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Abstract

Accurate function approximation is ~ssential for a number of applications, includ

ing signal processing, multimedia, and neural networks. The sigmoid function and

its derivative are particularly important to neural network applications. Typically,

the sigmoid function is used as a learning function and a threshold determinant for

training neural networks. The sigmoid's derivative is used as an activation function

for neural networks. As demands on neural network speed and accuracy increase,

methods for effective digital approximation of the sigmoid function is increasingly

important. It is with this in mind that an overview of previously employed design

choices for sigmoid apprximation are presented, as well as a discussion of the math

ematical properties of the sigmoid function and its derivative. In addition, a novel

minimax approach to approximating the sigmoid and its derivative is presented.

This approach was developed with reduction of maximum error and simplicity of

approximation as improtant design criteria. Designs for the sigmoid and its deriva

tive are shown for seven to eleven fractional bits of accuracy. The designs were

implemented in VHDL and synthesized to an FPGA device and an ASIC library.

For both technologies, the designs increase consistently in both area and delay with

in('l'(\ased numbers of accurate bits.



Chapter 1

Introduction to Function

Approximation

This chapter presents an introduction to some underlying concepts of approximating

functions using digital hardware. It begins with a motivation for function approx

imation. This is followed by some basic design blocks used for implementations.

:"irxt. details of th['(~(' classes of function approximation techniques are presented,

\vith examples of each technique. The chapter concludes with an outline of the

remaining chapters within this thesis.
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1.1 Overview of Function Approximation

Function approximation using digital hardware involves the development of a digital

system, which upon receiving an input value x outputs a value y ~ j(x). This area

of digital system research holds potential benefits based on the application domain.

The distinction of potential benefit lies in the optimization of parameters crucial to

the application. One application requiring function approximation is signal process

ing, including multimedia. In many cases, speed is often the optimization criterion.

Scientific computing is another application domain, which employs approximations

with more emphasis on the accuracy of the approximation result. Additionally, in

applications involving mobile devices, area and power consumption are important

factors to consider. With these optimization considerations in mind, the question

then remains, how should this issue of approximating necessary function values be

approached in digital hardware?

1.2 Design Foundations

An initial solution to the function approximation design problem is to treat the

function approximation as a direct mapping. That is, have a specific output value

directly associated with each input value. This approach is conceived in digital

hnrdware with a table lookup. A memory device or a portion of memory, typically

ROM or RAM, is devoted to containing output values relative to input addresses. In

2



cases involving a small number of possible inputs, this approach is the ideal one. An

n<!vantag<' lwing that assuming a direct mapping within the lookup table, function

accuracy is optimal. Also, these tables are optimized for speed, as memory units

tend to have low delay. Needs for larger input and output word sizes, however,

are present both from a push towards single and double precision word sizes and

the sensitivity of specific applications and their algorithms. For example, some

computer graphics applications rely upon input word sizes of 24 and 32 bits and

mandate corresponding accuracy. For each bit the input word length is increased,

the size of the lookup table increases to twice its former size. As input lengths are

increased past a size of 12 bits, table sizes become very large. As considerations

of devic(' size are increasingly essential in many applications, lookup tables alone

are clearly insufficient in solving all approximation needs. Based on these reasons,

another design component, in addition to lookup tables, is necessary.

Because of inadequacies inherent with lookup tables, arithmetic devices serve

as the sometimes needed additional design component in digital function approxi

mation..Examples of these devices include multipliers and adders. These devices

often scale in a linear fashion, as an increase in input width mandates a directly

proportional increase in device size. However, these devices suffer a drawback in

speed [2]. Regardless of optimizations employed, these devices and the algorithms

that use them tend to be slower than lookup tables~ Additionally, there is potential

for implicit error dependent upon the approximation method employed in designing

3



the arithmetic devices. By use of both lookup tables and arithmetic devices, a num-

bel' of approaches exist for resolving the conflicting design constniints demanded by

function approximation.

1.3 Iterative Approaches

One method of performing the approximation is by use of iterative algorithms.

That is, methods which repeat themselves a specified number of cycles. One such

algorithm, which is widely used, is the CORDIC algorithm. The CORDIC algorithm

is a method for determining the phase and magnitude of a two-dimensional vector

[3]. It is based on the following equations, which are solved iteratively to reach a

desired level of precision:

(1.1)

(1.2)

(1.3)

where Si is the direction of rotation, S(m, i) is the shift sequence, and m is a coor-

dinate system defining parameter such that

1 for circular coordinates

m = -1 for hyperbolic coordinates

o for linear coordinates
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Th(-~ CORDIe algorithm has two operational modes, rotational and vectoring, which

can be used to approximate elementary mathematical function values. In rotational

mode, each successive Zi is brought closer to 0, leaving the X n and Yn as the

function values of interest, assuming n iterations. In vectoring mode, Yi is decreased

iteratively closer to 0, leaving the Xn and Zn as the desired values. By appropriate

arrangement of input values, this approach can be used to attain approximations of

trigonometric, hyperbolic, and arithmetic functions. Consequently, it has seen wide

use in approximation unit designs.

One advantage of CORDIC and other iterative methods is their relative sim

plicity, lending them well to a digital implementation. The CORDIC algorithm, for

example, typically uses only an adder for calculation and memory for storing arc

tangent values. Another advantage of this algorithm is that it allows for scalable

output accuracy; for a desired level of accuracy, the method is applied iteratively

until the level is achieved. This, however, leads to a major drawback of CORDIC

and many other iterative approaches. Due to their iterative nature, for a given iter

ation i, the (i _l)th iteration result is needed. This dramatically reduces the overall

speed if high accuracy is needed.

5



1.4 Piecewise Approaches

Another class of approximation techniques is known as piecewise approximations [4].

Within this class, for a given function f(x), an interval [a, b] is selected over which

f(x) is to be approximated. Within [a, b], n subintervals [ai, bi] are chosen along

with all approximation function fi(x) for each subinterval. The fi(X)'S are chosen

such that they approximate the portion of f (x) within [ai, bi] more accurately than

one single approximation function over the entire interval. The overall fi (x) 's can

be viewed as a group of functions over [a, b] such that:

f 0(x): ao < x < bo

f(x) ~

fn (x): an < x < bn

Piecewise approximations are further classified by the type of functions used in

th(~ approximation. For example, piecewise linear approximations use functions of

the form f(x) = Co + CIX, piecewise quadratic approximations use functions of the

form f (x) = Co +Cl X + C2X2, and so on. Naturally, choosing a higher degree of poly

nomial functions leads to a higher level of accuracy in the approximation. Typically,

piecewise methods are implemented in digital hardware using multipliers, adders,

and memory. For low precisions, these implementations are often either linear or

quadratic approximations. On the other hand, piecewise polynomial approximations

6



with high degree polynomials are popular for high precision. Compared to iterative

approaches, they tend to require fewer cycles to perform the approximations and

can be more easily pipelined.

One widely used polynomial technique involves the use of Taylor series approxi-

mations [4]. The Taylor series approximates a function f (x) in the following manner:

f(x) ~ t .t(.TO)~~ - .TO)

i=O

(1.4)

where 1:0 is a point at which the function's value is known. This approach is typically

implemented using table lookups for the coefficients, fi(.~o), a multiplier, and an
t.

adder. 'With this approach, a variable level of accuracy can be attained depending on

the approximation intervals chosen and the number of terms in the approximation.

One drawback to this technique is the lookup table size or number of terms in the

approximation increases greatly depending on the level of accuracy chosen.

