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Abstract

Combining signal detection decisions from multiple sensors is useful in some commu­

nications, radar, and sonar applications. There has been extensive investigation of

optimum schemes for generating and combining the detector decisions for cases with

independent observations from sensor to sensor. However, cases with dependent ob­

servations from sensor to sensor had received much less attention. Here a simple

design approach is outlined. The focus is on the detection of a weak random signal in

additive, possibly non-Gaussian noise. The design approach is based on an adaptive

algorithm which attempts to learn the distributed detection scheme which provides

a minimum mean-square error match to the best centralized detection scheme.
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Chapter 1

Introduction

Distributing sensors over a large area is necessary in some signal detection, track­

ing, and surveillance applications. Such arrangements may provide advantages over

single sensor systems in terms of reliability, survivability, and improved signal detec­

tion performance. These performance improvements are the result of the inherent

spatial diversity combining that occurs in such cases, provided the sensors are sep­

arated by sufficient distances. In the interest of reduction of communication costs,

simplification of processing, and preventing interception of one's communications,

it is often advisable to use distributed detection schemes, which locate quantizers

directly at each sensor. As illustrated in Figure 1.1, these quantizers reduce each

sensor's observations to a multi-bit decision, and attempt to retain the essential

information in these individual decisions needed to make a final signal detection

decision.

Specifying the form of the quantizers at the sensors (the sensor decision rules) and

specifying how the quantized observations will be used in the final signal detection

decision (the fusion rule) are of fundamental importance for obtaining optimum

performance. The need to specify each sensor's decision rule and the fusion rule

makes distributed detection schemes inherently more complicated to design than the

more common centralized detection schemes, where all observations are available in

their original form at a central location. In this thesis, the focus is on the case of

weak signals, so we consider locally optimum tests [1]. Further, we consider the

2



noise
'Ii Sensor I

~+
X decision ........ Sensor I... D..M -I ...

I

Possible
noise

(2} Sensor 2 Final
Random

~+
X ... decision ...Sensor 2 Decision

Signal r

D..M -I r Fusion Center.... 2 ....
r ...

es • A
LO

Noise Only• or

noise • Signal
IN' Sensor N Present

X
~+

....
Sensor N decision ......

D..M-l
r

N

Figure 1.1: Block diagram of a distributed signal detection system.

detection of a common random signal in additive noise.

The results in [2, 3] show that for large observation sample sizes and weak sig­

nals [1] the optimum sensor test statistics are composed of some known functions

with unknown parameters. The results [2, 3] also show that for large observation

sample sizes and weak signals the optimum sensor rules minimize the mean-square

error between the test statistic used to make a final decision in the distributed

detection system and the test statistic used in the optimum centralized detection

system for the same problem. Even for small sample sizes, this mean-square er­

ror is a meaningful performance measure. This suggests using an adaptive algo­

rithm to find the parameters that minimize this mean-square error as in Figure

1.2.

Our training scheme implements the stochastic LMS gradient algorithm, a gradi­

ent descent algorithm which has been used successfully in adaptive filter and neural

network applications [4]. It is important to note that a gradient descent algorithm

does not always find the global minimum. However, here we are interested in look­

ing for any local minimum which gives better performance than the best test under

the assumption of independent observations, which others have suggested using.

3
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Chapter 2

Distributed Detection Scheme

Consider the detection of a common weak random signal where the observation at

the ith discrete-time instant and the pth sensor is given by

(2.1 )

(2.2)

where {1;i(p); i = 1, ... ,n, p = 1,· .. ,N} is a set of independent and identically dis­

tributed (iid) zero-mean noise samples with a known common univariate probability

density function (pdf) f, () is a scalar value which represents the signal strength,

which is assumed to be small, and {Siji = 1,'·' ,n} is a set of zero-mean unit­

variance random signal samples. For simplicity, we assume the signal samples at

different time instants are independent.

