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Abstract

The processes controlling landscape evolution in the Great Valley, eastern United

States is a controversial topic. The Great Valley was used to test two paradigms of

landscape evolution; dynamic equilibrium (Hack, 1960) where the relief of the landscape

remains constant even if there are changes in total elevation or position and that of W. M.

Davis (Davis, 1889, 1899), which explained a landscape in slow decay from high relief to

a peneplain that grades gently to base level. This study proposes to rectify these two

apparently opposing paradigms using the landscape of the Great Valley. Consistent

lithologic patterns for the Great Valley lead to consistent drainage patterns for each basin

in the Great Valley. Generally, each basin has two major drainages that trend parallel to

the strike of the Great Valley, one in the carbonates and one in the shales. These strike

parallel drainages flow into one of the major rivers that transversely cut the Great Valley;

the James, Potomac, Susquehanna and Delaware Rivers. Using several different

methodological approaches; a field study, extraction of whole basin metrics from digital

elevation models and longitudinal profile modeling, this study has reached several

general conclusions about landscape evolution in the Great Valley. One, upland gravel

deposits do not indicate watershed expansion. Two, channel metrics suggest systems in

disequilibrium that arc sluggishly connected to changes in base level. Three, the two

southernmost basins in the study. between the James and Potomac rivers. show hi£!.her. ~

longitudinal profile modeling values than the other basin in the study. Four. ultimately.

longitudinal profiling in this low slope em·ironment proved to be insensitive.



Introduction

There are many different conceptual paradigms on how landscapes evolve over

long, geologic time scales. Two of the leading paradigms, those of J.T. Hack (1960) and

W. M. Davis (1889, 1899), are generally viewed as incompatible, yet both were

conceived to explain the landscape of the eastern United States. Hack (1960) argues that

the Appalachian landscape is in or near a state of dynamic equilibrium which holds that

relief within the overall landscape remains relati vely constant, reflecting a characteristic

balance between driving (climatic, tectonic) and resisting (rock-type, structure) forces.

Alternatively, the Davisian model states that landscapes are first born by impulsive uplift,

rapidly develop their maximum relief, and then progressively decay to a peneplain. This

study seeks to understand several aspects of long term landscape evolution in the

Appalachian Mountains in the context of these long-standing geomorphic paradigms,

including the act of drainage self organization whereby drainages change from flowing

consequent to topographic slope to flowing subsequent to structure and rock type. Both

of these paradigms may describe the Appalachian landscape well for different temporal

and spatial scales but both clearly predict that the erosional response of the landscape to

the tectonic processes that constructed it in the first place is both long and complex. For

the case of the Appalachians, .In orogen built throughout the Paleozoic, the current

landscape represents at \cast 200 Ma of erosional decay, arguably punctuated by post­

orogenic cpcriogcny (Pazzaglia and Brandon, 1996). The prcsence of rclief and

mountainous topography oycr this protracted decay period argucs for surficial processcs

acting slowly and a sluggish linkage betwccn tcctonic processcs and the subscquent
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erosional response (Schumm and Rea, 1995), a conclusion supported by

thermochronologic data (Hulver, 1992, 1996; Laucks, unpublished data).

Embedded within the central Appalachian Mountains are distinct physiographic

provinces (fig. 1), each with a characteristic relief and topography dictated by the

underlying rock-type and structure. The Great Valley is one of these physiographic

provinces noteworthy of several core observations. First, it trends from the Hudson

Valley in New York State through New Jersey, Pennsylvania, and Maryland to its

southern end in Virginia and North Carolina. It has many local names including the

Hudson Valley, Minsi Valley, Lehigh Valley, Cumberland Valley and Shenandoah

Valley, respectively over its length. The Great Valley is underlain by distinct, continuous

belts of Cambro-Ordovician siliciclastic and carbonate rocks. Second, drainage in the

Great Valley is characteristically composed of long, strike parallel trellis channels

developed independently on the carbonate and siliciclastic rocks (fig. 2). These strike

parallel drainages, are each tributary to large, north-west to south-cast flowing orogen­

transverse rivers, such as the Susquehanna, Potomac, and James rivers, that drain the

Appalachians at approximately regular 100 km intervals. Hack (1982) and Braun (1983)

argued that stlike parallel drainages in the Great Valley seemed to be well adjusted to

rock type and the presence of upland gravels (see point thrce below) and supported thc

idca of invcl1cd topography in the drainage of the Potomac River (J acobsen, 1982).

