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Abstract

The main goal of this study is to develop an analytic approach to determine the

stresses along the fifth metatarsal under load. Of particular interest is the study. of

the stress fracture known as the Jones fracture, which occurs along the midsection

of the bone. To accomplish this study, a fifth metatarsal is sliced into cross sectional

slides, and a digital camera takes a snapshot of each slide. Then computer software

measures the slide and generates a Fourier series representation of the inner and

outer boundaries of the cross section. Beam theory is used to determine the stresses

within the cross section for a given force applied at the end of the bone. It is assumed

that the boundaries of the cross sections are perturbed circles, and perturbation

theory is used to obtain solutions for the stresses. The resulting data is generated

for most of the cross sections along the bone. The next step in the project is to

generate stresses for the type of force that is known to cause the Jones fracture. A

statistical study of several bones is required to obtain more conclusive results about

the biomechanical nature of the stresses that eventaully cause such a fracture.
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Chapter 1

Introduction

The Jones fracture is a stress fracture that occurs near the insertion of the peroneus

brevis adjacent to the the base of the fifth metatarsal [1]. This fracture requires a

prolonged treatment to heal. The occurence of the injury depends on the orientation

of the foot, and the fracture always occurs at approximately the same region of the

bone. In an attempt to better understand the Jone's fracture, a biomechanical

model of the fifth metatarsal was developed mathematically by Dr. D. Phillippy as

part of his doctoral dissertation [2]. The objective of that model is to determine the

stress distribution throughout any cross section of the fifth metatarsal in terms of

the external forces and moments acting on it. The model developed is also general

enough to be applied to any long bone under similiar conditions.

The fifth metatarsal can be regarded as a cantalever beam with a force applied

at its head. Using beam theory from De Veubeke [3], given the external forces on

the bone, the stresses and strains anywhere along the bone can be predicted. To test

the model, Phillippy [2] determined the stresses in one cross section. The theory

developed by Phillippy requires the cross section of the bone to be represented
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analytically by a finite Fourier series. The method he used was painstaking, and

required measuring by hand the radius of the bone as a function of the angle. The

analytic procedure requires the coordinate center to be at the centroid of the series

representation of the boundary, which was found using an iterative process, the

procedure needed to be repeated several times for every cross section to be studied.

Although the mathematical model had been created, there had not been an

exhaustive study applying the model to actuaJ bones. Since there are at least 30

cross sectional slides to be analyzed for each metatarsal, Phillippy's experience with

hand calculations indicated that there needed to be a more efficient way to use

the model. Accordingly, one of the goals of this thesis was to computerize the

process by which the cross sections are represented analytically by finding a way

for the computer to automatically, recognize and measure the bone given any cross

sectional slide.

The image processing software system developed in thi~ thesis consists of several

steps, starting with the appropriate lighting setup and ending with the Fourier series

representation of the cross section. In the first step, diffuse light is projected through

the cross sectional slide to the digital camera. Then a: still picture of 256 shades of

grey is taken of the slide and stored in memory. Within the picture, the edges of the

bone are enhanced by several image processing techniques, the most crucial being

convolution, light density histogram and direct editing of groups of pixels. After

application of these functions, the inner and outer edges of the bone are highlighted

and easy to identify. Completed lists of numbers which represent discrete points for

each of the edges are then stored on disk.

The final steps in the image process are calculating the center of mass and

3



the Fourier series. The centroid is used as the axis for representing each point on

the edge in polar coordinates. The average radius of each edge is calculated, and

several points along each edge are selected between intervals of the same angle.

Finally, these points are stored in a file on disk to be input into the program for the

mathematical analysis of stress.

After the completion of the software, the mathematical model was reviewed and

the calculations were verified. The model relies on deriving solutions to different

forms of the Poisson differential equation with boundary and circuit conditions. As

. part of this thesis, the general solution method developed by Phillippy, which con

sisted of obtaining the solution as an asymptotic series, was examined and rederived

in a form applicable specifically to this problems considered here. Appropriate

changes to the software were made to reflect the complete model.

After verifying the new model, the automated method for representing the cross

sectional shapes developed here was combined with the modified program for deter

mining the stresses in the cross section. After this was accomplished, the integrated

software was used to completely analyze a single bone under a variety of loading

conditions. The results of this study are documented here by graphs of stresses and

strains for each cross section from experimental data explained in chapter 4 and

presented in the appendix. The results, discussed in the last two chapters, should

provide useful information for a better understanding of the development of the

Jones fracture.
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Chapter 2

Image Processing Software

2.1 Introduction

The first step in the process of modelling the bone is to place it in a block of hot

soft plastic resin. After the plastic hardens, the block is sliced into thin strips along

its long side. This process creates many slides, each containing a cross section. One

cross sectional slide is shown in Figure 2.1. One corner of the block designates the

origin of the absolute coordinate system.

The object of the image processing software is to have the computer automati

cally generate the Fourier series description of the boundary of the bone, given the

cross sectional slide. The necessary equipment consisted of the CCD camera, one

grayscale monitor, the IBM 286 PC with the DT-IRIS image buffer board, and the

Microsoft C compiler. The software was written in C using procedures specific to

the DT-IRIS board.

