests the suitability of the data set for this

approach of separating the dependence of concentration on space and time in order to

execute a spatial analysis.

In(N03 ) = Aj +Inf(Q) + lnf(season) (eq.2)

If the fit of the class variable approach is deemed acceptable, the next step is

to substitute in individual continuous spatial variables for the class variable, using

multiple linear regressions to gauge to contribution of that variable towards explaining

the variability in the data set above that from the temporal variables of flow and seas0!l.

-
The final step is to select a combination ofvariables that best represents or proxies the

sum of controls on the concentration of dissolved nitrogen in the stream waters ofthe

subcatchments.
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The greatest advantage of the rating curve approach is that it removes much

of the seasonal and flow- dependent bias on nitrate concentration and can thus be

preferable to the straight use of averages, which can be easily biased by environmental

conditions when the samples are collected, especially if every site is not represented each

time. This accounting for temporal variation may allow a deeper exploration the spatial

variability in a study area without needing to sample every site on every sampling date.

The rating curve model is commonly applied with log-transformed data in

order to use a linear regression approach. However, there are issues of transformation

bias involved in this approach (Draper and Smith, 1981). Cohn et al. (1992) have shown

that, despite the statistical complications involved in log-linearized models of stream
/

transport, they still provide satisfactory estimates, even when the models have shown

significant lack of fit. In orderto avoid overestimation offit, we report the R2 of a y=x

fit to a scatter plot ofthe observed data vs. re-transformed model prediction data using

SigmaPlot graphing software with coefficients generated from a SAS general linear

model (GLM).

2.5.1.2 Terms

Different chemical elements have different flow dependences and thus

differently shaped rating curves, usually due to the relative concentrations of stream

water contributors. In the case of nitrogen in areas without point-source discharges, the

contribution end-members are ground water (baseflow), soil water (interflow), and, at

very high discharge, surface runoff (overland flow). The soil water concentration, due to

fertilization, is usually higher than the groundwater concentration in agricultural areas.

Consequently, there is a rise in concentration as discharge increases, bringing with it an
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increasing fraction ofthe interflow in the stream water. However, there is also need for a

decay term that will kick in at higher flows and represents a dilution of interflow by an

increase in overland flow. Though the runoff concentration is probably not zero, we will

assume the runoff concentration to be negligible, compared to interflow. The common

approach to flow dependence is to use a power series of flow (Cohn et aI., 1992). Smith

et ai. (1997) use (lnQ) and (lnQ) 2, but others have been used.

Nitrate, being a biologically reactive species, exhibits a seasonal pattern,
,..

which is based on temperature and growing season, as well as its flow dependent pattern.

However, since flow is a weather driven phenomenon, it is also coupled to seasonality.

Thus the seasonality term acts like an amplifier of the general flow trends (fig. 5). We

have adopted the common approach of creating a sinusoidal function (first-order Fourier)

composed ofboth sine and cosine ofthe fraction of time (tel) elapsed since an arbitrary

startingpoint (in our case January 1, 1999) for season (eq. 3) (Cohn, et aI., 1992).

f(time) = A]2rrsin(td) + A22ncos(td)

1.4,--------------------,

(eq. 3)
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Figure 5. Multiplicative effect of seasonality term
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A rating curve was also constructed for dissolved calcium concentration in order to

examine the relationship of the nitrate rating curves to the mixing of different end-

members. Calcium, being less biologically reactive than nitrogen, should yield

information about the mixing of different end-members, especially the mixing of

groundwater and surface water. The rating curve will include the previously explained

terms of USGS gauge flow, seasonality, and class variables for the sample sites (eq. 4).

Ca(obs) = Q. exp{~ . sin(2ntd) +1..2 • cos(2ntd) +As (site)} (eq.4)

Selected temporal and spatial variables will be included in a spatial multiple regression,

in order to determine significant variables affecting Ca concentration.

2.6 Ratio Analysis

Ratios between sites (fixed space) will be examined as functions of time and

the temporally-dependent variables, flow, and temperature. By fixing space and looking

at the change in relationships between sites with time, we hope to gain insights about

processes and verify the inferences about concentration-controlling variables and in-

transport processes that we draw from our fixed-temporal spatial analysis.

An index of temperature is used to approximate relative soil temperature. The

index for a given day, d;, is a weighted average of the high (Th) and low (Tt) temperatures

recorded at a local NOAA weather station over a three day period (eq. 5). The ratio of

concentration between the branches, site L9:Ll, varied from 1.36 to 2.27, and the ratio

between the average concentrations was 1.56. The ratio of farming extent, site L9:Ll, is

1.25. The ratio of saturated floodplain sediments, L9:Ll, is 0.51.

Temp. Index(dJ = ([3*Th(dJ+2*TI/d;-I)+Th(d;-2)]l6
+[3*Tz(dJ+2*Tt(d;-I)+Tt(d;-2)]l6}12
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3. Results

3.1 Spatial Variability (GIS)

Fewer, larger tributaries feed the northern branch of the Lyon creek, designated Ll,

than feed the southern branch, designated L9 (fig. 11). Eight streams feed the northern

branch (though we have only divided it into 6 subcatchments for sampling logistics),

while 12 streams feed the southern branch, though the total drainage area of each branch

is similar (the south branch is 2% larger). Land use properties for the whole catchment

are described above in the materials and methods section. The southern branch had more

farm area (76% ofland use) than the northern branch (62%). The northern branch was

covered by more riparian buffer (21% vs. 13%) and non-riparian forest (13% vs. 7%),

and less residential area (4% vs. 6%)than the southern branch. Individual tributaries

varied in their properties. See Appendix 1 for complete spatial data.

