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Abstract

In this dissertation, we study network design problems that involve multiple — usually two —

rational decision makers. Within this class of problems, we are particularly interested in hierarchical

structures, in which decision makers (DMs) make their optimal decisions by anticipating other

DMs’ optimal responses. We present a novel method for solving the problem of the leader to near

optimality. It relies on heuristically reformulating the follower’s problem and embedding it into the

leader’s problem as constraints. The resulting formulations are more tractable and provide near-

optimal suggestions for the leader’s decision.

First, we consider a competitive facility location problem where two firms engage in a leader–

follower game. Both firms would like to maximize the customer demand that they capture. Given

the other player’s decision, each player’s problem is the classical Maximal Covering Location Prob-

lem (MCLP). We use the greedy add algorithm as a proxy for the follower’s response and formulate

a mixed-integer programming (MIP) model that embeds the follower’s heuristic response into the

leader’s constraints, and solve it as a single-level program. We propose and compare alternative

formulation strategies.

In our second study, we consider a network design game played on a given graph. Each player

builds her own network, maximizing individual profits. Therefore, each player’s problem given the

other’s decision is a variant of the Prize-Collecting Steiner Tree problem (PCST). We first present

an MIP formulation that finds a pure strategy Nash-equilibrium when the players decide simultane-

ously. Then we consider a Stackelberg setting and present a heuristic reformulation strategy for the

follower’s problem based on a pruning algorithm.

1



Finally, we consider the university and job application processes, where an applicant to a par-

ticular institution may increase the probability of receiving an offer by demonstrating her interest in

that institution. We characterize the optimal set of institutions to which a candidate should demon-

strate interest (i.e., send costly signals) from among the set of institutions to which she has applied.

We demonstrate that a greedy algorithm implements the optimal decision rule. In addition, we show

that the problem can be posed as a nontraditional longest path problem, for which we introduce a

more efficient dynamic programming algorithm and which we can formulate using only affine con-

straints.

2



Chapter 1

Introduction

1.1 Optimization and Competition

Network design problems, in general, are fairly easy to describe yet computationally difficult to

solve. The existence of multiple rational decision makers (DMs) make this decision-making process

even more demanding. The reason is that a DM has not only to find an optimal solution to her

problem, but also has to consider rational responses of other DMs, whose decisions may alter her

results.

Problems involving multiple DMs are the subject of game theory and have been studied by

mathematicians and economists over several decades. A specific type of these problems, introduced

in 1934 by von Stackelberg (2011, English translation), is the Stackelberg game, in which two firms

engage in a leader–follower competition over production quantity. The leader is the first mover in

the game. His decision is observed by the follower and is responded to. Depending on the structure

of the game, the leader may or may not have a first mover’s advantage. In these games, the goal is to

arrive at a subgame perfect Nash equilibrium, which is to solve the problem from the leader’s point

of view ensuring that the follower’s response is optimal given the leader’s decision. These problems

yield extensive insight about the economic behavior of humans. However, in the context in which

they are studied in economics, they do not aim to solve real-world scale problems.

3



1.1. OPTIMIZATION AND COMPETITION

Leader’s
problem



min fL(x, y
∗)

s.t. gL(x, y
∗) ≤ 0

y∗ ∈ argmin fF (x, y)

s.t. gF (x, y) ≤ 0

y ∈ Y

Follower’s
response

x ∈ X, y∗ ∈ Y

Figure 1.1: A generic bilevel program

Their introduction to operations research occurred in the early 1970’s by Bracken and McGill

(1973). Candler and Norton (1977) coined the term multilevel (bilevel for two DMs) programming.

The leader’s problem is generally called the upper level problem and the follower’s problem is called

the lower level problem. Figure 1.1 illustrates a generic bilevel program, where subscripts L and F

denote the leader and the follower, respectively. f and g and indicate their functions and constraints,

respectively. x ∈ X and y ∈ Y are, respectively, the leader’s and the follower’s decision variables,

and y∗ correspond to the optimal response of the follower given a particular leader decision x.

Bilevel programs generalize the idea of sequential nonzero-sum games and are useful in modeling

problems with competition. However, these nested programs suffer heavily from computational

complexity, mainly because checking the feasibility of a particular solution is itself an optimization

problem hence is as difficult as the lower level problem. Even in the simplest case, in which both

upper and lower level problems are linear, the resulting bilevel linear programming problem is in the

complexity class NP-hard, as shown by Jeroslow (1985). Ben-Ayed and Blair (1990) uses a simpler

argument involving the integer Knapsack problem and a bilevel representation of 0-1 variables.

Network design problems involve binary decisions; hence, their bilevel versions are intrinsically

more difficult than bilevel linear programming. Jeroslow (1985) shows that these belong to higher

complexity classes; for instance, decision problem of the bilevel integer program belongs to Σ2

in polynomial hierarchy. For more information on computational complexity readers can refer to

Arora and Barak (2009) and Papadimitriou (1994). Detailed discussions of polynomial hierarchy

4



1.1. OPTIMIZATION AND COMPETITION

can be found in Stockmeyer (1977) and Papadimitriou (1994, chapter 17). As a result, several

solution methods have been developed for integer bilevel programming problems. Next, we are

going to briefly discuss some of these methods. Then, we are going to discuss application areas

of bilevel programming. Finally, we are going to provide an outline of the dissertation research

and discuss our contributions. A comprehensive discussion of these is beyond the scope of this

dissertation. Interested readers can refer to reviews by Colson et al. (2007), Dempe (2003) and

Vicente and Calamai (1994); books by Dempe (2002) and Bard (1998); and bilevel programming

related articles in Encyclopedia of Optimization (Floudas and Pardalos, 2009).

1.1.1 Solution Methods

Linear bilevel programs have been studied extensively and information on methods and applications

can be found in the aforementioned references. We are going to briefly investigate solution method-

ologies for bilevel programs, which include integer variables in at least one of the levels. They are

deemed very hard to deal with as they bring serious algorithmic challenges, such as relaxations and

fathoming rules which do not work as in the case of standard mixed integer programs. Perhaps

mainly for that reason, these problems have attracted quite limited attention. Vicente and Calamai

(1994) provide a large bibliography of the early developments. Almost all are related to problems

without integrality constraints and the authors only cite four papers (Moore and Bard, 1990; Wen

and Yang, 1990; Bard and Moore, 1992; Edmunds and Bard, 1992) that are related to integer bilevel

programs. The earliest solution approach for integer bilevel programs that we know of is by Moore

and Bard (1987), which is probably published as Bard and Moore (1992).

Moore and Bard (1990) introduce a basic implicit enumeration scheme that mirrors the branch-

and-bound procedure for solving mixed integer programs. The algorithm is designed for mixed in-

teger linear bilevel programs that can have integer variables on both levels. The algorithm generates

upper bounds (for minimization) by discarding the lower level objective. It continues with solving

the relaxed problem and branches when the solution is nonintegral. Then it fixes the leader’s vari-

ables, and solves the follower’s problem to obtain a bilevel feasible solution and hopefully a lower

5



1.1. OPTIMIZATION AND COMPETITION

bound. It continues in this manner until the bounds are tolerably close.

Wen and Yang (1990) study a mixed integer bilevel linear program in which integrality con-

straints exist only for the leader’s decision variables and constraints are common for both decision

makers. They implement a standard branch-and-bound algorithm. They start by solving the fol-

lower’s problem and then the leader’s problem, setting integer variables to zero. They use the ob-

jective and dual solutions in the upper bounding step (they consider a maximization problem) and

update this bound as they branch on variables by sensitivity analysis. They also propose a heuristic

procedure that runs in as many iterations as the number of integer variables. They develop an index

to select which integer variables to set to one.

Bard and Moore (1992) take a simple path in solving a pure zero-one integer bilevel program-

ming problem. They use the branch-and-bound approach for solving standard integer programs. On

the other hand, they switch the leader’s and the follower’s objectives and solve the overall problem

for the follower. They replace the leader’s (maximization) objective with a parameterized constraint

of the form (F (x) ≥ α). They control the number of ones among the leader’s binary decision

variables by another parameterized constraint (
∑

x ≥ β). One important detail is that they assume

the constraint and objective coefficients to be integral. They adjust these bounds, increasing the

leader’s objective until it becomes infeasible to do so anymore. Edmunds and Bard (1992) intro-

duce an algorithm to solve mixed integer nonlinear bilevel programs. The programs they consider

have binary integrality constraints for the leader’s decision and a convex leader objective function.

On the other hand, the follower’s objective is convex quadratic and his constraints are linear. They

use the common trick for linear follower programs, and use the Karush-Kuhn-Tucker conditions to

represent it. They propose a branch-and-bound algorithm. Their approach is the same as the branch-

and-bound approach for solving standard mixed integer programs except that they also branch on

the complementarity constraints. This is also similar to associating a binary variable (u) to each

complementarity constraint, and fixing the primal function value (g() ≤ 0) or multiplier (µ ≥ 0) to

zero by, respectively, either (g() ≥M(u− 1)) or (µ ≤M(u)). Bard’s collected studies also appear

in Bard (1998, Ch. 6).

6



1.1. OPTIMIZATION AND COMPETITION

After branch-and-bound, the second approach that comes to mind is cutting planes. Thirwani

and Arora (1997) introduce a cutting plane algorithm to solve the integer linear fractional bilevel

programs. The algorithm starts by finding an integer solution for the leader’s problem. Then the

follower’s problem is solved to check for optimality (i.e. if the leader anticipated the optimal re-

sponse). Then a special cut is added to find the next best integer solution, which is then checked for

optimality. Nonintegral solutions are solved until integrality using Gomory cuts. Dempe (2002, Ch.

8) describes a cutting plane approach. The procedure for computing the Chvátal-Gomory cut is left

to an oracle, which computes a cut that a given nonintegral optimal solution (to the linear bilevel

program) violates. It is, however, not implementable in general, as the oracle is NP-Complete.

Cuts are generated and are added until the convex hull of the follower’s problem is described well

enough. Due to numerical issues this might result in premature termination with an infeasible so-

lution, where the author suggests branch-and-cut procedures would be needed. Recently, DeNegre

and Ralphs (2009) described a basic branch-and-cut algorithm. Dempe (2002) states that it would

be desirable to solve a single level program where the lower level problem is described by a set of,

perhaps heuristically generated, lower level solutions. This is especially true for the cases in which

the follower’s problem is a knapsack problem, where good approximations are readily available.

This is similar to our approach for solving the competitive facility location.

Since this class of problems are quite hard, introduction of metaheuristics is inevitable. For

instance, Wen and Huang (1996) describe a tabu search heuristic where they solve a bilevel linear

problem in which integer variables appear only in the leader’s decision. They iteratively generate

integer solutions through the heuristic procedure and solve the follower’s problem. Sahin and Ciric

(1998) introduce a dual temperature (resembling the two level structure) simulated annealing ap-

proach to solve bilevel programs in general. They report experiments on a mixed integer (binary)

bilevel nonlinear problem, which is a process layout design.

Many of the solution approaches are interested in quite restrictive types of problems. Jan and

Chern (1994) solve a separable integer monotone bilevel programming problem with monotone

objective and constraints, which are separable according to the leader and the follower variables.

7



1.1. OPTIMIZATION AND COMPETITION

They propose a parametric programming approach. The main idea is that they parameterize the

leader’s variables in the follower’s problem and solve it for a number of different parameter values,

hence dividing the problem into regions. Using the results, they solve the leader’s problem and

obtain candidate solutions. A similar approach is taken by Faisca et al. (2007).

Finally, some recent works are as follows. Gumus and Floudas (2005) introduce two approaches

to solve mixed integer nonlinear bilevel programs. The first is for problems with mixed integer non-

linear leader and continuous nonlinear follower subproblems. The second is for problems with

general mixed integer nonlinear functions in the leader’s problem, and for the follower’s problem,

mixed integer nonlinear leader variables; linear, polynomial, or multilinear follower integer vari-

ables, and linear in continuous variables. Their technique is based on the reformulation of the mixed

integer follower problem as continuous through its convex hull representation, perform linearization

and solve the resulting single level problem by existing means. Saharidis and Ierapetritou (2008)

apply Benders decomposition for mixed integer bilevel linear problems, where the integer variables

are controlled only by the leader. The main idea is to fix the leader’s variables and then combine

Karush-Kuhn-Tucker conditions and an active set approach to turn the problem into a single level

mixed integer problem. The solution reveals active constraints. Then the linear program with the

active sets are solved and dual information generates a cut that is added to the leader’s problem. In

the most recent paper we found, Mitsos (2010) solve nonlinear mixed integer bilevel programs. He

finds successively tighter lower bounds by solving a nonlinear mixed integer program, containing

all constraints and parameterized upper bounds for the follower’s objective.

1.1.2 Applications

Bilevel structures arise naturally in decentralized organizations. Bard (1983) discusses a multidi-

visional structure, in which top management is the leader and is followed by the divisions. Subor-

dinate units have their individual objectives, which are not necessarily in line with the superior’s.

The top management can influence (coordinate) them with carefully taken decisions of their own.

8



1.1. OPTIMIZATION AND COMPETITION

Similarly, policy-making at the government level can be viewed from a bilevel programming per-

spective. Bard et al. (2000) models a government encouraging biofuel production through subsidies

to the petro-chemical industry. In this model, farmers respond by deciding how much of such crops

to produce in order to maximize their profit. Amouzegar and Moshirvaziri (1999) present a model

in which a central authority provides off-site disposal facilities and sets the associated prices and

taxes in order to minimize system (investment, transportation, processing) costs. In response, firms

producing hazardous waste make their location-allocation and on-site recycling decisions.

In industry models, firms and customers can be modeled in a bilevel setting. For instance,

Hobbs and Nelson (1992) applies bilevel programming in the electric utility industry for demand

side management. Whereas firms control rates and subsidize energy conservation, customers take

optimal positions in their consumption and investment in conservation. Cote et al. (2003) tackle the

joint capacity allocation and pricing problem for the airline industry and hence represent customer

behavior with regard to product attributes (i.e., fares). In a natural gas shipping case, Dempe et al.

(2005) present a model in which a natural gas shipper maximizes profits. However, the second level

problem is minimizing the cash-out penalties due to imbalances between contracted and delivered

quantities at the time of delivery.

Bilevel programming is also applied in the modeling of direct conflicts between players. In-

terdiction problems are of this type. Israeli and Wood (2002) studies the problem of interdicting

(destroy or increase cost) the arcs of an enemy network. The attacker’s objective is to maximize

the shortest path length, which is the enemy’s optimization problem—between two nodes. Another

interdiction scenario is studied in Scaparra and Church (2008), based on the classical p-median

problem. The leader defends the system by selecting facilities to fortify, and an interdictor attacks a

given number of facilities to maximize the damage.

Another area in which bilevel programming has attracted significant attention is traffic planning.

These problems are similar to the first interdiction example above in construction, since the network

use is optimized by the users (e.g. they find shortest paths). Some examples are mentioned below

and a survey of these problems can be found in Migdalas (1995). Ben-Ayed et al. (1992) designs a
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highway network taking into account the reaction of users to improvements made by the designer.

Labbe et al. (1998), on the other hand, considers the problem of revenue maximization through toll

setting on highways. Drivers respond by altering their driving routes by finding the least-cost (time

and money) travel path. In a similar study, Kara and Verter (2004) minimizes risk of transporting

dangerous goods by selecting a subset of roads through which dangerous goods can be transported.

Firms respond by minimizing their travel costs over the allowed roads.

Bilevel programming is also applied in chemical engineering and bioengineering in the design

and control of optimized systems. For example, Clark and Westerberg (1990) optimize a chemical

process by controlling temperature and pressure. The resulting system reaches equilibrium as it

naturally minimizes Gibbs free energy and this constitutes the second level problem. Burgard et al.

(2003) apply the idea to a bioengineering problem. They develop gene deletion strategies to facil-

itate overproduction of amino acids by the cell. The cell is the follower, responding by optimizing

its growth objective subject to biochemical constraints.

1.2 Contributions and Dissertation Outline

Our novel contribution is a method to reformulate these problems so that they are more tractable

(unlike the originals) and still bear a high representation power (like the originals). We reformulate

the lower-level problems as a heuristic that is specifically developed for that type of problem and

embed them into the leader’s problem as linear constraints. The major benefit of heuristic lower-

level reformulation is being able to solve the problem as an ordinary single-level problem, for which

methods and software are ample. Moreover, the heuristics often describe the lower-level problem so

accurately that the resulting upper-level solutions are near-optimal. Our computational experiments

support these claims, demonstrating reasonably short solution times with low average errors.

This idea relates to the bounded rationality concept of economics. Bounded rationality, intro-

duced by Simon (1955), emerged as an argument against the (unquestioned) assumption of rational-

ity on the part of the decision makers in the 1950’s and has become a cornerstone of decision theory
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since. It relies on empirical evidence regarding satisficing decision makers (employing heuristics),

rather than optimizing ones, especially under circumstances where the optimizing capability or will-

ingness of the decision maker is limited.

The study of network design under competition is interested in devising strategies for the leader

players, and also in how certain networks would evolve without a central decision maker, especially

if the network is important to other stakeholders that are not involved in the decision making process.

In this dissertation, we present our research on three network problems involving competition.

Facility Location: In our first research topic, we study competition in a fundamental facility

location problem—maximal covering. We develop a mathematical programming model to devise a

reasonable strategy for a first mover firm, which engages in Stackelberg competition against a fol-

lower. The follower problem is described using a greedy heuristic and is encoded into the leader’s

problem as linear constraints. We present alternative formulations from different players’ point

of views and then investigate some analytical properties (e.g., bounds) of the method. Our com-

putational analysis demonstrates, numerically, that the method suggests good—optimal in many

cases—strategies.

Distribution Network Design: As our second research topic, we study competition in a dis-

tribution network design — prize-collecting Steiner tree — game. Each player wants to maximize

her profit — node revenue minus arc costs. We develop a model for simultaneous-move setting that

finds a pure strategy Nash equilibrium solution. Then we follow a similar approach as in the first

topic and define the game as a leader-follower game and introduce a method to find reasonable and

good strategies for the leader firm. Here, as a difference from the first topic, we restrict the decision

space of the follower, but solve the problem optimally on this restricted space.

College Admissions: We discuss the university and job application process, which does not

resemble a network design problem at first sight. The university application process, for instance,

involves two parties — schools and students. A student applies to a group of schools and demon-

strates her interest through costly signals (e.g., school visit) within a budget (e.g., time). These
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signals can increase the student’s chances of being accepted. We devote the last study to the charac-

terization of the optimal set of institutions to demonstrate interest. This constitutes a first step in the

analysis of the game, which is expected to continue with the analysis of the school side in the future.

We first show that this problem can be solved with a greedy algorithm. Then, we restate the prob-

lem as a longest path problem and propose a dynamic programming algorithm. This algorithm can

be implemented using linear constraints, hence allows us to formulate the student problem exactly,

which we plan to use in our future study.

The reformulation idea shows itself in three different ways in these problems. In the facility

location case, we use a heuristic algorithm, keeping the follower decision space intact, except for

the reduction caused by the constraints. In the distribution system design problem, we restrict the

opponent to respond on a collection of trees, but the proposed formulation solves the restricted

follower problem optimally. Finally, in the college admissions problem, the reformulation yields

an optimal solution for the unrestricted problem and hence is capable of solving a bilevel problem

whose lower level problem can be solved by the algorithm we proposed.

This dissertation is structured as follows. In Chapter 2, we present our research on the com-

petitive maximal covering location problem. In Chapter 3, we study the simultaneous-move and

Stackelberg versions of the competitive prize-collecting Steiner tree problem. In Chapter 4, we an-

alyze the college admissions problem in light of demonstrated interest. Each chapter includes its

own literature review regarding the discussed topic. Finally, Chapter 5 concludes with a summary

of results and brief discussion of future research.

12



Chapter 2

A Competitive Facility Location

Problem

2.1 Introduction

Facility location problems are pivotal in strategic decision making. Most firms face some sort of

facility location problem, and these problems are often difficult to solve. For instance, the set

covering, p-median, p-center problems are all in the complexity class NP-Hard. Classical facility

location models tend to ignore the effect of competition on the location decision and assume there

were a single decision maker. This is reasonable for locating public facilities like airports or fire

stations, which have virtually no competitors. However, in a market, taking competitors’ responses

into account in the location decisions can significantly alter the resulting solutions and improve the

realized outcomes.

In this chapter, we consider a competitive version of the Maximal Covering Location Problem

(MCLP). There are two firms, who engage in a Stackelberg game, thus sequentially enter a new

market. Each firm enters the market by locating multiple facilities, which are selected from a dis-

crete set of potential facilities. Once the locations are decided, customers patronize their preferred

facilities. The goal of each firm is to maximize the total customer demand that they serve at the end
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of the game. The second mover (i.e the follower) observes the first mover’s (i.e. leader’s) decision

and responds optimally. We assume foresight on the part of the leader, and we solve her problem,

taking the follower’s optimal (i.e. best) response into account. The customers are represented as a

discrete set of points and their demands are assumed to be deterministic.

The difficulty in solving this model comes from two sources. To begin with, MCLP is an NP-

hard problem (Megiddo et al., 1983). Therefore, no polynomial time algorithm is known to solve

it. However, this is not really the biggest problem, as large instances of these problems can be dealt

with efficiently. The major difficulty in solving this problem is that it has a bilevel structure, with

conflicting objectives, and each of the levels can be viewed as an instance of MCLP, given the other.

Our approach aims to overcome this difficulty by replacing the follower’s problem with a rea-

sonable heuristic, embedding this heuristic into the leader’s problem as constraints, and thus solving

the initially bilevel problem as a single-level problem.

We provide an introductory review of the literature on facility location problems that deal with

competition in Section 2.2. In Section 2.3, we introduce our problem and our approach to modeling

and solving it. We present our model in Section 2.4 and discuss two alternate formulations. Sec-

tion 2.5 briefly analyzes the worst-case performance of our approach, while Section 2.6 provides

computational results on the solution performance and the quality of the solutions generated by the

proposed models. Section 2.7 concludes.

2.2 Literature Review

In this section, we provide a concise summary of significant works on competitive facility location

and draw a historical timeline introducing the predecessors of our model. Facility location prob-

lems are extensively studied and the literature on them is vast, and a general review of the facility

location literature is outside the scope of this chapter. Interested readers may refer to the books by

Daskin (1995), Drezner (1995) and Drezner and Hamacher (2002). Snyder (2010) and ReVelle and

Eiselt (2005) provide broad overviews of facility location problems. ReVelle et al. (2008) provide
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a recent bibliography on the fundamental problem types in location science. Owen and Daskin

(1998) discuss mainly dynamic and stochastic problems in facility location. Snyder (2006) dis-

cusses stochastic and robust facility location models. Klose and Drexl (2005) discuss mixed integer

programming models in a wide range of facility location problems.

We can describe competitive facility location problems as any facility location problem that

incorporates spatial competition among at least two firms. The decisions of these firms are inter-

dependent and affect each other’s market share. Competitive problems within the facility location

field can be traced back to the seminal work by Hotelling (1929). Hotelling introduced a market

that is represented by a line segment. Two firms, whose locations on this market are known, com-

pete by setting their prices to maximize their profits. He also discussed a case in which the first

firm’s location is fixed. The result asserts that the second firm locates itself arbitrarily close to the

first one, which extends to the sameness of the product features and the positions taken by politi-

cal parties. Considering location as an attribute of the product (e.g., store) gave rise to a plethora

of studies. Hotelling’s model has been revisited several times with different settings for strategic

variables, moving sequences, customer preferences and number of firms; including a correction by

d’Aspremont et al. (1979). Reviews of these models can be found in Gabszewicz and Thisse (1992),

Anderson et al. (1992), Eiselt (2011), and Younies and Eiselt (2011). These location models on a

line are very effective in providing theoretical insights about spatial competition but their represen-

tative power fails to deal with the facility location problems that operations research mainly works

on. Therefore, in the early 1980’s several studies were introduced to incorporate competition among

decision makers into the classical facility location problems.