Third, the drainage dividcs at the hcad of the opposing strikc-parallel drainagcs arc

asymmctric and locally mantled by upland gravels of diverse tcxturc and composition.

Qualitativcly, differences in topography in the divide regions particularly exist between

n011hern and southell1 parts of the Great Valley. which indicate fundamcntal diffcrences
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It is easy to imagine how the variations in rock type and transverse river base level

conspire to influence the development of strike-parallel drainage in the Great Valley and

therefore throttle long term landscape evolution for this physiographic province.

Lastly, the major transverse rivers draining the Appalachians vary in size

proportional to the area of Ridge and Valley in their basins. The Susquehanna River is

the largest of these transverse drainages and it is the only river, for geologic reasons, not

to traverse the Blue Ridge, which borders the Great Valley on its south-eastern side. The

outcrop width of the Ridge and Valley narrows to the south as the outcrop width of the

Blue Ridge increases. This geologic pattern is accompanied by a general increase in the

mean elevation and relief of the Appalachians from Pennsylvania south into Virginia. All

transverse drainages respond to a common base level controlled by the Atlantic Ocean.

Collectively, these observations suggest that the Great Valley, and the strike

drainages within it, reflect modem landforms all in a state of delicate adjustment to rock-

type, base level, and climate. This view predicts that the landforms and processes

continue to adjust to the rocks exposed to erosion, changes in climate, and perhaps most

importantly, to changes in base level related to the timing of when portions of the Great

Valley have been integrated into the main transverse rivers. An important corollary to

this prediction is that the drainage divides within the Great Valley are actively migrating.

rather than static features. A specific prediction made by this hypothesis is that drainage

divides in the southern Great Valley should be steeper and more asymmetric than those in

thc north bccausc intcgration of the Jamcs River into the Grcat Vallcy has becn retarded
~ .

by the wide. high Blue Ridgc. an impediment progressively lacking for the northern

Great Vallc\'.
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The alternative hypothesis is that the landforms and drainages of the Great Valley

are relict features, more closely related to the proposed episodic beveling of the

Appalachian topography (Davis, 1889, 1899) and or large changes in climate. The latter

view predicts that the Great Valley landforms and processes are completely out of phase

with modem surficial processes and a measure of disequilibrium in both form and

process would support the Davisian, rather than Hackian paradigm for landscape

evolution. A specific prediction of the disequilibrium hypothesis is that Great Valley

divides are relatively static and show no discernable trends in steepness or asymmetry

from north to south.

This thesis presents several field and laboratory experiments designed to test these

hypotheses and determine which prediction better fits the observations. In the process,

new methods for modeling the longitudinal profiles of rivers (Snyder, et al., 2000;

Whipple, 2004) have been developed and a largely field-based sedimentologic data set

has been merged with a largely DEM-topography based GIS analysis. The resulting

synthesis favors a landscape undergoing constant, slow change that is not controlled by

the timing of drainage integration to the master transverse drainages but rather by careful

local adjustment to rock type and climate.

Stud" Area

The Great Valley in Pennsylvania. Maryland. and northern Virginia. along with

the Blue Ridge. lies in the footwall of Mesozoic nonnal faults that fonned during the
~ ~

opening of the Atlantic Ocean in the late Triassic and early Jurassic. The footwall \\'as

presumably high standing during the ~resozoic. but tens of millions of years of
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weathering and carbonate dissolution lead to an inverted topography where Great Valley

rocks are now low-standing with respect to the Blue Ridge and Mesozoic basins. The

presence of late Cretaceous lignites preserved in sinkholes at Pond Bank provide some

constraints of when this topographic inversion occurred (Pierce, 1965), but reconstruction

of a Cretaceous topography remains impossible. Since the Cretaceous, Great Valley

landscape evolution has been dominated by mechanical denudation of the siliciclastics

and dissolution of the carbonates which mayor may not be proceeding at similar rates

(Hack, 1960). Atlantic slope streams traverse the Great Valley more or less orthogonally

and their size is proportional to the outcrop width of the Blue Ridge rocks that border the

Great Valley to the east. The Great Valley lies an equal distance upstream from the

Atlantic Ocean along these transverse drainages so the influence of Atlantic Ocean base

level can be considered more or less the same throughout the study area.

The Great Valley is underlain of a band of shale on its north and west part and

carbonate on the south and east part (fig. 3). The shale belt is characterized by sinuous

channels while the carbonate is characterized by intermittent, gaining and losing streams.

