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Abstract

Many cryptographic applications rely on random numbers at various stages of

the algorithm to assure the level of security expected by the analysis. Since truly

random numbers are difficult to acquire, a set of conditions is given which when

satisfied by a sequence provide numbers possessing the qualities of randomness

required for cryptographic applications. More specifically, bit generators are

discussed, as they can be used to generate numbers of any size. Pseudo-random bit

generators are the implementation of algorithms which generate bits satisfying the

requirements for cryptographic use. The type ofps~do-random bit generators (or

PRBG) which are discussed are called complexity theoretic. As the name implies,

the strength ofthe algorithm, and thus the level of security afforded the generator is

founded on the intractability ofa mathematically difficult problem. Ofthe problems

of this type, the three most often applied are: factoring, discrete logarithms, and

quadratic residues. These three problems for the basis for the PRBGs discussed:

BBS-generator, RSA-generator both ofwhich rely upon factoring, the discrete

logarithm generator over finite fields, and the discrete logarithm generator over

elliptic curves. Any algorithm which is able to predict the next bit from any ofthese

generators, is expected to be also able to solve the mathematically difficult problem

upon which the generator is based and has been proven for the discrete logarithm

cases. It is this implication which yields the cryptographic strength for any

generators ofthe complexity theoretic type.
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Introduction

The subjects ofprime numbers, discrete logarithms, factoring, and quadratic residues

have been studied for many years, but it is only recently that they have become generally

accepted as useful for data security. This paper focuses on cryptographic applications of

the areanf theoretically hard computing. Although there are many aspects of

cryptography where the above mentioned areas ofmathematics have broadened the

horizons ofthose studying the subject, the purpose of this paper is to focus on a small

subset ofthese applications, the pseudo-random bit generator (PRBG).

The first section provides motivation for this study and an extended introduction.

Section two discusses the topics in mathematics required to study these generators.

Section three discusses the mathematically difficult problems which form the basis of

many PRBGs, as well as describing algorithms which solve these problems. Section four

describes the basic requirements a function must satisfy in order to generate pseudo

random bits sufficiently random for use in cryptographic applications. Finally section five

discusses several PRBGs which meet the.se requirements. Readers familiar with

quadratic residues, elliptic curves, finite fields, and the notion ofhard computations may

wish to proceed directly to section four.
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1. Motivation

Like many terms in the sciences and mathematics, the definition of the phrase "random

number" varies depending upon the application. These numbers have found their use

not only in areas of computing, but throughout the sciences. For instance, when testing

software, it is often important to input data that mayor may not be ofthe appropriate

type or magnitude. While a truly random value would be sufficient, they are rarely used

due to the difficulty offinding or generating them. In many cases, what is used is an

arbitrary value, yet there are areas where such values are insufficient. One area where

more stringent rules for random-like values are often required is the science of

cryptology. Cryptology is the science of securing or hiding data, and is split up into two

subjects: cryptography, the study of constructing codes, and cryptanalysis, the study of

breaking or cracking these codes.

Before the mathematical revolution in cryptology, the two main techniques for

securing data were, substitution and transposition. Substitutions are usually I-to-l or

I-to-many mappings; while transpositions simply re-arrange the order ofthe data. By

combining these two techniques alone, strong ciphers can be produced. In fact, DES

(the Data Encryption Standard) which was adopted for use in commercial and

unclassified U.S. Government applications in 1977, is merely that, a sequence of

transpositions and substitutions. It must be noted, that although this protocol for

encryption (DES) has not been shown to have any major holes through which a
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cryptanalyst (someone involved in the cryptanalysis side) may base an attack, a slight

change in"one ofthe substitutions or transpositions may be expected to yield a very

breakable code. In particular, though the id~ ofa transposition or a substitution is

trivial, combining these techniques in such a way as to provide a secure cryptographic

algorithm is a non-trivial task.

Cryptologists refer to the message which is being sent as Plaintext. Whereas,

Ciphertext is the encrypted message. Simple access to the ciphertext is no longer

sufficient to understand the message. It should be noted that although the terms for both

the original message and the result of the encryption have the word text in them, it is not

usually necessary for the message to be an actual text-message, binary files could just as

easily be encrypted by most modern algorithms.

Many modern algorithms do not rely on the secrecy of the algorithm itself to add

to the security ofthe cipher. The way security is often achieved is through the use of

keys; while the algorithm itselfmay be known, without the specific key used to transform

the plaintext into ciphertext, the algorithm is of little use. Keys are used in ciphers much

the way that passwords are used today to gain entrance into other software packages.

To encrypt a message in a keyed security system, you must enter both the plaintext to be

encrypted and the key to be used. When designing a keyed crypto-system, there are

three features which may be included. First, from a theoretical standpoint, if a certain
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length key is found to provide insufficient security for a particular application, one could

ideally choose a longer key which would provide the added security.desired (although in

practice, many ciphers which use keys are not flexible enough to allow for keys of

varying lengths). Second, from a practical standpoint, if a key is compromised (in this

case we are speaking ofa third party who gains unauthorized access to the key - rather

than the key becoming unknowingly modified) the authorized users can simply change

the key and continue to enjoy the security oftheir algorithm, without having to redesign

an entire new system. Athird area of importance is related to the first two, and that is

the simple fact that it is much easier to transmit and keep secret a small key, rather than

an entire encryption system. It is important to realize that although keyed systems have

allowed crypto-systems to evolve into much easier to manage systems, the generation of

these keys becomes an important topic; for since the algorithm is not secret, if someone

can guess the key, the system is not only no longer secure, it is completely compromised.

One method used in discussing the strength ofa crypto-system is brute-force,

which is a measure ofhow long it would take to break a system if every key were to be

tried, or more simply a count ofthe number ofpossible keys. One reason that this

technique is apparently attractive as an attack against many cryptographic systems is that

such a technique can require little knowledge ofthe system being used, while still being

able to systematically test each ofthe keys for a system. This technique is usually only

applied to block or stream algorithms such as DES mentioned above. The reason is that
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the number ofpossible keys for these algorithnis is often sufficiently-small that testing

each ofthe possible keys is plausible, or brute-force is the best known method for

breaking the system. It should be noted that plausibility is a notion which changes over

time. For instance, as recently as ten years ago, the DES encryption system was

considered immune to a brute-force attack, while today, such an attack can be successful

using numerous workstations and pes. Recent brute-force attacks have successfully

searched the keyspace for 40 and 48 bit DES, and are expected to complete the search

on the standard 56 bit keyspace through a distributed effort. For algorithms such as the

RSA encryption method, which bases its strength on the difficulty offactoring numbers,

or those based upon the Diffie-Hellman method, a brute-force attempt could not be .

expected to find the correct values, even given more time than the-age ofthe universe

and computational resources greater than those available in the foreseeable future.

Descriptions ofRSA, Diffie-Hellman and other cryptographic algorithms are presented in

[14] and [16].

.-
For instance, if the key were 100 bits long, but the middle 80 were always

known, an attacker would only have to try 220 keys before it would be guaranteed to find

the correct one. This problem is exactly that which was brought to the attention ofmuch

ofthe computing industry with the attack on Netscape's Navigator SSL or Secure

Socket Layer. The basic idea ofthe crypto-system employed by Netscape for an

encrypted method of passing information was not flawed, but required the generation of

6
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a secret key that the two communicating systems would share. In fact, the basic

algorithm for creating the random key was also not seriously flawed either, rather it was

in the implementation that a seemingly secure system was shown to be completely devoid

of security. To generate the key, the idea was to take a few pieces of information that

only one user could know, and create a seed for a standard accepted mixing function

(MD5 or Message Digest 5). The output for this mixing function would then be used to

create the key for encryp'ting data. Tlie problem in implementation was that the pieces of

information chosen were: pid (process ill), ppid (parent process ill), and time. It then

becomes immediately obvious that any attacker with an account on this computer could

immediately find out both the pid and the ppid, while the time could be narrowed down

to a tight window by watching when the initial packet was sent out. In fact, even

attackers without an account on the system can mount a serious attack since both the pid

and ppid can be gleaned from the system. But even if the attacker has no ability to check

these, their structure, as well as the structure ofthe time on the system, allows for only

47 bits of randomness. Abrute force attack on a key length of47 bits is in fact not only

possible but rather trivial with today's computing power. The result is that an algorithm

expected to deliver a key consisting of 128 random bits, provides only 47. It is

important to realize that this is not an example of inexperience, but rather a

misunderstanding ofthe importance of each phase ofa cryptographic-system. More

detailed information on the Netscape key generation can be found in Goldberg and

Wagner [4].
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A similar mistake was made by a more widespread and more widely respected

system, that ofKerberos [13]. Kerberos is the system, created at MIT, which allows

networked computers to remain secure by controlling access to the system and system

resources, described in [6] and [14]. The Kerberos system is incorporated into many

products, for example, NFS (Network File System). Although the key generating

problem was realized by the creators ofKerberos when the Netscape problem was

announced, it was surprising to many, that a product developed at MIT, from whence

many cryptographic techniques have started, possessed the same flaw as that of

Netscape, a company with very limited cryptographic experience. If a cryptographically

strong PRBG (pseudo Random Bit Generator) were used for both ofthese applications,

keys providing the security of 128 random bits could have been generated resulting in a

key and a code unable to be broken with a brute-force method even in the foreseeable

future.

