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ABSTRACT

In current microelectronic industry, the most popular capacitance estimation method

used in pre-layout methodologies is the one called NETCAP1 capacitance estimation.

Because of the introduction of floorplanning to the timing-driven layout system, a new

scenario based on the floorplan information to proceed more accurate capacitance

estimation is possible now. This paper describes NETCAP capacitance estimation and

proposed a methodology to proceed floorplan-based capacitance estimation. A

floorplan-based capacitance estimate program is implemented to incorporate with an

existing CAD layout tool to test the methodology. Three study cases are selected to

proceed the experiments for the implementation of the program. The estimated

capacitance values from the above two methods in the study cases are compared with the

accurate capacitance values from post-layout processes, Le. compared with the results of

a reference technique based on final layout routing. In the three study cases, the

NETCAP capacitance estimation achieved 0.283 pf2 (27.29 %) mean estimation erro?

with the standard deviation 2.479 pf, whereas the floorplan-based capacitance estimation

achieved 0.143 pf (13.61 %) mean estimation error4 with the standard deviation 0.645 pf.

1. NETCAP is a program developed and widely used at AT&T Bell Labs, It is also known as Autoroute
program in Bell Labs. see Section 1.1.

2. pf: pico-farad, the capacitance unit which is used throughout the paper.

3. see Table 9. Statistics of NETCAP Residual.

4. see Table 8. Statistics of Floorplan-based Residual.
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1. Introduction

In timing simulation processes, the capacitance values of all nets in the circuit are

important informations for the computation (post-layout simulation) or estimation (pre-

layout simulation) of timing properties.

Net capacitance is composed of terminal capacitance and routing capacitance. The

sum of these two components is the total net capacitance. The terminal- capacitance is

due to the source and destination cells connected by the net, whereas the routing

capacitance is due to the interconnection of the net itself. The terminal capacitance of

each cell is accessed from the description of the cell type.D1 In' post-layout

methodologies, the routing capacitance of each net can be accurately extracted by the

layout tool from the completed layout. In pre-layout methodologies, since the placement

and routing of cells affects the routing capacitance are not known yet, the routing

capacitance can only be approximately estimated.

In current microelectronic industry, the most popular capacitance estimation method

used in pre-layout methodologies is the one called NETCAP capacitance estimation.

Because of the introduction of floorplanning to the Timing-Driven layout system,5 a new

scenario based on the floorplan information to proceed more aCSU[ate capacitance

5. Timing-Driven layout system is an integrated system at AT&T Bell Labs for standard cell circuit
design.
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estimation is possible now. This paper describes NETCAP capacitance estimation and

proposed a methodology to proceed floorplan-based capacitance estimation. A

floorplan-based capacitance estimate program is implemented to incorporate with an

existing CAD layout too16 to test the methodology. Three study cases are selected to

proceed the experiments for the implementation of the program. The estimated

capacitance values from the above two methods in the study cases are compared with the

accurate capacitance values from post-layout processes, Le. compared with the results of

a reference technique based on final layout routing.

1.1 NETCAP Capacitance Estimation

The simplest estimation to the routing capacitance is called NETCAP which uses the

net connectivity information only. [2] The NETCAP estimation makes the assumption that

the routing capacitance is function of the fan-in and fan-out of the net. It does not take

into account the actual wire length of the interconnect but simply counts the number of

terminals to which the net connects and applies a step-wise linear function to one less

than this count number. The number of wires required for a net is the number of

terminals on the net minus one because a simple net which connects one source to one

destination connects two terminals.

6. The CAD tool is a standard cell placement and route tool called LTX. It is widely used at AT&T Bell
Labs.
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To the first order, the NETCAP capacitance is proportional to the number of

terminals on the net minus one. But this is too pessimistic for high fan-out nets such as

clock driver nets. A user specified step-wise linear function permits the routing

capacitance for such nets to be estimated more accurately.

As described above, NETCAP capacitance estimation does not take into account the

actual wire length of the net and is not accurately enough. However, in pre-layout

processes, there is no layout at all and the net connectivity is the only information can be

used. The method provides a quick reference without going through the layout processes.

1.2 Floorplan-based Capacitance Estimation

Recently, a floorplanning process is introduced to the timing-driven layout system.

In the system, a block-based floorplanner is implemented to optimize the block areas and

the total wire length among multiple blocks with a "soft" block representing a set of cells
~

grouped by a partition.[3]

After the placement of the blocks by the floorplanner, a capacitance estimation can be

proceeded based on the floorplanning information and produce the estimated

capacitances for the pre-layout simulationJ4] Since the estimation uses the floorplanning

results, it is called floorplan-based capacitance estimation.

From the floorplanning results, the location of the blocks are determined. The length

of wires connecting the blocks can be estimated to produce capacitance estimation.[5] The

4



capacitance values within a block can be estimated by applying the empirical formula we

derived from some experiments or a theoretical model called neighborhood density

equations estimation technique.[6]

More details about the theory and implementation of the floorplan-based capacitance

estimation will be given. An overview of the design process is described first so that the

reader will have a clear picture about the existing CAD layout tool and the necessary

components to proceed floorplan-based capacitance estimation.