Sandstone/quartzite ridges bound each side of the Great Valley. The south and east is

flanked by the Antietam QUaJ1zite. which is a slightly metamorphosed. mature quartz

sandstone with both carbonate and silica cement (fig. 4). On the north and west flank

theGreat Valley is bound bv the Ordovician Bald Eagle Sandstone. Juniata Shale and the
or"" ......

Silurian Tuscarora Sandstone. The Bald Eagle Sandstone is a sublitharenite with coarse,

suhangulaL commonly olive-colored grains, whereas the Tuscarora Sandstone is a hard

quartz arenite with rounded grains and silica cement. Streams carrying sandstone detritus

s
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Figure 4. A stratigraphic column showing the ge.ologic formations found in the Great

Valley and flanking the Great Valley. South Mountain, Blue Mountain and Great Valley

formations are grouped (Schultz, 1999).

from these ridges have deposited alluvial fans, terraces, and pediment alluvium

unconformably atop the shale and carbonate of the Great Valley.

The contrasting shale-carbonate rock types in the Great Valley are mirrored by

contrasting erosion processes. The shale outcrop belt is eroded primarily by physical

abrasion in river channels and hillslope creep in the interfluves. The sediment (Sevon,

1989) and water discharge in the shale drainage basins is proportional to the planimetric

area of the basin. Published rates of mechanical erosion for the non-glaciated portion of

the Appalachians, including the Great Valley, range from about 10 to 30 mlmy (Reuter,

2004; Sevon, 1989). In contrast, the carbonate outcrop belt is eroded primarily by

dissolution resulting in large portions of the landscape being underdrained. Discharge in

these carbonate basins does not scale proportionally to drainage area (Potter, 200 1),

indicating a mismatch between topography, rates of surface processes, and the routing of

water through this part of the landscape. Published rates of carbonate dissolution range

from 17 m/m.y. (Potter, 200 1) to -30 m/m.y. (White, 1984; 2000). It is not known

which, if any, of the strike parallel drainages (shale \'s. carbonate) pace landscape change

in the Great Valley. but the results of this study do shed some light on this specific

question.
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Base Level and Experimental Design

Base level is a central concept in geomorphology that describes the level to which

erosion of a landscape can proceed (Powell, 1875). Sea level is ultimate or final base

level, but throughout a drainage basin, there are many local base levels typically defined

by the mean elevation of a characteristic stream reach. The Great Valley is an ideal

location to isolate the effects of local and ultimate base level by studying the evolution of

the various asymmetric divides between the strike parallel drainages. Between eastern

Pennsylvania and southern Virginia a series of five major strike parallel, transverse

drainages, The Delaware, The Schuylkill, The Susquehanna, The Potomac, and the James

Rivers from north to south respectively, cut through the Great Valley. Generally, there

are two strike parallel drainages that are tributary to the transverse drainages. One

tributary flows in the shale while the other flows in the carbonate. This drainage

structure within the Great Valley creates a series of nested base levels (Powell, 1875):

local, regional and ultimate. Substrate exerts the strongest influence on local base level

within first and second order watersheds, which arc concentrated on the dip parallel

systems that feed into the major transverse drainages (Braun, 1983). The rates of

dissolution in the carbonate drainages versus the rates of physical erosion control base

level in these drainages. Other factors that can influence base level are insignificant
~ ~

within these small parallel drainages bccause thcir small area prcvents differential

influcncc from factors such as climatc or tcctonics. In thc largcst. ultimate, scalc of basc

Icvcl. sca Icvcl. wc can assumc that any changcs in sca level wcre cxpcrienccd cqually

bctwccn thc major transvcrsc drainagcs.
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It is the regional scale of base level for the Great Valley that may be the most

telling about its evolution and is the most complicated. Regional base level is controlled

by the major transverse drainages, which are strike parallel to the Great Valley. As the

transverse drainages breached the Blue Ridge and extended into the Great Valley, they

exposed their tributaries to a new, lower base level. If the Blue Ridge breaching varies

from north to south, a general space for time substitution can be made. Instead of

watching one part of the Great Valley evolve over time, the differential breaching of the

Great Valley and Blue Ridge by the transverse drainages allows an examination of

different stages of landscape evolution in different places at the same time. This

differential expression of base level fall is expressed, for example, in the different

incision rates of the Susquehanna and Potomac Rivers, at approximately 10-20 mlm.y.

(Reusser, 2004), versus the James River, at between 160 mlmy (Harbor, 2000) and 110

mlmy (Ries, 1998). These differential incision rates indicate that translation of base level

fall upstream, for example, is a more recent event for the James River and its tributaries

than it is for the Susquehanna River (Hancock, 2004) and its tributaries. This north to

south sequential breaching of the Blue Ridge makes the space for time substitution

approach viable and it is an important prerequisite to the experimental design.

