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Abstract

Turbo codes is the most exciting and potentially important development in coding theory

in recent years and has opened a whole new way of looking at the problem of constructing

good codes and decoding them with low complexity. It is claimed that the codes can

achieve near-Shannon-limit error correction performance, which is the theoretical limit,

with relatively simple component codes and large interleavers. However, some important

details that are necessary to reproduce these results were omitted in the theoretical

derivation, as well as those factors related to VLSI implementation.

In this thesis, a pipelined and scalable architecture of the turbo codec ASIC was proposed

to maximize the data throughput and minimize the system delay. The theoretical

background of turbo codes is discussed, as well as the detailed VLSI implementation with

Verilog hardware description language. To make the algorithm feasible for hardware

implementation, some modifications and simplifications were made to the original

floating-point theory. The new algorithm is then modeled and simulated using Verilog.

Based on simulation results, the performance of the fixed-point turbo codec can achieve

very high quality with low bit error rate, high throughput and minimal delay. All the

parameters and specification of the design were selected to conform to the commercial

wireless communication standards. The modular design also make the architecture

scalable so that different applications can use different numbers of the basic core to

achieve various communication requirements.



Chapter 1

Introduction

Turbo Codes, developed in the early 1990s at ENST (Ecole Nationale Superiere des

Telecommunications de Bretagne) in Brest [1] , France, are a class of iterative decoding

algorithms that provide error-correction performance near channel capacity, which is the

theoretical limit. The data stream is separated into blocks that are encoded twice with a

convolutional encoder: once in a traditional fashion and once after the data order has been

scrambled with a random interleaver. The data stream is transmitted with the parity bits

generated by both encoders. In the receiver the data is decoded using the transmitted data and

the uninterleaved parity stream to produce soft-decision correction metrics. The correction

. metrics and received data are then interleaved and decoded a second time using the

transmitted interleaved parity bits. This process is repeated iteratively to provide near optimal

decoding performance.

Coding theorists have traditionally attacked the problem of designing good codes by

developing codes with a lot of structure [2], which lends itself to feasible decoders, although



coding theory suggests that codes chosen "at random" should perform well if their block size

is large enough. The challenge to practical decoders for "almost" random, large codes has not

been seriously considered until recently. Perhaps the most exciting and potentially important

development in coding theory in recent years has been the dramatic announcement of "turbo

codes". The announced performance of these codes was so good that the initial reaction by the

coding establishment was met with deep skepticism, but recently researchers around the world

have been able to reproduce those results [3,4]. The introduction of turbo codes has opened a

whole new way of looking at the problem of constructing good codes and decoding them with

low complexity.

Claude Shannon defined the capacity of a channel to be:

c =W logz (l + Es ) bits per sec and
No

Where W is the bandwidth Of the channel in Hertz, C is the channel capacity in bits per

second, and EiNo is the signal to noise ratio. He also provided the Noisy Channel Coding

Theorem: Consider an additive white Gaussian noise channel with capacity C. There exist

error control codes such that information can be transmitted across the channel at rates less

than C with arbitrarily low word error rate [2].

Within 50 years after Shannon's theorem, a gap of 2dB continued to separate the performance

of the most advanced error control systems from the theoretical limit. This gap vanished

overnight with the advent of turbo coding. It is claimed in [1] that turbo codes achieve near-

Shannon-limit error correction performance with relatively simple component codes and large
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interleavers. For a bit error probability of 10,5, the performance is approximately 0.5dB away

from capacity.

In theory, turbo codes are very high-performance error-correcting codes which can be used in

many modern communication systems. However, it is still a new and challenging area for real

VLSI implementation. Due to the high computational complexity of the statistical operations,

and the comparative lOIig delay related to the codes, it seems formidable to implement turbo

codes in hardware.

This thesis aims to develop a hardware version of a turbo codec via an Application Specific

Integrated Circuit (ASIC) to verify the performance of the code in a real-time, fixed-point

environment. The ASIC design is based on the original theory, with appropriate modification

and simplification to optimize the real time operation performance. The Verilog hardware

description language was used to model the design, and simulation was done using

Modeltech's simulations program (VSIM). The performance of different aspects including

quality, delay, data rate, as well as the hardware complexity were analyzed. Base~ on the final

simulation result, the design shows promise in the current wireless communication area. The

parameters of the codec were selected based on the current wireless standards, such as that of

the global system for mobile communication (GSM). GSM is a globally accepted standard for

digital cellular communication. GSM is the name of a standardization group established in

1982 to create a common European mobile telephone standard that would formulate

specifications for a pan-European mobile cellular radio system operating at 900 MHz.

3



1.1. Literature Review

This project was based on the paper "Near Optimum Error Correcting Coding And Decoding:

Turbo-Codes" by C. Berrou and Alain Glavieux [1] with regard to later achievements on the

area of Turbo Codes, and thus tries to evaluate and position the achieved results with a more

realistic "hardware" perspective. Although Turbo Codes are still a very young topic,

significant progress has been achieved during the last two years.

The above paper introduces the principle of concatenating two channel coding schemes, with a

specific focus on the concatenation of two convolutional codes. A well understandable

practical motivation behind the idea of Turbo Codes are the improvements in the performance

of channel codes, especially for low signal to noise ratio (SNR).

Such improvements could for instance be achieved by using very long codes and soft decision

decoding. In the construction of the long codes it is, due to the low SNR, necessary to take the

complete weight spectrum of the code into account and not only the minimum free distance of

the code. But long channel codes have serious drawbacks, namely:

1. The coding gain (the difference between the SNR required to achieve a given bit

error rate in a coding system and the SNR required to achieved the same BER in

an uncoded system) increases only linearly with code memory.

2. Decoder complexity grows exponentially with code memory.

For practical reasons, i.e. cheap and simple implementations, the concatenation of two channel

codes was proposed. The first implementations were developed as early as 1993 by the same

authors [1].
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Hagenauer [2] calls this method of conq.tenating two channel codes the "turbo principle",

because of the similarity with the "turboprop engine", i.e. the cascading of two engines to

increase their efficiency. The functionality of turbo codes can be described as:

1. Encoding of the source bit stream with two channel codes;

2. Iterative decoding of the two codes;

3. During each iteration the two decoders take advantage of the a-posteriori

probabilities obtained from the previous decoding step in a feed back loop

manner;

4. The turbo decoder therefore outputs the Maximum A-Posteriori (MAP) estimation

of the received code words (other methods took advantage of extrinsic

information).

Hagenauer's paper [4] focuses mainly on how to improve the performance of turbo codes, and

especially two methods were discussed:

1. The use ofrecursive systematic convolutional codes;

2. Interleaving of data between the two encoding steps.

It considers only the parallel concatenation of convolutional codes. Several simulations and a

final evaluation of the achieved results conclude their paper.

5



1.2. Outline of the Thesis

In this thesis, the theoretical algorithm described in the paper "Near Optimum Error

Correcting Coding and Decoding: Turbo-Codes" by Claude Berrou and Alain Glavieux, was

analyzed, and was then modified to make it feasible for ASIC development.

Chapter 2 analyzes the theoretical. aspect of turbo codes. The basic structures of both the

encoder and decoder are introduced. The algorithm is analyzed and partitioned into several

functional blocks. The detailed system design of encoder, decoder and· interleaver are

presented with the appropriate modification and simplification.

Chapter 3 gives the hardware implementation of the whole system modeled in Verilog. The

entire data path, computational units, timing and control signals are shown at the Register

Transfer Level (RTL). The dedicated pipelined and scalable architecture are presented.

