
Lehigh University
Lehigh Preserve

Theses and Dissertations

1995

Lossless image compression in vector transform
and vector subband domains
Asaf Sofu
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Sofu, Asaf, "Lossless image compression in vector transform and vector subband domains" (1995). Theses and Dissertations. Paper 388.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228644745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F388&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F388&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F388&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/388?utm_source=preserve.lehigh.edu%2Fetd%2F388&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Sofu, Asaf

Lossless Image
Compression in
Vector Transform
and Vector
Subband Domains

October 8, 1995

LOSSLESS IMAGE COMPRESSION

IN VECTOR TRANSFORM AND

VECTOR SUBBAND DOMAINS

by

Asaf Sofu

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

III

Electrical Engineering

Lehigh University

1995

© Copyright 1995 by Asaf Sofu

All Rights Reserved

11

...

Acknowledgments

First of all, I would like to present my deep thanks to Prof. Weiping Li for his

guidance and support during my graduate studies and thesis.

I would like to also express my gratitude to every member of the DSP group

individually for their assistance and consideration. I wish to thank also Ahmad

Y. Banafa for his help for providing me with the essential materials to complete

my thesis. Special thanks to Stephen Corbesero, Maggie and Linda in the EECS

Department for all their help.

I want to especially mention the support and assistance of my family from back

home during my graduate studies .

IV

Contents

Acknowledgments

Abstract

1 Introduction

1.1 The Information Age

1.2 The Necessity of Image Compression

1.3 Information Theory and Image Compression

1.3.1 Discrete Memoryless Sources (DMS)

1.3.2 Markov Sources .

1.4 Digital Image Compression in General

1.4.1 Lossy Compression

1.4.2 Lossless Coding

2 Huffman Coding

3 Adaptive Huffman Coding

4 LZW Coding

V

IV

1

2

2

4

5

5

7
. 8

9

10

13

17

21

5 Analysis of Lossless 'Compression Algorithms in Vector Transform

and Vector Subband Domains 24

5.1 Description of the Compression Environment. 24

5.1.1 Source Characteristics 25

v

5.2 Huffman Coding

5.2.1 Discussion.....

5.3 Adaptive Huffman Coding

5.3.1 Discussion

5.4 LZW Coding ..

5.4.1 Discussion

6 Conclusions

7 Appendix

Bibliography

A Biography

VI

'j'

26

26

30

30

32

33

37

39

55

58

List of Tables

1.1 Data Volumes of Image Sources (in Millions of Bytes).

1.2 Storage Capacities (in Millions of Bytes).

4.1 LZW decoding example.

4.2 LZW decoding example.

4

4

22

23

5.1 The Results of Huffman Coding for the Lenna Image 27

5.2 The Results of Huffman Coding for the Lenna Image by training with

the training image 28

5.3 Huffman Coding of the Video Sequence. Index (0 0) is included in

the Huffmantable. . : 29

5.4 Huffman Coding of the video sequence. Index (0 0) is excluded from

the Huffman Table. 30

5.5 The Results of Adaptive Huffman Coding For the Lenna Image 31

5.6 Adaptive Huffman Coding of the Video Sequence. Index (0 0) is

included in the Huffman table. 32

5.7 Adaptive Huffman Coding of the video sequence. Index (0 0) is ex-

cluded from the Huffman Table 33

5.8 The Results of LZW Coding for the Lenna Image 34

5.9 LZW Coding of the Video Sequence. Index (0 0) is included in LZW

coding. 35

5.10 LZW Coding of the video sequence. Index (0 0) is excluded from

LZW coding. 36

Vll

5.11 Summary of coding results of the video sequence with index (0 0)

treated as a regular image index. 36

5.12 Summary of coding results of the video sequence with index (0 0)

treated seperately from other image indices. 36

V111

List of Figures

1.1 A fundamental communication system

1.2 Three stage compression technique ..

1.3 General Image Compression Framework

2.1 Huffman Algorithm Source Reduction Process

2.2 Huffman Algorithm Codeword Construction Process.

3.1"- An example of a Huffman Tree

3.2 Incrementing the Huffman Tree

3.3 Swapping the nodes in the Huffman Tree

3.4 After several increments in the Huffman Tree.

5

8

9

13

14

18

19

20

20

5.1 Block Diagram of the Vector Subband 'Coding Algorithm.. 24

7.1 The frequency of occurence in descending order for the image indices

in band 0 of the football video sequence. 39

7.2 The frequency of occurence in descending order for the image indices

in band 1 of the football video sequence. 40

7.3 The frequency of occurence in descending order for the image indices

in band 2 of the football video sequence. 40

7.4 The frequency of occurence in descending order for the image indices

in band 3 of the football video sequence. 41

7.5 The frequency of occurence in descending order for the image indices

in band 4 of the football video sequence. 41

IX

7.11

7.12

)
7.13

I

7.14

7.15

7.16

7.17

7.18

7.19

7.20

7.6 The frequency of occurence in descending order for the image indices

in band 5 of the football video sequence. . , 42

7.7 The frequency of occurence in descending order for the image indices

in band 6 of the foot ball video sequence. 42

7.8 The frequency of occurence in descending order for the image indices. .
in band 7 of the football video sequence. 43

7.9 The frequency of occurence in descending order for the image indices

in band 8 of the football video sequence. 43

7.10 The frequency of occurence in descending order for the image indices

in band 9 of the football video sequence. 44

The frequency of occurence of the indices in descending order for band

o of the Lenna image.. 45

The frequency of occurence of the indices in descending order for band

1 of the Lenna image.. .. 45

The frequency of occurence of the indices in descending order for band

2 of the Lenna image.. .. 46

The frequency of occurence of the indices in descending order for band

3 of the Lenna image.. .. 46

The frequency of occurence of the indices in descending order for band

4 of the Lenna image.. " 47

The frequency of occurence of the indices in descending order for band

5 of the Lenna image.. 47

The frequency of occurence of the indices in descending order for band

6 of the Lenna image.. 48

The frequency of occurence of the indices in descending order for band

7 of the Lenna image.. .. 48

The frequency of occurence of the indices in descending order for band

8 of the Lenna image.. 49

The frequency of occurence of the indices in descending order for band

9 of the Lenna image.. 49

x

7.21 The frequency of occurence of the indices in descending order for band

oof the training image. 50

7.22 The frequency of occurence of the indices in descending order for band

1 of the Lenna image.. 50

7.23 The frequency of occurence of the indices in descending order for band

2 of the Lenna image.. 51

7.24 The frequency of occurence of the indices in descending order for band

3 of the Lenna image.. 51

7.25 The frequency of occurence of the indices in descending order for band

4 of the Lenna image.. .. 52

7.26 The frequency of occurence of the indices in descending order for band

5 of the Lenna image.... ',. 52

7.27 The frequency of occurence of the indices in descending order for band

6 of the Lenna image.. 53

7.28 The frequency of occurence of the indices in descending order for band

7 of the Lenna image.. .. 53

7.29 The frequency of occurence of the indices in descending order for band

8 of the Lenna image.. 54

7.30 The frequency of occurence of the indices in descending order for band

9 of the Lenna image..'. 54

Xl

Abstract

Lossless compression algorithms are utili-t9 in image and video compression sys­

tems such as JPEG and MPEG. Three lossless compression algorithms, Huffman,

Adaptive Huffman and Lempel-Zjv-Welch codjng are djscussed and analyzed to un­

derstand which one is the most efficient and convenient lossless compression scheme

for vector transform and vector subband coding algorithms. After a general overview

of each of the algorithms, the compression performance of the lossless algorithms

and the overall lossy system are compared and analyzed. To achieve the best com­

pression possible, the coding algorithms and the source are modified. The maximum

available lossless compression with these techniques are studied and analyzed.

1

Chapter 1

Introduction

In order to comprehend this discussion fully and to shed light on some background

information, some introductory material will be presented.

1.1 The Information Age

" A picture is worth a thousand words" .

We l~ve in a world of information. Everyday we are bombarded with information

through various electronic media such as television, radio, e-mail etc. Electronic

revolution and the advent of the computer technology have made it possible to

receive and process information at incredible rates and speeds. Even if written text

through books, papers and the like are the main source of information, as the old

adage above states, images, pictures and the video convey information and messages

much more effectively than written material. Hence, in today's world we can not

ignore the power that image and video processing brings in our daily lives.

Image and video processing has many applications in many phases of life, such as

in medical diagnostics, legal processes, entertainment, home and business applica­

tions, remote sensing of the earth by LANDSAT images, teleconferencing, facsimile

operations. With the upcoming "information superhighway", image and video ap­

plications will be even more essential in our daily activities. New frontiers will

2

1.1. THE INFORMATION AGE

be opening in videotelephony, electronic retailing, distance learning and many other

fields. Companies are fiercely competing now to develop new applications to achieve

the the leading edge to enter this highly demanding market.

With so many present applications and many others in sight , image and video

compression techniques help us utilize image and video more effectively and con­

veniently. The research in image and video compression goes back to 1940s when

Shannon and his friends formulated the requirements for error-free transmission of

digital data [1, 2]. The original research in picture coding was in terms of analog

techniques to reduce the analog bandwidth compression [3].