Divides between the major transverse rivers arc characteristically low in relief. It

is thc low ordcr streams flanking thesc dividcs that would be thc most sensitivc to

changcs in basc lcvcl (Menitts and Vinccnt. 1989) and dctcrminc whethcr thc divides arc

fixcd featurcs or dynamic componcnts of thc Grcat Vallcy landscape. Assuming

comparable discharges of first order streams. thosc with highcr slopes will have higher

stream power values (Bagnold 1973. 1975) and will thus be ablc to do more physical

13



erosion (Gilbert, 1877). If streams on one side of the divide have systematically higher

gradients, that side of the divide will capture opposing drainage, through headward

migration causing an overall migration of the divide. It is important to point out that this

divide migration process only strictly applies for the shale bedrock portion of the Great

Valley as the limestone bedrock portion is characterized by chemical (dissolution) rather

than physical erosion.

An experiment is designed to unravel the landscape evolution of the major

drainage divides in the Great Valley with the intent of this history having some bearing

on the applicability of the major paradigms for Appalachian landscape evolution. The

experiment consists of two major methodological components; large scale extraction of

basin and channel metrics using digital elevation model (DEM) and a small field study in

the Cumberland Valley which is between the Susquehanna River to the north and east

and the Potomac River to the south and west. Metrics extracted from the DEM include

two whole basin metrics: drainage density and hypsometry. Data for longitudinal (long)

profile modeling was also extracted from the DEM but was restricted to the first order

streams flanking the transverse drainage divides. The field study sought to characterize

the extent, composition, and texture of known upland gravel deposits in the Cumberland

Valley. Merging these two data sets allows for the interpretation of large amounts of data

across the rcgional scale of the Grcat Valley whilc conccntrating on one dividc in which

to find surficial cvidcncc of fixcd or migrating dividcs.

14



DEM analyses

Digital elevation models (OEMs) were acquired from the USGS seamless server

and other commercial internet services such as Mapmart. Both 10m and 30m resolution

OEMs were used for this study. The 30m data was used only in those areas for which

10m data were not available. Sensitivity analyses were conducted on watershed

topography constructed form 30m and 10m resolution OEM data in order to assess how

OEM resolution affected the values of metrics extracted from the OEM.

All OEM-based analyses were conducted in a Geographic Information Systems

(GIS) using the software ArcGIS version 8.3. Whole-basin metrics extracted from the

OEM included hypsometry and drainage density. Hypsometry (Strahler, 1952) relates

the area of the basin at anyone elevation to the mean elevation of the total basin. It is

controlled by rock type, basin size and aggradation or erosion of a basin. Hypsometric

interval values allow the comparison of drainage efficacy between basins. It is

reasonable to assume that younger landscapes will have a larger area at higher elevations,

therefore basins with hypsometric curves that show more area at higher elevations have

had less time to remove the material and form efficient drainage networks.

Drainage density (eq. I), in contrast, is the length of stream

Dd =LL//A

Where Dd equals drainage density, L equals length and A equals area.

(eq.l)

strea/1/ ICIl~th III .' -I (eq I)- , - • = drallw8C dCll5lty_ /1/ • -

«({10\l'_ acc/I/1//llatim _ 1_+ j70\l'_ accII/Il/llatiJll_ 2) *ccll_ spacill,C Ill')
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channel in a basin divided by the area of the basin (m- l
). Drainage density is dependent

on hydrology, particularly infiltration rate, which is in tum dependent on climate and

lithology, uplift and gradient (Glock, 1931).

Long profile modeling is useful as a technique to quantify the rates of rock uplift

and fluvial erosion in tectonically active areas (Snyder, 2000; Duvall, 2004; Molin et al.,

2004; Merritts, 1989). It has been applied to a much lesser degree in tectonically

quiescent areas (Zaprowski et al., 2005) such as this and all of the details regarding the

relati ve influences of rock-type and climate have yet to be fully realized (Roe et al., 2002;

Duvall et al., 2004). Nevertheless, most bedrock eroding rivers have concave up

longitudinal profiles. In bedrock channels this is a result of detachment limited erosion

processes while in alluvial channels it is the results of downstream grain size fining, an

increase in discharge and an increase in channel width. Discharge (Q) scales

proportionally to drainage area (A) and it has been found that the concave-up shape of

long profiles tend to approximate a power function linked to drainage area such that

channel slope (S) is equal to drainage area raised to a power:

(eq.3).