Key generation, although an extremely important aspect ofmodem cryptography

is not the only use for PRBGs. There is one cipher which uses no keys and no advanced

mathematics which is in fact a perfect cipher; that is, given an unlimited amount oftime

and computing resources, an attacker could never break the code, it is called the one

time pad. The idea ofa one time pad is to encrypt every piece of information

individually with a separate key, and while many examples show the use by encrypting .an

ASCn letter using another ASCn letter as the key, one can easily adapt the algorithm to
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be used with bit-wise rather than character wise encryption. While the implementation

can use many types offunctions to use a bit from the key to encrypt the bit from the

plaintext, the exclusive-or operation works quite well. The example below will help to

illustrate the system:

plaintext (binary)

key1 (binary)
ciphertext (binary)

key2(binary)
plaintext2 (binary)

key3(binary)
plaintext3 (binary)

: 1010001001001

: 1100101100010
: 0110100101011

: 1001011101011
: 1111111000000

: 0110100010100
: 0000000111111

Notice, to create the ciphertext, simply take each bit ofthe plaintext and combine the

appropriate bit ofthe key using the exclusive-or function. It is easy to see, once can

easily re-construct the original plaintext by combining the correct key (key 1) with the

ciphertext using the very same exclusive-or function. The next two portions ofthe

example illustrate that since to the attacker, the key is unknown, the sequences labeled

plaintext2 and plaintext3 are just as likely if the keys were key2 and key3 respectively.

Since the keys are generated randomly, not only are all of the above 3 keys equally

likely, any sequence ofbinary digits oflength 13 is equally likely to be the correct

original plaintext message. This is the reason that this is called the only perfect cipher,

any possible sequence ofbinary digits ofthe proper"length is possibly the correct original

plaintext from any ciphertext.

9



Two problems become obvious when looking at this system: first, since the key

has to be the same length as the plaintext to afford this perfect security, long keys must

be stored for use by both parties to be able to send longer messages or multiple short

messages (note that re-use oftbe keys completely nullifies the strength of this algorithm).

Second, since for the system to be secure, random bits must be generated for the keys,

there is the problem offinding truly random sources. While the first problem of secure

storage and distribution ofthe keys is an important one, it will not be addressed except

to say that PRBGs help by reducing the amount ofdata required to be distributed or

stored. It is the issue of more quickly generating cryptographically strong pseudo

random bits without a truly random source which will be the focus for much ofthe rest

ofthis paper.
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2. Introductory Mathematics

Much of the work in modem cryptography requires the use of higher mathematics.

While modem number theory is often necessary to create new cryptographic codes or to

cryptanalyze current codes, only the few important results from the areas of number

theory and modem algebra will be presented which are required for understanding the

PRBGs discussed in the following sections. There are two groups which most ofour

mathematics will be concerned with: finite field of p-elements, and elliptic curves. In the

next section, we will find that the finite field of p-elements has more properties than

those ofa group. Yet for the purposes ofconstructing PRBGs, it is mainly the aspects

ofthe cyclic multiplicative group which we will find most useful. The other features will

be thoroughly discussed, as they are required in order to construct some ofthe methods

for attacking the generators. Also, when we say that elliptic curves are the other group

we are concerned with, we mean the points on an elliptic curve, when confining the

curve to a finite field, and in our case, a specific type offinite field. Since both cyclic

groups require an understanding offinite fields, we will begin by explaining the important

parts oftheir structure.

2.1 Finite Field Mathematics

A finite field ofp-elements wherep is an odd prime will be denoted using the symbol Fp,

and for example, a finite field of41 elements would be written as F41 . Every finite field

can be associated with an odd primep or with the prime p=2. Ofthese two main types

11



of finite fields, the fields with 2k elements are particularly well suited to machine

computation on today's hardware. Yet for our purposes, we will focus on finite fields

constructed with a prime number of elements as they are the basis for most of the theory

and algorithms in our current study. The numbers in this finite field may be represented

by the ordinary numbers, 0;1,2...p-1. One feature which defines a field is that both the

multiplication and addition operations are well defined. For example, in F11 with

elements represented by 0,1,2,... ,10, to perform addition, we may often perform

ordinary integer addition, for example 2+3=5,4+5=9. Ifwe use integer addition on

some elements we run into an apparent problem, for example, 7+8=15, yet 15 is not in

our field of 11 elements. The way we account for this is to consider addition modulo the

prime ofthe field. For example, 7+8=15=4(mod 11). In fact, the modulo operator will

be required to define both addition and multiplication for our finite field. Thus, when we

use the addition and multiplication operators on elements in a finite field, we will always

consider the operations modulo the prime which is the basis for the specific field we are

concerned with. In reality, the numbers we are considering as comprising our field are

only representatives of equivalence classes. The following are examples of equivalence

classes mod 11

...,-33,-22,-11,0,11,22,33, .

... ,-32,-21,-10,1,12,23,34, .

...-23,-12,-1,10,21,32,43,...

12
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To form the elements our finite field Fib we must choose one element from each of the

equivalence classes. For simplicity we consider the elements 0,1, .. .10 as representatives

oftheir equivalence classes, and thus the elements in our finite field.

Another feature ofthe finite field that we must be concerned with is the order of

the field. For the types offinite fields we are looking at, this is rather trivial, as the order

is equivalent to the prime number we selected for the modulo function. When we are

using multiplication, we actually use one fewer elements, we leave out the element O.

Not only can we exclude this element without incurring any inconsistencies, as no two

elements when multiplied together can yield a multiple ofour selected prime, we must

exclude this element in order to ensure each element has a well defined multiplicative

inverse. We also note that a finite field has the usual elements acting as the additive and

multiplicative identities as the integers, °and 1 respectively. Since we have defined the

multiplicative and additive identities, we would like to ensure the inverses for each

element in the field under either operation, with the exception of 0 which is not

considered for multiplication. The additive inverses are trivial to find, to find the

additive inverse for a simply negate the value as in case of ordinary integers, thus -a

becomes the inverse. But since ifa is in our field and is not equal to the additive identity

element 0, -a will not be in the field. We simply find the appropriate representative

element from the equivalence class; or more easily simply add the prime order to the

element, so -a=p-a. Determining the multiplicative inverses is a slightly more
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complicated task. For the fields we are working with we would like to use an extension

ofEuclid's Algorithm for finding the greatest common divisors of two integers. Euclid's

Algorithm requires that neither integer divides the other; for our use, this condition is

satisfied, since one ofthe numbers for which we will be applying the algorithm on is the

prime, and the other is the element whose inverse we wish to determine. The first step,

is to write the prime as

with O£"o<a. We then find values so as to rewrite a as

with O~l<rO. We then find values so as to rewrite ro as

again with O£"2<rl. We continue this process until for some k, rk=O so

rk-3 = rk-2qk-l +rk-l

rk-2 = rk-lqk +rk

rk-l =rkqk+l +O.

In Euclid's algorithm, the number rk is the greatest common divisor ofp and a. But we

are not specifically interested in the greatest common divisor since we have already

noted that the value will always be 1, so we start to backtrack the algorithm and re-write

the next to the last equation as

We then note that we can do the same with the equation above to find

14



We can then substitute this equation into the one we found before to be left with

by combining like terms we are left with

We continue to rewrite the equations from Euclid's Algorithm and substitute them into

this equation in the order reverse from that oftheir generation. When the first equation

has been rewritten and substituted in, the resulting equation will be of the form

rk = a .w +p' v.

But since in our field, [7=0 and since we have determined that rk=1,

l=a·w
so

We will work through a small example to more clearly display the method. We

wish to find the multiplicative inverse of25 inF211. We start by writing our first. .

equation as

211 = 25 .8+11.

We then continue with the algorithm until we have a remainder 0

25 = 11·2+3
11=3·3+2
3=2·1+1
2=1·2+0

15



Now that we have a remainder ofO, we check the next to the last equation and see that

the remainder is 1, thus the gcd(2II,25) is 1; a fact we knew since 25 is smaller than the

prime 211. We then work backwards to construct the inverse starting by rewriting the

next to the last equation as

1=3-2·1.

By substituting a re-written second equation we are left with

1= 3- (11- 3·3)·1 = 4·3 -11

continuing this process we calculate

1= 4· (25 -11· 2) -11 = 4·25 - 9 ·11
1= 4·25 - 9· (211- 25·8)

which when rewritten becomes

1= 76·25 - 9·211.

From this we can easily see that 76·25 == I(mod 211), therefore

25-1 == 76(mod21l).

There has been some work done in this area to improve this method,.or to devise a

different method for calculating the multiplicative inverses, but this technique is widely

used, and is used specifically for many implementations of the finite field structure when

implementing PRBGs.