Today, instead of bandwidth compression, digital image and video compression is

implemented. The advancement in information theory and electronic and computer

technology made it possible to develop sophisticated data compression techniques

and apply these algorithms to image and video sequences. The point that image and

video compression technology has achieved today is mainly due to three reasons:

the development of new compression schemes that decreased the communication

transmission requirements, the advances in VLSI technology which made it possible

to implement complex compression algorithms and the standardization efforts in

order to provide general rules for communication of different media. [4].

3

1.2. THE NECESSITY OF IMAGE COMPRESSION

1.2 The Necessity of Image Compression

National Archives
1 h of color television
Encyclopedia Britannica
Book (200 pages of text Char·aeters)
One page viewed as an image

12.5 * 109

28 * 103

12.5 * 103

1.3
0.13

Table 1.1: Data Volumes of Image Sources (in Millions of Bytes).

Human brain
Magnetic cartridge
Optical disc memory
Magnetic disc
2400-ft magnetic tape
Floppy disc
Solid-state memory modules

125 000 000
250 000
12 500
760
200
1.25
0.25

Table 1.2: Storage Capacities (in Millions of Bytes).

As seen in the above tables, the storage requirements for image and video se­

quences are very large. Even though today, there is enough technology to satisfy

these requirements, the speed of the system slows down as the amount of data being

manipulated increases [5].

If we consider a 720 * 480 pixel/frame television image at 30 frames/second and

8 bits/color and 3 colors needs approximately 250 Mbits/second for transmission.

Using a 14.4K modem, it takes more than 4 hours for transmission over the phone

lines. The transmission that requires only one second takes more than 4 hours in

today's technology. Even if better results have been obtained in transmission of video

over the phone lines, the above requirement has not been satisfied yet. Hence, this

example shows the importance of image compression. As faster telecommunication

transmitters and receivers are invented, more sophisticated compression algorithms

are discovered, and the bandwidth of communication channels are increased through

4

1.3. INFORMATION THEORY AND IMAGE COMPRESSION

Information

Source -

~ Encoder -

~ Channel -

~ Decoder

~ Information

User

Figure 1.1: A fundamental communication system

the use of fiber optic cables, the efficient and convenient transmission of video over

the telecommunication lines will be possible in the very near future. However, by

ever-increasing demand for information and communication, the need for image and

video compression will always be there.

1.3 Information Theory and Image Compression

The theoretical fundamentals of image compression are based on information theory.

The compression techniques are also implemented in a communication system.

Figure 1.1 shows the functional block diagram of a communication system. A

source is an information generator that gives out symbols from a given alphabet.

For a system involving image sequences, the output can be 0 and Is of a binary

process or index values of images from I-D or 2-D scans. The source systems can

be further explained as follows.

1.3.1 Discrete Memoryless Sources (DMS)

Information theory provides us with the concept of source entropy and channel

capacity for a communication system. The source entropy is the minimum amount

of information needed to accurately represent the source and the channel capacity is

the maximum amount of information that the system could support in transmitting

the source. The simplest of the information sources is a discrete memoryless source

(DMS) which can be defined by its source alphabet Sl,S2,S3, ... ,Sn and the related

5

1.3. INFORMATION THEORY AND IMAGE COMPRESSION

probability of occurence, P(Sl),P(S2),P(S3), ... P(Sn) . In order to comprehend the
j

definition of the source entropy, one has to understand how "information" can be

explained in a discrete memoryless source. [6]

It is intuitive that the occurrence of more probable symbols in a source provide

more information than the occurrence of less probable symbols. The total infor­

mation due to the occurrence of independent events should be equal to the sum

of the information of individual events. Hence, according to the above statements,

information can be defined as:

1
I(Si) = log(P(Si))

where P(Si) is the probability of the symbol.

The entropy of the system is defined as the average amount of information pro­

vided per symbol i.e.

n n

H(s) = L P(Si) *1(s) = - L P(si)log2 P(Si)
i=l i=l

In a binary DMS, the entropy of the system tells us the minimum amount of bits

that the system should provide without a loss. In other words, if no distortion is

desired in the system, the minimum amount of bit assignment per symbol can noL-----.-__. _

be lower than the entropy of the source. Hence Shannon's source coding theorem

draws a lower bound for the compression of a discrete memoryles source[2]. This is

a milestone achievement and all the lossless compression algorithms try to approach

the entropy of the system. [6]

Often, it is more convenient to deal with blocks of symbols, rather than single

symbols. For example for a discrete memoryless system, DMS, with a source S

and alphabet of size n, if the symbols are grouped into N blocks with each symbol

represented by (Ji = (Si 1 , Si2 , Si3 , ••• , SiN) from the source SN, the probobality of

each block of symbols, (Ji, is represented by p((Ji) = p(SiJp(Si2)p(Si2)."p(SiN)' The

entropy of the system can be shown as the product of the entropy of the single

symbol, i.e.,[6]

6

1.3. INFORMATION THEORY AND IMAGE COMPRESSION

1.3.2 Markov Sources

A discrete stochastic process XI ,X2 , '" is said to be a Marko0Chain or a Markov

process if for n=1,2,3, ... ,

for all Xl, X2, ... ,Xn ,Xn +1 EX [13]

In images, the probability of a pixel value does not exist in isolation but depends

on the probability of pixels surrounding itself. Hence the probabilities of image

indices are not as independent as discrete memoryless system assume. In Markov

processes or Markov sources the probabilities of individual symbols depend on the

preceeding probabilities of symbols:

Hence, the probability of symbol i depends on the probabilities of preceeding m

symbols. Zeroth order Markov source, is a Discrete Memoryless System. First order

Markov source has n states for every symbol Si, second order Markov source has n2

states for every symbol Si. Generally mth order Markov source has nm states.

The source entropy given that it is in a particular state can be stated as follows:
n

H(SISjl, Sj2, ... , Sjm) = - L P(siISjl" ... , Sjm)logP(Silsjl, ... , Sjm)'
i=l

The entropy of the mth order Markov source can be found by summing through

all the possible states, the source entropy multiplied by the probobality of its state.

H(S) = LP(Sjl, Sj2, ... , Sjm)H(Slsjl, Sj2, ... ,Sjm)
sm ,

In our examples, we utilized zeroth order Markov processes, i.e. Discrete Mem­

oryless Sources, because when we increase the order of the system, the number of

statistics that one has to take increase drastically. Hence, in turn this increases the

memory and speed requirements of the algorithm.

7

1.4. DIGITAL IMAGE COMPRESSION IN GENERAL

y

e Of Bil

0
Signal

Lossless Coding
Strea

~ Processing
QuantllAllion ~

ence

Imag

Vide m

Scqu

,,,,,, ,
1 1

Figure 1.2: Three stage compression technique

1.4 Digital Image Compression in General

Digital image compression techniques can be basically divided into two categories:

Lossy and Lossless compression methods.

Figure 1.2 shows a general block diagram of a video and image compression

algorithm. Signal processing stage is utilized to transform the image indices into

a form more suitable for quantization. This stage does not introduce any noise or

does not compress the bits. Loss occurs due to quantization, and the indices after

quantization are further compressed using lossless coding[4].

There are basically three types of data redundancies that exist in image and

video [6]. These are namely,

• spatial redundancy due to the correlation among pixels in an image.

o spectral redundancy due to the correlation between color and spectral bands.

• temporal redundancy due to the correlation between image frames in a video

sequence.

The lossless compression algorithms try to reduce the spatial redundancy without

causing any distortion in the image or video.

Fig. 1.2 is also a general block diagram of a lossy compression scheme. As seen

from the diagram) lossy compression encompasses a lossless compression algorithm

which makes up the last stage of an overall sytem.

8

1.4. DIGITAL IMAGE COMPRESSION IN GENERAL

J
Original Image Data

~
I Decomposition or Transformation

L L
0 \11 0
S

Quantization I S
S

S
L Y
E II II

S

S Symbol Encoding

II

Compressed Image Data

Figure 1.3: General Image Compression Framework

1.4.1 Lossy Compression

Since lossless image and video compression will be comprehended better with an

understanding of lossy compression, we would like to address this topic in this

section.

Lossy compression is the compression of digital pictures and video with a loss.

It is also called irreversible compression since after compression the original data

can no longer be retrieved.

The lossy compression scheme can be divided into sections shown in figure 1.3 [7].

In lossy compression, a considerable amount of compression is achieved sacrificing

the quality of the image. The visibility of the image might be distorted depending on

the compression ratio. The image might be lossy compressed and "visually lossless."

However, as higher compression ratios are achieved, the more distorted the image

will be.

9

1.4. DIGITAL IMAGE COMPRESSION IN GENERAL

The first stage of the lossy compression scheme is the deformation or transfor­

mation stage. Various transform algorithms might be utilized in this stage, such as

DCT, KLT, Walsch transform etc. Several lossy compression algorithms are predic­

tive coding, transform coding, subband coding. The quantization stage introduces

a loss into the system. Quantization scheme can be scalar or vector quantization

depending on the compression algorithm[8, 9]. In this study, we are using lossy Vec­

tor Transform and Vector Subband coding schemes. Vector Transform is a better

compression scheme than vector quantization and DCT [10]. Symbol encoding is

the lossless compression scheme and comes in the last stage of the lossy compression.