1.5 Organization of Thesis

This thesis exammes techniques for approximating the sigmoid function and its

derivative. This examination culminates in the exploration of a novel minimax tech-

niquc. Chapter 2 presents sigmoid function theory, as well as some previous research

related to sigmoid fUllction approximation, using the techniques described within

this first chapter. Advantages and disadvantages of these techniques relevant to the

7



sigmoid function are also presented. Chapter 3 focuses on the proposed minimax ap

proximation method for the sigmoid and its derivative, describing minimax function

approximation and its application to the sigmoid. Additionally, this chapter con

tains a presentation of the associated hardware used with this approach. Chapter 4

presents area and delay estimates for synthesized implementations of the approach

described in Chapter 3. Finally, Chapter 5 concludes the thesis by discussing ad

vantages and disadvantages of the proposed sigmoid approximation approach. The

chapter also offers some future research directions based on the material presented

in this thesis.
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Chapter 2

The Sigmoid Function, its

Derivative, and Previous Research

The sigmoid function and its derivative are used in a number of applications, in

cluding neural networks. Typically, within a neural network, the sigmoid is used

as a learning function for training the neural network, while its derivative is used

as a network ac.:tivatioll function, specifying the point at which the network should

switch to a true state. A number of the methods specified in the previous chapter

have been applied to the approximation of the sigmoid function and its derivative

with varying levels of success. In this chapter, the mathematical nature of the

sigmoid function and its derivative is presented. This chapter also includes a discus

sion of those techniques for the sigmoid utilized in previous research with resulting

9
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Figure 2.1: Plots of the Sigmoid Function and its Derivative

advantages and disadvantages found in their implementation. These techniques in-

elude the CORDIC algorithm, pseudo and standard piecewise approximations, and

S,"l tl nwt ric table methods,

2.1 The Sigmoid Function and its Derivative

The sigmoid function is defined as:

1
sig(x) =-

1+ e-X

with corresponding derivative:

As can be seen in Figure 2.1, these functions have the following limits:

10
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lim sig(x) = 1
x-+oo

lim sig(x) = 0
x-+-oo

and

lim sig'(x) = 0
x-+±oo

Additionally, the functions have the following symmetry properties:

sig(-x) = 1 - sig(x)

and

sig
O

' ( -x) = -sig'(x)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

These properties can be used in optimizing the approximation techniques. Based

on these defined limits and given a desired level of accuracy, it is feasible to place

a bound on the inputs. That is, a threshold can be defined such that all inputs

past the threshold cause the limit value to be output. Typically, this is used to

define an interval of interest, (a, b), dependent upon the desired accuracy. This

interval is applicable, since the functions are within a relatively small distance from

the limit values pas~ this interval. Additionally, the symmetric properties of the

11



sigmoid and its derivative allow for potential benefits and optimizations. In the

case of both the sigmoid and its derivative, the inherent symmetric properties make

it possible to only require computation of output values for non-negative inputs.

For either function, a small amount of combinational logic for detecting a negative

input and converting the output appropriately is required. With these points in

mind, a number of the previously used approaches for approximating the sigmoid

and its derivative are presented.

2.2 CORDIe Approximations

The CORDIC algorithm, as described in Section 1.3, has been used in practical

applications of function approximation, including trigonometric, hyperbolic, recip

rocal, and square root approximations. This algorithm, however, suffers from the

speed drawbacks mentioned in Section 1.3, as well as practical issues that are partic

ular to the sigmoid function. Due to the nature of the CORDIC algorithm, at least

two distinct CORDIC operations are required to approximate the sigmoid. Initially,

the e-X term is calculated, followed by the reciprocal of 1 + e-X
• The calculation of

the sigmoid's derivative adds further complexity, since the reciprocal of (1 + e-x )2

is l'('qllin~d. I3('C({IIS(' of this. conventional CORDIC algorithms tend to not be as

efficient as other successful approaches to sigmoid approximation.

One potential improvement to the latency inherent with a CORDIC approach is

12



to usc two CORDIe functional units; one for computing e- X and a second for com

puting the reciprocal of 1+e-x
. Pipelining potentially allows for effective throughput

increases. The amount of hardware needed for this sort of implementation, however,

is quite complex, considering the amount of steering logic and staging necessary. For

these reasons, although the CORDIC algorithm shows a high degree of success for

other functions such as sines and cosines, the CORDIC algorithm is not well suited

for approximation of the sigmoid function or its derivative.

As an example of previous research in this area, a pipelined CORDIC imple

mentation of a neural network cell, or neuron, is presented in [5]. The technique

pruposrd within that \vork represents the performance inefficiencies expected when

using the CORDIC algorithm for sigmoid approximations. Two CORDIC units, one

for exponential calculation and one for division, are pipelined while a ROM-based

controller synchronizes the CORDIC units. This approach is somewhat complex

with respect to other methods, utilizing a large aI.Dount of area while yielding only

eight bits of accuracy for the presented CORDIC implementation.

In [6], a method is presented for sigmoid approximations using a combination of

standard CORDIC and a modified CORDIC, known as the flat CORDIC algorithm.

With this method, two units, one for exponential and one for division, are again

employed for the function calculation. The overall performance gain is due to the

use of the flat CORDIC algorithm, yielding a smaller device area and lower latency.

In this case, larger levels of accuracy are achieved" however, a dramatic increase in

13



device area occurs with levels of accuracy greater than twelve bits.

2.3 Piecewise Approximations

Piecpwise approximation methods, discussed in Section 1.4, have been applied to

the sigmoid function anel its derivative with varying degrees of success. This success

can be attributed to the sigmoid's applicability to linear approximation methods.

As discussed in Section 2.2, it is difficult to compute the sigmoid function directly.

Since the sigmoid and its derivative are fairly consistent, particularly as input val

ues extend away from the origin, piecewise approximations over wide intervals can

be utilized, which reduces device latency and area. One disadvantage to these

approaches involves the nature of the hardware typically used in these implementa

tions. A piecewise approximation typically requires selection logic to determine the

interval in which the input value lies, using either ROM lookup tables for function

values or specialized hardvvare to calculate the approximation coefficients. Most

techniques also use multipliers and adders for calculating the final approximation

value. An additional difficulty with these methods can occur when using ROM ta

bles for coefficient values. These tables can grow to unruly sizes, depending on the

desired accuracy. Taking these considerations into account, however, useful results

can be attained using piecewise methods for sigmoid approximation.

An early use of a piecewise approximation to the sigmoid is presented in [7].

14



In this paper, the input interval is split into thirteen equally-sized intervals with

an approximation function for each interval. These functions then represent the

sigmoid function and are realizable with conventional digital hardware. In this

paper, simplification of the approximation functions allows for a reduction in overall

latenc~T and area. Rather than calculating the functions with multipliers and adders

or storing their values in a lookup table, the input values are manipulated via

inverters and NAND gates to approximate the sigmoid. Although this negates any

dependence upon arithmetic devices, it leads to less accurate approximations. In

some cases. this approach yields less than four bits of accuracy. Additionally, the

authurs offer no provision for an implementation of the sigmoid's derivative.

A more thoroughly presented approach based on piecewise approximations is

found in [1]. The authors propose to split an entire domain of inputs within (-8,8)

into segments with corresponding outputs. Both seven and fifteen-segment piecewise

approximations are proposed, with the fifteen segments offering greater accuracy at

t hr rxprnsr of area and potentially delay. The outputs are specified using shifted

versions of the inputs, with variations of the bits shifted into the result, depending

upon the desired function.

