
Lehigh University
Lehigh Preserve

Theses and Dissertations

2000

Analysis of a network design problem
Shalu Wadhwa
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Wadhwa, Shalu, "Analysis of a network design problem" (2000). Theses and Dissertations. Paper 675.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228645082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F675&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F675&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F675&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/675?utm_source=preserve.lehigh.edu%2Fetd%2F675&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

-"

Wadhwa, Shalu,

Analysis of a
Network Design
Problem

January 2001

Analysis of a Network Design Problem

by

Shalu Wadhwa

A Thesis

Presented to the Graduate and Researt:h Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

III

Industrial and Manufacturing Systems Engineering

Lehigh University

December, 2000

Acknowledgments

I would like to thank Professor Joseph Hartman for his guidance throughout the development of

this study. His expertise and encouragement was invaluable; I would also like to thank Professor

Ted Ralphs, who helped me with my programming difficulties in this study, and Robert Barbieri, one

of my co-students in the department, who introduced me to this problem indirectly, through a class

presentation.

In addition, I would like to thank my depatment for providing me funding for the first year of my

Master of Science studies.

This research was supported by National Science Foundation under grant nUmbers DMI-9713690,

and DMI-9984891.

iii

List of Tables

Table of Contents

v

5 Conclusions

6 Appendix

Bibliography

Vita

List of Figures VI

1 Introduction 2

1.1 Network Design Problem (Cable and Trench Problem) 2

1.1.1 Minimum Spanning Tree Problem 2

1.1.2 Shortest Path Tree Problem 2

1.1.3 Capital Cost vs. Utilization Cost 3

1.2 Background 3

1.2.1 Savings Algorithm 4

1.3 Contributions 5

2 Problem Formulation 6

2.1 Mixed Integer Program 6

2.2 Computational Complexity of the Network Design Problem 7

2.2.1 Fixed Charge Network Flow Problem (FCNFP) 8

2.3 Strengthening of Lower Bound 9

3 Savings Algorithm for Network Design Problem 11

3.1 Example 12

3.2 Complexity of the Heuristic 15

3.2.1 Find the Minimum Spanning Tree for the given network using Prim's Algorithm 15

3.2.2 Calculation of Savings 16

3.3 A modification to the Savings Algorithm 17

3.3.1 Complexity of the Modification. 18

4 Computational Testing 19

4.1 Performance Analysis 19

4.1.1 Solutions 19

4.1.2 Running Times 24

4.1.3 Summary 29

4.2 Case Study 30
----"

32

33

37

40

IV

List of Tables

Table 4-1: Solutions and Running times for different methods 31

v

List of Figures

Figure 3-1: A given network 12

Figure 3-2: Minimum Spanning Tree 12

Figure 3-3: Try arc (1,2) 13

Figure 3-4: Try arc (2,3) 13

Figure 3-5: New Spanning Tree 14

Figure 3-6: Try arc (2,3) 14

Figure 3-7: Try arc (2,4) 15

Figure 4-1: Solutions for problem numbers 1-35 20

Figure 4-2: Solutions for problem numbers 36-70 21

Figure 4-3: Solutions fdr problem numbers 71-105 22
I

'Figure 4-4: Solutions for problem numbers 106-127 23

Figure 4-5: Running Times for problem numbers 1-35 25

Figure 4-6: Running Times for problem numbers 36-70 26

Figure 4-7: Running Times for problem numbers 71-105 27

Figure 4-8: Running Times for problem numbers 106-127 28

Figure 4-9: Average Running Times (seconds) 29

Figure 4-10: Solution Gaps 30

Figure 6-1: Netwo!k obtained from Savings Algorithm 34

Figure 6-2: Network obtained by solving Integer Program 34

Figure 6-3: Network obtained from Savings Algorithm 35

Figure ,6-4: Network obtained by solving Integer Program 36

vi'

Abstract

In this study, we examine different methods of solving a Network Design Problem. The Network

Design Problem is a combination of the minimum spanning tree and the shortest path problem, which

represents a trade-off between utilization costs and capital costs for network construction. A larger

network, (the shortest path tree) may cost more to build but may reduce utilization costs by including

more attractive origin-destination paths. Conversely, a smaller network, (minimum spanning tree) may

increase the utilization costs. This problem has been shown to be a NP complete problem.We develop

and test a heuristic, which is a modification of the Savings algorithm, given by Clarke and Wright in

1964, for solving a vehicle routing problem. Using the proposed heuristic, we can get good solutions to

the problem, fairly quickly. At the same time, we formulate the problem as an integer program and test

valid inequalities to improve its solution time.

Keywords: Savings Algorithm, Network Design Problem, Cable and 'french Problem

1

Chapter 1

Introduction

1.1 Network Design Problem (Cable and Trench Problem)

The Network Design Problem considered here is a combination of the shortest path tree problem and

the minimum spanning tree problem.

1.1.1 Minimum Spanning Tree Problem

A spanning tree is a tree (that is, a connected acyclic graph) that spans (touches) all the nodes of an

undirected graph. The cost of a spanning tree is .the sum of the costs (or lengths) of its arcs. The

minimum spanning tree is a spanning tree of minimum cost. Minimum spanning tree problem is a

problem solvable in polynomial time. Given an undirected graph G = (N, A) with n = INlnodes and

m = IAI arcs and with a length or cost Cij associated with each arc (i,j) E A, we find a minimum

spanning' tree, that has the smallest total cost (or length) of its constituent arcs, measured as the sum

of costs of the arcs in the spanning tree. Some of the greedy algorithms used for solving it are Kruskal's

Algorithm,[10], Prim's Algorithm,[ll] and Sollin's Algorithm(1961) [12].

1.1.2 Shortest Path 'free Problem

In the shortest path problem, we wish to determine a shortest path from the source node to all other

(n - 1) nodes. We can always find a directed out-tree rooted from the source with the property that

the unique path from the source to any node is a shortest path to that node. Such a tree is called a

shortest path tree. Since, it touches upon all the nodes in the graph, it is a spanning tree. For any

given graph, G = (N, A) with a specified vertex no E N, the shortest path tree problem is a problem

solvable in polynomial time. There are two algorithmic approaches to solving shortest path problem:

2

label setting and label correcting.Label setting algorithms designate one label as permanent (optimal) at

each iteration. Some of the label setting algorithms are Dijkstra's algorithm, [1] and Dial's algorithm,

[2] which have various implementations, [3], [4],_ [5]. Label correcting algorithms consider all labels as

temporary until the final step, when they all become permanent. First label correcting algorithm was

given by Ford, [6]. Subsequently, many modifications and implementations of the generic label correcting

algorithm were given by various researchers, [7], [8], [9].

1.1.3 Capital Cost vs. Utilization Cost

In the Network Design Problem (Cable and Trench Problem), a trade-off between utilization costs and

capital costs for network construction is examined. A larger network, (the shortest path tree) may cost

more to build but may reduce utilization costs by including more attractive origin-destination paths.