One of the earliest attempts was by Hakimi (1983), who extended the linear decision space in

the Hotelling model to a network. He studied locating a fixed number of new facilities on a network

where there were some existing facilities. Customers are located on the vertices and they have

associated weights. Each customer prefers the closest open facility. Finally, the decision maker’s

objective is to maximize the weighted sum of customers who prefer his facilities.

Eiselt et al. (1993) provide a five-criteria (space, number of players, pricing policy, number of
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players and behavior of customers) taxonomy of competitive facility location problems and clas-

sify more than one hundred articles accordingly. Several papers survey parts of this classification.

Plastria (2001) presents a survey on static competition in facility location and a large section on

classification. Eiselt and Laporte (1996) report on sequential models, mostly of the leader–follower

type of facility location problems. Serra and ReVelle (1995) provide a discussion of competitive

location in discrete space, which also brings together several of the models that will be explained

below. Most recently, Kress and Pesch (2012) surveyed recent developments in sequential compet-

itive location problems.

The problem we address originates from the maximal covering location problem (MCLP) intro-

duced by Church and ReVelle (1974). In the classical MCLP, customers are represented as demand

points and they can be served only by a facility within a pre-specified service distance. The deci-

sion maker locates a fixed number of facilities in order to maximize the total demand covered by

the facilities. The MCLP is one of the pillars of facility location and numerous variants have been

studied. Snyder (2011) reviews covering problems including a detailed discussion of the MCLP.

Note that this original problem does not consider competition. ReVelle (1986) extends the

MCLP to the competitive domain and introduces the maximum capture (MAXCAP) problem. This

is an example of static competition. The decision maker locates a fixed number of facilities in a

market where competing facilities already exist, just as the follower in our problem does. Each

customer prefers the closest open facility and the demand is equally shared if the closest open

facilities of each firm are at equal distance from the customer. This problem is, in fact, equivalent

to the p-median problem as covering, capturing and sharing are expressable as the weight of an

edge between a facility and a customer. In a subsequent paper Serra et al. (1996) consider demand

uncertainty for the MAXCAP problem.

Serra and ReVelle (1994) reformulate the MAXCAP as a Stackelberg-type problem (compe-

tition with foresight). The game described in the MAXCAP stays the same but now the leader’s

problem is solved. This model is named the preemptive capture problem. For reasons we explain in

the coming sections, this problem is quite hard to formulate and solve as an IP. Serra and ReVelle
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describe a simple heuristic procedure to solve the problem. The leader locates her facilities first.

The follower responds by solving the MAXCAP problem. Then the leader follows a one-opt pro-

cedure, exchanging a single open facility with a closed one at each iteration and re-solving for the

follower’s response. The new solution is accepted if the leader’s demand increases and the proce-

dure is continued until no more improvements are achieved. An interesting variant of the problem

is described by Serra and ReVelle (1995), in which the number of facilities to be opened by the

opponent is defined probabilistically, and the probability monotonically decreases as the number of

leader facilities increases.

Finally, Plastria and Vanhaverbeke (2008) revisit the problem and formulate three MIP models,

robust models MaxMin, MinRegret, and Stackelberg, where they restrict the follower decision to a

single facility. This assumption allows them to formulate the problem without needing a bilevel for-

mulation. In the models we present below, we extend their Stackelberg approach to allow multiple

follower facilities. However, we do not solve for an exact Stackelberg-Nash equilibrium; rather, we

describe the follower response heuristically.

From a mathematical programming perspective, our problem is a 0-1 integer bilevel linear pro-

gramming problem (IBLP), where the upper and lower levels correspond to the leader’s and the

follower’s decision stages, respectively. (See Colson et al. (2007) for a recent review of bilevel pro-

gramming.) There are a few solution approaches, including classical branch-and-bound (Bard and

Moore, 1992; Moore and Bard, 1990), cutting planes, and branch-and-cut variants (DeNegre and

Ralphs, 2009), that have been proposed to solve problems of this type. These algorithms typically

struggle when applied to problems with more than a few variables and constraints. More efficient

algorithms exist either for problems with continuous variables (which is still an NP-hard optimiza-

tion problem (Jeroslow, 1985)) and problems with special exploitable structures. In general, the

existing practical needs for IBLP significantly exceed current solution capabilities (Bard, 2009).

We propose to reformulate the problem as a single-level 0-1 integer linear problem, and rep-

resent the follower’s problem by a heuristic that is formulated using additional variables and con-

straints, whose cardinality is polynomial in the original number of variables and constraints. As the
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heuristic does not guarantee optimal solutions for the follower, the result is not guaranteed to be

optimal for the leader. On the other hand, computational experiments show that the model performs

quite well in terms of computational effort and solution quality.

2.3 The Problem

Before discussing the model, we introduce the problem and related terminology. Then, we describe

the mechanics of the underlying Stackelberg game and how we embed the follower’s problem into

the leader’s constraints.

In our model, there are two competing firms, the leader (L) and the follower (F ). Both firms

have a number of potential locations where they can build and operate facilities to serve customers.

We denote the leader’s potential locations with s ∈ S and the follower’s potential locations with

t ∈ T . We assume S∩T = ∅ for the moment and in the numerical analysis in Section 2.6. However,

this assumption can be altered without changing the model as we explain later in this chapter. The

leader and the follower, respectively, open B and K facilities. Customer demand is assumed to

accumulate at a number of discrete points and we denote these points with i ∈ I and the associated

demand with di. Both firms would like to maximize their profits, thus, the total demand they serve.

We define two relations among the components: coverage and preference. It is customary to

use a distance analogy for these relations. An open facility covers all the customers that are at most

a given service distance (i.e. radius) away from it. Each customer prefers the closest open facility

that covers her. If there is no open facility that covers a particular customer then that customer is

not served. Figure 2.1 illustrates a simple instance and the coverage relationship among problem

entities on a grid assuming a radius of 5 units. We represent these relations as subsets. For a given

customer i ∈ I the leader [follower] locations that cover her are denoted as the subset Si ⊆ S

[Ti ⊆ T ]. We denote the set of leader facilities that customer i would prefer over the follower

location t by Sit.

The model assumes that the leader is the first mover. She first makes her decision and locates
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Figure 2.1: Customers, potential facilities and coverage relations

her facilities; then, after some time, the follower enters the market and locates his facilities. The

follower’s problem is to maximize the demand he serves, given the leader’s solution. When both

parties locate their facilities, the winner for each customer demand is decided according to the

outcome matrix presented in Table 2.1. The winner firm is said to capture the customer. Figure 2.2

illustrates the optimal solution to the specified problem for B = K = 2, and the customers captured

by each player.

Since the leader is not going to alter her solution after the follower acts, the follower does not

need to take into account any strategic response and his problem is relatively easy. It reduces to the

MCLP. On the other hand, the problem of the leader is a lot harder as she has to take into account

her opponent’s strategic response, too. This is difficult for two reasons. The follower, even though
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Table 2.1: Outcome matrix for customer i :
Winner is Leader (L), Follower (F), none (X) or situation is impossible (I)

Leader, s
s ∈ Si

s /∈ Si s ∈ Sit s /∈ Sit

Follower, t
t /∈ Ti

1 2 3

X L I

t ∈ Ti
4 5 6

F L F
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Figure 2.2: Solution: Opened facilities and captured customers

we restrict him to open exactly K facilities, needs to solve a combinatorial optimization problem

which is known to be in the complexity class NP-hard. As almost all discrete facility location
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problems (including the MCLP) are in this category, this is not surprising. The bad news is that

the follower’s objective conflicts with the leader’s, yet has to be optimized in the leader’s problem.

Since we are not able to put the follower’s objective in the objective function next to the leader’s,

we ensure that the follower’s problem is solved optimally through constraints, basically by making

each suboptimal follower solution infeasible to the leader’s problem, as follows:

max LeaderCapture(L,F ) (2.1)

s.t. . . . (2.2)

FollowerCapture(L,F ) ≥ FollowerCapture(L,F ′) ∀F ′ (2.3)

Here, L and F denote the leader’s and the follower’s location vectors, respectively. The follower has

C(|T |,K) possible choices. This value is very large for large |T | and gets larger as K approaches

|T |/2. Therefore the number of required constraints (2.3) increases very fast, becoming hard to

manage even for problems of moderate size. Plastria and Vanhaverbeke (2008) solve this problem

by setting K = 1. They assume that the follower responds by opening a single facility, therefore

keeping the number of constraints small.

Instead, we propose the following approach. We don’t solve the follower’s problem optimally,

but replace it with a heuristic solution. We assume that the follower implements the greedy add al-

gorithm given the locations of the leader facilities. The algorithm is described in Section 2.4.2. The

leader views this heuristic as a proxy for her opponent’s true optimal response, thus maximizes the

total demand covered by her facilities assuming that the follower responds by applying his heuristic.

We now introduce the rest of the notation and explain the proposed model and the accompanying

heuristic.
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2.4 The Model

2.4.1 Terminology and Notation

We revisit the sets and parameters, and introduce the variables of the model.

Sets

I: customers

S: potential leader facilities. Subset Si denotes the set of facilities that can serve (cover)

customer i ∈ I . Subset Sit denotes the set of leader facilities that customer i would

prefer to the follower facility t.

T : potential follower facilities. Subset Ti denotes the set of follower facilities that cover

customer i ∈ I .

Parameters

di: demand of customer i ∈ I

B: number of facilities that the leader will open

K: number of facilities that the follower will open, hence the number of greedy add algorithm

iterations.

Decision Variables

Ls: binary variable that equals 1 if the leader opens facility s.

Ftk: binary variable that equals 1 if the follower opens facility t at the kth iteration of the

greedy add algorithm.

xLi : binary variable that equals 1 if customer i is captured by the leader.

xFik: binary variable that equals 1 if customer i is captured by the follower facility opened at

the kth iteration of the greedy add algorithm.
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yitk: binary variable that equals 1 if customer i is still capturable by the follower facility

t ∈ Ti in the kth iteration of the greedy add algorithm (definition of “capturable” to be

made more precise later).

Although we define the last three variables as binary variables, we will show that if they are

defined as continuous variables, the problem will still have an all-integer solution.

2.4.2 Follower’s Response

Let us now analyze our assumption on the follower’s response. The greedy add procedure (Kuehn

and Hamburger, 1963) is as follows. At the beginning, all follower locations are closed. The

follower receives the decision vector L = [Ls] from the leader and updates the y variables. If a

customer i can be covered by a particular follower facility t, then the customer is still capturable at

iteration k (yitk = 1) if there is no better open leader facility, otherwise it is not (yitk = 0). Then

for each facility that is still closed, the follower calculates the total demand that the facility could

capture if it were open (
∑

i∈I diyitk). The facility that can capture the largest demand (t′) is opened.

The customers who were capturable by this facility are captured (xFik ← 1) and are removed from

further consideration (yitk′ ← 0 for k′ > k). This is repeated until the follower opens K facilities.

This algorithm is included as a feasibility problem through constraints in the leader’s model, as

described in Section 2.4.3.

We selected this algorithm as the follower’s response mainly for two reasons. First, the greedy

add algorithm is a well-known procedure for facility location problems. The quality of the solution it

provides depends heavily on the characteristics of the underlying graph for the follower’s problem.

It does not guarantee optimality in the majority of the cases, but worst case bounds exist. The

second reason is that it enables us to embed the follower’s response into the leader’s problem using

a polynomial number of new constraints. (In contrast, recall from Section 2.3 that a straightforward

embedding of the follower’s problem into the leader’s would require an exponential number of

constraints.) In the computational study, we discuss this and the effectiveness of the approach. Next

we introduce and explain our mathematical model.
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2.4.3 Leader’s Problem

The leader aims to maximize the demand she captures. The objective function is therefore

∑
i∈I

dix
L
i , (2.4)

the total demand captured by the leader. The leader is going to open at most B facilities, enforced

with the constraint

∑
s∈S

Ls ≤ B. (2.5)

Note that B can also be interpreted as an investment budget if we introduce a fixed cost of investment

for each facility. The greedy add algorithm requires exactly one follower facility to be opened at

each iteration k = 1, . . . ,K.

∑
t∈T

Ftk = 1 ∀k = 1, . . . ,K. (2.6)

A particular follower facility t ∈ T can be opened at most once throughout the algorithm.

K∑
k=1

Ftk ≤ 1 ∀t ∈ T. (2.7)

A particular customer i ∈ I can be captured by at most one of the firms.

xLi +

K∑
k=1

xFik ≤ 1 ∀i ∈ I. (2.8)

The leader has to have an open and covering facility to capture customer i. That is, xLi = 1⇒ ∃s ∈

Si such that Ls = 1, or equivalently Ls = 0 ∀s ∈ Si ⇒ xLi = 0.

xLi ≤
∑
s∈Si

Ls ∀i ∈ I. (2.9)
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The above requirement is valid for the follower, too. xFik = 1 ⇒ ∃t ∈ Ti such that Ftk = 1 or

equivalently Ftk = 0 ∀t ∈ Ti ⇒ xFik = 0.

xFik ≤
∑
t∈Ti

Ftk ∀i ∈ I, k = 1, . . . ,K. (2.10)

After the leader’s decision is finalized we need to determine whether a customer i is still capturable

by a covering facility t ∈ Ti. This is the initialization step of the greedy add algorithm. The

following two constraints determine if a customer is still capturable by a facility. Given a customer

i and a covering potential follower facility t, if the leader has no better facility than t, then i can be

capturable by the follower by opening facility t. We denote this situation as yit1 = 1.

1− yit1 ≤
∑
s∈Sit

Ls ∀i ∈ I, t ∈ Ti. (2.11)

On the other hand, if the leader opens a better facility s ∈ Sit then the follower cannot capture

customer i through facility t. We denote this situation as yit1 = 0.

1− yit1 ≥ Ls ∀i ∈ I, t ∈ Ti, s ∈ Sit. (2.12)

For the remaining iterations (k ≥ 2) we update the value of yitk as follows: if i is initially capturable

(yit1 = 1) and it is not captured by the follower yet (
∑

k′<k x
F
ik′ = 0) it is still capturable (yitk = 1).

yitk ≥ yit1 −
k−1∑
k′=1

xFik′ ∀i ∈ I, t ∈ Ti, k = 2, . . . ,K. (2.13)

A customer becomes noncapturable once it is captured.

yitk ≤ 1−
k−1∑
k′=1

xFik′ ∀i ∈ I, t ∈ Ti, k = 2, . . . ,K. (2.14)
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Finally, a noncapturable customer stays noncapturable.

yitk ≤ yi,t,k−1 ∀i ∈ I, t ∈ Ti, k = 2, . . . ,K. (2.15)

The greedy add algorithm is implemented through the following constraints. At each iteration k,

the follower captures a total demand that is equal to the demand capturable by any single follower

facility.

∑
i∈I:t∈Ti

diyitk ≤
∑
i∈I

dix
F
ik ∀t ∈ T, k = 1, . . . ,K. (2.16)

At iteration k, customer i is captured if the follower opens a covering facility t and the customer is

capturable by t.

xFik ≥ Ftk + yitk − 1 ∀i ∈ I, t ∈ Ti, k = 1, . . . ,K. (2.17)

On the other hand, customer i is not captured if the follower opens a covering facility t but the

customer is not capturable by t.

xFik ≤ 1− Ftk + yitk ∀i ∈ I, t ∈ Ti, k = 1, . . . ,K. (2.18)

Taken together, (2.10), (2.17), and (2.18) ensure that xFik = 1 if and only if i was captured by the

follower facility opened at iteration k. Finally, the variables have the following restrictions.

Ls, Ftk ∈ {0, 1} ∀s ∈ S; t ∈ T, k = 1, . . . ,K, (2.19)

xLi , x
F
ik, yitk ≥ 0 ∀i ∈ I; t ∈ Ti, k = 1, . . . ,K. (2.20)

Theorem 1. The formulation above ensures the outcomes of the game depicted in Table 2.1.

Proof. Each of the six cases (cells) in the outcome matrix are satisfied as follows.
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1. If Ls = 0 for all s ∈ Si and Ftk = 0 for all t ∈ Ti, then xLi = 0 and xFik = 0 by constraints

(2.9) and (2.10), respectively.

2. If Ftk = 0 for all t ∈ Ti and k = 1, . . . ,K and there is at least one s ∈ Si such that Ls = 1,

then xFik = 0 for all k by constraint (2.10), and xLi ≤ 1 by (2.9) and (2.8). Then, xLi = 1

because the leader maximizes total captured demand.

3. The case is impossible because if s ∈ Si but t ̸∈ Ti, customer prefers s to t, thus s ∈ Sit.

4. If Ls = 0 for all s ∈ Si and there is at least one t ∈ Ti such that Ftk = 1, then xFik = 1 by

constraints (2.17) and (2.8).

5. If there is an s ∈ Sit such that Ls = 1, for each t ∈ Ti with Ftk = 1, then yitk = 0 for such t

by constraints (2.12) and (2.15). Then xFik = 0 by (2.18). xLi = 1 as in case 2.

6. If there is a t ∈ Ti such that Ftk = 1 but Ls = 0 for all s ∈ Sit then yit1 = 1, and yitk = 0 if

xik′ = 1 for some k′ < k by (2.14), or yitk = 1 and xi,k = 1 by (2.17).

Theorem 2. Variables xLi , xFik and yitk assume binary values in the optimal solution.

Proof. We have yit1 ∈ [max{0, 1 −
∑

s∈Sit
Ls}, 1 − maxs∈Sit{Ls}] by constraints (2.11) and

(2.12), and nonnegativity constraint (2.20). Thus, given binary Ls, each yit1 is assigned a binary

value.

At iteration k′, assume we have binary Ls, Ftk′ and yitk′ . If there is no t ∈ Ti such that Ftk′ = 1,

xFik′ = 0 by constraint (2.10) and yitk′+1 = yitk′ . If there is at least one such t, then given binary

yitk′ , constraints (2.17) and (2.18) imply that xFik′ = yitk′ = 1, thus binary. Therefore yitk′+1 is also

binary. Then, by induction, all xFik and yitk are binary.

If there is a k such that xFik = 1, by constraint (2.8) xLi = 0. If there is no s ∈ Si such that

Ls = 1, by constraint (2.9) xLi = 0. If neither of these conditions are true, xLi = 1 as in case 5 of

Theorem 1.
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Theorem 3. Any follower response enforced by the above model corresponds to a greedy add

algorithm result.

Proof. At each iteration k, the follower facility which can capture the largest remaining demand

is opened. That is, Ftk = 1 ⇒ t = argmaxt′{
∑

i∈I diyitk}. The converse is also true if the

maximizer is unique. Otherwise, there would be some t′ ̸= t such that
∑

i∈I diyit′k >
∑

i∈I diyitk.

Then
∑

i∈I dix
F
ik >

∑
i∈I diyitk by (2.16). However, if Ftk = 1, by (2.17) and (2.18), xFik = yitk.

These constraints are only for (i, t) pairs such that t ∈ Ti, yet constraints (2.6) and (2.10) imply that

for all i such that t ̸∈ Ti, xFik = 0. Therefore,
∑

i∈I dix
F
ik =

∑
i∈I diyitk, which is a contradiction.

Also it follows that all of the demand capturable by t is captured and no noncapturable demand

is captured. A total of K facilities are opened in this manner and the result is a greedy add algorithm

solution.

Note that the greedy add algorithm may return different solutions and total captured demands

for the follower if one does not use a stable selection procedure between the multiple maximizers

of an iteration. In the model stated above, if there are multiple maximizers at a step of the greedy

add algorithm, then the optimal solution selects the one that would result in the greatest objective

value for the leader. To avoid this optimistic outcome, we can introduce a stable selection procedure

for the multiple maximizers of an iteration. An example procedure could be defining a precedence

order for the follower (e.g., index of the facility) such that the ties are resolved according to that

order (e.g., select the one with the least index). We can enforce such a selection rule by introducing

the following constraint.

∑
i∈I

diyitk −
∑
i∈I

dix
F
ik + αtFtk ≤

∑
t′∈T

αt′Ft′k ∀t ∈ T, k = 1, . . . ,K. (2.21)

where αt ∈ (0,mini{di}) and αt > αt′ if and only if t precedes t′ on the selection rule. This way

the ties would be solved in favor of the first alternative according to the precedence order.

The leader solves Problem 4. We refer to the following formulation as CMCLP1.
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Problem 4 (Competitive MCLP with Heuristic Follower Response).

max
∑
i∈I

dix
L
i (2.4)

s.t.
∑
s∈S

Ls ≤ B (2.5)

∑
t∈T

Ftk = 1 ∀k = 1, . . . ,K (2.6)

K∑
k=1

Ftk ≤ 1 ∀t ∈ T (2.7)

xLi +

K∑
k=1

xFik ≤ 1 ∀i ∈ I (2.8)

xLi ≤
∑
s∈Si

Ls ∀i ∈ I (2.9)

xFik ≤
∑
t∈Ti

Ftk ∀i ∈ I, k = 1, . . . ,K (2.10)

1− yit1 ≤
∑
s∈Sit

Ls ∀i ∈ I, t ∈ Ti (2.11)

1− yit1 ≥ Ls ∀i ∈ I, t ∈ Ti, s ∈ Sit (2.12)

yitk ≥ yitk−1 − xFik−1 ∀i ∈ I, t ∈ Ti, k = 2, . . . ,K (2.13)

yitk ≤ 1−
k−1∑
k′=1

xFik′ ∀i ∈ I, t ∈ Ti, k = 2, . . . ,K (2.14)

yitk ≤ yitk−1 ∀i ∈ I, t ∈ Ti, k = 2, . . . ,K (2.15)∑
i∈I

diyitk ≤
∑
i∈I

dix
F
ik ∀t ∈ T, k = 1, . . . ,K (2.16)

xFik ≥ Ftk + yitk − 1 ∀i ∈ I, t ∈ Ti, k = 1, . . . ,K (2.17)

xFik ≤ 1− Ftk + yitk ∀i ∈ I, t ∈ Ti, k = 1, . . . ,K (2.18)

L,F ∈ {0, 1} (2.19)

xL, xF , y ≥ 0 (2.20)

29



2.4. THE MODEL

2.4.4 Alternative Formulations

CMCLP1 has the following two features that we might alter to obtain better formulations. First,

it does not recognize which follower facility captures the customer at a given iteration. Second, it

does not assume transitivity in customer preference. It has a follower point of view in defining the

capturability, which we can define alternatively from the leader’s point of view using transitivity.

CMCLP2: Identifying The Capturing Follower Facility

In CMCLP1, there is no variable that identifies which follower facility captures a given customer

at a given iteration. This information is retrievable using xFik and Ftk once the problem is solved.

We introduce the variable xFitk, which equals 1 if customer i is captured by facility t at iteration

k. This alters the previous formulation slightly. For constraints, (2.8), (2.13), (2.14) and (2.16),

we simply replace xFik with
∑

t∈Ti
xFitk because only one facility can capture a given customer in a

given iteration.

