
Lehigh University
Lehigh Preserve

Theses and Dissertations

1993

A system model for distributed job scheduling : the
distributed job management system
Michael Kenneth Nemeth
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Nemeth, Michael Kenneth, "A system model for distributed job scheduling : the distributed job management system" (1993). Theses
and Dissertations. Paper 240.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/240?utm_source=preserve.lehigh.edu%2Fetd%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

U H. :

Nem t ,Micha I enneth

11 E:
ystem M del f r

istributed Job cheduling:

The Distributed Job

Management System

DATE: January 16,1994

A System Model for Distributed Job Scheduling:

The Distributed Job Management System

by

Michael Kenneth Nemeth

A Thesis

Presented to the Graduate and Research Committee

ofLehigh University

in Candidacy for the Degree of

Master of Science

In

Computer Science

Department ofElectrical Engineering and Computer Science

Lehigh University

Bethlehem, Pennsylvania 18015

December 10, 1993

Table of Contents

- List ofTables . v

List ofFigures v

Abstract 1

1. Introduction.. 2
1.1. Organization.. 3
1.2. Distributed Job Scheduling... 4
1.3. The Distributed Job Management System (DIMS) 5
1.4. Future Research 5

2. Literature Survey ofDistributed Job Scheduling 7
2.1. Components of Distributed Job Scheduling 7
2.2. Sender Initiated Algorithms... 10
2.3. Receiver Initiated Algorithms ,.............................. 12
2.4. Symmetrically Initiated Algorithms 13
2.5. Adaptive Algorithms 14
2.6. A Comparison of Algorithms 16

3. The Distributed Job-Management Sysfem (DIMS): ~ .. ~-:........................ 19
3.1. DIMS Motive and Vision... 19
3.2. DIMS Hardware and Software Model... 21
3.3. DIMS Concepts and Terminology 23
3.4. DIMS Overview 25
3.5. DIMS Operating Components 27

3.5.1. Distributed Job Request Facility (djrf) 28
3.5.2. Distributed Job Status Facility (djsf) 29
3.5.3. Distributed Job Cancel Facility (djcf) 30
3.5.4. Distributed Job Configuration Change Facility (djccf) 32
3.5.5. Distributed Job Monitor Facility (djmonf) 33
3.5.6. Distributed Job Management Facility (djmanf) 35

3.6. A Summary of the DJMS Components 38
3.7. DIMS Fault Tolerance 39
3.8. DIMS Throughput Analysis 42

4. Conclusion and Future Work ~.......................... 47

List ofReferences 49

III

Appendix 51
Distributed Job Request Facility (djrf) Manual Page 51
Distributed Job, Status Facility (djsf) Manual Page 56
Distributed Job Cancel Facility (djcf) Manual Page 59
Distributed Job Configuration Change Facility (djccf) Manual Page 62
Distributed Job Monitor Facility (djmonf) Manual Page 65
Distributed Job Management Facility (djmanf) Manual Page 67
Distributed Job Start (djstart) Manual Page 70
Distributed Job Stop (djstop) Manual Page 71

Vita 72

iv

List of Tables

Table 1 - Algorithm Policy Comparisons 17

Table 2 - DJMS Concepts and Terminology 23

Table 3 - A Summary ofthe DJMS Comp~nents 39

Table 4 - A Summary of the DJMS Throughput Analysis.................................. 44

List of Figures

Figure 1 - Unbalanced Distributed System... 3

Figure 2 - Sender Initiated Algorithms... 11

Figure 3 - Receiver Initiated Algorithms 13

Figure 4 - Symmetrically Initiated Algorithms.. 14

. Figure 5 - Adaptive-Algoritnms .:::.:: :: ::.:: :.: : ~ -16

Figure 6 - Job Submission into DJMS 29

Figure 7 - Job Status and Tracking in DJMS 30

Figure 8 - Job Cancellation in DJMS 31

Figure 9 - Configuration Change in DJMS 33

Figure 10 - Load Sharing in DJMS 35

Figure 11 - Stability Control in DJMS 38

Figure 12 - Fault Tolerance in DJMS 41

Figure 13 - DJMS Throughput Analysis... 45

Figure 14 - DJMS Response-Time Analysis.. 46

v

Abstract

Advances in high speed local area networks and powerful workstations have

spurred the movement of both business and academic computing from a traditional

centralized mainframe environment to a decentralized distributed processing environment.

By sharing system resources on loosely coupled processors, the computing cost per user

can be significantly decreased. In order to achieve and support a high-level of resource

sharing and provide adequate user response-time, efficient techniques in distributed job

scheduling become a requirement. A large portion of the distributed job scheduling

problem resides in the efficiencies of: (1) job or task distribution amongst processors and

resources and (2) the method and frequency of communications. This thesis reviews

distributed job scheduling and emphasizes its basic components and policies. After

discussing an overview of distributed job scheduling techniques as shown in recent.

li~erature, a. system?1odel for distributed job scheduling, The Distributed Job
-:------,-,----

Management System (DIMS) is presented. The DIMS presentation provides

comprehensive information on system components, operations, fault tolerance, and
,/

throughput analysis.

1

"By wisdom a house is built, and through understanding it is established;
through knowledge its rooms are filled with rare and beautiful treasures."

- Proverbs 24:3,4

Chapter 1. Introduction

With the availability of high speed local area networks and powerful desk top

workstations, both business and academic computing have begun to migrate from the

traditional and centralized mainframe to a decentralized and distributed workstation

processing environment. The benefits of such a distributed architecture are vast. With the

sharing of resources such as file systems, printers, and processors, the computing cost per

user has significantly decreased. On the contrary, as user and business applications grow

they tend to require more processing power than one workstation or processor can

provide. In order to meet this processing demand, distribution of job or task loads,

through methods of sharing and balancing among networked processors, becomes

inevitable. As figure 1 shows, -some processors can becOme ·overlbadedwhileqthers

remain slightly or moderately loaded and under-utilized. Without proper load distribution,

support of application growth while providing adequate performance cannot be achieved.

2

Over-loaded (1)

Communication Network

Moderately-loaded (4)

Figure 1 - Unbalanced Distributed System

~--,-,-_~~__,.Ll......ol._0rganization

A substantial area of research focuses on the techniques and problems in

distributed job scheduling algorithms[I,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15]. A goal of this

research is to understand the efficiencies ofjob or task distribution among processors and

their effects on system resources and the underlying network. Typically, an analysis of

processor and communication overhead as well as cost are studied. This thesis will focus
'>

on currently used distributed job scheduling algorithms and will present a distributed job

scheduling model, The Distributed Job Management System (DJMS). The DJMS

presentation provides comprehensive information on system components, operations, fault

tolerance, and throughput analysis.

3

1.2. Distributed Job Scheduling

Distributed job scheduling can simply be described as an algorithm where jobs or

tasks are transparently migrated and subsequently executed at neighboring processors with

best intentions to (1) maximize global system throughput and (2) meet job or task

response-time requirements[1,3]. In distributed job scheduling, the basic premise is to

transfer jobs or tasks from heavily loaded processors, where service response-time is poor,

to slightly or moderately loaded processors, therefore improving response-time. By doing

so, system resources on under-loaded processors that would have been otherwise wasted

are more efficiently utilized to an advantage. As the designer implements such an

algorithm, many system issues and concerns must be considered. For instance, which

processors are slightly, moderately, and heavily loaded? Which processors nave access to

the resources needed to complete given jobs? Which processor can service a job in order

to fulfill the desired response-time? Which processors are up and available? As one might

conjecture, the construction of a distributed job scheduling algorithm is extremely

elaborate and requires much research and development in order to perfect it.

In chapter two ofthis thesis, recent technical literature covering today's technology

of distributed job scheduling is presented. This chapter discusses the structures,

components, and policies of distributed job scheduling and concentrates on the

explanation and study of the most predominate dynamic and adaptive distributed

algorithms (Le. the sender initiated, receiver initiated, symmetrically initiated, and adaptive

algorithms)[1,3,4,5,7,9,lO,14]. At closing of chapter two, a comparison between

algorithms is presented.

4

1.3. The Distributed Job Management System (DJMS)

The Distributed Job Management System (DJMS) is a centralized and adaptive

distributed job scheduling system that performs both load sharing and load balancing

activities for background processing on locally networked UNIX processors. In chapter

three of this thesis, the Distributed Job Management System is the main focu~. As an

introduction, motives and visions for developing DJMS are discussed as well as details

about its· development. and execution platforms. At the heart of the third chapter, the

DJMS operating components are presented. DJMS is composed of six components or

commands, three of which are the user level interface, while the remaining are strictly for

administration and system operation. The Distributed Job Request Facility (djrf) supports

user submission of background jobs for execution. The Distributed Job Cancel Facility

(djct) supports user cancellation and the Distributed Job Status Facility (djst) supports

status for background jobs that have been submitted. The Distributed Job Configuration

Change Facility (djcct) supports .an administration feature where a load- sharing

configuration can be dynamically modified. The Distributed Job Management Facility

(djmant) and Distributed Job Monitor Facility (djmont) are daemon processes which

control the overall distributed job scheduling. As each of the components are described,

comprehensive information regarding their purpose, usage, and interaction is presented.

At closing of chapter three, DJMS's fault tolerance is discussed and a case analysis on

system throughput is presented.

1.4. Future Research

As more real-time distributed systems come about, a more sophisticated breed of

distributed job scheduling algorithms must be devised and perfected. Typically in real­

time systems, jobs or tasks are restricted to extremely tight completion deadlines, which

cannot be missed. In order to accommodate such a requirement in a distributed system,

5

more global-state information must be gathered and maintained to (1) better depict the

load at each processor and (2) accurately derive task completion[2,6,8, 11, 12,13,15].

Algorithm designers are beginning to focus on such a solution. In closing, chapter four

presents some concluding thoughts about distributed job scheduling and the Distributed

Job Management System (DJMS).

6

Chapter 2. Literature Survey of Distributed Job Scheduling

An excellent place to begin reviewing distributed job scheduling is in the recent

technical literature. The purpose of such a survey is two-fold. It provides the reader with

the necessary background and understanding of distributed job scheduling while

uncovering some of the writer's influences and motives for this thesis. This survey

investigates literature dated 1988 to the present, and while not inclusive, covers the most

prevalent dynamic and adaptive distributed job scheduling algorithms.For each dynamic

and adaptive algorithm presented, the following components are described: trfUl:sfer policy,

selection policy, location policy, information gathering policy, stability control policy, and

local scheduling policy. At the conclusion of this chapter, some pedagogical comparisons

among algorithms will be presented.

2.1. Components of Distributed Job Scheduling

Most distributed scheduling algorithms today can be classified as either static,

dynamic, or adaptive[1,2,3, 10,11,13]. A static distributed job scheduling algorithm

typically distributes jobs or tasks based on decisions made by tlfe-Iocal processor and only

the local processor with no global system-state information gathering. The assignment of

jobs or tasks to processors is managed in a low overhead, random manner. Much research

has demonstrated that this class of algorithms consistently results in poor scheduling

decisions under heavy system loads. The dynamic class of algorithms distribute their jobs

or tasks based on decisions derived globally by gathering system-state information. Tasks

are assigned to processors by use of a high overhead decision making process where peer

processors work cooperatively. Much research has demonstrated that this class of

algorithms out-performs its static counterpart. The adaptive class of algorithms are for

the most part a specialized set of dynamic algorithms. This class of algorithms typically

7

modify their activities to improve their scheduling decisions, therefore globally maximizing

the system throughput.

Distri\Juted job scheduling-algorithms are either centralized, decentralized,or

hierarchical in structure[3, 11,13]. For the most part, centralized algorithms dictate the

placement of jobs or tasks from slave processors through a centralized master processor.

The master processor has global knowledge as to where job or task distribution should

occur on the system. Centralized 'algorithms are less reliable due to one point of system

failure, and also tend to create a bottleneck in the job or task distributing activities. For

the most part, hierarchical algorithms funnel the jobs or tasks from child processors

through a parent processor. The parent processor has global knowledge as to where job

or task distribution should occur on the system. Hierarchical algorithms are more reliable,

for if one part of the processor tree fails, job or task distributing activities c~n coexist on

other processor su~:!!~~~. The hierarchy tends to eliminate the bottleneck in the job of..

task distributing activities as well. Decentralized algorithms migrate jobs or tasks between

peer processors offering the most effective solution to job or task distribution. This

effectiveness however, tends to increase overhead and complexity.

The distribution of jobs or tasks can be either be preemptive or non­

preemptive[2,3]. Preemptive task transfer can be extremely expensive due to the

collection of an executing task's state. Freezing of a task process state requires gathering

of memory, open files, messages, timers, etc.. Typically, the expense of such a complex

task outweighs any benefit. Further research needs to be performed in this area. On the

contrary, non-preemptive task transfer is rather simple. Jobs or tasks are transferred

between processors, without current state information.