Figure 6. Tributary numbering scheme
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3.2 Chemical Data

3.2.1 Nitrate Data

The Lyon basin was ranked as a "low threat" by the Pennsylvania-DEP for

nitrogen loading relative to other basins within the Jordan Creek catchment (fig. 7), based

on fertilizer sales and livestock holdings. This is mainly due to the low number of
+

livestock, relative to other basins in the area.

NStreams
D Major Basins
N loading
o very low
glow.• ~;~Ium

Figure 7. Relative Nitrogen loading in the Jordan Creek Catchment.

Throughout the study, measured stream nitrate levels never exceeded the

10ppm N03- - N (all concentration levels subsequently referred to will be in these units)

level set by the EPA as a limit for a safe drinking water level. Confluence stations ranged

in concentration from 0.29 to 5.37. The concentration in the southern branch of the Lyon

Creek ranged from 0.5 to 5.37 with an average of 3.50 and was always higher than that of
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the northern branch, which ranged between 0.22 and 3.66, with an average of2.25.

Concentrations in the tributaries ranged from 0.18 to 7.8 and demonstrated strong

variation between sites. All sites exhibited strong variation with the temporal variables of

date and flow (fig. 8). Data also showed trends with spatial variables, especially fraction

farm, fraction non-riparian forest, stream length, and stream gradient (fig. 9).
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Figure 8. Dependence ofN03-N concentration on temporal variables.
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gradient, are for tributary sites only.

Ratios can be calculated between the two main branches and the change in

that ratio with time (fig. 10) and the temporally-dependent parameters of flow and

temperature (figs. 11). The ratio shows a negative trend with flow and a positive trend

with temperature.
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3.2.2 Ca Data

Calcium concentrations ranges from 9.53 to 23.91 ppm dissolved Ca. The

northern branch, L1 was consistently lower in concentration than the southern branch,

L9. Branch L1 ranged from 11.39 to 20.63, with an average of 16.18, while branch L9

raD:ged from 13.14 to 21.51, with an average of 18.29. The data showed apparent

temporal trends with date andjlow (fig. 12), and showed an apparent positive trend with

the spatial variablesfarmfraction and negative trend with average gradient (fig. 13).

There were no apparent trends with the spatial variables stream length and average width

saturated streamside sediments (fig. 13). The ratio between the two branches showed no

trend with the temporal variables ofjlow and temperature (fig. 14).
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Figure 12. Dependence ofCa concentration on temporal variables.
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3.2 Model Results

3.3.1 Nitrate Rating Curve (Empirical) Model

We first used the power series of flow terms InQ and (lnQl and found this to

be satisfactory for the confluence stations, but the tributaries needed a higher peak and a

stronger decay at high flow. We use an increase with InQ and a decrease with r7 for the

tributaries (fig. 15). Parameter coefficients are calculated from regressions of the data.
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Figure 15.. Flow dependence ofnitrate concentration

The temporal part of the rating curve is then a combination of flow and seasonal terms

(eqs. 6 and 7, and fig. 16).

Confluence:
C(solute) = exp (A]lnQ + A2(lnQl + A3sin(2ntd) + A4cos(2ntd)} (eq.6)

Tributaries:
C(solute) = exp (A]lnQ + A2(Ql + A3sin(2ntd) + A4cos(2ntd)} (eq.7)
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The summer of 1999 was marked by an extreme drought, which resulted in

the cessation of flow in the northern branch of the Lyon creek during part of July and

August. Crop growth was stunted, and, according to local farmers, yields were low that

year. Presumably, this reduced growth and uptake in the fields will leave an excess of

nitrogen in the fields compared to average years. The excess nitrogen can be exported

through the following year, r~sulting in higher nitrate concentrations than would be

normally predicted. We added a class variable to sample points taken after October to

adjust the shape of the rating curve to accommodate this effect.
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The rating curve model was first tested with class variables representing each

tributary instead of the spatial variables from the tributaries in order to test the suitability

of the data set for modeling with our single adjusted-amplitude rating curve approach

(eqs. 8 and 9). Data from tributaries L4 and L21 were not used in the models due to the

animal intensive agriculture in these catchments. Tributary L4 consisted of a group of

rotational grazing paddocks for sheep around a small stream, which is dry most ofthe

summer, even without the drought. Tributary L21 had a cattle feed lot along the stream

close to its confluence with the main stem and a high degree of residential area. We

could not estimate the difference in loading ofthese sites compared with the

predominantly cropped and hayed fields of other catchments, so these sites would skew

the estimates of sinks in their catchments.

The rating curves with class variables yielded R2 fits of .90 for the confluence

and .93 for the tributaries (figs. 17), and we then proceeded to remove the class variables

and add individual spatial variables to test their addition to the predictive power of the

rating curve terms alone (tables 1 and 2).