On the other hand, the new variable allows us to define stronger relationships between y, F and

xF . Facility t captures a customer only if it is open and the customer is capturable in the given

iteration.

xFitk ≥ Ftk + yitk − 1 ∀i ∈ I, t ∈ Ti, k = 1, . . . ,K (2.22)

If any of these conditions is not satisfied, the customer cannot be captured by facility t.

xFitk ≤ Ftk ∀i ∈ I, t ∈ Ti, k = 1, . . . ,K (2.23)

xFitk ≤ yitk ∀i ∈ I, t ∈ Ti, k = 1, . . . ,K (2.24)

Therefore, we can replace constraints (2.10), (2.17) and (2.18) with (2.23), (2.22) and (2.24), re-

spectively. Finally, we can obtain an improvement in constraint (2.15), which can be altered as
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yitk ≤ yitk−1 − xFitk−1. Introducing the new index increases the number of variables and con-

straints, but the tighter constraints lead to improved performance; see Section 2.6 for more details.

CMCLP3: Capturability From The Leader’s Point Of View

CMCLP1 takes the follower’s point of view in formulating the capturability of a customer—variable

y. It relies on the set Sit that is defined for each (i, t) pair. Note that this set definition does not

assume transitive customer preference among members of S∪T , even though consumer preferences

are generally transitive. If we assume transitivity, we can use an alternative and tighter formulation.

Therefore, let≽i be a strict total preference relation (complete, reflexive, transitive and antisymmet-

ric) over the choice set S∪T . Let ties be broken (e.g. in favor of the smaller-indexed facility) before

we apply the preference relation. We introduce a new variable aisk which equals 1 if customer i

patronizes the leader facility s before iteration k—in a sense the game is played in 1 + K stages,

which represent the leader’s move and the follower’s K consecutive moves, respectively. Then we

make the following changes in CMCLP1.

At the beginning of each iteration k, customer i is either not covered by any of the opened

facilities, or patronizes a covering leader facility or has been captured by the follower at some

earlier iteration.

∑
s∈Si

aisk +

k−1∑
k′=1

xFik′ ≤ 1 ∀i ∈ I, k = 1, . . . ,K (2.25)

At the leader’s decision stage, a customer can only patronize an open leader facility.

ais1 ≤ Ls ∀i ∈ I, s ∈ Si (2.26)

When leader facility s is opened, the following two conditions hold. A covered customer cannot be

assigned to a less preferred facility (2.27), but it can be assigned to s or a more preferred facility
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(2.28).

Ls ≤ 1−
∑

s′∈Si:s≻is
′

ais′1 ∀i ∈ I, s ∈ Si (2.27)

Ls ≤
∑

s′∈Si:s
′≽is

ais′1 ∀i ∈ I, s ∈ Si (2.28)

A customer is considered capturable by a given follower facility t if it is not currently held by a

better leader facility and has not already been captured by the follower. At each step of the greedy

add algorithm, the left-hand side of the inequality is the total demand capturable by each follower

facility and the right-hand side equals the demand captured by the follower in that iteration. This

guarantees that the demand captured at each iteration is the largest capturable demand by a single

open facility.

∑
i∈I:t∈Ti

di

1−
∑

s∈Si:s≻it

aisk −
k−1∑
k′=1

xFik′

 ≤∑
i∈I

dix
F
ik ∀t ∈ T, k = 1, . . . ,K (2.29)

Then, we have the following three counterparts of the previous model, ensuring that (2.29) holds at

equality for the opened facility. At a given iteration k, if customer i is captured, a covering follower

facility t should be open.

xFik ≤
∑
t∈Ti

Ftk ∀i ∈ I, k = 1, . . . ,K (2.30)

Thus, if customer i is capturable by t, and t or a better follower facility is open, i is captured (2.31).

However, if it is not capturable by t, yet the opened follower facility is t or worse, then it cannot be

captured (2.32). (This can be incorporated in the same way into CMCLP1 (but not to CMCLP2) by

replacing Ftk in (2.17) and (2.18) with
∑

t′∈Ti:t′≽it
Ft′k and

∑
t′∈Ti:t≽it′

Ft′k, respectively.)

xFik ≥
∑

t′∈Ti:t
′≽it

Ft′k −
∑

s∈Si:s≻it

aisk −
k−1∑
k′=1

xFik′ ∀i ∈ I, t ∈ Ti, k = 1, . . . ,K (2.31)
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xFik ≤ 2−
∑

t′∈Ti:t≽it
′

Ft′k −
∑

s∈Si:s≻it

aisk −
k−1∑
k′=1

xFik′ ∀i ∈ I, t ∈ Ti, k = 1, . . . ,K (2.32)

The assignment status of customer i to a particular leader facility s, after the initial assignment in

(2.27)–(2.28) is updated in one of the following three ways. If i is not assigned to (held by) s at a

given iteration, it would not be in the subsequent iterations (2.33). If the leader was holding i and a

better follower facility was not opened, the leader continues to hold it (2.34).

aisk ≤ aisk−1 ∀i ∈ I, s ∈ Si, k = 2, . . . ,K (2.33)

aisk ≥ aisk−1 −
∑

t∈Ti:t≻s

Ftk−1 ∀i ∈ I, s ∈ Si, k = 2, . . . ,K (2.34)

The last assignment status is converted to the leader’s updated covering relation as follows. If the

leader does not hold the customer before the last iteration (2.35), or the follower has captured it

(2.36), the leader cannot capture it. However, if both are false, the leader captures it (2.37).

xLi ≤
∑
s∈Si

aisK ∀i ∈ I (2.35)

xLi ≤ 1−
K∑
k=1

xFik ∀i ∈ I (2.36)

xLi ≥
∑
s∈Si

aisK − xFiK ∀i ∈ I (2.37)

As a final note, L,F ∈ {0, 1} whereas a, x ∈ [0, 1].

2.5 Theoretical Performance

How accurate is the greedy add algorithm as an approximation of the follower’s optimal response,

and what impact does the inaccuracy have on the leader’s decision? Let L and F be the leader’s and

follower’s location vectors, respectively, and let LC(L,F ) and FC(L,F ) be the demand captured

by the leader and the follower, respectively, for given values of L and F . Let F ∗(L) be the follower’s
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optimal response to the leader locations L, and let FG(L) be the follower’s response if he uses the

greedy add algorithm. Finally, let L∗ be the leader’s optimal solution if she assumes that the follower

acts optimally, and let LG be the leader’s optimal solution if she assumes that the follower uses the

greedy add algorithm. We start with an ideal, and extreme, case, in which the model solves the

bilevel program optimally.

Proposition 5. If the customers covered by the follower facilities do not overlap, F ∗(L) = FG(L),

L∗ = LG.

Proof. In this case, the follower’s coverage network (e.g., Figure 2.1) is a collection of stars which

have a follower facility as the internal node and customers covered by that facility as the leaves. The

leader’s decision can remove edges from this graph, but cannot add edges to it. Opening a follower

facility does not affect the stars associated with other facilities. Since there is no overlap, summing

the demand captured by individual facilities gives the objective. The objective is maximized by

selecting the best K facilities in order, which is equivalent to the greedy add algorithm. Since the

greedy add algorithm identifies the follower’s best response, the model solves the bilevel program

optimally.

This result is tight in the sense that the algorithm can fail to find the optimal solution even when

each facility shares at most one covered customer, as Figure 2.3 shows.
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Customers

Follower facilities

Figure 2.3: Greedy algorithm fails: F ∗(L) = [1, 0, 1], FG(L) = [1, 1, 0]

The following theorem states an upper bound on the worst-case performance of the greedy add

algorithm as a heuristic for solving the follower’s problem. It is an application of a result whose

proof can be found in Hochbaum (1997).
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Theorem 6. If the follower opens K facilities, the following worst-case bound holds:

FC(L,F ∗(L))− FC(L,FG(L))

FC(L,F ∗(L))
≤
(
1− 1

K

)K

. (2.38)

Moreover, limK→∞
(
1− 1

K

)K
= 1

e ≈ 0.37, and it approaches from below.

Theorem 7. The worst-case bound in Theorem 6 is tight.

Proof. Worst-case examples can be generated by manipulating the the worst-case examples in Cor-

nuejols et al. (1977). One such rule is as follows. Given K, let |I| = K2, |S| = K, |T | = 2K − 1

and B = K−1. Let each leader facility s cover customer i = K(K−1)+s, respectively. Let each

follower facility t < K cover customers i ∈ {(t−1)K+1, ..., (t−1)K+K}, and each t ≥ K cover

customers i ∈ {t+1−K, t+1, t+1+K, ..., t+1+(K− 2)K}. Assume the follower’s facilities

are all better than the leader’s. Finally, let the customers’ demand be di = KK−2(K−1
K )⌈

i
K
⌉−1 for

i ≤ K(K−1) and di = (K−1)K−1− ϵ otherwise, where ϵ is an arbitrarily small positive number.

An illustration is presented in Figure 2.4.
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Figure 2.4: Worst case of greedy add algorithm, K = 3
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The greedy add algorithm would select locations t ∈ {1, . . . ,K} for each possible leader de-

cision. However, the optimal follower decision is to open t ∈ {K, ..., 2K − 1} and capture all

customer demand. This would give the following expressions for greedy and optimal objectives:

FC(L,FG(L)) =

K(K−1)∑
i=1

KK−2(
K − 1

K
)⌈

i
K
⌉−1 + (K − 1)K−1 − ϵ

=

K−2∑
n=0

KK−1(
K − 1

K
)n + (K − 1)K−1 − ϵ

=
K−1∑
n=0

KK−1−n(K − 1)n − ϵ = KK − (K − 1)K − ϵ

FC(L,F ∗(L)) = FC(L,FG(L)) +

K2∑
i=K(K−1)+2

[
(K − 1)K−1 − ϵ

]
= KK − (K − 1)K + (K − 1)K −Kϵ = KK −Kϵ

Therefore, as ϵ→ 0,

FC(L,F ∗(L))− FC(L,FG(L))

FC(L,F ∗(L))
→ (K − 1)K

KK
=

(
1− 1

K

)K

(2.39)

We can use this result to assess the worst-case performance of the greedy assumption from the

leader’s perspective. Our first such result is the following bound on the leader’s loss as a percentage

of demand that the follower greedily captures.

Theorem 8. By assuming a greedy follower response and selecting facilities L, the leader loses at

most 1
1−αFC(L,FG(L)), where α =

(
1− 1

K

)K .

Proof. Let A be the subset of customers that the leader covers by selecting L, and B [C] be the

subset of customers that the follower captures if he responds greedily [optimally]. See Figure 2.5

for an illustration. Therefore, the leader expects to capture A\B, but ends up capturing A\C. This
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corresponds to losing (A∩C) \B and gaining (A∩B) \C. The net loss is maximized if all [none]

of the customers that the optimizing [greedy] follower captures are stolen from the leader; that is, if

(A ∩ C) \B = C and (A ∩B) \ C = ∅. The total demand of set C is FC(L,F ∗(L)). Then, from

Theorem 6, we obtain FC(L,F ∗(L)) < 1
1−αFC(L,FG(L)).
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Figure 2.5: Set diagram for game outcome

On the other hand, no fixed worst-case bound exists for the leader’s percentage error when she

assumes a greedy response from the follower but the follower responds optimally. Similarly, there

is no such bound for the leader’s percentage error between the heuristic model solution and the

optimal solution to the problem.

Theorem 9. No fixed worst-case bounds exist for:

(a) LC(L,FG(L))−LC(L,F ∗(L))
LC(L,F ∗(L)) , and

(b) LC(LG,FG(LG))−LC(L∗,F ∗(L∗))
LC(L∗,F ∗(L))

Proof. For case (a), consider the worst-case example in Theorem 6 with K = 3, and let L =

[0, 1, 1]. The greedy response of the follower is FG(L) = [1, 1, 1, 0, 0] and it yields LC(L,FG(L)) =

8. If the follower responded optimally, he would pick F ∗(L) = [0, 0, 1, 1, 1] and it would yield

LC(L,F ∗(L)) = 0 since the follower facilities are better than the leader facilities for customers

7, 8 and 9. Thus, the leader expects to capture a positive demand whereas she cannot capture any
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demand in the end. This is illustrated in Figure 2.6.

LC(L,FG(L))− LC(L,F ∗(L))

LC(L,F ∗(L))
=∞.

For case (b), consider the same example, but now introduce two new leader locations s = 4, 5, and

two new customers i = 10, 11 as in Figure 2.6. Let S10 = 4, S11 = 5, T10 = T11 = ∅, and each

customer have a demand of γ < 4− ϵ. The solution is LG = [0, 1, 1, 0, 0], FG(LG) = [1, 1, 1, 0, 0],

L∗ = [0, 0, 0, 1, 1] and F ∗(L∗) = [0, 0, 1, 1, 1]. These yield LC(LG, FG(LG)) = 8 − 2ϵ and

LC(L∗, F ∗(L∗)) = 2γ. When γ approaches 0:

LC(LG, FG(LG))− LC(L∗, F ∗(L∗))

LC(L∗, F ∗(L))
→∞.
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Figure 2.6: Worst case of greedy add algorithm, K = 3

These results are for the limited-coverage case. However, they still hold if we assume an infinite

coverage radius, too. The follower always solves a limited-coverage problem, because the follower’s

coverage is updated (and becomes limited) once the leader makes his decision. The same worst-case

examples can be generated for the infinite coverage case by carefully constructing the preference

relations.
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Finally, we present a modification of the proposed models. We will show that solving the models

with this modification yields an upper bound for the demand that the leader captures. Such an upper

bound is not difficult to obtain. For instance, if we solve the classical MCLP (i.e., no follower) for

the leader, the result is clearly an upper bound on the leader’s capture. Consequently, if we restrict

the follower to open K facilities and capture customers according to the game rules, but do not

attempt to optimize the follower’s response, we obtain a tighter upper bound. In this case the leader

can pick any follower response, but incur the associated demand loss.

Our modification is done as follows. First, we introduce variables F̂t and x̂Fi . They indicate,

respectively, whether a facility is opened and if a customer is captured by the follower. Constraint

(2.40) requires the follower to open K facilities. Constraints (2.41)–(2.44) ensure that the follower

takes all the facilities that it can capture with the open facilities and no more. Finally, (2.45) ensures

that the opened facilities capture at least as much as the greedy follower response. The modification

is done by replacing (2.8) in Model 4 with (2.44) below and adding the remaining constraints to the

model. We show that the modified model is an upper bound on the leader’s capture in Theorem 10.

∑
t∈T

F̂t = K (2.40)

x̂Fi ≤
∑
t∈Ti

F̂t ∀i ∈ I (2.41)

x̂Fi ≥ F̂t + yit,1 − 1 ∀i ∈ I, t ∈ Ti (2.42)

xLi ≥ Ls −
∑

t∈Ti:s̸∈Sit

F̂t ∀i ∈ I, s ∈ Si (2.43)

x̂Fi + xLi ≤ 1 ∀i ∈ I (2.44)

∑
i∈T

∑
t∈Ti

K∑
k=1

dix
F
itk ≤

∑
i∈I

dix̂
F
i (2.45)

Theorem 10. The modified model is an upper bound on the leader’s optimal capture LC(L∗, F ∗(L∗)).

Proof. The modification below allows the leader to pick any of the follower’s K facilities as long

as it is better than (or equal to) the greedy follower response given L. Since the follower’s optimal

39



2.6. COMPUTATIONAL STUDY

response is always better than or equal to his greedy response, the solution to the modified problem

is always greater than or equal to leader’s optimal capture LC(L∗, F ∗(L∗)).

2.6 Computational Study

2.6.1 Experimental Design

We tested our model using two data sets from Daskin (1995). The first set includes the geographical

coordinates and populations of 88 cities. These are the 50 largest US cities according to the 1990

census and the 48 continental state capitals, less the double entries. The second set includes the

geographical coordinates of the 150 largest US cities according to the 1990 census. The first set

represents the customers, thus |I| = 88, and we used their populations as customer demands. We

randomly selected the potential facilities from the second set. We selected 11 settings for the number

of potential facilities, changing |S| and |T |. We further decided on 20 problem types by changing

the model size parameters (K,B) and radius (r). The radius (given in miles) is the key to generating

the coverage and preference relationships. Each location is assumed to have a coverage radius given

by r, and each customer prefers facilities in order of distance. For each problem type, we generated

50 instances by randomly picking potential leader and follower locations. We discarded duplicate

locations, thus each instance consists of distinct locations for the leader and the follower. In total,

we solved 1000 instances. The problem types and their properties are summarized in Table 2.2.

2.6.2 Solution Statistics

We coded the model using AMPL and solved the instances using CPLEX 12.2 on a Pentium Xeon

3.0 GHz (x2) 64 bit computer. We used a 1 hour (3600 second) time limit per problem. All of the

instances were solved within the time limit. The statistics are tabulated in Tables 2.3 and 2.4. The

leftmost column indicates the instance type. Under a given instance type, rows 1-3 correspond to

the results for formulations CMCLP1-3, respectively. The values are the aggregated results from

50 instances of each instance type. We report the CPU time used to solve the problem (Solution
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Table 2.2: Instance settings

Type |I| |S| |T | K B r

T1 88 10 10 4 4 300
T2 88 10 20 4 4 300
T3 88 20 10 4 4 200
T4 88 20 10 4 4 300
T5 88 20 10 4 4 400
T6 88 20 10 4 4 500
T7 88 20 10 1 5 300
T8 88 20 10 2 5 300
T9 88 20 10 3 5 300

T10 88 20 10 4 5 300
T11 88 20 10 5 5 300
T12 88 20 20 4 4 300
T13 88 20 20 4 4 400
T14 88 20 30 4 4 300
T15 88 30 10 4 4 300
T16 88 30 20 4 4 300
T17 88 30 30 4 4 300
T18 88 40 10 4 4 300
T19 88 40 20 4 4 300
T20 88 40 20 4 8 300

Time), number of simplex iterations (Simplex Iterations), and number of branch and bound nodes

evaluated (Node Evaluations). We compare the LP relaxation at the root node and the optimal MIP

solution and report the percent integrality gap (%LPGap) calculated as (zLP−zMIP )
zMIP

. For each of

these performance measures, we report the minimum, maximum and average of the results.

We isolate the effects of the problem parameters and illustrate them in Figures 2.7 and 2.8

below. Comparing T1, T4, T15, T18 with T2, T12, T16, T19, and T4, T12, T14 with T15, T16,

T17, we see that an increase in the number of potential leader and follower facilities increases the

average solution time. Their cross comparison shows that at higher levels of the other parameter,

this increase is magnified. These comparisons are plotted in Figure 2.7. If we compare T7-T11 we

notice also that the number of follower facilities to open affects the solution effort. An increase in

the number of facilities multiplies the size of the instance and the solution time. Another important
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Table 2.3: Solution statistics: Comparison of formulations

Solution Time Simplex Iterations Node Evaluations %LPGap
Avg Min Max Avg Min Max Avg Min Max Avg Min Max

T1 1 0.41 0.04 2.10 728 0 5817 15 0 175 16.4 0.0 42.7
2 0.39 0.04 2.79 686 0 8723 10 0 145 15.5 0.0 40.2
3 0.39 0.04 1.44 778 0 5038 13 0 128 14.8 0.0 40.2

T2 1 2.94 0.19 38.58 4245 53 54582 90 0 908 38.6 11.9 77.3
2 1.82 0.15 11.98 2681 35 19697 28 0 158 37.2 11.7 75.1
3 1.96 0.24 9.24 2234 79 11724 42 0 208 35.0 7.2 70.8

T3 1 0.21 0.02 0.98 335 0 2106 6 0 58 9.6 0.0 32.9
2 0.22 0.02 0.98 316 0 1898 4 0 27 8.5 0.0 32.9
3 0.27 0.04 0.94 571 0 3461 14 0 116 7.8 0.0 32.9

T4 1 2.11 0.13 11.83 4589 254 25430 98 0 411 14.9 1.2 39.8
2 1.70 0.18 7.20 3757 120 25484 51 0 245 14.3 1.2 36.0
3 2.06 0.17 8.84 5522 175 35199 88 0 395 14.0 1.2 35.7

T5 1 17.15 0.25 103.52 30708 365 164064 369 0 1672 18.9 7.4 43.8
2 11.23 0.28 66.61 20083 357 109892 153 0 820 18.5 7.4 43.4
3 16.81 1.34 116.48 33436 2076 197455 288 5 1249 18.3 7.4 41.3

T6 1 70.90 4.86 349.41 99338 12259 544882 750 139 2264 20.7 7.3 40.2
2 45.61 6.72 268.24 62933 8514 373206 318 68 1351 20.4 7.3 40.1
3 62.64 8.74 316.26 97645 10874 502173 541 82 1901 20.1 7.3 40.1

T7 1 0.11 0.01 0.51 151 16 593 2 0 32 3.3 0.0 24.6
2 0.08 0.01 0.42 144 0 748 2 0 31 2.9 0.0 20.7
3 0.11 0.02 0.61 325 30 2183 8 0 92 3.3 0.0 23.1

T8 1 0.28 0.02 0.92 818 36 4416 26 0 153 7.6 0.0 17.6
2 0.27 0.03 1.20 618 0 3350 14 0 90 6.9 0.0 17.5
3 0.44 0.03 1.93 1276 0 4672 37 0 167 6.7 0.0 16.4

T9 1 0.74 0.06 3.75 2211 109 15442 61 0 539 10.9 0.2 36.9
2 0.67 0.06 2.57 1595 0 9383 27 0 146 10.3 0.2 35.9
3 0.94 0.08 3.04 2849 111 11079 57 0 213 9.9 0.2 33.0

T10 1 2.62 0.16 27.45 6888 170 70071 148 0 1086 12.8 3.8 33.5
2 1.76 0.14 9.81 4595 100 41966 70 0 627 12.3 3.8 33.2
3 2.28 0.15 7.92 6507 238 29673 121 0 562 12.0 3.7 33.2

42



2.6. COMPUTATIONAL STUDY

Table 2.4: Solution statistics: Comparison of formulations (continued)

Solution Time Simplex Iterations Node Evaluations %LPGap
Avg Min Max Avg Min Max Avg Min Max Avg Min Max

T11 1 5.52 0.34 39.28 11986 473 71108 218 0 922 14.0 3.4 31.1
2 4.03 0.41 18.12 9045 601 37972 116 0 474 13.6 3.4 30.5
3 5.00 0.32 31.61 12758 666 78364 169 0 856 13.3 3.4 30.5

T12 1 18.90 0.73 82.16 31605 784 134944 539 3 2146 29.7 6.7 78.7
2 11.95 0.57 55.30 21889 849 118361 217 0 1327 29.0 6.7 78.7
3 11.52 1.15 61.31 24085 1654 131407 347 8 2591 28.5 6.7 78.6

T13 1 201.72 12.33 706.81 212994 11668 663059 1789 180 5911 32.6 12.5 68.2
2 128.74 12.87 501.36 144339 10525 643126 682 57 3570 31.9 12.5 66.8
3 117.99 9.78 431.41 175111 16026 648300 1255 156 3670 31.9 12.5 67.4

T14 1 50.32 1.42 284.75 63508 2475 386579 848 9 4019 39.6 10.4 74.0
2 37.24 1.99 210.87 51574 3678 254825 368 27 1445 39.0 10.3 73.6
3 24.54 1.46 119.57 41508 1880 150910 585 16 2168 38.0 10.3 68.3

T15 1 4.62 0.13 54.46 11152 211 129107 199 0 1489 13.3 3.2 27.8
2 3.59 0.14 47.80 8963 221 108045 113 0 905 12.9 2.8 27.8
3 5.88 0.40 45.21 15202 815 112504 205 0 1141 12.7 0.1 27.8

T16 1 69.10 0.94 640.31 100937 1408 596622 1354 31 8284 26.9 11.4 61.5
2 50.90 1.01 557.96 81098 1540 655455 660 32 3361 26.3 11.4 59.9
3 39.43 1.43 123.70 74529 2299 216763 909 60 3277 25.8 11.4 59.6

T17 1 160.04 10.32 725.09 180034 11939 655482 1913 150 6987 30.5 11.4 73.3
2 139.64 8.83 522.29 150563 10405 528393 948 74 2979 30.1 11.4 72.0
3 92.12 6.91 283.64 132119 8455 395635 1385 97 5053 29.6 11.3 72.7

T18 1 8.61 0.30 41.63 22097 475 85834 413 0 1432 13.6 3.2 40.0
2 6.35 0.43 32.43 16636 600 91117 239 0 1494 13.3 3.2 38.2
3 15.60 0.82 63.65 35319 982 140768 452 7 1729 13.2 3.2 35.7

T19 1 71.52 0.52 250.49 112918 754 420088 1449 0 6047 23.8 1.0 53.6
2 61.64 0.53 217.65 101998 657 374626 842 0 3090 23.4 1.0 53.6
3 68.78 0.61 194.02 112543 920 357041 1181 0 3689 23.1 1.0 53.6

T20 1 206.50 5.45 946.11 373380 13710 1694477 4717 265 31368 14.2 3.1 25.6
2 168.39 4.46 1012.34 316145 10061 2032369 2868 129 17995 14.0 3.0 25.6
3 250.67 15.20 1268.38 489369 21078 2691435 5578 339 35269 13.9 3.0 25.6
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factor is the coverage radius of the facilities. Although not a model parameter, it is the main factor

in determining the coverage relationship. Increasing the radius increases the number of covering

facilities, thus supply alternatives, for each customer. This generates a denser graph and the problem

size increases, as comparing T3-T6 shows. The effects of the number of follower facilities and the

coverage radius are plotted in Figure 2.8.
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Figure 2.7: Effect of number of potential locations on solution times

One final factor is the number of leader facilities to open (i.e., budget). An increase in the budget

does not increase the size of the instance but increases the number of possible facility combinations

for the leader, increasing the feasible solution space. A comparison between T19 and T20 demon-

strates this effect. When the budget is increased from 4 to 8, average solution time increases 3.1

times.