The method is presented in Table 2.1, for the proposed seven-segment piece

wise approximations to the sigmoid. As an example, consider an input of 1.25 10 ,

or 0001.0100000000002, Using this approach, a sigmoid approximation value of

0.1100100000000002 is output.

15
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~

Inpu t Range Binary Input Binary Output Output Range
[a, b) xxxX.xxxxxxxxxxx X.xxxxxxxxxxxxxxx [a, b)
[0, 1) 0000.lkj ihgfedcba O.lOlkjihgfedcbaO [0.5,0.75)
[1,2) OOOl.lkjihgfedcba O.llOlkjihgfedcba [0.75,0.875)
[2,4) OOlm.lkjihgfedcba 0.111Omlkj ihgfedc [0.875,0.9375)
[4,8) Olnm.lkjihgfedcba 0.1111nmlkj ihgfed [0.9375,1)

Table 2.1: Piecewise Function Approximation Using the Seven-Segment Approach
From [1]

The authors report results which are favorable in terms of area and delay, how-

ever, little consideration is given to accuracy. The approach outlined in the paper

yields an accuracy of seven bits in the fifteen-segment case, and five bits in the

seven-segment case. Removing the lookup tables typically used in piecewise ap-

proximations significantly reduces accuracy.. Additionally, no mention is made of

necessary selection logic. Since no implicit selection is available through table ad-

dressing, additional multiplexors and combinational logic are required to select the

appropriate outputs. Depending upon the desired accuracy, the necessary selection

logic could significantly increase the area.

A purer form of piecewise linear approximations for the sigmoid is discussed in [8]

and [9]. A generalization of this approach to function approximation is presented

in [10]. In this collection of work, three distinct design alternatives using first-

order piecewise approximations are described by the authors with respect to relative

advantages regarding accuracy, delay, and device area. These alternatives are all

based upon a separation of possible inputs into segments. A function, H(x) is

defined for each of the segments. H(x) is then further defined by the following

16



equation:

H(x) = Ax+B (2.8)

where A and B are linear coefficients determined prior to device implementation.

Three first-order methods are considered by the authors for relative advantages

regarding a.ccuracy, delay, and device area.

The most direct of the three first-order approximations uses a multiplier, an

adder, and a lookup table. The segment in which a given input lies is determined in

order to acquire the appropriate multiplicative value, A, by which the input is to be

multiplied. This product is then added to the B value associated with the input's

segment. One potential disadvantage to this approach is that the computational

complexity of its implementation could potentially lead to large area and delay.

The second of these approaches reduces the delay of the first approach. It re

places the multiplication portion of the approximation with an integer pmver of

two multiplication. The Segment's A coefficient is replaced with a value A', where

A' = 2-n and n is an integer. The value of A' is chosen such that it is the nearest

power of two to the original A value. In addition, B is calculated based on A' rather

than A, making it distinct from the previous technique. The following equation

indicates the changes made to Equation 2.8 using this technique:

(2.9)

The powers of two multiplication is implemented by shifting the input value an

17



appropriate number of places. This reduces the overall computational complexity

of the device, reducing device latency and area. This technique has the potential

disadvantage of a reduction in accuracy, due to A being approximated by the nearest

integer power of two. Also, although the multiplication unit is effectively eliminated,

a right-shifter is now required as well as a table lookup.

The third first-order approach takes the most aggressive stance on delay reduc

tion. This approach eliminates the adder used with the first two approaches. This

is accomplished by determining the linear coefficient A' in the same manner as the

second technique. The B coefficient is chosen with respect to possible u values

within a given segment, such that no changing bits of u overlap with nonzero bits

of B. The changing bits of u are those bits within a segment which distinguish

inputs from one another. For example, using the author's internal number system,

the segment (-2, -1] has values of the following form: 1001.xxxxxxxxxx where x

represents a changing bit of the input value. While it would appear that a large

number of changing bits need be considered in this example, the function's A' value

will effectively shift a number of the changing bits out of the product considered

when determining the B value. In this example, the A' value used is 2-3
, eliminating

three of the changing bits. B is then chosen such that its seven least significant bits

are zero. This method requires a sophisticated system of logic for coefficient deter

mination, as well as shifting units and lookup tables. While it effectively reduces

computational complexity, it relies heavily upon lookup tables, which as discussed

18
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in Chapter L can lead to large device area.

These designs yield estimated area and delay which scale appropriately with the

expectations discussed in this section. Latency was effectively reduced with each

successive first-order design approach. Regarding accuracy, the authors report this

ill tprnls of maximum error of their sigmoid generator devices. For all of the first

urder approximatiun alternatives described, the maximum error reported implies a

guaranteed accuracy of at most six bits. Additionally, a second-order approximation

technique is described which also guarantees at most six bits. Again, as with other

work discussed in this chapter, the issues of area and latency are well addressed,

however, accuracy is still limited.

2.4 Symmetric Table Approximations

SYllllll(ltric tablp Iller hods pmploy a combination of arithmetic devices and lookup

tables, similar to the previously discussed piecewise approximations. These methods

take advantage of mathematical symmetry properties of desired functions in order to

reduce the overall area and latency. Symmetric table methods have seen high levels

of success in reducing these factors for a number of functions, including the sigmoid

function and its derivative. Since these methods typically base themselves upon an

effective method for function approximation, such as Taylor polynomials, they are

applicable to sigmoid approximations. Additionally, since the sigmoid function has

19



inverse symmetry about the y-axis, and its derivative has symmetry about the y

axis, both functions hold potential for reaping the benefits available with symmetric

table methods.

One of these approaches, which offers flexibility in design considerations, is the

symmetric table addition method (STAN!) for function approximation, presented

in [11]. This method provides a compromise between the issues of area and delay

versus accuracy. A Taylor approximation, as discussed in Section 1.4, is used as a

starting point for the function's approximation. The input x is divided into m + 1

partit.ions. \\'hich an' then utilized as inputs to m lookup tables containing coefficient

values. The partitions are addressed within the lookup table such that each lookup

table provides a function value ai(xO, Xi+l)' Based on this addressing, each table

receives the high-order partition, Xo along with a lower-order partition Xi+l. All

partitions X2 to .rm - 1 are conditionally inverted based on their most significant

GiL Germe Geing passed to the lookup table. The outputs of the lookup tables are

then conditionally inverted and the result is passed to a multi-operand adder.

By utilizing this method, there is no use of multipliers, thereby lowering the

overall complexity of the design. The lookup tables are minimized by taking advan

tag(\ of iulH'rent binary symmetry found within differentiable functions, as well as

examining leading and trailing bit similarities. By effectively providing functional

symmetry, the inverters allow for the lookup table sizes to be reduced to half their
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Figure 2.2: STAtvr Block Diagram

original size. This is further enhanced in situations where all entries have identi-

cal trailing or leading bits, as these bits need not be stored in the lookup tables.

The STAM method yields decreased table size with minimal increase in delay with

suhsequent addition of lookup tables. Once past five tables, the reduction in individ-

ual table sizes tends to be outweighed by the area consumption of multiple tables.

At this point, the hardware complexity tends to outweigh the table size reduction

benefits.

III Figure 2.2, an example of a sigmoid approximation unit utilizing the STAM
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method is shown~ As can be seen in this figure, the input argument x is split into

m + 1 partitions with corresponding lengths ni. All partitions beyond the second

partition are inverted based on their most significant bit. The partition values are

fpd to a mill ti-operand adder to attain the approximation to f (x).

