
Lehigh University
Lehigh Preserve

Theses and Dissertations

2003

Control of the Lehigh University flexible
manufacturing cell using sensor-based stage Petri
net modeling
Michael J. Smith
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Smith, Michael J., "Control of the Lehigh University flexible manufacturing cell using sensor-based stage Petri net modeling" (2003).
Theses and Dissertations. Paper 805.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228646179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/805?utm_source=preserve.lehigh.edu%2Fetd%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


Smith, Michael J.

Control of the
Lehigh University
Flexible
Manufacturing
Cell Using Sensor
Based Stage...

May 2003



Control of the Lehigh University Flexible

Manufacturing Cell Using Sensor-Based

Stage Petri Net Modeling

By

Michael J. Smith

A Thesis

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Industrial Engineering

Lehigh University

May 2003





Acknowledgements

I would like to thank Prof. Nicholas Odrey for all ofhis help and guidance on this

thesis. He has been of great inspiration and help during both my graduate and

undergraduate career at Lehigh University. I would also like to thank Hyung Kim, the

laboratory technician in the Robotics Lab.

111



Table of Contents

Abstract

Chapter 1- Introduction

Chapter 2 - Basic Concepts of Petri Nets

2.1 Introduction

2.2 Types of Petri Nets

2.3 Properties

Chapter 3 - Sensor- Based Stage Petri Nets

3.1 Introduction

3.2 Stage Programming of Discrete-Event Control Systems

3.3 Sensor-Based Stage Petri Net

3.4 Stage Control Net

3.5 Input Contacts

3.6 Summary

Chapter 4 - Sensor-Based StagePetri Net Modeling and the Lehigh

University Flexible Manufacturing Cell

4.1 System and Scenarios

4.2 Inputs and Outputs

4.3 Logic Combinations and Boolean Equations

4.4 Integration of Stages

IV

1

2

5

5

7

9

12

12

15

17

19

21

22

23

23

25

28

34



Chapter 5 - Conclusions

Chapter 6 - Recommendation for Future Work

References

Appendix A

Appendix B

Vita

v

37

38

39

41

47

56



List of Figures

Figure 1 - Example of Basic Petri Net

Figure 2 - Ladder Logic Diagram Example

Figure 3 - Types of Contacts

Figure 4 - FMS Layout

Figure 5 - Cell Layout with Sensor Positions

Figure 6 - SCN U RTPN for Equation (2)

Figure 7 - SBSPN for Entire System

VI

6

12

21

23

26

31

36



Abstract

Automated manufacturing systems have been around for several decades, and

the use of a programmable logic controller has been one of the most popular ways to

control these systems. When use of PLCs first began, ladder logic diagrams were

used to program the logic into the PLC. As systems have become more complex,

however, the use of Petri nets has been of great interest for programming PLCs. The

concept of using a sensor-based stage Petri net has emerged as a simplified way in

which to program a PLC for a complex system, and it is this particular method that is

the topic of the approach taken in this thesis. Specifically, the following topics were

covered:

(1) Explain the general theory behind Petri nets, and their application to

manufacturing,

(2) Introduce the theory of sensor-based stage Petri nets,

(3) Describe the equipment contained within the Lehigh University flexible

manufacturing cell, and how sensor-based stage Petri nets can be

developed.

The constructed nets were investigated for two different scenarios. Each scenario

indicated the benefits of sensor-based stage Petri nets in a manufacturing

environment.

I



Chapter One - Introduction

In today's modem world ofmanufacturing, there is a greater emphasis being

placed on the use or robotics and automation in a production facility. One area of

particular interest is the control of these individual machines as well as the control of

the system as a whole. The most common method of system and machine control is

the use of a programmable logic controller, or PLC.

PLCs were first introduced in the late 1960s with the intent of replacing

mechanical switching modules [Chang, 1998]. Modem PLCs have had their

capabilities extended greatly from the earlier versions, and today are capable of

performing many functions. These include digital processing and high-speed

communication, computer language support, and process control.

The manner in which a PLC is programmed originally stemmed from the

relays they were used to replace. The people who programmed them used a language

similar to that of the electrical technicians who designed circuits: ladder logic

diagrams. These diagrams were sufficient for simple systems, but as the complexity

of the system grew, the downfalls of the ladder logic diagrams became apparent.

Writing ladder logic diagrams for large, complex systems and debugging them proved

to be very difficult [Chang, 1998].

2



The 1960s also saw the development of Petri nets, which turned into a

powerful mathematical and graphical modeling tool. As ladder-logic diagrams

became more and more difficult to implement as a means ofprogramming PLCs, the

use ofPetri nets emerged as a possible alternative to model increasingly complex

system [David, 1992]. These complex systems could be easily modeled with Petri

nets, then the nets could be turned back into the ladder logic to program the PLC. Use

of Petri nets also allowed the user to evaluate system properties much easier than

other methods.

Here, the focus is on the use ofPetri nets for modeling and control of the

Lehigh University flexible manufacturing cell by applying a sensor-based stage

approach. When Petri nets are used to model and control a manufacturing system, the

common meaning of a place is a resource that is needed or released, and a transition

is a physical task or job. The sensor-based stage approach uses inputs and outputs

from sensors placed throughout the system to control the discrete event actions ofthe

system.

The work here is presented in the following manner: Chapter Two explains

the basic theories and concepts of Petri nets; Chapter Three presents the theory

behind sensor-based stage Petri net modeling; Chapter Four discusses the application

of sensor-based stage Petri net modeling to the flexible manufacturing cell at Lehigh;

3



Chapter Five presents the conclusions reached from this procedure; and Chapter Six

presents possible future work and modifications to the system.

