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ABSTRACT

In this study, the interface crack surface contact problems that occur in

semiconductor packages have been investigated. The ultimate goal of modeling is to

come up with a methodology that will be used for the fail-safe design of

semiconductor packages. For this reason it is very important to model the actual

problem using the least possible number of assumptions thereby simulating the real

situation.

A common problem in modeling interface cracks in semiconductor packages

IS the interface crack surface contact problem. For certain geometries, material

combinations and temperature loading, using conventional finite element methods,

the interface crack surfaces pass through each other giving result to drastically wrong

stress intensity factors, strain energy release rates and phase angles. For this reason,

an efficient contact mechanics algorithm has been implemented into the interface

crack problem. General finite element methods for contact mechanics are reviewed

and special attention is given to the penalty function method to implement the

necessary displacement constraints to prevent possible penetrations. Together with the

enriched element formulation for modeling the crack problem, the penalty function

method offers an easy to implement, accurate and efficient approach in modeling

interface crack surface contacts. The correctness of the algorithm will be proved using

some example problems. Numerical examples will be given for edge-cracked and

center-cracked flip chip packages using several boundary conditions. The relationship

between total strain energy release rates, phase angles and crack lengths will be

shown. The results will be compared with the ones in which the contact constraints

were not imposed.
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CHAPTERl

INTRODUCTION

1.1 SEMICONDUCTOR PACKAGES

In today's technological world, semiconductors are almost everywhere; in cars,

computers, washing machines, satellites etc. They are controlling our everyday life,

making it better. The advances done in this industry over the last decades have been

breathtaking. From primitive computers of the 50's that were big enough to fill a room,

we have reached to ultra-fast, compact personal computers. From "light-bulb" transistors

we came to space-age semiconductors.

There are many different types of semiconductor packages, such as plastic

encapsulated package, flip-chip package and so on. In this thesis particular attention will

be given to flip-chip packages since they represent today's technological trend in the

semiconductor industry. A typical flip-chip package is shown in Figure 1.1. It is mainly

composed of 3 parts; the silicon die, the polymeric substrate and the underfill layer

bonding the die to the substrate. The underfill layer itself contains solder balls which

holds the die and the substrate together. The space between the solder balls are filled with

the underfill materiaL

Polymeric Substrate Solder Ban Silicon Die
Underfill Layer

Figure 1.1: A typical flip-chip semiconductor package
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With the growmg need in faster and smaller semiconductors, new design

challenges are faced. Since the silicon chip has a denser structure, the package is heated

more and has more difficulty in dissipating that heat, therefore, thermal loads on the

package increase. With the addition of the mismatch in the coefficients of thermal

expansion of the different constituent materials, thermal stresses can cause the failure of

the package.

1.2 OVERVIEW OF THE PROBLEM

As explained in the previous section, the silicon die and the polymeric substrate

are bonded together by the solder balls present in the underfill layer. This is done by a

process called solder reflow process, in which the temperature in the package can be

quite high. Most of the adhesion problems occurs in this stage, the high temperature rise

in the package can cause the silicon die to separate from the substrate. The reason for this

phenomena is the mismatch in the coefficients of thermal expansions of the constituent

materials. This mismatch causes high shear stresses along the interface making crack

initiation and the growth of an already existing or a just initiated defect easier. The

interfacial integrity of semiconductor packages is a very big reliability issue and a lot of

work is being done in this subject to understand and prevent semiconductor failures.

There are two common locations within the package where either a crack can

initiate or can be already present. In a fracture mechanics point of view, the comer

between the underfill layer and the polymeric substrate, shown in Figure 1.2, has a

relatively high strength of singularity, i.e. the stresses are very high at that location.

Therefore a crack is quite susceptible to start at that location. The other common location

for a crack to be present is the interface between the underfill and the substrate. It is
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known that some problems can occur in filling the space between the solder balls with the

underfill material. The underfill material is injected from the sides of the package after

the solder reflow process. Sometimes a flaw can be left unfilled. Also environmental

factors, especially moisture intake, can cause a crack to form at that interface. The

substrate is a polymeric material, therefore some moisture will be absorbed from the

environment. This moisture will evaporate during the solder reflow process where the

temperatures are quite high. This pressurized vapor may initiate cracks along the interface

or may fill the already present flaws and apply pressure on the interface which may

finally cause the package to break.

Center Crack

Figure 1.2: Common cracks encountered in flip-chip packages

As seen in Figure 1.1, the geometry of a semiconductor package can be quite

complex. The problem gets even more difficult with the addition of a bimaterial interface

crack, numerous boundary and loading conditions. Obviously, obtaining an analytical

solution for the problem is often either inadequate or impossible. Therefore, a numerical

analysis tool is necessary. Finite element method, which is by far the most popular

numerical method to tackle this kind of problems, is commonly used in the past to model

semiconductor packages.
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A common problem in modeling interface cracks in a semiconductor package is

the crack surface contact problem. For certain loads, boundary conditions, geometry and

material property combinations the crack surfaces may become in contact. Conventional

methods for modeling the interface crack problems fail to give correct results when

contact occurs since the contact constraints are not implemented into the finite element

equations to be solved, resulting in a mesh overlap. As an example, an edge-cracked flip­

chip package is considered and the model is shown in Figure 1.3. Two different

temperature loads have been applied for the same model with the same geometry,

boundary conditions and constituent materials.

Figure 1.3: Edge-cracked flip-chip package model where contact occurs
for ~T= -lOoC but no contact occurs for ~T=10°C.

For a temperature loading of ~T=10°C the crack surfaces opens, as shown in Figure 1.4.

This kind oflinear elastic crack problems have been extensively studied in the past.

.................

Figure 1.4: Close-up view on opened crack surfaces for ~T=10°C
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When a temperature loading of LlT= -lOOC is applied, the reverse occurs and the crack

surfaces overlap with each other, as shown in Figure 1.5. If the contact constraints are not

imposed on the crack surfaces and the mesh is allowed to overlap, the results found will

be inevitably wrong.

Figure 1.5: Close-up view on overlapping crack surfaces for LlT= -lOoC

For this case, the stress intensity factors becomes the negative of the ones obtained with

LlT=lO°C and the total strain energy release rate will be the same, but these are obviously

not correct. Therefore, the necessary contact constraints are needed to be implemented

into the interface crack problem to obtain a methodology for fail-safe design.

As it will be shown in the numerical examples chapter, Chapter 3, for certain

boundary conditions and geometries, contact may occur for certain crack lengths and may

not occur for others. Therefore in modeling one cannot be sure beforehand whether

contact will occur or not and action should be taken in order to detect possible contacts

and thereby prevent possible penetrations which are physically inadmissible.

1.3 PREVIOUS WORK

Interface crack contact problems or interface crack closure problems have been

the focus of many research in the past. Recently, the interest in this area increased due to

6



the desire in understanding the modes of failure in multi material structures. Analytical

investigations in this area dates back to the work of Williams [1], who used an asymptotic

analysis for traction free crack surfaces to find out that the displacements behaved in an

oscillatory manner near the crack tip, causing crack surface penetration. Erdogan [2]

found that for a non homogeneous interface with cracks, the extend of this oscillatory

zone is about 10-6 of the crack length. England [3] and Rice and Sih [4] also encountered

the oscillatory behavior of the displacements near the crack tip. To overcome the

physically inadmissible oscillatory displacements at the crack tip, Atkinson [5] proposed

two models. In the first one, the interface is replaced by a strip of finite thickness and the

crack is put in this new strip. The strip is homogeneous and its modulus of elasticity is

different than the moduli of the two materials. Since the crack is in a homogeneous strip,

the previous oscillatory behavior didn't occur. This model hasn't gain much attention. In

the second model, the interface layer has a varying modulus, being equal to the modulus

of the surrounding bodies at the extremities. Since the modulus is continuous, the

oscillatory behavior is again eliminated. This is a more realistic model since

combinations of materials will produce diffuse interfaces. In the Comninou model [6, 7,

8], the crack surfaces are allowed to get into contact, the contact zone is not known and

has to be solved as .a part of the problem. Besides analytical work, not many finite

element work has been done in this area. Vander Zande and Grootenboer [9] calculated

mode IT stress intensity factors for an interface crack with contact zones using finite

element methods. Dattaguru [10, 11] used finite element approach to predict the mode IT

dominance at the crack tip, as suggested by Comninou. Vankatesha [12] employed a

modified crack closure integral technique and finite elements to calculate the strain

energy release rates in a bimaterial problem with large crack-tip contact zones.

Vankatesha even observed the crack-tip surface penetration with a very refined mesh and

7



using 4 noded linear elements. Liu [13] used a 3-D finite element analysis to model

plastic encapsulated packages including large scale contact and large defonnation effects.
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CHAPTER 2

FINITE ELEMENT FORMULATION

2.1 OVERVIEW OF THE FINITE ELEMENT METHOD

Finite Element Method is a very popular and widely used method to analyze

complicated problems that are either too difficult to solve with analytical methods or

no known solution exists at hand. Generally, analytical methods are efficient for

simple geometries and boundary conditions, but in real life most of the problems in

hand are quite complex because of the irregular geometries, different material

combinations and properties, time and/or space dependence of properties, etc. Finite

Element Method offers a reliable and efficient tool to tackle complex problems.

Although it's used in various disciplines like heat transfer, fluid mechanics,

electronics, only solid mechanics formulation will be used in this work.

In a general point of view, it's a numerical tool to transform a set of

differential equations into a set of linear algebraic equations and solve for the

unknowns at certain points in the continuum called node. The continuum in question

is discretized using some elements composed of nodes. The choice of elements to be

used in discretization is left to the user and to the capacity of the finite element code

but they mainly differ in the order of interpolation functions used within the element

to describe the variation of the unknown to be solved, which are in this case the

displacements. For example a quadratic element assumes the displacements to vary as

a second degree polynomial while a cubic element assumes a 3rd degree variation.

9



2.1.1 FINITE ELEMENT EQUATIONS

The algebraic equations which are also called the finite element equations are

obtained by minimizing the potential energy in the system. For an elastic body the

potential energy can be expressed as:

- J{uV{F}dV - J{uV{T}dS - {DV{P} (2.1)
v 8

where

{u} displacement field
{ E} strain field
{EO} initial strain field
{o-0} initial stress field
[E] material property matrix
{F} body forces
{T} surface tractions
{D} nodal displacements
{P} nodal external forces

Upon discretization of the domain using shape functions (interpolating functions), the

minimization ofIIp with respect to the nodal displacements gives:

allp _ a
aD - [K]{D} = {R} (2.2)

where [K] is the global stiffness matrix and {R} is the global load vector. Eq 2.2

represents the well-known most general form of the finite element equations. It is

obvious that trying to compute the stiffness matrix and load vector of a model in the

10



global sense would most probably be impossible or inefficient. In most of the cases,

[K] and {R} are calculated in an element-by-element basis and then assembled to
, "

form the global stiffuess matrix and global load vector, which will then be solved for

the unknown displacements.