TIl(' S\'1I1111('tI'i(' t <llll<' addition md.hod was used in the approximation of the sig

moid and its derivative, as described in [12]. That paper explores five configurations

for sigmoid approximation using the STAM method, with two to six lookup tables.

For 13, 16, and 24-bit operand devices, the authors give results in terms of memory

usage and reduction possible through an increased number of tables. In each of

these cases, a decrease in memory occurs for each successive table addition up to

five tables. Error values are also given for 16-bit operands. The configurations yield

a full 16 bits of accuracy. These results are clearly more favorable than others listed

in terms of potential accuracy, though they have large memory requirements.
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Chapter 3

Proposed Technique

Givell the research previousl~r conducted for approximating the sigmoid and its

derivative in digital hardware, the question remains: What is an area and delay effi

cient implementation, potentially not dependent upon lookup tables, which also

allows for accurate results? The technique proposed in this chapter, that of a

partitioned linear minimax approximation, attempts to answer this question. In

this chapter, a mathematical basis for the minimax approximation technique is

presented, followed by a proposed approach for its use with the sigmoid and its

derivative. The chapter concludes with a hardware design and a discussion of an

implelllelltatioll for approximating the sigmoid and its derivative using the proposed

approach.
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3.1 Minimax Function Approximation

While approximation techniques such as Taylor polynomials can be useful for a

number of applications, methods exist that can improve accuracy, while lowering

overall computational complexity. One such method is the minimax polynomial

appt'oi\dl to fUll('tio!l approximatioll. The minimax approach focuses on minimizing

the maximum error across a given input segment, as opposed to a Taylor polynomial

approximation, which minimizes the error at the point of expansion. A first-order

minimax polynomial is defined as the following:

'm(x) = Co + CIX ::::::: f(x) (3.1)

For the purposes of reducing error, the approximation error is considered as a func

tion E(x) such that:

E(x) = f(x) - (co + CIX) (3.2)

To }'('c\uce the av(~ra,ge error over the interval [a, b], the errors at the endpoints are

considered, and the desired approximation function is chosen such that its endpoint

errors are equal. Thus:

f(a) - (co + cIa) = f(b) - (co + c1b) (3.3)

This equation is then solved for CI in terms of a and b. Next, the point at which

the error is maximum, X max , is determined by setting the derivative of E(x) to zero.
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Thus:

(3.4)

This equation is then solved for X max in terms of Cl, which can be further expressed

in terms of a and b. Given Cl and Xmax ' Co can now be determined based on the

linear minimax polynomial requirement that the error at the endpoints be equal to

the. negation of the error at XmaX . Thus, the following equation is solved for Co in

terms of a and b:

E(a) = -E(xmax ) (3.5)

As an example of an improvement gained by using minimax polynomials, con

sider the approximation of f (x) = eX over the interval [-1, 1] using first-order mini

max and Taylor polynomials. The Taylor polynomial for this approximation is 1+x,

while the minimax equivalent is 1.2643 + 1.1752x. Plots of the original function,

along with the Taylor and minimax polynomials, are shown in Figure 3.1. As noted

previously, the approximation error is minimal for the Taylor polynomial around the

point of pxpansion. while the minimax polynomial maintains a more consistent error

across the interval. For this example, the respective maximum errors for the Taylor

rllid Illillilll(\:\ POI.vllOillials (\1'(' 0.718 and 0.279, giving an improvement of over 60%.

\IVith this motivation, an example of the solution of a minimax polynomial is

presented. Consider the function f(x) = l/x over the interval [a, b]. The following
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Figure 3.1: Coniparison of First-order Taylor and Minimax Polynomials

is true with respect to E (x):

1
E(a) = - - (co + cIa)

a

1
E(b) = b - (co +c1b)

setting E(a) equal to E(b) gives:

solving for Cl gives:

1
CI =-

ab
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Now, X rnax is determined with· respect to a and b by setting the derivative of the

error at :I:max to zero:

E'(xrnax ) = --i- -CI = 0
xmax

and solving for Xmax , which gives:

(3.10)

(3.11)

Next, Co is determined by setting E(a) equal to -E(xmax ) and solving for Co. Thus:

1 1 1 1
- - (co - -a) -(- - (co - -~)) (3.12)
a ab ~ ab

1 1 1 1
(3.13)- - Co +- --+co---

a b Jab Jab
1 1 2

(3.14)2co -+-+-
a b VOJj
b+a+2VOJj

(3.15)Co
2ab

giving a closed form minimax approximation of f(x) = l/x over the interval [a, b].

3.2 Minimax Approach to the Sigmoid

The first step in the desired approach to performing a minimax approximation. of

the sigmoid and its derivative involves generation of coefficients Co and CI' As shown

ill the previuu~ section, a clused form sulution to the minimax approximation of a

function is particularly desirable since it facilitates coefficient calculation. Deter-

mining a closed form solution for the sigmoid minimax approximation begins with
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the following derivation for Ci. Setting the errors at the interval endpoints equal to

one another:

Solving for c1 gives:

1
E(a) = 1 - (co + cia)+ e-a

1 1
Cl (b - a) = b

1+ e- 1+ e- a

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Thus, a closed form solution for Ci is attained. A closed form solution for Co of the

minimax approximation of the sigmoid derivative function can similarly be deter-

Illil}(,(1. TIll' (·olllpl('xil.\· of this solutio!l is such that its closed form is not presented

in this thesis. Since the purpose of this thesis centers around hardware imple-

mentations of the sigmoid and its derivative, the overall coefficient calculation was

performed by the Maple software package. This package provides minimax coeffi-

('iell! solutio!ls with its nurnapproxO library. It should be noted that Maple makes

llS(~ of Lh(~ lh~illez a.lgurithm fur its determining of minimax coefficients, which differs
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from the approach presented in Section 3.1. This algorithm is employed by Maple,

as it is more applicable to minimax polynomials of degrees greater than one.

Regarding the error of these approximations, since a solution for E(xmax ) is not

provided, an upper bound for minimax approximation error is considered based on

11laxilllUlll elTor values for a slightly less accurate but similar approximation class,

Chebyshev series approximations. The maximum error of a Chebyshev series first-

()l'd(\1' ilPPI'()xilllilti()1\ OIl <Ul il\trrn11 [0. b) is drfined in [13] as:

(3.21)

where ~ is the point on [a, b) where 1" has its maximum value. In Figure 3.2, a plot

of the sigmoid's second derivative is shown. Based on Equation 3.21, the error is

drppndpnt upon tlw sizr of a given interval as well as the maximum value of 1" within

that interval. Due to this dependence, smaller intervals are chosen to reduce error,

and special attention is given to points at which the function's second derivative

takes rrlatively large magnitudes. A list of maximum error values calculated by

~laple for first-order minimax approximations over a number of intervals are given

ill lable J.l fur Lire Sigllloid and Table 3.2 for its derivative. An explanation of the

method of selecting the intervals in these tables follows.