4



Chapter Two - Basic Concepts of Petri Nets

2.1 Introduction

Petri nets were originally developed in the 1960s by C.A. Petri as a

mathematical modeling tool for distributed systems. Petri nets are capable of serving

a dual purpose: they can be both a mathematical tool as well as a graphical tool

[Moore, 1995]. When used as a mathematical tool, Petri nets can be used to develop

state equations, algebraic equations, and various other mathematical models. When

used as a graphical tool, Petri nets allow the user to create a visual model of a

dynamic system.

A simple Petri net is defined by four basic elements: places, tokens,

transitions, and arcs. Graphically, the places are represented by circles, tokens are

represented by small black dots located in the places, transitions appear as bars or

rectangles, and arcs are simply arrows connected the system ofplaces and transitions.

A fifth element used to describe a Petri net is the marking ofthe system, denoted by

m. This term is used to describe the state of the system. A simple example of a Petri

net, along with its marking, is shown in Figure 1.

In classical Petri net theory, each of the four basic elements provides a

specific interpretation of the system. Places may be used to represent locations within

the system where a part (which can be represented by a token) may be represented as

5



a part at the location awaiting processing. Examples of places include machines,

buffers, or inspection points. The tokens in the system hold the truth of the place in

which they are located (i.e. part is at machine A, etc.) Transitions represent the actual

process or event that a part is subjected to as it moves through the system [Moore,

1995]. A sequence of transitions can represent the events occurring in a dynamic

system.

• •

6
Figure 1- Example of Basic Petri Net

The arcs are used to show the path that the objects are capable oftaking

through the system, the direction being given by the arrowhead of the arc. It is

possible for each transition to have a number of input and output arcs in order to show

the conditions both before and after the transition or the resources that were released

or created during the event.

6



In order for the tokens to move throughout the system, the transitions must be

"fired." Before a transition is fired, it must be enabled. For a transition to be enabled,

each one of the input places to the transition must contain at least one token [Odrey,

2001]. If anyone of the input places does not contain any tokens, than the associated

transition will not be able to fire. When the transition fires, it takes a specific number

of tokens from each of its input places, and passes tokens to each of its output places.

The number of tokens that are passed is denoted by the weight of the arc connecting

the places and transitions. Typically, only one token is passed and there is no number

written above the arc. If multiple tokens are passed, however, the number of tokens

will be written above the arc.

2.2 Types of Petri Nets

There are several different types of Petri nets that have been developed, the

most basic ofwhich is the pure Petri net. This is a net in its simplest form. In order to

be classified as a pure Petri net, the net must contain no self-loops. To meet this

requirement, no place in the net can be an input and an output to a transition

simultaneously.

Another common set of Petri nets are called timed Petri nets. In a basic Petri

net, there is no representation ofthe time that an actual operation takes within the

system. One approach is to incorporate a delay function after a transition becomes

enabled and before firing. Graphically, this delay is represented by a thick black bar,

7



rather than the thin black bar used in basic nets [Desrochers, 1995]. As opposed to

timed transitions, time duration can also be signified for a place by identifying

instantaneous time on transitions (instantaneous transitions) before and after the

place.

A third set of Petri nets is termed stochastic Petri nets. These were developed

to accommodate variable transition times [Molloy, 1982]. The transition times for the

net can follow a number of different mathematical distributions, e.g. an exponential

or Gaussian distribution. Whichever distribution is followed, it determines the firing

times for all of the transitions in that particular net. A stochastic Petri net is

commonly used to model events such as failure and repair times for individual

machines [Desrochers, 1995]. Graphically, the transitions in stochastic Petri nets are

represented by a thick white box.

A group ofnets related to stochastic Petri nets are termed generalized

stochastic Petri nets [Desrochers, 1995]. This group contains Petri nets that have both

the immediate transitions of a Petri net as well as stochastic transitions. Nets of this

type are used to represent systems that contain both types ofprocesses (instantaneous

and distributed.) The most common type of distribution in this group is the

exponential distribution [Desrochers, 1995].

8



For the purpose of this thesis, we will use a variation oftimed Petri nets called

real-time Petri nets. The main reason for using a real-time Petri net, as opposed to a

basic timed Petri net, is the ability to both emulate and control a system

simultaneously [Peng, 2003]. The timing for this version of a net will be handled by a

timing delay vector, which is discussed in Chapter Three.

2.3 Properties

When analyzing Petri nets, there are two types ofproperties that can be

considered: behavioral and structural. Behavioral properties are those properties that

are dependent on the initial marking of the system, while structural properties are

those properties that are dependent on the structure ofthe system model. The

following is a list of the most common behavioral and structural properties, along

with their definitions [Desrochers, 1995]:

Behavioral:

1. Boundedness: the number of tokens present in a system remains the same

after a firing sequence.

2. Liveness: the Petri net contains no deadlocks, or markings that will not

allow any more transitions to fire. There are five different levels of

liveness:

a. Level 0: the transition can never be fired.

9



b. Levell: the transition is potentially fireable.

c. Level 2: for every finite positive integer n there exists a firing

sequence that contains a transition at least n times.

d. Level 3: there is an infinite-length firing sequence in which the

transition occurs infinitely often.

e. Leve14: the transition is level 1 live for every marking in the

reachability tree.

3. Reversibility: for every marking that can be obtained from the initial

marking, there is a path that will return the system to its initial marking.

4. Persistence: for every two enabled transitions, the firing of one will not

prohibit the firing ofthe other.

5. Reachability: a marking mj is reachable from mo by way of a series of

existing transitions in the net.

6. Conservative: the weighted sum of the tokens in every node ofthe net is a

constant value.

7. Strictly Conservative: the weighted sum ofthe tokens in every node of the

net is constant for all reachable markings.

8. Consistency: the coverability tree has a circuit that contains each transition

at least once.

9. Repetitive: the coverability tree has a circuit that contains all the

transitions an infinite number of times.

10



Structural:

1. Structurally Live: the net is live for any finite initial marking.

2. Completely Controllable: any marking is reachable from initial

marking ltlo.