Chapter 4 provides the simulation scheme for each module, as well as for the entire system.

MATLAB was used to model the additive white Gaussian noise (AWGN). Using the

simulation results; several performance criteria were analyzed, including bit error rate, data

rate, system delay and hardware complexity. It is shown that the system can achieve the

requirements of most of the modem wireless communication specification such as global

system for mobile communication (GSM).

Chapter 5 summarizes the hardware turbo codec system and its features~ Some promising

areas of future exploration are discussed.

6



Chapter 2

Algorithm and Structure of Turbo Codes

2.1. Structure of Digital Communication Systems

Figure 2.1 shows a one-way system, in which the transmission is strictly in the forward

direction, from the transmitter to the receiver. The information source is the signal to be

transmitted, such as computer data, images, speech etc. It must be translated into a set of

signals optimized for the channel over which we want to send it, and it usually contains

redundancy. The source decoder is used to remove the redundant part so as to maximize the

information transmission rate. Since a noisy communication channel will introduce

perturbations and misinterpretation of the transmitted message at the receiving end, error

control strategies must be taken in order to correct errors at the receiving end. This is achieved

by the channel encoder and decoder. The channel encoder purposely adds redundancy into the

information sequence in a controlled manner, which allows the decoder at the receiver end to

detect errors and thus increases transmission reliability. After the channel encoder, the

modulator transforms the binary bits into a continuous-time analog waveform for

transmission. This waveform is sent over the physical channel.

7



At the receiver end, the digital demodulator processes the corrupted waveform and produces

the estimation of the transmitted data. The output of the demodulator is passed to the channel

decoder, which uses the redundancy and the knowledge of the channel code to detect and

correct errors added by the physical channel. Finally, the source decoder accepts the decoded

bits and attempts to reconstruct the original information source with the knowledge of the

source encoding method.

Information .. Sourc e .. Channel Modulator
Source ... Encoder

... Encoder ...

+
I Channel I

+
Information .... Source Channel

Demodulator
Sink .... Decoder .... Decoder ....

Figure 2.1: Block Diagram of a Communication System.

In this paper, the channel encoding and decoding pair is our concern. We will discuss the

algorithm and implementation of turbo codes, the most advanced forward error correction

technique.
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2.2. Turbo Codes

In contrast to a two-way system which can use ARQ (automatic repeat request) with error

detection and retransmission, the error control strategy for a one-way system must be FEC

(forward error correction), which automatically corrects errors detected at the receiver. FEC

includes block codes, convolutional codes as well as concatenated codes. A major

breakthrough in coding systems was made by Berrou et al. in 1993 with the discovery of

"turbo codes". Turbo codes outperforms all the previous FEC coding techniques and achieves

performance close to the Shannon limit. For a bit error probability of 10 -5, it performs about

0.5 dB away from capacity.

Turbo codes implies (i.e. is synonymous with) parallel concatenated convolutional codes

(PCCC). It contains two or more recursive convolutional codes, a pseudorandom interleaver

and a MAP iterative decoding algorithm.

Turbo codes has several features which lead to its outstanding performance:

1. Soft in Soft out (SISO)

The demodulator in Fig2.1 has two ways of making a decision, soft decision or hard decision.

A decision is hard when the demodulator compares the incoming value to a predetermined

threshold. A soft decision is when the demodulator gives an indication of the probability of the

received sample being a 0 or a 1. In the traditional approach, the demodulator block makes a

hard decision of the received symbol and passes it to the error control decoder block. With the

new SISO algorithms, additional information is passed from the output of demodulator to the

input of the decoder and from the output of one decoder to the input of the next decoder.

9



2. Interleaver

Turbo codes use an interleaver and encode the same information twice, but in a different

order. This allows the decoder to correct the bits in two dimensions and can reduce burst error

(the continuous errors occurred in a very short period of time).

3. Iterative decoding

Turbo codes decode in an iterative manner. The soft output decision algorithm provides a real

number as an output, which is a measure of the probability of an error in decoding a particular

bit. This can also be interpreted as a measure of the reliability of the decoder's hard decision.

This extra information is very important and is used for the next stage in an iterative decoding

process.

The conventional error correcting codes, like block codes and convolutional codes, can

achieve bit error rates (BER) of 10-3 at a SNR around 3 dB. The current BER requirement of

GSM is 10-3 for voice and 10-5 for data. At a 3dB noise environment, turbo codes can attain a

BER of 10-5
, which can satisfy the high quality requirement of GSM. But in order to get the

full lossless data transmission, some higher level processing is still needed, like outer error

correcting (e.g. Reed Solomn) codes and feedback handshaking (e.g. ARQ). For error free

data transmission, the extra protection is always needed, but these kinds of techniques are very

expensive and not efficient. They will reduce the overall data rate and coding gain. Therefore,

we should try to avoid using them or use them as little as possible, which is the reason why we

need high performance Forward Error Correcting coding (FEe). The more advanced type of

FEC will result in less error and will require less complex higher-level processing. The overall

efficiency and the system cost highly depends on the FEC. So far, turbo codes is the best FEC

which performs close to the theoretical limits.
10



2.3. Encoder Algorithm

'",
dk

RSCI
pkl ,.. Puncturing

circ uit

.....
Interleaver v "

pk2 pk
\

RSC2 ,..-

Figure 2.2: Generic Turbo Encoder

Figure 2.2. depicts a standard turbo encoder. In this figure, dk is the incoming data stream,

RSC is the recursive systematic coder, and pk is the generated parity signal. As seen in the

figure, a turbo encoder consists of two binary rate 1/2 convolutional encoders separated by an

N-bit interleaver together with an optional puncturing mechanism (a selector switch). Clearly,

without the puncturer, the encoder is rate 1/3, mapping N data bits to 3N code bits. The

encoders are configured in a manner reminiscent of classical concatenated codes. Two

identical convolutional encoders are arranged in a so-called parallel concatenation. Before

describing further details of the turbo encoder in its entirety, we· shall first discuss its

individual components.
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A. The Systematic Convolutional Encoder

Convolutional codes are a family of error correcting codes, and they are of the recursive

systematic variety. They add redundant information based on the input data and on the

previous state of the encoder. The encoder can be thought of as having memory. Each code

has three main features:

- a memory length corresponding to the 'number of delay elements which we call v.

- a constraint length equal to (v+l).

- a coding rate. This is the ratio between the number of information bits we encode

and the number of bits after the encoding (including the redundant bits).

An example of a convolutional encoder is shown in Fig. 2.3.

RSC
:----------------------------------------:7

....

I' 1'\ ~ dk
'!-' ~

I'

dk: \

~'\. DI D2,,~

.... ...., ,

Pk

, ,- - - - - - - - - - - - - . - - - - - - - - - - - - . - - - - - - - - - - - - - - -

Figure 2.3: 1/2 rate Systematic Convolutional Encoder

In this Figure, Dl and D2 are two storage elements. This encoder has a rate of V2 and a

memory length v=2, so the number of encoder states equal to 2v=4. The convolutional code is

systematic because the information bits dk are directly written to the output. Turbo codes use

12



systematic convolutional codes because they perform better than non systematic codes at low

signal to noise ratio.

B. Interleaver

The function of the interleaver is to take each incoming block of N data bits and rearrange

them in a pseudo-random fashion prior to encoding by the second encoder. The interleaver

design is a key factor which determines the good performance of a turbo code. Some

interleaver types used in turbo codes are block interleaver and pseudo-random interleaver.

The main purpose of the interleaver is to increase the minimum distance of the turbo codes

such that after the correction in one dimension the remaining errors should become correctable

error patterns in the second dimension.