The same comparisons, when made for the %LPGap column, reveal different results. Increasing

the number of follower facilities to open or the coverage radius increases the gap. However, when

we increase the number of potential leader facilities and the investment budget, we see that the gap

decreases. Comparing T1, T4, T15 and T18; and T2, T12, T16 and T19, we see that the LP gap

decreases as |S| increases. Similarly, comparing T4 and T10, and T19 and T20, we see that an
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Figure 2.8: Effects of the number of greedy iterations and coverage radius on solution times

increase in budget decreases the gap. These are also expected as the former would make it possible

to have more good locations and the latter would make it possible to select more facilities from the

same set, keeping the opponent’s response capacity the same. The results for the number of follower

facilities have a opposite effect, as gap increases with increasing number of facilities.

The tables and the accompanying figures above provide a comparison among instance types,

which represent different difficulty levels. The cumulative histograms below illustrate the solution

performance of each formulation over all instances. Figure 2.9a shows that around 75% of the

instances were solved in under 30 seconds. The performance of the three formulations are close

but begin to differ as more difficult instances appear. Then, CMCLP2 and 3 dominate CMCLP1.

Interestingly, CMCLP2 performs the best for instances that were solved in 2 minutes, and after that

CMCLP3 takes over. Figure 2.9b indicates that about 65% of the instances had an LP gap of less

than 20% and about 2% of the instances had no integrality gap. It also shows that the tightness of

the formulations increases from CMCLP1 to 3, which is observable on Tables 2.3 and 2.4 as well.
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Figure 2.9: Comparison of three formulations

2.6.3 Solution Quality

Replacing the follower’s optimization problem with the greedy add algorithm leaves us with poten-

tially suboptimal solutions for the leader’s problem. In general, the model is expected to perform

well if the greedy add algorithm performs well for the restructured MCLP problem of the follower.

By restructuring, we refer to the loss of coverage over previously covered customers as some cus-

tomers would prefer open leader facilities. We would like to see how meaningful the solutions of

the model are. To do so, we perform the following two procedures.

First, upon solving Problem 4, we fix the leader’s open facilities. Then we restructure the

follower’s coverage relations and solve to optimality for the follower’s problem alone. This yields

the best response of the follower to the decision that the leader makes solving Problem 4. The

best response is important because we expect that this would be the follower’s true response, and

the customers that the follower serves in the solution of this problem would be the ones that the

follower actually would serve. Finally, we find the customers that are covered by the leader’s open

facilities but are not served by the follower in the subsequent solution and obtain the expected
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captured demand for the leader. We then compare this expected result with the suggested result of

Problem 4 which yields the “error” in the leader’s objective by assuming a greedy follower response.

A zero error indicates that the suggested and expected objectives are the same.

Next, we solve the modified model and obtain an upper bound on the leader’s optimal capture.

Then we compare it again with the expected captured demand of the leader. Note that we solve

Problem 4 to obtain the leader’s strategy, but solve the modified model to obtain an upper bound

only. This comparison yields the “optimality gap” of the leader. If this gap is zero, then the model

has found the overall optimal solution. The error and the optimality gap is calculated using the

formulas below, where superscript M denotes the modified model results.

% Error =
|LC(LG, FG(LG))− LC(LG, F ∗(LG))|

LC(LG, FG(LG))

% Optimality Gap =
LC(LM , FM (LM ))− LC(LG, F ∗(LG))

LC(LG, F ∗(LG))

In Tables 2.5–2.6 we summarize the error and optimality gap results for each of the 20 instance

types. Table 2.5 is organized as follows. “Avg |Error| (%)” shows the average error (in absolute

value) between the suggested and expected objectives and “Max |Error| (%)” shows the maximum

of these errors, both as a percentage of the suggested objective. “% Correct” shows in what percent

of the results the model objective was correct. The experiments show that for these instances the

model performed quite well, the returned objective was at least 74 percent of the time correct and

93.4 percent on the average. The maximum percent error was 15.84 percent, whereas on average

the percent error was 0.28 percent.

Table 2.6 is organized similarly. “Avg Opt Gap (%)” shows the average optimality gap and “Max

|Error| (%)” shows the maximum of these gaps, both as a percentage of the suggested objective as

a percentage of the suggested objective. The last column, “% Optimum,” shows what percent of

the instances were solved to optimality by the model. On the average, the optimality gap was

0.51 percent whereas the maximum optimality gap was 18.81 percent. Overall, 87.5 percent of all
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Table 2.5: Solution quality: Leader’s error in the objective

Type Avg |Error| (%) Max |Error| (%) % Correct
T1 0.19 9.38 98
T2 0.55 14.0 92
T3 0.00 0.0 100
T4 0.01 0.30 98
T5 0.15 5.19 94
T6 0.44 6.53 88
T7 0.00 0.0 100
T8 0.00 0.0 100
T9 0.01 0.28 98

T10 0.13 4.19 94
T11 0.23 6.11 92
T12 0.10 5.24 98
T13 1.56 13.80 74
T14 0.76 15.84 92
T15 0.13 6.37 98
T16 0.22 7.43 94
T17 0.25 8.36 94
T18 0.21 3.83 88
T19 0.46 7.33 86
T20 0.28 5.88 90

Summary 0.28 15.84 93.4

instances were solved to optimality.

In light of Table 2.2, we see that the performance deteriorates with increasing numbers of leader

and follower facilities, coverage radius, and number of greedy iterations. The performance, on the

other hand, is enhanced by an increasing investment budget of the leader. Note that when K = 1,

the error as well as the optimality gap is always 0 as the follower responds optimally. Figure 2.10

shows a joint histogram of error and optimality gap. This result does not differ between alternative

formulations. All models give the same result since the generated instances have all transitive

consumer choices (shortest distance).
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Table 2.6: Solution quality: Leader’s optimality gap

Type Avg Opt Gap (%) Max Opt Gap (%) % Optimum
T1 0.28 10.34 94
T2 1.04 18.26 86
T3 0.00 0.0 100
T4 0.02 0.68 96
T5 0.31 5.47 88
T6 0.65 8.16 80
T7 0.00 0.0 100
T8 0.00 0.0 100
T9 0.04 1.77 96

T10 0.13 4.37 94
T11 0.28 6.50 88
T12 0.58 10.10 88
T13 2.61 17.70 58
T14 1.28 18.81 82
T15 0.28 13.32 96
T16 0.48 8.2 84
T17 0.55 12.37 90
T18 0.21 2.41 80
T19 0.98 10.50 74
T20 0.56 6.45 76

Summary 0.51 18.81 87.5

2.7 Conclusions

In this chapter, we introduced a mathematical model in order to devise a strategy for the leader

firm in a leader–follower version of the maximal covering problem. Our primary contribution is to

embed the follower’s response into the constraints of the leader’s optimization problem so that the

leader’s problem is reduced from a bilevel program to a single-level one. This keeps the leader’s

problem tractable and the problem size at a manageable level. Our model of the follower employs

the greedy add algorithm rather than solving his problem exactly, but we demonstrate that this

assumption comes at the expense of very little loss of accuracy.

Our computational study demonstrates that the model is able to:

• Generate near optimal (often optimal) solutions for the leader
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Figure 2.10: Histogram of objective error and optimality gap

• Provide a reasonable assessment of the follower’s response that can be embedded into the

leader’s optimization model.

Our numerical studies also indicated that the model size and the solution effort increase quickly

with increasing problem components—potential sites, customers and number facilities to open. One

interesting avenue for future research would be the introduction of demand uncertainty, but the

resulting scenarios would further increase the computational burden. Therefore investigation of

solution methods that do not require MIP solvers such as Lagrangian relaxation and decomposition

(e.g., Benders) based approaches is in our future research agenda.

Finally, the problem was stated with the most common features for competitive location prob-

lems. Variants of the problem with different patronizing rules and competition over potential loca-

tions (i.e. from a single set of potential locations) as well as customers would be important to study.

It would also be worthwhile to study the applicability of other simple algorithms as proxies for the

follower’s response.
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Chapter 3

A Competitive Network Design Problem

3.1 Introduction

Networks exist everywhere. Power networks transmit the electricity for our lighting and home

appliances. Telecommunication networks enable us to communicate regardless of the distances.

Production and distribution networks make the goods we need available. The efficiency of these

networks is crucial for us; therefore, the design of these networks has been a fundamental area in

operations research. Earlier studies about network design have a centralized point of view which

aims to find the optimal design from a single designer’s perspective.

However, networks are often formed without a central decision maker. The decentralized deci-

sion arising from competition among decision makers leads to network structures that have differ-

ent structures and deviate in reliability, cost, etc. compared to the central (i.e., optimal) solutions.

Studying competitively formed network structures has two objectives. A stakeholder (such as a local

government) can devise incentives to let decision makers voluntarily align their decisions with her

desired design. A competitor can develop design strategies that take rivals’ responses into account.

In this study, we introduce the network design game played on a graph G(N,E) with nodes N

and edges E, respectively, by independent decision makers —players— p ∈ P . Players are located

at some nodes of this graph. Each node has a revenue potential and players connect these nodes
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to their origins by building arcs, which is costly. Each player, thus, wants to maximize her profit,

which is the net of earned revenue minus investment costs. Each individual player’s problem is a

special type of the Prize-Collecting Steiner Tree problem (PCST).

First, we consider a simultaneous-move setting and characterize the equilibrium actions of the

players. We propose a mixed integer programming (MIP) formulation that finds a pure strategy

Nash-equilibrium. Then, we discuss a Stackelberg version among two players. This problem is a

bilevel integer programming problem and we propose a heuristic reformulation of the lower level

(i.e., follower, second mover) problem that allows us to solve the problem as a single-level MIP

providing near optimal design strategies for the leader in the game. Furthermore, this reformulation

strategy is immediately applicable to other bilevel problems, whose second-level problems can be

posed as a prize-collecting Steiner tree problem.

We start with a brief review of key studies and concepts regarding competitive formation of

networks in Section 3.2.1. Then, we introduce the problem in Section 3.2.2, along with a review

of studies. In Section 3.4 we introduce the mathematical models for the noncompetitive case (i.e.,

single-player, central decision maker). Then, in Section 3.4 we introduce the two models we devel-

oped for the competitive case, respectively, for a simultaneous-move game and a sequential game.

Section 3.6 provides our computational study on the models and Section 3.7 concludes.

3.2 Literature Review

3.2.1 Competitive Network Formation

Network formation has been comprehensively studied from the game theory perspective. The moti-

vation came mostly from the study of social networks and the formation of economic relationships

between firms/countries. Some of the earliest works that define a simple model for competitive net-

work formation are Aumann and Myerson (1988) and Myerson (1977) (also see (Myerson, 1991)).

Authors define an extensive form and a simultaneous move form for the network creation game,

where the nodes are the players and they wish to build arcs to other players. The idea being the
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same, the assumed arc type, payment structure and objective functions of the players lead to a wide

range of games. For instance Fabrikant et al. (2003) and Albers et al. (2006) study the network

connection game in which each node is a player and each player picks a subset of the other players

to build arcs to. The arcs are undirected, they are paid for by the builder and once built they can

be used by everyone. Each player minimizes the cost of building arcs and the total distance to all

other players. This approach is quite meaningful in explaining the spread of networks like the in-

ternet where cost and proximity is of value. Halevi and Mansour (2007) study the same network

but only consider the building cost and proximity to a subset of players which are named as friends,

hence bring the emphasis on a neighborhood of players for each player. Piliouras and Vigfusson

(2009) extend the idea where there is no connectivity requirement but there is an associated penalty

for unreachable nodes. Some interesting examples of similar games like free-trade treaties, market

sharing and academic cooperation (co-authoring) are introduced by Jackson (2003), who provides

a comprehensive survey of network creation models.

Connection games are the most basic of these games. A more sophisticated game is the path

player game (Puerto et al., 2008). In this game setting, the paths in a given network are players and

they wish to maximize the flow through them. Although this is not a network creation game, it is

important as it replaces the node player with a path player, which might be more appropriate to rep-

resent (with a complexity trade-off) the service providers such as railroads. A direct generalization

of this is a sub-network player of a given network wishing to maximize the flow through it. 3PL’s

and passenger transportation firms are examples. The non-cooperative tree creation game (Hoefer,

2006) is an extension of the connection game where players are nodes and they wish to connect

themselves to their terminal(s) forming a tree. Finally, spanning tree games (Gourvés and Monnot,

2008) are another type of sophisticated network formation games where a set of nodes are given, of

which one is designated as a root node. The remaining nodes are players and they decide on their

parent node (thus create a link to it) to ultimately connect themselves to the root node. Variations

consider reliability (max), cost (min) and flow (bottleneck) objectives.

The model we suggest resembles spanning tree games the most. However, in our game, the root

53



3.2. LITERATURE REVIEW

nodes are the players (so there are multiple root nodes) and the remaining nodes, even in the final

network, are not necessarily spanned due to the investment budget. Even if the investment budget is

infinite, the resulting network need not be a spanning tree. We explain our game in the next section.

In network formation games, two values are of significant importance. The first one is the price

of anarchy, introduced by Papadimitriou (2001), which is the ratio of the optimal (centralized) net-

work and the worst case Nash-equilibrium. This ratio, assuming that the game will end at some

Nash-equilibrium, gives the worst case deviation from the optimal result, and thus points out the

maximal cost of strategic behavior. On the other hand, as multiple Nash-equilibria are quite com-

mon, the price of stability (Anshelevich et al., 2004) refers to the ratio where the most likely —

presumably the most profitable — Nash-equilibrium is considered instead of the worst case, reflect-

ing the minimal cost of strategic behavior. Perakis and Roels (2007) studies the price of anarchy

in supply chains under different given network topologies and contracting schemes. Since the net-

works are given, there exists no network creation addressed in it.

These values provide metrics to evaluate the quality of the networks formed. The study of

improving the network quality (profitability, reliability) is a recent step taken in studying network

formation games. Creating better networks and mechanisms to induce such network formation will

also be an important part of our study. For instance, for certain games the resulting network need

not be connected. Brandes et al. (2008) study games where disconnected network formation is not

prohibited but penalized. Anshelevich et al. (2003) discuss near optimal network design maintaining

competition. Chen et al. (2008) and Christodoulou et al. (2009) discuss coordination mechanisms

and cost sharing in cooperative games, respectively.

3.2.2 Prize-collecting Steiner Tree

The Steiner tree problem is one of the most well-known problems in combinatorial optimization.

Given a set of nodes, a Steiner tree is the graph that connects these vertices at minimum cost. It is

also defined on an undirected graph G(N,E) with associated weights for the edges E. A minimum

weight connected subgraph that includes a given subset S of nodes N is sought. This is an NP-Hard
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problem; in fact, its decision problem is one of the original 21 NP-Complete problems of Karp

(1972). For a general discussion of this problem, readers may refer to the reviews by Cieslik (1998)

and Hwang et al. (1992).

The problem we consider is a variant of the Steiner tree problem. In the “prize-collecting”

case, revenues are associated with the nodes of the graph and the node inclusion requirement is

dropped. The problem is introduced by Segev (1987) with the name node-weighted Steiner tree

problem. Segev studied a variant where the node inclusion requirement is dropped for all but one

node (origin, root) and provided MIP formulations. This is the problem variant we are studying and

we will refer to these formulations in the subsequent discussion. We are going to refer to the rooted

variant as PCST, as well.

Bienstock et al. (1993) introduced the name PCST and a 3-approximation (guaranteeing an

objective within 3 times the optimum) for it. Goemans and Williamson (1995) pose the problem as

an equivalent minimization problem, where the sum of the costs of built edges and the revenue of

unselected nodes is minimized. They propose a (2 − 1
|N |−1)-approximation (for the rooted variant

we study) that runs in O(|N |2 log |N |) time. Johnson et al. (2000) proposed an alteration over this

— a subroutine called strong pruning — which we will also use in our formulations. An algorithm

with a better approximation ratio (2 − 2
|N |) and running time (O(|N |2 log |N |)) for the original

prize-collecting problem is proposed by Feofiloff et al. (2007). For polyhedral studies regarding

these problems readers may refer to Fischetti (1991) and Goemans (1994).

Some solution approaches other than Segev’s work are as follows. Engevall et al. (1998) pro-

pose an integer programming formulation and a Lagrangian relaxation algorithm. Lucena and Re-

sende (2004) propose a cutting-plane algorithm. Ljubić et al. (2006) implemented a branch-and-cut

algorithm bringing together several earlier methods. Recently, Haouari et al. (2008) report on La-

grangian relaxation using several subgradient strategies.

Finally, the problem has some immediate extensions such as imposing a quota (a lower limit on

collected revenue) or a budget (an upper bound on incurred costs). We do not consider them in this

study. Hereafter, we refer to the rooted variant of the prize-collecting Steiner tree problem that we
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study as PCST. In the next section, we are going to introduce how to incorporate competition into

the PCST.

3.3 The Problem

Let G(N,E) be an undirected graph with associated potential revenues ri for each node i ∈ N and

costs ci,j for each edge (i, j) ∈ E. There are P players. Each player p is initially located at her

individual origin node op ∈ O ⊆ N and selects a subset of edges forming a connected subgraph

that includes the initial location of the player. These parameters are the same for each player. The

strategy set of a player is denoted as Sp = {Gp(Np, Ep) : Gp is connected, Ep ⊆ E,Np ⊆ N, op ∈

Np}. A strategy can also be equivalently formulated as the set of edges Ep selected by player p as

edges would imply inclusion of the end nodes.

We consider a non-cooperative game setting in which each player is going to pay the full cost

of the arc that it builds, yet the potential revenue is shared among players who build an arc to that

node. For simplicity, we consider equal sharing of potential revenue, but other sharing rules can be

incorporated into the models we are going to introduce. The players maximize their profits, which is

the net of total earned revenue minus the construction cost of the individual network. Consequently,

a Nash-equilibrium is defined as a result of the above game from which no individual player is

willing to unilaterally deviate, hence find a better feasible solution (with higher profit) by only

altering her own decision.

Before proceeding with the model, we briefly discuss the equilibria, central solution and prefer-

able network structures. Consider Figure 3.1 which illustrates a network with 5 nodes and 6 arcs

and associated potential node revenues and edge costs. Players 1 and 2 are respectively located at

nodes 1 and 5. In Figure 3.1a, the centralized solution (shown with bold edges) consists of the edges

{(1,2), (1,3), (5,4)} and has a profit of 18. In this case, when the two (non-cooperative) players make

their decisions simultaneously, the equilibrium would be identical to the centralized solution. This

is an ideal situation where competition does not cause inefficiency.
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Figure 3.1: An example game

However, this solution is an unconnected network. Connectivity could be an important criterion

for the reliability of the network. For instance, if this was a power network, connectivity could

serve as a protection against generation failure at nodes 1 or 5. For a third party (e.g., government

regulatory authority) that is interested in the connectivity of the network, this property has value.

Therefore, this investigation can yield information for third parties in shaping their incentive poli-

cies. For instance, introducing a 2 unit penalty for unconnected networks the competitive solution

moves towards connected networks introducing either of {(5,2), (5,3), (1,4)} to the equilibrium/op-

timal solution.

The identical result above cannot be obtained for all revenue/cost settings. Figure 3.1b illustrates

a different example. The optimal network is {(1,2), (5,2), (5,4)}, yielding a profit of 17. However,

when competition is brought into play, the equilibrium decisions are {(1,2), (1,3), (5,2)} (bold

edges) and one of {(1,4), (5,4)} (dashed edges). This not only illustrates a deviation from central

design, but also multiple equilibria. As a result, efficiency (i.e. profit) loss from competition does

not only exist but also change depending on the obtained equilibrium. Here, the equilibria including

(5,4) and (1,4) exemplify the worst and best equilibria, respectively, thus indicate price of anarchy
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of 17
12 = 1.42 and price of stability of 17

13 = 1.31. On the other hand the resulting network is

connected compared to the unconnected optimal network, which does not require any incentives,

unlike the other. As a final remark, it is possible that the firms cooperate in the design process. For

instance, a contract, in which player 2 pays player 1 a sum of 2 units in exchange for not building

arc (1,2), will result in an improved competitive solution. In the models below, however, we do not

consider cooperation between players.

3.4 MIP Models for the Noncompetitive Problem

3.4.1 Individual Player

When we disregard competition, the problem of a given player is a Prize-Collecting Steiner Tree

(PCST) problem. There are a few variants of this problem. Here, we consider the profit maximiza-

tion variant. Given an undirected graph G(N,E) with associated a nonnegative cost for each edge

and a nonnegative revenue for each node, a player p selects (builds) a connected subgraph G(N,E)

that maximizes the net of collected revenues minus the incurred costs. The only restriction other

than the connectivity requirement is that the player’s origin node op should be in the built subgraph.

For the sake of formulation, we replace the undirected graph with the equivalent directed graph

G(N,A) that has arcs (i, j) ∈ A and (j, i) ∈ A with symmetric cost parameters. We do not con-

sider origin nodes as occupiable, hence let ri = 0 for i ∈ O and let N ′ = N −O be the nodes that

are occupiable, A′ = (i, j) ∈ A such that i ∈ N ′ ∪ op and j ∈ N ′ be the arcs that are selectable.