The properties that are to be used in the research presented here are

boundedness, liveness, and reversibility. The reasons for choosing these properties

are as follows:

1. Boundedness: this property will be evaluated to ensure that no tokens

are created or destroyed in the firing of the transitions. This ensures

that the net fires in a sequential manner.

2. Liveness: this property will be evaluated to ensure that there are no

deadlocks that would prevent the system from continuing to fire (L-4

liveness).

3. Reversibility: the property will be evaluated to ensure that the CPU of

the PLC scanning process is properly represented as a sequential

process.

The other behavioral properties are not evaluated in this research because of the basic

nature of the net. The structural properties are not evaluated because they are beyond

the scope of the method proposed in this thesis.

11



Chapter 3 - Sensor-Based Stage Petri Nets

3.1 Introduction

In today's world, the most common method of executing automation tasks,

particularly in the area of manufacturing, is the use ofprogrammable logic

controllers, or PLCs. Their widespread use is due to their toughness, relatively low

cost, and ease ofprogramming [Peng, 2003]. There are many common programming

languages used in PLCs, the most common being instruction lists, ladder logic

diagrams, function block diagrams, sequential function charts, and structured text

[Lewis, 1998]. Of these contro11anguages, the most commonly used is the ladder

logic diagrams, or LLDs.

A ladder logic diagram is a means of graphically representing the logic that is

required in the automated system [Chang, 1998]. The diagram itself consists of two

rails of the ladder and various rungs that represent the logic being programmed. An

example of a ladder logic diagram is shown in Figure 2.

pz
/

Figure 2 - Ladder Logic Diagram Example

12



This diagram is a simple example of ladder logic. The output is only a

function of the input. The first rung uses a normally open contact, and the state of

output P3 is the same as input PI. On the second rung, output P4 has the opposite

condition of input Pz. For example, pushing switch P2 turns off output P4. Salvador

Rojas-Murillo [Rojas-Murillo, 2000] has previously developed the ladder-logic

diagrams for the Lehigh University flexible manufacturing cell.

Using these ladder diagrams, it is possible to represent a control process both

sequentially and graphically. While the simplicity of programming a PLC using

ladder logic diagrams is one of its biggest attributes, it is also one of its biggest

downfalls. A complex control system involves parallel tasks which interact at times,

and ladder logic doesn't provide much in the way of design contexts to deal with this

occurrence in the system. This is where Petri nets produce an advantage in modeling

a complex system.

Petri nets have been applied extensively to discrete event control systems, in

areas such as design, specification, verifications, and evaluation of a system's

performance [Peng, 2003]. The main advantage of Petri nets, especially when

compared to ladder logic diagrams, is the ability to check a given system for the

desired properties. The first instance of a discrete-event control system using Petri

nets occurred in 1980 [Chocron, 1980]. Baker and Song were the first to propose the

use ofPetri nets as a substitute for ladder logic diagrams [Baker, 1992].

13



Zhou and Twiss [Zhou, 1998] considered the concept of controlling a water

treatment facility using PLCs. In their study, they looked at two different methods of

control over the facility. The first method involved creating a ladder logic diagram in

order to program the PLC, and then deriving the associated Petri net. The second

method was to develop a Petri net in order to program the PLC. Based on their work,

they concluded that Petri net methods of diagramming a system were better than

ladder logic diagrams in terms of legibility of the system diagram and flexibility of

the control system. The major problem with the Petri nets that resulted from the PLC

programming was that the net was constructed from the analysis of a process-based

ladder diagram (all ofthe inputs and outputs are based on an actual process being

performed), as opposed to being directly derived from a sensor-based ladder program

(the control decisions are based on sensor inputs and outputs, rather than a process

being complete). Because ofthis, the resulting net didn't relate to neither the ladder

logic program nor the PLC's control behavior.

This is one example where the concept of stage-based programming can be

used to allow the user to break a complex system into stages, where each stage is

programmed individually with no regard for how the stages will affect the overall

program. This allows for construction of a sensor-based stage Petri net, which can

easily be translated into a ladder logic diagram.

14



3.2 Stage Programming of Discrete-Event Control System

Any manufacturing process can be viewed as a series of discrete events, and

typically multiple events can occur at the same time [Peng, 2003]. One event can

occur that will cause a series of events that take place either simultaneously or

asynchronously. If an inappropriate event occurs, it is possible that the system will

deadlock, at which point it will not function at all, or the system will run into a

conflict within itself. Stage programming can serve as a very useful tool in designing

deadlock-free discrete-event control systems [Peng, 2003].

The basic concept of stage programming is relatively simple. A program is

broken down into logical stages. At each ofthese stages, all of the output sensors are

dependent only on the input sensors, and the input sensor can be easily identified

within the system. The interlocking programming process of a complex system is

simplified by the use of independent I/O combinational logic between the individual

stages. This combination logic says that each output sensor at each stage of the

system is affected by one or more input sensors. This relationship can be expressed in

the following ways:

Output sensor = j{input sensor (1), input sensor (2), .. .input sensor (n)}

or

Yj = !{X(1),X(2), ...X(n)}.

15



In the equation above, Y represents the binary status of an output sensor and X

represents the binary status of an input sensor, while n is simply a positive integer

index [Peng, 2003]. The status of each sensor is classified as binary because it can

only have one of two values, either open or closed (on or off). For example, a part

sensor located on the conveyor can either be open (no part present) or closed (part

present). For an analog sensor, such as a force-torque sensor, the sensor output is

converted to binary by setting a threshold value. For instance, for a force-torque

sensor with a threshold value of 35 ft-lbs oftorque, a value less than 35 ft-lbs would

have a sensor output of open, while above this value it would be read as closed.