To accompany the software, guides for the use and understanding of the program

were written. The User's Guide explains each step in the process, from how to set

up the slide to how to generate the final Fourier series and save it to a disk. The

5



2.2. IMAGE ENHANCEMENT

Programmer's Guide reviews the algorithms and method of implementation used to

create the actual code.

2.2 Image Enhancement

The first step in acquiring data from the cross sectional slide is to allow the camera to

see the bone using appropriate background lighting. Illumination of the cross section

from behind was found to be the most effictive lighting technique. Also known as

backlighting, light is projected through the slide into the camera. Blocking the light,

the bone appears as a thick black outline. To accomplish backlighting, the slide sits

on a stage and diffuse light is directed through the slide towards the camera. The

slide is aligned with the apperature in the stage every time, to determine the global-~'

x,y coordinates of the cross section. The set up is shown in Figure 2.2.

After the lighting is arranged, the camera takes a still picture of the cross sec

tional slide. Similiar to a black-and-white photograph, the image consists of 256

shades of gray varying in intensity from black to white. This type of digital picture

is known as a gray scale image. In computer memory the image is stored in bytes

that appear on the display as an individual gray pixel for each point. The resolution

of the display of the complete picture is 512 by 512 pixels. The number of pixels

to an inch depends on the distance between the lens and the cross sectional slide.

Each pixel also has both x and y values, which correspond to its location on the

displayed image.

Since the cross section of the bone itself takes up less than one quarter of the

displayed image, a smaller working area is selected. Using the smaller working area

takes considerably less time and less memory than the complete image. The working

6



2.2. IMAGE ENHANCEMENT

area also lets both the user and the software focus on the important section of the

Image.

Image enhancement is the process of modifying the picture in order to make

certain aspects clearer or more focused. Several methods to make the edges of the

bone distinct within the image were tested. When used in conjunction with each

other, the convolution transformation, the histogram and the edit pixels functions

were found to be the most effective methods.

Convolution transformation has a similiar effect to placing a filter on the camera

and then taking the picture. To the computer, the filter is the application of a

particular rule which changes the shade of each pixel according to the shades of the

pixels around it. For example, to make the image appear more blurred one could

use the average of the neighboring pixel shades to determine the final shade of each

pixel. In the gray scale image, parts of the edges of the bone are defined by rough

steps like the blade of a saw. As one of the transformations, this blurr convolution

makes the rough edges of the bone appear smooth.

Mathematically, given the original light intensity for each pixel, I Na ( x, y), the

convolution transform is accomplished by the operation:

where I N( x, y) is the new light intensity for the pixel, Wi,j are the weights or

discrete function coefficients, and w is the normalizing factor. The more important

convolution is the application of the 'mexican top-hat' function. This transformation

makes apparent the areas in the image that have an abrupt change in light intensity

from one pixel to the next. These areas are known as the edges of the image. The

result is an outline of any edge, including the inner and outer edges of the bone.

7



2.3. IDENTIFY EDGES

The histogram function creates a statistical graph of the distribution of light

density per pixel. The columns are each numbered by the 256 light intensity values,

in increasing order. For example, the number of pixels with the shade 128 is the

height of the 128th column. From this information, the image is reduced to 64 shades

of increasing intensity, called thresholds. Let 71 denote the total number of pixels in

the image. Then each threshold, Ak , is determined mathematically by

n

s > 71 k/64 =? Ak = n

for each 0 :s; n :s; 255 and 1 :s; k :s; 64, where Hi is the height of the i th

column of the histogram. Although this method subtracts from overall resolution

of light intensities, the image becomes more focused and sharper. If this is used

directly after the mexican top-hat convolution transform, the edges appear distinct

and highlighted.

Edit Pixels is the interactive function with which one directly modifies small

sections of the image. This is mostly used to erase anomalies within the image,

such as an air bubble next to the bone in the plastic. When these problems are

elliminated, they do not effect the next step in the process, which is identifying the

edges of the bone.

2.3 Identify Edges

After the application of all of the image enchancement methods, the edges of the

bone appear highlighted. Since each pixel has both x and y coordinate values, which

correspond to its location on the image, identifying an edge of the bone consists of

8



2.4. CENTROID & FO URIER SERIES

finding all the (x, y) coordinates which comprise the edge.

Although the edges are highlighted, the light pixels that comprise the edge of the

bone are made up of many intensities. One must decide which shades are consistent

with those of the edge. To accomplish this, the Blackout function was created. With

this function, one picks out all the shades that comprise the edge and makes them

all the same intensity, ie. black.

The first part of identifying the edge of the bone is deciding where to start looking

for that edge within the image. The difficulty is that there are usually more edges

in the image than just those that correspond to the boundaries of the bone. Once

the edge has started to be identified, the next part of the algorithm is to pretend

that one is standing on that edge, and then walks along the edge. This continues

until the edge ends or one comes back to where one started. Then pixel coordinates

corresponding to the inner and outer edges of the bone are automatically recorded

in lists in memory. These values are subtracted from the pixel values of the absolute

x and y axes. To represent actual discrete points comprising the edge of the bone,

these values are multiplied by the ratio of pixels per inch. Then the lists are saved

to a temporary file on disk.

2.4 Centroid & Fourier Series

The final steps in the image processing software are to find the centroid of the bone

and pick out points to represent the edges as finite Fourier series. Then the centroid

is used as the origin for representing the edges in polar coordinates.