The element stiffuess matrix [k] is known to be:

[k] = J[Bf[E][B]

where [B] can be expressed as

(2.3)

[
tx 0

[B] = ~ ~
oy ox

(2.4)

and [N] is the shape function matrix.

The element load vector {T} can be expressed as:

+J[N]T{F}dV + J[N]T{T}dS (2.5)

Note that the integrals have to be calculated numerically. Most often they are

calculated with the Gaussian integration technique which is the most popular one. For

cubic elements that are used in this work, 4 point Gaussian integration is sufficient. It

will be shown later in Appendix C that in order to get good results, higher'Gaussian

integration points are necessary for enriched elements.
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Once the element stiffness matrices and load vectors are found, the global

finite element equations are assembled and solved. In this work, the frontal solution

technique is used as the solution algorithm.

2.1.2 FRONTAL SOLUTION TECHNIQUE

Solution of the finite element equations is the step in the finite element

analysis that takes the most computation time, therefore an intelligent choice has to be

made. There are several solution techniques and frontal solution technique is one of

the best among them.

Once the element stiffness matrices and load vectors are calculated, the

commori way is to assemble the global stiffness matrix and load· vector using the

connectivities of the elements and then solve the whole system of equations at the

same time. For this purpose there are several available solution techniques such as LV

decomposition, Gaussian elimination etc. The frontal solution technique, which was

first developed by Irons [14], offers a distinct advantage: the assembly and solution

takes place at the same time. Therefore there is no more need to construct the whole

big global matrix and load vector, saving a lot of memory space. Considering the fact

that most often physical problems (not enough memory, disk space) are more

important that CPU time consumed by the code, this feature enables the solution of

larger models using less hardware.

To understand this solution technique, one should understand the concepts of

active node and deactivation of a node. The frontal solver will operate on an element­

by-element basis. It will start with the 1st element and finish with the last one. The

element stiffness and load vector will be calculated then assembled. If the node will

12



not appear in the following elements, the information corresponding to that node will

be eliminated from the "front" and it will be written to a disc file. An active node is a

node whose stiffness and load terms are still in the memory. A deactivated node is a

node whose corresponding terms are eliminated from the equations and written to a

disc file. To clarify these concepts, Figure 2.1 shows a simple case with linear

triangular elements.

1

2

II

4

3

III

IV

6

5

Figure 2.1: Simple example for the frontal solver

The element connectivities of the elements is shown in Table 2.1 :

element # connectivity
I 1,2,3
II 3,4,1
III 3,5,4
IV 5,6,4

Table 2.1: Connectivities of the elements in the simple example for the frontal solver

It can be seen that the node 1 only appears in the elements I and II, node 2 only in 1:­

_node 3 in I, II and III and so on. The first and last elements the nodes appears are

shown in Table 2.2.

13



node # first element last element
1 I II
2 I I
3 I III
4 II N
5 III N
6 N N

Table 2.2: FIrst and last elements m which the nodes appear

This table truly shows the life of a node in the front. The node 1 becomes active in

element I and deactivated in II, the node 3 becomes active in I and is deactivated in

III, and so on. It is clear that the information for a certain node stays in the memory

only for a certain time, as long as that node is active. When it gets deactivated, the

information is saved in disc for backward substitution, the space occupied by that

node in the front will be filled with another active node, to save some more memory

space.

Note that in the frontal solution technique there is no limit whatsoever on the

size of the element stiffness matrices. This enables the use of different kinds of

elements within the same model without a problem. Whatever the size of the stiffness

matrix or load vector, everything will pass through the same steps and there will be

no problem as long as the elements are connected correctly. This feature will be

useful in contact analysis when dealing with target elements with stiffness matrices

larger than 24x24 for example. The only restriction is that the element stiffness

matrices has to be symmetric.

When all the elements are handled, a backward substitution process extracts

the information written to disc and calculates the required unknowns, which are the

nodal displacements in our case.
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2.2 FINITE ELEMENT FORMULATION - CRACK PROBLEM

Catching field singularities is a great deal of concern in computational

mechanics. By field singularity it is meant that one or many values of the field is

infinite at certain locations. For example crack tips have stress singularities. Several

techniques exist to correctly catch the singularity near a crack tip. Enriched element

formulation, which is used in this work, is one of the most accurate ones.

The enriched element formulation dates back to the work of Benzley [15].

Although the technique can be extended to other forms of singularities as well, only

crack tip singularities will be discussed in this work. In enriched element formulation,

the main objective is to calculate the stress intensity factors K], Kn and then to find

the other important quantities such as total strain energy release rate and phase angles,

which are calculated using the stress intensity factors. Therefore, once the stress

intensity factors are found correctly, everything else of interest is found in a straight

forward fashion. Using enriched formulation, K] and Kn are implemented into the

finite element equations and they are solved at the same time as the displacements.

At this point, two definitions need to be made. Enriched elements are defined

as the elements in the model that are touching the crack tip node, i.e. the crack tip

node is in their connectivity. Transition elements are defined as the elements

surrounding the enriched elements. Transition elements are needed because the

displacement interpolation within these two elements are different from each other. In

other words, transition elements helps the smooth passage from the enriched

interpolation to the usual cubic interpolation. The way in which enriched and

transition elements are placed around the crack tip can be seen in Figure 2.2.
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Figure 2.2: Placement of special crack tip elements around the crack tip

For enriched elements, the asymptotic displacement fields are. discretized as:

(2.6)

where

K1

KIf
Zo
nnpe
iI, 12, gl, g2

=mode I stress intensity factor
= mode II stress intensity factor
= zeroing function evaluated at (s,t)
= number ofnodes per element
=asymptotic displacement functions
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These equations can be further simplified by defining Ii, fi, gi and gi as:

nnpe

li(s, t) = 11 (s, t) - E Nis,t)!Ij
j=l

nnpe

f2(s, t) = 12(s, t) - E Nj(s, t)f2j
j=l

(2.8)
nnpe

gi(s, t) = gl (s, t) - E Nj(s, t)glj
j=l

nnpe

gi(s, t) = g2(s, t) - E Nj(s, t)g2j
j=l

Finally

nnpe

u(s, t) = E Nj(s, t)Uj + Zo(s, t)/i(s, t)KI + Zo(s, t)gHs, t)Kn (2.9)
j=l

nnpe

v(s, t) = E Nj(s, t)Vj + Zo(s, t)/2(s, t)KI + Zo(s, t)gHs, t)Kn (2.10)
j=l

Note that the asymptotic displacement expressions 11,/2' gl' g2 are evaluated

at the 12 nodes and also at the isoparametric coordinates s and t where the

displacement is desired. One can see easily that at the nodes starred expressions Ii,

12, 9i, 92 becomes zero and the same expressions for enriched elements and normal

cubic elements are found.
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Zo is the zeromg function which smoothes the interelement compatibility

between enriched elements and the surrounding elements. This function has the value

of 1 everywhere in the enriched element, takes a value between 1 and 0 in the

transition elements and is 0 everywhere in usual isoparametric elements. The

variation of the zeroing function in the transition element can also be decided by the

user, although generally a linear variation in terms of isoparametric coordinates is

used.

4

E

3

T

====::::==5====~---,1 ...... 2

Figure 2.3: Illustration to show the zeroing function Zo

The zeroing function can be better understood with the help of Figure 2.3,

which shows an enriched and a transition element at the crack tip. The zeroing

function Zo will take the value of I everywhere in the enriched element, i.e at the

nodes 1,3,4, 5 and also between them. It will then take a number between 1 and 0 in

the transition element. Let's assume Zo varies linearly in the transition element, then it

will be I at nodes 1 and 3, 0 at node 2 which touches a normal element and varies

linearly between 1 and 0 for other points in the transition element.

Let's assume we are dealing with 12 noded quadrilateral cubic elements. In an

element-by-element basis, it can be seen that for each enriched element, other than 24

unknown displacements, 2 unknown stress intensity factors are introduced into the

equations. This enables the calculation of the stress intensity factors at the same time
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as the displacements. In a way, the crack tip singularity is embedded into the finite

element equations. The stress intensity factors will be represented in the element as

the degrees of freedom of a "virtual node". If n physical nodes and a crack exits, a

virtual node is added making the number of total nodes n +1. The unknowns

corresponding to the physical nodes are the displacements whereas the unknowns

associated with that virtual node will be the mode I and mode II stress intensity

factors. One should note that the conventional finite element formulation is exactly

the same in enriched element formulation, -with the addition of a few stiffness and

load terms. Again the stiffness matrix and load vector of the constituent elements will

be calculated. The system of resulting finite element equations will be solved for the

unknown 2n displacements and 2 stress intensity factors. The main difference is

really the number ofunknowns solved.

2.3 FINITE ELEMENT FORMULATION - CONTACT PROBLEM

Computational contact mechanics analysis is somewhat more difficult than

static linear elastic analysis in the sense that the problem is truly nonlinear, like

plasticity or large deformation analysis. What makes it nonlinear is quite different

than the later ones. In plasticity material nonlinearity is present, in large deformation

analysis the nonlinear strain terms neglected in linear elastic case are taken into

consideration. The contact analysis is nonlinear because the stiffness matrix is

dependent on the displacements and the forces. This is because of the fact that

generally the contact zone is not known a priori. The contact zone is known only if

the coefficient of friction is so high that all the contactor nodes are in sticking contact

and initially all the contactor nodes are touching the target surfaces. If all nodes are in

sticking contact initially and at the end, the nodes stick to the point on the target
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surface that they touch and remains at the same isoparametric coordinate all the time.

For every other cases, the problem is nonlinear and therefore should be handled

incrementally. Another reason for nonlinearity is friction, one does neither know the

correct friction forces present in the system a priori nor the correct contact state at

contactor nodes. These will be found by iteration. The incremental procedure will be

discussed later in this chapter.

In the finite element formulation, the contact problem will be inserted in the

set of equations in the form ofconstraints. For this purpose, two common methods are

used, namely Lagrange Multipliers and Penalty Function Method. Whichever

formulation is used to add the necessary constraints, the formulation mainly consists

of6 parts:

~ Detecting of all new contacting nodes,

~ Forming necessary constraint equations in the form ofmatrices,

~ Forming the finite element equations,

~ Solving for the unknowns displacements,

~ Calculating the contact forces at contactor nodes and target element nodes,

~ Determining of the correct contact state at contactor nodes.

These steps are performed in the gIven order for each iteration in each

increment until convergence occurs, i.e. the incremental displacements (or the

incremental forces) goes to zero. These steps will be discussed in detail in the

following sections.
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2.3.1 COMMON METHODS AND PREVIOUS WORK

Basically, two popular methods exists in adding the necessary constraints to

the system, these are the penalty function method and the Lagrange multipliers

method. These two methods will be presented in detail in this thesis, with special

attention given to the penalty function method. There are also some other

formulations besides these two, which are in fact modified forms of either of them.

Perturbed Lagrange multipliers method [16], augmented Lagrange multipliers method

[17,18] and the Uzawa algorithm [19] can be given as examples.