In all distributed scheduling algorithms, a key component is a load index[2,3,9]. A

load index is typically information that indicates the magnitude ofwork at some processor

8

and correlates well with task response-times. Many load indices are used in distributed

task scheduling. Load indices such as length of CPU queue, memory consumption,

process context-switch rate have been studied. The' results of these studies have

demonstrated differences in their effectiveness.

In the current technical literature, most distributed job scheduling algorithms are

described and explained through six basic components: the transfer policy, selection

policy, location policy, information gathering policy, stability control policy, and local

scheduling policy[I,2,3]. The first component, a transfer policy, decides when an attempt

should be made to migrate a job or task from one processor to another. The transfer

policy typically identifies which processor will act as the sender of the job or task and

which processor will act as the receiver. Most often the load index at each processor is

compared to a load threshold to determine the processor's role. The second component, a

selection policy,deci4~§ which job or task to actually -transfer., -Most -often a -newly

arriving job or task will be selected for transfer. Sometimes a job or task that transfers

will either be a task that does not require local resources, will execute for a long period of

time, and will encounter the least amount of overhead. The third component, a location

policy dec~des to which processor a job or task, which is eligible for migration, will be

transferred. This policy will attempt to find the optimum destination, i.e., the processor

that has possibly the shortest CPU queue length. The fourth component, an information

gathering policy decides what information the location policy needs in order to make its

decisions and how this information is to obtained. Typically, information is gathered on

demand, periodically, or upon a change in the system's state. The goal is to obtain

sufficient information at the minimum cost in terms of communications and processing.

Naturally, if the overhead incurred by gathering the information becomes large, it may

offset part or all of the gains obtained by transferring a job or task. The fifth component, a

stability control policy ensures that a task is not migrated endlessly. It guarantees that a

9

job or task will eventually be serviced and executed by a processor. The sixth and last

component, .a local scheduling policy indicates the order in which tasks waiting at a

processor will be serviced and executed.

2.2. Sender Initiated Algorithms

In sender initiated algorithms, job scheduling is initiated by an overloaded

processor (sender) trying to send a job to an under-loaded processor

(receiver)[1,2,3,6,11]. As for the algorithm's transfer policy, when a new job is queued on

the sender processor, a load index, such as a CPU queue length is checked to determine

whether the new job overflows the processor's load threshold. Typically, a processor is

identified as a receiver when accepting the new job does not cause the processor's load

index to exceed the load threshold. As for the algorithm's selection policy, only newly

arriving jobs are considered for transfer or migration. As for the algorithm's location

policy, three common techniques have been utilized. First, a job or task is transferred to a

receiver processor in a random manner. In this scheme, no global-state information is

gathered and used in the transfer decision making. Second, a transfer ofjob or task to a

receiver processor with the shortest CPU queue length has been used. In this scheme,

global-state information is gathered and used in the transfer decision making. Third and

last, a transfer of job or task to a receiver processor with a CPU queue length less than

some threshold limit has been used. This scheme also utilizes global-state information

while making transfer decisions. As for the algorithm's information gathering policy, a

demand-driven approach is utilized. Information is_typically gathered as a processor

becomes a sender. Once a sender, information is demanded from other receiver

processors to make a decision as to which location will receive the transfer. Generally,

sender initiated transfers only migrate jobs or tasks in a non-preemptive fashion. This is

due to the fact that the initiation of a sender transfer is always triggered by a n~w arrival of

10

a task. As for the algorithm's stability control, not much is enforced. As processors

become increasingly busy, CPU time and resources are under-utilized due to endless

transfer of jobs or tasks from one processor to another. This algorithm does not adapt

well to the heavily loaded situation. As for the algorithm's local scheduling policy, a first­

in-first-out queuing scheme is usually followed. As figure 2 shows, during task arrival,

processor 1, an overloaded (sender), attempts to locate an under-loaded (receiver).

Initially, processor 3 was polled and determined to be an inadequate receiver. Lastly

processor 2, an under-loaded (receiver), was found and accepted the task transfer.

Over-loaded (1)

Accept Task ?~ Sorry!

~
Over-loaded (3)

(2)

Accept Task?

Communication Network

Moderately-loaded (4)

Figure 2 - Sender Initiated Algorithms

11

2.3. Receiver Initiated Algorithms

In receiver initiated algorithms, distributed job scheduling is instituted when a

receiver processor becomes lightly loaded and requests a job or task from a overloaded

(sender) processor[2,3,8]. As for the algorithms transfer policy, a processor's CPU queue

length is monitored. As the CPU queue length drops below its threshold the processor

becomes a receiver and is eligible to accept jobs or tasks. Typically, a processor is

identified as a sender when the processor's load index exceeds the load threshold. As for

the algorithms selection policy, all jobs or tasks are considered for transfer or migration.

As for the algorithm's location policy, one common technique has been utilized. A random

poll for a job or task to a sender processor has been used. In this scheme, no global-state

information is gathered and used in the transfer decision making. Typically, the sender

processor will transfer a job or task as long as its CPU queue length does not fall below its

load threshold. As for the algorithm's information gathering policy, a demand-driven

approach is utilized. Information is typically gathered as a processor becomes a receiver.

Once a task departs, information is demanded from other sender processors to make a

decision as to which sender location will be chosen to execute the transfer. Commonly,

receiver initiated transfers can migrate jobs or tasks in preemptive fashion. This is due to

the fact that the request for a sender transfer is always triggered by a departure of a task at

the receiver processor. Therefore, tasks already executing at an overloaded sender maybe

chosen to migrate. As for the algorithm's stability control, not much is enforced, but it is

not likely for instability to occur. As receiver processors become increasingly busy, less

CPU time and resources are wasted on polling for overloaded sender processors. The

receiver processor already has an adequate load and does not require added or additional

work. In fact, if a receiver processor becomes too overloaded, it may change roles and

become a sender. This algorithm adapts rather nicely by default to the heavy loaded

situation. As for the algorithm's local scheduling policy, a first-in-first-out queuing

12

scheme is usually followed. As figure 3 shows, during task departure, processor 2, a

lightly loaded (receiver), attempts to locate an overloaded (sender). Initially, processor 4

was polled and determined to be an inadequate sender. Lastly processor 1, an overloaded

(sender), was found and subsequently transferred a desired task.

Communication Network

Over-loaded (1)

.... €t)_._~.

Over-loaded (3)

(2)

Find Sender

Transfer Task?

Moderately-loaded (4)

Figure 3 - Receiver Initiated Algorithms

2.4. Symmetrically Initiated Algorithms

In symmetrically initiated algorithms, distributed job scheduling is instituted when

a receiver processor becomes slightly loaded or when a sender processor becomes heavily

loaded[3,7,12]. Typically, during lighter system loads the sender initiated portion of the

algorithm is more efficient. During heavier system loads, the receiver initiated portion of

the algorithm is more efficient. For the most part, this class of algorithms exhibits the

same strengths and weaknesses of its sender and receiver initiated counterparts. As for

the algorithms six policies, it is merely a combination of the policies previously described

in the sender and receiver initiated algorithms. As figure 4 shows, during task arrival,

13

processor 3, an overloaded (sender), attempts to locate a slightly or moderately loaded. ,

(receiver). ,Processor 4, a moderately loaded (receiver), was found and accepted the task

transfer. Meanwhile, during task departure, processor 2, a lightly loaded (receiver),

attempts to locate an overloaded (sender). Processor 1, an overloaded (sender), was

found and subsequently transferred a desired task.

Moderately-loaded (4)

Communication Network

(2)

Task Departure

Find Sender

Accept Task?

Over-loaded (1)

Find Re"I...gTnn,'" T...

Task Arrival~

~~L~---
Over-loaded (3)

Figure 4 - Symmetrically Initiated Algorithms

2.5. Adaptive Algorithms

In adaptive algorithms, distributed job scheduling is performed by either the

overloaded sender or slightly loaded receiver[3, 12, 14]. For the most part, this class of

algorithms is comparable to symmetrically initiated algorithms with a few minor

improvements in both communication overhead and stability control. Typically, more

sophisticated system-state information aboJ,lt the participating processors in the distributed

system is gathered and maintained. As load distributing events occur, each processor

categorizes its peers into the following three distinct groups: sender/overloaded,

-
14

receiver/under-loaded, and sender or receiver/ok-loaded. Typically, these groups are

._ffiliintained as lists on each processor and are updated as processors interact through

messages. As for the algorithms transfer policy, each processor monitors two local

threshold values which are usually based on its CPU queue length. As the CPU queue

length drops below its receive threshold value, the processor becomes a receiver and is

eligible to accept jobs or tasks. As the CPU queue length increases above its send

threshold value, the processor becomes a sender and attempts to transfer jobs or tasks. As

for the algorithms selection policy, all jobs or tasks are considered for migration,

however, its goal is to avoid preemptive type transfers. As for the algorithm's location

policy, either a sender or receiver location policy is followed. The location policy that

runs is based on the processors CPU queue length and how it compares to its two

threshold values. As for the sender, a suitable receiver is obtained by contacting a

processor found in the slightly loaded list and booking a reservation for a job or task to be

transferred. As for the receiver, a suitable sender is obtained by contacting a processor

found in the heavy-loaded list or ok-loaded list and requesting a job or task transfer.. As

for the algorithm's information gathering policy, a demand-driven approach is utilized.

Information is typically gathered as a processor becomes a sender or receiver. Once a task

arrives or departs, information is demanded from other sender or receiver processors to

update local lists, and a decision is made as to which location will send and receive the

transfer. As for the algorithm's stability control, a great deal is enforced. At a high system

load, the sender initiated component becomes disabled. This is due to the fact that the

slightly loaded lists on all processors will become empty. At a low system load, the

receiver initiated component is somewhat unnecessary. At low system load, the receiver

initiated component will almost never obtain an overloaded sender. Since spare CPU

power is available during low system load, this receiver polling does not have a negative

impact on performance. This algorithm adapts rather nicely to the low and heavy loaded

situation. As for the algorithm's local scheduling policy, a first-in-first-out queuing

15

scheme is usually followed. As figure 5 shows, during task arrival, processor 3, an

overloaded (sender), selects moderately loaded (receiver), processor 4, from the Ok list.

Processor 4, a moderately loaded (receiver), was fOllnd and accepted the-task--tt:ansfe·F7r.----

Meanwhile, during task departure, processor 2, a lightly loaded (receiver), selects

overloaded (sender), processor 1, from the High list. Processor 1, an overloaded (sender),

was found and subsequently transferred a desired task.

Task Departure

4

Find Sender

Moderately-loaded (4)

High Low Ok

1 2
3

Accept Task?

1
3

High Low Ok

Communication Network

F;nd R".;mgTn...'"T"k

Task Arrival ©. High Low Ok

t::=:C> ~L~' 1 2 4
~

Over-loaded (3)

Figure 5 - Adaptive Algorithms

2.6. A Comparison of Algorithms

Refer to table 1 for a comparison of the most predominate dynamic and adaptive
,
distributed job scheduling algorithms (i.e. sender initiated, receiver initiated, symmetrically

initiated, and adaptive algorithms). Each algorithm is summarized and compared on the

six distributed algorithm policies as well as its performance.

16

Policy/Algorithm Sender Initiated Receiver Symmetrically Adaptive
Initiated Initiated

Transfer Job arrival and Job departure Job arrival and Job arrival and
load--inda->-load- "-and-load-index :..uex > fhl es:'..:,: AUU<;A .,

threshold load threshold or job departure or job departure
and index < and index <
threshold threshold

Location Poll for location Poll for location Poll for location Poll for location
where load index where load index where index < where index <
< load threshold > load threshold threshold or threshold or

location where location where
index> threshold index> threshold

Selection Newly arrived Any job that has Any job that has Any job that has
jobs, non- been requested; been requested; been requested;
preemptive non-preemptive non-preemptive non-preemptive

or preemptive or preemptive or preemptive
Information Demand driven Demand driven Demand driven Demand driven
Gathering on job arrival on job departure on job arrival or on job arrival or

departure departure
Stability Control Not enforced; Enforced; polls Enforced by Enforced;

instability can for job transfer receiver but, receiver lists at
occur during cease to exist instability can processors
heavy system during heavy occur during during heavy
loads system loads heavy system system loads are

loads due to empty
sender

Local Scheduling First-in-first-out First-in-first-out First-in-first-out First-in-first-out
queuin2 queuin2 queuin2 queuin2

Performance Operates well Operates well Operates well Operates
during low and during high and during low and extremely well
moderate system moderate system moderate system during low,
loads loads loads moderate, and

hi2h system loads

Table 1 - Algorithm Policy Comparisons

In conclusion, as workstation client/server computing evolves, the sheer

processing power attached to a single network will become enonnous. In order to harness

such raw power and deploy it to its maximum potential, efficient distributed job scheduling

algorithms must be researched and developed. As seen in recent literature, the dynamic

and adaptive class of distributed job scheduling algorithms are in the forefront.