Each point along the edges is translated from an (x, y) coordinate to (r, 8) polar

coordinate, with origin at the centroid. Several points along each edge are selected

9



2.4. CENTROID & FOURIER SERIES

using intervals of the same angle. It turns out that the optimum number of points is

about 36, or approximately every 10 degrees along each edge. To determine which

points to choose, the algorithm examines all the points on the edge close to the

degree mark, for instance

where c; is the angle of interest and bd i , (J is the () coordinate of the i th boundary

element. The selected value is taken as the point with the average radius and closest

to the angle of interest. The radial location of N measured points on the inner and

outer boundaries are used to construct an M term Fourier series, M < N, for

the inner and outer boundary, using the method of least squares. This yields the

coefficients ao, ai, aon , bon, ain, bin, n = 1 - M in the Fourier series representation

of the outer and inner surface of the bone, given respectively by

(2.1)
M

To = ao + L(aon cos n() + bon sin n())
n=l

M

Ti = ai + L (ain cos n() + bin sin n())
n=l

The centroid of the cross section is represented by the series given by

(2.2)

The procedure is then repeated using this location as the origin, and continued until

Xc = 0, Yc = O. Using N = 36 points for the edge, by experimentation it was found

that M = 12 gives the curve that best represents the shape of the cross section.

The Fourier series model for the example is pictured in Figure 2.3.

10
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Chapter 3

Outline of Biomechanical Model

3.1 Mathematical Model of the Fifth Metatarsal

To determine the stress distribution in the bone, the properties of the cross sections

of the bone are used. The cross-sectional properties are given analytically in terms

of the mathematical description of the inner and outer boundaries of the bone. The

stresses in any cross section are equivalent to a force '£ at the centroid of the cross

section and a moment~. These can readily be determined though a force and

moment balance on the beam as a whole, and so are considered known at any cross

section.

For each cross section, a local coordinate system is chosen with the origin at the

centroid and the z-axis perpendicular to it as shown in Figure 3.1. The cross sehtion

is a doubly connected domain bounded on the outside by the circuit Co, and on the

inside by the circuit Ci. These are directed circuits, such that the tangent vector in

the direction of the path, the unit vector along the z-axis, and the outward drawn

normal?:!; form a right handed coordinate system. The outer circuit bounds an area

no, the inner circuit bounds an area ni , and the area of the bone is n = no - ni .

14
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3.1. MATHEMATICAL MODEL OF THE FIFTH METATARSAL

The force '£ has components T x and T y along the x and y axes, respectively, called

the shear forces. Along the z-axis, '£ has component T z called the axial force. The

moment 1'1 has components Mx and My along the x and y axes, respectively, called

the bending moments. Along the z-axis) 1'1 has component M z called the twisting

moment.

To calculate the stress distribution within a cross section in terms of the resultant

force '£ and moment 1'1 at that cross section, the semi-inyerse method of Saint

Venant, as described by de Veubeke [3], is used. This method consists of setting

O"x = O"y = Txy = 0

and seeking a solution to equations of elasticity under these conditions. The stresses

to be determined are the normal stress O"z(x,y) and the shear stresses Txz(X,y) and

Saint Venant's method leads to the following simple solution for the normal stress

in terms of the normal force Tz and bending moments M x , My:

(3.1 )

where E is Young's modulus) and J(X) J(y, Ie are given in terms of the moments

and forces by

(3.2) J(x = IyyMx - IxyMy
E(lxxlyy - I;,y)

J( _ IxxM y - IxyM x
y - E(lxxlyy - I;,y)

J(z = Tzj(Efl)

Here D, lxx, Iyy, Ixy are the area, moments of inertia and product of inertia of the

cross section.

15



3.1. MATHEMATICAL MODEL OF THE FIFTH METATARSAL

Determination of shear stresses Txz , T yz is a complex problem, and the procedure

yeilds the shear stresses in terms of the shear forces T Xl T y and the twisting moment

Mz . This procedure requires redefining the twisting moment to allow the shear forces

to act through a point in the cross section known as the center of bending-torsion

denoted by the coordinates (xp)yp). The twisting moment about this point) Mp ) is

(3.3)

The shear stresses can be written in the form

(3.4) T xz = eGaG +Eaif> +GaK
ay ax ay

T
yz

= -B GaG +Eaif> _ GaK
ax ay ax

where G is the shear modulus and eis the twist of the centroidial fiber due to Mp ;

e is given by

(3.5)

where J is the torsional stiffness coefficient. The functions G, if> and K are found

by solving the following boundary value problems in the cross section of the bone:

(3.6)

(3.7)

(3.8)

G = 0 on CO) G = ai on Ci

j aG
-ds = 20i

Ci an

\72if> = -(Ax +By)

a<I>an = 0 on CO) Ci

16



3.1. MATHEMATICAL MODEL OF THE FIFTH METATARSAL

(3.9)

(3.10)