Conversely, a smaller network, (minimum spanning tree) may increase the utilization costs. It is called

a cable and trench problem due to its physical application in the following problem: A university needs

to connect several buildings on campus to one building which holds the mainframe for the computer

system. Each building needs to be connected directly to the main building through an underground

cable. Before, any cable is laid, a trench must be dug; however, once a trench is dug, any number of

cables may be laid in the trench. The cable cost is the product of the total length of cable required and

per unit cable cost. The solution to the cable problem alone, is the shortest path network with the main

building as the vertex. The trench cost is the product of the total length of trench needed to be dug

and per unit trench cost. The solution to the trench problem alone is the minimum spanning tree. The

solution to our problem is a trade-off between these two problems.

This problem can also be thought of as a trade-off between capital and operating costs. For example,

in urban planning, when we need to build roads from a hospital's location or a firestation's location,

to various other locations in town, we are tempted to build them along the minimum spanning tree to

save on building cost, which is the capital cost. But, once the hospital or the firestation are operating,

we require a shortest path tree, so that we are able to reach any location in minimum possible time,

to minimize the life or property damages, caused by any delays. This would be the utilization cost.

Therefore, before actually building the roads, we need to have a trade-off between these two costs to

establish where the roads would actually be built.

1.2 Background

The problem of finding trade-offs between shortest path trees and minimum spanning trees has been

looked into by several researchers. Khuller et al., [14]' gives an algorithm which finds a spanning tree in

3

which the distance between any vertex and the root of the shortest path tree is atmost 1 + /2d times

the shortest path distance, and yet the total weight of the tree is atmost 1 + 4- times the weight of a

minimum spanning tree where d > 0 is given. Booth and Westbrook, [13], developed an algorithm that

can be used to perform edge cost sensitivity analysis, find replacement edges, and verify their minimality

for both the minimum spanning tree and shortest path tree in a planar graph.' The algorithm uses the

properties of a planar embedding, combined with a heap-ordered queue data structure. Saltzman, [17],

provides a counterexample to the question "Is a Minimum Spanning Tree also a Shortest Path Tree

for a determined vertex in a positive weighted connected graph?" Eppstein, [18], proved that finding

the minimum spanning tree that minimizes the path length between a particular set of vertices is NP

complete. Vasko et al,[16], developed a heuristic for the cable and'trench problem, in which they start

with the shortest paths spanning tree, and perform a one-opt neighborhood search with backtracking

until the minimum spanning tree is created. This method produces a collection of spanning trees such

that each tree is optimal, or near optimal, for a range of per unit trench and cable costs. The collection

of spanning trees covers all positive values of per unit costs. The backtracking allows two consecutive

spanning trees in the solution to differ by more than one arc. Calvete and Mateo, [15], deal with network

flow problems with multiple objectives. They rank the objective functions according to their importance

and then perform a lexicographical optimization of the objectives by assigning preemptive priorities to

them. The proposed approach enables them to maintain the network structure of the problemand hence

to develop network-based algorithms which usually are proved to be more efficient than ge:neral ones.

1.2.1 Savings Algorithm

The Savings Algorithm is a greedy algorithm developed by Clarke and Wright, [19], to get a,n optimum

or near optimum TOuting of a fleet of trucks of varying capacities from a central depot to a number of

delivery points. It is described as follows:

Suppose, that there is a single depot from which all vehicles depart and return. Customers' locations

and needs are known. Identify the depot as location 0 and the customers as location 1,2, ... ,n. We

assume that there are known costs of traveling from each location to another.

COj =Cost of making one trip from the depot to customer j.

Cij = Cost of making a trip from customer location i to customer location j.

Cij = Cji for all 1 ~ i,j ~ n. (not necessary)

The method proceeds as follows: Suppose initially that there is a separate vehicle assigned to each

customer location. Then the initial solution consists of n separate routes from the depot to each customer

location and back. It follows that the total cost of all round trips for the initial solution is 2'ECoj. Now,
j

suppose that we link customers i and j. That is, we go from the depot to i to j and back to the depot

4

again. In doing so, we would save one trip between the depot and location i ~nd one trip between the

depot and location j. However, there would be an added cost of Gij for the trip from i to j (or vice

versa). Hence, the savings realized by linking i and j is

Sij = GOi + GOj - Gij .

The method is to compute Sij for all possible pairs of customer locations i and j, and then rank the

Sij in decreasing order. Then consider each of the links in descending order of savings and include (i,j)

in a route if it does not violate feasibility constraints. If including the current link violates feasibility,

go to the next link on the list and consider including that on a single route. Continue in this manner

until the list is exhausted. Whenever link (i, j) is included on a route, the cost savings is Sij. The total

number of calculations of Sij required is 2!(:~2)! = n(n;l). (When Gij and G ji are not equal, twice as

many savings terms must be computed.)

As long as the constraints are not too complex, the method can be easily implemented on a computer.

However, it is only a heuristic, and does not necessarily produce an optimal routing. The problem is

that forcing the choice of a highly ranked link may preclude other links that might have slightly lower

savings but might be better choices in a global i>ense by allowing other links to be chosen downstream.

1.3 Contributions

The main contribution of this work is to find a good heuristic for a network design problem. Previous

studies in this area have focused on more general situations, and hence make more compromises on the

optimality of the solutions. This heuristic utilizes the given information about the network completely,

and comes up with an optimal or near optimal solution. A slight modification of this heuristic has also

been presentea. which makes it faster, at the cost of the goodness of the solutions.

The savings algorithm given by Clarke and Wright,[19], finds the savings, by introducing various arcs,

ranks them, and then. greedily selects the feasible arcs. All this is performed in a single iteration. Our

approach is to do it in several iterations. We find the savings on the arcs, use the arc with maximum

savings, and then start allover again to find the savings on all the arcs again, so as to get an optimal or

near-optimal solution. In the modification, some of the arcs which cost less than a certain percentage of

maximum edge cost in the graph are marked permanent at the very start of the problem, thus, decreasing

the running time of the heuristic.

5

Chapter 2

Problem Formulation

Given positive parameters T and C and a connected graph, G = (N, A), with root, no E N, n = INI,
and positive arc lengths, minimize aT + (3C, where a is the total length of the spanning tree and (3 is

the total path length from the root no, to all other nodes in N.

The parameters T and C can be thought of , in regards to the cable and trench example, as the per

unit distance trench cost and per unit distance cable cost, respectively. Notice that with a very large T

as compared to C, the solution will result in a minimum spanning tree. Analogously, with a very large

C as compared to T, the solution will result in shortest paths spanning tree. It is interesting that for

other values of T and C, the solution tree may be neither the minimum spanning tree, nor the shortest

paths spanning tree.