Indices:

i, j, k ∈ N : Vertices, nodes

p ∈ P : Players

op ∈ O ⊆ N : Origin node of player p

Parameters:

cij : Cost of building arc (i, j), cij = cji > 0
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rj : Potential revenue of node j, rj ≥ 0

M : A sufficiently large positive number (better, arc specific Mij)

Variables:

yij : If arc (i, j) is selected yij = 1 and 0 otherwise

fij : Flow through arc (i, j)

The optimal solution to this problem is a tree; more specifically, given the selected subset of nodes,

it is a minimum cost spanning tree (MCST) that spans only the selected nodes and is rooted at the

origin node of the player. Ensuring this, hence, avoiding cycles, is key in the formulation. We can

introduce subtour elimination constraints for that purpose. Instead, in Model 1, we prefer to use a

network flow formulation and eliminate cycles through flow balance equations. It is a modification

of Segev’s (1987) tree-type formulation. Basically, we assume that the flow only passes through

selected arcs and is reduced at the visited nodes by an amount that is equal to the revenue earned at

that node. The flow originates from the source node and is consumed at the selected nodes. This

resembles the approach of Miller, Tucker, and Zemlin (1960) for the traveling salesman problem.

Model 1 PCST Problem: Tree formulation

max
∑
j∈N ′

fop,j −
∑

(i,j)∈A′

cijyij (3.1)

s.t.
∑

j∈N ′∪op

fji −
∑
j∈N ′

fij = ri
∑
j∈N ′

yji ∀i ∈ N ′ (3.2)

xij ≤Myij ∀(i, j) ∈ A′ (3.3)∑
i∈N

yij ≤ 1 ∀j ∈ N ′ (3.4)

fij ≥ 0 ∀(i, j) ∈ A′

yij ∈ {0, 1} ∀(i, j) ∈ A′

The objective (3.1) states that maximizing profit is equivalent to maximizing the net of total

flow originating from the source node minus the total fixed arc costs. Flow balance constraint (3.2)

requires that flow into a node is equal to the revenue of the node plus the flow out from the node.
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Constraint (3.3) states that a positive flow through an arc, implies a built arc. Constraint (3.4) ensures

that only one arc can enter a selected node. The resulting network is a tree, as directed cycles are

eliminated by (3.4) and undirected cycles by (3.2). Finally, the flow variables fij are nonnegative

and the arc selection variables yij are binary.

Model 1 is not very strong because of the M in (3.3). Setting M =
∑

j∈N ′ ri is sufficient, but

an immediate improvement to this is to assign separate Mij for each arc. We can calculate them as

follows. Let SPj denote the shortest path from op to node j ∈ N ′ on graph G(N,A) such that the

distance dij between two nodes is defined as the revenue of the destination node. That is, dij = rj .

Then, we set Mij =
∑

j∈N ′ −SPi.

This modification helps, but we can come up with a tighter formulation, eliminating M com-

pletely. As mentioned earlier, whenever we select a set of nodes, the arcs to be selected is just

a MCST problem. Therefore, we can also model PCST as a node selection problem, where the

subsequent arc selection problem is modeled and solved as a linear program, for instance, using a

multi-commodity flow formulation. We can define a separate flow from the origin to each node with

positive revenue as if they were different commodities with unit demand at the destination nodes.

This would result in Model 2, which is the multi-commodity flow formulation in Segev (1987). We

are only interested in destinations with positive revenue, hence let N+ be the set of i ∈ N ′ such

that ri > 0.

Variables:

xj : If node j is selected xj = 1 and 0 otherwise

fijk : Flow through arc (i, j) with destination k

The objective (3.5) is the total revenue from selected nodes with positive revenue minus the total

cost of selected arcs. Flow balance equations (3.6) ensure that for a selected (i.e. xk = 1) node a

unit flow is supplied by the origin, carried through intermediary nodes untouched and is consumed

at the destination node. Similarly, according to (3.7), positive flow implies a selected arc. Since the

flows are at most 1, we can set M = 1 and eliminate it from the formulation. Finally, flows fijk are
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nonnegative, and selection variables xj and yij are binary.

The best thing about this formulation is that it is very tight, often returning an integral solution

at the root node. The downside is, of course, the size of the instances it creates as it has about |N+|

times more variables and constraints than the previous model, which exhausts memory rapidly.

Despite this fact, we are going to use this formulation as the base for the coming models and related

computational experiments.

Model 2 PCST Problem: Multi-commodity formulation

max
∑

k∈N+

rkxk −
∑

(i,j)∈A′

cijyij (3.5)

s.t.
∑

j∈N ′∪op

fjik −
∑
j∈N ′

fijk =


−xk if i = op
xk if i = k
0 otherwise

∀i ∈ N ′ ∪ op, k ∈ N+ (3.6)

fijk ≤ yij ∀(i, j) ∈ A′, k ∈ N+ (3.7)

fijk ≥ 0 ∀(i, j) ∈ A′, k ∈ N+

xk ∈ {0, 1} ∀k ∈ N+

yij ∈ {0, 1} ∀(i, j) ∈ A′

3.4.2 Central Decision Maker

We can easily extend this model to include multiple origins (players) when there is a central decision

maker. Note that, with the inclusion of multiple origins the optimal subgraph becomes a forest with

trees rooted at the origins. We can overcome this by picking one of the origins, say op, and defining

dummy arcs, (op, op′ ), with 0 cost from this origin to all other origins. This turns the problem into

an instance of PCST with origin node op. We simply update update A′ = A′∪
∪

p
′∈P (op, op′ ) in the

constraints. Note that this case is essentially the same as a single player with multiple origin nodes

(e.g., a company with multiple power plants); hence, the trick would work for that case, too.
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3.5 MIP Models for the Competitive Problem

As mentioned earlier, we are interested in the equilibrium solutions that are obtained under compe-

tition. We consider two game settings — simultaneous and sequential. The equilibria for simulta-

neous game can be found by mimicking the unilateral moves of each player on the |P | dimensional

matrix of player strategies until no utility-increasing (i.e., profit-increasing) move can be made by

the players. Each move is an instance of PCST, once the revenues are updated according to the last

occupancy information. This method, therefore, requires solving an indeterminate number of PCST

instances. Whether there exists such an equilibrium is also a question. Using our second model, we

show the existence of a pure-strategy equilibrium and as we propose an MIP model that solves for

an equilibrium solution, returning a pure-strategy equilibrium for the players.

3.5.1 Simultaneous Game: Iterative Method

A simple way to find an equilibrium is to mimic the unilateral move of a player on the |P | dimen-

sional strategy matrix, given the rest of the players’ strategies. Algorithm 3.1 performs this. It solves

for a single player’s decision optimally at each (inner) iteration, and updates the revenue structure

accordingly. If two consecutive passes through all players (two consecutive outer iterations) gen-

erate the same network structure, then the algorithm terminates, returning an equilibrium solution.

Let Gp,t(Np,t, Ap,t) = {Np,t;Ap,t} be the graph built by player p at (outer) iteration t, ni,p be the

number of occupants other than p in node i at a given time, and r0i and c0i,j be the initial values of

the parameters for node revenue and arc cost.

3.5.2 Simultaneous Game: MIP Model

There are |P | players in the game that is played on the undirected graph G(N,E) (and the corre-

sponding directed graph G(V,A)). There are |A| = 2|E| items to select from for each player. A

decision made by player p on arc (i, j) is denoted with a decision variable yijp where y = 1 if the

arc is selected and 0 otherwise. Then the decision vector yp = (yijp : (i, j) ∈ A) is called a strategy
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Algorithm 3.1 Iterative Method to Find Equilibria

let t = 0, r0i = ri, c
0
i,j = ci,j

let Gp,t(Np,t, Ap,t) = (op, ∅) for all p ∈ P
repeat

t← t+ 1
for p = 1 to |P | do

compute ni,p for all i ∈ N ′

ri ←
r0i

ni,p+1 for all i ∈ N ′

solve PCST (p) with updated parameters.
Gp,t(Np,t, Ap,t)← PCST ∗(p)

end for
until Gp,t(Np,t, Ap,t) = Gp,t−1(Np,t−1, Ap,t−1) for all p ∈ P
return Gp,t(Np,t, Ap,t) for each p ∈ P as equilibrium solution

for player p ∈ P . The number of strategies of a player is finite (in fact, 2|A|) and this strategy set

is the same for all players. However, the feasible strategy set is less as the arcs need to form a tree

and they are different for different players as the selection of the player’s origin node is mandatory

in building a feasible player network.

This model is based on the idea by Rosenthal (1973) who described a class of games which

possess pure strategy equilibria. Before introducing the mathematical model and going on with the

formal proof that this model finds an equilibrium solution, let us discuss the rationale and give some

examples. The model is quite similar to the earlier models in the definition of the feasible network

structure (i.e., tree). Since the optimal network built by each player is a tree, we are going to

eliminate non-tree solutions from players’ strategy sets. Each player selects a subset of arcs (similar

to primary factors in Rosenthal (1973)) and the head nodes pointed by these arcs. The revenue that

a player would expect to earn when she selects an arc (i, j) when node j is already occupied by

n− 1 players is rj
n and and she pays cij , yielding a marginal profit of rj

n − cij . Recall that arc costs

are fully paid by the builder while the node revenues are shared equally. Remembering the iterative

procedure, this resembles how the decision is made by a player when her turn comes. The player

would build the most profitable tree given the number of occupants in, hence the updated revenue

of, each node. Roughly, our claim is that if we maximize the sum of this marginal profit — revenues
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over all nodes and number of players occupying them and costs over all selected arcs — and only

allow trees to be built by individual players, this would result in an equilibrium solution.

Let us revisit the example from Section 3.4. Considering Figure 3.1b would give us an idea of

how this method works. Two players — left and right — make their decisions on feasible strategy

sets {(1,2),(1,3),(1,4)} and {(5,2),(5,3),(5,4)}, respectively. Both of them select node 2 because

given whether the other selects, selecting node 2 still increases the sum — by 5−4 = 1 and 5−3 =

2, respectively — for both. If both players select node 3, then the sum would be 10+5−4−6 = 5.

If only left selects, 10 − 4 = 6 or only right selects, 10 − 6 = 4. Thus the sum of marginal profits

would be maximized if left player selects. We already know from our previous analysis of these

examples that these were the selected arcs in an equilibrium. However, we could select either of the

dashed arcs and each would be an equilibrium solution. This method would return an equilibrium

that selects (1, 4) because it has a higher marginal profit — 10−6 = 4 vs. 10−7 = 3 — and sharing

would decrease — 10 + 5− 6− 7 = 2 — the sum. As a result, the method promotes sharing when

profitable by both (or more) parties, and prefers lower cost (higher margin) alternatives otherwise.

We introduce the new additions and modifications to the notation below. Note the slight differ-

ence in the definitions of parameter r and variables x, y and f . Since the model includes all players,

we define A′ = (i, j) such that i ∈ N and j ∈ N ′.

Indices:

n ∈ P : Number of occupants at a selected node (in the solution).

Parameters:

rjn : Revenue earned from node j by a player given that there are β ≥ 1 occupants in the

node. rjn =
rj
n

Variables:

xkp : If player p selects node k, xkp = 1, and 0 otherwise

yijp : If player p selects arc (i, j), yijp = 1, and 0 otherwise

fijpk : Flow originating at op, passing through arc (i, j) with destination k
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tjn : Variable equals to 1 if n players occupy node j.

Model 3 Competitive PCST: Simultaneous Move Game

max
∑

k∈N+

∑
n∈P

rkntkn −
∑

(i,j)∈A′

∑
p∈P

cijyijp (3.8)

s.t.
∑
j∈N

fjipk −
∑
j∈N ′

fijpk =


−xkp if i = op
xkp if i = k
0 otherwise

i ∈ N, p ∈ P, k ∈ N+ (3.9)

fijpk ≤ yijp (i, j) ∈ A′, k ∈ N+ (3.10)∑
p∈P

xkp =
∑
n∈P

tkn k ∈ N+ (3.11)

fijpk ≥ 0 (i, j) ∈ A′, k ∈ N+

yijp ∈ {0, 1} (i, j) ∈ A′

xkp ∈ {0, 1} k ∈ N+, p ∈ P

tkn ∈ {0, 1} k ∈ N+, n ∈ P

Objective (3.8) is the sum of all nodes’ marginal revenues over each possible number of occu-

pants (if none occupies the node, this is 0) minus the total cost of arcs built by all players. (3.9)

is the flow balance constraint at node i, for each destination node (i.e. commodity) k. If node i is

an origin node of player p it supplies a flow of xkp. If i = k, it consumes the flow xkp supplied

by player p. Otherwise, inflow equals outflow, netting 0. A positive flow through (i, j) with origin

op and destination k indicates that arc (i, j) is selected by player p. Constraint (3.11) ensures that

the number of occupants in nodes (with positive revenue) is accounted for correctly. The right hand

side is the number of occupants. Assume there are m occupants in the optimal solution. Since rkn

is decreasing in n and the problem is a maximization problem, we obtain tk,1 = . . . = tk,m = 1 and

tk,m+1 = . . . = tk,|P | = 0 at optimality. Finally, the flow variables are continuous and the arc/node

selection variables are binary.

The above problem is feasible (each player can simply select her source vertex as a feasible

strategy) and the number of feasible strategies is finite with finite profits, so the solution exists and is

bounded. The second question is whether this solution is an equilibrium or not. In order to qualify as
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an equilibrium, a solution should consist of best responses of the players given the others’ responses.

Thus for a player p, denoting her decision vector as yp and the corresponding individual profit given

other players’ decisions as Πp(y1, ..., yp, ..., y|P |), a solution (y∗1, ..., y
∗
p, ..., y

∗
|P |) is an equilibrium

solution if and only if Πp(y
∗
1, , y

∗
p, , y

∗
|P |) ≥ Πp(y

∗
1, , yp, , y

∗
|P |) for all yp, for all p ∈ {1, ..., |P |}.

Theorem 11. The optimal solution of Model 3 is a Nash equilibrium for the simultaneous-move

game.

Proof. By contradiction. Let’s assume that the solution is not an equilibrium solution, though it is

still optimal to the model. Then there should exist a player who would willingly and unilaterally

deviate from her current decision. The deviation is willing if the player would find a more profitable

alternative, and it is unilateral if that player would alter only her decision, while other players’

decisions are kept the same.

Thus, there exists a player p̂ who drops some of her previously selected arcs and adds some

of her previously unselected arcs. Let (∗) denote the optimal model solution and (∗∗) denote the

solution obtained after p̂ makes her decision. Let the set of dropped arcs be A0 = {(i, j) : y∗ij,p̂ =

1, y∗∗ij,p̂ = 0} and the set of added arcs be A1 = {(i, j) : y∗ij,p̂ = 0, y∗∗ij,p̂ = 1}. Consequently,

let the set of dropped head nodes be N0 = {j : (i, j) ∈ A0} and the set of added head nodes be

N1 = {j : (i, j) ∈ A1}.

Assume that in the solution, nj players occupy the node j, thus t∗j,1 =, . . . , t∗j,nj
= 1. If a player

drops arc (i, j), then t∗∗j,nj
= y∗∗ij,p̂ = 0 so her profit decreases by rj,nj − cij . On the contrary, if she

adds arc (i, j), then t∗∗j,nj+1 = y∗∗ij,p̂ = 1 and her profit increases by rj,nj+1−cij . Since the alteration

is profitable,

∑
(i,j)∈A1

(rj,nj+1 − cij)−
∑

(i,j)∈A0

(rj,nj − cij) =
∑
j∈N1

rj,nj+1 −
∑

(i,j)∈A1

cij −
∑
j∈N0

rj,nj +
∑

(i,j)∈A0

cij > 0.
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These steps are summarized below.

z∗ =
∑
j∈N ′

∑
n∈P

rjnt
∗
jn −

∑
(i,j)∈A′

∑
p∈P

cijy
∗
ijp

=
∑
j∈N ′

nj∑
n=1

rjnt
∗
jn −

∑
(i,j)∈A′

∑
p∈P

cijy
∗
ijp

<
∑
j∈N ′

nj∑
n=1

rjnt
∗
jn −

∑
(i,j)∈A′

∑
p∈P

cijy
∗
ijp +

∑
j∈N1

rj,nj+1 −
∑

(i,j)∈A1

cij

−
∑
j∈N0

rj,nj −
∑

(i,j)∈A0

cij


=
∑
j∈N ′

∑
n∈P

rjnt
∗∗
jn −

∑
(i,j)∈A′

∑
p∈P

cijy
∗∗
ijp

= z∗∗ (3.12)

This contradicts our initial assumption that the solution was optimal (i.e., z∗ ≥ z∗∗), yet not an

equilibrium. Thus, every solution to this problem is an equilibrium as well.

Note that since the problem is always feasible and bounded and the solution is an equilibrium

solution, a pure strategy equilibrium for the simultaneous-move game exists.

Corollary 12. There exists a pure-strategy equilibrium for this game.

This model does not necessarily give the most or the least profitable equilibrium solution. We

can show this using the simple counterexample in Figures 3.2, which illustrates the graph and its

parameters, and 3.3, which illustrates the four possible equilibria on this graph. The equilibria in

Figures 3.4a–3.3d have objectives of 9, 8, 9, 10 but total profits of 4, 8, 9, 5, respectively. Therefore,

Figures 3.3c and 3.4a show the most and least profitable equilibria, while the model returns the

equilibria in Figure 3.3d.

Model 3 can be made smaller in size by a few modifications. We can redefine the variables f

and y and obtain the compact formulation as follows:

Variables:

fijk : Flow passing through arc (i, j) with destination k
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yij : Number of players that selected arc (i, j)
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Figure 3.2: A counterexample: Setting
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Figure 3.3: A counterexample: Equilibria

The two programs are almost alike, but now note that the flow through an arc can be larger than 1

and y is no longer binary.

Lemma 13. Models 3 and 4 return the same optimal solution and objective function value.

Proof. Assume that we solve both models optimally. Constraint (3.16) and variables t and x are

identical in both models. In constraint (3.14), flows fijk originate at individual origin nodes and are

consumed at destination nodes. Hence for each k the optimal network is a tree rooted at k. This

tree can be traced back to the origin nodes of the players who select k and the corresponding fijpk
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Model 4 Competitive PCST: Simultaneous Move Game, Compact

max
∑

k∈N+

∑
n∈P

rkntkn −
∑

(i,j)∈A′

cijyij (3.13)

s.t.
∑
j∈N

fjik −
∑
j∈N ′

fijk =


−xkp if i = op∑

p∈P xkp if i = k

0 otherwise
i ∈ N, k ∈ N+ (3.14)

fijk ≤ yij (i, j) ∈ A′, k ∈ N+ (3.15)∑
p∈P

xkp =
∑
n∈P

tkn k ∈ N+ (3.16)

fijk ≥ 0 (i, j) ∈ A′, k ∈ N+

yij ≥ 0 (i, j) ∈ A′

xk,p ∈ {0, 1} k ∈ N+, p ∈ P

tkn ∈ {0, 1} k ∈ N+, n ∈ P

can be retrieved. In constraint (3.9), flows are already defined for each player, hence the optimal

network for each selected k and selecting p would be a path from op to k. The union of these paths

would indeed give the optimal tree enforced by (3.14) and we can retrieve fijk =
∑

p fijpk.

Since constraint (3.10) returns if a given (i, j) is built by player p, we can obtain the number of

players building the arc by computing
∑

p yijp. On the other hand, yij is not necessarily equal to

the number of players building arc (i, j) but is equal to that value at optimality. See Figure 3.4 for

an example.

Considering that we have a maximization problem, constraint (3.15) implies yij = maxk fijk =

maxk{
∑

p fijpk}. Similarly, (3.10) implies yijp = maxk fijpk. Hence our claim is that, at optimal-

ity, maxk{
∑

p fijpk} =
∑

p(maxk fijpk). As already defined,
∑

p(maxk fijpk) is the number of

players that use arc (i, j). And it is easy to show that
∑

p(maxk fijpk) ≥ maxk{
∑

p fijpk}. For

maxk{
∑

p fijpk} to correspond to the same value, there should be some k such that all distinct

players using arc (i, j) should select k.

For a contradiction, assume otherwise. Let k1 be the node that is selected by the largest number

of players that use arc (i, j) to send flow to it. Let the set of those players be P1, and note that
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Figure 3.4: A suboptimal solution:
∑

p yijp = 3 > 2 = yij

|P1| = maxk{
∑

p fijpk}. The claim is that P1 does not include all the players using arc (i, j). Then

there should be some destination node k2 and a corresponding set of players P2 who use arc (i, j)

to send flow to k2 such that P2 \ P1 ̸= ∅. Then there exist players p1 ∈ P1 \ P2 and p2 ∈ P2 \ P1.

In other words, fij,p1,k1 = 1, fij,p1,k2 = 0, fij,p2,k1 = 0 and fij,p2,k2 = 1. This result is feasible,

but is suboptimal as we can take the path from j to k2 that belongs to player p2 and give it to player

p1. By doing this we do not change the number of occupants at node k2, yet (potentially) prevent

p2 from building (i, j) which increases the objective. Therefore at optimality P2 \ P1 = ∅ and

yij =
∑

p yijp.

3.5.3 Stackelberg Game: MIP Model

Frequently, we are not just interested in finding an equilibrium solution to the game but we also

wish to assume the role of one of the players. There are different such game settings. Here, as in

Chapter 2, we consider the Stackelberg type competition, a game setting in which one of the players

has the chance to make the first move, thus is the leader (L) in the game, and the other player is her

follower (F ). Furthermore, we assume the role of the leader, and the role of the follower is simply

optimizing his own objective after the leader’s strategy is revealed. On the contrary, the leader has to

account for her opponent’s decision and has to optimize her objective expecting that the follower’s

objective (reaction) would be optimal given hers. This type of model (for two players) is referred
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to as bilevel programming in the mathematical programming literature. The integer programming

version is referred to as integer bilevel linear programming (IBLP).

Letting G(Np, Ep) denote the subgraphs built by players p ∈ {L,F}, a bilevel program for

the leader’s problem is sketched below in Model 5. The leader maximizes her profit (3.17), which

is dependent on the nodes she and the follower select and arcs she builds. The resulting network

should be a connected (3.19) subgraph of G(N,E), include leader origin oL but not follower origin

oF as (3.18) suggests. Moreover, the subset of nodes that the follower selects should solve the

optimization problem — the same problem from follower’s point of view — as in (3.20).

Model 5 Competitive PCST, Bilevel Program Sketch

max
NL,EL

revenue(NL, NF )− cost(EL) (3.17)

s.t. EL ⊂ E, NL ⊂ N, oL ∈ NL, oF ̸∈ NL (3.18)

G(NL, EL) is connected (3.19)

NF ∈ arg max
NF ,EF

revenue(NF , NL)− cost(EF )

s.t. EF ⊂ E, NF ⊂ N, oF ∈ NF , oL ̸∈ NF

G(NF , EF ) is connected

(3.20)

Solving the leader’s problem optimally for combinatorial optimization problems like PCST (as

follower’s problem) seems impractical using current algorithmic technology. Instead, we are going

to focus on developing a heuristic reformulation of the follower’s problem to obtain a reasonable

single-level MIP model for the leader’s problem. In Chapter 2, we used the greedy algorithm to

determine the follower’s response but kept his decision space intact. He could open any facility but

the facilities were picked using a heuristic that potentially yielded suboptimal solutions. Now, we

would like to look at the problem from a different perspective. We will restrict the decision space

of the follower, but are going to solve his optimization problem exactly over this restricted decision

space.