K = 0 on Co, K = fJi on Ci

i aK ds = -2vD-(Ay'- - Bx- - C)a ll 1 •

Ci n

The circuit conditions, eqns (3.7), (3.10) assure the absense of residual stress

in the doubly connected domain D, so that the stresses vanish when there are no

applied loads. These conditions suffice to determine the boundary values Cii and

/3i of e and K, respectively, on Ci. e gives the contribution to the shear stresses

resulting from pure torsion, which depends only on the twisting moment Mp • If the

domain of e is extended by defining 8 = e in D and 8 = Cii in the region bounded

by Ci, then

(3.11 ) J = 21 8dxdy.
0 0

1> and K are the contribution to the shear stresses resulting from bending without

torsion; this contribution depends only on the shear forces Tx and Tv acting through

the center of bending torsion. In terms of the shear forces, A and B are given as

follows:

(3.12)
A = IVYT x - IxyTy

E(IxxIyy - I;,y)

B = IxxTv - IxyTx
E(IxxIvv - I;,y)

To determine the center of bending torsion (xp, yp), note that 1> can be broken into

two parts, one depending on A and the other on B. Writing P = APA + BPB,

17



3.1. MATHEMATICAL MODEL OF THE FIFTH METATARSAL

definitions for {>A, {>B follow from eqn. (3.8). Then X p and yp are found by solving

the following equations:

(3.13)

where Ct is the total circuit consisting of both Ci and co' The twist of the centroidial

fiber due to the shear forces acting through the center of bending torsion is vC,

where 1I is Poisson's ratio, and C is found from

(3.14) C = ~ [2A r ey dxdy - 2B rex dXdY] .
J Jo o Joo

18
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3.2. PERTUBATION ANALYSIS

3.2 Pertubation Analysis

3.2.1 Overview

The cross section of the bone is regarded as an annulus with small pertubations on

both the inner boundary, Co, and the outer boundary, Ci. Analytically in polar form,

(3.15) TO = aD + Efo(B)

Ti = ai + Efi(B)

The constant terms aD, ai, are the mean radii of the inner and outer boundaries,

respectively, E is a small quantity, and both fo and fi have zero mean over the

interval a :s: B :s: 27f.

The functions Go, <Po, Ko correspond to the stresses in the circular annulus. The

solution can be obtained as an asymptotic expansions in E according to

(3.16) G=GO +EG1 +O(E2
)

<P = <Po + E<P1+ O( E
2

)

K = Ko + EK1 + O(E2
).

The corresponding differential equations, boundary conditions and circuit conditions

for each of these functions can be derived. Since E is small, it is assumed from this

point onward that terms containing E to a power greater than or equal to two are

negligable.

A necessary part of the pertubation analysis is the expansion of the moments

of inertia in terms of E. First writing the moments of inertia for the annulus as

I = I~x = I~lI' the asymptotic expansion of the moments and products of inertia can

be written as

20



3.2. PERTUBATION ANALYSIS

In terms of polar coordinates, these formulae are given by

(3.17)

The asymptotic expansions of the parameters Kx , K y and K z are needed to

develop the normal stress at any point along the bone. Using the notation K x =

T",
K,o=----

E7f(a~ - an(3.18)

Therefore the expansion for normal stress, (J"z = (J"zO +E (J"zl, can be derived, in which

(3.19)

The pertubation analysis requires the coordinates of the center of bending torsion

(x p, yp) to be expanded in E. The notation X p = x~ + E x; and YP = y~ + E Y; IS

used. It can be determined that (x~, Y~) = (0,0) and

21



3.2. PERTUBATION ANALYSIS

(3.20)

It follows that the twisting moment Mp is then

The twist B due to Mp also depends on J, which can be developed from equa-

tion (3.11) using the expansion J = Jo +d l . From the definition of J,

r27f r ihf;(8)
(3.21) J=2}0 Jo (aiO + wil)rdrdB

1
27f 10:0+<10(8)+ 2 (80 +E8 l ) r drdB,

o ai+<Ji(8)

from which Jo and J l can be obtained. The twist of the centroidial fiber is B =

Bo + EB l , and it can be shown that

The constant C, proportional to the twist of the centroidial fiber, has the ex-

pansion C = Co + ECI . From the definition of this constant, eqn (3.14), it follows

22



3.2. PERTUBATION ANALYSIS

that

(3.22)

from which Co and C1 can be obtained. Note that A, B are given in terms of their

corresponding expansions as well. Each of these parameters is explicitly defined and

used in the derivation of the differential equations. From the notation (3.17) for the

moments and products of inertia,

The shear stresses are then given in terms of the defined functions and parameters

in accordance with eqn (3.4) and the corresponding pertubation expansions:

Tyz = E 8<l>0 _ G (8Ko + eo 880 )

8y 8x 8x

[E
8 <l>1 G (8K1 0' 8P

1 0' 880 )]+E -- -+ 0-+ 1-
8y 8x 8x 8x

23



3.2. PERTUBATION ANALYSIS

Although the shear stresses have been derived, the goal of this model is to obtain

the normal and tangential components of the shear stresses along the outer and inner

surfaces of the bone. These components, T NZ , TTZ, respectively, are given in terms of

(3.25) T NZ = Txz cos <jJ +T yz sin <jJ

TTZ = -Txz sin <jJ + Tyz cos <jJ,

where <jJ is the angle that the outward pointing normal makes with the x-axis. Since

<jJ differs from 0 only to order f, we define the quantity ( according to

E ( = B- <jJ.