Confluence equation:

N03 = exp (A]lnQ + A2(lnQi + A3sin(2md) + A4cos(2md)
+ A5*(site class variable or continuous spatial variable)}

Tributary equation:

N03 = exp{A]lnQ + AlQi + A3sin(2md) + A4cos(2md) +
+A5*(site class variable or continuous spatial variable)}

(eq. 8)

(eq.9)

The most significant individual spatial variables added to the rating curve

were fraction ofthe basin infarming, extent of saturatedfloodplain sediments, stream

length, basin size (highly correlated with stream length), and fraction of stream with
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gradient less than 4%. The only non-significant factors were fraction of basin in riparian

vegetated buffer, and fraction of stream length with gradient between 4% and 8%.

Due to the co-variance of many of the variables, only a limited number of

terms could be used in the model. This limitation led us to combine the terms of length

and gradient into length at different classes of gradient.

Based on the results of the individual spatial variable regressions, we

constructed a log-linearized model that combined length at the low (L G<4%) medium

(4%<L_G<8%) and high (L~,G>8%) gradient classes, fraction ofbasin in farming

(Farm), fraction ofbasin with non-riparianforest (NRFor), and a drought class variable,

all with fitted coefficients (eq. 10). The coefficients generated by the model (table 3)

were used to predict concentrations for a plot ofmodeled vs. observed data fitted to a y=x

line (fig. 18).

N03= exp{A]!nQ + AlQ/ + A3sin(2md) + A4cos(2md) + A5 Farm + AJVRFor (eq.l 0)
+ A7L_G<4% + AsL_G>8% +A9DroughtCV
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Table 1. Parameter coefficients and significance for flow and seasonal terms (temporal terms).
Adj. R2=0.537

Variables Coefficients Standard Error t Stat P-value
Intercept -0.7073 0.2510 -2.818 0.0064
InQ 0.4832 0.0654 7.384 <0.0001
Q2 -5.502E-06 1.680E-06 -3.274 0.0017
sin(21ttd) -0.1635·· 0.1141 -1.434 0.1564
cos(21ttd) -0.0873 0.1090 -0.801 0.4260

Table 2. Parameter coefficients, significance and effect on R2 of individual spatial variables added to
rating curve equation.

I

~Added Variable Coefficients Standard Error t Stat P-value

Drought CV -0.6089 0.146 -4.175 <0.0001 0.629

Fraction Farm 2.5676 0.376 6.837 <0.0001 0.727
Fraction Non-Rip Forest -4.7874 0.922 -5.192 <0.0001 0.668

Fraction Residential -8.7984 1.665 -5.286 <0.0001 0.671
Fraction Riparian Buffer 0.0557 0.240 0.232 0.8170 0.530
Area Floodplain Seds -5.074E-07 0.000 -7.015 <0.0001 0.733
Frac. Stream wI FP Seds -0.8126 0.146 -5.550 <0.0001 0.681

Stream Length -6.369E-05 0.000 -8.259 <0.0001 0.771
Basin Area -2.659E-08 0.000 -8.338 <0.0001 0.773
Avg. Stream Gradient 9.2081 1.794 5.133 <0.0001 0.666
Frac. Stream wI Grad<4% -1.0478 0.107 -9.807 <0.0001 0.774
4%<Grad<8% 0.4105 0.344 1.194 0.2368 0.477
8%<Grad<12% 2.0559 0.342 6.014 <0.0001 0.650
Grad>12% 2.4589 0.323 7.622 <0.0001 0.709

Table 3. Coefficients and significance ofthe empirical log-linearized spatio-temporal model.

Variable Coefficients Standard Error t Stat P-value
Intercept -1.92485 0.322654 -5.97 <.0001
InQ 0.339419 0.028677 11.84 <.0001
Q2 -5 E-06 6.9E-07 -7.29 <.0001
sin21ttd -0.16278 0.048191 -3.38 0.0013
cos21ttd 0.030429 0.044418 0.69 0.4959
Farm 2.658204 0.304502 8.73 <.0001
NRFor -3.47448 0.561598 -6.19 <.0001
L_G<4% -0.00011 1.41 E-05 -7.87 <.0001
4%L_G<8% 0.000177 4.52E-05 3.91 0.0002
L_G>8% 0.000246 3.72E-05 6.62 <.0001
Drought CV -0.25809 0.069789 -3.7 0.0005
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Retransformed Log-linearized Model
Adj R2 = 0.91 (fit to y=1.0x)
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Figure 18. Fit of observed vs. predicted nitrate concentrations for the empirical log­
linear model.

3.3.2 Calcium Rating Curve

The flow dependence of Ca shows a negative correlation, the opposite of

nitrate's, indicating a higher concentration in groundwater than in surface water. Though

there appears to be a dilution from runoff at high flow (fig 12), this effect could not be

modeled with our log-linearized rating curve. The significant spatial variables affecting

Ca concentration were fraction farming (positive correlation) and average stream

gradient (negative correlation) (table 4). Stream length and average width ofsaturated

streamside sediments were not significant.