Lossless coding improves the compression ratio of the lossy algorithm. Commercial

applications such as JPEG and MPEG can be categorized under transform cod­

ing lossy compression, since they utilize DCT and scalar quantization in the first

two stages of com-pression. They use run-length encoding (RLE) and a modified

Huffman coding for lossless compression [11, 12].

1.4.2 Lossless Coding

Lossless coding is the compression of images or video without any loss of information.

Hence, the original picture can be retrieved exactly after decompression. This kind

of compression methods might be necessary in medical images where diagnostic

accuracy is vital, in business applications for legal reasons and LANDSAT images

for the clarity of images.

Compression ratios for lossless coding of still images range from expansion to

exceptionally good 4:1 compression. General medical image compression is in the

ratio of 1.7:1 to 2:1 [23].

In lossless compression, there are two general methods of compression, i.e minimum­

redundancy coding and dictionary based compression algorithms [14, 16]. In our

case, we will investigate three lossless compression schemes, namely Huffman cod­

ing, Adaptive Huffman Coding and Lempel-Ziv-Welch coding. The first two algo­

rithms can be classified as variable length or entropy coding, and LZW algorithm

is classified as dictionary based compression algorithm. We will investigate the two

10

1.4. DIGITAL IMAGE COMPRESSION IN GENERAL

classes of compression algorithms here.

Variable Length Coding Algorithms

This type of compression method tries to reduce only the coding redundancy. It tries

to assign the most probable symbols the shortest code. The information theory tells

us that average number of bits needed to accurately represent a source symbol should

be greater than the entropy of the source, H(s), i.e. I:?=1 P(si)logP(sJ Hence, at

least entropy amount of bits should be utilized to code the source symbols without

any loss and thus the coding techniques try to approximate or achieve close to the

entropy of the system. Huffman and Adaptive Huffman algorithms utilize statistical

models to perform the compression. They assign a table of symbols, variable length

bit streams based on their probability of occurrence. Non-uniform and concentrated

probabilities of symbols provide better compression.

Dictionary Based Coding

In dictionary based compression, the algorithms assign variable length symbols in­
\

dices based on their previous occurence. The scheme that the algorithm follows is

easier to understand. This can be further explained by the following example:

If one uses the Random House Dictionary of English, second edition, unabridged

and assuming the following references.

1/1 822/3 674/4 1343/60 928/175 550/32 173/46 421/2

The first number refers to the page number and the second number refers to the

number of the word on this page. By this method one needs only 12 bits to code

2200 pages and assuming 256 words per page, 8 bits are enough to select any word

on a page. Hence a total of 20 bits are needed to code any word on a~y page in the

dictionary.

In the Random House Dictionary of English, totally 43 bytes are needed to

represent the corresponding words for these 8 references. However by the above

11

1.4. DIGITAL IMAGE COMPRESSION IN GENERAL

dictionary based algorithm 2.5 pte * 8 references = 20 bytes are enough for
re erence

coding. Hence, more than 50 percent compression is achieved through this method.

The important task is to build the dictionary table in the algorithm and either

adaptive or statistical methods can be utilized for this purpose. Both of the statisti­

cal and adaptive dictionary based algorithms have their advantages and drawbacks,

however, adaptive dictionary based algorithms are more well-known and widespread.

Adaptive algorithms start with an empty dictionary or a predefined base-line dictio­

nary and add the new phrases as the compression progresses. Statistical compression

schemes build a dictionary prior to encoding and perform compression based on this

dictionary without modification. Statistical methods have to send the dictionary to

the decoding side before the compression starts. This seems to be a major draw­

back that increases the size of the compression. Adaptive compression algorithms

can build the dictionary in real time without any need of transfering the dictionary,

however initally in compression they can not build an accurate dictionary to repre­

sent· the symbols due to the lack of occurence of the symbols in the input sequence.

A considerable amount of information has to be read till a precise dictionary of

occurence of symbols can be built [15]. The compression algorithms that utilize the

adaptive and statistical techniques to build the dictionaries will be analyzed more

thoroughly in the following chapters.

12

Chapter 2

Huffman Coding

Huffman coding is a minimum redundancy compression algorithm that assigns bit­

streams to individual symbols [17]. It is proved to produce the optimum code, when

symbols are encoded individually. Hence, it is the best minimum-redundancy coding

algorithm, if symbols are coded one at a time [1].

Original Source Reduced Source Reduced Source Reduced Source
Stage 1 Stage 2 Stage 3

Si p(sV sf p(sD s1' p(s;') 80'" p(si")-,
S1 0040 s' 0.40 ----; sIt 0.40?

s'" 0.601 1 I 1

S2 0.20~IS~ O.~,?
SIt 0.35 s'" 0.40

J 2 2

S3 0.15,:;/~s' 0.20 sIt 0.253 3

S4 0.15- '" s~ . 0.15

S5 0.10-

Figure 2.1: Huffman Algorithm Source Reduction Process

Similar to all compression a!g.orithms, Huffman coding is divided into decoding

and encoding phases. Encoding consists of statistical modelling, source reduction

and codeword construction. As seen in figure 2.1 and figure 2.2, the steps involved

13

Original Source Reduced Source Reduced Source Reduced Source
Stage 1 Stage 2 Stage 3

Sj Codeword sf Codeword 81' Codeword ~' Codeword.,
s'"

0

S1 1 S' 1 s"

~f :J
1 1 1

S2
000"" /s~ 01~

s" S'"
2 2 I

S3 OOI,{)~ s' OOOJ s" 013 3 I

S4 01O~ " s' 001·4 I

S5 011-
I

Figure 2.2: Huffman Algorithm Codeword Construction Process

in the encoding phase of Huffman Algorithm can be stated as follows:

Statistical modelling

1. Determine the probability of occurrence of every symbol in the symbol ensem­

ble.

2. Arrange the symbols in order of decreasing probability..

Source Reduction Process

3. Combine the probabilities of the two least probable symbols. ..r'-

4. Add the two smallest probabilites and assign the sum into a new symbol in

the next stage. Rearrange the symbols in the next stage according to their

probabilites in descending order.

5. Dedicate the sum as the parent symbol in the next stage and two symbols as

children in the current stage. Discard the least probable symbol.

6. Repeat from step 3 for the next stage until the number of members in the

symbol ensemble is reduced to two.

14

Codeword Construction Process

7. Assign one of each of the binary digits, i.e. 0 or 1 to the two symbols obtained

in the last stage of the source reduction process.

8. Find the parent in the current stage and assign 0 and 1 to its children in the

previous stage.

9. Assign the rest of the symbols in the previous stage the codes of the symbols

in the current stage in descending order.

10. Repeat steps 9 and 10 until all of the original source symbols are coded.

Hence as seen from the above process, the two restrictions proposed on developing

the Huffman algorithm is' as follows:

o Every symbol will consist of an individual code.

• In the decoding end, once the start of the sequences is known , it will be

possible to detect each code without the information about its beginning or

end.

These properties of Huffman Coding allow the decoding of each symbol from a

stream of digits. For example, 01, 102, 111, '202 are valid codes that satisfy the two

properties, a sequence of these codes 1111022020101111 can be decoded as 111-102­

202-01-01-111-102. However, if the codes are 11, Ill, 102, 02, decoding can not

be performed without a beginning and end information of each corresponding code,

since in the above example, the sequence might have started with 11 or 111 and it

is not ,possible to determine which code it is without a start and end information of

the code [17].

Even if Huffman Coding is the optimum minimum-redundancy coding algorithm

assigning variable length codes per symbol, it has also some limitations. In a discrete

memoryless source or O-order Markov model as observed in the above example, the

ideal codeword length for Huffman coding is lOg2P(Si) where p(Si) is the probability

15

of the symbol Si. Hence the ideal probabilities of symbols have to be negative powers

of 2, i.e. 1/2, 1/4, 1/8, ... If the probability of the symbols deviate highly from this

condition , the assigned codewords will no longer be efficient. Also, if the statistics

utilized to obtain the Huffman table deviate significantly from the statistics of the

input data, the codewords no longer approach the entropy of the input data. For

example, when digital halftoned images are compressed based on the CCITT inter­

national digital facsimile data compression standard, 50% data expansion occurs.

Because the Huffman tables in the CCITT standard are obtained by the statis­

tics from binary texts and documents, not from the statistics of digital halftones.

Hence, to overcome this problem, the algorithm might obtain the statistics in real

time, and utilize it for encoding of the symbols[17]. Thus an adaptive method can

be utilized to improve the coding efficiency in certain cases. In Adaptive Huffman

Coding which is analyzed in the next section, the Huffman table will be built in real

time.

16

Chapter 3

Adaptive Huffman Coding

The statistical model for variable-length coding algorithms can be built in two ways,

by statistical and adaptive methods. Huffman coding discussed in the previous

section utilizes static techniques in building the model. It constructs a huffman

table from a training image and utilizes this data for coding the rest of the images.