Now f ( is a small quantity, which allows the approximations cos( E () ~ 1 - (f (?
and sin( E () ~ f (. It then follows that

(3.26)

- iJ G~ 880 E8iJ?0 G~ 8Ko
TNZ

- a r 8B + 8r + r 8B

{B
A G (1881 ! 880 ) OA G1880+E 0 --- + <, -- + 1 ---

r 8B 8r r 8B

+E (8iJ?1 _ (~8iJ?0) +G(~8K1 +(8Ko)}
8r r 8B r 8B 8r

TTZ = -eoG 880 +E~ 8iJ?0 _ G8Ko

8r r 8B 8r

{

A (881 1 880 ) A 880+ f BoG -- - (-- - B1G-
8r r 8B 8r

+E(~ 8iJ?1 _ (8iJ?0) +G(_ 8K1 _ (~8Ko)}
r 8B 8r 8r r 80

Evaluating these expressions on the inner and outer boundaries, r = ai and r = ao ,

respectively, yields the desired results.
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3.2. PERTUBATION ANALYSIS

In summary, regarding the cross section of the qpne as a perturbed circular

annulus, all of the definitions can be rewritten in terms of an expansion in terms of

E. Then all of the corresponding parameters and equations can be derived as also

having two parts, zero order and first order. Finally, the equations for the stresses

can be developed in terms of these definitions and parameters.

The differential equations, boundary conditions, and circuit conditions for the

expansions of 8, q> and K will now be expressed. After each pair of initial value

problems there are brief notational and informative remarks. Then explicit forms

for the expansions of J, Band C are expressed as derived from their corresponding

definitions. Henceforth, it is assumed that the independent variables are the polar

coordinates (r, B), unless otherwise stated.

The equation for 8 0 is

(3.27)

with boundary conditions

(3.28)

8 0 ( ai, B) = aiO

and circuit condition

(3.29)

The equation for 8 1 is

(3.30)

_ .12"1r 880 ( ai, B) dB = 2 2a, 8 7ra,.
o r
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3.2. PERTUBATION ANALYSIS

with boundary conditions

(3.31)

and circuit condition

(3.32) 1211" a81(ai,B)
- a· dB

• a ar
=1211"{j.(B)a80(ailB) _ f:(B)a80(ai,B) .j.(B)ae6(ai,B)}dB

• a aB + a. • a 2 •a r ai r

For ai, the expression ai = aiO + E ail is used. Note that the differential equations

are defined on the annulus ai :::; r :::; ao,O :::; B :::; 27f. The boundary condition on Co

was found by expanding

in an asymptotic series in E. The boundary condition on Ci is derived in an analagous

manner. The circuit condition is developed from an asymptotic expansion in E of

the gradient of 80 and the normal derivative to curves Co and Ci. Note that the area

Di is given exactly by 7fa;, as reflected in the circuit condition for 8 0 .
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3.2. PERTUBATION ANALYSIS

The equation for <1>0 is

(3.33) \72<1>0 = -r(Aocos(O) +Eo sin(O))

with boundary conditions

(3.34)

The equation for <1>1 is

(3.35)

with boundary conditions

(3.36)

For A and E, the expansions A = Ao + EA1, B = Eo + EB1 are used, where

Ao, A1 , Bo, E1 are defined in eqn (3.2.1). Again, the differential equations for

<Po and <P1 are defined in the annulus ai ~ r ~ ao, 0 ~ e ~ 27f. The boundary

conditions were derived from the result in eqn (3.8).
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3.2. PERTUBATION ANALYSIS

The equation for Ko is

(3.37) V 2Ko = 2vr(Aosin(0) - Bo cos(0) - Co)

with boundary conditions

(3.38)

and cireuit condition

(3.39)

The equation for K1 is

.12
11" aKo ( ai, 0) dO _ 2rr

-at a - 2vai vo·
o r

(3.40)

with boundary conditions

(3.41)

and circuit condition

(3.42)
r211" aK1 ( ai, 0) 2(A A )

- ai J
o

ar dO = 2v7fai Boxi - AOYi + C1

+ r27r {fi(0) aKo(ai, B) _ fI( 0) aKo(ai, 0)
Jo ar ai aB

.f.(B)a2
Ko( ai, O)} dO+ at t ar2 .

For (3i and C, the expansions (3i = (JiO + f(3il' C = Co + f C1 are used, where Co, C1

are derived from eqn (3.22). The boundary value problems for Ko, K1 are defined
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3.2. PERTUBATION ANALYSIS

on the annulus ai ::; r ::; ao,O ::; B ::; 27f. The constant C, which is written in

terms of its pertubation expansion, also depends on the geometry of the body. The

circuit condition contains Xi, Yi; to emphasise the fact that the centroid is O( t), its

coordinates were written in the form (t Xi, t yJ

The parameters Jo, J1 and the constants Co, C1 are determined from expanding

each of their definitions (3.21), (3.22). To evaluate the integrations for these, the

following transformation is used:

After applying the transformation, the following expressions can be derived for Jo, J1:

r7r [1
+2 Jo Jo 8 0 (ai + s(ao - ad, B)[a; + s(ao - adJ(ao- a;)dsdB

Similarly the following expressoins can be derived for Co, C1 :