Table 4. Coefficients and significance of spatial multiple regression.
Adjusted R 2 0.51359818

Coefficients Standard Error t Stat P-value
Intercept
Ina
sintd
costd
Gradient

Farm
AvgWidthFPS

StmLength

2.898107039 0.225640427
-0.085746248 0.025659509
-0.046961865 0.047431903
-0.074806699 0.04250425
-2.485662854 0.836391336

0.723804669 0.184874547
-0.002692219 0.001585251

8.30799E-06 1.47282E-05

12.84392
-3.34169
-0.99009
-1.75998
-2.97189

3.915113
-1.69829

0.564089

1.37E-15
0.001845
0.328233
0.086253
0.005049

0.000353
0.097419

0.575923
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P-valuet StatStandard Error
0.794315

Coefficients

Table 5. Regression coefficients and significance for covariance test with class variables.
Adjusted R
Square

Intercept
InQ
sin 21ttd
cos 21ttd
LO
L1
L3
L5
L7
L8
L9
L10
L12
L13
L17
L20
L21

2.7918
-0.0580
-0.0642
-0.0897
0.2772
0.1655
0.0970
0.0862
0.2241
0.4048
0.2932
0.3019
0.3938
0.2773
0.0566
0.5599
0.4864

0.0883
0.0116
0.0247
0.0236
0.0752
0.0738
0.0774
0.0747
0.0747
0.0840
0.0738
0.0840
0.0914
0.0914
0.0914
0.0859
0.0859

31.6041
-5.0147
-2.5989
-3.8046
3.6846
2.2433
1.2520
1.1538
2.9991
4.8173
3.9746
3.5932
4.3105
3.0350
0.6197
6.5195
5.6637

<.001
<.001
0.0123
<.001
<.001
0.0293
0.2164
0.2540
0.0042
<.001
<.001
<.001
<.001
0.0038
0.5383
<.001
<.001
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Figure 19. Modeled dependence ofCa concentration on flow.
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4. Discussion

4.1 Biogeochemical Controls on Potential Nitrate Sinks

4.1.1 Geologic Controls of Sinks

Geomorphic variables of length and gradient clearly account for much of the

potential for these first- or second-order catchments to attenuate nitrate inputs from

agriculture. It is not as clear, however, exactly what the cause of geomorphic variation is

within the Lyon Valley, and while a complete geologic investigation is beyond the scope

ofthis work, there are many clues that can be briefly addressed.

It is tempting to infer a control of morphology by lithology, as the majority ofthe

length of the longest streams, L5 and L7, reside within the Hamburg sequence greywacke

and shales and the shorter, high-gradient streams reside almost entirely within the

Martinsburg shales (fig 20). It would seem that the different properties of the Hamburg

sequence rocks allowed the streams to downcut more rapidly and attain a longer, more

mature character than did the streams within the Martinsburg shales. However, the fault

-controlled main branches of the Lyon trend NE-SW, while the regional gradient trends

from the NW to the SE, perpendicular to the long-axis of the Lyon Valley. This means

that some of the tributaries run with the local gradient and some run against it, creating

differences in elevation drop from headwaters to mouth between the northern-branch

tributaries and the southern-branch tributaries and a consequent variability in potential

energy for physical weathering processes within the catclunents.

Regardless of the cause, the result is that the northern branch of the Lyon is

drained by fewer, longer, lower average gradient streams then is the southern branch (fig.
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20). We propose that this results in an increased capacity for the northern branch to

attenuate excess nitrate levels coming from agricultural areas, and that high gradient

tributaries are more at risk of contributing higher loads ofnitrate to surface water bodies.

Figure 21 shows representative stream profiles of different gradient classes.

N

A

NStreams
"A/Faults
t3eology
• Hamburg Sequencem Hamburg Sequence (Shale with Graywacke)
~ Martinsburg Fm

Figure 20. The geology ofthe Lyon Basin (from Wood and MacLachlan, 1978)
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Figure 21. Representative profiles oflow (a, b), medium (c, d), and high-gradient (e, f) streams.
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4.1.2 Geochemically Active Zones

Since the geomorphic characteristics of the catchment control the hydraulic

connections between land and water and many of the characteristics of transport to and

within the stream, the morphology provides a control of contact time between the water

and basin sediments, and thus exerts a control on chemical reactions in the sediments

throughout the ·catchment. Recent work in The Rocky Mountains by Clow and Sueker

(2000) shows similar controls. The basin morphology, particularly the length and

gradient of the low-order streams, also strongly defines the presence or absence of

streamside-saturated sediments and the soil development there. These seasonally, and

often perennially saturated areas create reducing conditions that are perfect for the

incomplete oxidation and subsequent build-up ofsoil-carbon. The high carbon content

and high redox gradients in these zones strongly influences the chemistry of the water

flowing through them. Numerous studies have shown these zonesto be actively

influencing the chemistry ofwater flowing through to the stream and even water within

the stream channel, via hydraulic communication with the pore waters in the hyporrhea

and in the banks of the stream (see review in Cirmo and McDonnell, 1997; Grimm et aI.,

1984) In particular, these zones, with high carbon and low oxygen concentrations, can act

as large permanent sinks for nitrate through microbiological respiration, as well as a

temporary sink from conversion to biomass. Similar conditions are created within the

accumulated streambed sediments ofpools and both natural debris dams and man-made

ponds.

Despite the theoretical agreement with the data interpretation, the argument

could be made that the decrease that we see at low flow is not from biogeochemical
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processing within the catchment or within the stream, but is from the shifting dominance

of streamwater sourcing from interflow to groundwater. However, the evidence from the

Ca data analysis does not show any trend that could be misinterpreted as a

biogeochemical sink affecting its transport. Ca is much less biologically reactive than

N03- is (it is used in lower amounts for biologic anabolism and does not serve in biologic

catabolism as a terminal electron acceptor in microbial respiration processes as nitrate

does), and thus it's behavior with both spatial and temporal variables should reflect the

process of groundwater - surface water mixing, rather than that of a species that can be

extensively transformed while in transport. We can further examine this by using an

endmember-mixing analysis to determine the endmember dominance at various discharge

scenarios and comparing the characteristics of a line representing the mixing of

groundwater and interflow for a non-reactive species to the shape of our nitrate rating

curve over the same range of flow.