The performance of turbo codes using iterative decoding algorithms depends on the structure

and length of the interleaver used. The different kinds of interleaver affect the distance

property of the resulting turbo code. In the previous literature [6], block interleavers and

pseudo-random interleavers were investigated. The pseudo-random interleavers were found to

give better performance only for larger interleaver lengths. These larger interleavers can be

used in deep-space communications for which the decoding delay is not so important. But for

wireless communication, the length of interleaver is limited by the maximum acceptable

speech delay. For the smaller interleaver size, the block interleavers perform better. Therefore,

in my design, I selected the non-uniform block interleaver proposed by Claude Berrou and

Alain Glavieux [1] with a block size of 256.

13



This design chooses an interleaving procedure in which, for reading, the column index is a

function of the line index. Let i and j be the addresses of line and column for writing, and ir

and jr the addresses of line and column for reading. For an M*M memory (M being a power of

two, here it is 16), i,j,ir,jr have values between 0 and M-l. Nonuniform interleaving may be

described by:

ir=(M/2+1)(i+j) mod M

~=(i+j) mod 8

jr=[P(~)U+l)]-1 mod M

P(.) is a number, relatively prime with M, which is a function of line address (i+j) mod 8. Note

that reading is performed diagonally in order to avoid possible effects of a relation between M

and the period of puncturing. A multiplying factor (M/2+1) is used to prevent two neighboring

data written on two consecutive lines from remaining neighbors upon reading.

Theoretically, the interleaver is made up of an M*M matrix and bits {dk} are written in row

by row and read out following the non-uniform rule given above. This non-uniform reading

procedure is able to spread the residual continuous burst error blocks and gives a large free

distance to the concatenated code.

For the hardware implementation a 16*16 matrix has been used, and from above, the

addresses of line ir and column jr for reading are the following:

ir= 9*(i+j)

~= (i+j)

jr= [P(~)U+I)]-1

mod 8

mod 8

mod 8

14



with P(O)=17; P(l)=37; P(2)=19; P(3)=29; P(4)=41; P(5)=23; P(6)=13; P(7)=7. These P

values are arbitrarily selected but all the values are relative prime with M=16.

C. The Puncturer

The puncturer is used to achieve higher coding rates. In Fig.2.2, the parity bits from the two

parallel RSCs can be "punctured" by a multiplexing switch and thus the coding rate is 1/2. The

same puncturer will be used in the decoder to dispatch the parity bits into the corresponding

MAP (the maximum a posteriori) decoders.

2.4. Decoder

When the maximum likelihood decoding algorithm is applied to the encoder trellis structure,

the result is the optimum decoding of turbo codes. However, due to the interleaver embedded

in the encoder, the turbo code trellis will have an extremely large number of states. This fact

makes the maximum likelihood decoding process almost impossible, in practice, for large

interleaver sizes. Thus, practically, turbo codes use an iterative decoding approach where the

maximum likelihood decoding algorithm is applied to the elementary convolutional codes.

This iterative technique is a very efficient way to decode turbo codes and to achieve

performance close to the theoretical limits.

15



2.4.1. Turbo Decoder Structure

_d_k__C) --,--_ak--+l

bk
channel

pk---(=:>--

MAPI
decoder

ck

MAP2
decoder

dk(J)

Figure 2.4: Turbo Code Decoder

Figure 2.4 shows the basic structure of the iterative turbo decoder. The output of the turbo

encoder are the information sequence dk and punctured parity sequence pk. After the

modulation and transmission over the physical channel, the received signals at the turbo

decoder are the noisy information sequence ak and the noisy parity sequence pk. Through a

mutiplexer switch, pk will be switched to produce the two noisy parity sequences bk and ck

corresponding to the two RSC encoder outputs. As shown in the figure, a single iteration is

employed using two soft decision MAP decoders. The first MAP decoder provides a soft

output which is a measure of the reliability of each decoded bit. From this reliability

information, the extrinsic information is produced, which does not depend on the current

inputs to the decoder. This extrinsic information, after interleaving, is passed on to the second

MAP decoder which uses this information to decode the interleaved bit sequence. The output

of the second MAP decoder goes through the deinterleaver and generates the output sequence

of the single iteration decoding: dk(l). This soft output can be fed back to the input of the first

decoder to be decoded.

16



The performance of a turbo coding scheme improves as the number of decoder iterations is

increased, where each decoding iteration involves two decoding stages. Here, the maximum a

posteriori (MAP) algorithm is used to implement the decoder.

2.4.2. MAP algorithm

1. Principle

At the input of the MAP decoder we receive the noisy sequence RJ,N=(RJ,R2,. •••• ,RN), where

The purposeof the MAP decoding algorithm is to find the most likely dk for a given R1,N. This

is achieved by the corresponding log-likelihood ratio (LLR) Ak defined as follows:

(2.1)

where the P/s are the probabilities of the data bits dk being either a 0 or a 1.

The values of Ak( dk) represent a soft output. To make a hard decision, we must decide what

was the most likely information bit of the transmission.

(2.2) .

(2.3)

If Sk is the state of the encoder at the time k, we have

17



2V·1

p,.( dk=11 R1,N) =L P,( dk== I,Sk =m IR1.N)
m=O

(2.4)

If we let Akim) =PrCdk=i, Sk=m I Rt,N) and we sum over all possible states of the encoder, we

have

2v-l

L,.Ak,t(m)
A =log[m=O ]

k 2v-l

L,. Ak,o(m)
m=O

. (2.5)

2. Expression of (X,k,i(m), ~k,i(m) and <;. (Rk, m)

To compute each Ak, we must define three very important parameters in the MAP decoding

algorithm: (X,k,i(m), ~k.iCm) and <h (Rk, m). Each branch of the trellis will have particular values

Defining

(2.6)

and

(2.7)

It is shown in [1] (a simplification of the Modie Bahl decoding) that we can express Ak,I by

(2.8)

18



Finally, we can express Akby

Lak,t (m){3k,l (m)
A k = log-="=J-----

Lak,o(m){3k,O(m)
m

(2.9)

We now know the theoretical definitions of a and ~. The state matrices a and ~ can be

computed recursively as shown later. But first we need to address the expression for oj(Rk,m) .

The expression oj(Rk,m) is called the branch metric and depends on the transmission channel.

On the trellis, oj(Rk,m) is the branch metric corresponding to the branch of the transitions from

time k to (k+1) with an initial encoder state m and an information bit i. The representation of

oj(Rk,m) on the trellis is shown in Figure 2.5. All the branches of the trellis between time k

and time (k+1) use the noisy data (ak,bk) that we received at the inputs of the MAP decoder.