Numerous work has been done in the past on the finite element modeling of

the contact problem, in most of them either the Lagrange multipliers or the penalty

function method have been used. The first use of the Lagrange multipliers in the

computational contact problems dates back to the work of Hughes et al. [20], who

investigated the problems of elastic contact and elastic impact. Node-to-node contact

was used in the contact zone. Okamoto and Nakawaza [21] investigated frictional

contact with the use ofunsymmetric stiffness matrix. Using an incremental approach,

Guerra and Browning [22] showed that both Lagrange multipliers and penalty

function method can be used in imposing the required displacement constraints. A

general two-dimensional contact algorithm has been developed by Bathe and

Chaudhary [23] using Lagrange multipliers. Node-to-node contact was not necessary

and an elaborate algorithm to decide on the contact forces and the contact status has

been proposed. First papers on using penalty function method in contact analysis used

some "gap elements" at the contact zone. White and Enderby [24] and Stadter and

Weiss [25] used gap elements whose stiffnesses were varying to account for

penetrations and separations. Mazurkiewicz and Ostachowicz [26], Zolti and [27],

Ostachowicz [28] used gap elements including frictional effects. The concept of
21



tangential stiffness was introduced, being the product of the gap element stiffness and

the coefficient of friction. Their method was susceptible of "locking" when a high

penalty function was used. Cheng and Kikuchi [29] used a non-Coulombian friction

model together with penalty function method. Problems using gap elements with the

large displacement formulation, such as the poor Jacobians of the highly distorted gap

elements have been investigated by Padovan et al [30]. Yagawa et al [31] applied the

penalty function method to fracture mechanics problems using 3-D brick elements.

Motthershead et al [32] proposed a method to handle curved surfaces using

isoparametric coordinate transformation, successful using both Lagrange multipliers

method and penalty function method. The formulation used in this paper is used as

the main focus in this thesis.

2.3.2 CONTACT SEARCIDNG

Contact searching is one of the most important steps in computational contact

mechanics. Before getting into the contact searching algorithms, the concepts of

contactor node and target element has to be explained. Contact always occurs

between two surfaces in the continuum, therefore the contact zone can be either a

point or a line. These two surfaces will be defmed while creating the geometry, to

prevent the program from checking every possible surface combinations. One of the

surfaces is called contactor surface and the other being called target surface. The

definition of these two surfaces, whether contactor or target is quite arbitrary.

Consequently, the nodes on the contactor surfaces are called contactor nodes and the

elements on the target surfaces are called target elements. Figure 2.4 shows contactor

nodes and a target element of a simple model with 12 noded quadrilateral elements.
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Contact searching can be described as checking contactor node - target

element pairs in order to detect new penetrating nodes, then calculating the

isoparametric coordinates s and t (also called corrected coordinates) on the surface of

the target element to which the contactor node will be "pushed" in the next iteration.

Contactor Nodes
~/ \~

Target Element

___~--~""'----""--'--k

Figure 2.4: Definition of contactor nodes and target elements

Precise detection ofnew contacting nodes is essential in order to satisfy compatibility

condition (no contactor node can penetrate into a target element) up to desired

accuracy. Calculation of the corrected coordinates is necessary in forming the

necessary constraint matrices, no matter which constraint formulation is used.

In earlier work, generally the contact searching was performed using a line

search technique. Figure 2.5 shows a target element and a contactor node C, Cj being

outside the element in the ith iteration and Ci+1 being in the element in the (i+l)th
~~

iteration. A new contact is said to occur when the cross product CA x CB changes

sign, or in other words
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(((C1) x (~)) .t)(((~) x (~)) .t) ~o (2.11)

Figure 2.5: Line search algorithm model

The main handicap of this method is its inefficiency in modeling curved

surfaces which are encountered in many cases like Hertzian contact of cylinders, etc.

In order to model curved surfaces, one must use a very fine mesh near the contact

zone, if it's known. If it's not known, the whole target surface has to be refined which

will put a lot of useless elements and increase CPU time considerably. Also, this

technique assumes that the contactor node has followed a linear path in Cartesian

coordinates between i th and (i + l)th iterations. In order to satisfy this assumption,

one should use a lot of load increments. This, again, will increase greatly the CPU

time spent in solving the problem.

To remedy these handicaps, an isoparametric formulation, which will be used

in this thesis, has been proposed by Mottershead et al. [32] for contact searching.

Before each iteration, all possible contactor nodes will be checked for penetration

with all possible target elements. For this purpose, the Cartesian coordinates of the
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contactor node will be transfonned into isoparametric coordinates s, and t of the target

element in question. If - 1 :::; 8 :::; 1 and - 1 :::; t :::; 1 then penetration has occurred

and action must be taken to "push" this contactor node back to the target element

surface at the next iteration. Note that even if the contactor node is on the surface of

the target element, this is considered as penetration and constraint matrices has to be

fonned such that the contactor node will stay on the surface at the end of the next

iteration.

The position of a contactor node can be described using the target element
shape functions as :

nnpe

Xc = L: Ni ( 8el te) Xi
i=l

nnpe

Ye = L: N i(8 e, te) Yi
i=l

(2.12)

(2.13)

where the subscript c denote contactor node and the summation goes from i = 1 to the

number of nodes per element, nnpe. We have to solve this equation for the unknown

values 8 e and te which will be the isoparametric coordinates of the contactor node

with respect to the target element. For linear elements this equation is linear and the

solution is straight forward, but for quadratic and cubic elements it's nonlinear and

therefore it can be solved using a Newton-Raphson iterative approach.

Starting from an initial guess (80' to), linearizing this nonlinear equation in the

proximity ofthe initial guess, we can write:
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nnpe

Xc - Xo = l;: (~(so, to)Xt.6.s1 + .?£t(SO' to)Xt.6.t1) (2.14)
t

nnpe

Yc - Yo = l;: (aa~i (so, to)Yt.6.s1 + .?£t(so, to)Yt.6.t1) (2.15)
t

where Xo and Yo represents the initial guess in Cartesian coordinates and the

derivatives of the shape functions are evaluated at the initial guess (so, to). This can be

rewritten as :

( Xc - xo) = JT(S t) ( .6.s1 )
Yc - Yo 0, 0 .6.t1

Solving this for .6.s1 and .6.t1 :

(2.16)

(2.17)

where again the inverse of the Jacobian matrix is evaluated at the first initial guess
(so, to). The initial guess will then be updated as

(2.18)

For the next iteration, the equation is

(2.19)

The iteration continues until a predefined accuracy has been achieved, i.e.
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II (
XyCc -_ Xykk) ::; tolerance (2.20)

Starting with (so = 0, to = 0), this iteration converges quite rapidly, ifit converges. It

has been observed that if the contactor node is too far away from the target element

then the iteration diverges. Therefore in addition to the tolerance, a limit to the

number of iterations is necessary. This divergence behavior does not cause any

problems since it only occurs when the penetration is already impossible. This can be

fixed by employing an "envelope" technique, i.e. only the contactor nodes that are

"close" to the target element will be checked for penetration. By "close" it is meant

that the contactor node falls inside a circle, whose center is on the target element and

the radius is specified by a certain number (let's say 5) times the average target

element size.

Once the contactor node has been identified as in penetration, now the

corrected isoparametric coordinates s and t, i.e. the coordinates on the surface of the

target element that the contactor node will be pushed to during the next iteration, has

to be determined. The technique is dependent on the contact status of the contactor

node. The determination of the contact status is explained in detail in section 2.3.6. If

the contactor node is in sticking contact with the target element, then a line is drawn

in isoparametric plane joining (Si-l, ti-l) , coordinates of the contactor node in

(i - l)th iteration, and (Si, td, coordinates in i th iteration, as shown in Figure 2.6. The

coordinates of the point of intersection between this line and the surface of the target

element, corresponding to the point a, is the corrected isoparametric coordinates. This

point really represents the position of first contact as the contactor node penetrates

into the target element.
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Figure 2.6: Illustration to determine the corrective coordinates, in sticking contact

A special case arises when the contactor node is in sliding contact with the

target element. Since the node is constrained to move only in a direction tangent to

the target element surface, gaps may open up or overlaps occur. These should be

taken care of by including them into the corrective displacements. In sliding, the

procedure is to draw a line in isoparametric plane from the current position of the

contactor node perpendicular to the target surface, as shown in Figure 2.7. The

coordinates of the point of projection, which corresponds to the point a on the figure,

is the corrected isoparametric coordinates. In other words, the contactor node will be

projected back to the surface in the next iteration. Note that even though a gap may

occur, the contactor node is still assumed to be in contact with the target element

since separation can be predicted only according to the contact forces, as explained in

section 2.3.6. It should also be noted that, when a contactor node slides on the surface

of a target element, it can pass to the surface of an adjacent target element. Obviously

a good bookkeeping algorithm is necessary to correctly assign contactor nodes with

target elements penetrated.
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Figure 2.7: Illustration to determine the corrective coordinates, in sliding contact

Whether the contactor node is in sticking contact or in sliding contact, in order

to find the corrected isoparametric coordinates to which the node will be pushed back

at the next iteration, one should know from which surface the contactor node will

penetrate into the target element. An algorithm is developed for this purpose:· during

the mesh generation, one should alsq specify the contactor and target surfaces which

are susceptible of contact. From this information, the mesh generator will find the

nodes on the contactor surfaces and assign them as. contactor nodes, will find the

elements on the target surface and assign them as target elements. Together with this

information, a "surface information" will be generated for each contactor and target

element. This information defines the surface from which contact may occur. ~e

convention of the surface information assigning is shown in Figure 2.8 for a 12 noded

quadrilateral element and a 10 noded triangular element.
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Figure 2.8: Convention of "surface information" for 12 and 10 noded elements.

The numbers in the circles are the surface information corresponding to each side. As

it can be seen, this surface information is assigned according to which surface in

isoparametric plane does that surface in Cartesian plane corresponds to. The code

knows at all times that for I, t = - 1 on the surface if the element is a quadrilateral

and t = 0 if the element is triangular, for 2 s = 1 for a quadrilateral and s + t = 1 for

a triangular and so on. This provides an additional equation that will be used in

finding the corrected isoparametric coordinates.

An exception arises when the target element in question touches the target

element at only one point. This case is shown in Figure 2.9. In the ith iteration, the

contactor node k is not in contact. In the following iteration it penetrates into the

element 1. The corrected isoparametric coordinates are needed to push the element

back to the surface, but element I has no surface on the target surface. It touches the

target surface at only a point. If the contactor node is assigned to be in contact with

element I, this will give wrong results. If one draws an isoparametric line connecting

the positions of the contactor node in the ith and (i+l)th iterations, it will intersect
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element II on its surface that is on the target surface. Therefore node k should be

assigned to be in contact with element II.