(3.45) 212"11

Co = - 8 0 ( ai + s(ao - ad, B)[a; + s(ao - ai)y
Jo 0 0

(ao - ad(Aosin B- Bocos B)dsdB
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3.2. PERTUBATION ANALYSIS

(3.46)

2 r2
71:+ J0 aiOa; io Ii( B)(Aosin B- Bocos B)dB

+ ;012

71:11(Aosin B- Bocos B){ [[ai + s(ao - aiW(Jo - Ii)

+2[ai + s(ao - ai)][/i + s (fo - I;)J(ao- ai)] GO(ai + s(ao - a;), B)

+ [Ii + s(Jo - li)J[ai + s(ao - aiW(ao- a;) :rGo(ai + s(ao - ai), B)

+(ao - ai)[ai +s(ao - aiWG1(ai +s(ao - ai), B) }dSdB.
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3.2. PERTUBATION ANALYSIS

3.2.2 Zero Order Solution

The zero order solution pertains to the annulus, which has an outer radius of ao and

an inner radius of ai. The solution to the boundary value problems for 8 0 , <]>0 and

Ko expressed in the previous section are straightforward, and the results are given

here:

(3.47)

By writing the differential operator \12 in polar form, ie.

2 8 18 18
\I (.) = -(.) +--(.) +--('),

8r2 r 8r r2 8()2

it is easy to verify that the zero order solutions solve the corresponding differential

equations (3.27), (3.33) and (3.37). Note that 8 0 is a function of r alone. Two

results from this solution are, from eqn. (3.43), Jo = (7f /2)(a; - an, and from eqn.

(3.45), Co = o.

The stresses in the circular annulus are

(3.48) T" My Mx
a zO = 7f(a; _an - -1- r cos () + -1- r sin ()
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3.2. PERTUBATION ANALYSIS

(3.49)

Note that on the inner and outer edges of the annulus the normal stress TNZ is

zero, as it should be.

3.2.3 First Order Solution

The pertubed outer and inner boundaries of the bone are approximated by a finite

Fourier series:

(3.50) !o(0) = E(aon cos nO + bon sin no)

!i(0) = E(ain cos nO + bin sin no)
The origin of the coordinate system is assumed to be at the centroid of the cross

section. Then the coefficients of this expansion must satisfy

(3.51)

The first order contributions to the moments of inertia are:

(3.52)
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3.2. PERTUBATION ANALYSIS

Then Kxl , KYI are determined from eqn (3.18). Thus lTzl follows from eqn (3.19).

The moments of inertia also determine the parameters AI, B l ; ie.

(3.53)

Substituting the zero order solution and the Fourier series expansion for fa, Ii

into the boundary value problem for 8 1 gives the following boundary conditions:

(3.54)
M

8 1(ao , B) = ao ~ (aon cos nB + bon sin nB)
n=l

M

8 1(ai,B) = ai ~(aincosnB + binsinnB)
n=l

With these, the circuit condition simplifies to

(3.55) 1
21r a81(ai, B) dB =

a o.
o r

For the boundary value problem for PI, substituting our previous results for Po

into the boundary conditions gives

aPl~aO' B) = [3(a~ - an] (Ao cos 19 +Bosin B) fo( B)
r 4ao

+ 4
1

(a~ +3a;)( - Aosin 19 +Bocos B) f;( B)
ao

aPl(ai,B)_[3(a;-a~)](A 11 B ·11)f(l1)
a - 0 cos U + 0 sm U i U

r 4ai

+ _1_( a7 + 3a~)( - Aosin 19 +Bocos B) fI( B)
4ai

After using the finite Fourier series, these equations can be simplified further by
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3.2. PERTUBATION ANALYSIS

using the following triginometric identities:

2 sin nO cos 0 = sin(n +1)0 + sin(n - 1)0

2 cos nO sin 0 = sin(n +1)0 - sin(n - 1)0

2 cos n8 cos 8 = cos(n +1)8 + cos(n - 1)8

2 sin nO sin 0 = - cos(n +1)0 +cos(n - 1)0

Thus it can be shown that the boundary conditions for the boundary value problem

involving <1>1 can be written in the following compact manner:

(3.56)

where

(3.57)

a<1> 1(aO ) 0) ~1.ar = loo + L. (kon Slll nO + lon cos nO)
n=l

a<1> (a 0) MH
1arO' = liO + L (kin sin nO + lin cos nO),

n=l

[
3(a;-a;)] [ ( ) ( )]lon = 8a

o
A o ao(n-1) +ao(nH) +Bo bo(n+1) - bo(n-1)

[
a

2

+ 3a
2

][( )+ o~ao 1 (n + 1) BObo(n+1) - Aoao(nH)

- (n +1) (Bobo(n-1) + Aoao(n-1») ] .
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3.2. PERTUBATION ANALYSIS

respectively, and ai replaced by ao.

The boundary conditions for the boundary value problem to determine K I can

also be explicitly derived. After substituting in the results for !o(0), !i(0), and

Ko(ao, 0), it can be readily shown that

KI ( ao, 0) = ~(a~ - an~ [Eo aon cos 0 cos nO + Eo bon cos 0 sin nO

- Ao aon sin Bcos nO - Ao bon sin Bsin nB]

K I (ai, (]) = f3il - ~(a~ - an~ [Eo ain cos (] cos n(] +Eo bin cos esin n(]

- Ao ain sin ecos n(] - Ao bin sin esin n(]]

After applying trigonometric identities, it can be verified that the boundary condi-

tions for the boundary value problem for K I can be written in the following compact

form.