2. Overview of the Layout Design Process

The layout design process starts from the hierarchical netlist view of the design. The

netlist file contains the connectivity information which indicates the interconnections of

the cells without any physical wire shapes. Generally speaking, the objective of the

layout design process is to create the layout from the netlist view of the design. The

layout of the design is created by the layout engineer with the help of some CAD layout

tools. Before a netlist file can be used by the layout tool, since it is a hierarchical netlist,

a procedure called logiG1J'artition is needed to partition and flatten the connectivity. This

procedure decides the grouping of cells and is proceeded by a tool called logic

partitioner. The layout tool reads the partitioned netlist file and retrieves the geometries

of the used cells from the cell library to create an unplaced layout. With the unplaced

layout, the procedure of buffer placement can be proceeded to place all the I/O buffers

first. The floorplanning is followed after the buffer placement. The floorplanning

5



decides the locations of the cell groups, whereas the location of each cell is obtained by

the next procedure called cell placement. After the cell placement is done, the routing

procedure can be proceeded to complete the layout of the design. The flowchart of the

layout design process is illustrated in Figure 1. The five components, logic partition,

buffer placement, floorplanning, cell placement, and routing are described below.

6
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2.1 Logic Partition

The logic partitioner partitions a circuit into several disjoint modules with the

objective of minimizing both the number of modules and the number of interconnections

among them.[7] The model of the unpartitioned circuit, i.e. the flattened netlist, consists

of an interconnection of cells. Every cell is characterized by its relative size, which

reflects the size of that cell relative to other cells. The partitioner expects the component

size data as a size library, which is a simple text file consisting of a sequence of lines. A

size library file of the standard cells is extracted from the polycell library system and is

provided for the process. With the cell size information and nr_module, the user

specified number of modules, the logic partitioner applys bottom-up clustering algorithm

to group the cells into nr_module modules. It also produces the information of the

number of cells, the number of pins, and the number of nets in every module.

2.2 Buffer Placement

A buffer placement tool is used to create and verify the placement of I/O buffers and

power/ground pins. It is used to verify the acceptability of the buffer placement by the

user, or to synthesize an appropriate buffer placement aiming at minimizing the noise

voltages due to the ground bounce. The tool provides built-in algorithms to

quantitatively and efficiently derive the switching noise characteristics of a given buffer

placement with a package and a process technology specified by the user. It is started

with an initial I/O pinlist extracted from the netlist. The process is proceeded by editing
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the pinlist, choosing a package, computing inductances, and synthesizing the near-

optimal buffer placement. Different configurations made by rearranging the pin

placement and adding power and ground pins are interactively entered and analyzed. The

final result of the process is written to a text file which will be read by the floorplanner.

23 Floorplanning

The floorplanner has the capability to generate layout view from a given netlist view,

technology parameters, and cell library. The objects in the database are polycells, hard

blocks, and I/O buffers. Since the netlist view is partitioned by the logic partitioner, the

polycells are clustered into soft blocks when the layout view is generated by the

floorplanner. In addition to generating the layout view, the floorplanner is used to

determine the shapes and positions of the soft blocks as well as the positions and

orientations of the hard blocks and I/O buffers. [8] It is a tool for obtaining realistic block

level placement, and producing accurate interconnect parasitics to be used for timing

verification. The floorplanner contains a set of automatic and interactive procedures.

The essential automatic procedures are for buffer placement, block placement. The

interactive procedures include commands to hard place and soft place, to move, and to

reshape the blocks. Utilities are also provided for viewing the graphical representation of

the design.

The I/O buffers are placed by the floorplanner according to the buffer placement file

created by the buffer placement tool described above. Based on the shape constraints of
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each block and the connectivity among blocks, the block placement procedure

automatically places all the blocks and determines the shapes of all the soft blocks. The

objective is to minimize the total area of the chip as well as the total interconnection wire

length.

2.4 Cell Placement

A CAD layout toot? is used to complete the layout after the floorplanning. The

floorplanning only determines the placement and alignment of chip components within

the overall chip boundary whereas the cells within each soft blocks are placed by the tool

with the simulated annealing algorithm using the net length and capacitance as the cost

function. The tool also provides some options to merge the specified soft blocks into

polyrows8 with or without changing the overall cell grouping. The boundary outlines of

the soft blocks from the floorplanning are no longer existed because the layout is

represented by polyrows, hard blocks, and I/O buffers after the cell placement.

2.5. Routing

After the cell placement, the same CAD tool is used to divide the space left between

the chip components into routing modules that will eventually contain routing. A process

7. The CAD tool is a standard cell placement and routing tool called LTX which is used to perfonn all the
experiments of this paper.

8. A polyrow is a group of polycells in a row shape.
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called loose routing is first used to determine the global paths that connect the chip

modules together. The tool looks at the connectivity of each module, assigns connections

to the routing modules based on the shortest wire length and other signal performance

properties. After loose routing, a process called placement improvement can be

proceeded based on the loose routing information. The last process is called fine routing

which creates the actual routing with the information of various communication paths

provided above.