Algorithms such as the sender initiated, receiver initiated, symmetrically initiated, and

17

adaptive are in practice for they exhibit the ability to react to the overall system load of a

distributed system. As we have seen, some algorithms are more efficient and effective

----------'----ttnhaatRl-iOBltrnhers:----GfaH-the--algol'ithms-presented;-the-adaptive class of algOl itlull out-pel fmllls

its counterparts, for it delivers the best performance while maintaining the highest system

stability. At a conceptual level, the adaptive class of algorithms is simply a combination of

the other classes of algorithms, incorporating their best features. The Distributed Job

Management System (DIMS) to be presented, can be. classified as an adaptive algorithm

for locally networked UNIX systems.

·.'V

18

Chapter 3. The Distributed Job M~nagementSystem (DJMS)

In this chapter, the Distributed Job Management System (DIMS) is the main focus.

As an introduction, motives and visions for developing DJMS are discussed as well as

details about its development ~nd execution platforms. The core of the chapter presents

the DIMS operating components. As each of the components are described,

comprehensive information regarding their purpose, usage, and interaction is reviewed. In

conclusion of this chapter, DIMS's fault tolerance is discussed and a case analysis on

system throughput is presented.

3.1. DJMS Motive and Vision

For the most part, the UNIX Operating System was designed and developed to

support the computing needs of the research, development, engineering, and academic

community. Prior to 1986, UNIX typically ran on small scale mini and workstation

computers supporting a relatively small user base per processor. It wasn't until 1987, that

UNIX emerged in the business world and began to compete with MVS mainframe

computing and other proprietary mid-range computing environments[17, 19].

In 1988, the AT&T Microelectronics Information System Organization (ISO)

began to cautiously migrate applications from a traditional MVS mainframe environment to

AT&T UNIX mini and workstation computers. As business applications were migrated to

UNIX, key areas of application control and production support, common to the MVS

mainframe environment, were duly noted as lacking or non-existent. It wasn't until 1989,

that some development internal to ISO was undertaken to implement UNIX system

support tools that would aide the migration efforts. In 1990, research and development

began in the development of a local job management system for the UNIX Operating

19

System. This local job management system was the birth of the Distributed Job

Management System (DIMS) Vision.

In 1991, a local job management system was deployed into production for UNIX

background processmg. This local job management system provided three basic

components or processes. The first component, a user request process, supported

background job or task submission for execution. Upon successful completion of the

request process, a user job or task would either be in-queue within some job pool or

executing on the local processor. The second component, a system level slave monitor

daemon process, actually executed and monitored jobs or tasks on the local processor that

it obtained from the job pool in a first-in-first-out manner. The third component, a system

level master manager daemon process, handled task farming by dictating, at any instance

in time, how many slave monitor daemon processes could be simultaneously executed.

This local job management system was very effective for several reasons. First,

through the technique of task farming, an automatic throttling mechanism was placed on

the processor to prevent applications from overloading the system to the point of

thrashing. Second, through the use of several job pools, application jobs could be

categorized and queued such that high priority or fast running jobs could be executed

without waiting for other larger jobs to complete. Third, by use of the daemon slave

monitor process, crucial jobs or tasks could be closely monitored and tracked. In the

event of a critical problem, the daemon slave monitor process could trigger the

appropriate support. Fourth, by maintaining job or task pools on dedicated storage, the

local job management system could re-start and recover application execution from UNIX

system crashes and failures.

Through 1991 to the present, more and more ISO application have migrated from

MVS to UNIX During this period of time, numerous UNIX mini and workstation
"--

20

computers have come on-line. The motivation for DJMS has come about as a result of

applications requiring more processing power than their local processor can provide. In

order to support user response-time requirements, application distribution through means

. ofload sharing and load balancing among computers or processors has become inevitable.

In September of 1992, the DJMS Vision was conceived in the hopes to achieve

three specific goals. The DJMS primary goal is to reduce response-time for individual

tasks and achieve the highest global processing throughput possible by migrating the

execution of jobs to a participating set of non-local, idle or slightly loaded processors.

The basic premise is to keep all processors in the network busy, running background jobs,

until there are less jobs to execute than the number of participating processors. A

secondary goal is to achieve automatic re-start ofuser background jobs following network

and processor failures. Naturally, only the processors that are operable will participate in

the background job migrations. A third and final goal is to provide system activity and

accounting data as well as statistics for each job submitted and executed. From any of the

participating processors, the user must have the ability to backtrack or trace the life of a

job within the system. In a simplified view, DJMS has been constructed and developed

based on many early concepts found within the ISO local job scheduling system and has

incorporated many other techniques found in recent technical literature on distributed job

scheduling.

3.2. DJMS Hardware and Software Model

In order to implement DJMS, two homogenous distributed hardware platforms

were configured. The first configuration consisted of two AT&T 486 Star Server E and

one NCR 3450 server running AT&T UNIX SRV4.0. The two Star Server E processors

were arbitrarily designated as the slave processors while the NCR 3450 server was

deemed the master processor. Each processor was connected to a AT&T STARLAN 10

21

Network. This 10 megabits per second Local Area Network (LAN) was configured as a

bus topology and utilized twisted-pair wire at the physical layer. At the data link layer, a

typical IEEE 802.3 carrier sense multiple accesS-With collisi<m-aeteetien (CSMAi-Af{IC--'-lDI-})t-~~­

protocol was instituted[16,20]. All user disk space was shared among all three processors

through AT&T Remote File Sharing (RFS). DJMS was constructed and fully

implemented prior to a port to the second hardware configuration.

The second configuration consisted of three Sun Sparc I and two Sun 3/80

workstation running SunOS 4.1.3. One of the workstations is arbitrarily deemed the

master processor while the others were designated as the slaves. Each processor is

connected to Lehigh University's Ethernet Network. This LAN is configured as a bus

topology and utilizes coaxial cable at the physical layer. At the data link layer, a typical

IEEE 802.3 carrier sense multiple access with collision detection (CSMNCD) protocol is

also instituted[16,20]. All user disk space is shared among all three processors through

Sun Network File Sharing (NFS).

On top of the mentioned hardware platform, the DJMS software was implemented

in the C programming language[17, 18, 19,20]. The software is physically constructed with

one common library which contains 114 sources files where each file contains one function

or object. Each of the six DJMS commands are composed of their own specific source

files or functions but, rely heavily on common objects from the DJMS library. In all, the

DJMS software is composed of 209 source files at a total of 22,097 lines of C code

including programmer comments. In general, the DJMS software requires UNIX libraries

2, 3C, 3S, and 3N to perform system calls, library calls, and network calls. DJMS

interfaces directly into the transport and network layers utilizing the User Data gram

Protocol and Internet Protocol (UDP/IP) for processor to processor communications.

22

DIMS implements its networking through the Berkeley Socket Application Programming

Interface (API) or UNIX named pipes over RFS.

3.3. DJMS Concepts and Terminology

Prior to presenting the Distributed Job Management System (DIMS), there are

terminology and concepts that will be defined and explained. The terms and concepts in

table 2 are essentially the basic building blocks for the distributed system model to be .

presented.

Table 2 - DJMS Concepts and Terminology

• A class is a logical organization of processes that are assigned to a processor on the

network. Processors assigned to a class can usually provide the same processing

services. Classes are usually organized with processors that share the same resources,

such as I/O peripherals.

• A job or task is a physical organization of executable code and environmental

parameters.

• A pool or queue is the physical organization on dedicated storage of background job

or task requests to be executed. The sequence or ordering for such a structure is

usually in a first-in-first-out (fifo) manner.

• A master process, as the name implies, IS a supervIsor process responsible for

maintaining global information in order to accurately control and delegate the flow of

processing to its subordinate processes.

• A slave process, as the name implies, is a subordinate process responsible for receiving

jobs or tasks from its superior to complete. A subordinate must provide accurate

feedback to its supervisor as each task is carried out.

23

o A migration is simply the movement of a job or task execution request from one

processor to another through the network. As a migration takes place, a job execution

request exits a pool from the source processor and is placed into a pool on the

destination processor.

o A configuration is simply a table of information that maps slave processes into a class

which directly assigns each slave process to a job pool at a processor on the network.

o A transfer policy decides when an attempt should be made to migrate a job or task

execution request to another processor within a defined class.

o A selection policy decides which job or task is eligible for a migration. This policy

usually dictates whether preemptive or non-preemptive transfers can occur.

o A location policy decides to which processor a job or task, which is eligible for

migration, will be transferred. This policy will attempt to find the optimum

destination, i.e., th~ processor that has the shortest CPU queue length.

• A information gathering policy decides what information the location policy needs in

order to make its decisions and how this information is obtained. The goal is to obtain
"

sufficient information at the least minimum cost in terms of communications and

processing. Naturally, if the overhead incurred by gathering the information becomes

large, it may offset part or all of the gains obtained by transferring the jobs or tasks.

• A stability control policy ensures that task are not migrated endlessly. It guarantees

that a job will eventually be serviced by a slave process at some participating

processor.

• A local scheduling policy indicates the order in which tasks waiting at a processor

will be serviced and executed.

• A daemon is a process that executes in the background without an associated terminal

or login shell. Its sole purpose is to either wait for some event to occur, or wait to

perform some specific task on a periodic basis.

24

o A quiesce is a systematic and orderly shutdown of either software or hardware

components.

_______-Oo---c./-\4.. connecnon-less--sen1er is simply--a-daemoo-proGe--ss---tflat-ut-ilizes-a-message-er-dat-a---~

gram service to communicate from one system to another over a network.

3.4. DJMS Overview

DJMS is an adaptive load sharing and load balancing system for distributed

background processing for processors that utilize the UNIX Operating System. DJMS is a

stand.alone system external to the UNIX Kernel. DJMS is classified as both load sharing

and load balancing for it shares and evenly distributes the processing load among its

participating cooperative processors. DJMS executes an adaptive algorithm that

distributes jobs or tasks based on decisions derived by gathering and maintaining a

centralized dedicated store of global system-state information. DJMS assigns tasks to

processors by use of a decision making process where peer processors work

cooperatively. DJMS is centralized in structure and dictates the placement ofjobs or tasks

among its slave processors through its job request facility and its centralized master

processor. These processes utilize an administratively maintained configuration file and

access it over RFS or NFS to determine the current set and state of participating slave

processors. DJMS performs jobs or tasks transfers in a non-preemptive manner. Only

jobs or tasks that are in-queue and not executing are considered during its transfers or

migrations. DJMS utilizes a load index of processor CPU queue length to depict the

magnitude ofwork at each processor.

DJMS supports a number of commands which provide the developer or user with

a friendly interface. The Distributed Job Request Facility (djrf) supports user submission

of background jobs for execution from any of the participating processors. Based on the

processor configuration, the user background job mayor may not execute on the

25

processor in which it was submitted. If the processor in which the job was submitted is

already busy, the job most likely will be migrated. Otherwise, the job remains and

--------executes;-When-a-baek-groundiob-does-migrate-ir-move~s-toexecute on toe next idle or

least loaded processor in the set of participating computers. The Distributed Job Cancel

Facility (djcf) supports user cancellation and the Distributed Job Status Facility (djst)

supports status of background jobs that have been submitted from any of the participating

processors. The Distributed Job Configuration Change Facility (djcct) supports an

administration function where the configuration can be dynamically modified. DJMS

supports a number of background processes which provide the. overall distributed job

scheduling infrastructure. The Distributed Job Monitor Facility (djmonf) daemon (the

slave process), is a system facility to execute background jobs on one of the participating

processors on the network. The Distributed Job Management Facility (djmant) is a system

facility which acts as the master daemon process at one of the participating processors;

which is the control processor on the network.

In general, DJMS implements six components or policies that explain the structure

of its distributed job scheduling. The first component, its transfer policy, is controlled by

its djrf, djmanf, and djmonf processes. The djrf and djmanf processes act as the job or

task sender while the djmonf process acts as the job or task receiver. These processes

base their decision solely on the comparison of their processor's CPU queue length to the

average CPU queue length of all participating processors. A djrf or djmanf process

becomes a sender when their processor's CPU queue length raises above the average

processor CPU queue length. A djmonf process becomes a receiver when their

processor's CPU queue length falls below the average processor CPU queue length of all

participating processors. The second component, the selection policy, is controlled by

DJMS's djrf and djmanf processes. These processes decide which job or task to actually

transfer. Most often newly arriving jobs or tasks will be selected for transfer. Currently,

26

DJMS does not consider job or task resource requirements such I/O and CPU during its

selection. The third component, the location policy, is controlled by DJMS's djrf and

djmanf processes. These processes attempt to find the optimum destination, i.e., the

processor that has shortest CPU queue length. The fourth component, the information

gathering policy, is maintained and controlled by DJMS's djmanf process in cooperation

with of all other facilities. A message passing model is utilized as well as network file

access to obtain and maintain global-state information. Typically, global-state information

is gathered on demand upon a change in the distributed system's state. The fifth

component, the stability control policy, is controlled by the djrf and djmanf processes.