In the locally optimum centralized detection scheme, sensor p makes a set of

observations, (Xip),x~p), ... ,X~p)) = (x~p),x~p), ... ,x~)). The final test statistic is

given by
n N f"(x~p)) n N N f'(x~p)) f'(x~q))

AUQ = L L (p) +L L L (p) (q).
i=l p=l f( xi) i=l p=l q=l,qf-p f( Xi ) f( Xi )

where f'(x) and f"(x) are the first and second derivative, respectively, of the noise

pdf f( x). The final decision is made by comparing AUQ to a threshold. The value

of the threshold is determined by the required false alarm probability.

It is important to note that if the noise pdf f( x) is an even symmetric function

then the second derivative f"( x) is even symmetric and the first derivative f'( x) is

5



odd symmetric

The first term of (2.2) can be interpreted as a generalized measure of the energy of

the observations. The second term can be interpreted as a generalized measure of the

correlation between observations made at different sensors. In a situation where the

observations from sensor to sensor are uncorrelated, the correlation measure becomes

unimportant and the second term in (2.2) can be ignored. However, ignoring the

correlation term in situations where observations are dependent from sensor to sensor

may degrade performance.

In the distributed detection scheme, sensor p makes a set of observations,

( X1(p) X2(P) '" X(p)) = (X(lP) x (2P) ... x(p)) If the observation vector falls within a
, , 'n '" n .

quantization region A;p), the quantizer at sensor p produces the multi-bit decision

symbol j E {O,"', Mp - I}. The fusion center makes a final decision based on the

complete set of sensor decisions by calculating the locally optimum test statistic [3]

N Mp-l N Mp-l N Mp-l
ALO = L L Z;p)z;p) +L L L L l;p)z;p)liq)zi

q
) (2.3)

p=l j=O p=l j=O q=l,q:f:p k=O

where

and

1"(x)
Z(p) = JXEA} 1(x) f( x) dx

J JXEAI? f( x )dx
J

r.p ) = JXEA} *f f( x) dx

J JXEAI? f( x) dx
J

(2.4)

(2.5)

(2.6)

are conditional expectation values and z;p) denotes an indicator function such that

z(p) = {I, if x~p) EA~ .
J 0, otherwise

The final detection decision is made by comparing ALO to a threshold. The value

of the threshold is determined by the required false alarm probability.

The first summation in (2.3) is analogous to the first summation in (2.2) and

represents the energy of the observations. Likewise, the second summation in (2.3) is

analogous to the second summation in (2.2) and represents the correlation between

observations at different sensors.

6



Consider the mean-square error between the locally optimum quantized test

statistic and the locally optimum centralized test statistic as given by

(2.7)

Under the assumptions outlined, the sensor processing schemes which minimize

J are found in [3]. The regions A)p) are given by the intersection of M p - 1 regions,

each of which comes from comparing a test statistic

n f"( (p») n f'e (p»)
j(p)(x(p») - '" a(p) Xi +'" b(p) Xi

],k - - 6 ',],k f( (p») 6 ',],k f( (p»)
,:=1 X. ,:=1 X.

(2.8)

to a threshold i;~2. The scalar parameters a~~}k' b~~}k' and thresholds i;~2 are anti­

symmetric with respect to j and k. Because of this antisymmetric property, there

are a total of (2n +1)Mp(Mp -1)/2 unknowns. Region A)p) is given by

(2.9)

(2.10)

To simplify matters we consider the case where N individual sensor quantizers

each make a single observation. This is the case where n = 1 in (2.1) and the

complete set of sensor observations is {x~p); p = 1, ... , N}. The test statistics in

(2.8) then take the form

j (p)(x) = a(p~ f"( x) + b(p) 1'(x)
],k . 1,],k f( x) 1,],k f( x)

Normalizing by II(a~~],k' b~~],k)11 and transforming to polar coordinates yields

where

(p)( ) ((p»)fll(X) . ( (P»)J'(x)
\,k x = cos <Pj,k f( x) + sm <Pj,k f( x)

(

b(p) )(p) 1,j,k
¢j,k = arctan a(p) .