Empirical data worldwide indicates that e, termed the profile concavity, ranges from

about 0.2 to 1.0 with a mode of about 0.4 or 0.5. The overall profile steepness is kl and it

has a wide range of values depending on the units of area chosen for the analysis.

The utility of equation 3 is realized when the concavity and steepness of a river

long profile can be related to the rate of incision and long tenn erosion of the landscape.

The erosion rate (E) of predominantly detachment limited. perennial channels is generally

modeled as proportional to a power law function of basal shear stress.

16



E= KA11Ift. . , (eq.4)

Equation 3 assumes steady unifonn flow, conservation of water in the channel, a linear

relationship between discharge and upstream drainage area and channel width that

increases as a function of the square root of the discharge. The exponents m and n are

real, positive numbers that are determined by channel erosion processes and K is a

constant that adjusts for rock type and climate. Assuming the channel is at equilibrium,

which requires that the change in channel elevation over time (dzldt) is zero and that

channel erosion (E) is equal to rock uplift (U),

dz/dt = 0 = U - E = U - KA m S n (eq.5)

Equation (4) can be rearranged to isolate channel slope as a function of drainage basin

area,

s =(U / K)lln A-min (eq. 6)

Equation 5 has a similar fonn as equation 2 and allows for direct comparison between

profile steepness (k.\) and (U/K)l/n and between 8 and min. The same linear relationship

(in log space) between log A and log S in both equation I and 4 allow for direct

comparison between actual and modeled channel concavities and steepnesses (fig. 5).

When modeling steepness it is important to have a constant 8; the actual value of ~ is

unimportant and many studies have used 0.4 or 0.5 (Duvall et al. , 2004).

Thc idea that is pursued in this study is that the degrcc of long profilc equilibrium

(or disequilibrium) should be reflected in thc concavity and stecpncss values of channcls

in thc drainagc divide arcas of the Great Valley. Comparing stecpness values, for

cxample. for the first order streams in the divide regions of thc major transvcrsc

drainaC'es should allo\\" us to detenninc if these channcls are \\"ell adjustcd to base Icvcl
~ .
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through underground karst systems, the assumption that an excess of O.5km2 upstream

drainage area will yield a channel is false and using any fixed single value for upstream

drainage area in the carbonate system will yield erroneous stream channels in aDEM

where there are no channels in the real landscape. Modeling such imaginary stream

channels tends to increase the noise to signal ratio in a large dataset. The problem is

resolved by isolating the shale streams and performing the long profile modeling on this

sub-set of the data in addition to doing the long profile modeling on all of the data,

including the carbonate streams. Long profile modeling was performed only on the first

order streams flanking the divides. First order streams are defined as streams with no

tributaries and in this study, as discussed above, have a minimum upstream drainage area

of O.5km2
. Second order streams begin at the junction of two first order streams. This

junction is where the first order streams were truncated for modeling purposes. Only first

order streams are used for modeling because they are the most sensitive to base level

changes. Two results are produced: (I) a subset of streams on the shale bedrock that

quantifies the steepness of opposing flanks of a transverse river drainage divide, (2) an

assessment of the noise to signal ratio (fig. 6).

Long profile modeling requires significant processing of topographic data to

reduce the noise to signal ratio that results from the coarseness of the DEM data and the

various flow routing routines in a GIS that are restricted to determining gradients on only

an eight vector rectilinear grid. Initially. much of the noise in the data was eliminated by

choosing to examine values for only the first order. First order streams. streams with no

tributaries. wcre isolated using thc strcamordcr command in ArcGIS. Thcse low order

streams are more scnsitivc to changes in base Ic\·el. Data proccssing is accomplishcd by
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Figure 6. The steps taken to use raw DEM data to extract values of concavity and

steepness from long profile modeling. A - DEMs were merged, gaps between grids and

any holes were filled using data from the surrounding cells. B - Stream networks were

modeled using a minimum area of upstream drainage of 0.5km2
. Drainage basins were

defined for all of the strike parallel drainages. C - Streams on either side of the divide

were ordered using Strahler ordering and only 1SI order streams were used for analysis. D

- First order streams started with 0.5 km2 of upstream drainage and ended at the 2nd order

junction. The upstream drainage area was measured at the last point in the stream while

the slope was calculated using the # of upstream cells in the basin. E - Area-Slope data

were exported into a graphing program and plotted with area on the independent(x) axis

and slope on the dependent(y) axis. A regression line through the data gives the negative

concavity (-8) as the inverse log of slope and the steepness (ks) as the y-intercept.

a FORTRAN program by Frank Pazzaglia that allows for several different options of how

channel gradient can be paired with upstream drainage area. For the first order streams

analyzed in this study, a pairing of upstream drainage area with the channel gradient at

the mouth of the first order channel proved to significantly reduce the noise in

comparison to slope-area data extracted for every OEM pixel along the length of a

channel. for example. The mean concavity of a population of first-order channels is

calculated by plotting all of them on a log S- log A plot and regressing through the data.