Once the coefficients are determined, the next step in the design approach is

interval selection. In selecting the intervals to be used with the sigmoid and its

derivative using a minimax approximation, considerations are given to maintaining

the lower computational complexity of a first-order polynomial approximation, while
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Figure 3.2: Plot of the Second Derivative of the Sigmoid

Interval Maximum
Error

[0,8) .134251
[0,4) .070646
[0,2) .020442
[2,4) .010768
[1,2) .005824
[2,3) .003740
[4,8) .003656
[0,1) .003534
[3.4) .001706

Table 3.1: Sample lVlaximum ~vlinimax Error Values for the Sigmoid
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Interval Maximum
Error

[0,8) .057549
[0,4) .032273
rO ')) .01124,7l ,-
[2,4) .008136
[0,1) .005895
[4,8) .003561
[2,3) .002491
[3,4) .001489
[1,2) .000977

Table 3.2: Sample Maximum Minimax Error Values for the Sigmoid's Derivative

attempting to lower the error across the entire input interval. For the purposes of

this thesis, the input interval (-8,8) was selected due to its applicability to a number

of neural network applications. Based on the symmetry properties of the sigmoid

and its derivative, the approximation is made on [0,8) and symmetry properties are

used to ootaill approximations on (-8,0).

To accomplish the desired error reduction, a less conventional approach is taken

to interval selection. With some approximation methods, coefficients are chosen to

Iw powers of two to use shifting in the implementation rather than multiplication.

Additiollally, many polynomial approximation approaches utilize equally-sized in-

tervals. This is to provide consistency and potentially permit hardware reduction

through inherent properties such as extensive leading or trailing bits. Also, using

equally-sized intervals allows for table lookups for coefficient selection. Using the ta-

ble lookups, an implicit addressing is gained since each successive address represents

an interval.
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For the purposes of this thesis, intervals are selected based on their error-reducing

ability rather than their consistency. Starting with the entire interval over which r

the function is to be approximated, the interval is split in half to two subintervals.

:\Text, the accuracy of the subintervals is determined. These values are compared to

2-k where k is the desired number of bits of accuracy. Those intervals limiting the

overall accuracy of the design are split in half until the desired level of accuracy is

<ltt<lilled.TIl<'se smaller intprvals are chosen such that they represents equal halves

of tI](\ original interval. Once all intervals satisfy the accuracy requirements, the

interval set is complete. This method is illustrated in Figure 3.3. While the method

potentially eliminates the use of equal-sized intervals, it allows for an increase in

overall accuracy for a given number of intervals.

As all example of selecting the necessary intervals for a given accuracy, consider

the case of seven bits of accuracy for the sigmoid function. Using the interval [0,8)

as a starting point, the first step is to determine the accuracy of this interval. A

minimax approximation of the function over this interval provides much less than

seven bits of accuracy. so the interval is split into [0,4) and [4,8). Referring to

Table :3.1. [0. -l) provides less than seven bits of accuracy, and it is divided into [0,2)

and [2,4). The accuracy of [0,2) is checked, again providing less than the desired

accuracy, so it is split into [0,1) and [1,2). [0,1) provides the desired accuracy, so it

is not split further. Similarly, [1,2), [2,4) and [4,8) all provide sufficient accuracy

fOl' this fumtion and are also not divided further. At this point, the interval set
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Accurate #Intervals Intervals
Bits
7 5 [0,1) [1,2) [2,3) [3,4) [4,8)
8 6 [0,1) [1,~) [~, 2) [2,3) [3,4) [4,8)
0 10 [0,1) [~,1) [1,~) [~,~) [~,2) [2,~)

I
I [~,3) [3,4) [4,6) [6,8)

10 I:) [0 1) [1 :i) [:i 1) [1 -~) [~ 1:) r 1)
'2 2'4~' '4 4'2 r4

[i,2) [2,~) [4' ~) [~, 3) [3,~) [2,4)
[4,5) [5,6) [6,8)

11 19 [O,~) [i,~) [~, ~) [~, 1) [1, %) [%' P
[~, 4) [i,2) [2,~) [~,~) [~, ~ )
[1

4
1, 3) [3, 1

4
3) [1

4
3, ~) [~, 4) [4, ~)

[*,5) [5,6) [6,8)

Table 3.3: Sigmoid Interval Configurations

for the desired accuracy has been attained. The results of this example can be seen

in Table 3.3, along with the cases of eight, nine, ten, and eleven bits. Intervals

for til(' dPJ'ivativp of the sigmoid are shown in Table 3.4. It should be noted that

the deri\"ativc of the sigmoid requires fewer intervals overall. This is due to the

less drastic changes in slope throughout the function. Error values, as calculated

by Maple, for these intervals are shown in Tables 3.5 and 3.6 for the sigmoid, and

Tables 3.7 and 3.8 for the sigmoid's derivative.

With the intervals in place, the appropriate C1 for each interval can be determined

using the closed-form shown in Equation 3.20. As stated previously, however, Maple

was used to calculate both Co and C1 for each interval. The decimal values for these

coefficients are shown in Tables 3.9 and 3.10 for the sigmoid and Tables 3.11 and

3.12 for the derivative of the sigmoid.

Fill;1lk ('()I1..,ir10rMioIlS n!'0 lllnd0 rr'gnrding n('ceSSaT~! nata widths for the devices,
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Begin
i=O;

number of intervals=l

yes
Is i >= number of intervals?

no

no
~ Is Error[i] > desired accuracy?

yes

Number of intervals++;
Split interval i, [a,b) into subintervals
[a,(a+b)/2) and [(a+b)/2,b)

;:. i++;

End

Figure 3.3: Interval Determination Method
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Accurate #Intervals Intervals
Bits
7 5 [0,1) [1,2) [2,3) [3,4) [4,8)
8 6 [O,~) [~, 1) [1,2) [2,3) [3,4) [4,8)
9 8 [O,~) [~, 1) [1,2) [2,~) [~, 3) [3,4)

[4,6) [6,8)
10 13 [0 l)[ll)[l ~)[~ 1)[1 ~)[~ 2)

'4 4'2 2'4 4' '2 2'
[2, ~) [~, 3) [3,~) [~, 4) [4,5) [5,6)
[6,8)

11 16 [0 l) [1 1) [1 ~) [~ 1) [1 ~) [~ 2)
'~ 4'2 2'4 4' '2 2'

[2, 4) [~,~) [~, 141) [141,3) [3,~)

[~, 4) [4, *) [*,5) [5,6) [6,8).
Table 3.4: Sigmoid Derivative Interval Configurations

Accurate Interval Minimax Error
Bits
7 [0,1) .003534

[1,2) .005824
[2,3) .003740
[3,4) .001706
[4,8) .003656

8 [0,1) .003534
[1, ~) .001491
[~, 2) .001383
[2,3) .003740
[3,4) .001706
[4,8) .003656

9 [0, ~) .000489
[~, 1) .001211
[1, ~) .000367
[~, *) .000374
[~, 2) .001383
[2, %) .001091
[%,3) .000778

~

[3,4) .001706
[4,6) .001815
[6.8) ( .000253

Table :3.3: Sigmoid i'daximum Errors for 7-9 Accurate Bits
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Accurate Interval Minimax Error
Bits
10 [0, ~) .000489

[~, ~) .000268
[*,1) .000333
[1, i) .000367
[~, ~) .000374
[*, ±) .000359
[±,2) .000330
[2, ~) .000292
[~, ~) .000252
[~, 3) .000778
[3, ~) .000521
[~, 4) .000336
[4,5) .000680
[5,6) .000258
[6,8) .000253

11 [0, }) .000062
[1, ~) .000174
[~, ~) .000268
[~, 1) .000333
[1, ~) .000367
[~, *) .000374
[*, ±) .000359
[±,2) .000330
[2, ~) .000292
[~, ~) .000252
[~, y) .000212
[¥,3) .000176
[3, ~j) .000144
[1], ~) .000116
[~, 4) .000336
[4, *) .000211
[*,5) .000131
[5,6) .000258
[6,8) .000253