®

Figure 2.9: Illustration to detennine the corrected coordinates, when target
element touches the target surface at only one point

This exception is handled in the code as follows: during mesh generation, the minus

node number of the touching node is assigned as the surface infonnation of the

elements that touch the target/contactor surface at only a point. Thereby whenever an

element is encountered with a negative surface infonnation, the code automatically

knows that it is an element touching the target/contactor surface at only a point and

therefore checks the adjacent elements (like element II) for contact.

2.3.3 CONSTRAINT EQUATIONS

Once all the penetrating nodes are detennined and corresponding corrected

coordinates calculated, these data has to be implemented into the finite element

equations. For this purpose constraint equations, with which the overlaps will be
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removed, will be formulated. Consider the case where a contactor node penetrates

into a target element at ph iteration.

The corrected coordinates 8 and t being determined, the overlap has to be

compensated in the (i+lyh iteration by returning the node to (8, t). This can be done

by applying a corrective displacement vector 8, which is opposite to the vector of
)

overlaps. In Figure 2.1 0, the vector aiai+l is the displacement vector of the corrected

isoparametric point, Le.

--~) ~

aiai+l = 'LNi(8, t)Ui
i

--~) ~

Similarly kiki+l is the displacement vector of the contactor node and kiai is the

corrective displacement vector 8, i.e

--~) ~

ki ki+l = U c

Figure 2.10: Applying a corrective displacement to push the node back to the surface
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Therefore the components of 0 becomes:

Ox = Uc - LNi(S, t)Ui

Oy = Vc - LNi(s, t)Vi
i

which can be put into the form

or

o ]{'llrr} -0
N12 Vr i+l-

(2.21)

(2.22)

where I is the identity matrix, @ is the Kronecker product.

(2.23)

For sliding contact, only the tangential displacement of the contactor node should be

constrained, therefore the constraint equation will be

(2.24)

where n is the normal vector evaluated at the corrected isoparametric coordinates.

Combining both equations, one can formulate both sticking and sliding contact

constraint equations in the following form:

(2.25)



where L i is called the constraint matrix, /::"ui+1 represents the incremental

displacements that will be solved in the (i+l)th iteration, Oi is the vector containing all

of the corrective displacements.

2.3.4 FINITE ELEMENT EQUATIONS

The well known form of the finite element equation derived by minimizing the

potential energy is:

Ku=F (2.26)

where K is the stiffness matrix, F is the consistent force vector and u the resulting

displacements. This formulation is valid only when the stiffness matrix K is not a

function of displacements nor the loads. But in the case of contact mechanics, the

components of K turns out to be functions of both displacements and loads, making

the equation 2.26 nonlinear. Instead, an incremental approach should be taken.

Seeking equilibrium iteratively, one can write the potential energy under the

incrementally applied load:

p-l p-l

IIP = ~(upyKPuP+ (uPFI:Khuh - (uPFI:fh
h=l h=l

Minimizing we get
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Since the stiffness is a function of displacements and loads, we can approach

equilibrium iteratively as

p p-l i

Kf6uf+l = I:fh
- I:Khuh - KfI:6U~ (2.29)

h=l h=l j=l

Now, we have to implement the constraint equations into 2.29. For this purpose two

popular methods exist, namely penalty function method and Lagrange multipliers

method.

In penalty function method, the one used in this thesis, minimizing the

potential energy with respect to the displacements one gets:

p-l i

[Kf +aLILi] 6uf+1 = - I:Khuh - KfI:6uf + aLf8i
h=l j=l

(2.30)

In this equation, the first two terms in the right hand side represent the vector

of element stress resultants, the third term represent the vector of forces to be applied

at contactor nodes for the removal of overlaps. Fourth term is the incrementally

applied external loads (which is the sum ofthe consistent nodal forces, reaction forces

etc.) while fifth and sixth terms are the contact forces. On the other hand, the second

left hand side term in the bracket can be seen as a matrix of stiffnesses to constrain

the penetrating contacting nodes. a is the penalty parameter and plays an important

role in satisfying compatibility. If a is infinite, then the compatibility is satisfied
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perfectly, but it will make the system ill-conditioned. If it's too small then the

penetrations will be unacceptably large and convergence will be too slow. Therefore

a has to be chosen from somewhere in between. Experience shows that 107 to 1010 is

a good range. For each load increment (designated by p) this equation is iterated until

the penetrations are negligibly small, i.e.

(2.31)

In the Lagrange multipliers me.thod, the minimizing of the potential energy

with respect to the displacements and together with the compatibility equation will

give the following system of equations:

[
Kf
L·t

Where again K is the usual stiffness matrix, L is the matrix of contact constraints, f

is the incrementally applied external forces, c is the contact forces present at the

contactor and target nodes, and A is an array of Lagrange multipliers. Physically,

LfAi represents the nodal contact forces for the removal of overlapping contactor

nodes.

The problem with the Lagrange multipliers method is that the new global

stiffness matrix obtained after adding the virtual stiffnesses for contact analysis has
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zero terms on the leading diagonal making it indefinite. Therefore the frontal solution

technique cannot be used and a special solution algorithm is necessary. Since the

present code, Frac2D, into which the contact mechanics has been added uses the

frontal solution technique, Lagrange multipliers method has been automatically

discarded. This method has also another disadvantage, the number ofunlrnowns to be

solved during each iteration varies and with a quite complicated model, the number of

unknowns will be very high. Note that the Lagrange multipliers are being solved

together with the displacements and there are two multipliers for each node in contact,

due to the two degrees of freedom associated with each node. Also, penalty function

method is far easier to implement into an existing code. For these reasons, penalty

function method has been chosen to be used in this work.

2.3.5 CONTACT FORCES

The calculation of the contact forces and the decision in the correct contact

status at each contactor node is very important to get the correct solution to the

problem in hand. There are a few different ways to find the contact forces. For penalty

function method, the general way of calculating them is :

p-l i+l p-l HI

LCh + Lcf = LCh +Lcf + (aLIoi - aLILi.6.uf+l) (2.33)
h=l j=l h=l j=l

and for Lagrange multipliers method, the common way is:

(2.34)
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The penalty function approach has the disadvantage of a convergence problem

that may occur if the Babuska-Brezzi stability condition is violated, which happens

when the penalty parameter is too large. Good results will generally be obtained with

a small penalty parameter for which the convergence will be slow. The later one does

not have the convergence problem mentioned above. In this thesis,' the method

proposed by Motterhead et al. [32] will be used. The contact forces after each

iteration will be calculated by subtracting the applied external forces from the element

stress resultants, i.e.:

p-l i+l P p-I HI

L c h+ LCj = - ~fh + ~Khuh + Kr~.6u; (2.35)
h=l j=l h=1 h=1 j=l

This method does not possess the convergence problem of the conventional

penalty function approach thus enabling the use of large penalty parameters. As the

iterations proceed, it's clear that the increment in the contact forces will vanish

together with the incremental displacements .6uf+l'

2.3.6 DETERMINATION OF THE CONTACT STATUS

The contact status between a contactor node and a target element can have

three values, namely sticking contact, sliding contact and separation. The correct state

will be decided upon the contact forces calculated previously. Care should be taken to

not decide on the contact status based upon nodal contact forces only, as this can lead

to erroneous results.

For this reason, the correct contact state will be decided upon "element facial

forces" which are basically the sum of the nodal contact forces coming from the
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contactor nodes of each element. If the contactor node is shared between two

elements then the contact force will be shared too. Lets call qn and qt the normal and

tangential components of the element facial force respectively. Note that qn will be

positive if it's direction is in the outward normal to the surface. The contact state at a

contactor node m is:

~ Sticking, if the contactor node has just got into contact with a target element.

~ Sliding, if either

~ I qtl > J.LI qnl for all elements containing m

~ I qtl > J.LI qnl for some elements containing m and qn > afor others.

~ Separation, if all the qn's of the elements possessing the node m is positive, i.e.

qn > afor all elements containing m.

Once the correct state of contact has been determined for a contactor node, the

nodal contact force may be adjusted accordingly. If the status has passed from

sticking to sliding, the tangential component qt will be set to J.Lqn, i.e. it will be zero if

J.L is zero. If the contact status is separation, then nodal contact force at that node will

be set to zero since a separated node cannot have any contact force. As the contact

forces at contactor nodes are adjusted, these will be distributed on the target surface

using the cubic shape functions

2.3.7 SOLVING THE FINITE ELEMENT EQUATIONS

For the reasons mentioned in the section 2.3.4, penalty function method has

been chosen to implement the necessary constraints into the finite element equations.

Therefore the equations to be solved is Eq. 2.30. In the global sense, these equations

are not difficult to form and the solution algorithm will do the rest. On the other hand,
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fonning and solving the equations on an element-by-element basis is not easy. The

equations are symmetric in the global sense, and it has been proved that this holds

true in an element-by-element basis as well. This satisfied one of the main conditions

in using the frontal solver which is that the element stiffness matrices have to be

symmetric. Therefore instead of fonning the global matrices K and LTL, one can

first findthe conventional element stiffness matrix k, then a local constraint matrix l,

which will be fonned for each contacting contactor node, will be multiplied by its

transpose to get a "contact stiffness" matrix which will be added to k, and the result

will be sent to the frontal solver. In the local sense ltl is symmetric therefore the new

element stiffness matrix is also symmetric.

During this process, the contactor node should be "tied" to the target element

in some way. This is necessary because for each contactor node, the local constraint

matrix l contains tenns corresponding to the target element nodes as well as the

contactor node itself. Note that lis fonned for each contactor node - target element

pair using the equations 2.23 and 2.24. Virtually connecting the contactor node to the

target element is done as follows: the contactor node number is added to the next

available spot in the element connectivity and the nnpe (number of nodes per

element) of that target element is increased by one. This is done for every contactor

node that is in contact with that target element, whether in sticking or sliding contact.

An example is shown in Figure. 2.11. Although the contactor node 33 is not

physically attached to the target element, it is virtually attached by the means of the

connectivity matrix which is shown in Table 2.3 :
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Figure 2.11: Simple example ofconnecting the contactor node to the target element

It should be mentioned that this is just a trick for the frontal solver to assemble the

stiffness terms and solve the equations correctly. This addition of another node into

the connectivity increases the size of the stiffness matrix by 2. If4 contactor nodes are

in contact with a target element then the size of the stiffness matrix becomes 32 by

32, for a 12 noded quadrilateral. This is not a problem for the frontal solver, as long as

the connectivity and nnpe value are setup properly. Note that this enlargement of the

stiffness matrix to accommodate the contact constraints is only applied to target

elements. Since the number of contacting nodes assigned to an element is not fixed,

the size of the stiffness matrix varies during the iterations, which is not the case for

linear elastic, plastic or large deformation problems.
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2.4 IMPLEMENTATION INTO THE CRACK PROBLEM

In the enriched formulation, it is known that the stress intensity factors are

calculated at the same time as the displacements. In other words, KI and KIf are

interpreted as unknowns of the fInite element equations. For this purpose a virtual

node number is assigned to each crack, the number is found by increasing the total

number ofnodes by one. For example ifwe have 300 nodes and a crack in the model,

then the crack will take the virtual node number of 301, it will appear in the

connectivity matrices as 301. Consequently KI and KIf will be the x and y

component equivalents of virtual node 301. In this way, the crack is virtually attached

to that element. The same algorithm is followed when contact is also present in the

problem. The total number of nodes will not change since the penalty function

method does not add any unknowns to be solved into the fInite element equations.