1,],k

The threshold is normalized as

'(p)
ip) _ tj,k

],k - II( (p) b(p) )11'
a1,j,k' 1,j,k

7
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This transformation results in fewer unknown parameters without a loss of gener­

ality, since any region definition which can be obtained by comparing (2.10) to a

threshold can be obtained by comparing (2.11) to a threshold.

As an example, consider a binary quantizer (Mp = 2) at sensor p. There is one

comparison which defines each region A;p). The regions are defined as

AlP) = {x :Al~J(x) > tl~n

A~p) = Aip). (2.14)

For a ternary quantizer (Mp = 3) at sensor p, there are two comparisons which

define each region A;p). The regions are defined as

A(p) = {x : A(p)(x) > t(p)} n {x : A(p)(x) > t(p)}
2 2,1 - 2,1 2,0 - 2,0

A(p) = {x : A(p)(x) < t(p)} n {x : A(p)(x) > t(p)}
1 2,1 2,1 1,0 - 1,0

8
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Chapter 3

Training Algorithm

The mean-square error J in (2.7) depends on the parameters of the sensor quantizers

which are collectively denoted by the system parameter vector W. For a set of binary

quantizers, the system parameter vector would be

-> _ [(1) (1) (2) (2) (N) (N)] T
W - il,a, <Pl,O' il,a, <Pl,O' ... , il,a, <Pl,O' . (3.1)

In the gradient descent method [4], the system parameter vector is updated by

adjusting it in the direction of steepest descent of the cost function, which is opposite

the gradient VwJ as in

W(m + 1) = W(m) - flVwJ, (3.2)

where fl is a small positive constant called the learning raie and m is an index which

denotes the iteration number in the training. The updated vector W(m + 1) will

be closer than W(m) to the minimum of J provided [4] J is well behaved and has

a minimum, fl is sufficiently small, and the initial condition W(O) is in the domain

of attraction of the minimum of J. Since AUQ in (2.2) does not depend on the

parameters of the distributed scheme, VWAUQ is zero so that VwJ can be written

as

(3.3)

9



For simplicity, the expectation value in the gradient will be approximated during

training (with () = 0), as in

(3.4)

which is simply the instantaneous value. This approximation reduces the training

to the stochastic LMS gradient algorithm which has been previously studied [4]. At

each iteration, TV is updated as

(3.5)

~~---------------,,-----------------,

(a) (b)

Figure 3.1: ALO for a one sensor system.

Consider a single sensor with a binary quantizer. The observation xP) is quan­

tized, causing the test statistic ALO to be discontinuous in xP). However, the quan­

tization regions are determined by TV = [tl~6, 4>l~6r. This means that for some XlI)
and tl~6, the test statistic is discontinuous in 4>l~6, and for some xP) and 4>l~6, the

test statistic is discontinuous in tl~6. The discontinuity present in ALO causes the

gradient to be undefined for some parameter settings and observation values. In

Figure 3.1(a) the test statistic ALO is shown as a function of xP), labeled as 'x', and

tl~6, labeled as 't', with 4>l~6 = O. In Figure 3.1(b) the test statistic ALO is shown

as a function of xlI), labeled as 'x', and 4>l~6, labeled as 'phi', with tl~6 = O. We

have introduced a sigmoid function which smoothes out the discontinuities in ALO

10



by providing a continuous and differentiable approximation to L~O-l Z;p) z;p) in (2.3)

as
Mp-l Z{p) Z{p)

L{p)(x) = Z{p) + L j - 0 (3.6)
o j=1 1 + L~O~~:f:j exp( -,(.Aj,k(X) - tj,k))

In a similar way we have defined a continuous, differentiable approximation to

L~O-l0P)z;p) in (2.3) as

The scaling parameter, controls the size of the region over which the discontinu­

ity is smoothed. The test statistic is then formed at the fusion center using the

approximate values L{p)(xlP») and i(p)(xlP») as

N N N
ALO ~ L L{p)(xlP») +L L i(p)(xlP»)i(q)(xlq»).