A related idea is that ofZn which is a ring of integers. A ring has fewer

properties than a field, most notably, there need not be multiplicative inverses. In
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general, rings need not have a multiplicative identity either, although the ring Zn does in

fact have the usual one. Addition and multiplication on Zn is the same as that ofthe

finite field above, noting that n need not be a prime. The other important point to note is

that over a ring, two non-zero elements could have a product whose value is zero. For

example in Z12, 4·6 =O. Such a ring also does not guarantee that each element have an

inverse. Ifwe exclude the elements which have prime factors in common with our value

ofn, we can avoid such problems. This new collection forms a multiplicative group and

Another important result with respect to the finite fields, is called the Chinese

Remainder Theorem. This theorem is used to simplify the solving ofa difficult

congruence, by generating a system ofcongruences and solving them in such a way as to

provide a solution to the general problem. The situation which will give rise to the use

ofthis technique is the following, we would like to solve some equation for

x == amodn

but instead ofattacking this problem directly, we instead factor n

k
n= flq{i

;=0

(

where the qi are the k distinct factors ofn, and solve the problem for each ofthe powers

of the factors ofour composite number n. The Chinese Remainder Theorem then not

only ensures us a solution, but provides a means ofgenerating it. First we will describe

17
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the algorithm for finding the solution, then we will work through an example to illustrate

the technique. First, we must solve whatever problem we wish to solve using each ofthe

powers of prime factors ofour composite number as the modulus. This leaves us with a

series ofk congruences

x == Ql (mod 11lJ.)
x == Q2(modm2)

where we could substitute mj = qjCj to attack a problem in the manner described above.

For the Chinese Remainder Theorem to provide a unique solution, it requires

only that each ofthe mj are relatively prime to each other, as we described our factoring

method above as the impetus for our discussion, it is easy to see that each ofthe mj are

relatively prime as they are powers of distinct primes. We notice that

k

n= IImj.
j=1

The formula determining the solution mod n can be defined as

k

x = LQjMjYj modn
j=1

with the Q p M j,Yj to be defined below. Obviouslyaj are those from the system of

congruences above. Then we define
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and we are assured a solution for Yi since mj and M j are relatively prime, and we can

use the Euclidean algorithm described above to find it. A further description of the

method, and a proofofthe uniqueness of the solution can be found in, Stinson [16].

We will now work through an example to illustrate the algorithm. We will let

n=60 so, for our use, ml = 5, m2 = 4, m3 = 3. We will also choose al = 2, a2 = 3, a3 = 2.

Thus, our system ofequations is

x == 2(modS)
x == 3(mod4)
x == 2(mod3).

We next calculate

and

We then calculate x(mod n)using the Chinese Remainder Theorem formula

x == (12·3· 2) +(15·3· 3) +(20· 2· 2)(mod60) = 47.

We can quickly check that each ofour congruences in our system ofcongruences is still

valid

47 == 2(mod5)
47 == 3(mod4)
47 == 2(mod 3).

19
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2.2 Fermat's Little Theorem

We will now mention one more theorem from elementary number theory before moving

on to study elliptic curves, and that is Fermat's Little Theorem. The general form ofthis

theorem can be stated as

af/J(m) == l(mod m)

where a and m are integers, a is relatively prime to m, and rp(m) is the Euler phi

function. The proof and further discussion can be found in [8]. For our purposes, we

will be applying this theorem only in certain situations for which m is always prime,

therefore, any integer a such that O::;a<m will be relatively prime to m. We also will note

that for any prime number m, rp(m)=m-l. We then are left with are-statement ofthe

above theorem for m as a prime number

am-I == l(mod m) .

2.3 Elliptic curve mathematics
r

We now will move oil to a discussion ofthe arithmetic and structure ofelliptic curves.

We will be concerned only with elliptic curves when considered over a finite field, and

more specifically over a finite field ofthe form Fp. An elliptic curve is defined as the set

ofpoints satisfying an equation ofthe type

20



with a,b EFp and p>3, and so that 4a3 +27b2 7= O. We note, that although the ordinary

integer operators are used, we are considering the addition and multiplication operations

as defined over a finite field, as discussed above. Another point must be added which is

the additive identity element, in the case ofelliptic curves, it is called the point at infinity

and we will denoted it as O. The set ofpoints (x,y) which satisfy this equation are all

points in our group with x,yEFp satisfying the above relation, and this point at infinity

comprise the elements in the cyclic group ofthe elliptic curve, called E. The basic

operation over these points is addition. As we noted above, there is an additive identity

o which means that ifP is any point in our group,

P+O=O+P=P.

Much like in our finite field ofp-elements discussed above, each element in the finite

field has an inverse and is defined as

-(X,y) =(x,-y),

where -y is the additive inverse in the finite field, therefore it is the element -y (mod p).

The next definition must be ofthe addition of elements in the group where

neither ofthe elements are the point O. There are specific equations which define the

addition algorithm which are presented below to add two arbitrary points on the curve P

and Qwith
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If the two points are inverses, that is, ifXI=X2 and YI=-Y2 then P + Q = 0, otherwise

X3 =A? - Xl - x2

Y3 =A(XI -x3)- Yl
and

A=

Y2 - YI ,if(P*Q)
x2 -xl

2
3XI +a ,if(P =Q)

2YI

As with our other cyclic group in Fp we also need to study the order ofthe

group. This is one calculation which is often much more difficult than that required for

our previous finite fields. Since we are discussing elliptic curves over a finite field Fp our

elliptic curve will have approximately p elements. There are upper and lower bounds on

this number by a result ofHasse, which states

p +1-2JP ~ lEI ~ p +1+2JP

where lEI is the order, or number ofelements [8]. Although this provides a bound for

the order ofthe points on the curve, for many ofthe applications we will be discussing,

the exact order is necessary rather than this rough approximation. An algorithm by

Schoofcomputes just this. The only problem with this algorithm is the speed with which

it calculates the order; the algorithm has a running time of O((log pt) [8]. This is

considered an efficient algorithm since it runs in polynomial time in log p, yet for large

prime integers p, the algorithm may not be practical. Much work has been done on this
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original algorithm to increase its efficiency, and a modified version of Schoofs original

work still remains the most efficient deterministic algorithm for calculating the order of

points on an elliptic curve over Fp• There are some curves for which the order is more

simple to calculate, and we will note them as they are the types will be specifically used

in the construction of our PRBG. For elliptic curves over finite fields ofthe form Fp

where p is a prime greater than 3, elliptic curves ofthe form

have exactlyp solutions ofthe form (x,y), as well as the point at infinity, in Bender and

Castagnoli [1]. Curves ofthis form are part ofthe collection of curves called

supersingular.

2.4 Quadratic Residues

The idea of quadratic residues over finite fields, is a specific form ofmultiplication over

Zo. A number aEZo is called a quadratic residue, if there exists some other number b

such that

b EZn and b2 ::a(modn).

To illustrate the point, the quadratic residues for ZIS are shown·below with the elements

whose square is equal to that residue lis.ted to the right of each

1: 1,4,11,14
4: 2, 7, 8, 13
6:6,9
9: 3, 12
10: 5, 10
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We mentioned in the above section in our discussion Of rings, for many applications we

would like to exclude elements which share a factor with our modulus, in our case above

15, and also to exclude the zero element. The elements we would be interested in, when

excluding these elements, would then be the set {I, 2, 4, 7, 8, 11, 13, 14}. Of these

values, the quadratic residues are only {I, 4} and our list above is restricted to the first

two lines. We will leave this topic for now, but will return to it in the next section as we

describe its cryptographic usefulness.

2.5 Number Magnitudes

A final topic before describing the mathematically difficult problems which will form the

computationally difficult basis for our PRBGs, is the idea of large numbers. We have

already mentioned that one ofthe major advantages ofkeyed crypto-systems is the ability

to increase security as necessary by increasing the size ofthe key. In much the same

way, the usefulness ofour generators can bejncreased by working with larger and larger

numbers. Not only will this increase the security in the algorithms by markedly

increasing the time required to solve the difficult mathematical problems, but it will allow
. .

us to generate a longer sequence ofpseudo-random bits. We will further discuss the

relationship between the size ofthe input and the length ofthe resulting output sequence

ofpseudo-random bits in the last two sections. As was mentioned above, for the

factoring problem, 129 decimal digit numbers, approximately 430 bits, can be factored
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using the current methods of elliptic curve and the two sieves discussed below. In fact

larger numbers have been factored, but not numbers of the type which are most difficult

to factor, composites whose factors are two large primes. Low secuIjty applications

often use numbers whose sizes are approximately 512 bits, or 154 decimal digits.