3. Incorporating Capacitance Estimation in The Layout Design Process

A verification of the layout is needed after the layout design process. The verification

is a process called timing simulation. There are two kinds of timing simulation, pre­

layout simulation and post-layout simulation. The pre-layout simulation uses the net

capacitances derived from NETCAP capacitance estimation and therefore is before the

layout design process. However, the capacitance estimation can not be accurate enough

because no layout information is used by the NETCAP capacitance estimator. In post­

layout simulation, the net capacitances provided as input information are computed from

the wire length of the complete layout. Suppose the post-layout simulation found that the

timing properties are not acceptable, the whole layout design process has to be redone

starting from the logic partition.

However, a capacitance estimation can be incorporated in the layout design process

after the floorplanning before the cell placement. With the approach, the layout design
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process can be split into two major processes, fioorplanning and layout completion, the

cell placement and routing which are the most CPU-dense and time-consuming

procedures. Under the scenario, the designers are expected to proceed the first process

with a fioorplanner to produce fioorplans with sufficient placement resolution and use the

estimated net capacitances in pre-layout simulation. The layout engineers are expected to

proceed the second process with these fioorplans and the capacitance files as reference

and produce the final layouts. In general, the designers do buffer placement and

fioorplanning, estimate routing capacitances from the fioorplan, run simulation, tighten

the capacitance values and re-simulate, and eventually include the fioorplan and the

capacitance file in the package to the layout engineer. The design scenario is aimed at

reducing the pre-layout engineering cost and maintaining a smooth post-layout process.

4. Floorplan-based Capacitance Estimation

The accuracy of the net capacitance estimate depends on the estimate of the routing

wire length of the signal net. Applying the wire length and wire width with the unit area

capacitance and unit fringe capacitance, the capacitance of each signal net can be

estimated without the chip completely laid out. The main challenge in the

implementation lies in how to get practical estimate for the total wire length of each

signal net after the blocks are placed by the block-based fioorplanner. The total wire

length of a signal net can be estimated from two parts. One is the wire length from the

interconnections among fixed terminals ( of buffers or hard blocks) and soft blocks which

12



contain source terminals of the signal net. The other is the wire length of the signal net

within each soft block.

4.1 Estimate Wire Length among Multiple Blocks

After block placement, modules on the chip are handled as three categories: soft

blocks, hard blocks and I/O buffers. The terminal locations of each hard block and I/O

buffer are known and can be used directly to estimate the wire length. However, the

location of a terminal within a soft block is not determined yet. We use the center point

of the soft block to approximate the actual terminal location.

With all the terminal locations of a signal net, four different near-optimal rectilinear

Steiner Trees can be calculated by growing from bottom, top, left and right. The shortest

tree can be chosen as the geometric representation of the net, from which the estimated

wire length of the signal is obtained.

However, hard blocks are blockage for Steiner trees since they are not penetrative by

routing wires. In order to obtain a more accurate wire length, a maze-running algorithm is

needed. It can be achieved by constructing the minimal Steiner tree, then check against

the blockage. If there is no penetration, the Steiner tree can be used to estimate the wire

length. If penetration occurs, the Lee's algorithm[9] will be used to modify the tree and

estimate the wire length more accurately.

13



4.2 Estimate Wire Length within a Soft Block

The wire length within a soft block can be estimated by applying a theoretical model

called neighborhood density equations estimation technique presented by a paper in 1992

DAC.9 For several industrial circuits tested, the technique achieved average estimation

error of 9.0% with a maximum deviation of +16.3%, which compares favorably with

other techniques previously proposed. The paper concludes that Urn' the average wire

length of m-pin net is given by

1
Um = 2(m 2 + 2m -2)/3m * j3

where ~ is the equilibrium parameter. Therefore,

U m = (m 2 + 2m-2)/3m * U 2

where U2 = 2 / ~. Since the capacitance C is in proportion to U ,it is appropriate tom m

represent Cm as

em = (m 2 + 2m-2)/3m * C 2

The value C2 can be derived from some experiments on the 0.9 micron CMOS

technology, with which the timing-driven placement was fine tuned. The experiments are

described in the next chapter.

9. see Reference [5].
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5. How to Produce Capacitance Estimator

In order to apply the above theory to produce the floorplan-based capacitance

estimator, appropriate data are needed in addition to code writing. The estimated

capacitance of a net is composed of the capacitance within each soft block and the

capacitance among multiple soft blocks of the net. Through the data of some

experiments, the empirical formula of C2 can be derived. The experimental data can be

used to verify the above theoretical formula or to derive our own empirical formula of

Cm. The capacitance within each soft block is estimated by C2 and Cm. A programlO is

implemented to estimate the wire length with the algorithm of Steiner tree for the

capacitance among multiple soft blocks.

5.1 Procedure of Experiments

The procedures of performing the experiments are summarized as follows:

o Find an appropriate pure polycell chip.

o Extract the netlist of the chip.

o Make 15, 20, and 25 nearly-equal logic partitions of the chip. Each number of

partitions is one study case.

10. see Appendix.
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o Perform the floorplanning of each study case.

o Completely Layout each study case.

o Extract the capacitances of 2-pin, 3-pin, 4-pin, and 5-pin nets from each study case.

o Group the capacitances of 2-pin, 3-pin, 4-pin, and 5-pin nets in each soft block for

each study case.

o Analyze the correlation of the capacitances of 2-pin, 3-pin, 4-pin, and 5-pin nets

versus the soft block size for each study case.

o Analyze the correlation of m-pin capacitances versus 2-pin capacitances.

o Analyze the correlation of the three study cases.