During heavy distributed system loads, the djrf and djmanf processes temporarily

discontinue load distributing activities. As the distributed system load becomes

unbalanced, the djrf and djmanf processes re-institute the load distribution. The last and

sixth component, its local scheduling policy, is controlled by the djmonf process. At each

processor, djmonf executes jobs or tasks in a first in first out manner.

3.5. DJMS Operating Components

The Distributed Job Management System is composed of six components or

commands, three of which are the user level interface, while the remaining are strictly for

administration and system operation. The Distributed Job Request Facility (djrf) supports

user submission of background jobs for execution. The Distributed Job Cancel Facility

(djcf) supports user cancellation and the Distributed Job Status Facility (djsf) supports

status for background jobs that have been submitted. The Distributed Job Configuration

Change Facility (djccf) supports an administration feature where a load sharing

configuration can be dynamically modified. The Distributed Job Management Facility

(djmanf) and Distributed Job Monitor Facility (djmonf) are daemon processes which

27

control the overall distributed job scheduling. As each of the components are described,

comprehensive information regarding their purpose, usage, and interaction is presented.

3.5.1. Distributed Job Request Facility (djrf)

The Distributed Job Request Facility (djrf) command is a user facility, that can be

utilized on any of the DJMS participating processors, to submit background jobs into a

class for execution in DJMS. This facility executes as a process but does not execute the

user job directly. Based on the supplied class, its processor configuration, and the current

system load, it merely transfers the user job into a NFS job pool or queue at some

participating processor on the network to be subsequently executed by an appointed

Distributed Job Monitor Facility (djmonf) slave process. As figure 6 shows, the djrf

process at processor 1 executes the sender initiated portion of the DJMS adaptive job

scheduling algorithm. At task arrival, the djrf process performs the selection policy and

acts as the job or task sender while the djmonf slave process at processor 2 acts as the job

or task receiver. These processes base their transfer and location decisions solely on the

comparison of their processor's CPU queue length to the average CPU queue length of all

participating processors in the job's class. A djrf process becomes a sender if and only if

its local processor's CPU queue length rises above the average processor CPU queue

length of all participating processors in the job's class. Otherwise, the djrf process queues

the task locally pending the local processor in which the job was submitted is defined

within the job's class and exists in the configuration. Once a job has been successfully

queued, a UDP/IP message is passed over the network to the Distributed Job

Management Facility (djmanf) master daemon process. The message informs the central

processor manager, at processor 4, of job execution request. The djmanf master process

then ensures that a djmonf slave process is activated or if need be started up on the

designated processor to execute the desired user job or task. As the djrf command

28

completes at processor 1, useful status information about the submitted job is returned to

the user. This information, such as a unique job number, can be used later for job status

_________.and/-Or-canGeUati()n~'Fhis-eommand1'rovideslIl(ffircum:mand1inearguments and features.

Refer to the appendix for the command manual pages and its documented features.

Execute Monitor
for Class B

Moderately-loaded (4)

Lightly-loaded (2)

djmanf

djmonf ,.... ,...-,"",

Communication Network

Over-loaded (1)

DJMS Crg.

4 - djmanf

1 A djmonf

2 B djmonf

3 C djmonf

djrf -c B,...-, ,

Report Status

Find Queue

Task Arrival

Figure 6 - Job Submission into DJMS

3.5.2. Distributed Job Status Facility (djsf)

The Distributed Job Status Facility (djsf) command is a user facility, that can be

utilized on any of the DJMS participating processors, to obtain status of background jobs

that have been submitted into DJMS. This facility executes as a process and obtains

information on user jobs that may be waiting in a job pool or queue for execution or in

execution at participating processors. Upon invoking task status as figure 7 shows, the

djsf process at processor 1 accesses job pools or queues through NFS and communicates

with participating Distributed Job Monitor (djmonf) slave processes via UDPIIP messages

29

over the network, in this case one djmonf process at processor 2, to obtain the current

DJMS state information. This status facility reports useful run-time information for

executing jobs such as current elapsed time and CPU time consumed. The djsf Q=ro=c=e=ss,,-,=at,--~~_

processor 1, also reports information about waiting jobs such as elapsed time in-queue and

its order or position in-queue. This command provides a number of command line

argument features. Refer to the appendix for the command manual pages and its

documented features.

(2)

djmanf

Moderately-loaded (4)

djmonf

Communication Network

Over-loaded (1)

djsf -c B ""-...,

DJMS Cfg.

4 - djmanf

1 A djmonf

2 B djmonf

3 C djmonf

Task Status

Report Status

Figure 7 - Job Status and Tracking in DJMS

3.5.3. Distributed Job Cancel Facility (djcf)

The Distributed Job Cancel Facility (djcf) command is a user facility, that can be

utilized on any of the DJMS participating processors, to cancel background jobs that have

been submitted into DJMS. This facility executes as a process and cancels user jobs that

may be waiting in a job pool or queue for execution or in execution at participating

30

processors. Upon task cancellation, as figure 8 shows, the djcf process at processor 1

accesses job pools or queues through NFS and communicates with participating

Distributed Job Monitor (djm~nf)J;lay.e_pmc~Bse5~la~essages-O¥er-the-netw{)rk;

in this case one djmonf process at processor 2, to cancel user jobs. The djmonf slave

process, at processor 2, carries out the actual cancellation. During a cancellalion, the

djmonf slave process basically kills off the user job's UNIX process and physically

eliminates the job from the pool or queue. Subsequently, the djmonf slave process reports

the cancellation of the user job back to control processor, at processor 4, via a UDPIIP

message over the network to inform the Distributed Job Management Facility (djmanf)

master daemon process. This command provides a number of command line argument

features. Refer to the appendix for the command manual pages and its documented

features.

(2)

djmonf

Communication Network

Over-loaded (1)

djcf -e B " ..-..,.....

DJMS Cfg.

4 - djmanf

1 A djmonf

2 B djmonf

3 C djmonf

Task Cancel

Report Cancel

Find Job

I ~Li)
djmanf~

Over-loaded (3) Moderately-loaded (4)

Figure 8 - Job Cancellation in DJMS

31

3.5.4. Distributed Job Configuration Change Facility (djccf)

The Distributed Job Configyration Ghange~acility~(djccf)-command-is~-an-----~-­

administrative change facility used to dymimically configure how many networked

processors and concurrent Distributed Job Monitor Facility (djmonf) processes will

participate in DJMS. This' facility executes as a process and communicates with the

master daemon process (the Distributed Job Manager Facility (djmanf)) via UDP/IP data

grams over the network to achieve its goal. Basically, it provides the administrator with

the ability to tune and adapt the load sharing and load balancing distributed system to

better meet user processing needs. It also provides a processing throttle or governor

mechanism in that the number of concurrent user background executions across the

participating processors can be controlled efficiently and automatically. Configuration

changes can be performed either interactively or in the background. During a

configuration change as figure 9 shows, the djccf process, at processor 1, has the

capability to either add, modify, or delete class and processor attributes for participating

slave processors as well as the master processor. As a configuration change takes place,

updates through NFS or RFS are performed to dedicated storage for all affected pools or

queues as well as the configuration file itself Next, the Distributed Job Management

Facility (djmanf) master daemon process, at processor 4, is notified via messages to

perform the sender initiated portion of the DJMS algorithm. As jobs and locations are

identified, the djmanf process dispatches the necessary migrations while initiating the

necessary Distributed Job Monitor Facilities (djmonf) slave daemon processes. As in this

case, at processor 2, the djmonf process is initiated to institute the receiver initiated

portion of the DJMS algorithm. After the djmonf slave daemon process starts up, it loads

and executes jobs or tasks obtained from its pool or queue. This command provides a

number of command line argument features. Refer to the appendix for the command

manual pages and its documented features.

32

(2)

djmonf

Moderately-loaded (4)

.djmanf

Communication Network

Over-loaded (1)

New
Class

DJMS Cfg.

4 - djmanf

1 A djmonf

2 B djmonf

3 C djmonf

Report Change

Cfg. Change

-----------i--djccf-Je~~>(-

Figure 9 - Configuration Change in DJMS

3.5.5. Distributed Job Monitor Facility (djmonf)

The Distributed Job Monitor Facility (djmonf) daemon, the slave process, IS a

system facility to execute background jobs on a participating processors on the network.

This facility may execute as a connection less server process on each processor defined in

the configuration. The sole purpose of djmonf is to run the receiver initiated portion of

the DIMS algorithm and also execute, monitor, terminate, and report information about

user background jobs. It will also ensure automatic re-start of user background jobs after

processor or network failures. This slave facility communicates, synchronizes, and

cooperates with its one and only master Distributed Job Management Facility (djmanf)

process at the control processor. The local scheduling policy is strictly managed by the

djmonf process at each processor. As figure 10 shows, the djmonf process, at processor

2, services jobs or tasks in a first-in-first-out (fifo) manner where both priority of the job

33

and elapsed wait time in-queue have bearing. On demand by the Distributed Job

Management Facility (djmanf), at processor 4, djmonf will be signaled or remotely

_______--»spawnecLon-a-participating-pr-ocessor,in-this-Gase-prOGessor-2-,-to-sehedule-a-particularjob

or task request. Once djmonf has started, each job request contained in its assigned input

job pool is processed. Each job or task is executed and monitored. If the job or task fails,

subsequent executions may take place, but not necessarily on the same processor. During

each job execution and after each successful job completion or failure, pertinent

information is transferred over the network via UDP!IP data grams to djmanf daemon in

order to update the global DJMS state and possibly trigger subsequent job migrations.

After all jobs have been completed and the designated input job pool is empty, djmonf will

message djmanf, at processor 4, of its termination and will terminate. On demand, djmonf

at processor 1 can be signaled to quiesce or cancel a distributed job. The djmonf

command (if executing) will signal the current job command UNIX process to terminate.

Once the job or task has terminated at processor 1, djmonf will message djmanf of its

termination. During a quiesce, djmonfwill shutdown immediately and terminate.

34

djmonf

DJMS Cfg.

4 - djmanf

1 B djmonf

2 B djmonf

3 C djmonf

Over-loaded (1)

~
Over-loaded (3)

(2)

djmonf I~--''''''\

Communication Network

Log Cancel

Log Termination

djmanf

Moderately-loaded (4)

Figure 10 - Load Sharing in DJMS

3.5.6. The Distributed Job Management Facility (djmanf)

The Distributed Job Management Facility (djmanf) is a system facility, a

connection less server which acts as the master daemon process at one of the networked

processors; the control processor on the network. Its sole purpose is to perform the

sender initiated and adaptive portions of the DJMS algorithm. In doing so, it executes,

monitors, and terminates its slaves, the Distributed Job Monitor Facility (djmonf)

processes, while maintaining the global-state of DJMS. By gathering information from

each of its slave processes executing on each of the participating processors, djmanf

records and maintains the global-state in its control processor's shared memory segment as

well as on dedicated networked disk storage. Based on this global information, the

Distributed Job Manager process deploys its load sharing policies. It will also ensure

automatic re-start of failed slave processes after processor or network failures. It supports

a single point of control for DJMS initiation and termination. This master facility will

35

communicate and synchronize itself with each of its djmonf slaves. The Distributed Job

Manager process manages a transfer, selection, location, information gathering, and

stabiIi!y control set Qfpolicies.~.he_transfeLpolicy-is-based-solely-on-the-comparisonof

each participating processor's CPU queue length to the average CPU queue length of all

participating processors within a designated class. Very simply, jobs are migrated between

job pools within a class to share and balance the processing load. During a migration,

queued jobs may shift from one processor to an other until executed. The selection policy

is based solely on identifying jobs or tasks that are not presently executing on a processor.

Again! DJMS only supports non-preemptive transfers. The location policy is based solely

on the pre-defined DJMS configuration as well as CPU queue lengths. This configuration

dictates for a given job class how many jobs can execute concurrently as well as on which

participating processors on the network. The information gathering policy is managed by

two methods. First, a message passing model exists where the master process at the

control processor communicates via UDPIIP data grams over the network to all its slave

processes at participating processors. Second, the master process on a event trigger basis

polls each slave's job pool for CPU queue length information. Through these information

gathering techniques, the master process has accurate global knowledge as to what is

occurring in the distributed system. As figure 11 shows, stability control is ensured

cooperatively by the master djmanf process at processor 4 and the Distributed Job

Request Facility (djrt) process, in this case at processor 1. As the distributed system load

becomes increasingly heavy, the master djmanf process and the djrf processes ensure that

for each class all participating slave processors have evenly dispersed CPU queue lengths.