p=1 p=1 q=l,q:f:p

(3.8)

The resulting test statistic is a smooth function of xP) and TV as shown in Figure

3.2. In Figure 3.2(a) the test statistic ALO is shown as a function of xlI) and tl~J,

labeled as 'x' and 't', with 4>eJ = O. In Figure 3.2(b) the test statistic ALO is shown

as a function of xP) and 4>~IJ, labeled as 'x' and 'phi', with the parameter tpJ = O., ,

I

Ii---------------''-------------------'

(a) (b)

Figure 3.2: ALO for a one sensor system after smoothing with sigmoids.
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Chapter 4

Implementation

The training algorithm of Chapter 3 has been implemented in IBM XL Pascal on

an IBM RS/6000 workstation. Two-sensor cases with binary and ternary quantizers

were studied. Binary quantization was studied for observations with noise pdfs of

the form

where

f(x) = 2A(k)~(1/k) exp -[Ixl/A(k)]k

1

A(k) = (r(l/k)) 2"
r(3/k)

(4.1)

(4.2)

(4.3)

and where r(a) = 1000 xa-1e-xdx is the gamma function. f is known as a general­

ized Gaussian pdf, which has zero mean and unit variance. If k = 2.0 then f is the

Gaussian pdf and if k < 2.0 then f is a pdf with heavy tails. The heavy-tailed pdfs

appear to be reasonable models for a number of practical cases [1] including impul­

sive noise. In this thesis, parameter values of k = 2.0, 1.8, and 1.6 are presented.

Binary quantization is also studied for observations with Cauchy noise, with a pdf

1
f(x) = 7r(x2 +1)

The Cauchy pdf is also considered a heavy-tailed pdf. Cases with two ternary

quantizers and generalized Gaussian noise with parameter k = 2.0 were also studied.

The observation samples are generated using subroutines available in the IMSL

Fortran Numerical Libraries. For generalized Gaussian noise, the IMSL routine

12



DRNGCT is used, which generates random samples given a table of values for a

monotone increasing continuous cumulative distribution function (cdf). The routine

implements the inverse cdf method using piecewise cubic interpolation to generate

the samples. For generation of Cauchy noise, the routine DRNCHY is used, which

uses a faster and more simple method than inverse cdf to generate Cauchy noise

samples.

To calculate the conditional expectation values Z;p) and 0P
), the integrals in

equations (2.4) and (2.5) are to be calculated. This requires that the boundaries of

the quantization regions A;p) be determined. The points at which the test statistics

).;~2(x) are equal to the thresholds t;~2 are the boundaries of the quantization regions.

The functions ).;~2(x) - t;~2 are scanned from left to right at non-uniformly spaced

intervals starting at a large negative value and ending at a large positive value

such that the starting and ending points have absolute values large enough that the

value of the pdf at the endpoints f(boundary) is negligible so that if a zero crossing

exists outside of the range scanned, its existence is not important numerically. The

intervals are cubicly spaced so that the intervals are large for large values of x where

the function f( x) changes slowly, and small for x near awhere 1'(x) and f"( x) can

take large values. Once a zero crossing is found in an interval, the exact location of

the zero crossing is found to arbitrary accuracy using the bisection method. After

all zero crossings are found, every interval between two zero crossings is tested using

(2.9) to determine which region A;p) the interval belongs in. It should be pointed

out that this method does not necessarily perform well for finding all roots of an

arbitrary function. With the class of functions co:q.sidered here, it is easy to bound

the number of possible zero crossings and make some general statements concerning

their locations.

Once the boundaries of the quantization regions are found, the integrals in equa­

tions (2.4) and (2.5) can be calculated. Since an analytic expression for f(x) and

f'(x) can be written, the integrals in the numerators of equations (2.4) and (2.5)

can be evaluated analytically. For the denominators, a general purpose integration

routine available in the IMSL Fortran Numerical Library is used.