The only difference will be the nnpe of some elements. Let's say a 12 noded

quadrilateral element is at the same time a target and a crack tip element (whether

enriched or transition). In the local sense, the 13th position in the connectivity will

always be assigned to the crack tip virtual node. The contactor nodes in contact will

be added to the connectivity starting from the 14th position and so on. If the element

is not enriched, the contactor nodes will be put starting from the 13th position. To

summarize, the contact problem will not add any additional unknowns into the crack

problem, it will only effect the size of the local unknowns associated with a target

element and this is for the purpose of implementing the necessary contact constraints

into the equations. As an example, let's take again the example in Figure 2.11 and let's

make the target element an enriched element. Let's say there are 200 nodes in the

model, therefore the crack will take the virtual node number of 201. The connectivity

of the element will become as shown in Table 2.4:
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The implementation of the crack problem into the finite element formulation

of the contact problem presented in section 2.3 is quite straight forward. When a crack

is present in the model, some special element stiffuess and load terms will be

calculated, as done in linear elastic crack problem case, and they will be added to the

previously formed modified element stiffuess matrices and load vectors. The

connectivity and nnpe value of the elements being already adjusted if necessary, the

frontal solver is called to solve for the unknown quantities. The contact problem is

truly nonlinear, the solution is reached incrementally. Therefore what is solved in Eq.

2.30 is not the displacements and the stress intensity factors but the incremental

displacements and incremental stress intensity factors. These will be added up to

obtain the final values for the displacements and the mode I and mode II stress

intensity factors.

Care should be taken in forming the necessary constraint matrices l, the

formulation presented in 2.3 applies for isoparametric elements, i.e. the displacements

can the interpolated using shape functions only. But in enriched formulation, for the

displacements within an enriched element, other than the usual shape function terms

there are also some asymptotic displacement functions, as shown previously in Eq.

2.9 and 2.10. Therefore when a target element in contact is also an enriched element,

like in the case of crack surfaces in contact, the formulation should be changed as

follows:

43



nnpe

u(s, t) = L Nj(s, t)Uj + Zo(s, t)fi(s, t)KI + Zo(s, t)gi(s, t)Kn (2.9)
j=1

nnpe

V(s, t) = L Nj(s, t)Vj + Zo(s, t)f:;(s, t)KI + ZO(S, t)gi(s, t)Kn (2.10)
j=1

Using Eq. 2.9 and 2.10, Eq 2.21 becomes:

Ox = Uc - LNi(s, t)Ui - Zo(s, t)f{(s, t)KI - Zo(s, t)gi(s, t)Kn (2.36)

Oy = Vc - LNi(s, t)Vi - Zo(s, t)f;(s, t)KI - Zo(s, t)gHs, t)Kn
. i

Note that the isoparametric coordinates s and t corresponds to the corrected

coordinates found during contact searching.

Eq 2.36 can be put into the form

... ... N I2 0]{'Urr }
... 0 N I2 VT HI

or

[
Zo(s, t)fi(s, t)

+ Zo(s, t)f2(s, t)
Zo(s, t)gi(s, t) ] {KK1I

1
}. = 0

Zo(s, t)g2(s, t) (2.37)

[
Zo(S, t)fi(s, t)

+ Zo(s, t)f:;(s, t)
Zo(s, t)gi(s, t) ] { KK

111
} . 0

Zo(s, t)g2(s, t)
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where I is the identity matrix, ~ is the Kronecker product.

For sliding contact, only the tangential displacement of the contactor node should be

constrained, therefore the constraint equation will be

T [Zo(s, t)fi(s, t)
+ n Zo(s, t)f2(s, t)

Zo(s, t)gi(s, t) ] { KK1I

1

} = 0
Zo(s, t)gi(s, t) (2.39)

where n is the normal vector evaluated at the corrected isoparametric coordinates.

Combining both equations, one can formulate both sticking and sliding contact

constraint equations in the following form:

The rest of the formulation is exactly the same as described in section 2.3.
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CHAPTER 3

NUMERICAL EXAMPLES

3.1 INTRODUCTORY EXAMPLE

In this section, as a simple introductory example, a block in contact with

another block will be examined. The dimensions of the blocks are each 20 by 5

inches. The model can be seen in Figure 3.1. The modulus ofthe blocks are 30e6 psi

and the Poisson's ratios are 0.30. The problem is basically two similar blocks in

contact with each other. The bottom block is constrained to move in the horizontal

direction. Pressure loads act on the top and side surfaces of the top block, each of

magnitude 1000 psi/in, the directions being shown on the model. Plane strain is

assumed. The problem will be examined for both sticking and frictionless sliding

contact conditions and the deformed shapes will also be shown. Note that sticking

condition can be easily imposed on every node in a model by simply assigning a

coefficient of friction so high that no contactor node can pass from sticking contact to

sliding contact.

Without any contact algorithm, the problem would be indefinite because

there's no constraint on the top block except the contact constraints. Therefore without

these constraints, the stiffness matrix would become singular, causing infinite

displacements. The contact constraints prevent the stiffnesses from becoming singular

and prevents the two blocks from passing through each other.
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Figure 3.1: Model for two blocks in sticking/sliding contact

A good way of checking the sticking contact problem between the two blocks

is the "whole block" or "tied block" problem. Since the contactor nodes are prevented

from sliding on the bottom block surface, the contactor nodes will stick to the first

point of contact on the target surface. The model has been prepared in order to get

node-to-node contact, therefore the contactor nodes and the corresponding target

nodes will have exactly the same displacements. It is the same problem as the one

with the contactor nodes and the corresponding target nodes being tied, or even as the

problem where there's a unique block of width 20" and of height 10" and having the

nodes at exactly the same locations as the contact problem.

In Figure 3.2, the stresses coming from the contactor and target surfaces are

shown. They are practically equal on the left side of the graph but are quite different

on the other side. As they are averaged, the stresses are in good agreement with the

known solution (or the whole body solution), as shown in Figure 3.3. This difference

between the stresses coming from the two surfaces are believed to be caused by the
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stress smoothing algorithm that was already present In the code. This Issue IS

explained in detail in Appendix B.
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Figure 3.2: Stresses for the introductory example (a is the halfwidth of the blocks)
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Figure 3.3: Comparison between averaged stresses and the known solution
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In Figures 3.4 and 3.5, the deformed shapes of the sticking and frictionless

sliding problems are plotted respectively with a scale factor of 500, i.e the

displacements are multiplied by 500 in order to visualize the deformations.
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Figure 3.4: Deformed shape for the sticking block problem
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Figure 3.5: Deformed shape for the frictionless sliding block problem

It can be seen that, for the sticking problem no sliding is allowed therefore the

right end of the contact surface has to bend down with respect to the left end. But in

frictionless sliding problem, the contactor surface is free to slide on the target surface,
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there are no forces in the x direction acting on the contact surfaces and consequently

both the left and right sides of the contact surface deforms almost equally.

3.2 FLAT PUNCH ON ELASTIC FOUNDATION

In this section, a flat punch on elastic foundation problem will be modeled.

Call the height and width of the elastic foundation Hand 2W and the height and

width of the punch hand 2w respectively. The dimension ratios considered are

~=~ t?=~ w=~

as in the example in [32]. A uniform distributed load of I N/mm-1 is applied on the

top surface of the flat punch. Both are made of the same material, with a modulus of

elasticity of3e6 psi and Poisson's ratio of 0.35. Plane strain is assumed.

There are two models used for this problem, Figure 3.6 shows the simple and

refined models respectively. The idea in using a refined model is to properly catch the

singularity at the comer of the flat punch that is also predicted by linear theory of

elasticity. In fact the simple model failed to catch that singularity, which will be

shown in the following plots. Figures 3.7 and 3.8 shows respectively a closer look the

contact surfaces for the simple and refined models.

Although there's no analytic solution for this problem, there are some finite

element results to compare the results. One of them is in the reference [32], where the

problem was solved for various material combinations and for some coefficients of

friction different than zero. Here only sliding contact, i.e. contact with zero coefficient

of friction, and only one material combination (both have equal material properties)

will be investigated for simplicity purposes.
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Figure 3.6: Simple and refined models for flat punch on elastic foundation problem
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Figure 3.7: Contact zone mesh for the simple model

Figure 3.8: Contact zone mesh for the refined model
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The stresses for both the simple and refined models are shown in Figure 3.9

and Figure 3.10. As it can be seen, the simple model is not satisfactory in catching the

singularity at the corner of the punch. Note that again the stresses coming from the

target and contactor surfaces are different from each other on the right hand side of

the plot. This is again due to the stress smoothing, which is explained in Appendix B.

Nevertheless, the average of the stresses coming from both surfaces are in agreement

with the example solved in [32].
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Figure 3.9: Stresses for the simple model of flat punch on elastic foundation
problem (to is the applied pressure, tn is the normal traction and w the width
ofthe punch)

52



4

--<>-- TargetSurface Stresses
3.5 --0- Contactor Surface Stresses

3

2.5

2

1.5

0.5
o 0.2 0.4 0.6 0.8

Distance From Center (xlw)

Figure 3.10: Stresses for the refined model of flat punch on elastic foundation
problem (to is the applied pressure, tn is the normal traction and w the width of
the punch)

3.3 CYLINDRICAL PUNCH ON ELASTIC FOUNDATION

The cylindrical punch on elastic foundation problem is a quite interesting and

popular one. It's also quite difficult to model numerically, in the sense that every kind

of contact conditions occur at the same time in the same model, i.e. sticking, sliding

and separation. In the previous examples, only sticking and sliding was present.

Separation complicates the problem by making it difficult to keep track of the

penetrating and seperating nodes.

Analytically this problem has been first analyzed by Hertz [33]. Some details

of his study can be found in Appendix A. His formulation applies for spheres and
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cylinders in contact with each other as well as cylinders and spheres in contact with a

half medium, just by setting the radius of one of the cylinder as infinity.

Since it is not possible to model a half space, a large enough foundation has

been taken in order to be sure to create an equivalent model. The dimensions of the

block is 1000 by 1000 mm while the radius of the cylinder is 50 mm. The material

properties of both the cylinder and the foundation are 10.8 MPa for the elastic

modulus and 0.35 for the Poisson's ratio. The concentrated load applied on top of the

cylinder is 3916N. Plane strain is assumed. The model used is shown in Figure 3.11,

and Figure 3.12 shows a closer look at the contact zone between the cylinder and the

half space.