We will assume the same baseflow, interflow, and runoff endmembers that were

used for nitrate. Since the nature of the rating curve is asymptotic with very low flow,

we will estimate end members from both raw data and the rating curve. Again, we will

assume the concentration of runoffto be negligible. We will use the rating curve's

prediction ofconcentration vs. flow and an end-member mixing equation to represent the

concentration at a given flow, C(QJ, as a product of a flow-dependent mixture of

endmembers (eq. 11) at flow values ranging from all groundwater to predominantly

interflow in order to back out an approximation the fraction of streamwater represented

by interflow, Xgw(QJ, (eq. 12). Xgw(QJ is the fraction ofgroundwater in the stream at

Qi, Cgw is the concentration ofthe groundwater, Xint(QJ is the fraction of interflow in the

46



stream, XrlQJ is the fraction of surface runoff in the stream, and Cro is the

concentration of the surface runoff, which will be dropped from the equation.

(eq. 11)

Xint (Q;) ={C(Q;) - Xgw (Qi) *Cgw} + Cint (eq. 12)

Figure 22 shows the relationship of a line representing the mixing of a non-

reactive species with a much higher concentration.in the soilwater than in the

groundwater to rating curves generated by our class variable approach for three classes of

streams, the confluence stations, the tributaries, and a subset ofhigh-gradient tributaries.

If there were no processing ofnitrate in the stream and near-steam environment, we

would expect the mixing line to be straight. The high-gradient class line shows a nearly

straight line, while the tributary line shows more inflection, and the confluence line

shows the most inflection. The degree of inflection represents the degree ofprocessing

ofprocessing of nitrate, which increases with length of contact time, a variable affected

by flow and length. This is consistent with sinks for nitrate that are more active at high

flow than at low flow.
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Figure 22. Rating curve predicted concentrations vs. fraction surface water
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4.1.3 The Biological Reactor

With the use of rating curves, we attempt to eliminate the temporal variables

of flow and season so that we can directly examine the effect of spatial variability on

solute concentrations. Arguably, the most intriguing aspect of the spatial variability is

the varying potential of each catchment to attenuate inputs from nitrate sources. This

finding is consistent with recent work in the Rocky Mountains by Clow and Sueker

(2000), showing basin characteristics affecting solute concentrations through control of

contact times and degree of soil development. We can also examine landscape control

aspect of each site directly without removing time, and in fact by looking at variable

change with time. The ratio of concentration between different tributaries, or even

between sections of a tributary, at anyone time shows the composite effect of sources

and sinks within that catchment or reach, but the variation in that ratio with time tells us

something about the biogeochemical sink potentials of that tributary or reach.

The varying ratio of nitrate concentrations between different catchments indicates

that the spatial attributes of each catchment are exerting a degree of control on element

cycling; a control that is dependent on environmental conditions, particularly those of

flow and temperature. Figure 24 shows this relationship for the two main branches, for

representative high and low denitrification potential streams, and for a high- and low­

gradient section of one longer tributary. When plotted over a yearly cycle, the variation

in the ratio shows an oppositely phased cyclicity to the seasonality term and the general

pattern of flow used in our model (fig. 10).

The sink mechanisms, whether they are due to in-stream or near-stream processes

appear to act much like a flow-through biological wastewater reactor. At the right
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conditions nitrate flows in off of the land, and is consumed in large part in the sediments

before the water reaches the stream. If, however, the flow is increased, the nitrate can

only be partially consumed before the water reaches the stream. Temperature has a

similar control on the situation by increasing the biochemical reactions at higher

temperature and damping them at low temperature. We observe this biochemical

signature in the change of the ratio of concentration between catchments ofwith time. As

environmental conditions potentiate the biochemical processes, the difference between

sites ofhigh and low sink-potential grows, finding maximums with high temperature and

low flow (fig. 10). Thus, though the summer creates lower nitrate levels for all sites, it

also accentuates the differences in the nitrate attenuation potentials of the each

catchment's stream system.

Importantly, we can see that not only do the confluence stations as well as

different tributary stations show this effect, but also sections of tributaries show this

effect (fig. 24). In tributary L7, a sample site at the end of the high gradient section (fig.

23) ofthe stream acted like a high-gradient tributary in relation to the mouth station.

This property of similar function at increasing range of scales suggests a fractal

dimension to the biogeochemical properties ofthis nested series of catchments.
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4.2 Model Refinement

The empirical single, adjusted-amplitude rating curve approach provided a

satisfactory method of separating time from space to allow for a spatial analysis of

controls on stream nitrate concentration. However, the evidence ofthe ratios and the

comparison of rating curves generated from different subsets of sites indicate that the

shape of the curve does matter, and that for a more universal, mechanistic approach to

modeling nested catchment data, there needs to be freedom for each catchment to express

it's characteristics in the shape of its rating curve, while still using one flow data source.

Our conceptual model suggests that differences in flow partitioning and

stream-system sinks are likely factors contributing to differences in rating curve shapes.