To achieve optimum compression, it would be desirable to make the Huffman table

for every image. However, this process would be costly and slow. Also if one desires

to use higher order modelling, instead of the order-O modelling used in the previous

example, the amount of Huffman tables to be built increases drastically. Hence,

to overcome the problem of static modellin~ Adaptive Huffman Coding builds the

Huffman table adaptively, i.e. in real time. Theoretically, this is the only difference

between Huffman and Adaptive Huffman Coding algorithms. In Adaptive Huffman

Coding, the Huffman table is to be updated after every symbol is read in. Practically,..
the Huffman table consists of a binary tree which is reconstructed upon every input

symbol. Hence, the Huffman tree can be basically described as a binary tree with

every node adjacent to its sibling and sharing the same parent. The nodes in the

tree are also organized in terms of increasing weight.

The tree shown in figure 3.1 satisfies the properties of a Huffman tree stated

above. The nodes are arranged in terms of increasing weight and every node is

adjacent to its sibling. As seen in figure 3.1 the nodes are named ABC D and E.

Practical application, requires the use of a property of Huffman coding called

17

W=7
#=7

ROOT
W=17
#=9

E
W=!O
#=8

W=3 W=4
#=5 #=6

n ~
A B C D
W=1 W=2 W=2 W=2
#=1 #=2 #=3 #=4

Figure 3.1: An example of a Huffman Tree

the "sibling property." It wouJd be very slow to reconstruct the Huffman tree for

each entry symbol. Thw Adaptive Huffman Algorithm makes use of the "sibling

property" to update the Huffman tree faster. A Huffman tree shows the sibling

property if the weight of every node can be arranged in increasing order and each

node can be adjacent to its sibling [18, 15]. This Sibling property allows speedy

update of the Huffman tree and thus faster compression of image data [15].

When a node is incremented, the tree is also updated. The update consists of two

sections. In the first section, the weight of the corresponding node is incremented,

then the weight of its parent is incremented. The incrementation operation continues

till the root of the tree is reached. This process is shown in figure 3.2[15].

In the second stage, any nodes that violate the sibling property are arranged

accordingly in the Huffman tree. For example as shown in figure 3.3, if node A

is incremented twice, its weight becomes larger than other nodes on its row. To

maintain the sibling property, it is swapped with node D, since node D is the node

with the next lower weight. Only two nodes are swapped for each update of the

Huffman Tree. After this update, the upper nodes are also incremented till the root

node is reached. Sibling property violations are checked at each stage and the tree

18

Final Incremcnl
ROOT

--_. W=18
#=9

11lird Increment~ W=8

#=7

Second Increment - W=4

#=5

I~

W=4

#=6

~

E
W=!O

#=8

A
First Increment - W=2

#=1

B
W=2
#=2

C
W=2
#=3

D
W=2
#=4

Figure 3.2: Incrementing the Huffman Tree

is arranged again so that it satisfies the sibling property. Swapping of the nodes

move the symbols in the Huffman Tree and allow efficient codes to be assigned to

them [15].

Figure 3.4 shows the tree after node A was incremented twice again. In this way

Band D with the least probability are assigned more bits than C, and A is encoded

with fewer bits than B, D and C. In this organization, code E which has the most

weight and thus the highest probability is assigned the least number of bits. Hence,

this process allows efficient assignment of bits after each update[15].

In the decoding end of the algorithm, the Huffman tree is updated after each

symbol is read. The same update process as described above for the encoding end

is utilized for the decoding.

19

W=8
#=7

ROOT
W=18
#=9

E
W=lO
#=8

W=4 W=4
#=5 #=6

n h
D B C A
W=2 W=2 W=2 W=3
#=1 #=2 #=3 #=4

Figure 3.3: Swapping the nodes in the Huffman Tree

ROOT
W=20
#=9

E
W=10
#=7

A
W=5
#=5

W=ll
#=8

C
W=2
#=3

W=4
#=4

D B
W=2 W=2
#=1 #=2

Figure 3.4: After several increments in the Huffman Tree

20

Chapter 4

LZW Coding

Lempel-Ziv-Welch coding is a dictionary-based coding algorithm. The originators

of dictionary based coding is A. Lempel and J. Ziv with their papers in 1977 and

1978[19, 20] with LZ77 and LZ78 algorithms respectively. Terry Welch improved

the LZ78 algorithm and called the new one LZW. He also proposed a practical

application in data storage mediums[21]. His algorithm sparked attention and led

to the development of new compression programs like compress program for UNIX

platforms.

LZW method reads input characters or symbols one at a time and builds up

phrases. It sends out the corresponding code when a match occurs between the

input data and the phrases in the dictionary. The flow of the algorithm can best be

explained by an example.

In the example shown in table 4.1, the LZW dictionary is assumed to contain all

the ASCII codes. In the first pass, it checks wether" W" exists in the dictionary,

since it is not in the dictionary, the algorithm assigns a code to the new phrase

beyond the already utilized codes. The first code that is available for use is 256,

which comes after ASCII codes. The ASCII code for the space character is output

and the process continues with "WE". Since this phrase is also not in the dictionary,

it's included in the dictionary. The process continues till a match between the input

characters and the dictionary phrase occurs. For instance, when " WE" is reached,

the code corresponding to previously matched phrase" W" is output along with the

21

Input string: « WED WE WEE WEB WET"

Characters Input Code Output New code value and associated string
«W" " " 256 = ((W"
«E" 'W' 257 = «WE"

"D" . 'E ' 258 = «ED"
« « «D" 259 = «D"
«WE" 256 260 = "WE"
" (('E' 261 = «E ((

"WEE" 260 262 = "WEE"
«W" 261 263 = «EW"
"EB" 257 264 = "WEB"
({ " B 265 = "B"
"WET" 260 266 = ((WET"

EOF T

Table 4.1: LZW decoding example

ASCII code for "E". " WE" is coded and added to the dictionary. The compression

continues till all the input data is processed [15].

The decoding of the LZW algorithm is similar to the encoding. The characters

are read in pairs. As shown in table 4.2, OLD_CODE is the first char.acter and

the NEW_CODE is the second character. As the characters are read in, the

dictionary builds up similarly in the decoding end. The dictionary of the decoding

end is a replica of the dictionary in the encoding side. Hence, LZW algorithm uses

an adaptive technique to build and utilize the dictionary [15].

No matter how big the dictionary size is, it will fill up eventually. Hence, the

dictionary should be manipulated so that it could contain the codes essential for

good compression. If the same dictionary is maintained after it is full, it might

not provide efficient tables for codes encountered later in the image. The UNIX

compress program handles dictionary management by monitoring the compression

ratio and deleting the dictionary and starting a new one once the compression ratio

starts to deteriorate. A more simplistic approach is to flush the dictionary and start

a new one when it is full[15].

Another issue in implementing a dictionary is that for smaller and almost random

22

Input Codes: "WED<256> E<260><261 ><257> B<260>T"

Input/ OLD_CODE STRING/ CHARACTER New table

NEW_CODE Output entry
, , , ,

" "
'W'

, ,
"W" 'W' 257=" W"

'E' 'w' "E" 'E' 257="WE"
'D' 'E' "D" 'D' 257="ED"

256 'D' "W"
, , 259="D"

'E' 256 "E" 'E' 260=" WE"

260 'E' "WE"
, , 261="E"

261 260 "E" 'E' 262=" WEE"

257 261 "WE" 'W' 263="E W"

'B' 257 "B" 'B' 264= lCWEB"

260 'B' "WE"
, , 260= lCB"

'T' 260 "T" 'T' 260=" WET"

Table 4.2: LZW decoding example

files, small dictionary sizes perform better compression than the large dictionaries,

since for smaller files the codes are found initially in the dictionary and thus the

dictionary does not fill up completely. Hence, sending less bits for the codes in the

dictionary will be more efficient for compression. Consequently for short input and

almost random input sequences, small dictionary sizes compress better, while for

long and least random sequences, big dictionary sizes compress better[22]. A more

efficient implementation is to increase the dictionary code size as the dictionary fills

up with phrases[15]. This is the method used in this implementation of the LZW

algorithm. In this case, the dictionary code size can start with 9 bits and can go

upto the desired size.

23

Chapter 5

Analysis of Lossless Compression

Algorithms in Vector Transform

and Vector Subband Domains

5.1 Description of the Compression Environment

~ &1 • • • • ~

'"

a pixel a vector an image

Mux Output

Figure 5.1: Block Diagram of the Vector Subband Coding Algorithm.

24

5.1. DESCRIPTION OF THE COMPRESSION ENVIRONMENT

A simplified block diagram of vector subband coding algorithm can be visualized

in figure 5.1. As se~n in the figure, the image is decomposed into vector subbands

using a vector filter bank and each subband is vector quantized [9]. In this diagram

only seven subbands are shown. In our tests we will utilize 10 subbands for com­

pression. Each one of subbands will be compressed through a lossless compression

algorithm, Huffman, Adaptive Huffman or LZW in our case. The compressed data

is sent through a presumably lossless communication channel, and decoded lossless

in inverse manner and given to the decoding end of the vector subband or vector

transform coding algorithm.

5.1.1 Source Characteristics

Basically, two images and a video sequence were utilized for the tests. The images

are the well-known Lenna image and a training image which consisted of 16 different

images. The video utilized is a 143 frame football video sequence.