The slope of the regression line is the concavity index. The raw steepness is the y­

intercept of these regressions.
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In order to model steepness, a concavity index of 0.5 was chosen. Being able to directly

compare modeled steepness and concavity for the basins on either side of the divides

separating the rivers flowing transverse to the Great Valley should quantify which divide

flanks are steeper and more in equilibrium with the prevailing base level conditions.

Field analyses jJ

Field data were collected in the Cumberland Valley of south-central

Pennsylvania. The divide between the Susquehanna and Potomac Rivers cuts

orthogonally across the center of the Cumberland Valley. Similarly to the other divides

between the transverse rivers of the Great Valley, it has low relief and the uplands are

locally mantled with gravel deposits. The distribution and composition of upland gravels

in the divide between the Potomac and Susquehanna Rivers in the Great Valley would

support divide migration rather than divide stability as argued by Davis. Conversely,

Hack used upland gravels in the Potomac Basin to support topographic inversion and

dynamic equilibrium. The objective of the field study is to characterize the spatial extent,

texture and composition of these deposits. The soil surveys of Cumberland and Franklin

Counties, PA (Long, 1975; Zarichansky, 1986) were used to help determine the extent of

fluvial deposits. characteristically rounded cobbles, in the divide area. Soil descriptions,

which contain adjectives such as gravelly or cobbly, served as a good starting point when

looking for cobble deposits. The location of cobble deposits was noted using a GPS unit.

A map of the surficial deposits was made using the field data collected on digital copies

of the USGS 7.5' topographic maps.



The texture and composition of deposits were characterized by sampling each

deposit. A sample of cobbles was collected from each deposit by randomly placing a 1m2

box made of 1/4" PVC pipe on the ground and collecting all of the cobbles that fell

within the box. This was repeated until enough cobbles were collected for a

representative sample from each location. The A, Band C axis of each cobble was

measured. A is the longest axis of the rock, while C is the shortest and B is the

intermediate axis with all axes being perpendicular to each other. These data allow for

the quantification of the shape of each cobble and the average shape of cobbles for each

deposit. Using the assumption that form follows process, cobbles with different

proportions were shaped by different processes. Average cobble shape for each deposit

should be representative of the major process, which emplaced the deposit. Then each

cobble was broken apart and the rock type, internal color, and weathering rind, if any,

were measured. Rind thickness is highly variable in some cobbles and uniform in others.

In cases, where the rind thickess was variable an average thickenss was taken using the

thickest and thinnest rind sections within the cobble. Weathering rinds in cobbles are

caused by movement and leaching of elements from the outer edge. They are indicative

of weathering. If rock type, climate and hydrology remain constant between deposits

weathering rinds may be used to differentiate deposit age. Thin sections were made of

representative samples from each site to look for textural evidence of compositional

differences.
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Results

Field-based observations

Field data include observations centered on the map distribution, weathering, and

textural characteristics of upland gravels deposits in a part of the Cumberland Valley

spanning the divide between the Susquehanna and Potomac rivers. An upland gravel is

defined as a deposit of well rounded, and typically hard pebble, cobble, and rare boulder­

size clasts, mixed with sand and soil, typically found on low-relief interfluves. Upland

gravels are rarely, if ever, stratified but rather occur as a thin mantle or surface lag.

Density of clasts varies from deposit to deposit, but the fact that mapping of these

deposits is best accomplished in the late spring and early summer when agricultural fields

have been plowed speaks to the general sparseness of these deposits in the landscape.

Five main upland gravel deposits have been mapped (see map plate I and fig. 7).

These sites are all in cultivated fields and were identified in the spring, after the fields

were tilled but before extensive crop growth. Gravel occurrence in these sites ranges

from dense, 42 cobbles/m2 at the Salem deposit, to very sparse, 2.75 cobbles/m2 at the

Roxbury Rd. deposit. At sites with high densities of cobbles on the surface, cobbles were

also found at depths of Im or more below the surface. Upland gravel deposits are closely

correlated with a specific soil, the Weikert shaly silt loam (Long, 1975), identified on

the Franklin County Soil Survey is typically associated with well-drained interfluves. In

this way. soil survey maps are a useful guide to locating upland gravels in this area.