2.1 Mixed Integer Program

The following are the variables used in a zero-one mixed integer programming formulation of the Network

Design Problem.

Variables:
Xij The flow value from node i to node j.

Yij =1, if there is an edge from node i to node j in the solution, else O.

Parameters:
n total number of nodes in the graph.

dij The length/cost of arc (i,j) in the graph.

C per unit cable cost.

T per unit trench cost.

6

Formulation(Pl) :

Minimize

subject to

2.:xOj - 2.:XjO = n - 1 (1)
j j

2.:xij - 2.:Xji = -1 i = 1, ... ,n -1 (2)
j j

Xij + Xji - (n - l)Yij :::; ° i =0, , n - 2 j = i + 1, ... ,n - 1 (3)

XijE{0,1,2, ... ,n-l} i=O, ,n-l j=O, ... ,n-l (4)

YijE{O,l} i=0, ,n-2 j=i+l, ... ,n-l (5)

The objective function minimizes overall cost, which is a linear combination of minimum spanning

tree cost and shortest path tree cost. The constraints model a graph which would be a spanning tree.

There is a flow of value (n -1) from node no, given by constraint (1). One unit of flow is absorbed by

each node in the graph, as given by constraint (2). Therefore, there would be (n -1) edges in the graph,

and every node is touched upon, so we would get a spanning tree. Yij is 1, only if an edge connects i

and j. If no edge connects i and j, there cannot be any flow from i to j. This restriction is imposed by

constraint (3). Constraint (4), imposes that the flow should always. be positive.

2.2 Computationai Complexity of the Network Design Problem

This problem can be shown to be a NP-complete problem.

Let Sij = Tdij , and Cij = Cdij. X is a matrix of all Xij values. We express constraints (1), and (2)

together in matrix form, as constraint (1), as they all are linear constraints on Xij'

Then the programming formulation is:

Formulation (P2):

Minimize

7

subject to

Ax=b

Xij + Xji - (n - I)Yij :::; °
Xij E {0,1,2, ... ,n-l}

Yij E {O, I}

i=O, ,n-2 j=i+l, ... ,n-l

i = 0, ,n -1 j = 0, ... ,n-l

i = 0, ,n - 2 j = i + 1, ... ,n - 1

(6)

(7)

(8)

(9)

This is a fixed charge problem. A fixed charge problem is a NP-complete problem,[40] , therefore

since we are able to represent a Network Design Problem as a fixed charge network flow problem, Network

Design Problem is also a NP-complete problem. Constraint (7) is a forcing constraint, which prohibits

flow through inactive arcs. This is also the constraint, which actually makes this problem a MIP problem,

so we cannot solve it as a linear program, thus, making the problem a hard problem. This is because,

if we try to solve this problem by linear programming, for Xij + Xji < (n - 1), which is the case for all

edges, (with the exception of the edge connected to the source node, if it is the only edge touching upon

the source node), we will get a Yij, that is fractional, which is an infeasible solution for our problem. If

we somehow knew the exact value of Xij +Xji for each (i,j), we could put that as the coefficient of Yij,

instead of (n -1), and solve the problem ~ a linear programming problem. But, this information is not

known a priori.

2.2.1 Fixed Charge Network Flow Problem (FCNFP)

A wide variety of applied problems can be effectively modeled as uncapacitated FCNFP. These problems

include lot-sizing (planning production setups) problems, designing single commodity utility and logistics

networks, and planning for warehouse and distribution systems. It is a special subclass of the Minimum

Concave-cost Network Flow Problem, therefore, it has the same characteristics as Minimum Concave-cost

Network Flow Problem. The objective function in FCNFP is discontinuous at the origin. Hence, most

solution approaches have utilized branch and bound techniques to find an exact solution by transforming

the fixed charge problem into an equivalent 0-1 mixed integer programming problem, [21]. Gray, [22], has

attempted to provide an exact solution to this problem by decomposing it into a master integer program

and a series of transportation sub-programs. Another classical exact solution approach is the vertex

ranking procedure proposed by Murthy, [23], which exploits the property that a global solution occurs

at the vertex of the feasible domain, [24]. Palekar et al., [25] and Steinberg, [26], on the other hand,

attempt to provide exact algorithms based on branch-and-bound methods. Sandrock, [27], presents a

simple algorithm for the solution of small, fixed-charge problems. Due to the requirement of massive

computational efforts implementing these approaches, it is still not practical to solve general large-scale

problems.

8

Because of the complexity involved in examining many local minima, early attempts to solve this

problem consisted of finding an approximate solution. The earliest one was proposed by Balinski,[28],

who observed that there exists an optimal solution to the relaxed version of fixed charge transporta

tion problem formed by ignoring the integer restriction on Yij variables. Other well-known heuristic

approaches are the ones by Cooper and Drebes [29J, Denzler [30], Diaby [31], and Kuhn and Bau

mol [32]. The generic model of FCNFP has applications for problems of distribution, transportation,

communication, and routing, [33J.

Adlakha and Kowalski, [34], developed a quick sufficient condition to identify candidate markets and

supply points to ship more for less in fixed-charge transportation problem. The more-for-less paradox

occurs when it is possible to ship more total goods for less (or equal) total cost, while shipping the same

amount or more from each origin and to each destination and keeping all the shipping costs nonnegative.

Stallaet ,[35J discussed a simple procedure to derive network inequalities for capacitated fixed charge

network problems. Properties of the fractional extreme points of the LP relaxation are used to construct a

class of inequalities and to construct a computational heuristic procedure for generating violated cutting

planes. A new concept of the dynamic slope scaling procedure was proposed by Kim and Pardalos [36J,

to solve the general capacitated (or uncapacitated) FCNFP and some computational results on a wide

range of test problems were reported. Sun, et al. [37], developed a tabu search heUristic procedure for

the fixed charge transportation problem. FCNFP has also been extended to other situations, such as

multi-commodity flow FCNFP [38J, and teacher assignment problem [39J.

2.3 Strengthening of Lower Bound

We can strengthen the mathematical formulation (PI), by adding the following constraint,[16J:

2:2:Yij=n-l i=0, ...,n-2 j=i+l, ... ,n-1. (10)
i j

It should be clear that (10) is valid, as there are n - 1 arcs in any feasible solution, (as it is a spanning

tree). This cut, strengthens the formulation by reducing the solution space that needs to be searched.

Another cut that strengthens the formulation is:

2: Yij + 2: Yji ;?: 1 i = 0, ...,n - 1. (11)
j,i<j j,j<i

Again it should be clear that this cut is feasible as each node in the network must be supported by atleast

one arc. We have tested both of these cuts in our example problems, and they seem to give good reduc

tions in the CPLEX running times, from the original formulation.