In actual PLC stage programming, the CPU scans each ofthe input stages

sequentially [Peng, 2003], and then updates the output stages sequentially. According

to this process, the output sensor at the ith stage is controlled by two parameters, Si

and~. Si is the status ofthat particular stage place, and X is the combinational logic

function of the input sensors for that stage. By combining the Si and X terms, the

following equation is formed for the output status of a given sensor:

(1)

where Yi is the output status of a sensor, and has a value of either 0 or 1, and Si is a

stage place indicator to enable the input logic combination at that stage. Put another

way, a value Si = 1 enables the I/O logic at the ith stage, while a value of 0 disables

16



the logic. In using this concept, equation (l) can be used to define the control logic

for each individual stage's I/O. By integrating all of these equations for all given

stages in a system, it is possible to construct a complete PLC stage program. A

complete example of this integration for a given system is presented in Chapter Four.

3.3 Sensor-Based Stage Petri Net

Use of a real-time Petri net (RTPN) tries to allow for both control and

simulation ofa particular system [Zhou, 1998]. A real-time Petri net controls a

discrete-event control system by reading the input sensors in a sequential manner and

using this information to update the output sensors, again in a sequential manner.

These output sensors can then trigger the appropriate event to occur under the proper

conditions. In order to form a real-time Petri net (RTPN) to perform the function of

an untimed Petri net, a timed Petri net can be associated with the input and output

sensor information. This combination yields the following eight-tuple [Venkatesh,

1994], which is an augmentation of a basic Petri net (P, T, I, 0, mo):

RTPN = (P, T, 1,0, mo, D, X, Y),

where

P: finite set of places;

T: finite set of transitions, with P nT = 0 and PUT i- 0;

P x T ~ N: input function that specifies arcs directed from places to

17



transitions, with N being the set of natural nwnbers;

P x T 7 N: output function that specifies arcs directed from transitions

places;

mo: P 7 N: initial marking whose ith component represents the nwnber

of tokens, represented by dots in the ith place;

D: T 7 R+: firing-time delay function, where R+ is the set of non-negative

real nwnbers;

X: P 7 B: input signal function, where B is the set ofBoolean expressions

of input addresses;

Y: T 7 {O, I}: output signal function.

As stated earlier, a basic Petri net consists of five elements CP, T, I, 0, mo). The last

three variables CD, X, Y) are added to the original five-tuple in order to be able show

the time delay associated with the CPU scanning process and the status of the sensor

inputs and outputs. These elements are vital to the formation ofthe sensor-based stage

Petri net.

Notes on added variables:

(l) Vector D is a timing delay vector that models delays and

synchronizations in the system and assigns delays to transitions by

assigning a real nwnber to the transitions.

18



(2) Vector X is used to enable a transition to fire. When the function

associated with it is true and all input places have tokens, the firing

rule can be executed. The associated functions and how they are

developed will be discussed later.

(3) Vector Y is the vector that sends the output signals to the digital signal

interface. WhenPi has a token, the output function occurs. Place Pi can

only write to a single element (y;) ofY, therefore it can only be

associated with a single output.

In the actual implementation of a sensor-based stage Petri net, the input

functions are associated with places, and the output functions with transitions. X

associates attributes to every place in the system, Xi = X(Pi). The place Pi represents

the input channel number associated with that particular place. Every input channel Xi

can only have a value of 0 or 1. In a similar manner, Yi = yeti) is the attribute

associated with transition ti, which represents the value that is to be sent to the output

digital interface [Peng, 2003]. These values can also only be 0 or 1.

3.4 Stage Control Net

The addition of two more vectors (PSi and tSi) to the real-time Petri net allows

for the formation ofthe sensor-based stage Petri net. These vectors form the stage

control net (SeN) of the system. The vectors are:

19



(1) PSi: stage priority place vector. This vector scans the I/O logic

combination of the real-time Petri net at the ith stage. Once the logic is

met, passing of this token activates a self-loop that tells the output

place to begin firing.

(2) tsi: transition signal vector. This vector moves a token through all of

the places in the stage control net to monitor and update the signals to

the I/O digital interface ofthe real-time Petri net controller.

The purpose of the stage control net is to monitor the status of the real-time

Petri net. Because of this, only one token is allowed to pass through the stage control

net. This can be written formally as:

The status of each I/O stage is checked by the tSivector of the stage control net once

its token moves to that stage. If no token is present, then no action is enabled at that

stage. In addition, even if there is a token present, the action will not be enabled if the

input sensor values cannot validate the combinational logic for that stage.

By adding these two vectors to a real-time Petri net, we can formally define a

sensor-based stage Petri net (SBSPN) in the following manner:

20



SBSPN = (SCN) U (RTPN)

where

{P, T, I, 0, mo, D, X, Y} is the real-time Petri net (RTPN) and where the stage

control net is SCN = {PSi, tSi} as defined earlier.

3.5 Input Contacts

There are two types of input contacts that are used in the discrete-event

control system design considered in this thesis for the flexible manufacturing system

at Lehigh University: normally open and normally closed. These are denoted as NO

and NC, respectively. A token present in either means that particular sensor has been

activated. The different types of contacts are shown in Figure 3.

NO

•

NOHC NC NCHD

Figure 3 - Types of Contacts

The normally openlholding closed place (NORC) with a directed arc

represents a sensor that is normally open but holds in a closed position once it is

21



activated during an operation. For example, a token present in the NORC place

means that the contact is activated and will pass a signal to the control circuit.

Similarly, the normally closed/holding open (NCRO) with an inhibitor arc means that

the sensor is normally closed but holds to open once activated [Peng, 2003]. The use

of the inhibitor arc (represented by a small circle touching a transition) prevents a

transition from being fired when its input places have as many tokens as the weight of

the inhibitor arc. As an example, a token in the NORC allows the signal to pass

through, while a token in the NCRO means that the signal will disconnect. The status

of all the places in the system depends on the on/off status of these contacts.