In contrast to the upland gravel deposits. thick deposits of alluvial fan sand and

gravel occur along the southeast flank of the Cumberland Valley. typically at the mouth

of steep drainages flowing west out of South ~lountain. The sand and gravel quarry
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Figure 7. A scaled down, gray-scale version ofthe larger map in map plate 1. The city

of Shippensburg, Interstate 81 and route 11 are labeled or location reference. Gravel

sampling sites are also labeled.

Mainsville, Pennsylvania (see map plate 1) exposes deposits representative of these

alluvial fans. The clasts in this poorly-sorted deposit are rounded and deeply weathered,

including many clasts that have been reduced to saprolite. The deposit is wedge shaped

in cross-section and contains cobbles ranging in size from pebbles to 300 cm boulders.

These cobbles are generally rounded but not spherical; they are highly altered and very

brittle and are easily broken. These clasts contain no weathering rinds but do contain

horizons of heavily oxidized material versus.

Upland gravel deposits are quantified and compared using several metrics; rind thickness

(min, max, average), color, and weathering (Appendix A) including Flinn diagrams (fig.

8) of cobble shape and weathering rind thickness (figs. 9 and 10). Average values of the

ratio of AlB axes range from 1.0151 at Salem to 1.6562 at Frecon Rd. Average val ues of

the ratio of the BIC axes range from 1.2698 at Roxbury Rd. to 2.1598 at Salem (fig. 8).

Cobbles from the Salem (see map plate 1) sample are strikingly more prolate than the

cobbles from other sample sites. Weathering rinds are present in many of the sample

cobbles (fig. 9). Values of average rind thickness for all of the cobbles collected from
~ ~

cach of the fivc sites ranged from 2.62 mm at Orchard (sce map platc 1) to 3.35 mm at

Bcistlc (sce map plate I). Thc means for cach site fall at or near the center of a box plot

showing thc distlihution and thc awrage lind thickncss for cach dcposit. All of the box

plots arc positiwly skcwcd.
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Upland gravel characterization is rounded out through the use of thin section

analysis of clast textural characteristics. Thin sections (fig. 11) of a sample from each

site were made to show differences in composition and texture that are not visible in hand

sample. These differences are useful for comparing the provenance of deposits. All of

the thin sections are 90% quartz grains with little matrix.

Quartz grains ranged from angular to sub-rounded and most deposits were well

sorted except for the Frecon Rd. and Salem sample. All but one sample had quartz grains

with undulating extinction which indicates that the source material has been

metamorphosed. The sample from Roxbury Rd. showed a linear texture and defonned

grains with quartz regrowth, indicating that this sample is metamorphic. The Roxbury

Rd. sample is classified as a quartzite. All other samples are classified as quartz-arenites

and sublitharenties.
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Map-based Metrics

The Great Valley landscape is quantified using map and digital topography based

measurements of specific metrics that are typically viewed as carrying informaiion

related to time-dependent landscape evolution. Specifically, drainage density and

hypsometry values were calculated for all basins in the study area. These larger scale

metrics allow for quantified comparison between basins. The drainage densities (table 1)

for the northern six drainages; Lehigh west, Schuylkill east, Schuykill west, Susquehanna

east, Susquehanna west, and Potomac north are -O.OOlm'l (between 0.000999 and

0.00155). The southernmost drainage, which flows south into the James River, has a

thin sections from the Roxbury Rd. sample shows quartz regrowth and linear texture.

drainage density value of 0.000279m'l; this is the lowest drainage density value in the

study. The highest drainage density value in the study, 0.00364m'l, is in the Potomac

south drainage, the second southcrn-most drainage. A scnsitivity study designed to tcst

the effcct of different resolution OEM on the measuring of a landscape metric like

drainage density was conducted for the Lehigh west drainage basin. The test resulted in a

drainage dcnsity value of 0.0105m'l for both 10- and 30-mctcr OEM. Thus, the

sensitivity is low cnough that diffcrcnt OEM resolutions probably do not significantly

skcw the results.
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f hG VIIdT bl 1 D .a e ramage enslty va ues or t e reat a ey
Basin Stream Length(m) Basin Area Cell Size Drainage

(cells) (m2
) Density (mol)

Lehigh west (lOrn) 489401.3308 4676097 10m 0.00105

Lehigh west (30m) 512100.2 543066 30m 0.00105

Schuylkill east 404075.6938 4045090 10m 0.000999

Schuylkill west 589279.6676 5663872 10m 0.00104

Susquehanna east 1076036.125 10721021 10m 0.00100

Susquehanna north 1970965.283 18567350 10m 0.00106

Potomac north 2219724.269 14367315 10m 0.00155

Potomac south 9366757.2922 2858886 30m 0.00364

James north 2617303.92 10439009 30m 0.000279

Hypsometric curves and values quantify the distribution of elevation in a basin.