Figure 3.11: Cylindrical punch on elastic foundation model
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Figure 3.12: Close look to the contact zone in cylindrical punch problem

In Figure 3.13, the stresses on the contactor surface, target surface and the

averaged stresses are shown. The averaged stresses are found by passing a 10th degree

regression curve using the stresses on both the target and the contactor surfaces. It can

be seen that the stresses at the comer nodes, on both surfaces, are a little bit offset

from other values. This is believed to be caused by the stress smoothing algorithm

already being used in the code that the contact algorithm has been implemented,

namely Frac2D. The stress smoothing algorithm is presented in detail in Appendix B.

The comparaison between the averaged stresses and the well-known Hertzian

solution is in perfect agreement and is shown in Figure 3.14. Despite the erroneous

behavior of the stresses coming from either surfaces, the averaged stresses are very

accurate.
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Figure 3.14: Comparison ofthe stresses found with the Hertzian solution
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3.4 SEMICONDUCTOR PACKAGE APPLICATIONS

In this section, some interface crack contact problems in semiconductor

packages will be modeled and the results will be presented. Edge cracked and center

cracked flip chip packages with various boundary conditions will be examined. The

boundary conditions applied are unconstrained substrate, substrate constrained in the

vertical direction only, substrate constrained in both directions and substrate

constrained at the end. The resulting mode I and mode II stress intensity factors, total

strain energy release rates and phase angles will be plotted as a function of crack

length. Also, for comparative purposes, the results with no contact constraints will be

shown and discussed. Plane strain is assumed for every case.

Material properties for the constituent materials are as shown in Table 3.1 :

material Exx, Eyy, Ezz (psi) V12, V23, V31 G12 (psi)
silicon die 3.407e6, 3.407e6, 3.407e6 0.33, 0.33, 0.33 1.281e6
underfill 1.056e6 0.301 -

polymeric substrate 1,884e7 0.279 -

material axx, ayy, azz
silicon die 1.5e-6, 5.7e-6, 1.5e-6
underfill 2.6e-5

polymeric substrate 3.3e-6
Table 3.1: Matenal propertIes of the constItuent matenals m a flip chip package

The dimensions ofthe flip chip package are shown in Figure 3.15
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Figure 3.15: Dimensions of the flip chip package

3.4.1 EDGE-CRACKED FLIP-Cmp PACKAGE

This is the most common and probably the most severely cracked flip-chip

package. It is well known that the comer between the underfill and the substrate has a

singularity. Even though it is not as strong as a crack tip singularity, the strength may

be sufficient to initiate a crack at that location. Four different boundary conditions

will be applied to the substrate and relevant fracture mechanics quantities such as

mode I and mode II stress intensity factors, total strain energy release rates and phase

angles are found and plotted as a function of crack lengths ranging from 0.0045 in to

0.0315 in..

3.4.1.1 UNCONSTRAINED PACKAGE

Let's say the package is tested by the manufacturer for reliability by putting

them on a surface and applying heat and/or moisture, like in an environmental

58



chamber. This test can be modeled by not constraining the bottom surface of the

substrate, so the ends of the substrate are free to bend upwards of downwards

depending on the material combinations and temperature loading.

The model used is shown in Fig 3.16.

Figure 3.16: Unconstrained edge cracked flip-chip model

Two different temperature loads have been applied, -loDe and +loDe for the

reason that in both of the temperature differences contact occurs between the crack

surfaces for certain crack lengths. There's a rule of thumb stating that if the crack

surfaces opens with a temperature difference, it should eventually close when the

negative temperature difference is applied. This case is obviously an exception to that

rule since in both cases contact occurs, not for every crack lengths tough but just for

certain ones. For this reason the results for each case will be shown.

For .6.T=lODe, for certain crack lengths, a phenomenon that can be called

"double contact zone" is observed. For this problem, the contact zone shape, number

and position changes with crack length. Figure 3.17 shows the shape changes in the

contact zone as the crack length is increased.
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Figure 3.17: Shape changes in the contact zone as the crack length is increased in
a flip chip package with unconstrained substrate, .6.T=10oC, a) Crack is between
the silicon die comer and edge of the underfill. b) Crack is just underneath the
silicon die comer c) Crack has just passed the comer d) Crack is relatively far
from comer

When the crack is between the silicon die comer and the edge of the underfill

layer (figure 3a) the contact zone starts right at the crack tip and ends just before the

edge. Then crack is just underneath the silicon die comer (figure 3b), the contact zone

does not start at the crack-tip anymore but just after it and extends some distance

without reaching the edge. After having passed the comer, at about a crack length of

0.0195 in, the contact zone is still just ahead of the crack. When the crack is relatively

far away from the comer, now a double contact zone is seen. There for a crack length

between 0.0195 and 0.0225 in, a transition from one contact zone to double contact
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zones occurs. One of double zones is after the comer, the other is before the comer.

The size of the zone before the crack tip, i.e. lying in the triangular region, is pretty

much constant while the size of the zone after the crack tip almost doubles in size.

In the following figures, between the region between the points A and B

corresponds to the case in Figure 3.17a, between B and e corresponds to Figures

3.17b and 3.17c (the vertical line indicating the position of the silicon corner),

between e and D corresponds to Figure 3.17d, i.e. the double contact zone case.
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Figure 3.18: Stress intensity factors as a function of crack length for the edge
cracked package under unconstrained substrate boundary condition, D.T=1oDe.
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Figure 3.19: Total strain energy release rates as a function of crack length for the
edge cracked package under unconstrained substrate boundary condition, !:IT=10oC.
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Figure 3.20: Phase angles as a function of crack length for the edge cracked
package under unconstrained substrate boundary condition, !:lT=loDe.
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Figure 3.18 shows the mode I and mode IT stress intensity factors as a function

of crack length for t:,.T=10oC. As it can be seen, the behavior is extremely complex,

due to the change in the shape of the contact zone(s), unconstrained boundary

condition and the effect of the silicon comer chip. The only observation to be made is

the increase in magnitude of both mode I and mode II stress intensity factors as the

crack length increases.

Figure 3.19 shows the total strain energy release rates, obtained using contact

analysis and without contact analysis, as a function of crack length, for t:,.T= loDe.

The values obtained without using contact analysis are quite smooth and increasing

with increasing crack length. The values from contact analysis, on-the-other-hand,

shows some ups and downs. This is mainly caused by the contact zone shape change

previously presented. Between A and B (for crack lengths ranging from 0.0045 to

0.0135) the crack surfaces are closed starting right from the crack tip which makes the

strain energy release rates quite low. The first jump occurs on the graph between B

and C due to the fact that the contact zone doesn't begin right from the crack-tip. An

even bigger jump occurs when the single contact zone becomes a double contact

zone, for the region from C to D. One can observe that the total strain energy release

rates are overestimated by a factor of about two when contact analysis is not

performed.

Figure 3.20 shows the phase angles, obtained using contact analysis and

without contact analysis, as a function of crack length, for t:,.T= loDe. Both are quite

oscillatory when the crack is before the silicon comer (in the triangular section), then

gets stabilized after the comer. The oscillation is due to the sign changes in the mode
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I and mode II stress intensity factors, as it can be seen in Figure 3.18. Both graphs

show the same overall behavior.

For!:::..T=-l OOC, no double contact zones are observed, in fact for most of the

crack lengths even contact does not occur.
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Figure 3.21: Stress intensity factors as a function of crack length for the edge
cracked package under unconstrained substrate boundary condition, !:::..T=-l OOC.

Figure 3.21 shows the mode I and mode II stress intensity factors as a function

of crack length, for !:::..T=-l OOC. Note that there is a small range of crack lengths

between 0.0105 and 0.014 in where the mode I effect is dominant. For all other crack

lengths the mode II effect is dominant.
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Figure 3.22: Total strain energy release rates as a function of crack length for the
edge cracked package under unconstrained substrate boundary condition, I::i.T=-1 OOC
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Figure 3.23: Phase angles as a function of crack length for the edge cracked
package under unconstrained substrate boundary condition, I::i.T=-1 OoC
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Figure 3.22 shows the total strain energy release rates, obtained using contact

analysis and without contact analysis, as a function of crack length, for b..T=-lO°c.

The curves are coincident except for some crack lengths, shown on the graph, for

which contact occurs. In the overall, total strain energy release rates increase as the

crack length is increased.

Figure 3.23 shows the phase angles, obtained using contact analysis and

without contact analysis, as a function of crack length, for b..T=-l oDe. Again the

curves are coincident except for the crack lengths at which there is contact. The

abrupt change in the sign of the phase angles is due to the change in the signs of the

stress intensity factors. Having passed the silicon comer, phase angles get constant.

3.4.1.2 SUBSTRATE CONSTRAINED IN VERTICAL DIRECTION

If the substrate is attached or bonded to a board, then the boundary conditions

on the bottom surface of the substrate are quite complex. It can be modeled either by

constraining the substrate to move in the vertical direction only or by constraining it

to move both in vertical and horizontal directions. The real case is neither of them but

inevitably falls between the two cases.

This case is run only for a temperature difference of b..T=-lOoC since no

contact is occurring for any crack length when b..T=lOoC is applied. The model used

for modeling this problem is shown in Figure 3.24
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Figure 3.24 Edge Cracked Flip Chip Model Constrained in the Vertical Direction
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Figure 3.25: Stress intensity factors as a function of crack length for the edge
cracked package constrained in the vertical direction, !:1T=-lODC.

Figure 3.25 shows the mode I and mode II stress intensity factors as a function

of crack length. Both stress intensity factors increase as the crack length increase,

until the crack length just passed below the comer of the silicon chip, which is shown

on the graphs as a vertical line at the crack length of 0.0165 in. After passing the

comer, the stress intensity factors seem to stabilize, they don't increase much. As it

was expected, Kn is higher than KI for every crack length since shear is

predominant.
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The figure 3.26 shows the total strain energy release rates, obtained using

contact analysis and without using contact analysis, as a function of crack length. The

two curves show the same kind of curve, although the G values for the case without

contact are larger than the ones with contact. The difference between the two curves

are larger for small and large crack lengths, i.e away from the comer of the silicon

chip and they are almost equal when the crack has just passed the comer.

Figure 3.27 shows the phase angles with and without contact analysis as a

function of crack length. For the contact case, the phase angles are almost constant for

every crack length, but for no contact case the angle decreases until the comer of the

die after which it gets constant also. The difference is quite high, generally around

30°.

3.4.1.3 SUBSTRATE CONSTRAINED IN BOTH DIRECTIONS

As explained in section 3.4.1.2, neither boundary conditions represents the

real problem with the substrate bonded to a board, but the real case falls between the

two. Obviously constraining the substrate to move in both directions is a more severe

condition than the real case, therefore in reality, the total strain energy release rates,

phase angles, mode I and mode II stress intensity factors will be somewhere between

the results of the two models.