Each branch has its own value o/Rk,m). For an additional white Gaussian Noise (AWGN)

channel with mean zero and variance d, oj(Rk,m) can be computed as:

(2.10)

The expression of ak,j(m) is called the forward state metric, which represents the state metric

for the transition from state m to the next state, at time k and with a transition bit of i. It is

shown in [1] that we can compute ak,i(m) with the recursive formula:

t

ak,;Cm) = O;(Rk,m) Iak_t./sb./m»
j=O

(2.11)

where oi(Rbm) is a branch metric defined as before and Sbim) is the state before m with a

transition of j. All the a's can be computed from equation (2.11) on the condition that they

are initialized correctly.
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/ .............................. bt(R3,1l)

• •01 • --_.._.. _.
bo(R2,1O)

"""" bo(R2,Ol)
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.•...•••.....

bt(R2,Ol)• • •""" bt(R3,Ol)
""" ,

bt(R3,OO)
11 • • •

K=2 K=3 K=4

Figure 2.5: Representation of bi(Rk,m) on the trellis

The expression for ~k.iCm) is very similar to the expression for a except we compute it

backward in time. This is why the ~k.iCm) are called the backward state metrics. They

represent the value of ~ for the transition from the state m, at time k and with a transition bit of

i. It is shown in [1] that they can be computed by the recursive formula

t

f3k.i(m) = I f3k+t./Sj,i(m»Dj(Rk+1, S!.i(m»
j=O

(2.12)

where bi(Rk+"S[,j{m» is a branch metric defined as before and S[,j{m) is the state after m with a

transition of j. We notice that two values of ~ corresponding to the two paths coming into the

same node of the trellis are equal. All the Ws can be computed from equation (2.12) on the

condition that they are initialized correctly.
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2.4.3. The Details of the MAP Algorithm

With a, ~ and 8 defined, the steps of the decoding algorithm are:

(1) Starting at time k=1, compute 8i(Rk,m) for all received symbols and store in an array

of size 2°N (for the 2° possible code symbols).

(2) Initialize a at time k=O and compute a from time k=1 to k=N-v-1 and for each state

me {O, ... ,2v-1} using equation (2.11).

(3) Initialize ~ at time k=(N+v-l) and compute ~ for each time k from k=(N+v-2) to k=O

and for each state me{ 0, ... ,2v-1} using equation(2.12).

(4) Having all the values of a, ~ and 8 for all the branches of the trellis and for each time,

we can compute Ak from time k=O to k=N+v-1 using equation(2.9).

(5) For each time k, make a hard decision to define each value of dk as in equation(2.1).

We see that, using the equations for Ak, a, ~ and 8, we can find the most likely value of dk.

However, looking at the equations, we find that each time we decode one sample (ak,bk), a

considerable number of complicated computations are required such as division,

multiplication, logarithm and exponential.

For example,

• for the calculation of a and~, we need to perform a (2V x2) multiplication;

• for the calculation of 0, we need to compute n exponentials and 2°_1 multiplications;

• for the calculation of Ak, we need to compute 1 logarithm, 1 division and 2x2v

multiplications;

These complex operations require large computation times and memory and, of greater

concern, hardware which is too complex or which may be impossible to implement. Thus, it is
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desirable to avoid such complex operations. Next we will illustrate a modified algorithm

which is more suitable for hardware implementation and allows better simulations.

2.4.4. Modification of the MAP algorithm

A simplification of the MAP algorithm is developed in [1] to improve the efficiency of

software simulations.

A new function E is defined:

E(x,y) =-log(e-X +e-Y )

(2.13)

We define new state metrics Ak,i(m), Bk,i(m) and new branchmetrics DiRk,m) as:

Ak,i(m) =-logak,i(m)

Bk,i(m) =-log!3k,i(m)
(2.14)

Thus we have

1

Ak,i (m) = Di (Rk,m) +E Ak-1,j (Sb,j (m))
j=O

1

Bk,i(m) = EBk+1./Sf,i (m)) +D/Rk+l'Sf,i(m))
j=O

(2.15)

Iak,l (m)!3k,1 (m)
Ak = log-=':::-II----

Iak,o(m)!3k,O(m)
m

2v-l 2v-l

= E (Ak,l (m) + Bk,l (m)) - E (Ak,o(m) + Bk,o(m))
m=O m=O

(2.16)
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By looking at equation (2.15) and (2.16), we can see that we have suppressed all the

logarithms, exponentials and multiplications and the only remaining operations are additions,

subtractions and E functions. In [1], we can see that the E functions can be approximated as

min(x,y), and this can be easily achieved by using a comparator in hardware. In chapter 3, we

will present the detailed hardware design using this modified MAP algorithm.
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Chapter 3

Hardware Design of Turbo Codecs

In the previous chapter, the theory and algorithm of Turbo coding has been" explored. In this

chapter, we present our implementation of turbo codes. The design has been done in a top

down manner. First, the. top-level scheme is designed based on the theoretical algorithm with

the appropriate specifications like block length, decoder iteration times, encoder memory

length, etc. It is decomposed to smaller functional modules, and then each functional module

is modeled and implemented with Verilog codes in a bottom-up procedure.

The first section shows the encoder design. We illustrate the concatenation of the recursive

systematic encoder and its state diagram. The second section details the design of the iterative

decoder. We use a pipelined structure, with the decoder based on the simplified MAP

algorithm. The interleaver design is shown separately in section 3.3 since it is used both in the

encoder and the decoder.
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3.1. Encoder

As illustrated in 2.3, the turbo encoder uses a recursive systematic encoder (RSC). There are

two ways to concatenate two RSC coders, serial or parallel concatenation. In this design, we

use parallel concatenation.

With parallel concatenation, the information sample is simultaneously applied to the inputs of

each RSC encoder. The encoder generates a parity sequence and the information sequence at

the same time. In our design shown in Fig. 3.1, we parallel concatenate two RSC encoders.

The input sequence and the interleaved input sequence are fed into the inputs of the two RSCs

simultaneously. This is achieved with the control circuit of the interleaver module. We will
"

present the interleaver design in more detail in section 3.3. The input sequence has a block

length of 256 bits. A delay module is implemented to ensure that the output information

sequence and the output parity sequence are ready at the same clock edge. The puncturer of

the encoder is implemented by a mutiplexer. The mutiplexer selects the two outputs of the

RSCs, alternately, based on the alternate control signal. In our design, the coding rate of the

encoder is 1/2. As seen in the encoder block diagram, the input to the encoder is a string of

256 bits of the input data dk_in, and the system clock. The encoder will output the information

sequence dk_out, and the parity sequence pk, and at the same time raise the dready signal.

d

pkl

~.. RSC .. pk
k_in .... ...... M ....

.... Interleave U
... ....

pk2 ....
X ..... .. ........ RSC ....

dread

~
V~

Mux30ntrol

clock ... .... ....... .... ....
dk_out

y

Figure 3.1: BlockDiagram of Turbo Encoder
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3.1.1. Recursive systematic encoder (RSC)

/ 1'\ .....
\, 1,,1 .....

"
dk ,

J dl
....... 1 "\ Dl D2, \,1,,1

dk-l dk-2

,~

.... 11\ .... ...., , ,

Pk
I-

Figure 3.2: Recursive Systematic Coder (RSC)

The recursive systematic encoder used in this design is shown in Fig 3.2. Two serial storage

elements 0 I and 02 are used. The memory length is 2 and thus the RSC has four states. For

this particular RSC, we have

dl =dk ffidk_1 ffidk_2

PI =dl ffidk_2

At each positive edge ofthe clock, dI, d(k-l) and pI will be latched to d(k-I),d(k-I) and pk.

The state diagram·of the RSC is shown as follows:

III

Figure 3.3: State Diagram of Turbo Encoder
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3.2. Decoder

We have seen that turbo decoding is an example of iterative decoding. The MAP algorithm

was based on the estimation of the probability of a decoded bit given the received sequence. It

produces soft outputs which can be used in an iterative process to increase the reliability of the

final decision. In this design, the soft input and output of the decoder are mapped onto an

eight-bit bus, to represent the signed number ranged from -128 to 127. Dedicated functional

modules are designed with structure-level Verilog models to handle the signed operations

including addition, subtraction and comparison.

We used a pipelined structure to realize the reiteration and to improve the performance of the

decoder output. Each stage of the decoder iteration is a parallel concatenation MAP decoder.

3.2.1. Pipeline Structure

There are two ways to realize the iterative turbo decoder algorithm.