3.6 Summary

The use of combinational logic, defined in section 3.2 as the output sensor of

each stage being a function of the status of each stage (Si) and the input sensors at the

same stage, simplifies the design of each stage of the system. Once all of the

individual stages have been designed, the integration of all the single stations allows

for the formation of complete discrete-event control system in a much simpler manner

than other methods [Peng, 2003]. The use ofthis method also allows for easier

analysis and evaluation of the control system. The following chapter will show the

use of this method for two scenarios in the control of the Lehigh University flexible

manufacturing cell.

22



Chapter Four - Sensor-Based Stage Petri Net Modeling in

the Lehigh University Flexible Manufacturing Cell

4.1 System and Scenarios

The Lehigh University flexible manufacturing cell consists of the following

equipment: one PUMA robot with a force/torque sensor, one conveyor system, one

Rhino robot, one CNC machine with pneumatic vise, various sensors and a computer

vision system. A drawing of the layout (not to scale) is presented in Figure 4.

DYNAMITE
MACHINING
CENTER

RHINO ROBOT

I PLC I

CONVEYOR

PUMA 26
ROBOT

Figure 4 - FMS Layout (not to scale)

23



For the purpose of this paper, two different scenarios are considered, each

scenario having its own set of operations to be performed:

Scenario One: The PUMA robot places a part on the conveyor. The conveyor

then moves the part to the other side of the cell where the Rhino robot picks

up the piece and places it in the vise of the CNC machine. The NC code is

executed, and the part is machined. Once completed, the Rhino removes the

part from the CNC machine and places it back on the conveyor. The conveyor

then moves the part to the original side of the cell, where the PUMA removes

the part and places it in storage.

Scenario Two: The second scenario is as follows: the PUMA places a part on

the conveyor. The conveyor moves the part to the far side of the cell where the

Rhino grips the part and places it in the vise of the CNC machine. A different

NC code is executed, and afterwards the Rhino removes the part and places it

back on the conveyor. As the conveyor is moving the part back to the

load/unload side of the cell, the vision system scans the part. The PUMA then

removes the part, places it in a fixture, and retrieves a bolt. It then places the

bolt in the part, before moving the part to storage.

There are several assumptions that are made in regards to these two different

scenarios:

24



1. The internal program for the PUMA to place a part on the conveyor is a

separate program, and is not considered.

2. Each of the two parts has a distinctive shape when compared. This

assumption is to ensure the vision system will choose the proper piece

(either part A or part B) to have the bolts inserted by the PUMA.

3. Once the parts are removed from the system by the PUMA, they are

placed in a box, on a pallet, or any other such device. Exactly what

container is used is not relevant to the rest of the cell.

4.2 Inputs and Outputs

In order to implement a sensor-based stage Petri net model for this system, the

proper sensors must be incorporated into the system. Table I lists the input and output

sensors, the sensor places, and a description of each one included in the cell. Figure

5a shows the manufacturing cell and the relative locations of each of the input

sensors, while Figure 5b shows the cell with locations of the output sensors.

25



DYNAMITE
MACHINING
CENTER

SM S SM V

s
P PUMA 26

ROBOT
S

RHINO ROBOT

SRHR

I
I
I
I
I
I
I
I
I
I
I
I
I,
I
I
I,
I
I
I
I

iSFE

CONVEYOR

I PLC I

Figure 5a - Cell Layout with Input Sensor Positions

DYNAMITE
MACHINING
CENTER

NC A NCB

PUMA 26
ROBOT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

MA0 iM

CONVEYOR

ROBOT

RPRLMB

RHINO

RP RLMA
RP RUMA

I PLC I

Figure 5b - Cell Layout with Output Sensor Positions

26



Inputs

Sp
SRHP
SPE
SMS
SMV

SRHR
SA
SVB
SFT

Sensor Places Description

Conveyor part sensor
PUMA robot at-home sensor
Conveyor at far end of cell
CNC machine spindle sensor
CNC machine vise sensor
Rhino robot at-home sensor
Conveyor at starting position
Vision system camera
Force/torque sensor on PUMA

Outputs Sensor Places Description

MAl PAl Part A input motor
RPRLMA PAl Rhino loads CNC center with part A
NCA PA3 CNC center NC code to machine part A
RPRUMA PA4 Rhino unloads part A to conveyor
MAO PAS Part A output motor
RPPUCA PA6 PUMA unloads part A from conveyor

MBI PBl Part B input motor
RPRLMB PB2 Rhino loads CNC center with part B
NCB Pm CNC center NC code to machine part B
RPRUMB PB4 Rhino unloads part B to conveyor
MBo PBS Part B output motor
RPPUCB PB6 PUMA unloads part B from conveyor
RPPRB PB? PUMA retrieves bolt
RPPPT PBS PUMA inserts bolt
RPPUCB PB9 PUMA removes part B from fixture

CPU Scans PSi Stage Control Net ith stage place, i=1-15

Table 1 - Inputs & Outputs for the System

27



4.3 Logic Combinations and Boolean Equations

The first step in creating a sensor-based stage Petri net model is to develop the

control logic at each individual stage of the system. This is done by using the I/O

sensors at each stage that are relevant for the given process to construct the logic

combinations for each stage.