Commercial grade security employs the use of 1024 or 308 decimal digit numbers, as

numbers ofthis size can be efficiently computed using specialized hardware currently

available. Numbers ofthis size are not likely to be at risk ofbeing factored in general

even using the algorithms which are most effective and efficient currently. The size of

the numbers currently being used for implementations ofthe discrete logarithm problem,

discussed in the next section, are not required to be quite as large to afford the same

level of security.. Although computing power is continually increasing, and the ability to

connect large numbers of powerful computers to attack a single problem is becoming

more and more commonplace, it is in the study and improvement ofthe algorithms which

is more likely to move the line between that which is difficult and therefore secure, and

that which is feasible and no longer sufficient. A closer look at the mathematical

problems and algorithms for their solutions is presented in the next section.

2.6 Random and Pseudo-Random Numbers

We briefly need to discuss the differences between random and pseudo-random numbers.

For our purposes we will focus on random and pseudo-random bit sequences rather than

numbers. Sequences ofboth types must pass statistical tests ensuring that there exists no
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statistical test which is able to predict the next bit in the sequence, even given the entire

previous collection ofbits, with probability greater than one-half. If a such a test can be,.
found, the sequence is most definitely not random. Yet the differences are most

important to notice. The first is that pseudo-random sequences are generated by a

deterministic algorithm. This is important so that we are able to use a computer, which

at this point in time is solely a deterministic machine, to generate these pseudo-random

sequences. The second difference, related to the first, is that random sequences can not

be reliably reproduced. Ifwe can create a process to generate our supposed random

sequence given a certain input, it fails this important criteria and thus at best falls into the

category ofpseudo-random. A more complete discussion on random and pseudo-

random numbers is given with additional references in Schneier [14] and Knuth [7].
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3. Mathematically Hard Problems

There are various types ofPRBGs, and many ofthem are currently suitable for

cryptographic applications, yet the type presented in this paper will be a sub-type which

can be described as complexity theoretic. This means that the algorithms to break (i.e. to

predict the next bit of) these generators are constrained by a theoretically complex

problem. While there are other possibilities, there are two such main problems which

form the basis for the generators discussed in the next section. The first problem is the

discrete logarithm and the second is that of factoring. Athird problem we will discuss is

that ofquadratic residues; although not the main focus of any ofour PRBGs, requiring a

solution to this problem adds difficulty to attacking some ofthe generators.

3.1 The Discrete Logarithm Problem

The discrete logarithm is a wonderfully difficult problem in that the idea is very simple to

state while the algorithms for solving the problem are ingenious and often subtle. The

simple statement is that the problem is to determine c in the equation x=gc, i.e. c=loggx.

We will first look at this problem in the finite field Fp and later will show the differences

when using a different group for the computations as those for the elliptic curve.

3.1.1 The Discrete Logarithm Problem over Finite Fields

Though it is not incorrect to'state the problem as above, it is slightly deceiving, that is,

under normal instances, solving for c given x and g would not be a problem worth
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consideration for cryptographic applications. Rather, since this problem is being

considered over the finite field of p-elements, the calculations will be considered over the

finite field ofp elements thus using the mod function, that is, x=gCmod p. This is when

the calculations become worthy of study. The most obvious method for solving this

problem is to start with the value g and ifit is not equal to x, square g; ifx isn't equal to

g2 then multiply by g again to obtain g3. Simply continue this process until you find the

appropriate value c such that it solves the equation x=t. It is important to point out that

we will in fact come across a solution, that is, there aren't an infinite number of

possibilities. This fact is the result ofFermat's Little Theorem discussed in the previous

section, that is, since gP=g, the resulting values ofg raised to a power will in fact repeat

after p-I values. What this means, is that ifafter p-I iterations a solution is not found,

then there is no solution. Although this algorithm will in fact provide a solution if one

exists, it is unacceptably slow with complexity O(p). The applications ofthe discrete log

problem in these PRBGs will be with a p on the order of at least several hundred digits

possibly even several thousand. Even with special hardware to handle integers ofthis

size, the sheer number ofrepetitions required to check every possibility in this brute

force solution reduces this exclusively to a theoretical basis for comparison for the other

algorithms.

The next algorithm for solving this DL problem is called Shank's Algorithm (or

more informally baby-step/giant-step), Menezes [11] and Stinson [16]. The key to .
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understanding this algorithm is the fact that each value in the group can be expressed as

a .m +b, where m = r.JPl and 0<= a,b <= m. While this may not immediately seem

like a relevant fact, by re-writing the DL problem as x=gam+b mod p, it's use may become

clear. Remembering that all calculations are mod p,

am+bx=g
implies

Thus, if all ofthe values for gam are calculated and sorted (as these are only dependent on

the size ofthe field p, and the base g) any value which is a discrete log can be found

simply by calculating xg-bfor 0 s; bs:m and searching for a match in the pre-computed

values of gam above. When the match is found, it is simple to use the two equations

above to work backwards to find the solution to the DL problem. This algorithm is a

great improvement over the brute force method described above. The two tables require

O(m) memory, and the time to find the solution by computing the xg-band searching the

table can be O(m). This provides a trade offwhere some memory is required, but much

time is saved by doing so.

To help to bring the abstract into focus, the following DL problem over Fp will be

solved using each ofthe methods described. Let p=61, and the problem we would like .

to solve be 10g217 (mod p). The first we must calculate
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so our table size is 8. Next we realize that ever member of this finite field can be

described as a· 8+ b, for 0::; a, b ::; 7. Then we calculate the pairs: (i,28i
) for i=O, 1,...7

(0,1) (1,12) (2,22) (3,20)
(4,57) (5,13) (6,34) (7,42).

We then sort this list according to the second coordinate

(0,1) (1,12) (5,13) (3,20)
(2,22) (6,34) (7,42) (4,57).

We then calculate 17·2-; again for i=O, 1, ...,7 until the value calculated matches the

second coordinate ofone of the above values

17·2-0 = 17(mod61)

17.2-1 = 39(mod 61)

17.2-2 = 50(mod 61)

17.2-3 = 25(mod61)

17·2-4 = 43(mod 61)

17.2-5= 52(mod61)

17·2-6 = 26(mod 61)

17.2-7=13(mod 61)

Finally we find a value which matches, so since

17· 2-7 =28
.
5(mod 61)

then
17 = 28'5+7 = 247 (mod 61).

Therefore the solution to our problem is log217=47. It should be noted that although for

this specific problem we were forced to check each value of i in the second series of

calculations, it could be the fact that a match might be found earlier. Asymptotic analysis

shows that as the size ofourfield grows, we are better suited to calculate all values and
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sort this second list as well. Checking the two lists becomes O(m) but is only done one

time and is a matching pass rather than a calculation pass.

The next algorithm to solve the discrete logarithm problem is Pohlig-Hellman algorithm

[11],[16]. This algorithm is the result ofa significant amount ofmathematics, but the

result is an algorithm which can provide significantly better performance. Ifthe problem

to be solved is m=loggx mod p, first notice

k

p-I= I1p;Ci
i=1

where p is the prime ofthe finite field being considered and thus the order, and the k-Pi'S

are all ofthe distinct prime factors ofp-I. The first main idea, is that if m can be

computed mod p/' for every i; then the Chinese Remainder Theorem can be applied to

compute mmod (p-I). The way this is done is by letting q be any Pi such that

(p-l) = 0 mod qC

but
(P-l):;:' 0 mod qc+l

then :3 w such that

and

Then
m=w+ sqc

for some s. And w can be written as
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where the ai, can be determined through a deterministic algorithm. With that, it is clear

that the result is a system ofmodular equations

which can be solved using the Chinese Remainder Theorem. The only difficulty is the

deterministic algorithm noted above for finding the ai in the summation notation ofw

above.

Before we explain this algorithm we must prove that the algorithm will always

provide us with the correct values. The first step is to show that

is always true as it will be the main focus ofour algorithm. To begin we re-write the DL

problem

gm = x(modp)

but from above we see that

c
gw+sq == x(mod p)

therefore
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So our statement above we are attempting to show is true if

which is true if and only if

(p -1)(x +sqC) == (p -1)ao (mod p -1).
q q

To show this is always true, look at (

(p-l)(x+sqC) (p-l)ao (p-l)( C )
-=-----''-'--.:;......:;.. - = x + sq - a0

q q q

( 1) c-l
= p- 'Laiqi +sqC -aO

q i=O

and by changing indices we can remove the ao term

= (p -I)'Lai qi-l + sqC-l

== O(modp-l)

therefore we have show original statement always to be true.