1. To feed back the soft output of the decoder to the input of the decoder

" ",
:><:
0

dkn ::E "
"

,
,

V decoder .....
pkn dk

,

",

Figure 3.4: Iterative Turbo Decoder
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As shown in figure 3.4, by use of the feedback loop, the iteration is realized with one decoder.

This design uses less hardware. However, the data rate of the system will be decreased and

control circuit will tend to be more complex. For n iterations, this structure will introduce

n*2m delay for each input block, where m is the block length. This will reduce the data rate of

the system by a factor of n compared with the structure proposed next. Thus, this

implementation is not appropriate for real-time wireless communications.

2. To pipeline different stage of decoders

In this design, we are using the pipelined structure [5], shown in figure 3.5, where the same

decoder design is used three times. The soft output of the first decoder is fed to the second

decoder and the second decoder's output is fed to the third decoder. Thus we achieve three

iterations. This serial concatenation structure allows the data to be pipelined and thus the data

rate will be improved. The tradeoff is the need for additional hardware.

The noisy parity sequence pkn is fed into each decoder through delay lines. The noisy

information sequence dkn is fed into the first decoder. The output of the first decoder is fed

into the second decoder with the delayed parity sequence. Finally the soft output of decoder3

will be sent into a comparator, a hard decision will be made and the restored information

sequence will be sent to the output. Different iterations can be achieved by cascading various

numbers of decoders according to the requirements of specific applications.

In order to control the timing for the data flow, each stage of the decoder has an 'enable'

signal and a 'dkready' signal. At the positive edge of the 'enable' signal, each decoder will

start to read the input sequence. When each decoder starts to output data, it will raise the
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'dkready' line. By connecting the 'dkready' line of each decoder to the 'enable' signal of its

following decoder, we can ensure the timing correctness of the system.

dkready lIenable2 dkready2/enable3

lei " " .....
dkready ready

...:. .....
".

dkl
,.

dk2
, ,. ,

...... Decoder! ...... Decoder2 ..... Decoder3, ,. , dk3 Comp dk
" ....::0... ..... .....

",. , ,. ,.

~ Pk Delay

enable
pk n_con trol clock ..... pkn_control

enab

dkn

Pkn

clock Control Circuit

Figure 3.5: Circuit Scheme for Module Decoder

3.2.2. Parallel Concatenated Decoder

The basic scheme for each of the decoder stages is parallel concatenation, since we used a

parallel concatenation encoder. The decoder is constructed by concatenating two MAP

decoders. In this decoder, the noisy encoded parity sequence is distributed to each

corresponding MAP decoder. Each MAP· decoder output estimates dk. As the codes are

systematic, we can send the output of the first MAP decoder to the input of the second MAP

decoder. Since we have interleaved the data between two encoders so as to scatter errors and
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improve performance, we need to interleave the data between the two MAP decoders and

deinterleave the data to restore the sequence when necessary.

As stated in chapter 2, the module decoderl is constructed with two MAP decoders, one

interleaver and one deinterleaver. The input sequence dIm feed into submodule MAPl

through a buffer. The input parity sequence pIm will go through a punctuator, which is

controlled by an alternate signal, and generates two sequences: bdk and cdk, corresponding to

the two encoder's parity outputs. The bdk string will feed into MAPl with the information

sequence abk, while cdk will be delayed and then fed into MAP2 with the soft output of

MAPl. In order to delay cdk, a 256-bit shift register triggered by ck_control is used.

Additionally, each module has an 'enable' input and a 'dkready' output. The preceding

module's 'dkready' signal serves as the next module's 'enable'. At the positive edge of the

'enable' , the module starts to read data, initialize control signals and clear counters in the

control circuit.

The implementation of MAP module, interleaver and deinterleaver will be discussed in more

detail in the following sections.
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3.2.3. MAP Decoder

According to our encoder structure, we design the MAP decoder based on the MAP algorithm

discussed in chapter 2. The MAP decoder is to find the most likely dk, given the noisy

information and parity sequence (ak,bk), while k E (1, N). N is the block length. In our design,

N =256.

1. Compute the branch matrices oi(Rk,m)

In our encoder, with a memory length v=2, we have 4 states, so that for each time k there are 8

different branch matrices oi(Rk,m). In equation (2.10), Pk,i(m) is the encoder parity output

when the input of the encoder is "i' and the current state is 'm'. From the encoder's state

diagram, the eight-branch metrics oi(Rk,m) can be calculated as follows:

Pk,I(m) oi(Rk,m)

Present State i = 0 i = 1 i = 0 i = 1

SO 0 1 1 Exp((2/cr2
) *(ak+b0)

Sl 1 0 Exp((2/~) *bk) Exp((2/~) *ak)

S2 0 1 1 Exp((2/cr2
) *(ak+bk))

S3 1 0 Exp((2/~) *bk) Exp((2/cr2
) *ak)

We notice that there are two equal o's for each o. This is due to the fact that with a four-state

code, we have four different values (dk,pk) for 8 branch metrics. This fact helps to simplify

the design.
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For a given encoder structure, all the trellis and state diagrams of the encoder are fixed, so the

8computation can be hardwired to improve the efficiency.

2. Computing the forward state metrics as-im)

I. Derivation of Ak,i(m)

We can see that there are also 8 different branch matrices uk,i(m) for each time k. In equation

(2.11), Sbim) is the previous state number of the encoder when the encoder's current state

number is m and previous input is i. According to the state diagram of our encoder, we find:

Sb,O(O)=O;

Sb,I(O)=I;

Sb,o(I)=3;

Sb,I(l)=2;

Sb,o(2)=1 ;

Sb,t(2)=O;

Sb,o(3)=2;

S\>,t(3)=3;

Substituting the branch metrics into equation (2.11), we can compute the 8 uk,i(m) metrics:

lXk,lCO) = [lXk_t,OCO) + lXk-l,I CI)] *eXPC:2 Cak +bk»

lXk,tCI) = [lXk_t,o(3)+lXk_t,tC2)]*exPC:2 ak)

lXk,I(2) = [lXk-t,o(l) + lXk-1,t CO)] *eXPC:2 Cak +bk»

lXk,I(3) = [lXk_1,O(2) + lXk-1,t (3)] *eXPC:2 ak)

lXk,o(O) = [lXk-1,OCO)+lXk_1,1(l)]

lXk,o(l) = [lXk_l,O(3)+lXk_l,IC2)]*exPC:2 bk)

lXk ,o(2) = [lXk-1,o(l) + lXk-1,1 CO)]

lXk ,o(3) = [lXk_t,o(2)+lXk_l,IC3)]*eXP(:2 bk )

(3.1)
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We can see that the computation of uk,i(m) includes operations like exponentials and

multiplication. Here we applied the simplified MAP algorithm to avoid these operations. We

defined the state metrics Ak,iCm) by equation(2.14) and Ak,j(m) is computed as follows.

2
Ak,l (0) = E[Ak_1,O (0), Ak-l,l (1)] - a 2 (ak +bk)

2
Ak,l (1) = E[Ak_1,O (3), Ak-I,l (2)] - a 2 ak

2
Ak,l (2) = E[Ak_I,O (1), Ak-I,l (0)] - a 2 (ak +bk)

.. 2
Ak,l (3) = E[Ak_1,O (2), Ak-I,I (3)] - a 2 ak

Ak,o(O) = E[Ak-1,O(0),Ak_1,1 (1)]

2
Ak,o·(1) = E[Ak_1,O (3), Ak-1,1 (2)] - a 2 bk

Ak,o (2) = E[Ak_1,O (1), Ak-I,I (0)]

2
Ak,o (3) = E[Ak_1,O (2), Ak-1,1 (3)] - a 2 bk

(3.2)

II. The Ak module design

Looking at equation (3.2), we find that the complexity of the hardware for computing Adm)

has been greatly decreased. It only requires E operations and subtractions. As stated earlier, E

operations can be achieved with a comparator. We noticed that Ak,j(m) is computed in a

recursive formula, so that the current Ak,j(m) metrics depends on the previous Ak,j(m) metrics.