The idea is as follows. Given graph G(N,E), the follower’s decision space is restricted to a
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directed tree T (NT , AT ) that is rooted at oF . It consists of nodes NT ⊂ N \ oF and arcs AT ⊂ A

whose direction is from the root to the leaves. Then the optimization problem in (3.20) becomes

Model 6.

Model 6 Competitive PCST, Follower’s Restricted Response

max
NF ,AF

revenue(NF , NL)− cost(AF ) (3.21)

s.t. AF ⊂ AT , NF ⊂ NT , oF ∈ NF (3.22)

G(NF , AF ) is connected (3.23)

The good thing about Model 6 is that we can solve this problem optimally using a heuristic that

runs in O(|T |) (with given ordering) time. Next, we will describe the heuristic and show that it

finds the optimal solution. Then, we will describe a feasibility problem — a set of linear constraints

without an objective function and show that this problem is equivalent to the heuristic and hence to

Model 6.

The heuristic (see Algorithm 3.2) relies on the observation that the optimal PCST does not have

any unprofitable subtrees. That is, starting with the origin and continuing through children, every

subtree is profitable. The heuristic is modified from the strong pruning algorithm by Johnson et al.

(2000), who devised it as an improvement step for the primal-dual algorithm for PCST proposed in

Goemans and Williamson (1995). Recall that T is defined to be rooted at oF . We also define the

subtree of T rooted at i ∈ NT as Ti. Hence T = ToF . Furthermore, let S denote the candidate

solution with current knowledge and R denote the currently unchecked portion of T . Both S and R

will be initialized as T and are going to stay as trees throughout the iterations. Finally, let Si be the

subtree of S which is rooted at i and di be the profit from adding it.

The algorithm proceeds as follows. At each iteration, a leaf i of the remaining tree R is checked.

If it is profitable to select Si ∪ (parent(i), i), S remains intact and the profit is carried to the parent

of i. Otherwise, the entire Si ∪ (parent(i), i) is pruned from S. At the end of the iteration node i

and arc (parent(i), i) is removed from R, hence will not be considered in the subsequent iterations.

See Figure 3.5 for an example
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Figure 3.5: Strong pruning
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Algorithm 3.2 Strong Pruning for Follower Problem

given leader solution xLi for each i ∈ NT

update revenue: let ri ← (1− 0.5xLi )ri
let S = T (NT , AT ), R = T (NT , AT ), and di = 0 for all i ∈ NT

while R ̸= oF do
let i be a leaf of R
let di = max{di + ri − cparent(i),i, 0}
if di > 0 then

let dparent(i) = dparent(i) + di
else

remove Si and arc (parent(i), i) from S
end if
remove node i and arc (parent(i), i) from R

end while
return S as optimal PCST on T and with objective doF

Before showing that the algorithm returns the optimal PCST on a tree, let us discuss some

properties of this restricted problem. First, consider T (N,A) rooted at some node o. Since each

node i ∈ N \o has a single arc (parent(i), i) entering it, selecting the node is equivalent to selecting

the entering arc. Consider a subtree Ti of T . The profit of selecting any subset N
′

from the nodes

in Ti is
∑

j∈N ′(rj − cparent(j),j), hence the optimal solution for Ti is independent of the decisions

made for any j ̸∈ Ti. However, a feasible solution for the overall problem should be connected to

the root node. Therefore, if parent(i) or any node on the path from o to i is not selected, entire Ti

would not be selected, either.

Theorem 14. Algorithm 3.2 solves the PCST on a tree optimally.

Proof. By induction on i from leaves to root. We start with the leaves of T . Let i be a leaf of T , so

i has no children. Then, if ri− cparent(i),i > 0, hence adding node i is profitable, we carry the profit

to the parent. Because if the parent of i is selected, it will be profitable to select i, too. If not, we

remove i from further consideration. Any feasible solution that selects i can simply be improved

by not selecting it it. At the end of the iteration Si is either i or empty. This is exactly what the

algorithm does for the leaves of T .

Assume we find the optimal solution for all the children j of a given node i. It is easy to see
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that the algorithm goes through all the children before considering a parent. Optimal solutions Sj

are assumed to be found, so associated profits dj are already carried to the parent from profitable

children. The optimal decisions for the subtrees rooted at the children of i are independent of the

decision for i as mentioned before. di + ri − cparent(i),i equals the profit of selecting node i and all

the optimal solutions of the children. Currently, Si = i
∪

j(Sj ∪ (i, j)). If the profit is positive, we

select i and the optimal solutions of the children, hence Si remains untouched. Otherwise, for any

feasible solution that selects i, we can come up with a better solution that does not select i, hence

Si = ∅ after the removal.

Letting i be the origin, we obtain the optimal solution S.

Now, we represent this algorithm as a set of linear constraints. The leader’s decision variables

are the same in Model 2. We add the superscript L [F ] to x in order to distinguish the leader

[follower]. We also define three new variables to represent the strong pruning algorithm in the

model.

Variables:

xLj : If leader selects node j, xLj = 1 and 0 otherwise

yij : If leader selects arc (i, j), yij = 1 and 0 otherwise

fijk : Leader’s flow through arc (i, j) with destination k

xFj : If follower selects node j, xFj = 1 and 0 otherwise

di : (Potential) follower profit transferred from node i to parent of i

ui : (Actual) follower profit transferred from parent of i to node i

wi : If both players select node i, wi = 1 = xLj x
F
j and 0 otherwise

The potential profit flows “downward” from the leaves to the root node as in Figure 3.6a. At each

evaluated node i potential profit di is calculated as in (3.24). It is the maximum of 0 and the sum of

the potential profit from the children plus its own profit. Note also that d is nonnegative.

di ≥
∑

j:(i,j)∈T

dj + ri(1− 0.5xLi )− cparent(i),i∀i ∈ T (3.24)
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Figure 3.6: Two way profit flow

(3.24) imposes no upper bound on the value of doL . We would like to balance this with a reverse,

hence “upward,” flow from the root node to the leaves as in Figure 3.6b, which would eventually be

equal to the actual profit. (3.25) says that the actual profit would be equal to the potential profit at

the root node, but it would be less than the potential profit everywhere else. If i is selected, profit ui

is reduced by the i’s own profit and is passed to its children conditional on that the parent is selected

(3.26).

ui

 = di if i = oF

≤ di otherwise
∀i ∈ T (3.25)

ui =
∑

j:(i,j)∈T

uj + ri(x
F
i − 0.5wi)− cparent(i),ix

F
i ∀i ∈ T (3.26)

Since a feasible solution needs to be a tree with root oF , if a node is selected, its parent should also

be selected (3.27).

xFj ≤ xFi ∀(i, j) ∈ T (3.27)

Note that wi = xLi x
F
i and (3.28) linearizes this constraint.

wi


≤ xLi

≤ xFi

≥ xLi + xFi − 1

∀i ∈ T (3.28)
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Finally, the flows u and d are nonnegative and selection variables xF and w are binary.

Model 7 Competitive PCST, Stackelberg Game

max
∑

k∈N+

rk(x
L
k − 0.5wk)−

∑
(i,j)∈A′

cijyij (3.29)

s.t. Leader’s decision: (3.30)

∑
j∈N ′∪op

fjik −
∑
j∈N ′

fijk =


−xLk if i = op
xLk if i = k
0 otherwise

∀i ∈ N ′ ∪ op, k ∈ N+ (3.31)

fijk ≤ yij ∀(i, j) ∈ A′, k ∈ N+ (3.32)

Follower’s response:

Constraints (3.24), (3.25), (3.26), (3.27), (3.28)

fijk ≥ 0 ∀(i, j) ∈ A′, k ∈ N+

xLk ∈ {0, 1} ∀k ∈ N+

yij ∈ {0, 1} ∀(i, j) ∈ A′

ui, di ≥ 0 ∀i ∈ T

xFk , wi ∈ {0, 1} ∀i ∈ T

Theorem 15. Constraints (3.24), (3.25), (3.26), (3.27), (3.28) are equivalent to strong pruning.

Proof. Each selectable node has only one parent and we can treat revenue as a parameter after

accounting for the leader decision. Therefore, to ease the notation, let ci and ri be used instead of

cparent(i),i and ri(1− 0.5xLi ), respectively.

Nonnegativity d ≥ 0 and (3.24) implies di ≥ max{di+ri−ci, 0}. Therefore, di ≥ d∗i for all i ∈

T , where (∗) denotes the strong pruning (i.e., optimal) result. By definition, ui =
∑

i∈Ti
(ri−ci)x

F
i ,

where Ti is the subtree rooted at node i. As xFi ≥ xFj for all j ∈ Ti, we have

xFi = 0⇒ ui = 0∀i ∈ T (3.33)

Now, consider a subtree Ti. Potential profit di is always nonnegative, hence we have the following
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two cases:

Case 1: Let di > 0 and the children of i be j ∈ J . Assume di = ui, if ri ̸= ci, then xFi = 1.

Recall that uj ≤ dj , for all j, so we obtain

∑
j∈J

uj = ui − (ri − ci)x
F
i = di − ri + ci ≥

∑
j∈J

dj ⇒ uj = dj∀j ∈ J.

If ri = ci, then this implies there is at least one child j with dj > 0 and it becomes the problem in

this case again. Continuing in this fashion, there should be at least one node k ∈ Ti with rk ̸= ck,

which would imply xFk = 1 and, due to constraint (3.27), all the way down to the origin the entire

path from k is selected. Hence if di = ui > 0, then xFi = 1.

Case 2: If di = 0, then ui = di = 0 readily. Moreover, ri − ci ≤ 0, otherwise we would have

di > 0. Consequently,

ri − ci < 0⇒ xi = 0⇒ xj = 0∀j ∈ Ti. (3.34)

Hence, if di = 0, then either xj = 0 for all j ∈ Ti and we prune the whole subtree Ti, or any subtree

of Ti that is selected should have r = c, throughout. Hence it is optimal to prune Ti if di = 0.

This indifference does not cause any problem on the leader side. We assume that the follower does

not act “malevolently” and if it would not bring benefit to him (i.e., multiple optima), leaves the

decision to the leader.

Now, we start from the root node. By constraint (3.25), doF = uoF is readily given. If doF > 0,

we have an example of Case 1, and uj = dj for all j that are the children of oF . After this, for any

node i, either di = 0 and Case 2 applies, or di > 0 and Case 1 applies. If doF = 0, we have Case 2

and it is optimal for the follower not to move.

Note that this implies ui = di for all selected nodes i, and eventually, uj = dj = rj − cj for j

denoting the leaves (nodes without children) of the selected subtree. Therefore, it is not feasible to

falsely set some di > max{di + ri − ci, 0} that would be transferred to the origin.

To sum up, the feasible solution to this set of constraints and the declared domains for variables
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has correctly calculated potential profits d (if they are carried to the origin), which brings correct

actual profits u and any nonprofitable subtree is pruned. This is equivalent to strong pruning in

effect.

This approach brings O(m) additional constraints and variables to the leader’s PCST problem,

where m is the number of nodes in T . This is not many, considering the original number of con-

straints the problem has. This model can easily be extended to a case where the follower evaluates

multiple trees and responds optimally picking a subtree in one of them. Letting T be the set of

those trees, follower variables are going to have an additional index t ∈ T . Then the response can

be restricted to the best of these trees by simply setting
∑

t∈T xFo,t = 1. Similarly, multiple origins

can be included into the model using the dummy arcs trick as in Section 3.4.2.

3.6 Computational Study

We tested our models using 80 randomly generated data sets. The data sets can be divided in three

classes. Classes D, R and A stand for “Delaunay”, “random” and “additional”, respectively. Each

class is further divided into subsets consisting 5 instances that have the same properties. Class D

consists of 25 instances. They are Euclidean graphs which have 100 to 500 nodes that are uniformly

distributed on a 100-by-100 square, and edges that are formed using Delaunay triangulation. Leader

and follower origins — one for each — are picked randomly. The number of nodes with positive

revenue is set to 25% of all nodes. They are randomly picked excluding origins and their values

are generated uniformly in [µ, 3µ] where µ is the average edge cost (i.e., length). Class R are again

Euclidean graphs, but no triangulation is used in their generation. They consist of 25 instances.

Nodes are generated in the same manner as class D, but the edges are generated randomly keeping

the edge-to-vertex ratio constant at 3. These graphs are also connected. We first generate a random

spanning tree and then pick the remaining edges. Finally, class A consists of 30 additional instances

that we use for comparison. We generated them over the 200-node instances in class R in order to

test the two constants we used in the data generation. In the first 15 of the additional instances, we
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Table 3.1: Instance settings

Class Subset Nodes Revenue nodes Edges
Edge/node Revenue node

ratio percentage

D

1 100 25 284 2.8 25
2 200 50 582 2.9 25
3 300 75 883 2.9 25
4 400 100 1182 3.0 25
5 500 125 1480 3.0 25

R

1 100 25 300 3 25
2 200 50 600 3 25
3 300 75 900 3 25
4 400 100 1200 3 25
5 500 125 1500 3 25

A

1 200 50 800 4 25
2 200 50 1000 5 25
3 200 50 1200 6 25
4 200 60 600 3 30
5 200 70 600 3 35
6 200 80 600 3 40

varied the edge-to-node ratio in [3, 5] and added additional randomly picked edges. In the second 15,

we changed the percentage of revenue nodes in [25, 40] by generating revenue data for nodes with 0

revenue in the original setting. Properties of these data sets (averaged over subsets) are summarized

in Table 3.1.

3.6.1 Solution Statistics

We coded the model using GAMS and solved the instances using CPLEX 11.1 on a Intel T7500

2.2 GHz 2GB 32-bit computer. Model size and solution statistics of each subset (averaged over 5

instances) of classes D and R are tabulated in Tables 3.2 and 3.3.

We first solve the two-player model (Model 7). We use two trees as the follower’s response

basis. The first one is generated by finding the minimum cost spanning tree for the follower and

then pruning unprofitable subtrees using strong pruning. The second one is generated by finding the

PCST for the follower, hence solving Model 2 for the follower. The values that are reported under

“Stackelberg” correspond to the average of these. After solving the Stackelberg model, we fix the
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leader’s variables at their suggested levels, and solve PCST for the follower in order to compute the

error generated by the restriction of the follower’s response. In order to compare the leader’s loss

from competition, we solve the leader’s single-player problem (Model 2), too. Since the leader and

follower problems are identical with only a few parameter changes, we report them together. “PCST

(L & F)” correspond to the average of these two runs. Then, we solve the equilibrium finding model

(Model 4) and report the results under “Simultaneous”. Finally, we solve the central model and

reported under “central”.

The sizes of the two classes are similar to each other. However, if we look at the solution

statistics in Table 3.3, we see that the instances we obtained through triangulation take longer to

solve than the random instances. An interesting result is that the instances were almost always

solved at the root node, without any LP gap. The solution time with respect to instance type for each

problem type is plotted in Figure 3.7. As expected, solution time increases rapidly with increasing

problem size. The simultaneous-move game model is the most time consuming one, whereas the

rest are similar to each other. Among all instances two (both Stackelberg) were solved in longer

than 1 hour. The twist in Figure 3.7d is caused due to the removal of those instances while plotting

the figure.

The same process is followed for the A instances. These instances were generated from R2 by

adding arcs or adding revenue nodes. The solution statistics for class A is provided in Table 3.4 and

solution times of each type and for each control parameter is illustrated in Figure 3.8. The change in

the number of arcs (hence the edge-to-node ratio) affects the solution time more than the percentage

(hence number) of revenue nodes.

Finally, we compare the profits obtained in the equilibrium and central designs. According

to Figure 3.9a, the loss is less (percentage is high) for the triangulation graph. It increases with

increasing number of arcs, but stays stable for increased number of nodes. Figure 3.9b illustrates

leader’s error obtained by calculating |Expected−Suggested|
Suggested , where “suggested” is the leader’s profit

as a result of solving the Stackelberg model and “expected” is the leader’s profit after follower

responds optimally. This error is significantly less for the random instances. The two lines represent
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Figure 3.7: Solution time change
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Figure 3.8: Sensitivity analysis
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Figure 3.9: Sensitivity analysis

two different trees, T , for follower response. Using the PCST of the follower improves the result

significantly.

3.7 Conclusions

We discussed network formation and design under competition. We introduced a network formation

game, characterized optimal strategies for individual players and proposed an iterative method and

a mathematical programming formulation that finds a pure strategy equilibrium solution in order to

anticipate the resulting network. The equilibrium is not unique and the resulting equilibrium solu-

tion, however, is not an extreme equilibrium—the least or most profitable. Therefore, the problem

of measuring the best/worst case deviation from a centralized solution remains open.

Next, we introduced a leader-follower version of the model. This problem is inherently a more

difficult problem as discussed in Chapter 1. In order to obtain near optimal results within short

solution times, we proposed a reformulation approach. We restricted the follower’s response space

to a tree (or set of trees) and demonstrated that strong pruning solves the follower’s problem given

this restriction. Then we expressed the follower’s restricted optimization problem as a feasibility

problem by converting the strong pruning algorithm to a group of linear constraints. The heuristic

reformulation has a single-level problem and is more tractable and can be solved by standard MIP

methods.
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We considered the same game for both players, however this reformulation, and in general

similar reformulation strategies to describe the follower problem, can be implemented in various

scenarios. We are currently developing an implementation for network interdiction using the ideas

presented in this study. In the future we would like to develop an exact optimization method that

employs this solution technique iteratively in an algorithm.
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Chapter 4

A Portfolio Choice Problem:

Simultaneous Signaling

4.1 Introduction

The college application and search process and the job application and search process involve not

only a candidate’s choice of the set of schools or institutions to apply to, but also the set of schools

or institutions to signal interest to. For example, in the job market for economics Ph.D.s organized

by the American Economic Association, a job market candidate not only chooses the set of schools

to which he or she applies, but also the set of (two) schools to which he or she can send, through

the Association, signals of interest. Similarly, in the college admissions process, applicants have the

option to send costly signals to schools, again to increase the probabilities of admission. Examples

of such signals are attending campus tours and information sessions, making phone calls and send-

ing e-mail inquiries, all of which require time and effort from the applicants. Some schools track

this information to evaluate the candidates’ interest in the school.

The Chronicle of Higher Education, 2010, asks the following questions, while investigating

American University’s admission figures: “How many applicants would turn down a super-selective,

big-name college to attend a somewhat less-selective, less-famous one? How do you know whether
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a student considers your college a top choice or a ‘safety school’? How does an applicant’s sense

of ‘fit’ with a college relate not only to matriculation, but also retention?” The article continues,

“In recent years, such questions have prompted American’s admissions teams to look more closely

at ‘demonstrated interest,’ the popular term for the contact students make with a college during the

application process, such as by visiting the campus, participating in an interview, or e-mailing an

admissions representative.” (Hoover, 2010)

In the market for Ph.D. economists, Coles et al. (2010a), with data from the American Economic

Association, examine the effectiveness of the AEA signaling mechanism; and in the college admis-

sions process, Dearden et al. (2011), in their empirical section, with data from a highly-selective

medium-sized university, examine the effectiveness of “demonstrated interest.” In theoretical anal-

yses of market signaling, Avery and Levin (2010), Coles et al. (2010b), Dearden et al. (2011), and

Kushnir (2010) examine signaling and institutional offer game-theoretic models. While these mod-

els offer insights into signaling decisions, they are restrictive in that each applicant is permitted to

send only one signal. Given the established empirical importance of signaling, an interesting issue

is the characterization of optimal signaling decisions by a decision maker in a model in which the

choice of the number of signals and which schools to signal is endogenous.

In this chapter, we consider a setting in which a decision maker – either a student applying to

colleges and universities or a graduate applying for jobs – has submitted applications to various

institutions. After submitting the applications, the decision maker has the option to send a costly

signal to each institution. We analyze an individual’s simultaneous choice about the set of institu-

tions to signal. In doing so, we generalize the results of Chade and Smith (2006). Chade and Smith

analyze the problem of characterizing the set of institutions to which a decision maker optimally

applies, assuming that not applying to an institution results in zero probability of an offer from that

institution. Their model, however, could be used to describe the signaling choice problem. But, in

the context of signaling, assuming a zero probability of receiving an offer following no signal is

unrealistic. To consider the signaling decision problem, we generalize their model by permitting the

probability of receiving an offer to be positive (or possibly zero) following no signal.
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We demonstrate that the optimal algorithm to solve the decision maker’s problem identified by

Chade and Smith for their specific environment also is optimal in this more general environment.

Incidentally, they generalize Stigler (1961). Moreover, we pose the same problem as a longest path

problem and propose a dynamic programming algorithm.

The optimal decision rule is a “greedy algorithm”, which Chade and Smith appropriately term

for an economics audience a “marginal improvement algorithm.” This algorithm has the advantage

of being simple; that is, it is easy to characterize and to understand. Furthermore, for the N school

case, the algorithm executes in polynomial time, amounting to O(N3) operations. Therefore, the

solution to a student’s decision about the set of schools to “demonstrate interest” or the new eco-

nomics Ph.D.’s decision about the schools to signal through the AEA mechanism is simple and easy

to characterize.

The key to their proof of the optimality of the marginal improvement algorithm is the “down-

ward recursive” nature of the decision maker’s gross payoff function. (In their model, as in ours, the

decision maker’s utility equals gross payoff less cost.) In our more general environment, however,

the decision maker’s gross payoff function is no longer downward recursive. But, as we demon-

strate, a monotonic transformation of the gross payoff function does satisfy this property. We use

the downward recursive nature of this monotonic transformation in the proof of the optimality of

the marginal improvement algorithm.

Our sequence of lemmas and theorem for the greedy algorithm follows a similar path to that of

Chade and Smith. However, we provide a simpler proof for the optimality of the greedy algorithm.

The dynamic programming algorithm we propose relies on the observation that the problem may be

posed as a nonconventional longest path problem. It offers a better time complexity (O(N2)) using

the same memory (O(N)).
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4.2. THE MODEL

4.2 The Model

4.2.1 The Signaling Problem

A student has applied to a finite set N = {1, 2, ..., N} of schools. We avoid using set notation by

writing, for example, i = {i}, A+B = A∪B, A−B = A\B, A∧B = A∩B, and (i, j) = {k ∈

N | i < k < j}. We abuse notation by letting N represent both a natural number and a set N . The

cardinality of the set of subsets of N is 2N . The student’s decision problem in this model is to choose

a subset of schools to which he or she signals. Let f : 2N 7−→ R+ be a supermodular function.

Interpret f(S) as the expected gross payoff to the student of signaling a subset S of the schools. We

let ρSA denote the probability of being rejected by each of the schools in A,A ⊆ N , given that the

student signals each of the schools in S, S ⊆ N . We let ρA ≡ ρ∅A denote the probability of being

rejected by each of the schools in A, given the student has signaled none of the schools in A. We

assume for each school i ∈ N, ρi ≤ ρii. Furthermore, ρSA = (
∏

i∈A∧S ρii)(
∏

i∈A−S ρi). We label

the schools by the student’s ex post utility, u1 > u2 > ... > uN . The student’s gross payoff of

signaling the schools in S is:

f(S) =
N∑
k=1

ρS[1,k)(1− ρSk )uk.

We assume that the cost of signaling a portfolio of schools, S, is a function of the cardinality of

S, c(|S|), where |S| denotes the cardinality of S. We assume that c is increasing and convex and

that c(∅) = 0.