The statistics taken on the images and the video sequence can be observed in

figures 7.1 to 7.30 in the appendix. As mentioned previously, the image indices

are obtained after vector subband transform of each image frame. For the video

sequence, each index consists of a classification bit which shows the number of bits

used in the index, and the index value. The classification bit in our case is 0 or

1. Classification bit 0 indicates an index value of 0, and 1 indicates an index value

ranging from 0 to 4095, the maximum value attainable with 12 bits. For the images,

there is no (0 0) index. The image indices range from 0 to 4095.

The figures 7.1 through 7.30 show the number of occurence sorted in descend­

ing order for the image indices. The first figures 7.1 through 7.10 are for the ten

subbands of the football sequence. The rest of the figures 7.11 through 7.30 are

histograms for the Lenna and training images respectively. For the video sequence,

since the number of occurrence for the index (0 0) is much higher than the other

indices and to adjust the scale so that the shape of the curve is clearly displayed,

the zero index (0 0) is not shown on the graph, rather its number of occurence is

indicated below the graph.

25

5.2. HUFFMAN CODING

As observed from the curves, the occurence rate for the indices does not show

a constant behavior, rather it drops for certain indices. This kind of behavior is

essential for the entropy coding of data. Lossless compression algorithms utilized

such as Huffman and Adaptive Huffman coding performs best if some indices occur

more frequently than others, i.e. if the probability of occurence for some indices is

more than others. Because, the algorithm can favor more frequent indices by assign­

ing less bits and thus decrease the average number of bits sent per index. In LZW

algorithm, the more the number of repeated patterns, the better the compression

will be. Because basically, LZW algorithm achieves compresion by assigning fixed

length codes to long sequence of repeated patterns.

As stated earlier, the lossless compression algorithms utilized in the tests are

Huffman, Adaptive Huffman and Lempel-Ziv-Welch coding methods. In performing

the tests, the results were obtained for each lossless algorithm seperately. The

description of the algorithms and the discussion of the results will be presented

next.

5.2 Huffman Coding

Huffman Coding Algorithm is developed based on the example about Huffman Cod­

ing in Chapter 2. The code is developed originally by the author of this thesis by

following the steps involved in statistical modelling, source reduction and codeword

construction sections for encoding. The Huffman table is developed in the encod­

ing section, sent over the communication channel and utilized for decoding. The

compressed data stream is also sent over the channel and decoded based on this

Huffman table. The results of the tests by Huffman Coding will be shown next.

5.2.1 Discussion

Huffman Coding is applied to the two images and the video sequence. For the

images, firstly, the Lenna image is utilized for taking the statistical information for

building the Huffman table and it is compressed based on this Huffman table. Each

26

5.2. HUFFMAN CODING

subband is encoded seperately.

[Subband Number I Ideal Entropy I Average Index Length I Compression Ratio I
0 7.649 7.688 1.560:1
1 7.699 7.719 1.555:1
2 7.047 7.094 1.692:1
3 7.343 7.375 1.627:1
4 8.676 8.695 1.380:1
5 7.613 7.648 1.569:1
6 8.191 8.211 1.461:1
7 8.775 8.803 1.363:1
8 8.920 7.951 1.509:1
9 8.416 8.443 1.421:1

Table 5.1: The Results of Huffman Coding for the Lenna Image

The results are shown in table 5.1 The compression ratios for the subbands range

from 1.363:1 to 1.692: 1. The average compression ofthe image for the total ten bands

is 1.446:1. As observed in the above table, the original entropy and the average

number of bits used for the compressed file are very close. Theoretically, Huffman

coding is the best minimum-redundancy coding algorithm. As also observed in the

above results, this indicates that the Huffman algorithm compresses very close to the

ideal entropy of the image. This result is mainly due to the fact that the same image

is 'ttilized for taking the statistics to build the Huffman table and the coding. The

probability of occurence of the image indices represent very accurately the statistical

model utilized for coding. Hence, this compression ratio performance is probably

one of the best results we could get in compressing these files, since the results are

very close to the entropy of the source.

In the second test, the training image is utilized for statistical modelling and

building the Huffm~n table. The Lenna image is compressed based on this Huffman

table.

The results are shown in table 5.2. The average compression of the Lenna image

for the the ten bands is 1.275:1. Compression ratios show improvement in the

upper subbands due to the high correlation among the indices. However, the overall

compression ratio shows a clear decrease from the previous Huffman coding results.

27

5.2. HUFFMAN CODING

I Subband Number I Ideal Entropy I Average Index Length I Compression Ratio I
0 7.649 11.813 1.016:1
1 7.699 12.438 0.965:1
2 7.047 9.750 1.231:1
3 7.348 11.344 1.058:1
4 8.675 10.352 1.159:1
5 7.613 8.992 1.334:1
6 8.191 9.711 1.236:1
7 8.775 9.565 1.255:1
8 7.920 8.795 1.364:1
9 8.416 9.199 1.304:1

Table 5.2: The Results of Huffman Coding for the Lenna Image by training with
the training image

This is mainly because of the fact that a different image is being utilized for training

and thus the statistics obtained from the training image do not accurately represent

the probabilibes of the indices for the Lenna image. As observed from the above

results, Huffman coding can at most compress as good as the entropy of the training

image used for stabstical modelling. If the statistical informabon of the training

image is closer to the Lenna image, better compression will occur. The entropy of

the Lenna image is much lower than the average bits utilized in transmission for the

Lenna image, as opposed to the results shown in the previous table where the two

values are very close. Hence Huffman compression performance is limited by the

entropy of the training image utilized for taking the statistics.

Huffman coding is also applied to the 143 frame football video sequence. As

mentioned previously, there is an extra index (0 0) in the video sequence. Firstly,

this index is assigned a image index value of 4096 and treated like other indices in

the Huffman coding. The video sequence is divided into 10 subbands where each

subband contains from the 143 frames. Each one of the ten subbands is encoded

seperately.

The results are shown in the table 5.3. The average compression ratio for the ten

subbands is 1.085:1. Even if the results are very close to the entropy of the video

sequence, this test does not show much improvement in compression ratio. Since,

28

5.2. HUFFMAN CODING

[Subband Number I Ideal Entropy I Average Index Length I Compression Ratio I
0 9.029 9.051 1.081:1
1 9.072 9.094 1.083:1
2 9.073 9.094 1.081:1
3 9.002 9.025 1.093:1
4 8.990 9.014 1.090:1
5 9.050 9.072 1.085:1
6 8.827 8.860 1.116:1
7 8.826 8.858 1.117:1
8 8.790 8.821 1.118:1
9 8.792 8.823 1.115:1

Table 5.3: Huffman Coding of the Video Sequence. Index (0 0) is included in the
Huffman table.

when the algorithm is investigated, it is observed that Huffman algorithm assigns

two bits to index (0 0). In the original file, this index is represented with only one

bit, and the rest of the indices are represented by a 1-bit classification bit and 12

bit image index value.

In the second test of the video sequence, the Huffman algorithm is modified so

that index (0 0) is assigned only one bit "0" and this index is excluded out of the

Huffman table. The rest of the indices are Huffman coded. However, in order to

distinguish between the index (0 0) and other indices, a 1-bit classification bit "1"

is assigned prior to non-zero indices.

The results can be visualized in 5.4. The average compression ratio is 1.066:1.

The compression ratio for this test decreases instead of improvement. This is because

of one bit classification bit added to distinguish the non-zero image indices. Since

there seems to be more non-zero indices than the (0 0) index, one bit adds more

overhead and thus reduces the compression ratio.

29

5.3. ADAPTIVE HUFFMAN CODING

Subband Number Minimum Compressed File Size Compression Ratio
Compressed File Size

0 202377 202841 1.062:1
1 203515 203979 0.063:1
2 203466 203954 1.061:1
3 50507 50627 1.073:1
4 50411 50524 1.071:1
5 50753 50873 1.066:1
6 12391 12419 1.096:1
7 12389 12416 1.097:1
8 12334 12362 1.099:1
9 12333 12361 1.088:1

Table 5.4: Huffman Coding of the video sequence. Index (0 0) is excluded from the
Huffman Table.

5.3 Adaptive Huffman Coding

For Adaptive Huffman Coding, the algorithm from Mark Nelson's "The Data Com­

pression Book" [15] is utilized. The program is designed originally for text compres­

sion to process ASCII characters. Since a different image source is utilized in this

case, the program has to be modified. The program is altered to read 12-bit data

(from 0 to 4095) and the control characters such as those showing the beginning

and end of the data bit stream. The major difference between the Huffman and

Adaptive Huffman algorithms is that Adaptive Huffman Coding builds the dictio­

nary adaptively during encoding and decoding phases, while Huffman Coding builds

the dictionary statistically prior to encoding.

5.3.1 Discussion

For Adaptive Huffman Coding, since the building of the Huffman table or tree is in

real time, there is no prior statistical information that needs to stored. Hence, the

training image is not needed for building the Huffman table. Instead, the Lenna

image is compressed based on the statistical information of its own image indices.

30

5.3. ADAPTIVE HUFFMAN CODING

Adaptive Huffman Coding algorithm was applied to the Lenna indices at each sub­

band of vector subband coding.