5.2 Case Study

A chip with 6558 polycells and 8716 signal nets is selected. The layout of the chip is

illustrated in Figure 2. In order to simplify the analysis of m-pin signal capacitances, the

I/O buffers are ignored from our experiments. A netlist is extracted from the 44

polyrows of the chip. Based on the netlist, the following study cases are proceeded.

5.3 Study Case I -- 15 Soft Blocks

A logic partition with 15 modules was performed from the netlist. The statistics of

the partition is listed in Table 1. The floorplan of the partition is illustrated in Figure 3.

16



5.4 Study Case IT .- 20 Soft Blocks , "

A logic partition with 20 modules was performed from the same netlist. The

statistics of the partition is listed in Table 2, The floorplan of the partition is illustrated in

Figure 4.

5.s Study Case ill .. 25 Soft Blocks

A logic partition with 25 modules was performed from the same netlist. The

statistics of the partition is listed in Table 3. The floorplan of the partition is illustrated in

Figure 5.
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Ouster No. Devices Size Pins Buried Nets Boundary Nets
1 349 3971 116 431 116

2 477 4572 119 543 119
3 468 5004 219 510 219
4 470 4661 133 546 129
5 327 3737 98 417 98

6 370 3956 113 446 113
7 417 4428 150 503 150

8 469 4600 152 539 150
9 391 4389 168 474 168

10 405 4570 154 511 150
11 605 4883 281 657 233
12 512 4944 253 517 223
13 454 4938 222 519 221
14 409 4697 193 450 193
15 435 4896 183 516 183

Devices: 6558 Nets: 8716
Total size: 68246
Target average size: 4550
Size factor: 2.72727
Smallest size: 2
Total pins: 2554
Total buried nets: 7579

Table 1. Statistics of Case I - Logic Partition with 15 Soft Blocks

19



Ouster No. Devices Size Pins Buried Nets Boundary Nets

1 232 2915 95 290 95
2 313 3177 97 370 95
3 378 2723 225 274 197
4 345 3002 300 328 294
5 259 3258 97 323 97
6 352 3518 117 410 115
7 284 3358 131 342 131

8 358 3481 140 401 140
9 379 3447 153 417 127

10 404 3632 218 468 199
11 350 3437 203 369 203
12 312 3650 100 397 100
13 331 3699 119 404 119
14 310 3547 151 328 151
15 347 3444 125 390 122

16 320 3617 145 381 145
17 309 3638 105 388 105
18 287 3462 123 337 123
19 371 3507 112 429 111

20 317 3734 145 378 145

Devices: 6558 Nets: 8716
Total size: 68246
Target average size: 3413
Size factor: 2.72749
Smallest size: 2
Total pins: 2901
Total buried nets: 7424

Table 2. Statistics of Case II - Logic Partition with 20 Soft Blocks

20



Cluster No. Devices Size Pins Buried Nets Boundary Nets

1 201 2675 128 220 128

2 290 2628 109 315 109

3 285 2899 114 325 110

4 269 2919 143 334 128
5 302 2730 207 319 207

6 221 2704 116 236 116
7 316 3001 111 363 93

8 198 2653 110 227 110

9 296 2716 212 284 211

10 /295 2596 180 312 180
11 216 2725 117 251 117
12 205 2745 123 222 123
13 254 2692 118 283 118
14 253 2693 108 274 108-
15 289 2671 215 300 215

16 311 2721 214 313 202
17 377 2650 274 301 256
18 215 2762 130 247 130
19 305 2666 207 266 193

20 273 2705 81 322 81

21 273 2892 164 288 162

22 222 2695 104 281 99
23 243 2717 110 293 110
24 241 2671 150 264 150

25 208 2720 126 249 126

Devices: 6558 Nets: 8716
Total size: 68246
Target avs:rage size: 2730
Size factor: 2.72727
Smallest size: 2
Total pins: 3671
Total buried nets: 7089

Table 3. Statistics of Case III - Logic Partition with 25 Soft Blocks

21
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5.6 Analyses of Capacitance versus Soft Block Size

It is desirable to find out an empirical formula of the 2-pin signal capacitance from

the soft block size. Since the width and the height of the soft block is known, we could

apply the following non-linear model

C 2 = (ax + YY)11

where 0 < a < 1 weights the relative contributions of horizontal wirings and Y weights

the relative contributions of vertical wirings, and 11 strongly correlates to the capacitance

per unit length wiring.

Some histograms of the 2-pin net capacitance distribution are illustrated in Figure 6.

The pattern shows most 2-pin net capacitances are less than 0.1 pf no matter which soft

block they are in. This pattern is valid for all three study cases. The statistics about the

correlation between the mean capacitance of each soft block and the block width and

height from study case I is illustrated in Figure 7. The statistics from study case II is

illustrated in Figure 8. Figure 9 illustrates the statistics of study case III.
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From Figure 6, 7, 8, and 9, it is obvious that there is no direct correlation between the

2-pin signal capacitance and the block size. The reason is that the algorithm of the cell

placement, the simulated annealing, functions so well that most cells constructing the 2­

pin net are very close and the distance between the two cells is independent of the block

size. The attempt of characterizing C2 as a function of the dimensions (x,y) of the soft

block is invalid.