In rating curve equations, these interactions can be incorporated by allowing for

interactions of flow and length-gradient terms. One approach to doing this would be to

base a rating curve on semi-mechanistic equations, such as t?eequation for the

concentration ofnon-conservative non-point source pollutants (eq. 13), where k is a

decay constant, and t is travel time.

Cso1 =kt.{l-exp(-kt)} (eq.13)

From empirical studies of stream travel times (SPARROW nature), a

reasonable expectation is that kt is proportional to stream length and inversely

proportional to gradient and/or discharge. These spatial and temporal terms can be

incorporated into to allow an interaction offlow and stream characteristics. A

hypothetical series of stream length-gradient classes is shown in figure 25, representing

the differing potential for transport sinks in each class. The different stream classes can

now exhibit differing shapes, based on their characteristics and their effect on transport
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processing ofloads. The ratio of high to low sink-potential sites now shows the same

dependence offlow that the raw data show. The current limited data set does not warrant

the need to provide freedom of slope in the rating curve, primarily due to the sparseness

of points at low flow in the short, high-gradient tributaries. However, if this single flow-

source rating curve method is to be applied to other series of nested catchments, this

freedom of curve shape must be an available option.
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4.3 Implications

The adoption of The Clean Water and Air Act in 1972 and more recent

legislation, section 303(d) of The Clean Water Act, requiring establishment ofTMDLs,

has increased the pressure on science and the agricultural industry to regulate non-point

source agricultural pollution. The recent concern over hypoxia in the Gulf ofMexico has

increased the pressure to decrease agricultural inputs ofnutrients, particularly nitrate, into

surface waters. Central to the issue ofnutrient discharge from agriculture is the issue of

attenuation, whether in transport from land to stream or while in transport within the

stream. Our study suggests that low-order catchments in high-gradient areas are more at

risk ofhigh loading rates than higher order, lower-gradient streams, which tend to have

more mechanisms in place to attenuate nitrate inputs.

A variety of conservation agricultural practices have been proposed over time

under the umbrella term, "best management practices". In theory, these practices, such as

reduced tillage, riparian buffer strips, and grassed waterways, should reduce sediment and

chemical inputs to surface waters from agricultural lands. However, few of these

practices, save for physical removal of sediment by grassed waterways and riparian

buffer strips, have found scientific proof of effectiveness. One finding in this study was

that not all riparian buffers work the same. In fact, the regressions showed no correlation

of riparian buffer extent with nitrate concentration. Buffers in high gradient valleys, with

no accumulation of floodplain sediments, seemed to have little or no effect on nitrate in

waters coming off of the fields. Presumably, previous studies that have shown nitrate

reductions of surface and groundwaters through riparian buffers have been done on

relatively low-gradient areas with valley floor sediments and appropriate denitrifying
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conditions. In riparian wetlands of a low-gradient section of our study area, during a high

flow event, we measured a 50% reduction of nitrate though a series of seeps in a 12m and

a 20m transect from the edge of a field to stream. However, there was little evidence that

these processes were active in the smaller catchments with no valley floor sediments.

We propose that similar methods of spatio-temporal analysis, using GIS

techniques and rating curve models based on one gauge in small nested catchments, could

be used to investigate the effect ofBMP's on water quality, and to further analyze

landscape properties and their ties to water quality.
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Appendix 1. Complete GIS spatial data.

Basin Characteristics - Land Use

o 19432556 13381623 3250451 985436 1935846 68.9 16.7 10.0 5.1
1 9620388 5939976 2017561 381881 1251236 61.7 21.0 13.0 4.0
9 9812168 7441647 1232890 603555 684610 75.8 12.6 7.0 ,6.2
3 737584 342070 234293 57578 111703 46.4 31.8 15.1 'j.8

4 221758 217891 11274 0 0 98.3 5.1 0.0 0.0
5 2779948 1563304 542193 168198 471789 56.2 19.5 17.0 6.1
7 3227428 2029430 701469 124000 458141 62.9 21.7 14.2 3.8

V1 8 914900 634365 115232 14957 136131 69.3 12.6 14.9 1.600

10 381012 339885 27763 0 59522 89.2 7.3 15.6 0.0
11 433619 287376 105269 26145 16973 66.3 24.3 3.9 6.0
12 376480 281979 73630 0 13033 74.9 19.6 3.5 0.0
13 413188 311443 77267 9063 0 75.4 18.7 0.0 2.2
14 654942 425701 96446 16082 118174 65.0 14.7 18.0 2.5
15 234417 213270 23120 0 534 91.0 9.9 0.2 0.0
16 247808 178222 26345 0 46780 71.9 10.6 18.9 0.0
17 719156 503306 53800 58999 95143 70.0 7.5 13.2 8.2
18 954462 841680 56055 3090 47993 88.2 5.9 5.0 0.3
19 505351 437212 21991 38819 4550 86.5 4.4 0.9 7.7
20 945979 705617 89287 15171 77870 74.6 9.4 8.2 1.6
21 1496802 1169059 90747 430246 23589 78.1 6.1 1.6 28.7



Basin Characteristics - Riparian Zone

0 19432556 510737 16 103.00
1 9620388 337378 22 128.86
9 9812168 173359 11 77.53
3 737584 0 0 183.79
4 221758 0 0 18.59
5 2779948 116112 30 138.38
7 3227428 115592 25 150.78
8 914900 0 0 88.70