I Subband Number I Ideal Entropy I Average Index Length I Compression Ratio I
0 7.649 16.625 0.722:1
1 7.699 16.875 0.711:1
2 7.047 14.000 0.857:1
3 7.348 15.281 0.785:1
4 8.675 14.516 0.827:1
5 7.613 11.750 1.021:1
6 8.191 13.602 0.882:1
7 8.775 11.586 1.036:1
8 7.920 10.102 1.188:1
9 8.416 11.006 1.090:1

Table 5.5: The Results of Adaptive Huffman Coding For the Lenna Image

The results are shown in table 5.5. The average compression for the image is

1.03:1. Adaptive Huffman algorithm can not perform as well as Huffman algo­

rithm. Especially for lower subbands, the algorithm expands the binary index files

instead of compressing them. I think this is due to the fact that Adaptive Huffman

algorithm can not build enough statistical information to code the binary files ef­

ficiently. Especially, for low order bands, the order that each symbol is being read

from the file affects the performance because the order of the input data builds the

statistical Huffman tables and thus it is essential in assigning the right code for the

compression. Hence, overall, the compression ratio is very small and there is hardly

any compreSSIOn.

For the video sequence, similar to the Huffman coding, initially index (0 0) is

treated as a symbol and it is encoded in the algorithm.

The results are shown in the table 5.6. The overall compression ratio for the ten

bands is 1.023:1. Thus, Adaptive Huffman compression is not as good as Huffman

compression and compression ratio is very low. Adaptive Huffman coding can not

perform as good as Huffman coding, since it builds the dictionary in real time while

it is encoding the image indices. As mentioned earlier, initial statistical information

31

5.4. LZW CODING

I Subband Number I Ideal Entropy I Average Index Length I Compression Ratio I
0 9.029 9.291 1.053: 1
1 9.072 9.338 1.054: 1
2 9.073 9.340 1.052:1

,

3 9.002 10.057 0.981:1
4 8.990 10.062 0.977:1
5 9.050 10.131 0.972:1
6 8.827 11.699 0.846:1
7 8.826 11.628 0.851:1
8 8.790 11.541 0.855:1
9 8.792 11.59 0.849:1

Table 5.6: Adaptive Huffman Coding of the Video Sequence. Index (0 0) is included
in the Huffman table.

is not enough to assign the right codes to the indices. However, major advantage of

Adaptive Huffman Coding is that building of the dictionary is not needed prior to

encoding, and thus the dictionary does not have to be sent to the other side before

encoding is started.

In the second test with the video sequence, similar to Huffman Coding, index (0

0) is coded with a fixed one bit "0" and the rest of the indices are encoded regularly.

To distinguish the non-zero indices from index (0 0), a one bit "I" has to be sent

prior to non-zero indices.

The results are shown in table 5.7. For this case, similar to the tests in Huffman

coding for the video sequence, the compression ratio does not improve, but decreases.

The overall compression ratio for the ten subbands is 1.002:1. Hence, we could say

that Adaptive Huffman algorithm has almost no effect in compressing this video

sequence.

5.4 LZW Coding

For LZW coding, the program from Mark Nelson's "The Data Compression Book"

[15]is modified based on the input data. Similar to the Adaptive Huffman Coding,

the algorithm is modified to compress the image indices ranging from 0 to 4096.

32

5.4. LZW CODING

Subband Number Minimum Compressed File Size Compression Ratio
Compressed File Size

0 202377 209197 1.030:1
1 203515 210386 1.031:1
2 203466 210307 1.029:1
3 50507 56390 0.963:1
4 50411 56354 0.960:1
5 50753 56809 0.954:1
6 12391 16281 0.836:1
7 12389 16253 0.938:1
8 12334 16158 0.840:1
9 12333 16202 0.836:1

Table 5.7: Adaptive Huffman Coding of the video sequence. Index (0 0) is excluded
from the Huffman Table

Initially, the dictionary is assumed to contain all the individual numbers from 0 to

4096.

The program code also gives the ability to modify the number of bits used to

build the dictionary. In our implementation we started with 12 bits and varied up

to 15 bits. Varying the dictionary bit size rather than keeping it fixed seems to

improve the compression performance.

5.4.1 Discussion

The LZW algorithm is applied to the indices obtained after vector subband coding

of the Lenna image, each subband is compressed seperately with LZW algorithm.

Since the statistical information is gathered in real time like Adaptive Huffman

coding. The dictionary is built on the fly on both encoding and decoding ends

of the compression algorithm. Hence, there is no need for prior building of the

dictionary based on the training image.

As seen from table 5.8, the performance of the LZW algorithm is poorer than

the Huffman algorithm, but very close to the Adaptive Huffman compression. The

average compression for the image is 1.02:1. LZW coding is an adaptive compression

technique like Adaptive Huffman Coding. Hence the input data information in the

33

5.4. LZW CODING

Subband Number Ideal Entropy Average Index Length Compression Ratio
0 7.649 13.0625 0.919:1
1 7.699 13.000 0.923:1
2 7.047 12.813 0.937:1
3 7.348 13.000 0.923:1
4 8.675 12.836 0.935:1
5 7.613 11.984 1.001:1
6 8.191 12.280 0.977:1
7 8.775 11.824 1.015:1
8 7.920 11.039 1.087:1
9 8.416 11.680 1.027:1

Table 5.8: The Results of LZW Coding for the Lenna Image

lower bands is not enough to accumulate accurate statistics. Hence, for lower bands,

expansion rather than compression occurs. In the higher bands better performance

is observed, since more data is collected to build accurate statistical models and the

indices are highly correlated.

Also, this poor performance of the LZW algorithm is due to the fact that it

depends on the probability of the occurence of sequence of symbols rather than

the occurence of the single symbol itself. Huffman algorithm makes better use of

the single symbol probability of occurence. LZW algorithm performs better, if the

probability of the occurrence for the repeated index sequences is high.

LZW and Adaptive Huffman algorithms have very close compression ratios, since

they both use adaptive techniques for statistical analysis. They both improve their

compression performance as the input data increases.

Similar to previous coding algorithms, the football video sequence is compressed

in two ways for LZW coding. Firstly, extra index (0 0) is treated like other non-zero

indices and included as an index in compression.

The results indicate no compression but expansion. The overall ratio is 0.915:1.

When index (0 0) is treated seperately from oth~r non-zero indices and a fixed one

bit "0" is sent as a code, the compression ratio does not improve but decreases.

The results get poorer for this case which indicates an overall expansion of

34

5.4. LZW CODING
../

I Subband Number I Ideal Entropy I Average Index Length I Compression Ratio I
0 9.029 10.675 0.916:1
1 9.072 10.730 0.918:1
2 9.073 10.726 0.916:1
3 9.002 10.824 0.911:1
4 8.990 10.769 0.913:1
5 9.050 10.796 0.912:1
6 8.827 10.999 0.899:1
7 8.826 11.007 0.899:1
8 8.790 10.978 0.899:1
9 8.792 10.978 0.896:1

Table 5.9: LZW Coding of the Video Sequence. Index (0 0) is included in LZW
coding.

0.889:1. Because when sequence of (0 0) indices occur in the middle of the non­

zero sequences, the sequence of non-zero indices built in the dictionary have to be

cut short, leading to shorter non-zero sequences and thus decrease in compression.

Hence, LZW algorithm can not compress for the video sequence and it does not

seem well-suited for the video compression.

The summary of the compression performance of the three algorithms can be

visualized in the tables 5.11 and 5.12. As observed in the tables for the video se­

quence, Huffman coding seems to be the best compression method among the three

algorithms in terms of compression ratio. It gives results very close to the entropy

of the source. Even if the compression for Huffman coding is not high, this results

indicate a good compression ratio that can be achieved for lossless coding. For

Adaptive Huffman coding, the results are worse than Huffman algorithm compres­

sion. The compression ratio is very low. LZW coding expands the files rather than

compression and does not seem appropriate for the image data utilized.

35

5.4. LZW CODING

Subband Number Minimum Compressed File Size Compression Ratio
Compressed File Size

0 202377 242836 0.887:1
1 203515 244236 0.888:1
2 203466 244090 0.887:1
3 50507 61454 0.884:1
4 50411 61129 0.885:1
5 50753 61392 0.883:1
6 12391 14722 0.925:1
7 12389 14707 0.926:1
8 12334 14701 0.924:1
9 12333 14539 0.931:1

Table 5.10: LZW Coding of the video sequence. Index (0 0) is excluded from LZW
coding.

Coding Method Compression Ratio
Huffman Coding 1.085:1

Adaptive Huffman Coding 1.023:1
LZW Coding 0.915:1

Table 5.11: Summary of coding results of the video sequence with index (00) treated
as a regular image index.

Coding Method Compression Ratio
Huffman Coding 1.066:1

Adaptive Huffman Coding 1.002:1
LZW Coding 0.889:1

Table 5.12: Summary of coding results of the video sequence with index (0 0) treated
seperately from other image indices.

36

Chapter 6

Conclusions

In this study, the three lossless compression algorithms are analyzed and ~ompared

in terms of their compression performance. The algorithms are Huffman coding,

Adaptive Huffman coding and Lempel-Ziv-Welch coding algorithms. Two images,

the Lenna and the training image and a football video sequence are utilized as input

source for the compression algorithms.