5.7 Analyses of 2-pin Capacitance versus m-pin Capacitance

A lot of analyses were performed to verify the correlation between the 2-pin

capacitance and the m-pin capacitance. Figure 10 illustrates the mean 2-pin, 3-pin, 4-pin,

and 5-pin capacitances of each soft block from study case 1. The same plot from study

case II is illustrated in Figure 11. Figure 12 illustrates the plot from study case III.

From Figure 10, 11, and 12, it can be seen that although there seems no correlation

among mean capacitances of soft blocks, the correlation between m-pin capacitance and

2-pin capacitance is obvious. A summary statistics of the three study cases is shown in

Table 4. In addition to the three study cases, another case without partitioning, i.e., the

traditional procedure without f100rplanning was performed to make the comparison with

the three different partitions. The statistics of the case is also provided in Table 4. In

order to derive Cm from C2, two linear least squares fitting with the following

mathematical models are proceeded:
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Cm = a * C2

Cm = b * C2 + c
The results are listed in Table 5 and the values from the theoretical model

Cm = (m 2 + 2m-2)/3m * C2

are listed in Table 6 for the comparison.

Number of Number of CapacitanceCase No. Soft Blocks m-pm
Nets Mean (pf)

2-pin 6041 0.04313

3-pin 781 0.08126
Case I 15

4-pin 152 0.10618

5-pin 121 0.15895

2-pin 5957 0.04596

3-pin 760 0.07795
Case II 20

4-pin 150 0.11768

5-pin 112 0.16118
~ -

2-pin 5731 (_/0.041(11
~

Case III 3-pin 701 0.07330
25

4-pin 127 0.10532

5-pln 88 0.12660

2-pin 6391 0.04352

1 3-pin 925 0.11265
Case IV

(No Partition) 4-pin 181 0.11158

5-pin 219 0.15402

Table 4. Statistics of Four Study Cases
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Number of Cm= a * C2 em= b lie C2+ CCase No. Soft Blocks m-pin
a b c

I
I
I

3-pin 2.02387
I

0.006041.83333 .-I
I

I

Case I 15
,,

4-pin 2.43397 1.72674
I

0.03170,
I
I

I

0.068635-pin 3.62507 2.09390
,
I,
I
I

3-pin 1.68667 1.54160 0.00710

Case II 20 4-pin 2.51436 1.80854 0.03456

5-pin 3.42814 2.22213 0.05905

3-pin 1.71817 1.35234 0.01766

Case III 25 4-pin 2.37217 1.31011 0.04990

5-pin 3.01128 0.85301 0.09668..3-pin 2.58831 li;;;l.~i;l~~ll~il~i:!:1
1

4-pin 1::iMm~ii~:;:~::~ ..2.56383Case IV (No Partition)
5-pin .. I ..3.53891

I
I
I
I

Table 5. Empirical Values from Four Study Cases

Cm= d * C2 3-pin 4-pin' 5-pin
Theoretical

Model d= m·m+2m+2
1.44444 1.83333 2.200003m

Table 6. Numerical Values from Theoretical Model

32



6. Capacitance Empirical Formula

6.1 2-pin Capacitance Empirical Formula

From Table 4, C2 value is around 0.044 pf in each study case. It is appropriate to use

the average value of three study cases to represent C2. However, the objective of the

capacitance estimator is not only to provide the overall estimated capacitance, but also to

warn the designer those signals whose capacitances exceed the specification of the chip

design. In other words, the worst case is more interesting to us. To serve the objective,

the technique of quantile is more appropriate to us than the mean value. A data analysis

tool S-PLUS ll is used by the paper to do the statistical analyses. The package provides

the quantile function by an algorithm which linearly interpolates between order statistics

of a vector, assuming that the i-th order statistic is the i / (vector length) quantile. [10]

Therefore, quantile(0.70) means the value is greater than 70% of the values in the vector.

Different quantile values, based on 0.7, 0.8, 0.85, 0.9, and 0.95 are derived from each

study case and listed in Table 7 for references.

11. S-PLUS is a statistic software product from Statistical Sciences, Inc.
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Case No. m-pin
Number of Empirical Quantiles

Nets 0.70 0.80 0.85 0.90 0.95

2-pin 6041 0.04773 0.06120 0.07309 0.09005 0.12072

3-pin 781 0.09162 0.11561 0.13597 0.15916 0.19434
Case I

4-pin 152 0.12684 0.14353 0.15809 0.18440 0.22520

5-pin 121 0.19134 0.22264 0.24603 0.28855 0.35374

2-pin 5957 0.04901 0.06616 0.07860 0.09718 0.13665

3-pin 760 0.08687 0.10765 0.12470 0.14658 0.18674
Case II

4-pin 150 0.13734 0.16416 0.17824 0.20572 0.24622

5-pin 112 0.20492 0.24221 0.27474 0.29874 0.33730

2-pin 5731 0.05051 0.06502 0.07525 0.09418 0.12524

3-pin 701 0.08753 0.10398 0.11469 0.13568 0.17103
Case III

4-pin 127 0.12131 0.15428 0.16363 0.18108 0.19302

5'pin 88 0.15111 0.16989 0.18142 0.20407 0.22606

2-piri 6391 0.04516 0.06227 0.07412 0.09199 0.12874

i
3-pin 925 0.12753 0.17571 0.20456 0.24332 0.31177

Case IV
4-pin 181 0.13403 0.14846 0.16951 0.19948 0.23855

5-pin 219 0.17086 0.22682 0.25172 0.27698 0.32664

Table 7. Quantile Values of Three Study Cases

It is decided to use quantile(0.8) to represent C2 in the capacitance estimator to reach the