The first process to consider is scenario 1, as described earlier. Using the

sensor inputs and outputs, the logic combinations and associated verbal descriptions

of the equations for this process are (note: these equations involve regular

multiplication):

(2)

(the part A input motor (MAl) is activated when the conveyor

part sensor (Sp) and the PUMA at-home sensor (SRHP) are

activated)

(3)

(the Rhino loads the CNC machining center (RPRLMA) when

the conveyor is at the far end of the cell (SFE), the CNC spindle

isn't moving (SMS), the CNC vise is open (SMV), and the Rhino

is in the home position (SRHR))

28



(4)

(the NC code for part A is performed (NCA) when the Rhino is

in the home position (SRHR), the CNC spindle isn't moving

(SMS), and the vise is closed SMV»

(5)

(the Rhino unloads part A from the CNC machine (RPRUMA)

when the Rhino is in the home position (SRHR), the spindle is

stopped (SMS), the vise is open (SMV), and the conveyor is at

the far end of the cell (SFE»

(6)

(the part A output motor is activated (MAO) when the conveyor

part sensor is activated (Sp) and the Rhino is in the home

position (SRHR»

RPPUCA = SA X SRHP (7)

(the PUMA unloads part A from the conveyor (RPPUCA) when

conveyor is in the starting position (SA) and the PUMA is in

the at-home position (SRHP»

Once the logic combinations have been developed, these are then converted

into real-time Petri net Boolean equations by substituting the sensor places for the

appropriate inputs and outputs according to Table 1. Using this method, the logic

combinations listed above become:

29



PAl = PI XPz (2)

PA2=P3XP4XPSXP6 (3)

PA3=P6 XP4XPS (4)

PA4=P6XP4XPSXP3 (5)

PAS = PI XP6 (6)

PA6 = P7x Pz (7)

Given that all logic combinations have been converted to their Boolean

equivalents, a real-time Petri net can be constructed for each stage, along with the

stage control net. An example of the real-time Petri net and stage control net for

equation (2) is shown below in Figure 6. The RTPN and SeN for the entire process of

manufacturing part A is shown in Appendix 1.

This diagram shows how both PI and Pzmust contain a token in order for PAl

to fire. Once this fires, a token is passed through the inhibitor arc to PST! of the stage

control net.

30



MAr - 51' x 5RHp

PAl - Pl X P2

TSTl

PSTl

0-

do PAl

------ end PAl

seN RTPN

Figure 6 - SeN U RTPN for Equation (2)

Accordingly, scenario 2 contains the following logic combinations:

MBl = Sp X SRHP (8)

(the part B input motor (MsI) is activated when the conveyor

part sensor (Sp) and the PUMA at-home sensor (SRHP) are

activated)

31



RPRLMB = SFE X SMS X SMV X SRHR (9)

(the Rhino loads the CNC machining center (RPRLMB) when the

conveyor is at the far end ofthe cell (SFE), the CNC spindle

isn't moving (SMS), the CNC vise is open (SMV), and the Rhino

is in the home position (SRHR))

NCB = SRHR X SMS X SMV (10)

(the NC code for part B is performed (NCB) when the Rhino is

in the home position (SRHR), the CNC spindle isn't moving

(SMS), and the vise is closed SMV))

(11)

(the Rhino unloads part B from the CNC machine (RPRUMB)

when the Rhino is in the home position (SRHR), the spindle is

stopped (SMS), the vise is open (SMV), and the conveyor is at

the far end of the cell (SFE))

(12)

(the part A output motor is activated (MBO) when the conveyor

part sensor is activated (Sp) and the Rhino is in the home

position (SRHR))

RPPUCB = SAX SRHP X SVB (13)

(the PUMA unloads part B from the conveyor (RPPUCB) when

conveyor is in the starting position (SA), the PUMA is in

32



the at-home position (SRHP, and the vision system recognizes

part B SVB))

RPPRB = SRHP (14)

(the PUMA retrieves a bolt (RPpRB) when the PUMA is in the

at home position (SRHP))

(15)

(the PUMA inserts the bolt into part B (RPPFT) when the force

torque sensor has not been activated (SFT))

(16)

(the PUMA removes part B and places it in storage (RPPUCB)

when the force-torque sensor has been activated (SFT))

and the corresponding Boolean equations:

PBI = PI XP2 (8)

Pm = P3XP4XPs XP6 (9)

Pm = P6XP4XPS (10)

PB4=P6XP4XPSXP3 (11)

PBS = PI XP6 (12)

PB6= PI XP2 (13)

PB7 = P2 (14)

PBS = P9 (15)

33



(16)

As for scenario 1, these Boolean equations are then transformed into the

appropriate real-time Petri net and stage control net for each stage. All of these real

time Petri nets, similar to that shown in Figure 6, are included in Appendix B.

4.4 Integration of Stages

The final step in constructing a sensor-based stage Petri net model for the

entire flexible manufacturing cell is the integration of all the real-time Petri nets and

stage control nets. In order to integrate all of these and form the overall system

representation, all of the real-time Petri nets and stage control nets are grouped into

fifteen stages in the format of (stage control net) U (real-time Petri net). The fifteen

stages are represented by the following unions:

(PSI, tSI) U (PAl = PI XP2, tAl)

(PS2, tS2) U (PA2 = P3 XP4 XPs XP6, tA2)

(PS3, tS3) U (PA3 = P6 XP4 XPs, tA3)

(PS4, tS4) U (PA4 = P6 XP4 XPs XP3, tA4)

(PS5, tS5) U (PAS = PI XP6, tAS)

(PS6, tS6) U (PA6 = P7 XP2, tA6)

(PS7, tS7) U (PBl = PI XP2, t81)

(PS8, tS8) U (P82 = P3 XP4 XPS XP6, t82)

(PS9, tS9) U (PB3 = P6 XP4 XPs, t83)

34

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)



(PSlO, tSlO) U (PB4 = P6 XP4 XPs XP3, tB4)

(PSIl, tSIl) U (PBS = PI XP6, tBS)

(PS/2, tS12) U (PB6 = PI XP2, tB6)

(PSI3, tSI3) U (PB7 = P2, tB7)

(PS14, tS14) U (PBS = P9, tBS)

(PS15, tS15) U (PB9 = P9, tB9)

(26)

(27)

(28)

(29)

(30)

(31)

The overall integration of the stage control nets mimics the CPU scanning

process during system operation. This is the fact that allows the above unions to

represent the entire system being modeled. When these equations are turned into a

visual form, they form the complete sensor-based stage Petri net of the system. This

overall net is shown in Figure 7. The input sensors are located down the middle of the

net, while the process for part A is on the left and part B on the right. The stage

control net can be seen encircling all of the processes of the system. In this form, the

control net shows how it moves sequentially through all of the processes, reading the

input sensors and updating the appropriate outputs.