Once we initialize Ao,j(m) correctly, we can keep computing Adm) to A255,j{m) (in our

design). Based on equation (2.11) and the assumption that the initial state of the encoder is 0,

we can initialize uk,lm) as follows:

ao,o(O)=O;

ao,I(O)=O;

ao,o(1)=1;

ao,I(l)=1;
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ao,o(2)=1;

ao,I(2)=1;

ao,o(3)=1;

ao,I(3)=1;



Since

AO,j(m) will be initialized as follows:

Ao,o(0)=-00;

AO,I(O)= -00;

AO,o(1)=O;

AO,l(l)=O;

AO,o(2)=0;

Ao,I(2)=0;

AO,o(3)=0;

A 0,1(3)=0;

In our design, _00 will be replaced with the most negative number,

According to equation (3.2), the input (ak,bk) should be scaled by the noise variance and then

fed into the Ak module. Since the operations in all decoders are linear and the final result dk is

determined by comparison, we find that this scaling factor can be considered outside the MAP

module. The design of the Ak module is shown in figure 3.4. Eight registers are used to

generate the values Ak_l,i(m), which are fed back to the subtractor to compute the next Adm).

A dedicated signed subtractor module was designed at the structure-level. The registers will be

initialized with Aoim) metrics. The inputs x,y,z correspond to ak, bk and (ak+bk), At each

active clock edge, the next Ak,i(m) will be produced.
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3. Computing of the backward state metrics ~k,I(m)

I. Derivation of Bk,i(m)

Like the metrics <Xk,iCm), there are also 8 different branch matrices ~kim) for each time k. In

equation (2.12), S[,i{m) is the next state number of the encoder when the encoder's current

state number is m and the current input is i. According to the state diagram of our encoder, we

find:

Sr,o(O)=O;

Sr,J(0)=2;

Sr,o(1)=2;

Sr,I(I)=O;

Sr,o(2)=3;

Sr,I(2)=I;

Sr,o(3)=I;

Sr,I(3)=3;

Substituting the branch metrics into equation (2.12), we can compute the 8 ~k,iCm) metrics as

follows:

2
f3k,l(1) =13k ,0 (0) = f3k+1,O(0) + f3k+1,1(0)*exp«j2 (ak+1+bk+1»

2
13k,] (0) = f3k,o (1) = f3k+I,o(2) + f3k+1,1 (2) *exp( (j2 (ak+1 +bk+1»

13k 1(3) =13k 0 (2) = f3k+l 0 (3) *exp( 22 bk+1) + f3k+11 (3) *exp( 22 ak+1), , , (j , (j

f3k,l (2) = f3k,o (3) = f3k+l,O (1) *exp( :2 bk+1)+ f3k+l,l (1) *exp(:2 ak+1)

(3.3)

Again we see that the computation of ~k,iCm) includes the operations such as exponentials and

multiplications. We applied the simplified MAP algorithm to avoid these operations, We

qefined the state metrics Bdm) by equation (2.14), where Bdm) is computed as follows:

36



2
Bk,I(1)=Bk,O(O)=E{[Bktl.O(O)],[Bktl,l(O)- (J"2 (ak+1 +bktl )]}

2
Bk,l (0) = Bk,o (1) = E{[Bkt1 .0 (2)], [Bkt1 ,l (2) - (J"2 (aktl +bkt1 )]}

Bk,l (3) =Bk.0 (2) =E{ [Bktl.O(3) - :2 bktl ],[Bktl ,l (3)'- :2 akt1 ]}

2 2
Bk1(2) =Bit. 0(3) =E{ [Bktl 0(1) --2bktl ], [Bktll (1) --2aktl ]}
,. '(J" '(J"

(3.4)

II. The Bk module design

Like Adm) , the computation of Bk,i(m) also involves a recursive formula, except that it

should be calculated backward in time. The current Bk,i(m) metrics depends on the next

Ak,i(m) metrics. We should initialize B255im) first and then we can keep computing the

values from B254im) to Boim). Based on equation (2.12) and the fact that the state of the

encoder will always be reset at the final bit of every block, we initialize ~k,i(m) as follows:

Since

~255,O(0)=1;

~255,1(0)=0;

~255,O( 1)=0;

~255,1 (1)=1;

~255,O(2)=0;

~255.1(2)=0;

~255.0(3)=0;

~255,l(3)=0;

B255im) will be initialized as follows:

B255.0(0)=0; B255,O(1)= -00;

B255,I(O)= -00; B255.1(1)=0;

B255,o(2)= -00; B255.0(3)= -00;

In our design, -00 will be replaced with the most negative number.
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The design of the Bk module is shown in figure 3.5. It is similar to the Ale module. Eight

registers are initialized with B255,j{m) metrics. The three inputs x,y,z correspond to ak+\ , bk+J

and (ak+l+bk+l)' The input sequence is fed into the Bk module backward in time. Thus at each

active clock edge, the Bdm) values will be produced.

ze ro

Figure 3.5: Bk Module

4. Design of the Ldk module to compute Ak

After we computer the values of Adm) and Bk,i(m), we are ready to compute the log-

likelihood ratio Ak according to equation (2.16). It is computed by the Ldk module. As

shown in Figure 3.6, the Ldk module takes eight different Ak metrics and eight different Bk

metrics as inputs to produce the soft output of Ak.
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Figure3.6: Ldk Module



5. MAP module

The top MAP module ties together the basic modules. Besides the Ak, Bk, Ldk modules

discussed earlier, we designed the shiftAk module and shiftReg module to store and

manipulate the input sequence and the intermediate results. The MAP module also generates

control signals to control the timing of the data flow.

The block diagram of the MAP module is shown in Figure 4.7. We can see that the input

sequence ak, bk along with (ak+bk) are fed to the Ak module directly to compute the Ak

metrics. When signal 'Ak_control' is '1', a new Ak will be generated at each active edge of

the clock. Thus after 256 active clock edges, Aoto A255 will be generated.

Since the Bk module will take the reversed input sequence as input and computes B255 first, a

shift register is needed to store the input sequence first and then shift out the sequence in the

reverse direction. We built the shiftReg module to model the shift register. It can shift in both

directions, controlled by the 'sdir' signal. At each positive edge of the 'sccontrol' signal, data

will be shifted in and out.

Considering that the Ldk module takes the Ak and Bk metrics at the same time k as the inputs,

we shall also store the computed Ak metrics in a shift register and output· these to the Ldk

module until the first Bk metrics (B255) is ready. This is realized with the shiftAk module.

We can see that after 256 positive edges, a255, b255 and a255+b255 can be shifted to the Bk

module and B255 can be generated and fed into the Ldk module. At this point, we can shift out

the A255 to the Ldk module. The output of the MAP module is the likelihood dk sequence

computed by the Ldk module and buffered with a register. Notice that this dksequence is in

reverse direction, i.e. from dk255 to dko;
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In the MAP module, we build control circuits to generate the control signals 'Ale_control',

'Bk_control', 'sabkdir', 'sadir', 'sra_control', 'dk_control'. The module has an input 'enable'.

Data should be fed into the system along with a positive edge of the 'enable' signal. This will

tell the system to start computation, to initialize all the control signals and to clear the counter.