80% confidence level. Although larger quantile values can reach higher confidence level,

it is too pessimistic if the capacitance is too high. The average value of quantile(0.8)

from the three study cases is 0.064127 pf and is used in the capacitance estimate

program.
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6.2 m-pin Capacitance Empirical Formula

Comparing the empirical results of C3, C4, and C5 with the theoretical model Cm'

The theoretical values are too low. It may result in an optimistic capacitance estimation.

Since C
3

' C4' and C5 are derived, it is decided to use their quantile(0.8) values as the

empirical values. For m higher than 5, the theoretical formula is applied in the

capacitance estimate program. The average value of quantile(0.8) of C3 from the three

study cases is 0.10908 pf. C4 is 0.15399 pf and C
5

is 0.21158 pf by the same approach.

7. Results of the Capacitance Estimator

7.1 The Capacitance Estimate Program

In the database of the f1.oorplan created by the f1.oorplanner, each signal contains a

linked list of connected terminals. From the linked list, the soft blocks contain the

terminals of the signal can be retrieved. An ASCII file is generated by the floorplanner to

provide the information of the soft blocks to the capacitance estimator. The file contains

the signal name and the center locations of the soft blocks which are connected through

the signal.

A capacitance estimate program is implemented to use the file as input and generate

the estimated capacitance of each signal. The program checks the center location of input

blocks for the repeated numbers. If a block is repeated m times, Cm is calculated as

described above to obtain the capacitance within the block. With the center locations of
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the input blocks, four different near-optimal rectilinear Steiner Trees, growing from

bottom, top, left and right, are constructed. The shortest length of the four trees is chosen

as the external wire length. The capacitance among multiple blocks is estimated from the

external wire length by applying the unit capacitance12 and unit fringe capacitance13• A

constant 0.9 micron is chosen as the wire width for the experiments. Both values of the

unit capacitance and fringe capacitance are from the 0.9 micron CMOS technology. The

capacitance estimate program is attached in Appendix.

7.2 Result of Floorplan-base Capacitance Estimation

The f1oorplan-based capacitance estimate program was tested with the three study

cases. The estimated capacitances are compared with the computed capacitances from

post-layout, i.e. compared with the values accurately computed by the real wire length

applying to the corresponding unit capacitance. Only the signals which connect through

multiple soft blocks are used for the comparison because the other signals consist of C
m

only. The histograms of the residual (estimate error) of the three study cases are shown

in Figure 13. From Figure 13, it can be seen that the shape of the residuals is a normal

distribution and most residuals are small.

12. Unit capacitance 0.00007025 pf / square microns is used which is the average value of polysilicon and
metal material.

13. Unit fringe capacitance 0.00005513 pf / micron is used.
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The statistics of the comparison are listed in Table 8.

Number of Layouted Estimated Residual Standard Residual / Layouted
Case No. Mean Mean Mean Deviation

Signals (pf) (pf) (pf) (pf) (%)

Case I 1052 1.09346 0.98264 0.11082 0.73240 10.14

Case II 1177 1.11335 0.88498 0.22837 0.60054 20.51

Case III 1491 0.89253 0.80176 0.09077 0.60085 10.17

Average 1240 1.03311 0.88979 0.143 0.645 13.61

Table 8. Statistics of Floorplan-based Residual

In general, the floorplan-based capacitance estimation achieved 0.143 pf (13.61 %)

mean estimation error with the standard deviation 0.645 pf.

7.3 Result of NETCAP Capacitance Estimation

A similar analysis from the NETCAP capacitance estimation was performed. The

NETCAP capacitance is estimated by the following formula

capacitance = ( number of terminals - 1) * 0.09 pf

The statistics from NETCAP capacitance estimation are listed in Table 9.
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Number of Layouted NETCAP Residual Standard Residual / Layouted
Case No.

Signals Mean Mean Mean Deviation
(pf) (pf) (pf) (pf) (%)

Case I 1052 1.09346 0.81428 0.27918 2.65120 25.53

Case II 1177 1.11335 0.77560 0.33776 2.53551 30.34

Case III 1491 0.89253 0.66054 0.23198 2.24964 25.99

Average 1240 1.03311 0.75014 0.283 2.479 27.29

Table 9. Statistics of NETCAP Residual

In the three study cases, the NETCAP capacitance estimation achieved 0.283 pf

(27.29 %) mean estimation error with the standard deviation 2.479 pf.