Expansion of the system, such as adding more machines or other parts, is

simply a matter of forming the correct logic combinations, converting them to

Boolean equations, developing the stage control net and real-time Petri net for that

component, and integrating it into the overall system. Contraction of the system is a

simple case of removing the particular component from the net.

35



\

PSI5

TSI4

PSII

TSlo

PS9

Ts.

PSIO

TS9

TS6 PS7

TSI5

P.

Tsz

TS3

PSI
DO

Figure 7 - SBSPN for Entire System
36



Chapter Five - Conclusions

Ladder logic diagrams were one of the first ways to program a PLC for an

automation system. As time progressed, however, the systems being modeled became

more and more complex, and the use ofPetri nets helped to ease the PLC

programmmg process.

By using a Petri net that uses sensor inputs and outputs, rather than the

traditional manner of representing actual processes and resources, it becomes easier to

program a complex system. A complex system can be broken into a series of logical

stages. By analyzing the process of each stage, a series of equations representing the

input and output sensor combinational logic for a particular stage can be determined.- ~

This combinational logic can then be converted into a corresponding set of Boolean

equations, and these resulting equations can then be programmed into a PLC without

worrying how one stage will react with another. The result of this process is an

interlock-free control of the system.

37



Chapter Six - Future Work

The concept of integrating sensory input and output information with a timed

Petri net results in a simplified manner of controlling and modeling a discrete-event

system. This method can also be used to either add or subtract individual stages from

the entire system without having to redo the entire net.

Because of the modularity of this method, possible future work would be to

incorporate several more sensors into the system along with several more automated

machines (robots, CNC machines, etc.) By incorporating more of this equipment, a

greater range of parts would be able to be produced. Another way to increase the

number of different parts would be to add other NC m~chine codes to the machining

center.

38



References

1. Baker, H.A., Song, J., "A Graphical Simulation Tool for Programming Logic
Controllers", Discrete Event Dynamic Systems - A New Generation of
Modeling, IEEE Colloquium on Simulation & Control Applications, 1992, pp.
4/1-4/4.

2. Castillo, Ignacio, Smith, Jeffrey S., "Formal Modeling Methodologies for
Control of Manufacturing Cells: Survey and Comparison". Journal of
Manufacturing Systems, 21(1), 2002, pp. 40-57.

3. Chang, T., Wysk, R., Wang, H. Computer-Aided Manufacturing, 2nd Edition,
Prentice Hall, Inc., Upper Saddle River, NJ., 1998.

4. Chocron, D., Cerny, E., "A Petri Net Based Industrial Sequencer",
Proceedings ofthe IEEE International Conference and Exhibition on
Industrial Control and Instrumentation, 1980, pp. 18-22.

5. Desrochers, Alan A., AI-Jaar, Robert Y., Applications of Petri Nets in
Manufacturing Systems: Modeling, Control, and Performance Analysis, IEEE
Books, 1995.

6. Lewis, R.W., Programming Industrial Systems Using IEC 1131-1, Revised
Edition, HE Books, 1998.

7. Molloy, M. K. "Performance Analysis Using Stochastic Petri Nets",
Proceeding of the IEEE. 77(4), 1982, pp. 541-580.

8. Moore, Kendra E., Brennan, John E., "Petri Nets and Simulation: A Tutorial",
Proceedings of the 1995 Summer Computer Simulation Conference. July 24
26. Ottawa, Ontario, Canada. 1995

9. Odrey, Nicholas G., Green, Jonathan D., Appello, Adrienne., "A Generalized
Petri Net Modeling Approach for the Control ofRe-Entrant Flow
Semiconductor Wafer Fabrication", Robotics and Computer Integrated
Manufacturing 17,2001, pp. 5-11.

10. Peng, Shihsen, Zhou, Mengchu, "Sensor-based Stage Petri Net Modelling of
PLC Logic Programs for Discrete-Event Control Design", International
Journal of Production Research. 41(3) 2003, 629-644.

11. Rojas-Murillo, Salvador. "Control of the Lehigh University Automated
Manufacturing Cell Using Petri Nets", Master of Science in Industrial
Engineering, Lehigh University. 2000.

39



12. Venkatesh, K., Zhou, Mengchu, Caudill, R. 1., "Comparing Ladder Diagrams
and Petri Nets for Sequential Controller Design Through a Discrete
Manufacturing System", IEEE Transactions on Industrial Electronics, 41(6),
611-619

13. Zhou, Mengchu, Twiss, E., "Design of Industrial Automated Systems Via
Relay Logic Programming and Petri Nets", IEEE Transactions on Systems,
Man, and Cybernetics. 28(1), 1998, pp. 137-150.

14. Zhou, Mengchu, Venkatesh, K., Modelling, Simulation, and Control of
Flexible Manufacturing Systems - A Petri Net Approach, Singapore - World
Scientific, 1998.

40



Appendix A: Part A SeN and RTPN

C!) MAl - Sp X SRHP

PAl - Pl X pz

PST!

•
Pl

TST! ------'-------- do PAl

----'--- end PAl

Description: the part A input motor (MAl) is activated when the

conveyor part sensor (Sp) and the PUMA at-home sensor

(SRHP) are activated.

41



@ RPRUM = 5.A x SVl x Svz x 5RI-R

~2 = ~ x ~ x ~ x ~

PST2

•

TST2 --------''-------

----'--- end PA2

Description: the Rhino loads the CNC machining center

(RPRLMA) when the conveyor is at the far end of the cell (SFE),

the CNC spindle isn't moving (SMS), the CNC vise is open

(SMV), and the Rhino is in the home position (SRHR).