10 381012 0 0 37.49
11 433619 0 0 111.86

VI 12 376480 7966 10 92.96
\0 13 413188 0 0 ·96.01

14 654942 0 0 97.84
15 234417 0 0 36.27
16 247808 0 0 55.17
17 719156 0 0 52.74
18 954462 26039 24 52.73
19 505351 0 0 37:49
20 945979 0 0 60.05
21 1496802 0 0 53.04



Stream Characteristics

0 31558 0.015 0.464 0.261 0.131 0.145 15269 8585 4306 4782
1 15657 0.015 0.466 0.250 0.117 0.167 7938 4258 2000 2843
9 15901 0.015 0.461 0.272 0.145 0.122 7331 4327 2305 1938
3 1275 0.123 3.200 0.000 0.399 0.274 0.327 0 509 350 416
4 606 0.168 2.600 0.000 0.223 0.138 0.639 0 135 84 387
5 3918 0.055 3.200 0.486 0.366 0.084 0.065 1903 1434 329 253
7 4652 0.062 3.200 0.586 0.204 0.127 0.082 2727 950 591 383
8 1299 0.082 2.600 0.000 0.310 0.305 0.386 0 402 396 501

10 741 0.121 2.850 0.000 0.287 0.385 0.328 0 212 285 243
11 941 0.102 2.850 0.000 0.506 0.210 0.284 0 476 197 267

0\ 12 792 0.104 2.200 0.000 0.307 0.423 0.270 0 243 335 2140
13 805 0.100 2.200 0.000 0.508 0.219 0.273 0 409 176 219
14 986 0.110 2.600 0.000 0.443 0.275 0.282 0 437 271 278
15 637 0.116 1.800 0.000 0.000 0.595 0.405 0 0 379 258
16 478 0.116 2.600 0.000 0.285 0.370 0.344 0 136 177 164
17 1020 0.070 1.800 0.241 0.562 0.091 0.106 246 574 93 108
18 1063 0.073 1.800 0.543 0.253 0.148 0.056 577 269 157 60
19 587 0.089 1.800 0.000 0.493 0.401 0.106 0 289 235 62
20 1487 0.051 2.600 0.504 0.453 0.000 0.043 750 673 0 64
21 1711 0.041 2.200 0.645 0.355 0.000 0.000 1104 607 0 0



Appendix 2. Complete Analysis for Lyon Creek streamwater chemistry major elements. June 8, 1999 sampling.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J11 J12 SITE
H20 TEMP 16.59 16.54 16.91 20.13 21.16 16.96 20.31 18.01 20.4 H20 TEMP
DO O/OSAT 102.6 103.5 104.1 103.5 108.4 92.4 92.4 90.4 93.3 DO OfoSAT
DO mgL·1 9.7 9.76 9.74 9.03 9.32 8.63 8.63 8.28 8.15 DO mg/L

Condo (f.lScm'
1) 212 181 213 187 181 190 190 164 157 266* 250* Condo

pH 7.75 7.33 7.79 7.82 8.03 7.44 7.44 7.01 7.10 7.4* \7.45* pH
TDS 136 116 136 120 116 121 121 170 156 TDS

Redox 146 158 160 152 131 116 116 117 90 Redox
Alkalinity(pp
m) 54.60 55.39 53.78 57.38 56.91 58.61 57.44 42.84 40.69 57.87 49.60 Alkalinity
N03'-N (ppm) 2.572 1.412 2.543 1.250 1.218 1.045 1.332 2.129 1.906 2.337 2.960 N03-Nppm
P04•

3-P
(ppm) 0.009 0.012 0.010 0.001 0.010 0.009 0.009 0.005 0.007 0.011 0.027 P04-Pppm

0\ NH/-N (ppm) 0.028 0.030 0.022 0.044 0.029 0.017 0.018 0.012 0.011 0.013 0.039 NH4-Nppm

J1 J2 J3 J4 J5 J6 J7 J8 J9 J11 J12
Ca (ppm) 17.55 16.14 19.47 19.83 17.98 19.64 17.16 14.27 13.59 22.58 23.15 Ca
Na(ppm) 6.59 4.60 6.29 5.19 4.73 4.99 4.39 3.77 3.55 9.64 9.10 Na
Mg (ppm) 6.08 4.41 6.17 5.64 5.14 5.53 4.97 5.45 5.21 8.51 7.33 Mg
K (ppm) 0.81 0.51 0.19 0.39 0.26 0.35 0.24 0.17 0.39 1.25 1.39 K
Fe (ppm) 0.04 0.04 0.05 0.06 0.06 0.08 0.09 0.03 0.04 0.07 0.24 Fe
AI (ppm) 0.10 0.25 0.27 0.21 0.15 0.09 0.17 0.12 0.14 0.08 0.14 AI
Sr (ppm) 0.60 0.75 0.77 0.71 0.65 0.59 0.67 0.62 0.64 0.58 0.64 Sr
NH4+ (ppm) 0.04 0.04 0.03 0.06 0.04 0.02 0.02 0.01 0.01 0.02 0.05 NH4+
cr (ppm) 15.05 9.91 15.07 10.16 8.51 9.44 7.03 8.97 8.16 19.33 25.07 CI
SO/(ppm) 9.18 6.04 9.19 6.20 16.89 15.78 17.76 9.89 10.55 15.52 20.80 S04
N03'- (ppm) 11.39 6.25 11.26 5.53 5.40 4.63 5.90 9.43 8.44 10.35 13.11 N03
P04•