8. Conclusion

The theoretical foundation of the proposed methodology of the floorplan-based

capacitance estimation is established by the four experiments (study cases) of a chip

layout. The empirical fonnula required by the capacitance estimator are derived from the

four experiments. With the implementation of the capacitance estimate program, the

comparison between the NETCAP program and the floorplan-based capacitance

estimation was performed.
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The result of the comparison shows the NETCAP capacitance estimation achieved

0.283 pf (27.29 %) mean error with the standard deviation 2.479 pf, whereas the

floorplan-based capacitance estimation achieved 0.143 pf (13.61 %) mean error with the

standard deviation 0.645 pf. The floorplan-based capacitance estimation doubles the

accuracy in the mean estimation error and reduces the standard deviation to one-fourth.
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APPENDIX

/*
* This is a program to estimate capacitance value from the block
* information of the signals after the floorplanning process
*/

#include <stdio.h>

typedef struct sblk {
float xc, yc; /* center location of block */
float xhl;
float xh2;
float yh;
float xv;
float yvl;
float yv2;
struct sblk *fptr; /* forward pointer for processing */
struct sblk *bptr; /* backward pointer for processing */
float sortVal; /* value to be used for sorting */
int index; /* index number */ j

} BLOCK;

#define UNIT_CAP 0.00007025/* 0.9 CMOS unit capacitance */
#define FRINGE_CAP 0.00005513 /* 0.9 CMOS unit fringe capacitance */
#define WIDTH 0.9/* 0.9 CMOS default wire width */

#define C2 0.064127/* 2-pin capacitance quantile(0.8) */
#define C3 0.109080/* 3-pin capacitance quantile(0.8) */
#define C4 0.153990/* 4-pin capacitance quantile(0.8) */
#define C5 0.211580/* 5-pin capacitance quantile(0.8) */

#define MAXBLK 8000/* maximum number of blocks of a signal */
#define INF 1073741823

#define MAX(A,B) ((A»(B) ? (A) : (B))
#define MIN(A,B) ((A)«B) ? (A) : (B))

/* return rectlinear distance between two segments a, b */
#define RECTLINEAR(xa1,ya1,xa2,ya2,xb1,yb1,xb2,yb2)

(MAX(0,MAX(xal-xb2,xbl-xa2))+MAX(0,MAX(yal-yb2,ybl-ya2)))

/* return 1 if block b1 is the same as block b2 */
#define IS_SAME_BLOCK(b1,b2)

42



(abs«(b1).xc-(b2).xc) < 0.5 && abs«(b1).yc-(b2).yc) < 0.5)

BLOCK b10ck1 [MAXBLK]; /* block array */
float blk_xc[MAXBLK], blk_yc[MAXBLK]; /* block center coordibates */
int nrJndex; /* number of index */

extern void qsortO;

/* main program to read input file and write output file */
main(argc, argv)
int argc;
char *argv[];
{

FILE *fd1, *fd2;
char sigName[80];
int i, j, nr_block;
float sigValue, estimateO;

if(argc < 3) {
fprintf(stderr,
"Usage: %s capJnputJile cap_outputJileO, argv[O]);

exit(1);
}
if(!(fd1 = fopen(argv[l], "r"))) {

fprintf(stderr, "Can't open cap_input_fileO, argv[l]);
exit(1);

}
if(!(fd2 = fopen(argv[2],"w"))) {

fprintf(stderr, "Can't open cap_output_file to writeO,
argv[2]);
fclose(fd 1);
exit(1);

}
while«i= fscanf(fdl,"%s",sigName)) == 1) {

i =0;
while(G= fscanf(fdl,"%d %f %f', &nr block, &blk xc[iJ,- -
&b1k yc[i++])) == 3);
if(nr_block < 2)

sigValue = 0.0;
else

sigValue = estimate(nr block, blk xc, blk yc);- - -
fprintf(fd2, "%s %.6f', sigName, sigValue);
if(sigValue> 0) {

for(i= 1; i <= nrJndex; i++)
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fprintf(fd2, " %d",block1[i].index);
}
fprintf(fd2, "0);

}
fclose(fd1);
fclose(fd2);
exit(O);

/* process capacitance estimation */
float

estimate(nr_block, blk_xc, blk_yc)
int nr_block;
float blk_xc[], blk_yc[];
{

BLOCK tmp_blk;
int i, j, same;
float internalCap, externalCap, wireLength;
float estimateExternalO, int_capacitanceO, ext_capacitanceO;

/* build blockl[] array */
blockl[I].xc = blk_xc[O];
block1[l].yc = blk_yc[O];
block1[l].index = 1;
nrJndex = 1;
for(j= 1; j < nr_block; j++) {

same = 0;
tmp_blk.xc = blk_xcUl;
tmp_blk.yc = blk_ycUl;
for(i= 1; i <= nr index; i++) {

if(IS_SAME_BLOCK(tmp_blk, blockl[i])) {
same = i;
break;

}
if(same)

++(block1[same] .index);
else {

block1[++nrJndex].xc = blk_xcUl;
block1[nr_index].yc = blkycUl;
block1[nr_index] .index = 1;
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/* estimate internal capacitance */
internalCap = 0.0;
for(i=I; i <= nrJndex; i++) {

if(blockl [i].index > I) /* m-pin signal */
internalCap += int capacitance(blockl[i].index);

/* estimate external capacitance */
wireLength = estimateExternal(nr index, blockl);
externalCap = ext_capacitance(wireLength);
return(internalCap + externalCap);

}

/* return internal capacitance value */
static float

int capacitance(m)
intm;
{

if(m < 2) return(O.O);
switch (m) {
case 2: return(C2);
case 3: return(C3);
case 4: return(C4);
case 5: return(C5);
default:

return(C2*(m*m+2*m+2.)/(3.*m));