Another cut that can be used is:

Xij + Xji - Yij ~ 0 i =0, ... ,n - 2 j = i + 1" ... ,n - 1. (12)

This cut is feasible because there can be flow along an arc, only if that arc exists in the tree.

9

If we define 5 as a subset of the graph G, containing s nodes, then for every subset 5,

l:l:Yij :::; S - 1 i, j E 5, and i < j. (13)
i j

This would amount to an exponential number of constraints in the formulation, so we need to select

a subset, or generate them in a reformulation procedure. For this, we solve the problem as a linear

program, with no integer constraints. Now, Yij variables, can be fractional, which will lead to more

number of non-zero Yij variables than n - 1. This gives us cycles in the graph, as a non-zero Yij variable

means an arc exists from i to j. For every cycle C in the graph, containing c nodes, we introduce the

following:

l:l:Yij :::; c - 1 i, j E C, and i < j. (14)
i j

Future research will examine the computational benefits of including (12), (13), and (14) in PI.

10

Chapter 3

Savings Algorithm for Network

Design Problem

The Savings Algorithm can be used to find "good" solutions to the Network Design Problem (cable and

trench problem). The heuristic starts with finding the minimum spanning tree for a given network. This

can be accomplished efficiently, using any of the greedy algorithms. Here, we use Prim's algorithm. The

spanning tree obtained has (n -1) edges, and since there can be at maximum n(n2-1) edges, in a graph

of n nodes, we have (n-1Yn-2) edges to explore.

Introducing a new edge in a spanning tree creates a cycle, and to make the graph acyclic again, we

need to remove an edge from that cycle. So, we start by considering an edge (i, j) which is not there in

the spanning tree. If we put (i,j) into the graph we get a set of edges, that form a cycle, and we can

remove anyone member of this set, to make the graph acyclic again. For every pair of edges that we

-can put into the graph, and remove from the graph, there is a difference in cost, and possibly savings on

the original graph. For every edge being put in, find the edge to be removed which gives the maximum

savings. Once we have computed the maximum savings for each edge that can be put in, rank them,

and pick up the edge, which gives us overall, maximum positive savings. Put this edge into the graph,

removing the edge that was giving us maximum savings, on being replaced. Now, repeat the whole

process on this graph, till we reach a point, when we get no savings from replacing any arc. That is the

solution to our problem.

11

Node 2

Node 3

Figure 3-1: A given network

Node 2

Node 1

2(2)

I) COSI(FIOw).

Node 3

Figure 3-2: Minimum Spanning Tree

3.1 Example

We have a graph G = (N, A), (see Figure 3-1), where N = {I, 2, 3,4}, A = {(I, 2), (1,3), (2,3), (2,4), (3, 4)},

per unit trench cost T = 11, per unit cable cost C = 4. The costs of the arcs are 5,3,6,4, and 2 respec

tively.

STEP 1: Find the minimum spanning tree.

The minimum spanning tree for this graph is shown in Figure 3-2.

The cost of the minimum spanning tree is (3*3+2*2+4*I)C+(3+2+4)T = 9T+17C = 167.

STEP 2: Compute Savings.

(I) Now, if we introduce arc (1,2) in the graph, (see Figure 3-3) we get a cycle, in which other arcs

are (1,3), (2,4) and (3,4).

(a) If we delete arc (1,3), the cost of the spanning tree obtained is (5*3+4*2+2*1)0+ (5+4+2)T =
25C+11T = 221.

(b) If we delete arc (2,4), the cost of the spanning tree obtained is (5*1+3*2+2*1)0+ (5+3+2)T =

13C+I0T = 162.

(c) If we delete arc (3,4), the cost of the spanning tree obtained is (5*2+4*1+3*I)C + (5+4+3)T =

12

Nade2

Node 3

Figure 3-3: Try arc (1,2)

Node 2

Node 1

2

Node 3

Figure 3-4: Try arc (2,3)

17C+12T = 200.

Since we get least cost, in above three choices for replacing arc (2,4), that is the arc we would

remove if we wanted to put in arc (1,2). The saving if we put arc (1,2) in the graph, and take away arc

(2,4) is 167-162=5.

(II) If we introduce arc (2,3) in the graph, (see Figure 3-4) we get a cycle in which other arcs are

(2,4), and (3,4).

(a) If we delete arc (2,4), the cost of the spanning tree obtained is (3*3+6*1+2*1)C+(3+6+2)T=

17C+llT = 189.

(b) If we delete arc (3,4), the cost of the spanning tree obtained is (3*3+6*2+4*1)C+(3+6+4)T=

25C+13T = 243.

Since we don't get an improvement over the minimum spanning tree solution, by putting in arc

(2,3), we have no savings from it, and it will not be considered.

13

Node 2

Node 4
2(1)

• COS1(FIOW).

Node 3

Figure 3-5: New Spanning Tree

Node 2

Node 4

Node 3

Figure 3-6: Try arc (2,3)

STEP 3: Order the savings and select the largest.

The maximum saving value that we got in the last step is 5 for replacing arc (2,4) with (1,2), the

cost being 162. Therefore, we make this change and goto STEP 2. (see Figure 3-5).

(I) If we introduce arc (2,3) in the graph, (see Figure 3-6) we get a cycle in which other arcs are,

(1,2) and (1,3).

(a) If we delete arc (1,2), the cost df the spanning tree obtained is (3*3+6*1+2*1)C+(3+6+2)T=

17C+llT = 189.

(b) If we delete arc (1,3), the cost of the spanning tree obtained is (5*3+6*2+2*1)C+(5+6+2)T=

29C+13T = 259.

Since we don't get an improvement over the minimum spanning tree solution, by putting in arc

(2,3), we have no savings from it, and it will not be considered.

(II) If we introduce arc (2,4) in the graph, (see Figure 3-7) we get a cycle in which other arcs are,

(1,2), (1,3) and (3,4).

(a) If we delete arc (1,2), the cost of the spanning tree obtained is (3*3+2*2+4*1)C+(3+2+4)T=

17C+9T= 167.

14

Node 2

Node 3

Figure 3-7: Try arc (2,4)

(b) If we delete arc (1,3), the cost of the spanning tree obtained is (5*3+4*2+2*1)C+(5+4+2)T=

25C+llT= 221.

(c) If we delete arc (3,4), the cost of the spanning tree obtained is ((5*2+4*1+3*I)C+(5+4+3)T=

17C+12T= 200.

Since we don't get an improvement over the minimum spanning tree solution, by putting in arc

(2,3), we have no savings from it, and it will not be considered.

STEP 4: If we did not get any savings, STOP.

We don't get any savings from any exchange in the last step, so the heuristic ends here, and the

solution is the graph with edges, (1,2), (1,3), and (3,4), and cost=162.