The calculation of ).LO follows from the calculation of the conditional expectation

13



values l)p) and 0P
) and equations (3.6) and (3.7).

The calculation of VwALO is accomplished by a finite difference calculation of

the derivative of ALO with respect to each of the system parameters in W.

The training algorithm is summarized in the steps given below.

1. Generate x~p) for each sensor.

2. Calculate AUQ from equation (2.2) and ).LO from equation (3.8).

3. Find the error AUQ - ALO.

4. Calculate the gradient VwALO from (3.8)

5. Update system parameters according to (3.5).

6. Repeat.

14



Chapter 5

Results

We consider a distributed signal detection scheme as shown in Figure 1.1 which is

designed to detect a weak random signal in noise. For simplicity we consider the

case of only two sensors and assume the observations come from the model given in

(2.1) with noise samples with a generalized Gaussian or a Cauchy pdf.

The parameters in the sensor decision rules are learned using the algorithm

outlined in Chapter 3 with fl = 0.00001 in (3.5) and the scaling parameter, = 40

in (3.6) and (3.7).

A system with two binary sensors was trained for the case of generalized Gaussian

noise with k = 2.0. The initial conditions were set up so that the quantization rules

were non-symmetric and different at each sensor. The initial and final values of the

system parameters are shown in Table 5.1. Other initial conditions were tried and

similar results were obtained. The time evolution of the parameters is shown in

Figure 5.1. Notice that the angles ¢~~J and ¢~~J both converge to values near zero,

indicating that each sensor uses an even symmetric quantization rule, i.e. if x E A}p)

then -x E A}p). An even symmetric region A}p) also implies that l;p) = 0 for that

region, since 0P
) is calculated using the integral of an even symmetric function. The

result is the same quantization rule as would be obtained under the assumption of

independent observations, where the correlation between observations at different

sensors is unimportant. The final parameters in Table 5.1 describe a system similar

to one which was found to be optimum in previous work [2].

15



Parameter Initial Final

tl16 0.0 1.19

cPl
1
6 7r/4 0.0

t126 0.0 1.18

cP1
2
6 -7r/4 0.0

Table 5.1: Optimum system parameters for two binary sensors and k=2.0.

Parameter Initial Final

tl
1
6 0.0 0.76

cP112 1.0 0.010

t126 0.0 0.76

cP1
2
6 -1.0 0.0

Table 5.2: Optimum system parameters for two binary sensors and k=1.8.

A system of two binary sensors was trained for the case of generalized Gaussian

noise with k = 1.8. The system parameters were intentionally set to non-symmetric

initial conditions as in the previous example. The initial and final values are shown

in Table 5.2. Other initial conditions were tried for this case and similar results were

obtained. The time evolution of these parameters is shown in Figure 5.2. Notice

again that the final results indicate that the quantization rules used at each sensor

are even symmetric. The final parameters shown in Table 5.2 describe a system

similar to one which was found to be optimum in previous work [2].

A system of two binary sensors was trained under generalized Gaussian noise

with k = 1.6. The system parameters were intentionally set to initially represent an

even symmetric quantization rule. The initial and final values are shown in Table

5.3. Again, other initial conditions were tried for this case and similar results were

obtained. The time evolution of these parameters is shown in Figure 5.3. The initial

angles cPi~J and cPi~J were set to abut converged to nonzero final values, indicating

that even symmetric quantization rules are not best for this particular noise pdf.

The final parameters shown in Table 5.3 describe a system similar to one which was

found to be optimum in previous work [2].

16



Parameter Initial Final

tl
1
6 -1.0 0.03

¢P2 0.0 -1.310

t1
2
6 -1.0 0.03

¢P2 0.0 1.310

Table 5.3: Optimum system parameters for two binary sensors and k=1.6.