We now can describe the algorithm by using that result. First compute,

do = x(p-l)lq (modp)

then we must solve
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simply by iterating ao=O,I,2, ... until the statement is satisfied, which gives us our value of

ao. If our c from the summation equation for w is 1, we are finished, ifnot we can

modify our original DL equation by letting

Xl = xg-aO

so then the equation from above for w now becomes

and by the same argument as in the original DL problem we can write WI in summation

notation with the same values except the lower limit on the summation is increased by

one

c-I
WI = :La;q;

;=1

Now, by the key result we proved above

2 .
Xl(p-l)/q == g(p-l)a1/q (mod p)

so compute d1like before

2
d1 = x(p-l)lq (modp)

Then again we calculate

g(p-I);lq (mod p)

fori=O,I,2, ... until
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which means that al= i' which solves the above equation. We repeat this process until

we have solved for all c ofthe ai from our original summation representation ofw. We

have then created the first ofour system ofequations solving our discrete log problem

mod a power of a prime factor ofp-l. By repeating this procedure for each of the prime

factors ofp-l, we have a system ofequations we can use via the Chinese Remainder

Theorem to solve the DL problem mod p. There is some difficulty in addressing the

placement ofthis algorithm in the hierarchy of efficiency. The fact that the number of

operations required to use this technique is based on the size ofthe factors of the order

ofthe group, i.e. p-I implies that if the size ofthe largest factor is large, the algorithm is

no longer an improvement over Shank's Algorithm. The solution requires

time to solve [11]. As you can see, if each ofthe factors Pi are small, than this algorithm

is in fact a significant improvement. If instead, p-l has a large factor, call it Pk than the

order is approximately O(.JP: logpk) which is not better than Shank's algorithm, yet

still a great improvement over or original brute force method.

Now that the description ofthe algorithm is complete, it should help to look at a

small example to illustrate the algorithm. The problem we will solve is the same one we

solved using Shank's Algorithm

log2I7 = a.
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First we must factor p-1

thus we need to generate the three equations

a == bl mod4

a == b2 mod3

a == b3 modS

at which point we can use the Chinese Remainder Theorem to solve for a. First we will

find b] to do so we note that since we will be looking at equations mod 4, and 4=22 that

our solution b] can be written as

It should be noted that these a;'sare those in the summation equation for w above, and

not related to the a as the solution ofthe entire problem in any other way.· We will solve

for ao first. First we will calculate do as

do =xCp-l)lq =1760/2 =1730 mod 61 = 60

then we must find the value ofi such that do= g(p-l)ilq(mod p)

g(p-l)Olq (mod p) = 0

g(p-l)llq(modp) = 60

Since our relation is satisfied for i=l, we know that ao=1. Now we will calculate G] but

to calculate d] we must first calculate x]

XI =x·g-I =17.2-1 =17·31=39(mod61)
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Now we can calculate d] as

but since we again are trying to satisfy the relation d]= g(p-1)i1q (mod p) and we already

have calculated that for ;=1 the result of the left side is 60, again a]=1. We can then

construct our value ofb] as

bl = ao+2a1 = 1+2 .1= 3

so our first equation for the Chinese Remainder Theorem is

a:= 3mod4.

We then proceed to generate the second equation, by calculating d] for our second prime

namely for q=3

d1=x(p-l)lq =1760/3 =1720 =13

Next we again search for the value of; so that the relationship d]= g(p -1)i1q(mod p)

holds

g(p-l)0/\mod61) =1

g(p-l)l/\mod61) = 47

g(p-l)2/\mod61) = 13

So for ;=2 our relationship holds. Since the power of 3 in the factorization ofp-l is only

1, we have constructed our second equation

a :=2mod3.
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Finally we proceed to the generation ofthird and final equation, by calculating d] for our

final prime, namely for q=5

d1 =x(p-1)lq =176015 =1712 =20

Next we again search for the value of i so that the relationship d]= g(p-l)i1q (mod p)

holds

gCp-1)015 (mod 61) = 1

g(p-1)lISCmod61) =9

g(p-1)2/SCmod 61) =20

So again for i=2 our relationship_holds. Since the power of 5 in the factorization of p-l

is only 1, we have constructed our second equation

a == 2mod5.

We now have all three equations we had set out to construct

a == 3mod4

a== 2mod3

a== 2mod5

From this point we can use the Chinese Remainder theorem to solve for our

original discrete log problem. The example ofthe algorithm described to utilize the

Chinese Remainder Theorem presented in the previous section used these equations with

the calculations taken mod 60 as necessary for this problem. The result ofthat example

is 47 leading us to the solution

47 = log217.
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This is the same solutio~ arrived at by Shank's Algorithm shown previously and can be

verified that in fact

247 ::17(mod61).

The final algorithm which attacks this discrete log problem is the index calculus

method [11],[16]. This method is similar to many ofthe powerful composite factoring

algorithms which will be discussed next. We first must choose a factor base, which is a

set ofprimes small relative to the size ofthe field. The first step will be to calculate the

logs of these primes with the correct base in our field. The second step will be to find

the log of any other element to the specified base.

First we must define our collection of primes, let our set ofprimes {Ph P2, ... , Pn}

be the n primes in our factor base. Then to solve for the logs ofthese elements we will

construct a set of congruences. Ifwe notice that

x' aI' a2' a '( d)g , :: PI 'P2 , ... Pn m mo P

can be written equivalently as

To find the log of each ofthese primes, we need only construct enough congruences of

the above type to ensure a unique solution modulo (P-l). The problem becomes finding

powers of our base g which factor into only prime elements in our factor base. This is
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where, in practice, the algorithm can be modified to exploit specific attributes ofthe

hardware and software which will be solving the problem. For instance, by having a

larger factor base, we are more likely to find powers ofour base which can be factored

using only elements in the factor base. On the other hand, we must then also construct

and solve more congruences, as well as store more values for use later in factoring our

arbitrary element. For that reason, this first step is usually carried out as a pre

computation step, that is, before the algorithm is run, since the base ofthe logarithms

will not be secret, an appropriate factor base can be selected and the logs generated.

Once this is done, the same values for the factor base and their respective logs can be

used for any element to solve the problem for. For a large enough number ofproblems

in the same finite field, and the same logarithm base, this pre-computation step becomes

negligible.

The next step, is to factor our arbitrary number, call it x using this factor base and

the logarithms of its elements. To do this we simply calculate a d such that

d=x·gW(modp)

for some w, and such that d can be factored using only powers ofelements contained in

our selected factor base. Once an appropriate d has been found, we simply note the

congruence
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which like above can be rewritten equivalently using the log function as

Since in our pre-computation step 1, we calculated logg Pi for each i, and the hi were

calculated in factoring our product d, and wis known, we can quickly solve for logg x.

To illustrate this algorithm we will solve the same problem as in the previous two

methods, log2 17 in our finite field of 61 elements. We will limit our factor base to

{2,3,5} since our field is relatively small. First we must perform the pre-calculation step

of the algorithm, that is we must find powers ofour base, 2, which can be factored using

only powers ofelements in our factor base. We find that

28 = 12(mod 61) = 22.3

229 =30(mod61)=2·3·5

since our base is in our selected factor base, we now have enough equations to solve for

the logarithm ofeach. By rewriting the above equations we find

8 == 210g2 2+ log2 3(mod 60)
29 == log2 2+ log2 3+log2 5(mod 60)

and since trivially

we can easily solve for the other two, namely

log23 = 6
log2 5= 22.
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Now that w~, have completed the pre-computation step, we must find a value for d which

can be factored with our factor base. After trying several values we find that

17· 221 (mod61) == 12 = 22 .3

by taking the logarithm we see that

log2 17 =2log22 + log2 3- 21(mod 60)

and using the logarithms calculated above in the pre-computation step, we see that

log217 = -13 = 47(mod60) .

By checking the other methods, or simply by calculating the exponentiation ofour base

2, we can see that this algorithm yields the correct solution.

It is worth noting that twice, once during the pre-computation, and once to find

the d we were forced to calculate a value for an arbitrary element in our field, and check

to see if it satisfies some property. While this appears imprecise, with a reasonable size

of the factor base, one can generally find appropriate values with only a few unsuccessful

calculations. In our ,example, ifwe added 7 and 11 and 13 to the factor base, nearly

every value can be factored so virtually no unsuccessful calculations are required. Even

with this problem ofdetermining the appropriate size ofthe factor base, and which

elements to include, asymptotic running time for this algorithm has been studied. For

reasonable assumptions for the factor base and field size, the running time for the pre-
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computation phase is O( e(l+O(l))~InplnInp) while the time to calculate an arbitrary

discrete log is O( e(1/2+0(1 ))~ln p In In p ) [16].

3.1.2 The Discrete Logarithm problem over Elliptic Curves

Our discussion ofthe discrete logarithm problem, and the algorithms used to solve it,

thus far have been focused on the discrete logarithm problem over the field Fp. The

other group we will discuss the DL over is that of an elliptic curve. The problem over

this group is slightly different. We do not attempt do utilize some multiplication over

this group, rather we think ofthe discrete logarithm problem as

x = logg m

which instead of studying gX = m, we instead look at

xg=m.