3.2 Complexity of the Heuristic

The heuristic involves several steps:

3.2.1 Find the Minimum Spanning 'free for the given network using Prim's

Algorithm, [11]:

This algorithm is a greedy algorithm that builds a spanning tree from scratch by fanning out from a

single node and. adding arcs one at a time. It maintains a tree spanning on a subset 8 of nodes and

adds a nearest neighbor to 8. The algorithm does so by identifying an arc (i, j) of minimum cost in the

cut [8, S]. It adds arc (i, j) to the tree, node j to 8, and repeats this basic step, until 8 includes all the

nodes. We use arrays to implement this algorithm which gives us a running time of O(n2).

15

3.2.2 Calculation of Savings

While no improvement is possible:

(I) Find the path from -every node to every other node, for the present spanning tree.

O(n4
).

(1) Initially, our search node is node O.

(2) Find all the nodes connected to the search node by a single arc (nodes which have not been

touched upon before), and record the paths from the search node to these nodes. This takes O(n),

running time.

(3) If the search node is not 0, record the paths from node 0, to the nodes adjacent to the search

node, as the sum of the path from node 0 to the search node, and from the search node to each of these

adjacent nodes. This takes O(n2), running time as proved later.

(4) Recursively, perform steps (2) and (3), with new search nodes as the nodes found adjacent to our

present search node. This way we would end up covering all the nodes in the network, and will have the

paths from node 0 to all the other nodes in the network. Since there are n nodes in the graph, the total

running time for step (2) is O(n2), and for step (3) is O(n3), giving an overall running time of O(n3).

(5) The path from node 0 to node i, is the reverse of path from node i to node O. Add path from

node i to node 0, to that from node 0 to node j, to get the path from node i to node j. Get the paths for

all values of i and j. There are n(n2-1) , possible (i,j) pairs in a graph, and each addition of paths has a

running time of O(n2), therefore, this step requires a running time of O(n4). Since this step dominates

all the other steps in terms of running times, it takes O(n4), running time to find the paths from every

node to every other node.

An important function used in these steps is addition of paths. If we know the paths from node i to

node j and from node j to node k, we can get the path from node i to node k. The steps involved in

this kind of addition are:

(1) Move along the path from node k to node j. For every node m along the path:

(a) Check if m lies along the path from node i to node j. If it does, the path from node i to node

k is all the arcs from node i to node m, along the path i to j, and all the arcs from node m to node k,

along the path j to k. If it doesn't, continue moving along the path from node k to node j.

(2) If we have found no m which satisfies condition (a), the path from node i node k, includes all the

arcs along the path from node i to node j, and all the arcs along the path from node j to node k.

Since, the maximum number of arcs along any path can be (n - 1), the worst case running time for

the path addition function is O(n2).

16

(II) Number of arcs to be tested= n(n
2
-1) - (n - 1) = (n-l~n-2), which is O(n2).

(1) 'frack the cycle formed by an additional arc, (i,j). The cycle formed on adding arc (i,j)

,consists of all the arcs along Path(i,j).

(2) 'fry deleting every other arc (m,n) in the cycle. In this step we need to estimate the cost of

the network, when arc (i, j) has been deleted and arc (m, n) has been added.

(a) First, find the paths from every node to every other node for the new network. O(n4).

(b) Estimate the cost of the new network. This takes O(n2).

Since, the running time for (a) dominates that of (b), testing each (m, n) in the cycle takes a running

time ofO(n4). There can be a maximum of (n-1) arcs in a cycle. Therefore, checking for each additional

arc (i,j) is O(n5), and since we have O(n2), arcs to be tested, step (II) is O(n7).

(III) Find the best of all replacements.

In the previous step, the best cost estimate for each arc that can be added, is recorded. Also, the arc

which needs to be deleted to get this cost is saved in the memory. In this step, a sorting operation is done

on all these cost estimates, and possible savings over the previous network are obtained. Corresponding

to the highest positive savings obtained, the switch of the arcs is performed. This takes a running time

of O(n2). The algorithm is repeated again, with the present tree as the starting network. The dominant

step is (II) which took O(n7), therefore the algorithm runs in O(n7) time.

3.3 A modification to the Savings Algorithm

A slight modification has been tested to make the heuristic run faster. At the very start, some of the

edges which cost less than x% of the maximum edge cost in the graph, are labelled permanent. If some

of these edges form any cycles, all the edges in the cycle are unlabeled. This telescoping reduces the

processing time, as we need to check lesser number of edges now. We would expect that higher the

x value, lesser the processing time, at the expense of better solutions. Also, if x value goes beyond a

certain limit, we end up getting more number of cycles, as a result of which all the edges in those cycles

are disqualified for permanency, and our additional work of making them permanent in the first place,

goes in vain, and only adds to the processing time. Several values of x have been tested, and it turns

out that the optimum value of x is somewhere around 2% for our test set.

17

3.3.1 Complexity of the Modification

The modification part runs as a labeling algorithm. All the arcs in the graph, which is O(n2) in number,

are scanned one by one. If the cost of any arc is below x%, it is included in the graph permanently, and

the nodes connected by it, are given a common label. Four possibilities may occur when such an arc is

located:

(a) Both the nodes have no labels.

In this case, both the nodes are given a new label.

(b) One of the nodes already has a label, while the other one does not.

In this case, the unlabeled node is given the same label as the already labeled one.

(c) Both the nodes are labeled and the labels are different.

In this case, one of the nodes is taken, and all the nodes in the graph having the same label as that

node, have their labels changed to that of the other node. This is done in O(n) running time.

(d) Both the nodes are labeled and the labels are same.

If such a case occurs, it means we will form a cycle in the network by including this are, and all the

arcs in this cycle have to be disqualified for permanency. This is done in O(n) running time.

Therefore, the total running time of the modification part is O(n3).

18

Chapter 4

Computational Testing

Testing was done for various solution methods. For this, problem instances of 15 to 60 nodes were

generated.

4.1 Performance Analysis

Testing has been done for the following solution methods:

(1) Savings: Savings algorithm without the modification.

(2) SavingsII: Savings algorithm with the modification, x value being 5% and 10%.

(3) MIP: Mixed Integer Program solution by CPLEX.

(4) M I Pwithcutl: Mixed Integer Program solution by CPLEX with constraint (10).

(5) M I Pwithcutsl&2: Mixed Integer Program solution by CPLEX with constraints (10) and (11).

Also, a problem has been solved to show how the results from savings algorithm, can be used to

provide a good upper bound for the MIP, so that we get the optimal answer in time lesser than that

taken by CPLEX, without the upper bound.

n: The problem number nodes: Number of nodes in the problem

4.1.1 Solutions

This testing showed that the Savings Algorithm performs very well, giving optimal and near optimal

answers most of the time. For the modification, as the value of x increases, the frequency of getting

non-optimal answers increases. But still, we are near optimal.