For this case only .6.T=lOoC is considered since no contact is encountered for

.6.T=-1 OoC. The model used for modeling this problem is shown in Fig. 3.28
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Figure 3.28 Edge cracked flip chip model constrained in both directions
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Figure 3.29: Stress intensity factors as a function of crack length for an edge
cracked flip-chip package constrained in both directions, I:1T=10oC

Figure 3.29 shows the mode I and mode II stress intensity factors as a function

of crack length. As expected, Kn is greater than KI for every crack length, since

shear is dominant. Both curves seem to have an inflection point somewhere near

0.0165 where the comer of the silicon die is. Both decreases as the crack approaches

the silicon die comer and they increase again after having passed the comer.
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Figure 3.30 shows the total strain energy release rates for the two cases

considered, one with contact and the other without contact. The difference between

two is larger for small crack lengths, up to a crack length of -0.01 after which there is

not much difference between the two cases. Both shows a minimum somewhere near

the comer of the silicon die. Both decrease as the crack approaches the silicon die

comer and they increase again after having passed the comer.

Figure 3.31 shows the phase angles for both cases as a function of crack

length. The phase angles with contact analysis are again almost constant for every

crack lengths. The phase angles obtained without contact analysis decrease for small

crack length, then they get almost constant also. The difference between both results

are quite high, more than 30°.

3.4.1.4 SUBSTRATE CONSTRAINED AT THE ENDS

This is another kind of boundary condition that is worth modeling. Today's

computer chips are generally manufactured and assembled on the motherboard in

such a way that the chip itself can be easily removed and replaced by a new one, for

fixing or upgrading purposes. The substrate has some pins at the end which will lock

into slots on the board. This problem can be modeled by assuming that the bottom

surface of the substrate is free to move in both directions but the end of the substrate,

where the pins are, is constrained to move in the vertical direction only. This is

somewhat simplified model in the sense that the elasticity of the pins are neglected

for simplicity purposes.

Only the temperature difference of D.T=-l oOe is considered since no contact

is observed to occur for the D.T=IOoe case. The model used for this problem is

shown in Figure 3.32
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Figure 3.32: Edge cracked flip chip model constrained at the ends
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Figure 3.33: Stress intensity factors as a function of crack length for an
edge cracked package constrained at the ends, tlT=-loDe.

Figure 3.33 shows the mode I and mode II stress intensity factors as a function

of crack length. The results are quite similar to the edge cracked package constrained

in the vertical direction results in section 3.4.1.2. This is somewhat expected because

the two boundary conditions are quite similar. Again the stress intensity factors

increase rapidly for small crack lengths, then the slope tends to zero, after having

passed the silicon die comer.
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Figure 3.34 shows the total strain energy release rates for the contact and no

contact analysis cases as a function of crack length. Again the two curves are quite

similar to the ones obtained in section 3.4.1.2. As the crack length increases, the

results for both cases become almost equal to each other, after passing the silicon

comer, which is showed on the graph as a vertical line at a crack length of 0.0165 in,

the two curves separate again. The strain energy release rates for the case without

contact analysis are almost always higher than the ones with contact analysis. In a

way, without putting the contact constraints, one overestimates the total strain energy

release rates.

Figure 3.35 shows the phase angles for the contact analysis and the analysis

without contact as a function of crack length. Again the results are very close to the

ones obtained in section 3.4.1.2. The phase angles obtained with contact analysis are

almost constant for every crack length, while the ones obtained without contact

analysis decreases for small crack lengths and then after having passed the silicon

comer, gets constant also. The difference between them is quite high, almost 30°

everywhere.

3.4.2 CENTER-CRACKED FLIP-Cmp PACKAGE

This is the other common crack problem in flip chip packages. As it will be

shown in the following sections, it is a less critical case than the edge cracked

situation in a design point of view since the total strain energy release rates, which are

the primary comparative quantity in interface crack problems, are much lower in

center cracked packages. Nevertheless, it is still an interesting problem to be handled.

Three boundary conditions are modeled which are substrate constrained in vertical
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direction, substrate constrained in both directions and substrate constrained at the

ends. The unconstrained substrate case is not investigated because the stress intensity

and total strain energy release rates were far too small to be of any interest. Results

are obtained for crack lengths from 0.02 in to 0.20 in, which is about the quarter of

the length of the underfill.

3.4.2.1 SUBSTRATE CONSTRAINED IN VERTICAL DIRECTION

As explained earlier in section 3.4.1.2, the real fracture mechanics quantities

such as total strain energy release rates, phase angles, mode I and mode II stress

intensity factors of a center cracked flip chip package bonded to a board will be

somewhere between the results two boundary conditions which will be modeled in

this section and in section 3.4.2.3. In this section the bottom surface ofthe substrate is

allowed move in the horizontal direction only. The model used for this case is shown

in Fig 3.36

Figure 3.36: Center cracked flip chip model constrained in the vertical direction only

Figure 3.37 shows the stress intensity factors as a function of crack length.

As expected, the magnitude of the mode II stress intensity factors are higher than

the ones for mode I, since shear is dominant at the interface. Due to the complex

nature of the problem, it's very difficult to explain the bumps on the plots
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Figure 3.39: Phase angles as a function of crack length for a center
cracked flip chip package constrained in the vertical direction, !J.T=-loDe.

Figure 3.38 shows the total strain energy release rates as a function of crack

length, obtained from contact analysis and without contact analysis. It is clear that

without using contact analysis, the G values are overestimated. For small crack

lengths they are almost equal, after 0.1 in of crack length the difference becomes

quite large, at a crack length of 0.2 in, the one obtained without contact analysis is

eight times the one obtained with contact analysis.

Figure 3.39 shows the phase angles as a function of crack length, obtained

from contact analysis and without using contact analysis. Again, the complex nature

of the problem makes it very difficult to explain the bumps on this plot. Note that
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the difference in the phase angles is quite small for small crack lengths and it

increases continuously with increasing crack length.

3.4.2.2 SUBSTRATE CONSTRAINED IN BOTH DIRECTIONS

As a continuation of the section 3.4.2.2, now the other boundary condition

left, which is the substrate constrained in both directions, will be modeled. The model

used in this problem is shown in Fig. 3.40

Figure 3.40: Center cracked flip chip model constrained in both directions

Figure 3.41 shows the mode I and mode II stress intensity factors as a function

of crack length. They both show the same behavior. Both increase in magnitude as the

crack length is increased. As it was expected in other cases, the mode II stress

intensity factor dominates in magnitude over mode I, since shear is dominant at the

interface.

Figure 3.42 shows the total strain energy release rates, obtained with contact

analysis and without using contact analysis, as a function of crack length. They both

increase as the crack length is increased and show the same kind of behavior with

respect to crack length. The difference between them'is quite small, but nevertheless

the results obtained without contact analysis are higher then the ones obtained with

contact analysis.
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Figure 3.42: Total strain energy release rates as a function of crack length for a
center cracked package constrained in the vertical direction, b.T=-lOoC.
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Figure 3.43: Phase angles as a function of crack length for a center cracked
package constrained in the vertical direction, f:j.T=-l OOC.

Figure 3.43 shows the phase angles, obtained with contact analysis and

without using contact analysis, as a function of crack length. Both increase for small

crack lengths which, then they both get almost constant. The difference is quite high,

about 300.

3.4.2.3 SUBSTRATE CONSTRAINED AT THE ENDS

As the last of the semiconductor applications, in this section edge cracked flip

chip package where the substrate is constrained at the end, as some PC chips are

pined to the board for easy removal. Only the case for f:j.T=-lOOC is considered

because with an a loading with the opposite sign contact doesn't occur. The model

used in this case is shown in Fig. 3.44
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Figure 3.44: Center cracked flip chip model constrained at the ends
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Figure 3.45: Stress intensity factors as a function of crack length for a center
cracked package constrained at the ends, D.T=-lODC.

Figure 3.45 shows the mode I and mode II stress intensity factors as a function

of crack length. Both shows a linear-like increasing behavior with increasing crack

length, the slop decreasing quite slowly. In magnitude, the mode IT dominates over

mode I, which is an expected observation since shear is dominant at the interface.

Their behavior is quite similar to the one for which package was constrained in both

directions.
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Figure 3.46: Total strain energy release rates as a function of crack length for a
center cracked package constrained at the ends, t::.T=-loDe.

o

-40

Ul
Ql
ez
01
Ql -80'0.......
Ql
C>
c:«
Ql
Ul

-120ro
.s::::
a.

-160 ~With Contact
-0- Without Contact

o 0.05 0.1 0.15 0.2 0.25

Crack Length (in)

Figure 3.47: Phase angles as a function of crack length for a center cracked
package constrained at the ends, t::.T=-loDe.

83



Figure 3.46 shows the total strain energy release rates, obtained from contact

analysis and without contact analysis, as a function of crack length. The values

obtained without contact analysis are again overestimated. The energy release rates

for the contact case show a linear-like behavior in terms of crack length and it

increases directly proportional to the crack length.

Figure 3.47 shows the phase angles, obtained from contact analysis and

without contact analysis, as a function of crack length. They both increase for small

crack lengths and then both gets almost constant. The difference is quite large, almost

500 everywhere.

84



CHAPTER 4

CONCLUSION

In this study, interface crack surface contact problems are investigated and

special attention is given to semiconductor package applications. The finite element

method is briefly overviewed. Enriched element formulation, which is used to find

the relevant fracture mechanics quantities such as stress intensity factors, straiI].

energy release rates, phase angles, is presented. A general two dimensional contact

analysis algorithm using the penalty function method is described in detail. This

algorithm has been implemented into a finite element code, namely Frac2D. In order

to prove the correctness of the solutions some examples have been solved: two blocks

in sticking/sliding contact, a flat punch on an elastic foundation and a cylindrical

punch on an elastic foundation. Numerical examples are mainly focused on flip chip

packages. Both edge-cracked and center-cracked packages are considered with four

different boundary conditions: unconstrained package, package constrained in the

vertical direction only, package constrained in both directions and package

constrained at the ends. Mode I and mode II stress intensity factors, total strain energy

release rates and phase angles are plotted as a function of crack length. Total strain

energy release rate and phase angle values are compared with the results obtained

without using a contact algorithm, i.e. the mesh is allowed to overlap.

The following are the general conclusions. For interface crack problems, there

IS no magical rule to prevent contact. Depending on the boundary conditions,

geometry of the package, material combinations, and loads applied contact will or

will not occur. Detecting contact is quite easy with homogeneous cracks since KI will
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become negative. There's no such rule for bimaterial interface cracks. The only

possibility for catching a mesh overlap, other than using a contact algorithm, is to plot

the deformed shape, but this may be misleading. Therefore, the best way would be to

use a contact algorithm whenever contact is suspected to occur. Mesh overlap is

inadmissible and thus it must be prevented.

For bimaterial interface cracks, the integrity of the package is decided upon

comparing the actual total strain energy release rate with a critical strain energy

release rate which is found experimentally. In almost all of the cases, the total strain

energy release rate obtained without using a contact algorithm, Le. allowing the mesh

to overlap, is found to be higher than the one obtained with the contact algorithm.