While this appears to be a completely ditferent problem, it is, in fact the same, since, the

operation we defined in the previous section for elliptic curves is addition,. we must

define the discrete logarithm problem in this manner. Ifwe called that operation

multiplication, the DL problem would have the same notation as for Fp•

To understand the DL problem over an elliptic curve, we will now show a small

example ofthe problem. First we must select a curve, for example

y2 =x3 +7,
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we must also select a field to work over, for simplicity we will choose one ofthe form

Fp, and for our example we will choose a smaller field, F11 . We next will find all ofthe

points in the group. This step is not necessary, or even advisable, in practice; our

purpose for this is to make our discussions easier for the explanation ofthe discrete

logarithm problem. The points listed below in (x,y) pairs are

(2,2) (2,9) (3,1) (3,10)
(4,4) (4,7) (5,0) (6,6)
(6,5) (7,3) (7,8) 0

Where 0 indicates the point at infinity discussed in the previous section. We next must

select our g, or our base for the logarithm. Although anyone of our points could be

chosen, with the exception ofthe point at infinity, some ofthe points generate the entire

group and make for a more interesting example. For this reason, we choose g=(4,4).

Since we explained the addition operation over elliptic curves in the previous section we
,

will only present the results here. The notation 2g represents the same as it would in

other types ofelementary algebra, that is 2g=g+g,

19=(4,4)
2g=(6,6)
3g=(2,9)
4g=(3,10)
5g=(7,3)
6g=(5,O)

7g=(7,8)
8g=(3,1)
9g=(2,2)
10g=(6,5)
11g=(4,7)
12g=O.

We must now simply select a DL problem to solve, for example
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where g=(4,4) and b=(2,2). A brute force search would produce x=9 in much the same

way that we generated all ofthe multiples ofg=(4,4).

We will next illustrate Shank's Algorithm simply to show that the two problems

are indeed the same and can be attacked in many ofthe same ways. First we notice that

the order ofthe group is 12. We must first calculate

m=fml=4.

We next solve for s=4g=(3,10), then calculate the original table,

Os=o
1s=(3,1O)
2s=(3,1)
3s=(4,4).

Finally we start to calculate b +(-i)g for i=0,1,2,3 until a match is found in the above

table

b + (-0)g=(2,2)

b +(-1)g=(3,1)

for which we see that a match is with 2s. So, we put together our information to see

that

b+(-1)g=8·g

or
b=9g.

By checking the table above we can see that indeed, 9(4,4)=(2,2).
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Thus we have illustrated that Shank's algorithm does still solve this problem. We

could similarly show this for the Pohlig-Hellman method. When solving the DL problem

over an elliptic curve using the Pohlig-Hellman method, we must keep in mind that the .

first step is factoring the order ofthe cyclic group. We mentioned in the previous

section that a deterministic algorithm created by Schoofcalculates the order of the points

on an elliptic curve, and noted that in a complexity theoretical sense it is an efficient

method. Yet, when solving for the discrete logarithm problem for elliptic curves over

large prime fields, we find that this step of calculating order requires significant overhead

which must be incurred before the Pohlig-Hellman algorithm can even be used. There is

an even more significant problem when we try to use the Index Calculus method. There

is no way to extend this method, in general, to any group or even to all elliptic curves in

general. In fact, as ofyet, there is no technique to solve the DL problem over all groups

(or even all elliptic curves) which works in sub-exponential time. There is the

significant exception for the supersingular curves as des,?ribed in the previous section. In

[8], Koblitz notes that this collection ofcurves is susceptible to a specialized attack

which is more efficient to those applicable to any cyclic group. Thus, although for this

group ofcurves, it is much simpler to compute the order, and thus choose a curve which

is most suited to resist attacks like Pohlig-Hellman, by selecting a curve whose order has

a large prime factor, it is not advisable to use one of this type for actual cryptographic

applications as it could be attacked by this alternate, specialized method. It is for these

two reasons, that using elliptic curves over a finite field, is becoming the most widely
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studied version ofthe problem. In truth, elliptic curves over finite fields have only

recently been studied for this purpose. It is unreasonable to believe that no further

progress can be made, but as current research and algorithms remain, to use-elliptic

curves provides a more difficult problem than over a finite field alone.

The methods discussed to attack the Discrete Logarithm problem illustrate

several important facts. The first is from a practical standpoint, we have noted that the

most efficient algorithms for solving the Discrete Logarithm problem over any cyclic

group require the complete factorization ofthe order ofthe group to be comprised of

only small integers. By choosing an order with at least one large factor, we can ensure

that the Pohlig-Hellman algorithm is as inefficient as possible. The second important

fact is to realize that for our cryptographic applications we can, indeed ensure that the

cyclic groups chosen possess the structure necessary to prevent any known methods

from being able to easily attack the problem. This is not to say that some new method

will not be developed which could add another requirement to ensure the problem is as

difficult as possible to solve. On the contrary, we must keep in mind, that although some

ofthe algorithms which can solve various ofour problems, can be quite efficient, they

often require a certain structure to be so. By careful construction, we can usually force

the algorithms to work with worst case conditions.
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3.2 The Factoring Problem

The next mathematical problem from which many ofthese PRBGs draw their strength is

the problem offactoring composite numbers. Although the problem offactorillg numbers

is used in many cryptographic applications, we will not spend as much time on the

techniques of solving this problem as we have on the problem ofdiscrete logarithms. To

state the problem more specifically, let n be the composite number, the problem is to find

Pi and at such that

m
n = I1 pja; .

j=!

As we stated before, for our purposes, and most of those ofcryptographic importance,

we are looking to solve

n=p·q

where p and q are two prime numbers. Much like the problem ofdiscrete logs, there is a

simple brute force method one can use to solve the factoring problem. That is, one can

simply divide our composite number nby each number less than n. There is an obvious

improvement to this simple algorithm which greatly improves efficiency, that is to note

that only the numbers less than or equal to the square root ofn need to be checked. If

no numbers less than the square root evenly divide n it must be a prime, because if

n = p. q and p >.fii then q < .fii .
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There is another marked improvement which can be made, and that is to check

only the primes less than .J1i. This seems like it should be more difficult, since ~e

would first have to determine if each number is a prime before checking if it evenly

divides our composite number n. In fact, this is not difficult at all and the technique has

a name, the sieve ofEratosthenes. The idea is to write down every number less than n.

Start with the first prime 2, and cross off all multiples oftwo on the list: 4,6,8.... Then

look for the smallest number which is larger than 2 which has not· been crossed off, in

this case 3. We repeat the process with 3, crossing offmultiples of3: 6,9,12, .... We

again look for the next smallest prime, which would be 5. This process is continued until

you check the number r,J;;l. The numbers remaining are the only primes less than n.

By simply checking each ofthese, we can improve the efficiency. Although this is quite

a good technique for factoring small numbers, the size ofnumbers used for

cryptographic applic.ations are often larger than 300 decimal digits. Storing a table for

each integer less than some n in this context would require a prohibitably large amount

ofmemory, and checking each ofthe numbers would require far too much time. We

must attempt to find other techniques for factoring numbers.

One interesting technique can be best demonstrated by looking at a small

example. If the number we needed to factor was 377, we could notice that 377 is the
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difference ofthe two numbers 441 and 64. Ifwe further notice that 441=21 2 and 64=82

then we can rewrite 377 as

377 =441- 64 =212 - 82 =(21- 8)(21 +8) =13·29.

Thus we have managed to factor our composite number 377 by simply finding two

perfect squares whose difference is equal to our composite. This technique can solve

some harder problems, but the difficulty in finding two perfect squares whose difference

is equal to a specific composite number, is a non-trivial task. For this reason, this

technique is rarely used for the factoring ofcryptographically useful composite numbers.

The next technique is called Pollard's p-1 method [16]. This is the first ofthe techniques

which require the input ofanother number which serves as a bound much in the same

way that our factor,base was necessary for the Index Calculus method for solving the

discrete logarithm problem. We begin with our number n which we would like to factor

and we have the input value for the bound B to work from. We begin by calculating

a == 2B!(modn)

we then find the greatest common divisor (gcd), which Euclid's algorithm from the

previous section can solve

d = gcd(a-I, n) .

If our number d is larger than one and not equal to n we have found that d is a factor of

n.
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The proof is rather simple and relies on only three main points, for notation we
.

will assume thatp is a factor ofour number n. First we note that

since pin. The second important fact is Fermat's Small theorem discussed in the previous

section which in our case implies that

Zp-1 == I(modp).

As we noted before, (p-I)IB!, so we can see that

a == I(modp)

Finally, the final main mathematical point is that if

pl(a -1) and pin
then

plgcd(a -I,n).

The key to this technique, is that there exists a factor p of our number n such that (P-I)

has only small factors (i.e., those less than our bound B). With this in mind, for

cryptographic applications which rely on the factoring problem as the basis for its

security, the two large primesp and q must be chosen so that one less than each has at

least one large factor. By choosing these primes this way, we can render this attack

inefficient.

The next three algorithms for factoring numbers have been designed to factor

very large numbers. Some examples are the very famous RSA-I29 number which was
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generated with the advent of the RSA encryption method which was expected to

withstand years offactoring attempts. The three advanced algorithms are the quadratic

sieve, the elliptic curve and the number field sieve. The running times ofeach are

presented below [16],

quadratic sieve

elliptic curve

number field sieve

O(e(l+o(1».Jlnnlnlnn)

O(e(1+O(1»~21nplnlnp )

(192+o(1»(lnn )1/3(lnlnn)2/3O(e . )

wherep is the smallest prime factor ofn. It should be noted, that ifp represents the

smallest prime, the elliptic curve method finds a single factor ofthe composite number.