(3.60)

where

(3.61 )

Pon = Ao(bO(n-l) - bO(n+I)) + Eo ( ao(n+l) + aO(n-I))

qon = Ao( ao(n+I) - aO(n-I)) +Eo (bo(n+l) + bO(n-I))
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3.2. PERTUBATION ANALYSIS

with analogous expressions for pia, Pin, qin in which aon , bon are replaced by ain) bin

respectively.

The circuit condition for K1 follows from eqn (3.42). To help simplify this equa-

tion, the following two useful facts are used:

J~7f ii(0) [ai:r22 Ka(ai, 0) + :,. Ka(ai, B)] dB = -2a; v 11" Pia.

The first fact comes from the definitions of Xi, ifi. The second fact can easily be

verified. Using these to simplify the expression yields

The integral with respect to 0 on the right hand side of this equation is equal to

zero, so the circuit condition for K1 is

(3.62)

The boundary value problem for 8 1 comes from eqn (3.30), with simplified

boundary conditions (3.54), and circuit condition (3.55), and it is solved using stan-

dard techniques. It is found that ail = 0, and

(3.63) 8 1 = 1=[ 2n ~ 2n] {(en sin nO + in cos nO) r
n

n=} ao a,

+ (ao ai t+l (gn sin nB + hn cos nB) r -n }
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3.2. PERTUBATION ANALYSIS

where

(3.64)

1, - an+1a - an+1a o
n - 0 on i In

n-1b n-1 b
9n = ao in - ai on

The boundary value problem for <P 1 comes from eqn (3.35) with the boundary

conditions (3.56), and its solution is found through standard techniques. The result

1S

(3.65) <P 1 = aoloo in r

where

(3.66) U = an+1k - a~+lkonoon t. Ion

M n-1k n-1k
n = ao in - ai on

N n-1z n-1z
n = ao in - ai on'

The boundary value problem for K1 comes from eqn (3.40), with simplified
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3.2. PERTUBATION ANALYSIS

boundary conditions (3.60), and circuit condition (3.62), and it is solved using stan

dard techniques. It is found that

(3.67)

and

(3.68)

where

(3.69)

To determine the value of the parameter J1 , first note that 8 0 does not contain

e. Then the variables T, e can be separated in every integral of the eqn (3.44).

Upon integration with respect to e1 one can show that every term is zero. Therefore
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3.2. PERTUBATION ANALYSIS

On term by term examination of eqn (3.46) for Gl , one finds that the first term

is seperable in the independent variables s, (), and so this term is zero. To make the

other terms more manageable, let u = ai +s(ao - a;); also, let G represent the last

part of the last term in the equation for Gl , ie.

212
11" laoG = - (Aosin 0 - Bocos 0) u2 8 l (u, 0) drdO.

Jo 0 ai

Since 8 0 is a function of u alone, one can separate the variables u) () in the remain-

ing terms, and integrate first with respect to O. Noting that J;7I" fo(O)(AosinB

Bocos B)dB = 7r( BOaol - Aobol ) = 7rpoO.) J;7I" fi( B)(Aosin B- Bocos B)dB = 7r( BOail -

Aobil ) = 7rPiO, it can be shown that

2 2 27r (poo - PiO) lao (2 3d )= -aiO ai 7rPiO +- . 3u 8 0 +u -d8 0 du
J0 J0 ao - at ai U

27r [ (Poo - PiO)] to ( 2 d )+1;;" PiO - ai a
o

_ ai lai 2u 8 0 +u du 8 0 du +G.

Evaluating the two integrals, it follows that Gl = G. After integration and collecting

of like terms, one obtains:

(3.72)
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Chapter 4

Integration of Software & Results

The next step is to make the program that calculates stresses in the cross section

compatible with the program that generates the Fourier series representation of the

boundaries. It was found that the best way to combine the two was to develop a

program to create disk data files that the program for the stresses could read and

analyze. The filing structure for which the data and results for an entire bone would

be stored was developed, so that they could be found and retrieved with ease.

From an enlarged photograph of one cross section, Phillipy [2] calculated its cen

troid, then using this as the origin he picked out 36 points, one at every ten degrees

along each edge. He used the software to calculate the Fourier series coefficients.

The centroid for the shape represented by the Fourier series was then calculated

and, using this as the new origin, the process was continued until the origin selected

and calculated converged to the same point. The same cross sectional slice was used

in the present analysis with the camera and the program to produce coefficients for

the Fourier series for each boundary as well and to automate the iteration. The

resulting coefficients using Phillipy's method were very similiar to the ones from the
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automated program. Thus the software was shown to produce accurate results. This

software was then used to predict the stresses for an entire bone. The results were

presented as graphs for each cross section, so that the stresses and their relation to

the boundaries could be better understood. An outline of these results is given here.