As long as the jobs or tasks are evenly dispersed among processors, the sender initiated

transfer policy becomes dormant. In general, DJMS minimizes the inefficiencies of endless

sender initiated transfers under heavy system loads. At heavy system loads, transfer or

migration are solely triggered by a djmonf, at processor 2, running the receiver initiated

portion of the DJMS algorithm as jobs or tasks complete and depart. On demand by the
-'

36

Distributed Job Request Facility (djrf) process or periodically, djmanf will awaken via a

receipt of UDPIIP message to schedule Distributed Job Monitor Facility (djmonf)

.. ·processes~-()nce-djmanfhas-awakened;--all--defitfeo-cofifi~fatl0il-jOD-pools are polled-·­

through NFS or RFS for the pre~ence of job requests. Each configured djmonf process

whose job pool contains job requests will be executed (if not already executing). After all

necessary configuration job monitor scheduling has been completed successfully, djmanf

will listen for subsequent events. On demand by receipt of a djmonf UDPIIP data gram,

djmanf will awaken to recognize that the particular Distributed Job Monitor Facility

(djmonf) has started or terminated. On demand by a specific djmonf process, djmanf will

awaken to gather global DIMS state information. Once djmanf has awakened and

recognized that a Distributed Job Monitor has terminated or a job request has completed,

djmanf will again poll through NFS or RFS the job pools for the presence of distributed

job requests. Again distributed monitor scheduling may take place after all load balancing

via job migration has completed. The djmanf process will again listen for subsequent

events. On demand, djmanf could be awakened to quiesce all executing Distributed Job

Monitor Facilities. Once djmanf has awakened and recognized the quiesce, djmanf will

immediately ignore any incoming requests from djrf processes and will signal via a UNIX

kill system call each running Distributed Job Monitor (djmonf) process to terminate. Once

all Distributed Job Monitor (djmonf) processes have reported their termination, djmanf

will terminate as well.

37

Task Arrival

djrf -c A 1'r"-""1/!

DJMS Cfg.

4 - djmanf

1 A djmonf

2 B djmonf

3 A djmonf

djmonf

Moderately-loaded (3)

Lightly-loaded (2)

Communication Network

Disable Transfer
Policy for Class A

djmanf

Moderately-loaded (4)

Figure 11 - Stability Control in DJMS

3.6. A Summary of the DJMS Components

Refer to table 3 for a summary of the DJMS Components (i.e. Distributed Job

Request Facility (djrf), Distributed Job Status Facility (djst), Distributed Job Cancel

Facility (djct), Distributed Job Configuration Change Facility (djcct), Distributed Job

Monitor Facility (djmont), and Distributed Job Management Facility (djrnant)). Each

component is summarized and compared on the six distributed algorithm policies as well

as their usage and purpose.

38

Policy! djrf djsf djcf djccf djmonf djmanf
DJMS
Transfer Job arrival None None None Job departure Job arrival and

and cpu queue and cpu queue cpu queue
length> avg. length < avg. length> avg.
cpu queue cpu queue cpu queue
len2th len2th len2th

Location Processor with None None None None Processor with
shortest cpu shortest cpu
queue len2th queue len2th

Selection Newly arrived None None None None Newly arrived
jobs; non- jobs; non-
preemptive preemptive

Information Demand None None None None Demand driven
Gathering driven on job on job arrival

arrival and departure
Stability Sender None None None None Sender
Control enforced; enforced;

transfers transfers
become become
disabled disabled

Local None None None None First-in-first- None
Scheduling out queuing
Usage User User User Admin. System System
Purpose Submit jobs Status Cancel Change Execute and Control and

jobs jobs config. monitor jobs monitor
environment

Table 3 - A Summary of the DJMS Components

3.7. DJMS Fault Tolerance

The Distributed Job Management System (DJMS) was designed and developed

with rigid fault tolerance, most of which is accomplished by the Distributed Job

Management and Monitor Facilities. For the most part, DJMS's fault tolerance overcomes

the critical disasters that could be encountered in the case of a master processor failure.

From a pure academic point of view though, a single point of control is not usually

desirable. Single points of control can lead to load distribution bottlenecks as well as one

point of failure. As figure 12 shows, at control processor 4, the Distributed Job

39

Management Facility (djmant) frequently polls for off-line or down participating

processors as well as dead Distributed Job Monitor Facilities (djmont) processes on each

of the participating processors. The djmanf process makes periodic attempts to re-start

dead Distributed Job Monitor Facilities, in this case processor 2, upon slave processor

recovery. As participating processors on the network go down, jobs or tasks migrate

automatically to other peer processors as defined by the configuration. This ensures the

automatic re-start of user jobs or tasks that may have been executing during a processor

crash. It also ensures that jobs or tasks in-queue for a crashed processor will migrate to

other available processors. The Distributed Job Management Facility (djmant) utilizes

local shared memory as well as network shared dedicated storage to keep track of all

global-state information. In the case of a control processor failure, all Distributed Job

Monitor Facilities (djmont) on each participating processor suspend execution and wait

for a tunable period of time for the Distributed Job Management Facility (djmant) process

to recover. Upon control processor recovery, the Distributed Job Manager re-gains its

global knowledge from its local shared memory segment and shared dedicated storage.

Once the DIMS global-state has been restored, synchronization takes place between the

djmanf master process and each of its slave djmonf processes. In the event that the

control processor never recovers, the DIMS administrator can define a new control

processor via the Distributed Job Configuration Change Facility (djccf). By defining a

new master processor in the DIMS configuration, a new instance of the Distributed Job

Management Facility (djmant) process will be started to re-gain DIMS global system state

from the shared dedicated storage. Once global-state has been restored, synchronization

takes place between the djmanf master process and each of its slave djmonf processes. In

the event of a failure on the shared dedicated storage medium, DIMS will immediately

quiesce. From a networking point of view, DIMS has implemented a rather robust

message transfer service. For the most part though, the User Data gram Protocol (UDP)

message services utilized is not reliable[19]. UDP by design does not ensure that the

40

message transmitted from the source made it to the destination. As we know from

experience due to invalid packet checksums, messages will get lost in a network. In order

to compensate from some of its deficiencies and make the message service reliable, four

features were developed. First during data gram creation, a sequence number was added.

Second during a data gram send, if an acknowledgment from the destination is not

received the data gram will be re-transmitted. The re-transmission will occur for a tunable

number of times. Third during a data gram receive, the data grams sequence number is

interrogated to determine whether the data gram received is a duplicate, out of sequence,

or appropriate. Fourth and last during a data gram receive, an acknowledgment is

returned to the originator.

DJMS Cfg.

4 - d.imanf

1 A djmonf

2 B djmonf

3 A djmonf

djmonf

GetJobgExecoleJob

Moderately-loaded (3)

Lightly-loaded (2)

djmonf

Get Job

Communication Network

Poll for

Dead Slave

djmanf

Moderately-loaded (4)

Figure 12 - Fault Tolerance in DJMS

41

3.8. DJMS Throughput Analysis

Often the main goal of distributed load sharing and load balancing is to minimize

the overall average job or task response-time[I,2,3]. A Job or task response-time can
.

simply be defined as the job's elapsed run-time (i.e. job's completion time less its start

time). In distributed systems~ average response-time has been widely used as a metric for

performance measurements. In order to analyze system throughput and performance in

DJMS, numerous bench marks or tests were generated and studied within the SunOs 4.1.3

environment.

First module compute, a simple C program, was constructed as the user job or task

for DJMS bench marking purposes. The compute program was structured with a large

for-loop where its loop index runs from 1 to 10,000,000. Within each iteration of

compute's loop, its index is multiplied and assigned to another variable. With such a CPU

bound job like compute in place, different bench marks or tests were instituted.

In total, five specific bench marks or tests were performed. Common to each

bench mark was 50 concurrent requests to execute compute. Each of these requests were

submitted into DJMS via the Distributed Job Request Facility (djrf) with the same class

(e.g. class A) parameter. In each test, the DJMS configuration's class A information was

defined to permit, at any point in time, a maximum of 10 simultaneous user job executions

(e.g. compute jobs). Unique to each bench mark, the DJMS configuration's class A

information was modified to add or remove participating processors. Benchmarks were

performed with 1 to 5 Sun processors. As each bench mark was run, DJMS's affects on

job response-time and total system throughput were captured and analyzed. In all cases

while these experiments were performed, the participating processors may have responded

to other unrelated jobs in addition to the jobs executed for the tests. Hence, larger

improvements in both job response-time and system throughput could have possibly been

42

achieved. In studying the resulting response-time data, significant improvements are

observed. First in-terms of system throughput, the elapsed time to complete all 50

compute jobs with 1 p~I!~cipatin~~e~sorwas_1,457._s~cQnd~versus 610 seconds to

complete all 50 compute jobs using 5 processors. Thus, the 1 processor configuration

took roughly 2.4 times longer than the 5 processor configuration to complete its work.

Second in-terms of job response-time, the average response-time to complete all 50

compute jobs with 1 participating processor was 239 seconds versa 83 seconds to

complete all 50 compute jobs using 5 processors. Thus, the 1 processor configuration

took roughly 2.9 times longer on the average to complete a compute job.

In summary, as more processors participated in DJMS's load sharing and load

balancing activities (1) job response-times decreased while (2) system throughput

increased. Refer to table 4 for a summary of each of the 5 bench marks and their results.

43

Sun Processors Time Minimum Maximum Average

~ _. - ~-~ Benchmark~ Jobs usingSunOs - (sees.-)to response- response---- -response-- - -

4.1.3 complete time (sees.) time (sees.) time (secs.)

all.jobs

1 50 (1) lion 1,457 119 276 239

2 50 (2) lion, pluto 826 80 238 119

3 50 (3) lion, pluto, 787 60 206 114

mars

4 50 (4) lion, pluto, 679 56 191 96

mars, saturn

5 50 (5) lion, pluto, 610 54 176 83

mars, saturn,

neptune

Table 4 - Summary of the DJMS Throughput Analysis

Refer to figure 13 for a bar chart of each of the 5 bench marks. In general, the

chart provides a visual comparison with pattern filled bars representing the elapsed,

maximum, minimum, and average response-times for each of the 5 tested DJMS

configurations. After the results for each configured bench mark was examined, it

becomes obvious that, as processors were added to the distributed system, the overall

global throughput had increased.

44

DJMS Throughput Analysis

o 250 500 750

Time in Seconds

1000

mAverage

l!JMaximum

ffiMinimum

II Elapsed

1250 1500

Figure 13 - DJMS Throughput Analysis

Refer to figure 14 for a line graph of each of the 5 bench marks. In the graph

legend, letter P refers to processor while letter M refers to Distributed Job Monitor

Facility (djmonf). As an example 1 P / 10 M represents a DJMS configuration of 1

processor that, at any point in time, permits a maximum of 10 simultaneous djmonf and

user job processes. In the graph, arrow label Load Sharing Peak depicts where in the

DJMS bench marks load distribution peaked while arrow label Load Sharing Decline

depicts where in the DJMS bench marks load distribution declined. Arrow label No Load

Sharing simply emphasizes the line in which no DJMS load distribution occurred. In

general, each line within the graph plots the actual response-time for each the 50 compute

jobs submitted and executed in DJMS under the 5 different configurations; As each of the

bench marks were performed, job response-times decreased as more participating

processors were added.

45

\.

DJMS Response-Time Analysis

--IP/I0M

- - -2P/I0M

--3P/I0M

...... ···4P/I0M

--SP/I0M

Load Sharing Decline

, No Load Sharing

6 11 16 21 26 31 36 41 46

JoblTask

300
270

240
210
180

150

120
90
60

30 +--4---+-+--+---+-+--+---+-f---+--+-~-+--+-~-+--+-~-+--

1

Resp.

Time
Secs.

Figure 14 - DJMS Response-Time Analysis

46

Chapter 4. Conclusion and Future Work

With the availability o! ~gh ~Ree~ loclli area ne!W9rKli ~nd p-o~werful workstations ~

and mini-computers, both business and academic computing have begun to migrate from

the traditional and centralized mainframe to a decentralized and distributed processing

environment. With proper load distribution through distributed job scheduling algorithms,

jobs or tasks can transparently migrate and subsequently execute at neighboring

processors with best intentions to (1) maximize global system throughput and (2) meet job

or task response-time requirements.

Distributed job scheduling algorithms today can be classified as either static,

dynamic, or adaptive and are either centralized, decentralized, or hierarchical in structure.

By far the adaptive class of algorithms out-perform their counterparts. During distribution

ofjobs or tasks, the transfer can be either be preemptive or non-preemptive. Preemptive

type transfers are typically complicated and expensive. In all distributed scheduling

algorithms, a key component to its success lies within the effectiveness of its load index.

Tracking CPU queue lengths as a load index at participating processors is common. In the

current technical literature, most distributed job scheduling algorithms are described and

explained through six basic components: the transfer policy, selection policy, location

policy, information gathering policy, stability control policy, and local scheduling policy.