42



@ NCA = 5Rf.R x SVl x SV2

PA3 = P6 X P4 X P5

P.m

•

TST3 ---"----

---"--- end PA3

start PA3

Description: the NC code for part A is performed (NCA) when

the Rhino is in the home position (SRHR), the CNC spindle isn't

moving (SMS), and the vise is closed SMV).

43



@ RPRVIM - 5Rf.R x SVl x SV2 x SA

PM = P6 X P4 X P5 X P3

P5T4

•

TST4 ---'----

__--.1--__ end PM

Description: the Rhino unloads part A from the CNC machine

(RPRUMA) when the Rhino is in the home position (SRHR), the

spindle is stopped (SMS), the vise is open (SMV), and the

conveyor is at the far end of the cell (SFE).

44



(~ MAo - Sp X ·SRHR

PA5 - PI X P6

PST5

•

TST5 -------'----

-------'---- end PA5

Description: the part A output motor is activated (MAO) when

the conveyor part sensor is activated (Sp) and the Rhino is in

the home position (SRHR).

45



@ RPPUCA = SA X SRHP

PA6 = P7 X P2

PST6

•

TST6 ~__--L _

-------'---- end PA6

Description: the PUMA unloads part A from the conveyor

(RPPUCA) when the conveyor is in the starting position (SA) and

the PUMA is in the at-home position (SRHP)'

46



Appendix B: Part B SeN and RTP

(]) MSI = Sp X SRHP

PSI = PI X P2

PST?

•

TST? ----'------ do PSI

__-1-__ end PSI

Description: part B input motor (MB1) is activated when the

conveyor part sensor (Sp) and the PUMA at-home sensor

(SRHP) are activated)

47



® RPRlMB = SLA X SVl X SV2 X SRHR

PB2 = P3 X P4 X P5 X P6

PSlB

•

TSlB -------'---

PB2

-----'---- do PB3

Description: the Rhino loads the CNC machining center

(RPRLMB) when the conveyor is at the far end ofthe cell (SFE),

the CNC spindle isn't moving (SMS), the CNC vise is open

(SMV), and the Rhino is in the home position (SRHR).

48



(2) NCB = SRI-R X SVl X SV2

PB3 = P6 X P4 X P5

PST9

•

TST9 ----'------

-----'---- end PB3

start PB3

Description: the NC code for part B is performed (NCB) when

the Rhino is in the home position (SRHR), the CNC spindle isn't

moving (SMS), and the vise is closed SMV)'

49



® RPRUN8 =~ x 5.t x Svz x SA

PM = P6 X P4 X P5 X P3

Psno

•

Tsno-------'-----

Description: the Rhino unloads part B from the CNC machine

(RPRUMB) when the Rhino is in the home position (SRHR), the

spindle is stopped (SMS), the vise is open (SMV), and the

conveyor is at the far end ofthe cell (SFE).

50



® MBO - Sp X SRHR

PB5 = PI X P6

PST11

•

TST11 --------'----

~_---L-__ end PB5

do PB5

Description: the part A output motor is activated (MBO) when

the conveyor part sensor is activated (Sp) and the Rhino is in

the home position (SRHR).

51



RPPUCB = SA X SRH' X SVB

PB6 = PI X PZ X Ps

PST12

•
Ps

TsTtZ --L--__ do

Description: (the PUMA unloads part B from the conveyor

(RPPUCB) when conveyor is in the starting position (SA), the

PUMA is in the at-home position (SRHP, and the vision system

recognizes part B SVB).

52



RPPRB = SRHP

PBl = PZ

PST13

•

TST13 -----'------

PB7

__----..1..-__ end PBl

do PBl

Description: the PUMA retrieves a bolt (RPpRB) when the

PUMA is in the at-home position (SRHP).

53



RPPFT = SFT

PBS = P9

PST14

•

TST14 ---1- _ do PBS

PBS

------"---- end PBS

Description: the PUMA inserts the bolt into part B (RPpFT)

when the force-torque sensor has not been activated (8FT).

54



® RPPUCB = SFT

PB9 = P9

TSTI5 --------'------

PSTI5

•

I
I
I
I
I

~:
I
I
I
1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I

----'---- end PB9

do PB9

Description: the PUMA removes part B and places it in storage

(RPPUCB) when the force-torque sensor has been activated

(8FT).

55



Vita

Michael 1. Smith was bom in Scranton, PA in 1979 to James and Cheryl Smith. He

received his Bachelor of Science Degree in Industrial Engineering from Lehigh

University in January of 2002. Upon completion of the undergraduate program, he

entered graduate school. He will be receiving his Master of Science Degree in

Industrial Engineering, also from Lehigh University, in May of2003. Upon

graduation, he will be taking a position as a Manufacturing Engineer with Boeing

Integrated Defense Systems in Ridley Park, PA.

56



END OF

TITLE


	Lehigh University
	Lehigh Preserve
	2003

	Control of the Lehigh University flexible manufacturing cell using sensor-based stage Petri net modeling
	Michael J. Smith
	Recommended Citation


	00409
	00410
	00412
	00413
	00414
	00415
	00416
	00417
	00418
	00419
	00420
	00421
	00422
	00423
	00424
	00425
	00426
	00427
	00428
	00429
	00430
	00431
	00432
	00433
	00434
	00435
	00436
	00437
	00438
	00439
	00440
	00441
	00442
	00443
	00444
	00445
	00446
	00447
	00448
	00449
	00450
	00451
	00452
	00453
	00454
	00455
	00456
	00457
	00458
	00459
	00460
	00461
	00462
	00463
	00464
	00465
	00466
	00467
	00468
	00469
	00470
	00471
	00472