Table 3.6: Sigmoid Maximum Errors for 10-11 Accurate Bits
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Accurate Interval Minimax Error
Bits
7 [0,1) .005895

[1,2) .000977
[2,3) .002491
[3,4) .001489
[4,8) .003561

8 [0, ~) .001816
[~, 1) .001050
[1,2) .000977
[2,3) .002491
[3,4) .001489
[4,8) .003561

9 [0, ~) .001816
[~, 1) .001050
[1,2) .000977
[2, ~) .000645
[~, 3) .000582
[3,4) .001489
[4,6) .001750
[6,8) .000252

Table 3.7: Sigmoid Derivative Maximum Errors for 7-9 Accurate Bits
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Accurate Interval Minimax Error
Bits
10 [0, *) .000479

U' ~) .000422
[~, ~) .000321
[~, 1) .000200
[1, ~) .000141
[~, 2) .000472
[2, ~) .000645
[~, 3) .000582
[3, ~) .000440
[~, 4) .000304
[4,5) .000648
[5,6) .000253
[6,8) .000252

11 [0, ~) .000479
[~, ~) .000321
G,l) .000200
[1, ~) .000141
[~ ')) .000472')' ~

[2, ¥) .000159
[¥, ~) .000161
[~, ¥-) .000152
[¥,3) .000137
[3, ~) .000440
[~, 4) .000304
[4, ~) .000199
[~, 5) .000126
[5,6) .000253
[6,8) .000252

Table 3.8: Sigmoid Derivative Maximum Errors for 10-11 Accurate Bits
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Accurate Interval Co Cl

Bits
7 [0,1) 0.503526 0.231058

[1,2) 0.587144 0.149738
[2,3) 0.740982 0.071777
[3,4) 0.865960 0.029439
[4,8) 0.968019 0.004412

8 [0,1) 0.503526 0.231058
[1, §) 0.559518 0.173031
[~, 2) 0.629290 0.126445
[2,3) 0.740982 0.071777
[3,4) 0.865960 0.029439
[4,8) 0.968019 0.004412

9 [0, ~) 0.500484 0.244918
[~, 1) 0.515071 0.217198
[1, ~) 0.546461 0.184965
[f, ~) 0.576301 0.161098
[~, 2) 0.629290 0.126445
[2, ~) 0.708509 0.086689
[*,3) 0.782758 0.056864
[3,4) 0.865960 0.029439
[4,6) 0.952796 0.007756
[6,8) 0.991368 0.001068

Table 3.9: Sigmoid Coefficients for 7-9 Accurate Bits
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Accurate Interval Co Cl

Bits
10 [0, ~) 0.500484 0.244918

[~, ~) 0.509288 0.226877
[~, 1) 0.523872 0.207519
[1, ~) 0.546461 0.184965

[~, *) 0.576301 0.161098

[*, ±) 0.611664 0.137513
[±,2) 0.650373 0.115377
[2, ~) 0.690262 0.095413

[~, ~) 0.729481 0.077965
[~, 3) 0.782758 0.056864

[3, ~) 0.844413 0.036227

[~, 4) 0.891742 0.022652
[4,5) 0.937520 0.011293
[5,6) 0.972463 0.004220
[6,8) 0.991368 0.001068

11 [0, }) 0.500062 0.248706

[*, ~) 0.502068 0.241131

[~, ~) 0.509288 0.226877

[~, 1) 0.523872 0.207519

[1, ~) 0.546461 0.184965

[~, ~) 0.576301 0.161098

[~, ~) 0.611664 0.137513

[~, 2) 0.650373 0.115377

[2, ~) 0.690262 0.095413

[~, ~) 0.729481 0.077965

[~, If) 0.766639 0.063086
[If,3) 0.800821 0.050643

[3, ¥) 0.831530 0.040395
[~J, ~) 0.858599 0.032058

[~, 4) 0.891742 0.022652

[4, ¥) 0.926231 0.013998

[¥,5) 0.950497 0.008588
[5,6) 0.972463 0.004220

[6,8) 0.991368 0.001068

Table 3.10: Sigmoid Coefficients for 10-11 Accurate Bits
'""-
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Acc:u rat(' Interval Co Cj

Bits
7 [0,1) 0.255890 -0.053388

[1,2) 0.287292 -0.091626
[2,3) 0.222136 -0.059816
[3,4) 0.126229 -0.027513
[4,8) 0.031428 -0.004331

8 [0, ~) 0.251816 -0.029992
[~, 1) 0.274444 -0.076783
[1,2) 0.287292 -0.091626
[2,3) 0.222136 -0.059816
[3,4) 0.126229 -0.027513
[4,8) 0.031428 -0.004331

9 [0, ~) 0.251816 -0.029992
[~, 1) 0.274444 -0.076783
[1,2) 0.287292 -0.091626
[2, ~) 0.243907 -0.069779
[~, 3) 0.194156 -0.049854
[3,4) 0.126229 -0.027513
[4,6) 0.046308 -0.007598
[6,8) 0.008608 -0.001065

Table 3.11: Sigmoid Derivative Coefficients for 7-9 Accurate Bits
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Accurate Interval Co Cl

Bits
10 [0, i) 0.250479 -0.015463

[! !) 0.257686 -0.0445214' ?

[~, ~) 0.269542 -0.068434
[~, 1) 0.281944 -0.085132

[1, *) 0.291686 -0.094933

[*,2) 0.281132 -0.088305
[2, ~) 0.243907 -0.069779
[~, 3) 0.194156 -0.049854
[3, ~) 0.145077 -0.033447
[~, 4) 0.103680 -0.021580
[4,5) 0.061073 -0.011014
[5.6) 0.020320 -0.002868
[6,8) 0.008608 -0.001065

11 [0, ~) 0.250479 -0.015463

[~, ~) 0.257686 -0.044521

[~, ~) 0.269542 -0.068434
[~, 1) 0.281944 -0.085132

[1, *) 0.291686 -0.094933

[*,2) 0.281132 -0.088305

[2, ~) 0.254719 -0.074942

[~, ~) 0.231484 -0.064616

[~, ¥) 0.206225 -0.054509

[¥,3) 0.180634 -0.045198

[3, ~) 0.145077 -0.033447

[~, 4) 0.103680 -0.021580

[4, ~) 0.071834 -0.013592

[*,5) 0.048702 -0.008436
[5,6) 0.020320 -0.002868
[6.8) 0.008608 -0.001065

Table 3.12: Sigmoid Derivative Coefficients for 10-11 Accurate Bits
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As the multiplication unit will be the limiting factor in accuracy, focus is placed on

the widths necessary for x and CI' For these inputs, for k bits of accuracy desired,

there must be k +3 bits of the inputs provided. Consider the case of x. The desired

accuracy can be expressed as 2-k . Thus, the fractional bits of x must yield a result

less than or equal to this value, so:

(3.22)

(3.23)

adding the three integer bits to x gives a total of k+3 bits. Similarly, Cl requires k+2

bits, however, to ensure accuracy and provide consistency in multiply-accumulate

unit design, it is provided as k + 3 bits. Furthermore, Co is provided at an equal

width for consistency.

3.3 Hardware Design

\iVith the intervals and associated coefficients determined, the final step in the pro

posed minimax sigmoid implementation is to develop a digital hardware implemen

tation of the design. Based on the methodology discussed in Section 3.2, a hardware

design is presented.