/* return external capacitance value */
static float

ext_capacitance(wireLength)
float wireLength;
{

double dcap;
float fcap;
dcap = UNIT_CAP * wireLength * WIDTH +

FRINGE_CAP * 2 * (wireLength + WIDTH);
fcap= dcap;
return(fcap);

/* compare function for qsortO */
static int
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cmpfunc(blkl, blk2)
BLOCK *blkl, *blk2;
{

if(blkl->sortVal < b1k2->sortVal) retum(-I);
if(blkl->sortVal > b1k2->sortVal) retum(1);
retum(O);

/* estimate external wire length
*Algorithm:
* For all the given block[n] array,
* four different near-optimum rectilinear Steiner trees
* are calculated in the IBM-style:
* growing from bottom,top,left, and right.
* The shortest tree is chosen as the representation of the net
* and the length of the net is returned.
*/
static float

estimateExtemal(n, block)
int n;
BLOCK b10ck[];
{

BLOCK wp[MAXBLK]; /* temporary array for qsortO */
BLOCK *ts;
register BLOCK *tt, *tr, *wpi;
register int i, k;
int kk,flg,rdir,rd,nb,cmpfunc();
float bwire, bdist,dd,dx,dy,twire,xx,yy;

/* copy input array onto wp */
for(i=l; i <= n; i++) wp[i] = b10ck[i];

bwire=INF; /* initialize the best wire length */

/* directions to build up the tree:
O=from bottom, I=from top, 2=from left, 3= from right *1

for(k=O; k < 4; k++) {
twire=O; /* total wire for this direction of the tree */
/* initialize data and prepare for sorting */
for(i=l; i <= n; i++) {

wpi= &wp[i];
wpi->index=O;
wpi->fptr=NULL;
wpi->bptr=NULL;
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wpi->xh1=wpi->xh2=wpi->xv=wpi->xc;
wpi->yh=wpi->yv1=wpi->yv2=wpi->yc;
switch(k){
case 0:

wpi->sortVal=wpi->yc;
break;

case 1:
wpi->sortVal= -wpi->yc;
break;

case 2:
wpi->sortVal= wpi->xc;
break;

case 3:
wpi->sortVal= -wpi->xc;
break;

default:
retum(l);

/* sort the terMINal records according to sortVal */
qsort(&(wp[l]),(unsigned)n,sizeof(BLOCK),cmpfunc);

/* setup the starting point */
wp[l].index = 1;

/* add blocks one by one */
/* i=1 is already part of the tree */
for(i=2; i <= n; i++) {

wpi= &wp[i];
if(wpi->index == 0) {

xx=wpi->xc;
yy=wpi->yc;
bdist=INF; /* best distance so far */
for(tt= &(wp(l]); tt!=NULL; tt=tt->fptr){

dd=RECfLINEAR(tt->xh1,tt->yv1,tt->xh2,
tt->yv2,xx,yy,xx,yy);

if(bdist>dd) {
bdist=dd;
tr=tt;

}
}
twire += bdist;
dx=MIN(xx,tr->xh2);
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dx=MAX(dx,tr->xh1);
dy=MIN(yy,tr->yv2);
dy=MAX(dy,tr->yv1);
wpi->xh1=MIN(dx,xx);
wpi->xh2=MAX(dx,xx);
wpi->yv1=MIN(dy,yy);
wpi->yv2=MAX(dy,yy);
switch(k){
caseD:
case 1:

wpi->yh=yy;
wpi->xv=dx;
break;

case 2:
case 3:

wpi->yh=dy;
wpi->xv=xx;
break;

default:
retum(2);

/* remove sections that are under the new segment */
/* always leave wp[l] in, pointers are simple then */
tr= &(wp[i]);
for(tt=wp[l].fptr;tt!=NULL;tt=ts) {

ts=tt->fptr;
if(tt!=tr) {

flg=O;
switch(k) {
case 0:

if(tt->xh1>=tr->xh1&&tt->xh2
<=tr->xh2&&tt->yh<=tr->yh)flg=1;

break;
case 1:

if(tt:..>xh1>=tr->xhl&&tt->xh2
<=tr->xh2&&tt->yh>=tr->yh)flg=1;

break;
case 2:

if(tt->yv1>=tr->yvl&&tt->yv2
<=tr->yv2&&tt->xv<=tr->xv)flg=1;

break;
case 3:

if(tt->yv1>=tr->yvl&&tt->yv2
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<=tr->yv2&&tt->xv>=tr->xv)ftg=1;
break;

default:
retum(3);

}
if(flg==l){

tt->bptr->fptr=tt->fptr;
if(tt->fptr!=NULL)

tt->fptr->bptr=tt->bptr;

}
}

}
if(twire<bwire) {

1* remember the better solution */
bwire=twire;

}
} /
/* display the tree
printf("resulting tree:O);
for(i= 1;i<=n;i++)

printf("x=%f y=%f xhl=%f xh2=%f yh=%f xv=%f yvl=%f yv2=%fD,
wp[i].xc,wp[i].yc,wp[i].xh1,wp[i] .xh2,wp[i] .yh,wp[i] .xv,
wp[i].yv1,wp[i] .yv2);

*/
retum(bwire);
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