At the positive edge of the 'enable' signal,

• set 'Ak_control' and 'sra_control' to 1 ;

To compute Aoto Am and store in shift register sra;

• set 'sabkdir' and 'sadir' to 1;

To store ak, bkand (ak+bk) into the shift registers;

• set 'Bk_control' and 'dk_control' to 1;

Not to compute Bk and not to output dk;

• set 'dkready' to 0;

• set 'count'=O;

In the control circuit, the counter will be incremented at the negative edge of the system clock.

The control signals will be alternated by the value of the counter.

When 'count'=256,

• change sadir to 0;

To shift ak, bk and (ak+bk) in the opposite direction and feed them into the Bk

module;

• change 'Bk30ntrol' to 1;

start to compute Bk;

• change 'Ak_control' to 0;

Stop computing Ale and start to shift Ale out in the opposite direction (Am out

first);

• change 'dk_control' to 1;

start to output dk;

• set'dkready'=1;
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In our design, the control circuit is trigged by the negative edge of the clock. The control

signals generated are AND-ed with 'clock' signal and then connected to control the data flow

modules. In this way, we can ensure a clean control signal for the devices.

3.3. Interleaver and Deinterleaver

In the section 2.3, the functionality and theory of the interleaver were discussed. In the

wireless environment where the delay cannot be too large, a non-uniform block interleaver is

used in the design to achieve better performance than the pseudo-random interleaver.

Our design is based on an interleaver size of 256. Based on the 16*16 read-write matrix, the

index of the data sequence after the interleaver can be determined. The index pattern is fixed

for all the 256 data blocks. It is very easy to implement the interleaver by hardwiring two 256

shift registers as follows:

The input bit sequence is inserted into the upper 256 bit shift register. After all the 256 bits are

filled, the contents of the upper shift register will be moved into the bottom 256 bit register

based on the given order through the scrambled hard wires between the two registers. A level

sensitive control signal 'load' is designed to trigger the download from the upper register to

the bottom register, which is obtained by using a counter which can count up to the block

length. Once a block of data fills the register, the 'load' signal triggers the download once.
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The download only takes a half clock cycle, after which the two shift registers can shift out to

form two synchronized bit streams. For the encoder, the two output streams will be encoded

by two RSCs. For the decoder, the registers will be 8 bit wide and only the bottom register

output will be used to generate the interleaved (deinterleaved) data streams.

Input Sequence

Shift
Download ctrl

Figure 3.8 Interleaver Structure

Output Sequence

Scrambled Sequence

After the first data block is interleaved by the interleaver, the following blocks can be inserted

into the interleaver continuously without any delay·gap. In this manner, the interleaver can be

pipelined to maximize the throughput.
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Chapter 4

Simulation and Performance Analysis

In this chapter, we are going to present the simulation and performance analysis of the system.

The simulation is conducted in a bottom up fashion. Each functional block is first simulated

and functionally verified through the Modeltech compiler and simulator. .Then the whole

system is integrated and a test bench is developed. Section 4.2 illustrates the simulation

schematic and noise modeling used for the system simulation. Finally, the system performance

is analyzed. Simulation results with different configurations are discussed in section 4.3.

4.1. Submodule Simulation

1. Encoder simulation

There are two submodules in the encoder, the RSC module and the interleaver module. The

top module encoder instantiates submodules and implements control logic circuits. The RSC

module generates the parity sequence according to the encoder's state diagram. As shown in

Figure 4.1, we generate the clock signal and a random input sequence dk, and the module
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outputs the parity sequence pk. Based on the encoder's state diagram and input bit value, we

compute the output pk to verify the function of the RSC module.

The interleaver module takes the information sequence dk as input and outputs the randomized

sequence dk02 and the initial information sequence itself dkOl. Since we used a storage

element in the design in order to randomize the sequence, the output sequence is delay~d by

256 clock cycles. As shown in Figure 4.2, dkOl and dk02 are initially unknown. After 256

clock cycles, the interleaver modules output the original sequence and the interleaved

sequence.
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Figure 4.1. Waveform for i\'lodule RSC
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Finally, the top module encoder is simulated. We feed in the clock signal and the input

sequence dk_in. After a 256 clock period delay, the encoder outputs the information sequence

dk_out and the parity sequence pk and also raises the dkready line to '1'. The result is shown

in Figure 4.3. The output is exactly as we expected.

2. Decoder Simulation

The simulation of the decoder starts with the Ak and Bk modules. By setting the initial value

of eight metrics and feeding in the three inputs x, y and z, the output data string is obtained.

Compared with the theoretical result according to equation (3.2), their functions are verified.

Further, the MAP module is tested. While raising the 'enable' to be 1, we feed the module

with two input sequences. After 258 clock cycles, the output is obtained and 'dkready' IS

raised to 1. The output waveforms are shown in Figure 4.4,4.5,4.6. respectively.
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4.2. System Simulation Scheme

With the functionally verified modules, the entire codec system is integrated together. To

determine the working performance of the turbo codec, a system level simulation scheme is

constructed which is shown below:

Transmitted
8 Recv

data data

Turbo Turbo Turbo

Encoder Decoder Decoder

8

Figure 4.7 System Level Simulation Scheme

A random transmitted data sequence was generated using Verilog' s system call $random. The

data is grouped into 256-bit long blocks. All the blocks are fed into the encoder continuously

without any gap in between. In all the simulations, 1000 blocks are used to generate trustable

performance results. Otherwise, there won't be enough errors collected for the reliable

performance evaluation. All the generated data blocks are stored in an input file using Verilog

system call $fwrite, so that it can be compared with later recovered data from decoder to

generate the bit-error rate curve in different noise environments.

The outputs of the encoder are two streams of bits, one of which is the original systematic data

and the other is the parity bit sequence from the RSCs after puncturation. The two binary bit

streams are collected and stored in the encoder output files using $fwrite.
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To model the noisy channel, the MATLAB program was used. In this thesis, as well as in

most of the literature, the additive white Gaussian noise (AWGN) is used to simulate a noisy

environment. MATLAB provides a very accurate model of AWGN noise and is thus well

suited for the task. For the simulation, the encoder output file is read into MATLAB, and the

corresponding AWGN noise is added to the transmitted data and the parity sequence to

produce the noisy received data sequence for the decoder. The original binary data sequences

are converted into floating point noisy data and further quantized into 8-bit fixed point data

which can be handled by the decoder. The system is tested for noise in the range from IdB to

3.5 dB, which simulates realistic wireless communication environments.

The decoder input is the noisy data, which is generated by the MATLAB program, using

$readmem system call of Verilog. The recovered data is obtained at the output of the last

stage MAP decoder. The decoder can be configured with various numbers of MAP decoders

to adjust the system for different requirements of communications. Because the MAP decoder

is a Soft In Soft Out (SISO) structure, the data paths among adjacent modules are all 8 bits

wide, except for the output of the last decoder, where the final hard decision has to be made to

recover the binary data.

After obtaining the recovered data and the original transmitted data, the performance of the

codec can be analyzed under different noise environments by altering the noise variation in

MATLAB.
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4.3. Performance Analysis

With the above system level simulation scheme, the performance of a turbo codes circuit can

be simulated for several criteria, i.e. bit-error-rate at given SNRs, system delay, system

throughput and system complexity. They reflect the quality, latency, data-rate and hardware

cost of a communication system. All these factors are very important for evaluation for the

different types of communication applications. There are a number of tradeoffs which have to

be made in order to achieve the various requirements of a specific communications system.