The implementation for the proposed sigmoid approximation is shown in Figure

3.4. As can be seen in the figure, the approach consists of a number of multiplexors,
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signal logic for these multiplexors, XOR gates, and a multiply-accumulate unit. The

multiplexors serve as selection logic to determine the appropriate coefficients for the

input argument. This is dependent upon the interval in which the input argument

lies. The coefficients, discussed in Section 3.2, are hard-wired to the inputs of

the multiplexors, eliminating the necessity of registers or ROM table lookups. As

X2· .. X-2 is received, the multiplexor signal logic determines the interval to which the

input belongs, allowing for the appropriate coefficient selection. The signal logic

then outputs a number of selection signals equal to the number of intervals in the

design, shown as 7/1, in Figure 3.4. These selection signals are determined by the

interval over which the approximations are made. Input sequences that identify

these intervals are used as the multiplexor signal inputs. These sequences are shown

in Tables 3.13 and 3.14 for the sigmoid and Tables 3.15 and 3.16 for its derivative.

Consider the interval [0, 1). This interval is used for any input having all zero integer

bits. This is d~mined by the input sequence X2XIXO, as any inputs matching this

pattern are within the interval. Using the interval differentiating bit patterns for

the multiplexor signals requires use of one-hot multiplexor devices, which typically

have less area and delay than a traditional multiplexor. Use of these devices also

reduees the necessi ty for multiplexor signal encoding prior to the multiplexor.

The coefficient values selected are sent to a multiply accumulate unit which

calculates Co + CIX, This unit is implemented with a tree multiplier as its basis. A

row is added to the bottom of the partial product matrix for the addition of Co to
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the product. This matrix is then reduced using the reduced area technique to form

two resultant values. These values are then added using a carry lookahead adder.

Additional information regarding the reduction technique employed can be found in

[14].

The XOR gates in the device are used to conditionally invert negative inputs.

As discussed, the symmetry properties of the sigmoid and its derivative allow for

calculation of inputs over the interval (-8, 0) based on inputs over the interval [0,8).

All integer and fractional bits of the input are XOR'd with the input's sign bit, thus

providing the one's complement of x for negative inputs. This allows the device to

calculate sig( -.r) or sig'( -x) as the case may be. Once this calculation is complete,

the result is again sent through XOR gates with the input sign bit. This provides

-sig(-x) and -sig'(-x). Although by definition 1 - sig( -x) is desired, adding

a value of 1 to any of the results within the range of -sig( -x) will give a zero in

the integer bit. Because of this, the integer bit can be set to zero and the one's

complement provides sufficient accuracy.
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Figure 3.4: Sigmoid Implementation
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Accurate Interval Differentiating Bits
Bits

7 [0,1) X2 X I X O

[1,2) X2 X I X O

[2,3) X2 X I X O

[3,4) X2 X I X O

[4,8) X2

8 [0,1) X2 X I X O

[1, ~) X2 X I X OX -l

[~, 2) X2 X I X OX -l

[2,3) X2 X I X O

[3,4) X2 X I X O

[4,8) X2

9 [0, ~) X2 X I X OX -l

[~, 1) X2 X I X OX -l

[1, ~) X2 X I X OX -I X -2

[Q ~) X2 X I X OX -I X -24' 2

[~, 2) X2 X I X OX -l

[2, ~) X2 X I X OX -l

[~, 3) X2 X I X OX -l

[3,4) X2 X I X O

[4,6) X2 X l

[6,8) X2 X l

Table 3.13: Sigmoid Interval Differentiating Bits for 7-9 Accurate Bits
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Accurate Interval Differentiating Bits
Bits
10 [0, ~) X2 X I X OX -l

[! ~) X2 X I X OX -I X -2L2' 4

[%,1) X2 X I X OX -I X -2

[1, ~) X2 X I X OX -I X -2

[J, *) X2 X I X OX -I X -2

[~, f) X2 X I X OX -I X -2

[f,2) X2 X I X OX -I X -2

[2, ~) X2 X I X OX -I X -2

[~, *) X2 X I X OX -I X -2

[~, 3) X2 X I X OX-l

[3, ~) X2 X I XOX -l

[~, 4) X2 X I X OX -l

[4,5) X2 X I X O

[5,6) X2 X I X O

[6,8) X2 X l

11 [0, t) X2 X 1X OX -1 X -2

[±, ~) X2 X I X OX -l:r-2

[~, ~) X2 X I XOX -I X -2

[1,1) X2 X I X OX -I X -2

[1, ~) X2 X I X OX -I X -2

[%' ~) X2 X I X OX -I X -2

[~, f) X2 X I X OX -I X -2

[f,2) X2 X I X OX -I X -2

[2, *) X2 X I X OX -I X -2

[*, ~) X2 X I X OX -I X -2

[~, ¥) X2 X l XOX-l X-2

[¥,3) X2 X I X OX -I X -2

[3, .11) X2:J;lXOX-IX-2

[7' ~) X2 X I X OX -I X -2

[~, 4) X2 X I X OX -l

[4, *) X2 X I X OX -l

[*,5) X2 X 1X OX -l

[5,6) X2 X I XO

[6,8) X2 X l

Table 3.14: Sigmoid Interval Differentiating Bits for 10-11 Accurate Bits
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Accurate Interval Differentiating Bits
Bits
7 [0,1) X2·'EIXO

[1,2) X2 X IXO

[2,3) X2 XIXO

[3,4) X2 XIXO

[4,8) X2

8 [0, ~) X2 XIXOX-l

[~, 1) X2 XIXOX-l

[1,2) X2 XIXO

[2,3) X2 XIXO

[3,4) X2 XIXO

[4,8) X2

9 [0, ~) X2 X IXOX-l

[~, 1) X2 XIXOX-l

[1,2) X2 XIXO

[2, ~) X2 XIXOX-l

[~, 3) X2 XIXOX-l

[3,4) ·'E2:L I X O

[4,6) X2 Xl

[6,8) X2 Xl

Table 3.15: Sigmoid Derivative Interval Differentiating Bits for 7-9 Accurate Bits
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Accurate Interval Differentiating Bits
Bits

10 [0, ~) X2 X IX OX -I X -2

[~, ~) X2 X I XOX -I X -2

[1, ~) X2 XI X OX -I X -2

[1,1) X2 XIXOX -I X -2

[1, *) X2 X I XOX -l

[~, 2) X2 X IXOX-l

[2, ~) X2 X I X OX -l

[*,3) X2 X I X OX-l

[3, ~) X2 X I X OX-l

[~, 4) X2 X I XOX-l

[4,5) X2 X I X O

[5,6) X2 X IX O

[6,8) X L1:,

11 [0, ~) :r Lx lxOx-1X-2

[1,1) X2 X1XOX -1 X -2

[1,~) X2 X I X OX -I X -2

[1,1) X2 X IX OX -I X -2

[1, ~) X2 X I XOX-l

~,2) X2 X I XOX-l

[2, ~) X2 X I X OX -I X -2
-

[~, ~) X2 X I X OX -I X -2

[%,3) X2 X I XOX-l

[3, ?") X2 X I XOX -l

[~, 4) X2 X I XOX-l

[4, ~) X2 X IX OX-l

[*,5) X2 X IX OX-l

[5,6) X2 X I XO

[6,8) X2 X l

Tabl" :3.16: Sigmoid Derivative Interval Differentiating Bits for 10-11 Accurate Bits
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Chapter 4

Results

In order to test the validity of the proposed approach to sigmoid approximation,

discussed in Chapter 3, the designs have been implemented and synthesized for the

configurations discussed in Section 3.2. The results of these implementations are

presented in this chapter. The chapter begins with a discussion of the manner in

which the designs have been implemented, followed by a presentation of the area

and delay results for the design synthesis.