Ifthis algorithm is to be used to completely factor a composite number, then p represents

the second largest prime factor. The composite numbers ofcryptographic interest are

the product oftwo primes of similar size; and for this type ofnumber, the second largest

prime factor is, in fact, the smallest prime factor. The difference between the sieving

algorithms and the elliptic curve method, is that the running time for the sieving

algorithms depends only on the size ofthe composite number, whereas the running time

for the elliptic curve method depends on the smallest factor ofthe composite number.

Through the expressions for running time above, we might expect that the quadratic

sieve and the elliptic curve algorithms would run in the same time for these types of

cryptographic numbers, yet the constants represented by 0(1) have great impact on the

actual running time. In practice, for composite numbers ofcryptographic interest, the

sieving algorithms typically outperform the elliptic curve method. The other interesting
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aspect of the elliptic curve method, is that the technique requires searching for an elliptic

curve whose order can be completely factored by powers of small primes. It is exactly

this type of elliptic curve that we aim to avoid in choosing a curve for which the discrete

logarithm problem is difficult. It is in this way that the two mathematically difficult

problems are related. More information on the two sieving algorithms, quadratic and

number field, can be found in Pomerance's article [12], and more information on the

elliptic curve method can be found in Lenstra's paper [9].

3.3 Quadratic Residues

The last difficult problem that we will mention is that ofquadratic residues. A discussion

ofthe problem is found in the paper by Blum, Blum and Shub [2]. We briefly discussed

quadratic residues in the previous section and will present the problem they can present,

but we will limit our discussion to the specific situations which arise in our study of

PRBGs. We will study quadratic residues in the following situation, let n be the product

oftwo distinct odd primes, then let Zn* represent the multiplicative group of integers

mod n as described in the previous section. We find that exactly one fourth ofthe

elements in this multiplicative group will be a quadratic residue. The problem is to

determine if a given element ofthe group is in this set of quadratic residues. As always

there is a brute force solution, calculate cl for each element a in our group Zn*. The

solutions for the quadratic residue problem, are split into two types. If the n is a prime

number, then there are techniques which can be used to efficiently attack the quadratic
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residue problem. If instead, n is a composite number, as will be the case for our study,

each ofthe algorithms require a complete factorization ofn before beginning the

algorithm. For this reason, we will not dwell on this groblem, for although it is an _

important problem, the factoring aspect forces this problem to be at least as hard as that

offactoring, therefore it is sufficiently difficult for our needs.
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4. Theory of Cryptographically Strong Pseudo-Random Bit Generators

In this section we will begin by describing ordinary pseudo-random bit generators, we

~ll t~en spe~ify requ!remeIl~which w~en satisfied by these ordinary_Qseudg-random_bit

generators allow them to be considered cryptographically strong. The types ofbit

generators we are most interested in are those with an iterative implementation. The

basic idea is to start with some input string, and convert it into a pseudo-random output

string ofgreater length.

4.1 Definition of a Pseudo-Random Bit Generator

A pseudo-random bit generator Gk is a mapping

Gk:{O,I}k ~ {0,1}/

where k and I are positive integers, {0,1}a represents any a-bit binary string, and

P(k) = I

where P(k) is a polynomial function [16]. The idea is to express that the generator maps

random input strings into pseudo-random output strings which are longer than the input.

The generator Ok is comprised of several mappings which depend upon a set Ik

called the instance space. An element in the instance space is called an instance or an

"instance of the generator". The first mapping is Sk which maps our initial input string

into the instance space
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Sk:{O,I}k ~ I k .

A simple illustration ofthe mapping Sk is given in section 5.1. The second mapping is a

function fkwhich is the iterative portion ofour generator, and which maps the instance

space to itself

As an example, in one ofthe generators discussed in the next section, Ik are the points on

an elliptic curve and fk is a computationally defined permutation ofthese points. The

third function maps the instance space to a pseudo-random output string

vk:1k ~ {O,I}b

where b is the number ofbits which can be generated from each instance and added to

the pseudo-random output string. For most ofthe generators we will study in the next

section, this value b will be the value 1, that is, for each iteration ofthe functionjk, only

one bit will be added to the output string. For the rest ofthis paper, we will drop the

subscript k from our mappings and refer to them as simply s, f, and v.

Using this modified notation we will next describe how the three functions work

together to produce our pseudo-random bit string. Ifwe consider a random bit-string

input, r, we will use our first function S to generate the first instance for iteration

Xo = s(r).

We then will use our iterating function to generate the sequence of instances
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Xi =j(xi-l)'

Finally we use our bit-string extracting function v on each ofthe instances to generate

our output bit-string

v(Xl-l)V(XI-2}" v(xl)v(xO)'

The length ofthe output string can be any number less than or equal to that defined by

our value I=P(k).

4.2 Requirements for Cryptographic Strength

We will now describe some ofthe requirements for one ofour PRBGs to be

cryptographically strong. Before we begin, we must make note ofanother function

which some theorems will make use that is merely the combination oftwo mappings

b(x) =vj-I(X).

The idea, is while s,j ,and v should be easy to calculate (i.e. polynomial time) in order

for G to be considered,a PRBG, b should not be. We recall that the functionjfor our

generators will be one ofour mathematically difficult problems presented in the previous

section. Since the function v should be able to be computed quickly, for b to be

difficult, j-I must be difficult, i.e. inverting or solving the problem upon whichjis based

should be a complexity theoretic difficult problem.
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4.2.1 Statistical Tests

We start by discussing statistical tests. The statistical tests should be run on the output

string, as opposed to the instances. One might want to begin by some very elementary

statistical tests such as counting the number ofO's and I's to ensure that the occurrences

of each is the same for random inputs. Yet, by passing such a simple test, it would be

hard to immediately classify the output as indistinguishable from random input. In fact,

no matter how sophisticated the statistical tests become that any generator passes, it is

conceivable that the very next test constructed would distinguish between our pseudo-

random output and random data. What we must ensure is that every statistical test

which runs in polynomial time is unable to distinguish our pseudo-random data from

random data. The idea ofpassing an arbitrary statistical test is found in most papers

discussing PRBGs including Blum and Micali [3] and Kaliski [5]. We define an arbitrary

statistical test T that runs in polynomial time which outputs a 0 or a I with the input ofa

bit string. Passing all s~ch tests requires that for sufficiently large bit-strings, Twill

output a I with the same probability whether the input string is chosen from a random

source, or from the PRBG being tested. More precisely for sufficiently large k

1
IPr[T(G(x» = 1] - Pr[T(x') = 1]1 ~ 

P(k)

where P(k) is a polynomial function and G(x) is the output string from our PRBG and x'

is a random string ofthe appropriate length.

58



4.2.2 Next Bit Tests

While the above test is concerned with entire output string compared to random output

strings, this test is concerned with the prediction of the next bit in the pseudo-random

sequence given the previous bits generated. We must ensure, that the probability of

predicting the next bit ofthe generator by one ofthe polynomial time statistical tests T

from above is not significantly greater than 1/2. More precisely we can state that

1 1
Pr[T(G(x)[i i-I]) = G(x)i]::;; -.+-

, 2 P(k)

where again P(k) is a polynomial function, and x is our random input, [3] and [5].

4.3 Sufficient Conditions for Cryptographic Strength

We will state the three conditions which are sufficient for a PRBG to be considered

cryptographically strong. The proofofthe sufficiency is given in Blum and Micali [3].

The three necessary conditions are accessibility, stability, and unapproximability. The

first condition ofaccessibility requires that given a random input string r the mapping

s(r), which is the first step in the generator, selects an element from the instances

uniformly in polynomial time. More precisely

1 1
Pr[s(r) =Xo =-Ilkl ::;; P(k)llkl

where Xo Elk and IAI is the number of instances. The second condition, stability, states

that the iterated function/is a permutation ofthe instances inlk, or more precisely
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If(x)I=lxl·

The addition of the constraint thatfl..x) be computable in polynomial time is often added,

although our statement at the outset ofthis discussion concerning the three mappings of

our generator noticed that for G to be run in polynomial time, each ofthe three mappings

must also run in polynomial time. The third sufficient condition unapproximability, states

that our mapping b can not be predicted in much the same way the statistical tests were

shown effective

1 1
Pr[C(x) = b(x)] ~ - +

2 P(k)

where C(x) is any polynomial time mapping from instances into bit strings ofthe

appropriate size.