3 (ppm) 0.01 0.02 0.01 0.00 0.02 0.01 0.01 0.01 0.01 0.02 0.04 P04
HC03' (ppm) 54.60 55.39 53.78 57.38 56.91 58.61 57.44 42.84 40.69 57.87 49.60 HC03-
Si02 (ppm) 10.26 9.64 9.73 9.44 9.60 10.91 10.09 10.06 10.27 10.70 9.99 Si02



Appendix 3. Complete nutrient data

li'itifstr~f1ffi)cO'a)~~lim~b)!t5de;IK;t;n 'i;ttitdate;g:;f!;!')J'j:tlli~II;~;;:fNQ~lyllllllltl;~~GgQ4'I;lii@:lf~~~NR'~~15kl
iJ1 [LO' 5/26/991 2.591 ! .

IJ2 L1 5/26/991 '1-.641
I~_~-_ .-'Lg----- ..... -'5126199(- -"-2.72:--- ... ---1"-'"

IJ4 -.-.---- "--. ···-----6/26/99[- ·····1.'57r--- ·······---1----
IJ5 ------ -- - - --.----- i 5/26/99:' ---"1.631-- -...--·1----------
1-- -- - - -- -..... ----,----------.....-....-.. i. - - .. -.... ---,--;--------- ·-------i---..------------1------·---·---.. ,

I~~_____ _____.!::T_____ L .._ __ §/26/991__ J .451___________L_.
iJ7 !L5 i 5/26/99! 1.651 I '
1~8--~~~-_~---~~-= ..--~r=-=~-~=--~l.-_------=-§!~~J~_~[=~- __.__ .. __?.:_?~l ..._. [=-~-~=~~<J
~9 , 5/26/99: 2.001 I ..
i " ,,_.H • ; ,,'" "-'-- .•__ ,._•., •.• ,(._."" .m_..•"__ -------.;---'-.".-- -,.-."".----.,-~~.-__t--- ; -'--'---''"'"''''--'''""''-'1

IJ11 . : 5/26/99! 3.001 I i

!~2 ---:_~=~~~_~_~__~]~= __=~]__T_]~ __=]-~!j= ====_ ~:~~~-~~~09j=~
~------------- [L1---------;-----..---- 6/8/991 ·-----1A1r------0.012!__ 0.0301

l~ -:=--=-:==-==i9~=----~=C==-=---=--=~F==-- ~:~~!=~~I ~:~~~1

ll.._. JL5 +______ 6/8/99[ 1.33: 0.009 0.0181
J8 ' i 6/8/99[ 2.131 0.005 0.012[

J9---==:=----==[====J=-..--- ---- ~8/991_______ 1.91) 0.005 0.011!
J11 [ [ 6/8/991 2.341 0.011 0.0131
lJ12 . · 6/8/99/ 2.961 0.027 - 0.0391
IJ1 ILO 6/22/991 2.121 0.007 1
I~? IL'L--------L--- 6/22/99! ~I ~c_ j
1~~ .. .L9 -------\-----------~~~~~~~r·----+~r~f61----------·
fJ5 ~i---l--·-· -6122199\ 1.131 0.0101 1
J6 j-L7--i 6/22/991 1.03;--CiQ10 '

f

J7 ,L5! 6/22/99, 1.29, 0.0091 ,
J8 1 1 6/22/991 2.101 0.0061 1
J9 i -1 6/22/991 2.031 o.ooaL·- i
J~----r- i 6/22/991----225f 0.011- --I

~f~tt~==!~~~=~===~====:~!~===--1
IJ1 _ LO _ 7/20/991 0.49: 0.006 0.013
J2 L1 7/20/99 0.22, 0.005 0.011

~=~:i;~:=:==~= ~·;~=~_=-:i~;!;
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Appendix 4. Complete Cation Data
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Appendix 5. Complete anion data plus silica

6/22/99 J8 -

6/22/99 J9
!

----_.._._-

6/22/99 J11
-, ..--_.------- ,--.._-'--'._'-'-'-'-'--'-~

6/22/99 J12
...._--_._--~---- ---_..'---•._._._.._._-_.-

7/20/99 J1 ---
7/20/99 J2

I 7/20/99 J3
---

I 7/20/99 J4

7/20/99 J5

7/20/99 J6 --

7/20/99 J7------_.. ____,·,____._·_~_ ..·.H'·_·_.•·_._·~·H

7/20/99 J8------._ .. ---_.".'--.-,--,.,-

7/20/99 J9
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__._§/26/99d§__.__ . _______._.__[~==_~
8/26/99 J9--'----------,--------,,_.._---" .---_._-_•..- .._".

10/18/99 J1 LO
10/18/99J2 IL1
10/18/99 J3 IL9
10/18/99 J4 r
10/18/99 J5 I

,10/18/99 J6 l~
10/18/99J7 ~.

r-~-~~~~ ~~::
JS--·---·--·-.. ---,-..··----··--
J9---·--------I-----··-··-

10/18/99 J11 1----·
10/18/99 J12 _____=1===
12/4/99 J2 IL11-----
12/4/99 J3 IL9_.. ,___

I 12/4/99 J4 L____
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Appendix 6. On site measurements.
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Appendix 6. USGS average Discharge from Schnecksville, PA gauge
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