4.1 Implementation and Synthesis

Modular, structural-level VHDL descriptions of the ten configurations presented

in Chapter 3 have been prepared. Modules for the arithmetic components of the

designs were generated automatically using existing VHDL generation Java code
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provided through the FGS program.

The designs were simulated for behavior confirmation and then synthesized for

FPGA devices using Altera's Quartus software. This software package uses Altera

FPGA devices as its target technologies, and claims to provide extensive logic-fitting

algorithms for optimal layouts. The software provides synthesis data for device

usage in terms of logic cells, esb bits, and pins, as these are typically of importance

to FPGA designs. The logic cells implement gates while the esb bits implement

memory.

The designs were also synthesized to ASIC technology using the Leonardo Spec

trum synthesis package. Leonardo's provided SCL05u ASIC library was used as the

target technology for synthesis. The area results provided by this package are in

terms of equivalent gates, as per standard ASIC design terminology.

4.2 Area and Delay Estimates

As stated, the devices were synthesized to Leonardo's SCL05u ASIC library. The

synthesis results for the sigmoid implementations are shown in 4.1 and the sigmoid

derivative results are shown in 4.2. Other than a slight anomaly in delay between

the ten and eleven bit sigmoid cases, the devices scale regularly in terms of both

area and delay as the number of accurate bits increases. One potential reason for

the mentioned anomaly is the irregular size of the multiply-accumulate unit and its
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Accurate Area (Gates) Delay (ns)
Bits

7 2268 16.01
8 2560 16.79
9 3323 19.18
10 3756 19.87
11 4392 19.54

Table 4.1: Sigmoid ASIC Area and Delay Estimates

Accurate Area (Gates) Delay (ns)
Bits
7 2063 15.66
8 2356 16.56
9 3075 19.49
10 3514 19.70

11 4114 20.06

Table 4.2: Sigmoid Derivative ASIC Area and Delay Estimates

associated carry lookahead adder. Eliminating this anomaly was not explored as the

difference in delay between the ten and eleven bit cases was considered negligible.

Regarding the FPGA synthesis, each of the devices was synthesized to an AI-

tera E20k30ETC144-1 FPGA. The synthesis results for the cases synthesized are

presented in Table 4.3 for the sigmoid and Table 4.4 for the sigmoid's derivative.

Area is given in terms of logic cells as this was the only considerable area result

given. No esb usage was reported, since neither registers nor lookup tables were

in use. As can be seen in the tables, both delay and area increase with increases

ill desired accuracy. The largest jump occurs betvveen 10 and 11 bits of accuracy

for the sigmoid, as this requires a considerably higher number of intervals than the

other cases.
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Accurate Area (Logic Cells) Delay (ns)
Bits
7 351 34.46
8 449 38.54
9 531 40.41
10 603 42.66
11 813 51.86

Table 4.3: Sigmoid FPGA Area and Delay Estimates

Accurate Area (Logic Cells) Delay (ns)
Bits
7 320 32.60

8 391 32.90

9 518 41.40

10 622 45.84

11 670 46.31

Table 4.4: Sigmoid Derivative FPGA Area and Delay Estimates
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Chapter 5

Conclusions

Giw\n the rrsnlts prpsented in Chapter 4, a number of conclusions can be made

reg'mding til<' \'alidity of the proposed approach to sigmoid and sigmoid derivative

approximations. In this chapter, potential benefits and drawbacks of the proposed

method are discussed, followed by outlets for future research based on the material

presented within this thesis.

5.1 Considerations of the Proposed Approach

One important consideration when using the approach proposed in this thesis is its

lack of registers and ROM tables. While this potentially offers improvements, it

('an also I(\;HI to illlplelllentation issurs. Obviously, an improvement offered by this
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ll'llllliqll(' is t.!H' lack ul' dCjJl~lIdellcy upuu register lugic withiu oue"s target imple

mentation technology. Whether an implementation is to be performed on an FPGA

or ASIC by varying manufacturers, the device should not perform any differently

based on register technology. Also, synthesis to devices not offering extensive mem

ory for lookup tables is a possibility, which could potentially be of benefit. One

possible disadvantage, however, is the lack of implicit addressing that lookup tables

provide. As discussed in Chapter 3, the technique's implementation calls for one

hot multiplexors to control coefficient selection. By using ROM lookup tables along

with evenly-sized intervals, addressing is implicit.

Another consideration involves scalability of this technique. Again, since there is

no dependence upon ROM, devices scale linearly or quadratically in terms of area.

Delay is found within the multiply-accumulate units and carry-Iookahead adders

of the device, which could potentially be problematic as input sizes and desired

aCCllraCH'S lllcrease.

Finally. concerning FPGA implementations of these designs, an important point

to consider is the amount of area consumption per device module with these de

signs. For the ten configurations discussed in the previous two chapters, the device

which consumes the largest amount of area is the multiply accumulate unit. As

sta_ted in Chapter 3, this unit consists of a modified tree multiplier followed by

a carry lookahead adder. In many FPGA devices, multipliers and adders are on

board and available for use by other design components. With this in mind, a
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design could be implemented using the existing multiplication and addition units,

effectively eliminating the largest component of the design, while maintaining the

speed (111(1 efficiency of the logic gate components.

5.2 Fut ure Research

Using the work' presented in this thesis as a starting point, there are a number of

areas in which further work could be pursued. First, since the scope of this thesis was

to develop a new approach to sigmoid approximation rather than extensive digital

synthesis. one possible extension to this work is furthering the FPGA synthesis

results. In addition to the Altera FPGA synthesis performed, devices from other

manufacturers, such as Xilinx, could be synthesized. ASIC synthesis using other

ASIC libraries is also a potential direction. This would potentially provide further

pr<)l)!' of the b(mefits of using this approximation technique for ASIC devices.

\Vith respect to the actual technique discussed, exploration could be made re

garding possible advantages of using evenly-sized intervals whenever possible. Also,

this technique could be applied to other functions such as logarithmic, exponential,

and trigonometric functions. If this research proved effective with these functions

as well, a general form for implementing function approximations using the pro

posed technique might be possible, for any given function meeting criteria such as

continuous, differentiable, etc.
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Higher-order minimax approximations could be considered for the sigmoid func

tion and its derivative. This thesis focused on first-order approximations as they

were simplest to implement. It should be noted, however, that the amount of accu

racy available for designs may be limited depending on the function in question. By

using higher-order approximations, it may be possible to attain a balance of higher

accuracy with moderate hardware complexity.

Finally. softwC1rp to generate various aspects of this work could be created. One

starting point might be the design of the algorithm for interval determination dis

cussed in Chapter 3. Automation of VHDL or Verilog code generation for simulation

and synthesis would also be a possible area of future work, potentially working with

the existing programs used to generate the carry lookahead adders and multiply

accumulate units discussed in Chapter 3.

As the results and these directions show, this implementation technique of par

titioned minimax approximation of the sigmoid and its derivative offers potential

benefits for FPGA and ASIC implementations, due to its lack of lookup table and

register dependencies, as well as its relatively simple implementation.
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