After the tests, it's observed that Huffman coding performs better than Adaptive

Huffman and LZW coding algorithms in terms of compression ratio for the images

and the video sequence. If the same image is utilized for training and coding, the

Huffman algorithm gives results very close to its entropy. If a different image is

utilized for training in Huffman coding, the compression ratio decreases but it is

still better than the other two algorithms.

Adaptive Huffman coding has very low compression ratio for the Lenna imag~,

since it builds the Huffman table in real time and especially for the lower bands,

there are not enough indices to represent accurately the probability of occurrence

for the indices.

Similarly, LZW algorithm has also very low compression for the Lenna image.

For the Lenna image, LZW algorithm's compression ratio is very close to Adaptive

Huffman's compression ratio. This is because LZW algorithm like Adaptive Huffman

coding builds the dictionary adaptively in real time and there is a lack of statistical

data to build the dictionary accurately.

37

For the video sequence, Huffman coding gives again the best performance among

the three algorithms. For this case) Adaptive Huffman algorithm comes next with

a lower compression ratio while LZW algorithm expands the image files instead of

compression. Huffman compression results are very close to the entropy of the source

and even if the compression ratio is low) it achieves a good compression performance

due to the entropy limitations. The LZW algorithm does not seem appropriate for

compression of this video sequence.

Hence in order to achieve better compression some future work is suggested. In

Huffman coding, the least probable indices might be coded with an escape sequence

and a fixed length code, rather than including them in the statistical analysis for the

Huffman table. The long sequence of (0 0) indices can be manipulated differently

from the non-zero indices. A further study can be the run-length encoding (RLE)

of these indices along with entropy or LZW coding.

38

Chapter 7

Appendix

Football Video Sequence Histogram for Band 0
300,---,------,--,-----,--.-----,---.------,------,

250

~ 200

l"
§
~ 150

(j;
-§
~ 100

50

oL----'---.-----J'-----'------======::;:=====>..L-~
o 500 1000 1500 2000 2500 3000 3500 4000 4500

Image Index Value
Number of occurence for index 0 (coefficient 0 0) is 47242

Figure 7.1: The frequency of occurence in descending order for the image indices in
band 0 of the football video sequence.

39

Football Video Sequence HlstoglJfT1lor Band 1
300,----,--,----,------,----,-------,----.----,-----,

250

50

oL--'-_-'------'-_~::::;:==::::;:::====_'__~
o 500 1000 1500 2000 2500 3000 3500 4000 4500

Image Index Value
Number 01 occurence lor index 0 (coefficient 0 0) is 46318

Figure 7.2: The frequency of occurence in descending order for the image indices in
band 1 of the football video sequence.

Football Video Sequence Histogram for Band 2
300,-----,------,,----,-------r----.-------,--,.-----.-----,

250

1'1200
c
~

"8
~ 150

Q;
"§
"z 100

50

oL--'-_-'------'-_~:::::==:::::c::::::::::::J==_'__~
o 500 1000 1500 2000 2500 3000 3500 4000 4500

Image Index Value
Number of occurence for index 0 (coefficient 0 0) is 46550

Figure 7.3: The frequency of occurence in descending order for the image indices in
band 2 of the foot ball video sequence.

40

Football Vidoo Soquonco HIStogram for Band 3
80,-----,---,-------,-----,,------,-----,,----,-----,_--,

70

60

20

10

oL--<_--'---_--L-_~=C==t==_--L-~
o 500 1000 1500 2000 2500 3000 3500 4000 4500

Imago Indox Valuo

Numbor of occuronce for index 0 (coefficient 0 0) is 11511

Figure 7.4: The frequency of occurence in descending order for the image indices in
band 3 of the football video sequence.

Football Video Sequence Histogram for Band 4
80,-----,---,------,-----,,-----,---,,----,---,,-------,

70

60

20

10

oL---'-_----'-_ ___'_____~=2=:=:::;:===L--___'____---.-J
o 500 1000 1500 2000 2500 3000 3500 4000 4500

Image Index Value

Number of occurenae for index 0 (coefficient 0 0) is 11645

Figure 7.5: The frequency of occurence in descending order for the image indices in
band 4 of the football video sequence.

41

FoOlbal1 Vldoo Sequenco HIStogram for Band 5
80,--------.--,-----.--,---------.--,---------.--,-----,

70

60

20

10

oL-----'-_--'-_-'-_---'----=2=:::::;~=::l.-_'__~
o 500 1000 1500 2000 2500 3000 3500 4000 4500

Image Index Value

Number of occurenoe for index 0 (coefficient 0 0) is 11577

Figure 7.6: The frequency of occurence in descending order for the image indices in
band 5 of the foot ball video sequence.

Football Video Sequence Histogram for Band 6
30,------,---,------,---,------,---,------,------,c-----,

25

500 1000 1500 2000 2500 3000 3500 4000 4500
Image Index Value

Number of occurenoe for index 0 (coefficient 0 0) is 2851

Figure 7.7: The frequency of occurence in descending order for the image indices in
band 6 of the football video sequence.

42

Football Video Sequence HIStogram for Band 7
30,-~_._~~r--_._~~,--~___,_-~,_~--,--____,-~---,

25

oo'----=-5oLo~-1:-:0LOO=---1:-:5':-00=---2:-:c0':-00=--:-:2,-,J50:-:0=--:-:3,-,J00:-:0:-:-:3-!50=-:0~:-:40~0:-::0~--::'4500
Image Index Value

Number of occurence for index 0 (coefficient a 0) is 2851

Figure 7.8: The frequency of occurence in descending order for the image indices in
band 7 of the football video sequence.

Foolball Video Sequence Histogram for Band 8
30,----_._~~r--_._--,_-___,_--r_-___,_-____,-_______,

25

11 20
c;

~
~ 15
o

500 1000 1500 2000 2500 3000 3500 4000 4500
Image Index Value

Number of occurence for index 0 (coefficient 0 0) is 2875

Figure 7.9: The frequency of occurence in descending order for the image indices in
band 8 of the football video sequence.

43

Football Video Sequence Histogram for Band 9
30r----,-----,--,------;...--,...::---,---,----,---,

25

5

OL--=---:-:':-:---!-:-c-----'-:--~L----:c~-_L--'--:_:'o 500 1000 1500 2000 2500 3000 3500 4000 4500
Image Index Value

Number of occurence for index 0 (coefficient 0 0) is 2901

Figure 7.10: The frequency of occurence in descending order for the image indices
in band 9 of the football video sequence.

44

Lenna Image Histogram lor Band 0

6

5

m
0
<::
m
~4
0
0
'0

'"3

h
-g
::>
Z

2

1

\
0

0 50 100 150 200 250 300
Image Index Value

Figure 7.11: The frequency of occurence of the indices in descending order for band
oof the Lenna image.

Lenna Image Histogram for Band 1
7

6

5

m
0
<::
m
~4
0
0
'0

'"3

h
-g
::>
Z

2

1

0
0 50 100 150 200

Image Index Value

\
250 300

Figure 7.12: The frequency of occurence of the indices in descending order for band
1 of the Lenna image.

45

Lonna Imago Histogram lor Bano 2

6

5

'"uc
'"B4
o
o
0;3
"g
::>
Z

2

300
oL-__--'- -'-__----'L...-!__-'-__----'L-__---l

o 50 100 150 200 250
Imago Index Value

Figure 7.13: The frequency of occurence of the indices in descending order for band

2 of the Lenna image.

Lenna Image Histogram for Band 3
7.....-----r---...,-------,,....:...-----.-------,.-----.

6

5

300250100 150 200
Image Index Value

50

oL--__-'- -'-__---'__---L--'-__----'L-__---l

o

Figure 7.14: The frequency of occurence of the indices in descending order for band

3 of the Lenna image.

46

Lenna Image Histogram for Band 4

30

25

'"o
~ 20a
oo
~ 15
'"-g
:>
Z

10

'r~oL---,--~==::::;::::==:::;::::==::;::::::L----'--J'-------'--------'-~
o 100 200 300 400 500 600 700 800 900 1000

Image Index Value

Figure 7.15: The frequency of occurence of the indices in descending order for band
4 of the Lenna image.

Lenna Image Histogram for Band 5

30

25

'"o
~ 20
:>
o
oo
~ 15
'"-g
:>
Z

10

5

°oL--,-~:::::;:::::=:::;::::L,---,----,---,---,--,-----.J
100 200 300 400 500 600 700 800 900 1000

Image Index Value

Figure 7.16: The frequency of occurence of the indices in descending order for band
5 of the Lenna image.

47

Lenna Image Histogram lor Band 6

30

25

Q)
o
ii 20a
8
~ 15

~
"z

10

5

oL--'---======:;===:J---'---'---'------'---.-J
o 100 200 300 400 500 600 700 BOO 900 1000

Image Index Value

Figure 7.17: The frequency of occurence of the indices in descending order for band
6 of the Lenna image.

Lenna Image Histogram for Band 7

50

(I) 40
o
c:
l!!
:::>
o

~30
o
(j;
-g
~20

10

200 400 600 BOO
Image Index Value

1000 1200

Figure 7.18: The frequency of occurence of the indices in descending order for band
7 of the Lenna image.