In the actual bone which was used, the first cross section was given the global

coordinate z = 0 em; to account for the joint, cross section number 7 at z = 1.478

em was considered to be where the bone is anchored as a cantelevered beam. The

30th cross sectional slice was considered to be where the force is applied, as shown

in figure 4.1. In order to calculate Mx and My, the distance from any cross section

to cross section number 30 is needed.

For each cross section of the bone, 13 graphs were constructed. Each graph is

given in polar coordinates. The first graph is a comparison of the actual boundaries

and their corresponding Fourier series representation. As shown in figure 4.2, the

actual points on the outer boundary and inner boundary are marked by discrete

symbols, while the Fourier series representation of each boundary is shown by a

continuous line.

The next set of four graphs,figures 4.3, 4.4, 4.5, 4.6, show the resulting zero

and first order stresses, which were calculated using the mathematical model with

a unit force applied in one direction, T x = 0, T y = I, T z = o. Another set of

graphs, included in the appendix, shows the results using a unit force applied to the

direction T x = 1, Ty=O, Tz=O. The graphs for two cross sections are included in

the appendix, and the graphs of stresses for cross section number 21 with an applied

unit force in the y-direction is used as an example to explain each different type of

graph.
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The tangential component of the plane stresses for the outer and inner boundaries

of the bone comprise two of the four stress graphs. Each graph shows the magnitude

of stress as a function of the angle in degrees, which marks the place along the

particular boundary. The angle B= 0 corresponds to the positive x axis. The zero

order stresses and the zero plus first order stresses are contrasted on the same graph.

The tangential component of the plane stress TTZ is shown for each boundary; see

figures 4.3, 4.4. The normal component of the plane stress TNZ is identically zero

for the annulus, but small nonzero values are obtained for the first order solution,

which reflect magnitudes of the errors introduced by the pertubation analysis.

The next two stress graphs, shown in figures 4.5, 4.6, are the normal stresses (}z

for the the outer and inner boundaries. Again, the magnitude of the stress is shown

as a function of the angle along the boundary.
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Figure 4.1: Static mod 1 fe a bone.
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CROSS SECTION #21
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Figure 4.2: Boundaries of cross section.
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CROSS SECTION #21, T= (0, 1,0)
PLANE STRESS (OUTER BOUNDARy)
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Figure 4.3: Tangential component of plane stress on outer boundary.
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Figure 4.4: Tangential component of plane stress on inner boundary.
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CROSS SECTION #21, T= (0,1,0)
NORMAL STRESS (OUTER BOUNDARY)
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Figure 4.5: Normal stress az on outer boundary.
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CROSS SECTION #21, T= (0, 1,0)
NORMAL STRESS (INNER BOUNDARY)

/~",'
./ '-"

"......./ •...
,I

/
i

/
/

/
,I

80

60

40

20
(J)
(J)
ill 0a:
I-
(J)

-20

-40

-60

-80 -..t..,--...,.-..---r--.--r---.-r---r-lr-o-...,.-.......--.--r---.-r---r-l--.--...,.-.--.----.--r---.-r---r-lr-o-....--...

o 30 60 90 120 150 180 210 240 270 300 330 360
ANGLE (DEGREES)

1-- 0 ORDER - 0+1 ORDER I

Figure 4.6: Normal stress U z on inner boundary.
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Chapter 5

Conclusions

The orientation of the foot is assumed to be such that the metatarsals act as

cantalevered beams. This study focuses on the stresses created within the fifth

metatarsal under the influence of a force applied at one point along the bone. First,

the bone is sliced into many cross sections. Specialized computer software is used to

accurately and efficiently measure the boundaries of each cross section and compute

the corresponding stresses along each boundary. The software uses results from the

biomechanical analysis, which applies beam theory plus pertubation analysis to the

bone.

In each cross section, the initial applied force is assumed to be one unit force

component in one direction. The resulting data can then be combined to study the

application of any general force applied at the same point as the initial force. If there

is more than each force a~ting on the bone, the resultant force and moment applied

at one point can be combined using superposition. Then for each cross section more

general results can easily be obtained.

Altough clinical tests can be used to study the Jone's fracture, until now there
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has not been a mathematical model developed to study the related types of stresses

on the bone. The next step in the investigation for the Jane's fracture would be to

use the results from the model to determine the necessary force at the approximate

point of application that would cause the appropriate stresses. The mathematical

model should reflect these stresses and be used to predict where along the bone the

fracture would eventually occur.

To continue this study of the fifth metatarsal, the model can be used to analyze

the stresses in a large sample of bones for a comprehensive statistical study. Even

with the newly created software for this project, the study of this many bones with

approximately 30 cross sections per bone would take a considerable amount of time.

It is felt that ten bones, yeilding about 300 ,cross sections, could be used for a

statistical analysis.

In order to analyze a fifth metatarsal in a patient, instead of a cadaver, CAT

scanning can be used. Data on the boundaries of the bone collected from this process

can be made into a useable form for the project software. Then this data can be

applied to the same mechanical analysis to make a prediction as to whether or not

this patient is at risk of getting the Jane's fracture.
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Appendix A

Experimental Data

This appendix contains the results for three cross sections, numbers 20, 21 and 22.

The graphs for numbers 20 and 22 are complete, while just the final set of results

for cross section number 21, which has been used as example throughouJ; this thesis,

is included here. For description of the meaning of each graph, see Chapter 4.
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