A large portion of this literature concentrates on the explanation and study of predominate

dynamic and adaptive distributed algorithms (i.e. the sender initiated, receiver initiated,

symmetrically initiated, and adaptive algorithms).

The Distributed Job Management System (DJMS) is a centralized distributed job

scheduling system that performs adaptive load sharing policies and load balancing

activities for background processing on locally networked UNIX processors. The DJMS

primary goal is to reduce response-time for individual tasks and achieve the highest global

47

processing throughput possible by migrating the execution ofjobs to a participating set of

non-local, idle or slightly loaded processors. A secondary goal is to achieve automatic re-

.. start Qfus~rpackgroundjQhs.fQlIQwing.network.andprocessor failures ... A.third·and-final-- ­

goal is to provide system activity and accounting data as well as statistics for each job

submitted and executed. DJMS is composed of six components or commands. The

Distributed Job Request Facility (djrt), the Distributed Job Cancel Facility (djcf), and the

Distributed Job Status Facility (djsf) are the user level interfaces. The remaining

commands, the Distributed Job Configuration Change Facility (djccf), the Distributed Job

Management Facility (djmanf), and the Distributed Job Monitor Facility (djmonf) are

strictly for administration and system operation. The DJMS software was implemented in

the C programming language and has two ports available under AT&T UNIX SRV 4.0

and Sun SunOs 4.1.3. The Distributed Job Management System (DJMS) was designed

and developed with rigid fault tolerance, most of which is accomplished by the Distributed

Job Management and Monitor Facilities. In-terms of performance, DJMS bench marks

have proven that with proper load distribution of jobs among networked processors, job

or tas~ response-time decreases while system throughput increases. In order to fully

quantify DJMS's benefits, future UNIX pilot projects and applications must extensively

deploy DJMS services. Furthermore, future research and development efforts must be

pursued to eventually market the Distributed Job Management System as a commercially

available UNIX product. In conclusion, software utilities such as DJMS must become

available in order to harness the ultimate power of networked computers and provide a

seamless environment for distributed systems.

48

List of References

[1] M. Schaar, K. Efe, L. Delcambre, and L. N. Bhuyan, "Load Balancing with Network
Cooperation, II Proceedings of the 11th Internation_al Confe,.eflceQfl j)istributed
Computriig-Systems,1991, pp. 328-334.

[2] N. G. Shivaratri and M. Singhal, II A Transfer Policy for Global Scheduling Algorithms
to Schedule Tasks With Deadlines, II Proceedings ofthe 11th International Conference on
Distributed Computing Systems, 1991, pp. 248-255.

[3] N. G. Shivaratri, P. Krueger, and M. Singhal, "Load Distributing for Locally
Distributed Systems, II Proceedings of the 12th International Conference on Distributed
Computing Systems, 1992, pp. 33-44.

[4] S. Yuan, "An Efficient Periodically-Exchanged Dynamic Load Balancing Algorithm,"
Proceedings ofthe ISlvfJvf International Conference, 1990, pp. 149-153.

[5] H. C. Lin and C. S. Raghavendra, "A Dynamic Load Balancing Policy with a Central
Job Dispatcher (LBC)," Proceedings of the 11th International Conference on Distributed
Computing Systems, 1991, pp. 264-271.

[6] K. G. Shin and C. 1. Hou, "Effective Load Sharing in Distributed Real-Time
Systems, II Proceedings of the 3rd IEEE Symposium on Parallel and Distributed
Processing, 1991, pp. 670-677.

[7] K. G. Shin and Y. Chang, "Load Sharing in Distributed Real-Time Systems with
State-Change Broadcasts," IEEE Transactions on Computers, Vol. 38, No.8, Aug. 1989,
pp. 1124-1142.

[8] K. Ramamrithm, 1. A. Stankovic, and W. Zhao, "Distributed Scheduling of Tasks with
Deadlines and Resource Requirements," IEEE Transactions on Computers, Vol. 38, No.
8, Aug. 1989, pp. 1110-1123.

[9] T. Kunz, liThe Influence of Different Workload Descriptions on a Heuristic Load
Balancing Scheme," IEEE Transactions. Software Engineering., Vol. 17, No.7, July
1991, pp. 725-730.

[10] Y. Artsy and R. Finkel, "Designing a Process Migration Facility: The Charlotte
Experience," Computer, Vol. 22, No.9, Sept. 1989, pp. 47-56.

[11] F. Douglis and 1. Ousterhout, "Transparent Process Migration: Design Alternatives
and the Sprite Implementation," Software Practice and Experience, Vol. 21, No.8, Aug.
1991, pp. 757-785.

49

[12] N. G. Shivaratri and P. Krueger, "Two Adaptive Location Policies for Global
Scheduling," Proceedings ofthe 10th International Conference on Distributed Computing
Systems, 1990, pp. 502-509.

[13] P. Krueger and R. Chawla, "The Stealth Distributed Scheduler," Proceedillgsofthe
11th International Conference on Distributed Computing Systems, 1991, pp. 336-343.

[14] T. L. Casavant and J. G. Kuhl, "Effects of Response and Stability on Scheduling in
Distributed Computing Systems, " IEEE Transaction. Software Engineering., Vol. 14,
No. 11, Nov. 1988, pp. 1,578-1,587.

[15] V. M. Lo, "Heuristic Algorithms for Task Assignment in Distributed Systems,"
IEEE Transactions on Computers, Vol. 37. No. 11, Nov. 1988, pp. 1384-1397.

[16] S. S. Lam, "A carrier sense multiple access protocol for local networks," Computer
Networks, Vol. 4, 1980, pp. 21-32.

[17] B. W. Kernighan and D. M. Ritchie, The C Programming Language 2nd Ed,
Prentice-Hall, Inc., 1988.

[18] D. E. Comer, Internetworking With TCP/IP, Second Edition, Volume I, Prentice­
Hall, Inc., 1991.

[19] W. R. Stevens, UNIXNetwork Programming, Prentice-Hall, Inc., 1990.

[20] R. D. Rosner, Distributed Telecommunications Networks via Satellites and Packet
Switching, Lifetime Learning Publications, 1982.

50

DJRF(l)

Appendix

(Distributed Job Management Facilities) DJRF(l)

NAME
djrf - Distributed Job Request Facility

SYNOPSIS
djrf [-v]

[-m]
[-a]
[-A]
[-n name]
[-g group]
[-u user]
[-c class]
[-P priority]
[-T elapsed run-time]
[-C CPU run-time]
[-s cancel signal]
[-U disk usage limit]
[-L log output file]
[-Q execution retries]
[-e command executable]

DESCRIPTION
The Distributed Job Request Facility (djrf) command is a user facility, that can be
utilized on any of the DJMS participating processors, to submit background jobs
into a class for execution in DJMS. This facility executes as a process but does
not execute the user job directly. Based on the supplied class, its processor
configuration, and the current system load, it merely transfers the user job into a
NFS job pool or queue at some participating processor on the network to be
subsequently executed by an appointed Distributed Job Monitor Facility (djmonf)
slave process.

The parameters to djrf are:

-v
Verify all supplied arguments without queuing the actual distributed job
request. This option will echo all options and arguments supplied. It will
also echo all notes, warnings and errors detected.

51

DJRF(l)

-m

(Distributed Job Management Facilities) DJRF(l)

-a

-A

Send invoking user or a specified user mail upon completion of the
distributed job request. Note, if errors and/or warnings are encountered
while processing a particular request, the invoking user will receive mail
regardless if this option is supplied or not. UNIX mail(I) must be installed
for this option to be supported.

Interface to the emergency support system upon distributed job failures.
Note, ifno failures are encountered while processing a particular request or
this option is not supplied, no alerts will be generated. The emergency
support system alert(I) must be installed for this option to be supported.

Provide job accounting information for the current request. If the option is
supplied, the following information is reported for all job step/processes:
start time, end time, elapsed run time, CPU time, characters transferred,
block reads/writes. UNIX acctcom(l) must be installed for this option to
be supported.

-n name
The job name or identification for the current request. This option allows ­
the user to attach a unique id to each distributed job request for ease of
future cancellation or status purposes. If the option is not supplied, job
name will default to the invoking user's environment variable LOGNAME.
The name is limited to 8 characters in length.

-g group
The job group for the current request. This option allows the user to
attach a unique id to a group of distributed job request for ease of future
cancellation or status purposes. If the option is not supplied, job group will
default to the supplied or assigned class. The group is limited to 8
characters in length.

-u user
The user/owner login name or electronic mail address to receive mail. If
the option is not supplied, user will default to the current value of defined
environment variable LOGNAME.

-c class
The execution class. Based on the class supplied, the Distributed Job
Management Facility (djmanf) determines which Distributed Job Monitor
Facility (djmonf) on a designated processor will receive the request. The

52

DJRF(l) (Distributed Job Management Facilities) DJRF(l)

current class and pool configuration can always be obtained by viewing the
file assigned to #define CFG in include file djms.h.

-P priority
The job execution priority within the supplied class. The priority value can
range from 100 to 109 where the lower the value the higher the priority. If
the argument is not supplied the default priority is 109.

-T elapsed run-time
The maximum amount of time given to the specified executable to run.
Once the process has exceeded the elapsed time, it will be killed. If the
argument is not specified, by default elapsed time will be obtained from
environmental variable RUNTIME or will default to 00:00:00 as an
unlimited amount.

-C CPU run-time
The maximum amount of CPU time given to the specified executable to
run. Once the process has exceeded the cpu time allocated, it will be
killed. If the argument is not specified, by default CPU time will be
obtained from environmental variable CPUTIME or will default to 00:00
as an unlimited amount.

-s cancel signal
The signal number to be used by the Distributed Job Monitor Facility
(djmont) upon user or system cancellation. If the argument is not
specified, by default cancel signal will be set to SIGKILL (sure kill signal
9).

-U disk usage limit
The maximum number of 512 disk blocks that could possibly be allocated
for writing to any particular output files. If the argument is not specified,
by default the current environmental user limit will be utilized.

-L log output file
The full path to the log output file that will be created by the command
executable stdout and/or stderr messages. If a full path is not supplied,
environmental variable LFPATH or PWD will be utilized to obtain the full
path to the log output file. If the argument is not supplied, all stdout
and/or stderr messages will default to log output file #define SAR/job-id,
where SAR is defined in include file djms.h and job-id is comprised of a
class, slash (I), name, period (.), and some unique number.

53

DJRF(l) (Distributed Job Management Facilities) DJRF(l)

-Q execution retries
The maximum number of execution retries for a job request. If execution
retries is greater than zero and a job execution fails, the job is not
irnmediiifely-re-run.lnsteacrtheJob request is re-queued with execution
retries minus one and the next lowest priority. Eventually, the request will
be re-scheduled on some processor. If the argument is not specified, by
default zero retries will be assumed.

-e command executable
The full path to the command that will be executed and monitored by its
parent Distributed Job Monitor Facility (djmonf). If a full path is not
supplied, environmental variable EFPATH or PWD will be utilized to
obtain the full path to the command executable.

EXAMPLES
Run command lusr/bin/cat -s letc/motd as job EXP_JOB in group EXP_GRP with
a maximum elapsed run time of twenty seconds and a maximum cpu time of two
seconds with the highest priority within the B execution class.

djrf -n EXP_JOB -g EXP_GRP -c B -P 100 -T 00:00:20 -C 00:02 -e "/usr/bin/cat
-s letc/motd ll

.
11/20193 12:34:02 djrf : B-EXPJOB. 12342 EXP_GRP 100B.1031 queued

RUNTIME=00:20:00; export RUNTIME
CPUTIME=00:02; export CPUTIME
EFPATH=/usr/bin; export EFPATH

djrf -n EXP_JOB -g EXP_GRP -c B -P 100 -e IIcat -s letc/motd"

11/20193 12:34:02 djrf : B-EXP_JOB. 12342 EXP_GRP 1OOB.l 031 queued

FILES
. lusr/djms/adm/cfg
lusr/djms/adm/log
lusr/djms/adm/lock
lusrldjmsladm/sar/*1*
lusr/djms/pooll*/*

SEE ALSO
djsf(1),djcf(1),djccf(1),djmonf(1),djmanf(1),djstart(1),djstop(l)

54

DJRF(l) (Distributed Job Management Facilities) DJRF(l)

WARNINGS
Option -A selects process records from the accounting file /usr/adm/pacct by
inference, sin(;~ pmc_~sgen~l!JQID' j~UIQLayailable. Background processes having
the same user-id and execution time window will be spuriously included.

BUGS
None

55

DJSF(l) (Distributed Job Management Facilities) DJSF(l)

NAME
djsf - Distributed Job Status Facility

SYNOPSIS
djsf [-j job-id]

[-g group]
[-i file-id]
[-ffile]
[-p pool]
[-c class]

DESCRIPTION
The Distributed Job Status Facility (djsf) command is a user facility, that can be
utilized on any of the DJMS participating processors, to obtain status of
background jobs that have been submitted into DJMS. This facility executes as a
process and communicates with the Distributed Job Monitor (djmonf) process to
obtain information on user jobs that may be waiting in a job pool or queue for
execution or in execution at participating processors.