19

2940 2940\
5538 5538 1
5689 56051

I

3740 3598!
-,.,._.~~

I I

o! 47145]
~< ~

7145

1

7145 17145
1r 16 61051 6622 61056105

2! <-~ _~'-=" 412~
,-

4126 4126 4126
31 16 59931 5993 5993 5993__,,,__,,__-,.- -- -----
4 1 16 47161 4716 4716 4716 1
51 16 67261 6726 6726 6726I

I "-----_._,--

Figure 4-1: Solutions for problem numbers 1-35

20

I ! I
,~~ 21"9r--'--431Sr---·--·'----- 4302 --""~19L

18, 55651 5565 5565 5565

181 70; 7009 7408 7009
4426 4426 4426--f8r"~-'-44~--

'" ~L._.. 648.~L_,"_,_ 6483 6483 6483
18! 4521! 4521 4521 4521..,<~----_ ..".!.,.,""~,._",.,~ .•_.~.. ---..¥L-.,,,,,,,,",,,,-,,,____,,,, ""-.,,,,,,,,,,,,,,,,,,,,,,,¥,.,,,,.,--- ""._-,-~

18 5717 5717 5717
1----"

5717 1----" _.,
19 4543 4543 4588 4543
19 3979 3979 4147 3979

Figure 4-2: Solutions for problem numbers 36-70

21

Figure 4-3: Solutions for problem numbers 71-105

22


~~~_ 5682'
5104 5104

----i------
4316 4173
5069 5069

-
7004 7004..
8919 6867
6632 66321

----~,-- -~~~--, ~!

5264 52641
---" , .. ~ ~ ,. ~".__', _W'·'''···'¥<~>···. _ ~,_ '~'~,'_"_~~,_ w-""'-_',_W__ .-

3823
1

29 i 3823 i 3823, 3823
-~--- 30t-----3268r------- 32681 3333 3268

1
-·-·30l-~-·--5420l··--···--·--·5420r--- 5420 5420

._~--_.,.,.~,~---~._,.-.~--~~-- -
311 4488! 4522 4763 4488
32 4875 I 5094 5189 4875

I 33 3242 3285 3619 3242
I 34 5158, _5158[ . 5705 5147!
!...._.._--.,-~.

553011 34! 55301 5900L 6046
I
~~ ..~. -·,,--__l_u~ .-----. 7679] ---7679 -----'~-{

37 1 7679i 76791! I.. -l
! 48

1
6181

1
6993 6930 6181

- -
51 1 6054

1
6059 6167 6054

I

591 5803 1 5803i 6260 5803i -- ----,-----

Figure 4-4: Solutions for problem numbers 106-127

23



4.1.2 Running times

The MIP takes much more time than the Savings algorithm. The MIP with cuts performs better than

the Savings Algorithm in terms of running time. But, by implementing the modification in the Sa~ings

algorithm with a suitable x, we are able to beat the MIP with cuts. The cost given by the Savings

algorithm with modification, can be used as an upper bound for the MIP with cuts, which enables us

to get the optimal answer in lesser time than that used by the MIP with cuts alone. This has been

demonstrated using a problem, in the next section.

24



Figure 4-5: Running Times for problem numbers 1-35

25



Figure 4-6: Running Times for problem numbers 36-70

26



Figure 4-7: Running Times for problem numbers 71-105

27



Figure 4-8: Running Times for problem numbers 106-127

28



Average Running Times (seconds)

nodes Savings Savingsll-5% Savingsll-10o/c MIP MIP with cut 1 MIP with cuts 1&2

15 2.255 0.393 0.337 2.557 0.993 0.648

16 2.126 0.399 0.378 2.828 0.980 1.455

17 3.038 0.615 0.494 8.552 1.145 0.905

18 3.873 0.808 0.786 5.659 1.513 1.233

19 5.393 1.167 1.403 9.092 1.840 1.219
20 6.187 1.536 1.631 7.594 2.291 2.122

21 6.816 1.890 1.783 6.834 2.184 1.815

22 4.610 1.273 1.068 8.840 4.890 3.950

23 8.168 2.706 3.716 11.580 3.860 4.888

24 8.134 2.440 3.249 14.190 2.560 2.754

25 23.180 7.002 10.893 120.730 30.320 21.310

26 16.073 4.986 9.160 216.243 3.387 3.257

29 18.350 8.724 10.629 30.810 6.760 5.430

30 30.980 14.980 18.867 65.195 5.380 5.550

31 33.830 10.403 21.380 42.460 2.420 2.420

32 41.080 13.396 47.289 131.270 6.150 3.300

33 53.500 32.502 35.634 98.320 3.790 8.020

34 60.030 22.404 47.316 12528.085 30.460 27.570

37 127.540 63.957 73.750 2125.290 12.300 7.190

48 765.390 657.750 952.004 3days+ 1424.770 611.760

51 1094.010 782.827 957.335 »10567.47 >10567.47 ~ 1540.380

59 1462.280 1024.280 1962.090 3days+ 573.910 1038.210

Figure 4-9:

4.1.3 Summary

In this subsection, we endeavour to summarize the tables in the previous subsections.

The average times taken by Savings, SavingsII-5%, SavingsII-lO%, MIP, MIP with cut 1, and MIP

with cuts 1&2, for different problem sizes are summarized in the table in Figure 4-9.

29



Solution Gaps

nodes Savings Savings\l·50/0 Savings\l·100/0

Min. Max. Avg. M_in. Max. Avg. Min. Max. Avg.

15, 0.000% 10.010% I 0.001%' 0.000% I 0.010% 1 0.001 % i 0.000% I 0.075% i 0.011%
16, 6~o0607~1 O~OOOo/~Jro.ooQOioro:oOO% IO.007o/;"O:00oo;';To.o-oooJonff400f01 6:0200/0-

" ~. ,',-. __ , _"x"_~ "",_""""_,,,,,_,,.,,,__,_.~ ,_, .. _".__,.__._.,.x.L~_~.,_~.__l-- ._. ,_.~~__¥~ .. , ...• _ .:....•. ,.•~._._,~,_.<~J.'_'A"''''_,·..·AW ..·'·· _, 'd __._" "

_1?L.~.000o/~J O.O~~!~ 0.000% 1~000%1~'000% ~.?OO%J o.OOO%J.~~~O%l~O'OO~~.

180:o.o.~.!~.L~:~?_~!oL~:_~0~0(~.L.?:.?~00/~J~.023% 0.002~j 0.000% 0.057% I 0.010%
1~ ..?~?OO~~0J..?..:?O?.% l 0.001 %J 0.000% 1 0.040% 0.007% 1 0.000% 0.042% i 0.010%
20 0.000% I0.000% I 0.000% I 0.0000/~ 0.225% 0.023%! 0.000% 0.253% i 0.045%
2"-· -o.o'Ooo/;ro·.OOO% p).OOO% I 0.000% Pl.OOO%. 0.000o/.;r6]()()%~13-°/ofO:iOO%

226~o0207~ro.00-2·o/~rO.002o/.;ro.002°/~r 0.002%J-0.002% I 0.092% I0.092% r 0.092%
~_ ..• _~ .."._, •..<_ ....,,_ ••..... ,.~,.,__..• _,.__~A'__ ~.• "~'~'__"_'_'~N""_~ ""'_'__' ' .• ..........._~~_> ...~,__~..._,,~~,, _

23 0.000% t 0.000% t 0.000%: O.OOO%! 0.000% i 0.000%. 0.000% i 0.071%. 0.032%.".-_."-","'" ,.__._--,_.,._~,,--_..-.,,_J_----..-..;--_._-r-._----'---: ..__..l. __._."--_,~<__,,·.~_.¥N .._·_•._.~.__<•• _<•

.......•••••••.. ••••.•..j~3:~~~~ 1}~~~~I_~:~~~~I.-%.~~~~I{;;k~~:~ I~~~~:~~~~0:~~~
261 0.000%10.000% 0.000% 0.000% ro.OOO% o.OOO%! 0.000% 0.299% i 0.100%

<··<·~--~~L~.:.?Ooo~LO~~O%L?OOO%_L 0.000%'0.000% 0.000% I O.OOO%! 0.000%l~0~0

30, 0.000% i 0.000% I 0.000% I 0.000% 0.000% 0.000% i 0.000% 0.020% I 0.010%

~1T::.?~~~~0~[~~~~O% ~~~OOOo~ 0.008% 0.008% 0.008% I 0.061% 0.061o/;j 0.061%