This means that in most of the cases even without considering possible contacts one

can still be on the safe side, from a design point-of-view. This is not to be

generalized, since for some cases the reverse may be true. Allowing the mesh to

overlap may give results that are close to or quite different than the actual case

(considering contact), depending on the geometry, boundary conditions, etc. For

example, consider a center-cracked flip chip package whose substrate is constrained

in both directions. Both G values are quite close to each other and ignoring contact

gives very close results. Consider an edge-cracked flip chip package whose substrate

is unconstrained. Two G values are quite different from each other; the one obtained

without using a contact algorithm is generally two times higher than the other. This

may result in an overly designed package: a package predicted to fail may still be on

the safe side. One interesting observation can be made: for both edge and center

cracked packages whose substrate is constrained in both directions, the G values from

contact analysis and from usual finite element methods are quite close to each other

for a large range of crack lengths. This may be due to the severe boundary condition
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on the substrate: the crack surfaces does not penetrate into each other considerably,

resulting in similar G values. It should be noted that there is no evidence that this can

be generalized. As a general statement, it is recommended that a finite element code

into which a contact algorithm is implemented should be used whenever mesh

overlap is a possibility.

In the calculations, the coefficient of friction is taken to be zero for simplicity

purposes. As a future work, coefficients of friction other than zero may be used and

their effect on the total strain energy release rates, stress· intensity factors and phase

angles may be examined.

In semiconductor package applications, contact occurs mainly due to the

mismatch in the coefficients of thermal expansion. Since plain strain is assumed for

every case, it is indirectly assumed that the difference in the CTE's in the third

.dimension is not important, which is generally not the case. The correctness of the

results depends on this assumption. Therefore, it should be noted that interface crack

surface contact problems in semiconductor packages under thermal or moisture loads

is truly three dimensional and consequently a three dimensional finite element

analysis with a three dimensional contact algorithm is necessary to fully understand

and solve the actual problem. Also, the axisymmetric case, which is a more realistic

interpretation of the actual situation, can be investigated and the results may be

compared with the plane strain and 3-D cases.
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APPENDIX A

HERTZIAN CONTACT THEORY

ill this appendix, Hertzian theory on the contact of elastic bodies will be

shortly presented. The first studies on elastic bodies in contact dates back to work of

Hertz [34], which is accepted as the birth of this field. Since then, a great number of

papers have been published in this area but the results and conclusions of Hertz still

remains valid, partly due to the simplicity of the solutions.

Hertz came up with this theory while he was investigating the possible effects

of elastic defonnations on Newton's optical interference fringes in a Christmas

vacation at the age of twenty-three. The theory applies to smooth (Le. zero coefficient

of friction) and nonconfonnable surfaces in contact. He assumed that each body can

be regarded as an elastic half-space loaded over a small elliptical region of its plane

surface. By this assumption, the highly concentrated contact stresses are analyzed

separately from the general distribution of stresses in the bodies due their shapes and

due to the various boundary conditions present. Also, the methods of solving

boundary value problems involving elastic half-spaces were already well developed.

In order for this assumption to hold, the following should be satisfied:

a) The size of the contact zone has to be small compared to the dimensions of

the bodies. This condition ensures that the various boundary conditions acting on the

bodies does not affect the solution at the contact zone.
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b) The size of the contact zone has to be small compared to the radii of

curvature of the two bodies. This condition first ensures that the region just outside

the contact zone can be regarded as half-space and secondly keeps the strains at the

contact zone in the limits of linear elasticity.

Finally, he assumed that the contacting surfaces are smooth, therefore only

nonnal tractions can be transmitted through the contact zone. With these assumptions

and after a derivation that can be found in [35], the following fonnulas are obtained

for two cylinders in contact:

Defining an "equivalent modulus" E* and "equivalent radius" R*,

The semi-contact width a is given by

a = (4PR.)~
1rE·

The maximum contact pressure, which occurs at the first point of touch on the axis of

symmetry, is

Maximum shear stress occurs at x=O, z=O.78a and is equal to
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7"1 = 0.30po

If one of the cylinders have an infinite radius, it will become a half space, and the

problem will become a cylindrical punch on elastic foundation problem. Setting one

of the radii as infinite and assuming that both bodies have the same materials

properties E and 1/, one would obtain

E* - E
- 2(l-v2)

R* - E- 2

1

_ (4PR(1-V2 ») 2
a - 'irE

In the numerical examples chapter, chapter 3, a cylindrical punch on an elastic

foundation problem was solved. It was found that the contact zone is small compared

to both the radius of the cylindrical punch and the dimensions of the block. Zero

coefficient of friction was used to satisfy the smooth surface condition. The strains at

the contact zone were also small such that linear theory of elasticity holds. Therefore

each and every assumption of the Hertz theory have been satisfied. The results of the

finite element analysis proved to be very close to the Hertzian solution.
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APPENDIXB

STRESS SMOOTHING

It is known that when Gaussian integration is used, the stresses found are the

most accurate when computed at the Gaussian points. Since 4x4 Gaussian integration

has been used in this work for isoparametric cubic elements, we obtain the stresses at

16 different locations within an element. Rarely these stresses are being used because

generally nodal stresses are desired. These nodal stresses are found by a process

called stress smoothing. In a more general way, stress smoothing smoothes the

discontinuous stress distribution within an element or within the whole model by

minimizing a certain functional accepting that the stresses found at the Gaussian

points are the most correct ones. The reason for the discontinuity of the stress field at

the extremities of an element is that in conventional finite elements, the continuity of

the displacements are imposed into the equations but no action is taken regarding the

stresses. The nodal stresses could have been found by using the cubic shape functions

but it is known that the interpolating functions tend to behave badly at the extremities

of an interpolation region. Two methods are quite popular:

B.1 GLOBAL STRESS SMOOTIDNG

Besides being the computationally most difficult, global stress smoothing is

also the most accurate one. A least squares minimization technique is adopted. The

proposed smoothing function has the form:

(H.l)

{
i = 1,3
j = 1,3
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If the unsmoothed stresses are expressed by a(x, y), by minimizing the functional </>

with respect to the coefficients aij we have

.E!t - 0
8a;j -

(B.2)

(B.3)

Equation B.3 gives a set of linear simultaneous equations which will be solved for the

unknown coefficients. As the name implies, all of the stresses in the model will be

smoothed at the same time. After the smoothing the stresses at the extremities of the

elements becomes continuous but the method is quite time consuming. Also a finite

elemerit like formulation is proposed in [36].

B.2 LOCAL STRESS SMOOTIDNG

In local stress smoothing, the stress within an element is assumed to vary like

Since we have 16 Gaussian points, Eq B.4 can be written in matrix form as

al 1 s t s3t3 al

a2 1 s t s3t3 a2
a3 1 s t s3t3 a3

(B.5)

a16 1 s t s3t3 a16

Here the unknowns are aj's. This equation can be inverted as
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1 t s3t3 -1
a1 s (}1

a2 1 s t s3t3 (}2

a3 1 s t s3t3 (}3
(B.6)

a16 1 s t s3t3 (}16

Since we known the isoparametric coordinates s and t of the Gaussian points, this 16

by 16 equation can easily be solved for the unknown ai's. Once they're known, we

have the assumed distribution of the stresses within that element. To find the nodal

stresses at a node, Eq. BA will be used with the isoparametric coordinates s and t of

that node, which are already known.

Note that if a particular node is shared between n elements, for that node n

different stresses will be found. These stresses will be then averaged arithmetically to

find the nodal stress values.

Although this method is quite simple and useful, it cannot force the stress field

within the model to be continuous at the extremities, like does the global stress

smoothing. Also, in some cases it can give slightly wrong results. Such problems

occurred in Chapter 3 in the flat punch on elastic foundation and cylindrical punch on

elastic foundation problems. Previously it has been mentioned that the stresses of

shared nodes will be averaged. Note that although contacting surfaces touch each

other, the stress values of their nodes are not averaged because they are not physically

attached to each other by means of connectivity matrices. Therefore, when calculating

the nodal stresses on the contactor surface for example, the stress information that

should come from the target surface is not taken into consideration. If one takes a

look at Figure 3.10 and Figure 3.13, it can be seen that if the stresses on the contactor
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side are somewhat above the known solution, then the stresses on the target side are

found to be somewhat below the solution, therefore making the average fall almost

exactly on the known solution of the problem. The difference between nodal results

and known solution are bigger at the comer nodes of an element. This is an expected

results since in stress smoothing, the stresses at nodes farther from Gaussian points,

i.e comer nodes, will be obviously less accurate. A more detailed discussion on the

various stress smoothing techniques is presented in [36].

As an advice, if local stress smoothing algorithm is used to find the nodal

stresses, it is advised that the stresses coming from the contactor side and from the

target side are averaged.
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APPENDIXC

INTEGRATION ORDER FOR ENRICHED ELEMENTS

As presented in Section 2.1.1, there are some integrals to be calculated in the

formulation of the finite element equations. In most of the cases, this kind of integrals

are found using Gaussian integration, which is explained in almost every numerical

methods books. The main parameter in the Gaussian integration scheme is the

integration order. For every type of interpolating function used, there is a minimum

integration order to be used in order to get accurate results. For example, for elements

with cubic interpolation, 4 by 4 integration has to be used. Things get a little bit

complicated when a crack tip element (whether enriched or transition) is to be used,

since there is no such a minimum integration order. This is due to the extra terms in

equations 2.9 and 2.10 that comes from the asymptotic displacements. Therefore the

choice of the integration order is solely left to the initiative and experience of the user.

Generally the use of 12 integration points gives good results for linear elastic fracture

mechanics problems, but some problems arise when the crack surfaces are in contact

with each other.

A certain "displacement jump" problem occurred when modeling center

cracked flip-chip package with the substrate being constrained in the vertical direction

only. Figure C.1 shows the y-displacements on the contactor surface. It can be seen

that just at the enriched element, the displacements are not smooth and exhibits a

jump. The same kind ofjump has been observed for all of the crack lengths examined.

This behavior disappears, as shown in Figure C.2, when the integration order for the

enriched elements is taken as 60. It seems like 12-point-integration was not enough to
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Figure C.l: Y displacements in a center cracked flip chip package constrained in
the vertical direction only, with a crack length of 0.10 in, 12 integration points used.
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the vertical direction only, with a crack length of0.10 in, 60 integration points used.
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correctly find the displacements in the neighborhood of the crack tip. Analytical

solutions for interface cracks predicts some wild oscillations and contact at the crack

tip. This may be the reason for the jump, since the displacements are quite oscillatory

and complex in nature, apparently 12 was not enough as the integration order.

The same problem with the same crack length of 0.10 in has been run using

various integration orders in order to catch the order at which the solutions converges.

The results are shown in Figures C.3, CA and C.S for the stress intensity factors, total

strain energy release rates and phase angles. It can be seen that the results pretty much

converges for the order of 60. Therefore, to not worry about this problem for other

boundary conditions and crack geometries, 60 is taken as the integration order for the

enriched elements whenever they are present in a model.
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Figure C.3: Variation of the stress intensity factors with increasing integration order
for enriched elements in a center-cracked flip-chip model with crack length 0.10 in.
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