The parameters to djsf are:

-j job-id
The job-id returned by either djrf or djmonf upon a successful completion
of a distributed job request. The job-id is comprised of a class, a hyphen (­
), name, a period 0, and a unique number. If the job-id supplied is valid
and the invoking user has permission, the distributed job request status will
be returned.

-g group
The job group returned by either djrf or djmonf upon a successful
completion of a distributed job request. If the job group supplied is valid
and the invoking user has permission, the distributed job request(s) status
will be returned.

-i file-id
The file-id returned by either djrf or djmonf upon a successful completion
of a distributed job request. The file-id is comprised of a class, priority, a
period (.), and a file system inode. If the request file-id supplied is valid
and the invoking user has permission, the distributed job request status will
be returned.

56

DJSF(l)

-ffile

(Distributed Job Management Facilities) DJSF(l)

The request file which contains the actual distributed job request. If the
request file is valid and the invoking user has permission, the distribution
job request statmrwillbe returned.-

-p pool
A complete path to the specified distributed job pool. If the supplied pool
is valid and the invoking user has permission, for each distributed job
request within the specified pool a status will be returned. The current
class and pool"configuration can always be obtained by viewing the file
assigned to #define CFG in include file djms.h.

-c class
A class. If the supplied class is valid and the invoking user has permission,
for each distributed monitor pool assigned to that class, for each distributed
job request within the specified pool a status will be returned. The current
class and pool configuration can always be obtained by viewing the file
assigned to #define CFG in include file djms.h.

EXAMPLES I

Status distributed job request job-id D-jobO101.12345.

djsf -j D-jobOlO1.12345

02/01/93 10:19:20 djsf : D-job0101.12345 DAILY 100D.10314 120.12 waiting

Status distributed job request job-id D-job0303.88551.

djsf -j D-job0303

02/01/93 10:19:20 djsf : D-job0303.88551 DAILY 100D.87411 8.25 executing

Status distributed job request group DAILY.

djsf -g DAILY

02/01/93 10:19:20 djsf : D-job0101.12345 DAILY 100D.10314 120.12 waiting
02/01/93 10:19:22 djsf- : D-usr.18348 DAILY 100D.2045 2 136.44 waiting

Status distributed job request file-id 1OOD.1 031.

djsf -i 100D.1031

57

DJSF(l) (Distributed Job Management Facilities) DJSF(l)

02/01/93 10:19:20 djsf : D-jobOl01.12345 DAILY 100D.l031 4 120.12 waiting

Status distributed job request file /usr/djms/pool/O/1 000.

djsf -f /usr/djms/pool/0/1000

02/01193 10: 19:20 djsf : D-usr.l8348 D 100D.2045 0 136.44 waiting

Status distributed job pool /usr/djms/pool/O.

djsf -p /usr/djms/pool/O

02/01193 10:19:22 djsf : D-usr.18348 D 100D.2045 0 136.44 waiting

Status distributed job execution class D.

djsf -c D

02/01193 10:19:22 djsf : D-usr.18213 D 100D.2167 1 25.66 executing
02/01193 10: 19:24 djsf : D-jobOl03.22451 DAILY 130D.2046 2 45.65 waiting
02/01193 10:19:25 djsf : D-usr.18233 D 101D.I004 330.73 waiting
02/01193 10: 19:29 djsf : D-job0203.31002 DAILY 100D.6651 4 15.23 waiting

WARNINGS
The -j,-g,-i,-f,-p, and -c option can never be supplied together. Also, complete file
paths are required for both the -f and -p options. Option -i file-id is by far the
quickest and most efficient way to status a job. Unfortunately, any job that utilizes
the (djrf) -Q retry features may cause their file-id to change. For these jobs the -j
job-id option may be more manageable.

FILES
/usr/djms/adm/cfg
/usr/djms/adm/log
/usr/djms/adm/lock
/usr/djms/adm/sar/*/*
/usr/djms/pool/*/*

SEE ALSO
djrf(1),djcf(1),djccf(1),djmonf(1),djmanf(1),djstart(1),djstop(l)

BUGS
None

58

DJCF(l) (Distributed Job Management Facilities) DJCF(l)

NAME
djcf - Distributed Job Cancel Facility

SYNOPSIS
djcf [-j job-id]

[-g group]
[-i file-id]
[-ffile]
[-p pool]
[-c class]

DESCRIPTION
The Distributed Job Cancel Facility (djcf) command is a user facility; that can be
utilized on any of the DJMS participating processors, to cancel background jobs
that have been submitted into DJMS. This facility executes as a process and
communicates with the Distributed Job Monitor Facility(djmonf) slave daemon
processes to cancel user jobs that may be waiting in a job pool for execution or in
execution at participating processors. The djmonf processes carry-out the actual
cancellations.

The parameters to djcf are:

-j job.;id··
The job-id returned by either djrf or djmonf upon asuccessful completion
of a distributed job request; The job-id is comprised of a class, a hyphen (­
), name, a period (.), and a unique number. If the job-id supplied is valid
and the invoking user has permission, the distributed job request will be
canceled.

-g group
The job group returned by either djrf or djmonf upon a successful
completion of a distributed job request. If the job group supplied is valid
and the invoking user has permission, the distributed job request(s) will be
canceled.

-i file-id
The file-id returned by either djrf or djf!l0nf upon a successful completion
of a distributed job request. The file-id is comprised of a class, priority, a
period (.), and a file system inode. If the request file-id supplied is valid
and the invoking user has permission, the distributed job request will be
canceled.

59

DJCF(l)

-ffile

(Distributed Job Management Facilities) DJCF(l)

The request file which contains the actual distributed job request. If the
request file is valid and the invoking user has permission, the distributed job
request will be canceled.

-p pool
A complete path to the specified distributed job monitor pool. If the
supplied pool is valid and the invoking user has permission, each
distributed job request within the specified pool will be canceled. The
current class and pool configuration can always be obtained by~ewing the
file assigned to #define CFG in include file djms.h.

-c class
A class. If the supplied class is valid and the invoking user has permission,
each distributed monitor pool assigned to that class will be canceled. (Le.
Each distributed job request within the assigned pools will be canceled.)
The current class and pool configuration can always be obtained by
viewing the file assigned to #define CFG in include file djms.h.

EXAMPLES
Cancel distributed job" request job-id D-jobO101.12345.

djcf -j D~obOlO1.12345

02/01/93 10:19:20 djcf : D-jobOl01.12345 DAILY 100D.I031 canceled

Cancel distributed job request job-id D-job0303.88551.

djcf -j D-job0303

02/01/93 10: 19:20 djcf : D-job0303.88551 DAILY 100D.8741 canceled

Cancel distributed job request group DAILY.

djcf -g DAILY

02/01/93 10: 19:20 djcf : D-jobOl01.12345 DAILY 100D.I031 canceled
02/01/93 10: 19:22 djcf : D-usr.18348 DAILY 100D.2045 canceled

Cancel distributed job request file-id 1OOD.l031.

djcf -i 100D.1031

60

DJCF(l) (Distributed Job Management Facilities) DJCF(l)

02/01/93 10:19:20 djcf : D-jobO101. 12345 DAILY 100D.I031 canceled

Cancel distributed job request file /usr/djms/pooIlO/1 000.

djcf -f /usr/djms/pooIlO/lOOO

02/01/93 10:19:20 djcf : D-usr.18348 D 100D.2045 canceled

Cancel distributed job pool /usr/djms/pool/O.

djcf -p /usr/djms/pool/O

02/01/93 10:19:22 djcf : D-usr.18348 D 100D.2045 canceled

Cancel distributed job execution class D.

djcf"'c D

02/01/93 10:19:22 djcf : D-usr.18213 D 100D.2167 canceled
02/01/93 10: 19:24 djcf : D-jobOl03.22451 DAILY 130D.2046 canceled
02/01/93 10:19:25 djcf : D-usr.18233 D 101D.I004 canceled
02/01/93 10:19:29 djcf : D-job0203.31002 DAILY 100D.6651 canceled

FILES
/usr/djms/adm/cfg
/usr/djms/adm/log
/usr/djms/adm/lock
/usr/djms/adm/sar/*/*
/usr/djms/pool/*/*

SEE ALSO
djrf{1),djsf(1),djccf(1),djmonf(1),djmanf(1),djstart(1),djstop(l)

WARNINGS
The -j,-g,-i,-f,-p, and -c option can never be supplied together. Also, complete file
paths are required for both the -f and -p options. Option -i file-id is by far the
quickest and most efficient way of canceling a job. Unfortunately, any job that
utilizes the (djrf) -Q retry features may cause their file-id to change. For these jobs
the -j job-id option may be more manageable.

BUGS
None

61

DJCCF(l) (Distributed Job Management Facilities) DJCCF(l)

NAME
djccf - Distributed Job Configuration Change Facility

SYNOPSIS
djccf [-f cfg definitions]

[-p pool]
[-i]
[-y]

DESCRIPTION
The Distributed Job Coimguration Change Facility (djccf) command is an
administrative change facility used to dynamically configure how many networked
processors and concurrent Distributed Job Monitor Facility (djmonf) processes will
participate in DJMS. This facility executes as a process and communicates with
the master daemon process (the Distributed Job Manager Facility (djmanf) via
UDPIIP datagrams over the network to achieve its main objective. Basically, it
provides the administrator with the ability to tune and adapt the load sharing and
load balancing distributed system to better meet user processing needs. It also
provides a processing throttle or governor mechanism in that the number of
concurrent user background execwtions across the participating processors can be
controlled efficiently and automatically. Configuration changes can be performed
either interactively or in the background.

The parameters to djccf are:

-f cfg definitions
The cfg definitions file that contains the new layout/configuration for all
participating processors. This file, if valid, will replace file #define CFG in
include file djms.h. If this option is not supplied, the current configuration
will be utilized.

-p pool
The UNIX file directory that contains all defined distributed job monitor
NFS pools. If this option is not supplied, #define POOL in include file
djms.h will be utilized.

-1

Interactively utilize the vi(l) command to modify either the current or
supplied layout/configuration. Once verified, the modifications made will
replace file #define CFG in include file djms.h. Automatically upon
verification failure, djccf requires the modified configuration to be
corrected. The visual editor vi(1) must be installed for this option to be
supported.

62

DJCCF(l) (Distributed Job Management Facilities) DJCCF(l)

-y
Automatically respond "YES II to any questions asked. This option is
primarily for background oriented executions.

EXAMPLES
Change the current DJMS configuration to what IS defined m file
/usr/djms/adm/cfg.

cat /usr/djms/adm/cfg

#
DJMS €onfiguration File
#
Master
#
#M C S Host Port Description
#

0 N A lion 6000 ai SPARCstation 1
#
Slaves
#
#M C S Host Port Description
#

1 A A lion 0 ai SPARCstation 1 SunOS 4.1.3
2 A A lion 0 ai SPARCstation 1 SunOS 4.1.3
3 A A lion 0 ai SPARCstation 1 SunOS 4.1.3
4 A A lion 0 ai SPARCstation 1 SunOS 4.1.3
5 B A lion 0 ai SPARCstation 1 SunOS 4.1.3
6 B A pluto 0 ai SPARCstation SLC SunOS 4.1.3
7 B A pluto 0 ai SPARCstation 1 SunOS 4.1.3
8 C I lion 0 ai SPARCstation 1 SunOS 4.1.3
9 T A jupiter 0 ai Sun 3/80 SunOS 4.1.3

10 T A jupiter 0 ai Sun 3/80 SunOS 4.1.3
11 T I jupiter 0 ai Sun 3/80 SunOS 4.1.3

djccf -f /usr/djms/adm/cfg -y

11119/93 15:24:40 djccf : install new configuration? y
11119/93 15:24:44 djccf : A 4 active 0 disabled 0 inactive configured
11/19/93 15:24:44 djccf : B 3 active 0 disabled 0 inactive configured
11119/93 15:24:44 djccf : COactive 0 disabled 1 inactive configured
11/19/93 15:24:44 djccf : T 2 active 0 disabled 1 inactive configured

63

DJCCF(l) (Distributed Job Management Facilities) DJCCF(l)

11/19/93 15:24:44 djccf : 0 of 12 daemons executing
11/19/93 15:24:44 djccf : activate daemons to initialize configuration? y
11/19/93 15:24:47 djccf : daemons have been activated

FILES
/usr/djms/adm/cfg
/usr/djmshldm/log
/usr/djms/adm/lock
/usr/djms/adm/sar/*/*
/usr/djms/pool/*/*

SEE ALSO
djrf(l),djsf(l),djcf(l),djmonf(l),djmanf(l),djstart(1),djstop(l)

WARNINGS
Complete file paths are required for all -f and -p options.