321 0.000%· 0.000% 0.000% 0.045% 0.045% 0.045% I 0.064% 0.064% 0.064%

'~,"-",~ "-'~--'33T 0.0000/0 0.0000/0 0.000% 0.0130/0 0'.0130/0 0.0130/0 I 0.1160/0 0.116°J'o 0.116%

·~~34r--n.000% 0.002% 0.001% 0.002% 0.067% 0.035%10.093% 0.108%1 0.101%
.._~<q-~. 37[- 0.000% 0.000% 0.000% I 0.000% 0.000% 0.000% I 0.000% O.OOoo£fO.OOO%

~··_-_··~~~~~F-~:~~~~·,··~:~;l-~:~~~~:=·r~~~~+~ ~~~J~~~~~:~l~:~~~~Tg:~~~'
~- ~~59r·o.oOO%1 0.000% rO:OOO%l 0.000% ro.o06%TD.oo6%To.079%rO~679%ro:679o/';·

Figure 4-10: .

The gaps of the solutions given by Savings, SavingsII-5%, and SavingsII-10% from the optimal

solution are summarized in the table in Figure 4-10..

4.2 Case Study

For one of the problems tested above, we have shown that using the solution given by the Savings

algorithm with modification, as an upper bound for the MIP with cuts, we get the optimal answer in

lesser time than that required by the MIP with cuts alone.

For problem number 126, with 51 nodes, the solutions and times taken by savings algorithm with

modification have been obtained, for different values of x.

30



Algorithm Solution Time(seconds)

MIP 6054 »10567.470

MIP with cut 1 6054 >10567.470

MIP with cuts1&2 6054 1540.380

SavingsII-O% 6054 1094.010

SavingsII-1% 6054 765.948

SavingsII-2% 6054 499.498

SavingsII-3% 6067 554.483

SavingsII-5% 6059 783.762

SavingsII-10% 6167 967.563

SavingsII-15% 7273 1364.920

SavingsII-25% 7752 1356.710

SavingsII-50% 9605 1333.900
Table 4-1: SolutIOns and RunnlOg tImes for different methods

Assuming that a suitable value of x is 2%, we use the solution given by SavingsII-2%, as an upper

bound to the MIP with cuts, and solve it in 982.13 seconds. Since the time taken by SavingsII-2%

is 499.498, we are able to obtain the optimal solution in a total time of 982.13 + 499.498 = 1481.628

seconds, which beats the time taken by MIP with cuts, that is, 1540.38 seconds.

31



Chapter 5

Conclusions

In this work we have targeted a Network Design Problem (Cable and Trench Problem), which involves

a trade-off between utilization costs and capital costs for network construction. A larger network,(the

shortest path tree) may cost more to build but may reduce utilization costs by including more attractive

origin-destination paths. Conversely, a smaller network, (minimum spanning tree) may increase the

utilization costs. A heuristic has been provided which gives us optimal or near-optimal solutions. This

heuristic is an adaptation of the Savings algorithm given by Clarke and Wright in 1964, for solving a

vehicle routing problem. The heuristic provides us good solutions which can be used as upper bounds

for branch and bound methods, giving us the optimal solutions in lesser times than that given by branch

and bound without the upper bounds.

For future work on this problem, it will be interesting to look at the linear programming formulation

of this problem, and come up with more cuts to improve the lower bound. We tried two cuts on our

problems and got tremendous reductions in the running times of the branch and bound done by CPLEX.

Also, the running time of the algorithm could be improved by using different data structures.

32



Chapter 6

Appendix

Examplel(with near optimal answer)

Results Network obtained by Savings Algorithm (see Figure 6-1):

For Trench cost T=l1, Cable cost C=4,

Total Network Cost= 262T+743C=5854.

Network obtained by CPLEX (see Figure 6-2):

Total Network Cost=279T+696C=5853.

33



Figure 6-1: Network obtained from Savings Algorithm

Figure 6-2: Network obtained by solving Integer Program

34



N22 N4

NIO

~ N33..
N2

17

Figure 6-3: Network obtained from Savings Algorithm

Example 2(with near optimal answer)

Results Network obtained by Savings Algorithm (see Figure 6-3):

For Trench Cost T=ll, and Cable cost C=4,

Total Network Cost = 308T+1221C = 8272.

Network obtained by CPLEX (see Figure 6-4):

Total Network Cost = 294T+1256C=8258.

35



Figure 6-4: Network obtained by solving Integer Program

36



Bibliograp.hy

[1] E.W.Dijkstra, A Note on Two Problems in Connection with Graphs, Numerische Mathematik 1

(1959), 269-271.

[2] R. Dial, Algorithm 360: Shortest path forest with topological ordering, Communications of ACM

12 (1969), 632-633.

[3J R. Dial, F. Glover, D. Karney, and D. Klingman, A computational analysis of alternative algorithms

and labeling techniques for finding shortest path trees, Networks 9 (1979), 215-248.

[4J D. B. Johnson, Efficient shortest path Algorithms, Journal of ACM. 24 (1977), 1-13.

[5J M.L. Fredman, and R. E. Tarjan, Fibonacci heaps and their uses in improved network optimization

algorithms, Proceedings of the 25th Annual IEEE Symposium on Foundations of Computer Science

(1984), 338-346, FUll paper in Journal of ACM 34 (1987), 596-615.

[6J L.R. Ford, Network Flow Theory, Report P-923 (1956), Rand Corp., Santa Monica, CA.

[7] E.F. Moore, The shortest path through a maze, In Proceedings of the International Symposium on

the Theory of Switching, Part II; The Annals of the Computation Laboratory of Harvard University

30 (1957), Harvard University Press, 285-292.

[8] L.R. Ford, and D.R. Fulkerson, Flows in Networks (1962), Princeton University Press, Princeton,

NJ.

[9J R. Bellman, On a routing problem, Quarterly of Applied Mathematics 16 (1958), 87-90.

[10J J.B. Kruskal, On the shortest spanning tree of graph and the travelling salesman problem, Proceed

ings of the American Mathematical Society 7 (1956), 48-50.