We examine the choice of S to maximize the student’s net payoff, v(S) = f(S) − c(|S|). We

assume that f(i)− c(1) > f(∅) for at least one i. Let Σ∗(N) solve

max
S⊆N

v(S), (4.1)

and denote Σ∗ ≡ Σ∗(N).

In our analysis, we also make use of a special case in which the student signals exactly n schools
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from the set of alternatives N . For this special case, the cost function is c(|S|) = 0 for |S| ≤ n

and c(|S|) = ∞ for |S| > n. For this case, we let Σn(N) denote the solution to (4.1). Further, we

define Σn ≡ Σn(N).

From f , we define the function, g : sN 7−→ R+, which equals the decision makers’s net

expected payoff of signaling of signaling S less his or her or expected payoff of signaling the null

set, ∅. That is, g(S) ≡ f(S) − f(∅). In our proof of the solution to (4.1), which involves the

maximization of f(S)− c(|S|), we analyze the function g.

4.2.2 Properties of the Payoff Functions, f and g

We define that U is above L, written U ⊒ L, if the worst prize in U is better than the best prize in

L. The function g is downward recursive (DR) as explained in the following property.

Property 16. Given sets of signaled options U and L in N that satisfy U ⊒ L, we have that g is

DR:

g(U + L) = g(U) +
ρUU
ρU

g(L). (4.2)

Proof. We begin with:

g(U + L) = f(U + L)− f(∅) =
N∑
t=1

ρU+L
[1,t) (1− ρU+L

t )ut − f(∅). (4.3)

We partition {1, ..., N} into two sets {1, ..., l1 − 1} and {l1, ..., N}, where l1 is the best alternative

in L, and rewrite (4.3) to obtain:

=

l1−1∑
t=1

ρU[1,t)(1− ρUt )ut +

N∑
t=l1

ρU+L
[1,t) (1− ρU+L

t )ut − f(∅). (4.4)
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We add and subtract the same expression from (4.4) to obtain:

=

l1−1∑
t=1

ρU[1,t)(1− ρUt )ut +

N∑
t=l1

ρU+L
[1,t) (1− ρU+L

t )ut − f(∅).

+

N∑
t=l1

ρU[1,t)(1− ρt)ut −
N∑

t=l1

ρU[1,t)(1− ρt)ut. (4.5)

We rearrange the terms in (4.5) and use these equalities: first, ρU+L
t = ρLt for any t ∈ [l1, N ];

second, ρt = ρUt for any t ∈ [l1, N ]; third, ρUUρ
L
[1,t) = ρUρ

U+L
[1,t) ; and fourth ρUUρ[1,t) = ρUρ

U
[1,t). In

doing so, we obtain:

=

N∑
t=1

ρU[1,t)(1− ρUt )ut − f(∅)

+
ρUU
ρU

( N∑
t=l1

ρL[1,t)(1− ρLt )ut −
N∑

t=l1

ρ[1,t)(1− ρt)ut

)
. (4.6)

We use the fact that the first l1 − 1 terms of f(L) and f(∅) are the same and thus cancel each other

in g(L) = f(L)− f(∅) to find:

= g(U) +
ρUU
ρU

g(L). (4.7)

which shows that Property (4.2) holds.

We also have that g satisfies the following multiplicative property. For any U ⊒ M ⊒ L, we

have:

g(U +M + L) = g(U +M) +
ρU+M
U+M

ρU+M

g(L)

=

(
g(U) +

ρUU
ρU

g(M)

)
+

ρU+M
U+M

ρU+M

g(L).

Because
ρSS
ρS
≤ 1 and is multiplicative, this function is decreasing in S.
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Even though the function g is a monotonic transformation of f , and g is DR, the function f

is not DR. We demonstrate by means of a counterexample that the function f is not DR. In this

counterexample, consider N = 2. To demonstrate that f is not DR, set f(1 + 2) = f(1) + αf(2)

and solve for α. In doing so, we have

α =
ρ11(ρ2 − ρ22)u2

(1− ρ1)u1 + ρ1(1− ρ22)u2
,

which indicates that f is not DR.

4.3 The Solution

4.3.1 Properties of the Optimal Set

Chade and Smith establish a key property of DR functions – downward maximization. We establish

that this property extends to f , which is not DR in our environment. However, we do use the

monotonic relationship between f and g, which is DR, in our proof of Lemma 17.

Lemma 17. Let Σn = U + L, where U ⊒ L and L has k elements. Then Σk(D) = L, where D

are those options in N that are not better ranked than the best in L.

Proof. By contradiction. Assume Σk(D) ̸= L. That is, there exists an S ⊆ D such that |S| = k

and f(S) > f(L). By definition of the set U , U ⊒ D, which implies U ⊒ S. Property 4.2 states

that g(U + S) = g(U) +
ρUU
ρU

g(S). Then,

f(S) > f(L)⇔ g(S) > g(L)⇔
ρUU
ρU

g(S) >
ρUU
ρU

g(L).

Therefore,

g(U + S) = g(U) +
ρUU
ρU

g(S) > g(U) +
ρUU
ρU

g(L) = g(U + L).
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However, Σn = U +L implies f(U +L) ≥ f(U + S) and thus g(U +L) ≥ g(U + S), which is a

contradiction. Therefore Σk(D) = L.

We move on to Lemma 18, where we consider any two alternatives i and j for which the ex

post preferences, ui > uj (i.e., i < j), matches the ex ante preferences, f(i) > f(j). For these

pairs of alternatives, Lemma 18 states that the marginal values of adding these alternatives to a set

S ⊂ N−{i, j} has the same ranking, MBi(S) = f(S+i)−f(S) > f(S+j)−f(S) = MBj(S).

Lemma 18. Assume f(i) > f(j) and i < j. Then the marginal benefits of i and j are ordered

MBi(S) = f(S + i)− f(S) > f(S + j)− f(S) = MBj(S) for any set S ⊆ N − {i, j}.

We demonstrate by means of an example that we cannot apply the Chade and Smith proof of

their Lemma 2 to establish our Lemma 18. In this example, consider N = 3 in which f(1) > f(3).

For ρ1 = ρ2 = ρ3 = 1, Chade and Smith in the context of this example demonstrate in their Lemma

2 that f(1 + 2) > f(2 + 3). To do so, they write the expected utility of signaling schools 1 and 2,

and then choosing school 2 if accepted at 2, school 1 if accepted at 1 and rejected by 2, and finally

school 3 if accepted by 3 and rejected by 1 and 2. They demonstrate that for the case in which

ρ1 = ρ2 = ρ3 = 1, this suboptimal policy yields an expected utility that is less than f(1 + 2) but

greater than f(2 + 3). Specifically, we express the latter inequality in the context of this example

for the case in which ρ1 = ρ2 = ρ3 = 1:

(1− ρ
[1,2]
2 )(f(2) + ρ

[1,2]
2 ((1− ρ

[1,2]
1 )u1 + ρs1f(3)))

> (1− ρ
[2,3]
2 )(f(2) + ρ

[2,3]
2 ((1− ρ

[2,3]
3 )u3 + ρ

[2,3]
3 f(3))).

(4.8)

Therefore, (4.8) does not hold for the case in which (ρ1, ρ2, ρ3) ̸= (1, 1, 1).

In continuing with the example, let u1 = 2.4, u2 = 2, and u3 = 1.9. Also let ρ1 = 0.9,

ρ2 = 0.8, ρ3 = 0.7, ρs1 = 0.0.8, ρs2 = 0.7, ρs3 = 0.6. For this numerical example, we have

f(1) = 1.1648 > f(3) = 1.1472. In an attempt to use (4.8) to establish that if f(1) > f(3), then
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f(1 + 2) > f(2 + 3), we have on the left-hand side of (4.8):

(1− ρ
[1,2]
2 )u2 + ρ

[1,2]
2 ((1− ρ

[1,2]
1 )u1 + ρ

[1,2]
1 (1− ρ3)u3) = 1.2552.

We have on the right-hand side of (4.8):

(1− ρ1)u1 + ρ1((1− ρ
[2,3]
2 )u2 + ρ

[2,3]
2 (1− ρ

[2,3]
3 )u3) = 1.2588.

Hence, for this example (4.8) does not hold. Based on this example, we therefore develop a new

proof of Lemma 18.

Proof. We start with f(i)− f(j) and gradually build f(S + i)− f(S + j). In our notation, we let

uN+1 = 0, which is a dummy option that we include to preserve the integrity of our expression. We

express f(i), the expected utility from signaling school i, as:

f(i) =

i−1∑
t=1

ρ[1,t) (1− ρt)ut + ρ[1,i) (1− ρii)ui +

N∑
t=i+1

ρ[1,t)−i ρ
i
i(1− ρt)ut

= (1− ρ1)u1 + ...+ ρ[1,i)(1− ρii)ui + ...+ ρi[1,N−1](1− ρN )uN

= u1 − ρ1(u1 − u2)− ...− ρ[1,i) ρ
i
i(ui − ui+1)− ...− ρ[1,N ]−i ρ

i
i(uN − uN+1).

We now construct f(i) − f(j). In expressing this difference, we can derive from the above

expression that the first min{i, j} − 1 terms of f(i) and f(j) are identical. As i < j, the first i− 1

terms of f(i)− f(j) cancel. Note that in this proof, we partition the signaling set S into U , M , and

L, where U ⊆ [1, i), M ⊆ (i, j), and L ⊆ (j,N ]. We have that f(i)− f(j) is expressed as follows:

f(i)− f(j)

= ρ[1,i)

j−1∑
t=i

ρ(i,t](ρi − ρii)(ut − ut+1) +
N∑
t=j

ρ(i,t]−j (ρiρ
j
j − ρiiρj)(ut − ut+1)

 > 0. (4.9)

Note that ρi − ρii ≥ 0 and ut − ut+1 > 0. Therefore, all terms of the summation on the
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left (that is, for t = {i, . . . , j − 1}) are positive. Also note that ρiρ
j
j − ρiiρj can be positive or

negative. Therefore, all terms of the summation on the right (that is, t = {j, ..., N}) will either be

positive or negative. Our assumption that f(i) − f(j) > 0 implies that the cumulative sum up to

n ∈ {i, . . . , N} is always positive, because the negative terms in (4.9) occur only starting with term

t = j.

We use the following property in the next step of the proof.

Property 19. Let x, y ∈ R such that x > 0 and x+ y > 0, and let r ∈ [0, 1]. Then we have

x+ ry > 0, (4.10)

because if y > 0 then x+ ry > r(x+ y) ≥ 0, and if y ≤ 0 then x+ ry ≥ x+ y > 0.

Next, for some n ∈ {i, ..., N} let x be the cumulative sum up to t = n − 1, y be the sum over

the remaining terms, and r be ρnn
ρn
∈ [0, 1]. For x > 0, x+ y > 0 and r ∈ [0, 1], we can apply (4.10)

in Property 19 to the following. We multiply each term in (4.9) for t > n and t ∈ S by r = ρnn
ρn

iteratively until all n are accounted for:

ρ[1,i)

(
j−1∑
t=i

ρM(i,t](ρi − ρii)(ut − ut+1) +

N∑
t=j

ρM+L
(i,t] (ρiρ

j
j − ρiiρj)(ut − ut+1)

 > 0.

We rearrange the left-hand-side by splitting the factors (ρi − ρii) and (ρiρ
j
j − ρiiρj), and also by

taking the outer factors, ρ[1,i), inside. In doing so, we obtain:

N∑
t=i

ρM+L
[1,t] ρjj(ut − ut+1)−

N∑
t=i

ρM+L
[1,t] ρii(ut − ut+1) > 0. (4.11)

Finally, we multiply it by
ρUU
ρU
∈ [0, 1], then add and subtract u1 −

∑t=i−1
t=1 ρU[1,t](ut − ut+1). (Note

that this term is 0 if U = ∅.) In doing so, we see that the left-hand-side of (4.11) is equal to

f(S + i)− f(S + j). Therefore f(S + i)− f(S + j) > 0.
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Our next lemma yields a simple insight about Σ∗.

Lemma 20. Assume f(i) > f(j) and i < j. If j ∈ Σn(N), then i ∈ Σn(N).

We provide a simple proof of this property.

Proof. By contradiction. Assume j ∈ Σn(N), but i ̸∈ Σn(N). Let S ≡ Σn(N) − {j}. Then by

Lemma 18, f(S+i) > f(S+j). This implies f(S+i) > f(Σn(N)) which leads to a contradiction

as Σn(N) is the optimal solution.

4.3.2 The Optimal Algorithm

We move on to establishing that the following greedy algorithm, by an inductive procedure, identi-

fies Σ∗.

Algorithm 4.1 MIA: Marginal Improvement Algorithm

let Y0 = ∅ and n = 0
repeat

set n = n+ 1
choose any in ∈ argmaxi∈N f(Yn−1 + i)
set Yn = Yn−1 + in

until f(Yn)− f(Yn−1) < c(n) + c(n− 1)
return optimal set Yn−1

The MIA works as follows. The decision maker begins by calculating f(1) through f(n),

and includes the option, i, with the greatest value in S. The decision maker then recalculates,

determining f(i + j) for each j ∈ N − i. He or she adds the option j that brings the greatest

f(i + j). The decision maker continues until he or she hits the point where for each k ̸∈ S,

f(S + k)− f(S) < c(|S + 1|)− c(|S|). Our primary result is:

Theorem 21. The MIA implements the optimal set Σ∗ for problem (4.1) with D = N .

We provide a simpler proof than Chade and Smith (2006) based on the following observation.

Consider the optimal set with n signaled options, Σn(N), and let S ⊂ Σn(N). If we set ρi = ρSi

for all i ∈ S and solve for the best n − |S| options in N with updated probabilities, we obtain
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Σn−|S|(N) = Σn(N) − S. We can see that this is true because we simply fix the already known

|S| options in the optimal set (because signaling i when ρi = ρii is clearly suboptimal) and solve for

the remaining n− |S| best options.

Proof. Assume we are given Σn(N). Let j be the lowest ranked (i.e., largest indexed) option in

Σn+1(N)−Σn(N). Note that such a j must exist because the Σn+1(N) has one more option even if

the rest of the options are common. Let S be the subset of options in Σn+1(N) that are lower ranked

than j. Note that S is common to both optimal sets by definition of j, hence S ⊆ Σn+1(N)∩Σn(N).

Let {i1, . . . , in−|S|} be the options in Σn(N) that are better ranked than j. We will iteratively show

that j’s being in the optimal set implies that each it is in the optimal set for t ∈ {1, . . . , n− |S|}.

Let us start with t = 1. First, we update the rejection probabilities ρk = ρSk for all k ∈ S.

Then, by Lemma 17, we have Σ1([1, i1]) = i1. This implies f(i1) > f(j). Then, since i1 < j and

j ∈ Σn+1−|S|([1, i1]), we have i1 ∈ Σn+1−|S|([1, i1]) by Lemma 20.

For the remaining t, we update rejection probabilities ρit−1 = ρ
it−1

it−1
. We obtain Σ1([1, it]) = it

by applying Lemma 17. This implies f(it) > f(j). Then, since it < j and j ∈ Σn+1−|S|−(t−1)([1, it]),

we have it ∈ Σn+1−|S|−(t−1)([1, it]) by Lemma 20. Then, we increment t.

When t = n − |S|, we obtain in−|S| ∈ Σ2([1, in−|S|]). As j is also in the optimal set, this

implies Σ2([1, in−|S|]) = {j, in−|S|}, which in turn, implies Σn+1(N) = Σn(N) + {j}.

Since Σ1(N) = argmaxk∈N f(k), Algorithm 4.1 returns Yn(N) = Σn(N) for each n. To

complete the proof, the stopping rule in Algorithm 4.1 is optimal because c(n) in convex in n and

f by Lemma 22 (below) has diminishing returns — f(A + k) − f(A) is decreasing in A for any

k ̸∈ A ⊆ N . Furthermore, because c is a function of only the cardinality of N , Σ∗ = Σn(N)

For the function f , the marginal benefit of adding j to choice set S is decreasing in S. Specifi-

cally, for S ⊂ S′, we have:

f(S + j)− f(S) = ρS[1,j)

 N∑
t=j

ρS(j,t](ρj − ρjj)(ut − ut+1)
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≥ ρS
′

[1,j)

 N∑
t=j

ρS
′

(j,t](ρj − ρjj)(ut − ut+1)


= f(S′ + j)− f(S′)

We therefore have:

Lemma 22. The function f : 2N 7→ R+ has diminishing returns.

4.4 Comparative Statics

We analyze whether students tend to signal schools that are more selective. Specifically, if a school

becomes more selective, will a student move from not signaling the school to signaling the school?

Similarly, if a school becomes less selective, will a student move from signaling the school to not

signaling the school? In answering these questions, which we do in Theorem 23, we change only

the probabilities of admission, conditional on signaling and not signaling the school. Note that we

do not change the student’s utility of the school. Furthermore, to change school i’s selectivity, we

change the admissions probabilities of school i, ρSi and ρS+i
i , so that ρSi − ρS+i

i does not change.

As we demonstrate in the proof to Theorem 23, changing ρSi and ρS+i
i , without changing ρSi −

ρS+i
i , leaves the student’s marginal benefit of signaling school i unchanged. However, the marginal

benefit of signaling each other school does change. Therefore, while the changes in ρSi and ρS+i
i

may affect Σ∗, Theorem 23 answers the question about whether these changes in probabilities affect

the decision to signal school i.

To examine the effect of the change in a school’s selectivity, we introduce additional notation.

Let fρ denote the expected utility and Σρ∗ denote the optimal set under the probability structure

ρ = (ρ1, ..., ρN , ρ11, ..., ρ
N
N ). In Theorem 23, we compare the optimal choice sets under two different

probability structures: ρ = (ρ1, ..., ρN , ρ11, ..., ρ
N
N ) and ϱ = (ρ1, ..., ϱi, ..., ρN , ρ11, ..., ϱ

i
i, ..., ρ

N
N ) for

which ϱi > ρi, ϱii > ρii, and ϱi − ϱii = ρi − ρii.
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Theorem 23. Consider ρ = (ρ1, ..., ρN , ρ11, ..., ρ
N
N ) and ϱ = (ρ1, ..., ϱi, ..., ρN , ρ11, ..., ϱ

i
i, ..., ρ

N
N )

for which ϱi > ρi, ϱii > ρii, and ϱi − ϱii = ρi − ρii.

(i) If i ̸∈ Σρ∗, then i ̸∈ Σϱ∗.

(ii) If i ∈ Σϱ∗, then i ∈ Σρ∗.

Proof. Statement (ii) is the contrapositive of statement (i), hence has the same truth value as (i).

Therefore, we only prove (i). In our proof, we begin by establishing four properties about the

relationship between fρ and fϱ. With these properties in place, we prove the claim in (i), namely if

i ̸∈ Σρ∗, then i ̸∈ Σϱ∗.

For some i ∈ N , let ϱi − ρi = ϱSi − ρSi = δ, and note that δ > 0. We now establish the first of

four relationships of fρ and fϱ.

Claim 1: If fρ(S + j) > fρ(S + i) for some j < i and S ⊆ N − {i, j}, then fϱ(S + j) >

fϱ(S + i).

We prove this claim using (4.9):

fϱ(S + j)− fϱ(S + i)

= ρS[1,j)

 i−1∑
t=j

ρS(j,t](ρj − ρjj)(ut − ut+1) +

N∑
t=i

ρS(j,t]−i (ρjϱ
i
i − ρjjϱi)(ut − ut+1)


= ρS[1,j)

 i−1∑
t=j

ρS(j,t](ρj − ρjj)(ut − ut+1) +

N∑
t=i

ρS(j,t]−i (ρj(ρ
i
i + δ)− ρjj(ρi + δ))(ut − ut+1)


= fρ(S + j)− fρ(S + i) + ρS[1,j)

(
N∑
t=i

ρS(j,t]−i δ(ρj − ρjj)(ut − ut+1)

)

> fρ(S + j)− fρ(S + i) > 0. (4.12)

This completes the proof of Claim 1.

Next, we move on to our second relationship between fρ and fϱ. For this relationship, we

consider three schools i, j and k, for which j > i and also k ̸= j. (Recall ϱi > ρi, ϱSi > ρSi , and
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ϱi − βS
i = ϱi − ρSi .)

Claim 2: If fρ(S + j) > fρ(S + k) for some j > i and S ⊆ N − {j, k}, then fϱ(S + j) >

fϱ(S + k).

To prove Claim 2, we first consider k < j. Note that the calculations below depend on whether

i is greater than, less than, or equal to k. Referring again to (4.9), we have:

fρ(S + j)− fρ(S + k)

= ρS[1,k)

j−1∑
t=k

ρS(k,t](ρ
k
k − ρk)(ut − ut+1) +

N∑
t=j

ρS(k,t]−j (ρ
k
kρj − ρkρ

j
j)(ut − ut+1)

 .

If k > i, then only the factor ρS[1,k) in this expression changes and we obtain:

fϱ(S + j)− fϱ(S + k) = (1 + δ)(f(S + j)− f(S + k)) > 0.

If k = i, only the last term in the parentheses changes (note that ϱi − ϱSi = ρi − ρSi ), and we obtain

fϱ(S + j)− fϱ(S + k) = fρ(S + j)− fρ(S + k)

+ ρS[1,k)

 N∑
t=j

ρS(k,t]−j δ(ρj − ρjj)(ut − ut+1)

 > 0.

Finally, if k < i, both terms in the parentheses change. Note that the term in parentheses below is

greater than 0, and we obtain:

fϱ(S + j)− fϱ(S + k) = fρ(S + j)− fρ(S + k)

+ ρS[1,i)−kδ

j−1∑
t=i

ρS(i,t](ρ
k
k − ρk)(ut − ut+1) +

N∑
t=j

ρS(i,t]−j (ρ
k
kρj − ρkρ

j
j)(ut − ut+1)

 > 0.

For the case in which k > j, a change in ρi or ρsi does not affect the sign of f(S+j)−f(S+k).

Therefore, Claim 2 holds for k > j. This completes the proof of Claim 2.
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Claim 3: Consider a set S, S ⊂ Σρ∗. If f(S + j) > f(S + k) for all k ∈ N − S, then j ∈ Σρ∗.

To prove Claim 3, observe that we can solve for the optimal choice set by the following two-step

process. First, create a new probability structure ρ̂ by setting ρsk equal to ρk for each k ∈ S, where

S is a set in Σρ∗. Second, for this new probability structure ρ̂, solve for Σρ̂∗(N − |S|). Because we

proved that MIA finds the optimal choice given any 0 ≤ ρk ≤ ρsk ≤ 1, the MIA can be used to find

Σρ̂∗(N − |S|). Then, finding the j such that f(S + j) > f(S + k) for all k is the next step of MIA

applied to the probability structure ρ̂, which completes the proof of Claim 3.

Claim 4: The marginal benefit of adding i to choice set S is the same under both probability

structures, ρ and ϱ.

To prove Claim 4, we have:

fϱ(S + i)− fϱ(S) = ρS[1,i)

(
N∑
t=i

ρS(i,t](ρi + �δ − ρii − �δ)(ut − ut+1)

)

= fρ(S + i)− fρ(S)

We are finished with the four claims.

We now proceed to prove (i) by contradiction. Assume i ̸∈ Σρ∗ and i ∈ Σϱ∗. Consider the MIA.