BUGS
None

64

DJMONF(l) (Distributed Job Management Facilities) DJMONF(l)

NAME
djmonf - Distributed Job Monitor Facility

SYNOPSIS
djrnonf [-p monitor pool]

[-L log output file]

DESCRIPTION
The Distributed Job Monitor Facility (djmonf) daemon, the slave process, is a
system facility to execute background jobs on a participating processors on the
network. This facility may execute as a connection less server process on each
processor defined in the configuration. The sole purpose of djmonf is to run the
rec-eiver initiated portion of the DJMS algorithm and also to execute, monitor,
terminate, and report information about user background jobs. It will also ensure
automatic re-start of user background jobs after processor or network failures.
This slave facility communicates, synchronizes, and cooperates with its one and
only master Distributed Job Management Facility (djmanf) process at the control
processor. The local scheduling policy is strictly managed by the djmonf process
at each processor. The djmonf process services jobs or tasks in a first-in-first-out
(fifo) manner where both priority of the job and elapsed wait time in-queue have
bearing. On demand by the Distributed Job Management Facility (djmanf), djmonf
will be signaled or remotely spawned on a participating processor to schedule a
particular job or task request. Once djmonfhas started, each job request contained
in its assigned input job pool is processed. Each job or task is executed and
monitored. If the job or task fails, subsequent executions may take place, but not
necessarily on the same processor. During each job execution and after each
successful job completion or failure, pertinent information is transferred over the
network via UDPIIP data grams to djmanf daemon in order to update the global
DIMS state and possibly triggers subsequent job migrations. After all jobs have
been completed and the designated input job pool is empty, djmonf will message
djmanf of its termination and will terminate. On demand, djmonf can be signaled
to quiesce or cancel a distributed job. The djmonf process (if executing) will signal
the current job command UNIX process to terminate. Once the job or task has
terminated, djmonf will message djmanf of its termination. During a quiesce,
djmonfwill shutdown immediately and terminate.

The parameters to djmonf are:

-p monitor pool
The UNIX RFS or NFS directory that contains all distributed job requests
for a particular processor.

65

DJMONF(l) (Distributed Job Management Facilities) DJMONF(l)

-L log output file
A UNIX RFS or NFS file where all stdout/stderr print messages will be
written. If this option is not supplied, log output file will default to LOG.

EXAMPLES
Run the Distributed Job Monitor Facility in the background utilizing UNIX NFS
directory /usr/djms/pool/l as the defined monitor pool and UNIX NFS file
/usr/djms/adm/log as the defined log output file.

•
djmonf -p /usr/djms/pool/l -L /usr/djms/adm/log &

FILES
/usr/djms/adm/cfg
/usr/djms/adm/log
/usr/djms/adm/lock
/usr/djms/adm/sar/*/*
/usr/djms/pool/*/*

SEE ALSO
djrf(l),djsf{l),djcf{l),djccf{l),djmanf{l),djstart(l),djstop(l)

WARNINGS
A complete file path is required for the -i option. Also, if the -L option is supplied,
the same complete file path rule applies.

BUGS
None

66

DJMANF(l) (Distributed Job Management Facilities) DJMANF(l)

NAME
djmanf - Distributed Job Management Facility

SYNOPSIS
djmanf [-p pool]

[-P polling interval]
[-L log output file]

DESCRIPTION
The Distributed Job Management Facility (djmanf) is a system facility, a
connection less server which acts as the master daemon process at one of the
networked processors; the control processor on the network. Its sole purpose is to
perform the sender initiated and adaptive portions of the DJMS algorithm. In
doing so, it executes, monitors, and terminates its slaves, the Distributed Job
Monitor Facility (djmonf) processes, while maintaining the global state of DJMS.
By gathering information from each of its slave processes executing on each of the
participating processors, djmanf records and maintains the global state in its
control processor's shared memory segment as well as on dedicated networked
disk storage. Based on this global information, the Distributed Job Manager
process deploys its load sharing policies. It will also ensure automatic re-start of
failed slave processes after processor or network failures. It supports a single
point of control for DJMS initiation and termination. This master facility will
communicate and synchronize itself with each of its djmonf slaves. The
Distributed Job Manager process manages a transfer, selection, location,
information gathering, and stability control set of policies. The transfer policy is
based solely on the comparison of each participating processor's CPU queue length
to the average CPU queue length of all participating processors within a
designated class. Very simply, jobs are migrated between job pools within a class
to share and balance the processing load. During a migration, queued jobs may
shift from one processor to an other until executed. The selection policy is based
solely on identifying jobs or tasks that are not presently executing on a processor.
Again, DJMS only supports non-preemptive transfers. The location policy is
based solely on the pre-defined DJMS configuration as well as CPU queue lengths.
This configuration dictates for a given job class how many jobs can execute
concurrently as well as on which participating processors on the network. The
information gathering policy is managed by two methods. First, a message passing
model exists where the master process at the control processor communicates via
UDP!IP data grams over the network to all its slave processes at participating
processors. Second, the master process on a event trigger basis polls each slave's
job pool for CPU queue length information. Through these information gathering
techniques, the master process has accurate global knowledge as to what is
occurring in the distributed system. Stability control is ensured cooperatively by
the master djmanfprocess and the Distributed Job Request Facility (djrf) process.

67

DJMANF(l) (Distributed Job Management Facilities) DJMANF(l)

As the distributed system load becomes increasingly heavy, the master djmanf
process and the djrf processes ensure that for each class all participating slave
processors have evenly dispersed CPU queue lengths. As long as the jobs or tasks
are evenly dispersed among processors, the sender initiated transfer policy
becomes dormant. In general, DJMS minimizes the inefficiences of endless sender
initiated transfers under heavy system loads. At heavy system loads, transfer or
migration are solely triggered by a djmonf running the receiver initiated portion of
the DJMS algorithm as jobs or tasks complete and depart. On demand by the
Distributed Job Request Facility (djrf) process or periodically, djmanfwill awaken
via a receipt of UDP/IP message to schedule Distributed Job Monitor Facility
(djmonf) processes. Once djmanf has awakened, all defined configuration job
pools are polled through NFS or RFS for the presence of job requests. Each
configured djmonf process whose job pool contains job requests will be executed
(if not already executing). After all necessary configuration job monitor scheduling
has been completed successfully, djmanf will listen for subsequent events. On
demand by receipt of a djmonf UDP/IP data gram, djmanf will awaken to
recognize that the particular Distributed Job Monitor Facility (djmonf) has started
or terminated. On demand by a specific djmonf process, djmanf will awaken to
gather global DJMS state information. Once djmanf has awakened and recognized
that a Distributed Job Monitor has terminated or a job request has completed,
djmanf will again poll through NFS or RFS the job pools for the presence of
distributed job requests. Again distributed monitor scheduling may take place after
alnoad5-illanciiigvia job migration has completed. The djmanf process will again
listen for subsequent events. On demand, djmanf could be awakened to quiesce all
executing Distributed Job Monitor Facilities. Once djmanf has awakened and
recognized the quiesce, djmanf will immediately ignore any incoming requests from
djrf processes and will signal via a UNIX kill system call each running Distributed
Job Monitor (djmonf) process to terminate. Once all Distributed Job Monitor
(djmonf) processes have reported their termination, djmanfwill terminate as well.

The parameters to djmanf are:

-p pool
The UNIX RFS or NFS directory that contains all defined configured
monitor disk pools.

-P polling interval
The number of seconds between polls for a presence check of distributed
job requests and possible load balancing via job migrations.

-L log output file
A UNIX RFS or NFS file where all stdout/stderr print messages will be
written. If this option is not supplied, log output file will default to LOG.

68

DJMANF(l) (Distributed Job Management Facilities) DJMANF(l)

EXAMPLES
Run the Distributed Job Management Facility in the background polling every 5
minutes utilizing UNIX NFS directory /usr/djms/pool as the defined disk pool and
UNIX NFS file /usr/djms/adm/log as the defined log out file. All messages from
stdout and stderr will be written to log output file /usr/djms/adm/log.

djmanf -p /usr/djms/pool -P 300 -L /usr/djms/adm/log &

FILES
/usr/djms/adm/cfg
/usr/djms/adm/log
/usr/djms/adm/lock
/usr/djms/adm/sar/*/*
/usr/djms/pool/*/*

SEE ALSO
djrftl),djsf(l),djcf(l),djccf(l),djmonf(l),djstart(l),djstop(l)

WARNINGS
A complete file path is required for the -p option. Also, if the -L option is
supplied, the same complete file path rule applies.

BUGS
None

69

DJSTART(l) (Distributed Job Management Facilities) DJSTART(l)

NAME
djstart - Distributed Job Start

SYNOPSIS
djstart

DESCRIPTION
The Distributed Job Start (djstart) command is system administrative facility used
to start up the Distributed Job Management System (DJMS). The djstart
command can be executed on any of the participating processors as defined in the
DJMS configuration. Typically, this facility is executed on the DJMS master
control processor. The djstart facility starts the Distributed Job Management
Facility (djmanf) on the master processor to execute and monitor all load sharing
and load balancing activities.

EXAMPLES
Start the Distributed Job Management System from the UNIX prompt in the
background.

djstart &

Distributed Job Management System (DJMS) Start-up
.Version 2.0 ·1992, 1993 all rights reserved

Distributed Job Management System (DJMS) Started
All facilities are up and available

FILES
lusrldjms/adm/cfg
lusr/djms/adm/log
/usr/djms/adm/lock
/usr/djms/adm/sar/*I*
/usr/djms/pool/*/*

SEE ALSO
djrf(1),djsf(l),djcf(l),djccf(l),djrnonf(l),djmanf(l),djstop(1)

WARNINGS
None

BUGS
None

70

DJSTOP(l) (Distributed Job Management Facilities) DJSTOP(l)

NAME
djstop - Distributed Job Stop

SYNOPSIS
djstop

DESCRIPTION
The Distributed Job Stop (djstop) command is system administrative facility used
to shut-down the Distributed Job Management System (DIMS). The djstop
command can be executed on any of the participating processors as defined in the
DIMS configuration. Typically, this facility is executed on the DIMS master
control processor. The djstop facility initiates the DIMS quiesce via delivery of a
datagram over the network to the Distributed Job Management Facility (djmanf)
daemon process. Once djmanf receives the shut-down message, it carries out the
complete quiesce process.

EXAMPLES
Stop the Distributed Job Management System from the UNIX prompt.

djstop

Distributed Job Management System (DIMS) Shut-down
Version 2.0 1992, 1993 all rights reserved

Distributed Job Management System (DIMS) Stopped
All facilities are down and unavailable

FILES
/usr/djms/adm/cfg
/usr/djms/adm/log
/usr/djms/adm/lock
/usr/djms/adm/sar/*/*
/usr/djms/pool/*/*

SEE ALSO
djrf{l),djsf{l),djcf{l),djccf{l),djmonf{l),djmanf{l),djstart(l)

WARNINGS
None

BUGS
None

71

Vita

Michael Kenneth Nemeth was born in Phillipsburg, New Jersey, U.S.A on August

29, 1965, to John Lewis Nemeth and Marlene Ann Piatt. Mr. Nemeth earned his Bachelor

of Science degree in Information and Computer Science from the University of Pittsburgh

in May of 1987. In June of 1987, Mr. Nemeth began his professional career as a System

Analyst and Programmer with NCR in Dayton, Ohio. In July of 1988, Mr. Nemeth

continued in his career as a Systems Designer with AT&T Microelectronics in Allentown,

Pennsylvania. In November of 1989, Mr. Nemeth advanced in his career as a Technical

Staff Member and transferred to AT&T Microelectronics in Berkeley Heights, New

Jersey. In July of 1993, Mr. Nemeth continued his career advancement and is presently a

Senior Technical Staff Member. During Mr. Nemeth's professional career, his work has

focused on Operating Systems, Data Networking, and Distributed Systems.

72

	Lehigh University
	Lehigh Preserve
	1993

	A system model for distributed job scheduling : the distributed job management system
	Michael Kenneth Nemeth
	Recommended Citation

	00118
	00119
	00121
	00122
	00123
	00124
	00125
	00126
	00127
	00128
	00129
	00130
	00131
	00132
	00133
	00134
	00135
	00136
	00137
	00138
	00139
	00140
	00141
	00142
	00143
	00144
	00145
	00146
	00147
	00148
	00149
	00150
	00151
	00152
	00153
	00154
	00155
	00156
	00157
	00158
	00159
	00160
	00161
	00162
	00163
	00164
	00165
	00166
	00167
	00168
	00169
	00170
	00171
	00172
	00173
	00174
	00175
	00176
	00177
	00178
	00179
	00180
	00181
	00182
	00183
	00184
	00185
	00186
	00187
	00188
	00189
	00190
	00191
	00192
	00193
	00194
	00195
	00196