48

Lonna Imago Histogram lor Band 8

50

10

12001000400 600 800
Imago Index Valuo

200
oL-----'----==~=~======-'----------'------''--~
o

Figure 7.19: The frequency of occurence of the indices in descending order for band

8 of the Lenna image.

Lonna Imago Histogram for Band 9
60".----..-------r---,-------.------,,-------.----.

50

10

12001000400 600 800
Imago Index Value

200
oL----'--~=:;=~=====----'-------'-~
o

Figure 7.20: The frequency of occurence of the indices in descending order for band
9 of the Lenna image.

49

Training Imago HI510gram lor Band 0
10r------.---.----~---._--_,_--_.

9

8

<D
g
:" 6
il
u
o 5
o

~ 4
:>
z

3

2

500

l
1000 1500 2000

Image Index Value
2500 3000

Figure 7.21: The frequency of occurence of the indices in descending order for band
oof the training image.

Training Image Histogram lor Band 1

9

8

<D
U
c
:" 6
:>
u
u
a
o
ID
-g 4
:>
z

3

2

OL-__-::"-__----:-:':--__-'-__--Li--__-'--:--_---'

o 500 1000 1500 2000 2500 3000
Imago Index Value

Figure 7.22: The frequency of occurence of the indices in descending order for band
1 of the Lenna image.

50

Training Imago Histogram lor Band 2
10,-r----.----,-----,----....,------,------,

8

..
u
c
~ 6

~
'0

~ 4
::>
z

3

2

,\
500 1000 1500 2000

Image Indox Value
2500 3000

Figure 7.23: The frequency of occurence of the indices in descending order for band
2 of the Lenna image.

Training Image Histogram for Band 3
10

9

8

7..
u
c
~ 6
1l
u
0 5
'0
Q;
-g 4
::>
z

3

2

a .I
a 500 1000 1500 2000 2500 3000

Image Index Value

Figure 7.24: The frequency of occurence of the indices in descending order for band
3 of the Lenna image.

51

Training Image Histogram for Band 4

30

25

Ql
o
ai 20a
(5

~ 15

~
"z

10

5

o~-----,-~~===;;===::L---J
o 500 1000 1500 2000 2500 3000 3500

Image Index Value

Figure 7.25: The frequency of occurence of the indices in descending order for band
4 of the Lenna image.

Training Image Histogram for Band 5

30

25

2l
:520

~
~ 15
Ql

-g
"z

10

5

ooL-----=-5o"-=o---:-:1o:'-oo.,----:-:15-!:o.,-o~=;20;0:;:0==25;0=0==3010-0-----J3500
Image Index Value

Figure 7.26: The frequency of occurence of the indices in descending order for band

5 of the Lenna image. J
52

Training Imago Hislogram lor Band 6

30

2S

S

ooL-----=-so"-:o---:-1o:'::o.,-o-----,-lS:0=0==20~0=0==2::;:SO=0==3:::;00=0=L3JSOO
Image Index Value

Figure 7.27: The frequency of occurence of the indices in descending order for band
6 of the Lenna image.

Training Image His10gram for Band 7

gO

80

70

.10

20

Q)
()

~ 60
G
8 so
'0
:;;
~40
::>z

30

oL--,,-L--.l----:-:':--,-,L-:---.:;:=:::::c'===L.....L.--.l---,J
o SOO 1000 1S00 2000 2500 3000 3S00 4000 4500 SOOO

Image Index Value

Figure 7.28: The frequency of occurence of the indices in descending order for band
7 of the Lenna image.

53

Training Image HISlogram lor Band 8

90

80

70
Q)
u

lii 60

1i
°50a
(j;
-g40
::>z

30

20

10

oL---'------'_-'-------l.-=~::====__..L.. _ _'___._J
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Image Index Value

Figure 7.29: The frequency of occurence of the indices in descending order for band
8 of the Lenna image.

Training Image Histogram for Band 9

90

80

70
Q)
u
lii 60

§
050
a
iii-g40
::>z

30

20

10

00 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Image Index Value

Figure 7.30: The frequency of occurence of the indices in descending order fpr band
9 of the Lenna image.

54

Bibliography

[1] R.C. Gonzalez, Digital Image Processing, Addison Wesley, 1992.

[2] C.E. Shannon, "The Mathematical Theory of Communication," Urbana

IL:Univ. Illinois Press, 1949.

[3] A.N. Netrevali, J.O. Limb, "Picture Coding: A Review," Proceedings of the

IEEE, Vol. 68, No.3, March 1980, pp. 366-403.

[4] Weiping Li, Y.Q. Zhang, "Vector-based signal processing and quantization for

image and video compression", Proceedings of the IEEE, Vol. 83, No.4, Febru­

ary 1995, pp. 317 - 335.

[5] A.K. Jain, Fundamentals of Digital Image Processing, Englewood Cliffs,

NJ:Prentice Hall, 1989.

[6] M. Rabbani, P.W. Jones, Digital Image Compression Techniques, Belling­

ham,WA:SPIE Optical Engineering Press, 1991.

[7] M. Rabbani, B.J. Thompson, Selected Papers on Image Coding and Compres­

sion, Bellingham WA:SPIE Optical Engineering Press, 1992.

[8] Weiping Li, "Vector Transform and Image Coding", IEEE T~ansactions on

Circuits and Systems for Video Technology, Vol. 1, No.4, December 1991, pp.

297 - 307.

[9] John Peter Wus, Vector Subband Coding of Images, Master Thesis, Lehigh

University, December 1994.

55

BIBLIOGRAPHY

[10] Ahmed Y. Banafa, A Comparative Study of Image Compression Techniques

within a Noisy Channel Environment, Master Thesis, Lehigh University, May

1993.

[11] Gregory K. Wallace, "The JPEG Still Picture Compression Standard", Com­

munications of the ACM, Vol. 34, No.4, April 1991, pp. 30 - 44.

[12] Didier Le Gall, "MPEG: a video compression standard for multimedia applica­

tions", Communications of the ACM, Vol. 34, 1991, pp. 46 - 58.

[13] T. M. Cover, J.A. Thomas, Elements of Information Theory, John Wiley&Sons,

Inc. 1991.

[14] T. Bell, I.H. Witten, J.G. Cleary, "Modeling for Text Compression," ACM

Computing Surveys, Vol. 21, No.4, December 1989, pp. 557-591.

[15] Mark Nelson, The Data Compression Book, San Mateo, CA:M&T Books, 1992.

[16] Tirso Alonso, Digital Image Compression, Master Thesis, Lehigh University,

May 1992.

[17] David A. Huffman, "A Method for the Construction of Minimum-Redundancy

Codes,'Proceeedings of the IRE, Vol. 40(10), September 1952, pp. 1098-1101.

[18] D.A. Lelewer, D.S. Hirschberg, "Data Compression," ACM Computing Surveys,
\

Vol. 19, No.3, September 1987, pp. 261-296.

[19] J. Ziv, A. Lampel, "A universal algorithm for sequential data compression,"

IEEE Trans. Inf. Theory 23, 3(May) 1977, pp. 337-343.

[20] J. Ziv, A. Lampel, "Compression of individual sequences via variable-rate cod­

ing," IEEE Trans. Inf. Theory 24, 5(Sept.) 1978, pp. 530-536.

[21] T. Welch, "A Technique for High-Performance Data Compression," Computer,

June 1984, pp. 8-19.

56

/

BIBLIOGRAPHY

[22] C.G.Boncelet Jr., J.R. Cobbs, A.R. Moser, "Error Free Compression of Medical

X-Ray Images," Visual Communications and Image Processing) Proc. SPIEl

Vol. 1001, 1988, pp. 269-276.

[23] James A. Storer, Image and Text Compression, Norwell, Massachusetts:Kluwer

Academic Publishers, 1992.

57

Appendix A

Biography

Asaf M. Sofu was born in Ankara, Turkey in 1970. He attended Drexel University,

Philadelphia PA in September, 1988. During his undergraduate studies, he held

three cooperative education assignments at different locations in industry, namely,

Smithkline & B~echam R&D Labs, Siemens Research Corporation, and Unisys Cor­

poration. He was also an undergraduate research assistant in Signal Processing. He

was awarded the Arthur Von Neuman scholarship and graduated Cum Laude with

a B.S. degree in Electrical and Computer Engineering in 1993. In the Fall of 1993,

he joined Lehigh University for M.S. degree in Electrical Engineering.

58

END
-OF

. TITLE

	Lehigh University
	Lehigh Preserve
	1995

	Lossless image compression in vector transform and vector subband domains
	Asaf Sofu
	Recommended Citation

	00306
	00307
	00308
	00310
	00311
	00312
	00313
	00314
	00315
	00316
	00317
	00318
	00319
	00320
	00321
	00322
	00323
	00324
	00325
	00326
	00327
	00328
	00329
	00330
	00331
	00332
	00333
	00334
	00335
	00336
	00337
	00338
	00339
	00340
	00341
	00342
	00343
	00344
	00345
	00346
	00347
	00348
	00349
	00350
	00351
	00352
	00353
	00354
	00355
	00356
	00357
	00358
	00359
	00360
	00361
	00362
	00363
	00364
	00365
	00366
	00367
	00368
	00369
	00370
	00371
	00372
	00373
	00374
	00375
	00376