[l1J R.C. Prim, Shortest connection networks and some generalizations, Bell System Technical Journal

36 (1957), 1389-1401.

37



[12] C. Berge, and A. Ghouila-Houri, Programming, Games and Transportation Networks (1962), Wiley,

New York.

[13] H. Booth and J.Westbrook, A Linear Algorithm for Analysis of Minimum Spanning and Shortest

Path Trees of Planar Graphs, Algorithmica 11 (1994), 341-352.

[14] S.Khuller, B.Raghavachari, and N.Young, Balancing Minimum Spanning Trees and Shortest-path

Trees, Algorithmica 14 (1995), 305-321.

[15] H.L Calvete, and P.M. Mateo, An approach for the network flow problem with multiple objectives,

Computers and Operations Research vol. 22, no. 9 (1995), 971-983.

[16] F.J. Vasko, R.S. Barbieri, and K.L. Reitmeyer, The Cable Trench Problem: Combining the shortest

path and Minimum spanning tree problems, [Submitted to Journal, Nov. 1999] Computers and

Operations Research.

[17] M.J.Saltzman, Minimum Spanning Tree = Shortest Path Tree?, Sci Op-Research (1995).

[18] D.Eppstein, Shortest path along an MST, Computational theory, (April 12, 1999).

[19] G. Clarke, and J.W. Wright, Scheduling of Vehicles from a Central Depot to a number of delivery

points, Operations Research 12 (1964), 568-581.

[20] D. Kim, P.M. Pardalos, " A solution approach to the fixed charge network flow problem using a

dynamic slope scaling procedure", Operations Research Letters, 24 (1999), 195-203.

[21] W.M. Hirsch, G.B. Dantzig, "The fixed charge problem", Naval Research Logistics Quarterly, 15

(1968), 413-424.

[22] P. Gray, "Exact solution_of the fixed-charge transportation problem", Operations Research, 19

(1971),1529-1538.

[23] K.G. Murty, "Solving the fixed charge problem by ranking the extreme points", Operations Research,

16 (1968) 268-279.

[24] D.L Pardalos, J.B: Rosen, " Constrained global optimization: algorithms and applications", Lecture

Notes in Computer Science, v268, Springer, Berlin, 1987.

[25] U.S. Palekar, M.H. Karwan, S.A. Zionts, "A branch-and-bound method for the fixed charge trans

portation problem", Management Science, 36 (1990), 1092-1105.

[26] D.L Steinberg, "The fixed charge problem", Naval Research Logistics Quarterly, 17 (1970), 205-225.

38



[27] K. Sandrock, "A simple algorithm for solving small fixed-charge transportation problems", Journal

of Operations Research Society, 39 (1988), 467-475.

[28] M.L. Balinski, "Fixed cost transport.ation problems", Naval Research Logistics Quarterly, 8 (1961),

41-54.

[29] L. Cooper, C. Drebes, "An approximation algorithm for the fixed charge problem", Naval Research

Logistics Quarterly, 14 (1967), 101-113.

[30] D.R. Drenzler, "An approximation method for the fixed charge problem" , Naval Research Logistics

Quarterly, 16 (1969), 411-416.

[31] M. Diaby, "Successive linear approximation procedure for generalized fixed-charge transportation

problems!', Journal of Operations Research Society, 42 (1991), 991-1001.

[32] H.W. Kuhn, W.J. Baumol, "An approximation algorithm for the fixed charge transportation prob

lem", Naval Research Logistics Quarterly, 15 (1968), 413-424.

[33] F.R.B. Cruz, J. M. Smith, G.R. Mateus, "Solving to optimality the uncapacitated fixed-charge

network flow problem", Computers Operations Research, 25(1) (1998),67-81.

[34] V. Adlakha, K. Kowalski, "On the fixed-charge transportation problem", Omega, International

Journal of Management Science, 27 (1999) 381-388.

[35] Stallaert, J. "Valid inequalities and separation for capacitated fixed charge flow problems", Discrete

Applied Mathematics, 98 (2000) 265-274.

[36] D. Kim, P.M. Pardalos, "A solution approach to the fixed charge network flow problem using a

dynamic slope scaling procedure", Operations Research Letters, 24 (1999) 195-203.

[37] M. Sun, J.E. Aronson, P.G. McKeown, D. Drinka, "A tabu search heuristic procedure for the fixed

charge transportation problem", European Journal of Operational Research, 106 (1998) 441-456.

[38] P.H. Ng, R.L. Rardin, "Commodity family extended formulations of uncapacitated fixed charge

network flow problems", Networks, 30(1) (1997) 57-71.

[39] T.H. Hultberg, D.M. Cardoso, "The teacher assignment problem: A special case of the fixed charge

transportation problem", European Journal of Operational Research, 101 (1997) 463-473.

[40] G.M. Guisewite and P:M. Pardalos, Minimum concave-cost network flow problems. Ann. Oper. Res.

25 (1990), pp. 75-100.

39



Vita

The author, Shalu Wadhwa, was born in Dehradun, India in 1977. She obtained her Bachelor of

Technology degree in Mechanical Engineering from Indian Institute of Technology, in Delhi, India. She

worked in India with Defense Research and Development Organization for an year, before joining Lehigh

University. During her stay at Lehigh University, she worked as a Research Assistant for the Industrial

and Manufacturing Systems Engineering Department. In addition, she did her summer internship in

the Risk Management Department at American Express, NY.

40



END OF

TITLE


	Lehigh University
	Lehigh Preserve
	2000

	Analysis of a network design problem
	Shalu Wadhwa
	Recommended Citation


	00959
	00960
	00962
	00963
	00964
	00965
	00966
	00967
	00968
	00969
	00970
	00971
	00972
	00973
	00974
	00975
	00976
	00977
	00978
	00979
	00980
	00981
	00982
	00983
	00984
	00985
	00986
	00987
	00988
	00989
	00990
	00991
	00992
	00993
	00994
	00995
	00996
	00997
	00998
	00999
	01000
	01001
	01002
	01003
	01004
	01005
	01006