When all three ofthese conditions have been met, we have ensured not only a

cryptographically strong PRBG, but a Blum-Micali pseudo-random bit generator. Work

has been done to consider conditions which are both necessary and sufficient, and these

results are discussed in Kaliski [5]. This work allows for the construction ofPRBG

which are cryptographically strong, yet do not rely on functionsf which are uninvertable

for every instance. Though this result may prove useful in constructing future

cryptographically strong PRBGs, the generators that we will discuss in the next section

are all ofthe Blum-Micali type. Although we discussed the statistical test and the next

bit test, our three conditions do not appear to make use ofthese results. In their paper
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[3] Blum and Micali prove that the three conditions stated above, necessarily give rise to

generators which·produce output which satisfies these two tests. This is an important

result, as the sufficient conditions stated above are more easily validated than the

statistical tests.
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5. Construction of Cryptographically Strong PRBGs.

While we set forth a set of conditions which are sufficient for cryptographic strength of

PRBGs in the previous section, we would now like to study examples of such

generators. We will restrict ourselves to generators which are ofthe Blum-MicaH type

satisfying the three conditions for cryptographic strength presented in the previous

section.

5.1 Blum-Blum-Shub Generator

We will start our discussion ofthe construction ofcryptographically strong PRBGs by

describing one ofthe first generators constructed, one which is still in use today both in

practice and as a benchmark by which newly constructed generators are compared. This

generator was first described in Blum, Blum and Shub [2], and is thus called the Blum

Blum-Shub (or BBS) generator, and the strength ofthe algorithm uses aspects ofall

three computationally difficult problems discussed in the above section: factoring, the

discrete logarithm, and quadratic residues. We will start with the description ofthe

various mappings and functions which comprise the generator and then show that the

conditions are met classifying the generator as cryptographically strong. All ofthe

calculations for this generator are on ZN· the multiplicative group of integers modulo N,

which is defined in section 2.1, but for this application, N is restricted to be ofthe form

N = p' q with p and q are both primes such that

p =q =3(mod4).
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simply the points p in the group over our elliptic curve, where p=(x,y). We now can

define our functionJ as

J(p) =h(p)g
where

h(p) ={Y ~ P =(x,y)
p if p=O

recalling that 0 represents the point at infinity. Similarly, we must take some care in

constructing an appropriate mapping for v as well. In [5], it is shown that v can be

defined as

if P=O
if P = (x, y) and y ~ (p +1) /2.

otherwise

To illustrate this generator we will work through a small example. We will use

the same elliptic curve and finite field as we did for the example of the discrete logarithm

problem in the earlier section. The curve we selected was

and the finite field we were working over was F11, so the elements ofthe group, and

therefore instances ofthe generator are ofthe form p=(x,y), such that x,y E Zp. We

found that the element g=(4,4) generates the cyclic group oforder 12. To begin the

algorithm, we must establish the initial instance, we shall assume that the element (7,8)
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was chosen at random as the seed so Xo=(7,8). We now begin the iterative portion ofthe

algorithm to generate the instances ofthe generator

Xl =f(xQ) =8g =(3,1)

similarly we can generate the rest ofthe instances

X2 =!(xI) =Ig =(4,4)
x3 =!(x2) =4g =(3,10)

x4 =f(x3) =109 =(6,5)

Xs = f(x4) =5g =(7,3)
x6 =f(xs) =3g =(2,9)

x7 =f(x6) =9g =(2,2)

Xs =f(x7) =2g =(6,6)

x9 =!(xs) =6g =(15,0)

xlO =f(x9) =Og = 0
Xu =f(xlO) =l1g =(4,7).

We notice here that since the entire group is oforder 12, we can no longer continue to

iterate to generate more instances. We now must extract the bits from the instances, we

first calculate the value for partitioning the instances

(p+l) = (11+1) =6
2 2

thus, for the point at infinity and any points whose y coordinate is greater than or equal

to 6, the corresponding bit value will be one. The values for the bits are

Q,b2, ... ,Q2 =1,0,0,1,0,0,1,0,1,0,1, 1.

Therefore the resulting output bit string is 110101001001.
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The main result from [5] is that a generator defined in this way over an elliptic

curve, satisfies the conditions sufficient for classification as a Blum-MicaH generator.

We will now note the changes required for arbitrary elliptic curves to be used as opposed

to limiting ourselves to those ofthe type ofthe simple case. The problem in using the

general case is that it requires two such elliptic curves where the second is referred to as

the Tate twist ofthe first curve [5]. Using general curves as the basis for a pseudo

random number generator avoids a reduction of the discrete logarithm problem for the

elliptic curve to that ofthe finite field, Menezes [11].

When comparing all ofthe generators discussed, it is important to differentiate between

theoretical and practical differences. The differences between the PRBG using discrete

logarithms over an elliptic curve and the PRBG using discrete logarithms over a finite

field, are largely practical. They are theoretically the same generator. The only

theoretical difference, is related to the attacks on the discrete logarithm problem in the

two groups. We noted that the Index Calculus method for solving discrete logarithms in

a Finite Field has not been modified to solve such problems over an elliptic curve. It is

conjectured that, in fact, any technique to solve the discrete logarithm problem over

elliptic curves efficiently, (i.e. sub-exponential), will require an entirely new technique,

based on further study ofthe structure ofthe groups generated by these elliptic curves.
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The main result connecting all ofthese generators, is that the sufficient conditions

for a Blum-Micali PRBG are often not difficult to prove, providing a function!can be

constructed which is not invertible in polynomial time. This is not to say that this

requirement can replace the three sufficient conditions, yet it is one aspect which can

ease in constructing a PRBG.
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Conclusion

The announcement pertaining to.the cracking ofthe Netscape security system, brought

to public attention the fact that creating and implementing secure encryption systems is

more difficult than a simple function call. Many modern encryption techniques require

higher mathematics and impressive amounts ofcomputing power. Even the perfect

security provided by one-time pad, requires significant planning on the acquiring of the

random numbers required to afford the method any security at all. Pseudo-random bit

generators can be in integral step in increasing the level of security in both of these and

many other applications. What is most important to note concerning the set of

generators discussed, is the fact that the security of each is based upon a mathematically

difficult problem. Even more noteworthy is the fact that these problems are not esoteric

or obscure in any way; they are problems which have been studied for centuries and

upon which significant progress has been made. The type ofuninvertable function

required to base the security ofa PRBG on is fairly well defined, and any other functions

ofthis type could be shown to provide equal or better security.

Through the study ofcomplexity theoretic PRBGs we iniplemented each ofthe

systems discussed in the previous section. We made no attempt to make use ofthe

strengths ofthe platforms we conducted our test on, and the tests were straightforward

implementations ofthe algorithms presented. We were able to generate the

cryptographically strong bits as expected and the only limits ofthe flexibility ofthe
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generators with respect to the size ofthe numbers used, were only those presented by

the amount of memory and disk space on the machines. In our testing, we discovered an

obstacle which could lower the security in certain cases ofthe generators. Occasionally

we would inadvertently select initial conditions which provided short cycles ofpseudo-

random bits. By short cycles ofpseudo-random bits, we mean that the iterating function

jin our generator repeats for smaller, often much smaller, values than we would like.

One problem is that we are dealing with numbers which are too small for cryptographic

purposes and expecting to extrapolate that information onto applications using much

larger numbers. Although we did not search for this problem in fields of 500 bits or

larger, which would be those used for cryptographic applications, we were limited by

memory and disk space.

One ofthe smaller examples ofthe problem is presented here concerning the

discrete logarithm generator over finite fields. Ifwe choose as our prime p=20011, we

can find that the element 12 generates the corresponding cyclic group oforder 20010.

By selecting random elements and iterating our functionjuntil the original value is

calculated as a result, we can explicitly find the lengths ofthese cycles ofthe permutation

given byf The first column is the smallest element used to generate the corresponding
~

cycle and the second column is the cycle length.

77



1: 8825
8: 6296
9: 1960
38: 1148
17: 818
14: 526
86: 330
208: 80
404: 26
6571: 1

Since the number ofbits required to express the prime for our field, 20011, is 14 bits, as

long as each cycle produces more than 14 bits the definition ofthe pseudo random bit

generator is satisfied. As you can see the element 6571 has a cycle 1 and obviously fails

this requirement since

126571 = 6571

using the exponentiation over our finite field. Ifwe selected this element as our seed

value, our pseudo-random string would be a string composed entirely of 1s. Other

examples were found for which more than one element failed this requirement.

After reproducing this issue for other generators, we looked to current research

on PRBGs for an explanation or a possible solution. Work mentioned in [5] and [15]

show that the probability ofselecting a cycle short enough to render the generator

insecure becomes very small as the size of the groups becomes large. It is still possible,

in general, to inadvertently select one ofthese short cycles. Some preliminary work has
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been done to modify the BBS-generator so as to prevent elements having short cycles

from being selected in any cases. Although this is not a significant concern from a

theoretical standpoint, from that of implementation, having the probability close to zero

for selecting one ofthese short cycles is not a strong enough condition to rely on the

security ofa crypto-system using such a generator. This area of short cycles ofbits, is

one which is currently being and must continue to be investigated. Addressing this

problem could very well be the final step in assuring that the generation of pseudo

random bits ofthe type discussed in this paper are cryptographically secure enough to

satisfy the conditions necessary for use for key generation for public encryption crypto

systems and for the one-time pad.
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