Parameter Initial Final

tl16 0.0 0.2

rPl
1
6 0.0 -1.57

ti26 0.0 0.2

rP1
2
6 0.0 1.57

Table 5.4: Optimum system parameters for two binary sensors and Cauchy noise

For Cauchy noise, the initial and final parameter values are shown in Table

5.4. Again, other initial conditions were tried for this case and similar results were

obtained. The time evolution of these parameters is shown in Figure 5.4. In the

case of Cauchy noise, unlike any of the previous cases, the angles <Pi~6 and rPi~6

converged to values of 7r /2 and -7r /2, respectively. This implies that the energy

term is unimportant and that the test statistic ).LO depends heavily on correlation

terms. Since this result has not been previously reported, it was compared to the

optimum system under the assumption of independent observations. Under the

assumption of independent observations, the optimum system has a mean square

error of 6.56. The result presented here has a mean-square error of 2.31.

A system of two three-level sensors was also trained under generalized Gaussian

noise with parameter k=2.0. The sensor decisions are made using (2.15) and the

fusion center generates a final decision using the test statistic in (3.8). Given two

different sets of initial conditions, very different results were obtained. One set of

initial and final values of the system parameters are shown in Table 5.5. Another

appears in Table 5.6. The values which appear in Table 5.5 describe a system

with two identical quantizers, each of which has symmetric quantization regions

17



Initial Final Initial Final
t(l) 6.0 3.1 t(2) 6.0 3.121 21

t~16 3.0 2.5 t(2) 3.0 2.520

ti
16 2.0 0.3 tT2J 2.0 0.3

¢~li 7r/4 0.0 ¢(2) -7f /4 0.021
¢(1) 7r/4 0.1 ¢(2) -7f /4 -0.220 20

¢i
1
6 7r/4 0.0 ¢(2) -7f /4 0.010

Table 5.5: Case 1: System parameters for two three-level sensors and k=2.0.

Initial Final Initial Final
t(l) 2.0 1.1 t(2) 2.0 1.121 21

t~16 1.0 0.5 t~26 1.0 0.5
t(l) 2.0 1.1 t(2) 2.0 1.110 10

¢~li 7r/4 1.78 ¢(2) 7f/4 1.7821
¢(1) 0.0 0.5 ¢(2) 0.0 0.520 20

¢i
1
6 -7f/4 -1.78 ¢(2) -7f/4 -1.7810

Table 5.6: Case 2: System parameters for two three-level sensors and k=2.0.

A;p). Due to the symmetry in each quantization region, all of the Z;p) values in the

system are zero. This implies that the correlation term in ALO is not important.

The resulting system is identical to the optimum scheme under the assumption of

independent observations. We will call this result Case 1. The time evolution of

the system parameters in Case 1 appears in Figure 5.5. The values which appear

in Table 5.6 describe a system with anti-symmetric quantization regions, where the

correlation term is non-zero for two of the quantization regions. These values are

different from those in Case 1. We will label this result Case 2. The time evolution

of the system parameters for Case 2 appears in Figure 5.6.

Because of the disparity in the two sets of results, the relative performance of the

two resulting systems was compared by measuring the mean-square error J in each

scheme. For Case 1, J was measured to be 4.67 while for Case 2, J was measured

to be 3.56, much lower than the mean-square error for Case 1. This implies that the

anti-symmetric quantization scheme in Case 2 performs better than the symmetric

18



quantization scheme in Case 1.