1. Bit error rate

The first criterion is the measurement of the bit error rate for different noise environments.

This is the most important measurement which decides the quality of the communication in a

given channel. The whole Verilog turbo codec system is simulated for different noise levels

(generated by using MATLAB). The resulting bit errorrate versus signal to noise ratio (BER

SNR) curve is shown in Figure 4.8. The result is also compared with an ideal MAP decoder

and a floating point log-MAP decoder. Both the MAP decoder and log-MAP decoder were

modeled in C, with the same interleaver size 256, same interleaver structure and three

iterations. The channel is simulated as an Additive White Gaussian Noise channel with the

noise variance ranging from 1 dB to 3.5 dB. From the BER curve, we find that there is

insignificant degradation due to using the simplified log-MAP algorithm. However, the fixed

point implementation introduces a more severe degradation around 1 dB. Based on the

specifications of the GSM wireless communication standards, the BER of interest are 4*10-2

for speech and 10-5 for data transmission. With the current simple configuration, this is

attainable.
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Figure 4.8 BER performance of turbo codes with different implementations

2. System Delay

The second important criterion is the system delay, i.e. the time period from the time when the

first input enters the decoder to the time when its corresponding output appears at the output.

This measurement decides the delay of the decoder, which can not be too large in wireless

communication. With the intensive optimization of decoder logic to obtain the full pipeline

structure, the system delay is determined by the number of iterations in the decoder. The more
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iterations the decoder involves, the higher the quality and the longer the delay. The tradeoff of

the quality and delay have to be made for different kinds of applications. Because the decoder

was designed as a modular structure, the whole system is very scalable and adjustable for

different applications. Based on different communication requirement, the decoder can be

integrated with a different number of iterations by cascading different numbers of one-pass

decoder modules, without requiring any more control signals. The adjacent modules can be

synchronized by connecting the R-ready signal of the previous module to the enable signal of

the following module. This kind of self-timing like control makes the whole system very

Figure 4.9 BER performance of turbo codes with different number of iterations
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scalable. Each module corresponds to 2 data block's delay, i.e. 512 cycles in the current

design. If N iterations are used for a system, N*512 cycles of delay will be introduced. The

relationship between the performance (bit error rate) and the number of iterations was also

tested using the above system-level simulation. The results are shown in Figure 4.9. Based on

different BER requirements, the decoder can be integrated with various numbers of MAP

modules. There are no specific circuits required to cascade these modules. The only work

needed is to connect the outputs of the previous module to the inputs of the following modules

and to connect the 'dkready' signal of the previous module to the 'enable' signal of the

following module. This modular design makes the structure very scalable.

The GSM standard defines a block size is 189 bits. With the short block size of 256 bits used

here, the current design can be applied to the standard.

3. Data rate

The fully pipelined structure makes the decoder operate at the maximum data rate. The

throughput of the decoder is fixed and doesn't depend on the decoder iteration number. Due'to

the fully optimized design with the pipelined structure, there is no gap between data blocks so

that the maximum data rate can be achieved. The data can be processed continuously, and the

block boundaries are handled by the internal timing circuit. The real data rate will depend on

the synthesis target, the clock, and the input data rate. The logic structure of the decoder

doesn't impose any limitation on the throughput of the system.
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4. Complexity

To get higher data throughput and lower delay, the complexity of the system is a little bit

higher with more delay lines. For real-time communication applications environments, a

tradeoff has to be made. On the other hand, by simplifying of the original complicated

probability algorithm to a system without any multiplication and exponential computation, the

current design only requires an adder/subtracter and a comparator. Also, the fixed point

design makes the system even simpler.

56



Chapter 5

Conclusions

In this thesis, a pipelined and scalable turbo codec ASIC was designed to provide a circuit fo"r

high quality of communication in a high noise environment. Starting from the original "Turbo

codes" paper [1], the algorithm was analyzed and partitioned into several functional blocks.

The software simulation was performed using C to verify the theoretical performance of turbo

codes. Furthermore, the algorithm was modified and simplified in order to make it feasible to

be implemented in hardware. The implementation was modeled with the Verilog hardware

description language in a bottom-up manner. Each module was developed and tested to

guarantee functional correctness. With these tested modules, the encoder and decoder were

integrated to form a whole codec system. The whole system was simulated with Modeltech to

verify its error-correcting performance, as well as its system delay, throughput and hardware

complexity. Based on the final simulation results, the codec performe? very well in spite of

some performance degradation compared with the theoretical floating point codec. All the
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specifications and parameters of the system conforms to the latest wireless communication

standards, like GSM, which has short block size, low bit error rate requirements.

Besides the functional correctness, the codec designed here has following features:

1. Pipelined structure

The most complicated parts in the codec system are the MAP decoders. Through

simplification, all the multiplication and exponential operations were converted into

addition and comparison, respectively. But the whole structure of the decoder is

recursive and the stages of computation depend on each other, which make the

structure hard to integrate. In this design, in order to increase the data rate and take

full advantage of the hardware resource, the turbo decoder was partitioned into several

stages which enable pipelinedprocessing of the data flow.

2. Scalable module

The decoder was designed to be modular and scalable in order to provide the user the

flexibility to· adjust the system complexity based on different kinds of quality

requirements. The more decoder modules a design uses, the higher the communication

quality of the codec. In some less adverse environments with lower quality

requirements, fewer modules may be used in order to keep the complexity and system

cost low.
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3. Continuous data flow

With the above pipelined design, the data rate of the system depends only on the

synthesis technology and the input data rate. The codec itself does not impose any

restriction on the throughput. The input data can be fed into the encoder and decoder

continuously without any special timing circuits. All the block partitioning was

handled inside the codec. Only an enable signal is required to indicate the beginning

of the input. When the first data is recovered, a ready signal will be generated by the

decoder for the user of the codec. This kind of design frees the codec's user from the

nl.\\ed to design complicated timing circuit.

4. Synthesizable implementation

The whole design is synthesis ready for any kinds of target technology. In the Verilog

modeling process, only logic equations and structunillevel statements were used with

no single unsynthesizable statement, in order to make sure that the system can be

synthesized easily and efficiently. Some dedicated modules were developed to keep

the final complexity as low as possible, including signed computation and RSCs.

From the hardware and real application perspective, the above features are essential to most of

the modem wireless communication systems.
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Future improvements

1. Synthesis

Due to time limitation, the whole design has not been synthesized for any specific

technology. The logic is ready for synthesis using any target technology, including FPGA

and other ASIC implementation. Further modification of the algorithm may be needed

when an efficient synthesis cannot be achieved.

2. Application specific adjustment

The codec is adjustable based on different types of applications. All the following

parameters can be adjusted including:

• Interleaver block size (256 bits in the current design)

• Interleaver structure (non-uniform block interleaver in the current design)

• RSC module structure (constraint length is 3 in the current design)

• Coding rate (1/2 in the current design)

• Decoder iteration number (3 in the current design)

• Soft input! Soft output data width (8 bits in the current design)

For example, in satellite communication, the block size can be longer compared with

wireless communication, and thereby a higher quality of communication can be achieved.

In some less adverse channels, like Racian channel where a line of sight exists between

transmitter and receiver, the coding rate can be increased and less soft data width is

needed.
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3. More accurate E operation

The E function, i.e. E(x,y)= - log (e-X + e-Y) was simplified as minimal of x and y in the

current design. From the simulation results, there is a little degradation due to this

simplification. If more accuracy is needed and more complexity is allowed, the error

introduced by this simplification can be reduced by generating a look-up table to store the

E function value. The increased accuracy improves the performance of the decoder at the

price of more hardware complexity.
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