We start with ∅, and step-by-step build our optimal set Σϱ∗ under the probability structure ϱ. In the

optimal set, Σρ∗, let jm ∈ argmaxj∈N f(Σρ
m−1+ j) denote the school added at stage j of the MIA

under the probability structure ρ.

We begin with step 1. If j1 < i, by Claim 1 and Lemma 20, j1 ∈ Σϱ∗. If j1 > i, then by Claim

2, j1 ∈ Σϱ∗. We now have that j1 ∈ Σϱ∗.

We continue building the optimal set Σϱ∗ and arrive at step m, 1 < m < n, where we attempt to

add i to Σϱ∗. However, jm ∈ Σϱ∗ by the same proof as in step 1 and Claim 3 and jm ̸= i. Therefore,

we cannot add i before n+ 1st iteration.

If we add i at an iteration r > n, then by Claim 4 we obtain:

fϱ(Σρ + {jn+1, . . . , jr−1}+ i)− fϱ(Σρ + {jn+1, . . . , jr−1})
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= fρ(Σρ + {jn+1, . . . , jr−1}+ i)− fρ(Σρ + {jn+1, . . . , jr−1}). (4.13)

By diminishing returns (i.e. Lemma 22), we obtain:

fρ(Σρ + {jn+1, . . . , jr−1}+ i)− fρ(Σρ + {jn+1, . . . , jr−1}) ≤ fρ(Σρ + i)− fρ(Σρ). (4.14)

Finally, by the optimality of Σρ under initial probability structure ρ, we obtain:

fρ(Σρ + i)− fρ(Σρ) ≤ c(n+ 1)− c(n). (4.15)

Putting together (4.13), (4.14), and (4.15), we have that i is not added to Σϱ∗ by the MIA in any

iteration r > n.

We now have that i is not included in any iteration of the step-by-step building of Σϱ∗ by the

MIA. Hence, we have a contradiction.

4.5 Alternative Formulation

4.5.1 Longest Path Problem

The problem that the student faces can be restated from a different point of view, as a longest path

problem. We use Figure 4.1 to represent the decision problem. In this figure, the student starts the

evaluation from the grey node (i.e., a dummy node N + 1 with uN+1 = 0, ρN+1 = ρN+1
N+1 = 1).

We describe horizontal points in the figure — N + 1, N,N − 1, ..., 1 — as schools and vertical

points — n = 0, 1, 2, ..., N — as the number of options that the student, at a stage, has chosen to

signal. At every stage the student has the option to signal the next alternative (represented by a solid

arrow) or not (represented by a dashed arrow). We use the following notation to refer to nodes on

this network. Let (i, n) be the node depicting horizontal point i and vertical point n, i.e., school i

and n signals. That is, at node (i, n), the student has previously chosen to signal n of the schools

and must decide whether to signal school i+ 1.
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12/6/2011

1

N+1 N …N-1 1

N …N-1 1

…N-1 1

…

…

1Signal

Do not signal

n = 0

n = 1

n = N

n = 2

…

Figure 4.1: Network representation of the signaling problem

In Figure 4.1, any solution S to our original problem, (4.1), can be represented as a directed path

from the original node (N + 1, 0) to a terminal node (1, |S|). We let l(i, S) represent the length of

the path from (N + 1, 0) to (i, |S|). We define l(i, S) as

l(i, S) =

N∑
j=i

ρS(j,N ](1− ρSj )uj .

We define the longest distance from node (N + 1, 0) to node (i, n) as d(i, n) = maxS:|S|=n l(i, S).

Next, we characterize our original problem as maximizing d(1, n) − c(n) over n, which is

finding the longest path from node (N +1, 0) to node (1, n) for some n. This longest path problem

is not defined in the traditional way, in which the marginal utility of signaling a school (i, n) is

independent of the path and the objective function is additive. Therefore, we name this problem the

nonadditive longest path problem (NLPA).

The signaling problem in (4.1) has some properties which allow a more efficient approach to

solve it. First, the objective function is downward recursive, hence Lemma 17 indicates that we

can benefit from dynamic programming as the optimal selection among lower ranked options stays

the same and we can benefit from considering options by decreasing values of their indices (i.e.,
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increasing payoffs). Normally, with option specific costs the state space can be large. However, the

cardinality dependent cost structure reduces the state space to {0, . . . , N} in general and if there

is a budget of n to {0, . . . , n}. Similarly, the order of schools indicates an acyclic graph and the

assumption that we are given a selected set of options (i.e., applied schools) reduces our stages

to {1, . . . , N}. The signaling problem, so NLPA, can be solved by the dynamic programming

algorithm described below in Algorithm 4.2, which has a better time complexity than the MIA as

we will demonstrate.

Algorithm 4.2 NLPA: Nonadditive Longest Path Algorithm

let d(N + 1, 0) = 0,
n = 0 {signal no options}
for i = N down to 1 do

d(i, n) = (1− ρi)ui + ρid(i+ 1, n)⇒ p(i, n) = (i+ 1, n)
end for
repeat

n = n+ 1
i = N + 1− n {signal all n options in {i, . . . , N}}
d(i, n) = (1− ρii)ui + ρiid(i+ 1, n− 1)⇒ p(i, n) = (i+ 1, n− 1)
for i = N − n down to 1 do

d(i, n) = max

{
(1− ρii)ui + ρiid(i+ 1, n− 1), ⇒ p(i, n) = (i+ 1, n− 1)
(1− ρi)ui + ρid(i+ 1, n), ⇒ p(i, n) = (i+ 1, n)

end for
until d(1, n)− d(1, n− 1) < c(n) + c(n− 1)
return optimal number of options to signal n∗ = n− 1, and parents p

Note that the first for loop calculates the “signal no options” case, which does not require

any comparison. Similarly, calculations about nodes (N + 1 − n, n) can be performed without

comparison because at most n schools can be signaled among n schools, hence all are signaled.

The second and third assignment statements in the repeat...until loop performs this. The

algorithm yields a longest path tree rooted at (N + 1, 0), hence each node (i, n) will have a parent

node p(i, n) depending on the decision to signal or not to signal option i. Then the optimal solution

Yn∗ can be retrieved by Algorithm 4.3. Algorithms 4.2 and 4.3 returns the optimal solution as the

following theorem states.

Theorem 24. d(i, n) is the maximal distance between nodes (N + 1, 0) and (i, n).
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Algorithm 4.3 NLPA: Retrieve optimal set

let i = 1, Yn∗ = ∅ and k = n∗

while k > 0 do
if p(i, k) = (i+ 1, k − 1) then

Yn∗ = Yn∗ + i
k = k − 1

end if
i = i+ 1

end while
return optimal set Yn∗

Proof. By induction. It holds trivially for (i, 0) and (i,N + 1 − i) as these correspond to “no

option signaled” and “all options signaled” cases, respectively. Assume it holds for (i + 1, n) and

(i+1, n− 1), we claim that d(i, n) ≥ l(i, S) for each S ⊑ i such that |S| = n. For a contradiction,

assume such an S exists but d(i, n) < l(i, S). If i ∈ S, we have ρSi = ρii, hence:

l(i, s) = (1− ρii)ui + ρiil(i+ 1, S − i),

≤ (1− ρii)ui + ρSi d(i+ 1, n− 1) ≤ d(i, n).

Otherwise, if i ̸∈ S, we have S − i = S and ρSi = ρi, therefore:

l(i, s) = (1− ρi)ui + ρil(i+ 1, S − i),

≤ (1− ρi)ui + ρid(i+ 1, n) ≤ d(i, n).

This is a contradiction as we assumed d(i, n) < l(i, S). Therefore, d(i, n) equals the length of the

longest path to (i, n).

Finally, letting i = 1, we obtain d(i, n) = f(Σn) for each n. The equivalence between a

solution S to the original problem and a path from (N + 1, 0) to (1, n) implies that NLPA solves

the problem optimally. The following example shows a sample run of the algorithm.

Consider a case with N = 3. Let u = [100, 90, 80], ρ = [0.4, 0.5, 0.2], ρN = [0.3, 0.2, 0.1]

and c(n) = n. For n = 0 the calculations are trivial and we obtain d(1, 0) = f(0) = 90.8, when
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12/19/2011

1

4

0

1

2

3

13 2

(a) Longest paths for each n

12/19/2011

1

d(1,2) = 95.44

p(2,1) = (4,0)

d(1,3) = 95.92

d(1,2) = 92.92

d(1,0) = 90.8

(b) Optimal path

Figure 4.2: NLPA example

no options are signaled. For n = 1, d(3, 1) = 72 with p(3, 1) = (4, 0), d(2, 1) = 84.8 with

p(2, 1) = (3, 0) and d(1, 1) = 93.92 with p(1, 1) = (2, 1). Since d(1, 1)− d(1, 0) = 3.12 > 1, we

continue. For n = 2, d(2, 2) = 86.4 with p(2, 2) = (3, 1) and d(1, 2) = 95.44 with p(1, 2) = (2, 1).

Now, d(1, 2)− d(1, 1) = 1.52 > 1, we continue. Finally, for n = 3, we have d(1, 3) = 95.92 with

p(1, 3) = (2, 2). As d(1, 3)−d(1, 2) = 0.48 < 1, we stop, returning n∗ = 2. The resulting solution

graph is illustrated in Figure 4.2.

The optimal set is retrieved as follows. We start from node (1, 2) with Y2 = ∅. The parent of

that node is p(1, 2) = (2, 1), hence Y2 = {1}. Now, at node (2, 1), we check p(2, 1) = (3, 0), hence

Y2 = {1, 2}. Then, we stop. The optimal set is {1, 2}.

In Theorem 25, we compare the computational complexities of the two algorithms.

Theorem 25. MIA runs in O(N3) time and requires O(N) memory. NLPA runs in O(N2) time and

requires O(N) memory.

Proof. MIA runs in O(N) steps. At each step n, it makes O(N) comparisons in order to find

argmaxi∈N f(Yn−1 + i). Each of these comparisons requires calculating f . It takes O(N) opera-

tions to calculate f(S) for any S ⊆ N . Therefore, MIA runs in O(N3) time.

MIA requires O(N) memory. It requires O(1) memory for calculating f , which can be done
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sequentially starting from the lowest ranked options. And it requires O(N) to store the optimal set.

NLPA, on the other hand, runs in O(N) steps. At each step n, it makes O(N) comparisons, but

each comparison requires O(1) operations. The advantage of NLPA over MIA is that, in each step

n, NLPA calculates f(S) only once, which is for S = Σn. Retrieving the solution requires O(N)

time. Hence, NLPA runs in O(N2) time.

As for memory, Algorithm 4.2 calculates longest path lengths d and requires parents p to be

stored, hence it requires O(N2) memory. However, we can modify the algorithm to obtain a com-

plexity as stated in the theorem. First, we see that once level n calculations are made, level n − 1

becomes obsolete, hence we do not need to store the entire grid of values, but only the current and

the previous. Therefore, the longest path length calculations can be performed using a 2×N vector.

Moreover, once an upward arc pointing to i is selected in iteration n, only upward arcs pointing

i are selected in the subsequent steps. This is because once an option is in the optimal set, it stays

in the optimal set; and an upward arc pointing i at iteration n implies i ∈ Σn([1, i]). Therefore,

instead of storing the parents p, we can store the first iteration in which an upward arc pointing to i

is selected. Let v denote this vector and note that vi ≤ N − i+ 1 for all i because there are N − i

options that are lower ranked than i. Then, we can still retrieve the optimal solution in O(N) time

using Algorithm 4.4. Therefore, NLPA can be altered to require O(N) memory.

Algorithm 4.4 NLPA: Retrieve optimal set using v

let i = 1, Yn∗ = ∅ and k = n∗

while k > 0 do
if vi ≤ k then

Yn∗ = Yn∗ + i
k = k − 1

end if
i = i+ 1

end while
return optimal set Yn∗
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4.5.2 Reformulation

Now we describe a set of linear constraints that imitates the NLPA algorithm, hence yields the

optimal result for the signaling problem. This idea is similar to the heuristic reformulations of the

follower problems in Chapters 2 and 3. The key difference is that, for the signaling problem, the

applicant’s problem can be solved “optimally”. Although we do not consider the game version of

this problem in this chapter, we present an example of the reformulation of the applicant’s problem

using ordinary linear constraints below. We use the following notation.

Variables:

din : Longest distance from node (N + 1, 0) to node (i, n)

v: Net payoff, that is, longest path length minus signaling cost

xsin : Flow from node (i, n) to option i+ 1 when i is signaled (s = 1) or not (s = 0)

ysin : Given that n options are signaled in [i,N ], if option i is signaled (i.e., arc connecting

(i+ 1, n− 1) to (i, n) is on the longest path), y1in = 1, else (i.e., arc connecting (i+ 1, n) to

(i, n) is on the longest path) y0in = 1.

The constraints resemble the idea we used in Chapter 3 for the competitive prize-collecting

Steiner tree problem. We first define the flow variable d that originates from node (N + 1, 0) and

goes to to every node until option 1. Then, we calculate the expected utilities at option 1, for each

n. Finally, we define a flow x from option 1 to N + 1, which yields the optimal decisions y.

The first flow di,n represents the potential longest distance to each node (i, n). It is calculated

using constraint (4.16), similar to Algorithm 4.2. The main difference is that, in constraints we

make the calculation for each (i, n) pair unlike the algorithm, in which we iterate over n until

finding the optimal one. Given that n options are signaled until (including) option i, there could

be two possibilities: i is signaled (first inequality) or not (second inequality). Each node j supplies

either (1−ρjj)uj or (1−ρj)uj depending on the decision. Since we do not consider the decision yet,

we name the variable “potential longest distance”. In the optimal solution, the din that correspond
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to the longest path will have the longest distances.

din ≥


ρiidi+1,n−1 + (1− ρii)ui ∀i ∈ N, n ∈ {1, . . . , N + 1− i}

ρidi+1,n + (1− ρi)ui ∀i ∈ N, n ∈ {0, . . . , N − i}
(4.16)

Once we arrive at option 1, we calculate the d1,n using (4.16), and then calculate the optimal

net payoff v = maxn{v(Σn)} for each n using constraint (4.17) below.

v ≥ d1,n − cn ∀n ∈ {0, . . . , N} (4.17)

Next, we calculate the reverse flow x. We initiate the flow as in constraint (4.18). Now, the

individual contributions of the options are associated with binary decision variables y. The payoff

from the lower ranked options are transferred once the individual contribution is deducted as in

constraint (4.19).

v +
N∑

n=0

cn(y
0
1,n + y11,n) =

N∑
n=0

[
(1− ρ1)u1y

0
1,n + (1− ρ11)u1y

1
1,n + ρ1x

0
1,n + ρ11x

1
1,n

]
∀n ∈ {0, . . . , N} (4.18)

x0i−1,n + x1i−1,n+1 = (1− ρi)uiy
0
i,n + (1− ρii)uiy

1
i,n + ρix

0
i,n + ρiix

1
i,n

∀i ∈ {2, . . . , N + 1}, n ∈ {0, . . . , N + 1− i} (4.19)

Note that certain x and y that do not correspond to arcs in Figure 4.1 are equal to 0 by definition.

Furthermore, in order to obtain a tree in the end, we add the following constraints. (4.20) states that

there is an arc entering node (i, n) in the optimal solution if and only if there is an arc leaving

it. (4.21) states that only one arc is selected at first, which combined with (4.20) ensures that the
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resulting structure is a tree.

y0i,n + y1i,n = y0i−1,n + y1i−1,n+1 ∀i ∈ {1, . . . , N − 1}, n ∈ {0, . . . , N + 1− i} (4.20)

1 = y0N,0 + y1N,1 (4.21)

Finally, d, x and v are nonnegative and y is binary. It is not difficult to see that these constraints

result in the optimal solution as the following theorem states.

Theorem 26. Constraints (4.16)-(4.21) constitute a sufficient optimality condition for the signaling

problem and return optimal solution y and optimal net payoff v.

Proof. Constraints (4.16)-(4.17) ensure that the calculated longest distances are greater than or

equal to the actual longest distances, hence v is greater than or equal to optimal net payoff. Now,

let us look at constraint (4.19). At node (N + 1, 0), we have x0N,0 + x1N,1 = 0. Constraint (4.21)

ensures that only one arc (connecting (N +1, 0) to (N, 0) or (N, 1)) is selected, hence not only the

flow through the unselected arc, but also the flow x into the unvisited node, becomes zero. That is,

y0N,0 = 0⇒ x0N−1,0 + x1N−1,1 = 0

y1N,1 = 0⇒ x0N−1,1 + x1N−1,2 = 0

Consequently, no flow passes through any x that corresponds to an unselected arc. Therefore, since

constraints (4.18)-(4.19) are equalities, and the flow x only includes contributions from selected

arcs, the calculated net payoff v in (4.18) is equal to the net payoff of the selected path. Since v is

already greater than or equal to the net payoff of the maximum net payoff, it is equal to the optimal

(maximum) net payoff and the associated y is the optimal solution to the signaling problem.

We do not further investigate and refine these constraints and spare it for future studies.

112



4.6. CONCLUSIONS

4.6 Conclusions

We demonstrated that a greedy algorithm implements the optimal set for a simultaneous signaling

problem, a problem that applies most directly to signaling college admissions and job search pro-

cesses. In characterizing the optimal algorithm, we extended the analysis of Chade and Smith (2006)

to an environment in which non-inclusion in a choice set results possibly in a non-zero probability

of acceptance — either university admission or a job offer.

Moreover, we showed that the problem can be restated as a longest path problem, for which we

proposed a dynamic programming algorithm, which is more efficient than the initial greedy algo-

rithm we studied. Finally, using a similar idea as in Chapter 3, we derived a set of constraints based

on a flow argument, which constitute a sufficient optimality condition for the signaling problem.

Our study is part of two larger research issues. The first is the determination of the optimal

algorithm for a simultaneous search and signaling problem. As an example of this problem, a high

school senior must decide not only the set of schools to which he or she applies, but also the subset

(of those to which he or she sends applications) of schools to which the applicant sends a signal. Our

preliminary results on this problem indicate that a straightforward greedy algorithm is not optimal.

However, the problem can again be posed as a longest path problem and NLPA could solve it. Again

using the insight from NLPA, we believe that MIA can be modified to solve this problem, too.

The second problem is the determination of the acceptance probabilities (with and without sig-

nals) in a college or job matching problem. Dearden et al. (2011) examine, both theoretically and

empirically, whether signaling has a heterogeneous effect in a population of applicants. In partic-

ular, this model examines the determination of equilibrium acceptance probabilities as a function

of applicant SAT scores. Their analysis demonstrates that the positive effect of a signal on accep-

tance probabilities is increasing in SAT scores. The results of their theoretical model are somewhat

restrictive, however, because the model has only two selective schools and furthermore each appli-

cant can send only one signal. The examination of a general model with N schools and a general

signaling cost function could yield interesting results.
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Chapter 5

Conclusions and Future Research

Most classical models for network design and operations research, in general, assume a single de-

cision maker with a single objective. This assumption fails to represent problems adequately when

there are multiple decision makers or a decision maker has multiple goals. In this research, we dealt

with an extension of the former type and incorporated hierarchical competition in three network

design problems. Incorporating competition, however, brings a trade-off between higher represen-

tation power and increased solution effort.

We introduced a heuristic reformulation idea in order to solve these problems near-optimally

within reasonably short solution times. The essence of the idea was to find or derive a simple algo-

rithm for the problem, represent it as a feasibility problem using linear constraints and embed them

into the leader’s problem in order to obtain a single-level MIP. We demonstrated three implementa-

tions on network design problems — maximal covering, Steiner tree and longest path.

We first studied the competitive maximal covering location problem. In this problem, two firms

enter the market —locate their facilities— sequentially, each with the objective of maximizing the

customer demand it captures in the end. The problem that the leader faces is significantly more

difficult to solve, because the leader has to anticipate the best response of the follower, which,

alone, is the solution of an NP-hard optimization problem. We overcame this difficulty by using a

greedy algorithm as a proxy for the follower’s decision. Not only is the computational performance
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very reasonable, but the solution quality is also very high. Even if the follower actually responds

optimally, the method still provides an effective heuristic for the leader’s problem.

Our model assumes that both firms have perfect information about the customer demand. If

the leader is the first entrant to a market that is not yet mature and there is a time gap until the

follower enters, it is reasonable to think that the customer demand can change between the two

actions. We can introduce this demand uncertainty into our model, where the leader does not know

but has a probabilistic belief about what the customer demands will be in the long run. On the other

hand, the follower is assumed to observe the long run demand and enter the somewhat matured

market. This uncertainty results in a Stackelberg game with imperfect and asymmetric information,

where asymmetry favors the follower, who perfectly knows the state of demands. We can model

the situation using a two-stage stochastic programming approach, where under each scenario the

follower responds implementing a greedy response and the leader maximizes expected capture.

Our second study models a competitive distribution system design problem. We model firms

that compete by building their individual distribution networks to serve customers. Each would like

to maximize its network profit, which is the net of revenue at the demand nodes that are served

and investment costs of the arcs that are built. Consequently, the decisions of each firm affect the

revenue structure of the network. This corresponds to a competitive version of the prize-collecting

Steiner tree problem. We consider both simultaneous-move and sequential games. We characterize

an equilibrium solution for the former setting using a MIP model to determine the players’ optimal

solutions. For the sequential game, due to the same computational difficulty as before, we replace

the follower’s optimal response with the strong pruning heuristic. The heuristic relies on finding

the best induced subtree from a population of trees, and subsequent pruning of branches given the

leader’s solution. The result is a tractable model that offers short solution times to produce near-

optimal design strategies.

This method can easily be implemented for other bilevel problems whose second-level problem

can be represented as a prize-collecting Steiner tree problem. An example is highway drug interdic-

tion. In this problem we can consider the follower to be a criminal organization smuggling drugs
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into the country using roadways and the leader as a law enforcement institution who has a limited

number of patrol units to deploy along these roads. Each patrol unit deployed increases the cost of

using that particular road for the trafficker. Now instead of sharing nodal revenue, we model the in-

crease in cost (in discrete steps) as units are deployed. Since we restrict the follower to a collection

of trees, there is no significant distinction between selecting a node or selecting an arc. Therefore,

we believe that the method can be applied to this problem with minimal additional effort.

Finally, in our last study, we investigated demonstrated interest in the job and university appli-

cation process. We revisited the college admissions problem in a sequential game with imperfect

information. In this game, there is a market formed by candidates (e.g., students, job applicants)

and institutions (e.g., schools, companies). Each candidate applies to a set of institutions and sub-

sequently demonstrates further interest in order to increase his or her acceptance probability by

signaling a subset of these. In this dissertation, we study the applicants’ side of this game and have

developed an algorithm that characterizes the candidates’ optimal choices. We also formulate the

problem as a non-additive longest-path problem and introduce a dynamic programming algorithm,

for which we showed an initial formulation using linear constraints. The appeal of this formula-

tion was that, as the algorithm solved the problem optimally, this was an exact reformulation of the

second-level problem.

The next step in this research is to establish the school’s problem and analyze the resulting game.

We would like to derive results on the selectivity of the schools and evaluate admission policies. The

proposed algorithm can be considered in multiple dimensions. If we consider a budget for both the

selection and signaling decisions, we can model the problem using a similar network structure.

Now, there would be three decisions at every node: “do not select”, “select”, “select and signal”.

In conclusion, we believe our study opens new research directions in bilevel programming.

There are several other application areas including traffic management, network interdiction and

electricity demand response management, to name a few. In the near future, we would like to

explore applications and extensions of these ideas and develop specific solution methods for the

resulting models.
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