Consider the test statistic ALO in the two cases above and the test statistic AUQ

in the centralized scheme. Figure 5.7 shows the test statistic values at the fusion

center for each of these three schemes. Note that in Figure 5.7(a), ALO in Case

1 is symmetric about the x(l) axis and about the x(2) axis due to the symmetric

quantization regions. In Case 2, the regions are antisymmetric, and if X(l) and X(2)

have opposite signs, then the test statistic in Figure 5. 7(b) has a lower value than

if the observations are of the same sign. This appears to more closely approximate

AUQ in Figure 5. 7(c) where the test statistic is small for observations of opposite

sign and large for observations of the same sign.
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Figure 5.1: Time evolution of the parameters for a system with two binary sensors
and generalized Gaussian noise with k = 2.0.
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Figure 5.2: Time evolution of the parameters for a system with two binary sensors
and generalized Gaussian noise with k = 1.8.
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(a) (b) (c)

Figure 5.7: Comparison of fusion center test statistics as a function of two observa­
tions. (a) ).LO for Case 1. (b) ).LO for Case 2. (c) ).UQ.
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Chapter 6

Conclusion

We have presented an adaptive algorithm which can be used to train a distributed

detection system to learn system parameters which provide good performance for

the detection of weak random signals. The sensor test statistics and thresholds

are adapted using a gradient descent method in an attempt to achieve a minimum

mean-square error match to the best centralized test statistic. This method is easier

to implement than techniques suggested in previous research [2].

In some of the cases we considered, the system parameters found using this

method were close to those found to be optimum in previous research. In other

cases, system parameters were found which offered lower mean-square error ap­

proximations to the corresponding centralized schemes than those found under the

assumption of independent observations. Some results have been presented for cases

which have not been studied elsewhere.

25



Bibliography

[1] S. A. Kassam, Signal Detection in Non-Gaussian Noise} Springer-Verlag: New

York, NY, 1988.

[2] R. S. Blum, "Quantization in multisensor random signal detection," IEEE

Transactions on Information Theory, Vol. 41, No.1, pp. 204-215, Jan. 1995.

[3] X. Zhang and R. S. Blum, "Distributed quantization for signal detection in

dependent sensors," 27th Annual Conference on Information Sciences and Sys­

tems, Princeton University, Princeton, NJ, pp. 726-731, March 1994.

[4] S. Marcos, O. Macchi, and C. Vignat, "A unified framework for gradient algo­

rithms used for filter adaptation and neural network training," International

Journal of Circuit Theory and Applications, Vol. 20, No.2, pp. 159-200, Mar

1992.

26



Biography

Matthew C. Deans was born to Mark and Cheryl Deans in May 1972 in Bristol,

PA. He received the B.S degree in Electrical Engineering in 1994, the B.S. degree

in Engineering Physics in 1995, and the M.S in Electrical Engineering in 1996 from

Lehigh University, Bethlehem, PA. Hehas held positions with Johnson & Johnson,

Inc. in New Brunswick, NJ and Electronic Technology, Inc. in Irvington, NJ. He has

also held positions as a research assistant in the Physics Department in 1993 and the

EECS Department from 1994 to the present at Lehigh University. His publications

include:

K. R. Elder, Hao-Wen Xi, M. Deans, J. D. Gunton, "Spatiotemporal Chaos in the

Damped Kuramoto-Sivashinsky Equation," p. 702 in AlP Conf. Proc. 342,

CAM-94 Physics, Cancun, Mexico 1994, Arnulfo Zepeda (Ed.) AlP Press 1995.

M. C. Deans, R. S. Blum, "An Adaptive Algorithm for Distributed Signal

Detection System Design," Sensor Fusion and Networked Robotics VIII, Proc.

SPIE 2589, pp 172-179 (1995).

M. C. Deans, R. S. Blum, "Distributed Signal Detection System Design Using

Adaptive Signal Processing Techniques," Proc. CI5S 96, Princeton University,

Princeton, NJ, March 1996.

27



END OF
TITLE


	Lehigh University
	Lehigh Preserve
	1996

	An adaptive algorithm for the design of distributed detection systems
	Matthew C. Deans
	Recommended Citation


	00898
	00899
	00901
	00902
	00903
	00904
	00905
	00906
	00907
	00908
	00909
	00910
	00911
	00912
	00913
	00914
	00915
	00916
	00917
	00918
	00919
	00920
	00921
	00922
	00923
	00924
	00925
	00926
	00927
	00928
	00929
	00930
	00931
	00932