The curves for each basin are more similar in both shape and values to the basin with

which they share a divide than any other basin. Hypsometric curves (fig. 12) and mean

hypsometric values (table 2) were found to be similar for the 10m and 30m data in the

Lehigh west basin. The southernmost basin, James north, has most of its basin area at

higher elevations. Elevations of basin areas decrease northward until the Schuylkill west

and Lehigh basin, which do not follow a general lowering trend. These basins were the

terminus of glaciation during the last glacial maximum.

T bl ') M H . V Ia e _. jean lypsometnc a ues
Basin Mean Hypsometric Values
Lehigh west 97.5229
Schuylkill east 91.9952
Schuylkill west 94.0681
Susquehanna east 96.5011
Susquehanna west 90.9955
Potomac north 89.0213
Potomac south 89.8670
James north I 88.1799
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Figure 12. First, hypsometric plots for each of the eight basins studied. Basins that share

a divide are the same color while the north/east side of each divide is a dashed line and

the south/west side of each divide is a solid line. Second, hypsometric interval curves for

the Lehigh west basin at 10m DEM resolution and 30m DEM resolution.

Longitudinal Profile Modeling

The results of channel longitudinal profile modeling are organized according to

the raw channel steepness, channel concavity, and modeled channel steepness. Most of

the basins show very low slope values with a small variance and few outliers (fig 13).

The first order streams in the two southernmost basins, James north and Potomac south,

show higher slope values, more variation, and more outliers. Additionally, the northern

side of the Cumberland Valley (Susquehanna west) shows the lowest average slope for

first order streams and least amount of variation between the 95th and 5th percentile.

Concavity (8) (table 3, figs. 14 and 15) values quantify the downstream rate that channels

decrease in slope. Lower values indicate channel profiles with less change in slope,

resulting in long profiles that plot more like a straight line, rather than a concave-up

curve. Values for the eight basins using data from both the shale and carbonate streams

ranged from -0.4557 for the James north basin to 0.2536 for the Schuylkill west basin

(tables 3 and 4). Using a subset of the data for channels developed only on shale bedrock

shows concavity values within a similar range from -0.5432 for the James south to 0.2535

for the Susquehanna wcst. The variation in concavity values has no obvious trend for

cach sct of data.

35





Raw channel steepness (table 3, figs. 14,and 15) is a sister metric represented as

the y-intercept on a slope-area plot constructed to measure channel concavity. Raw

steepness canies important information, but it cannot be used to compare channels with

variable concavity. The values for raw steepness range from 0.00008238 in the

Schuylkill west basin to 2.3541 in the Potomac south basin for the entire data set and

from 0.00006514 in the Potomac north basin to 305.46 for the Potomac south basin with

a next highest value of 8.4052 in the James north basin for the shale sub-set. There is no

apparent trend between the two sets of data, when either all streams or just those flowing

on shale substrate are considered.

Modeling steepness (table 3) using a forced concavity value, in this case 0.5,

which is the global average of concavity, allows for comparison between basins.

Modeled steepness values for the entire data set range from 5.4563 in the Potomac south

basin to 1.7179 in the Susquehanna west basin. Values forthe shale sub-set of channels

ranges from 0.2689 in the Susquehanna west basin to 7.5007 in the Potomac south basin.

Variations in modeled steepness values are similar with the entire data set and the shale

sub-set. Both sets of data have their lowest values in the Susquehanna west basin and

modeled steepness values increase in the two basins to the east/north and the two basins

to the south/west (fig 2).

The values of concavity, raw steepness and modeled steepness for the Lehigh

west basin vary as a function of OEM resolution (table 4), Raw steepness values are

4.011 :': IO'J and 1.488:': IO'J for Lehigh wcst 30m and 10m data, respecti\'cly. Concavity

values arc -0.04543 and 0.05764 for Lehigh west 30m and 10m data. rcspectivcly.

~lodelcd steepness \'alues arc 4.009 '" IO,J and 3.2382 for Lehigh west 30m and 10m
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data, respectively. Unfortunately, the 10m resolution data set is not complete for any of

the study area, particularly, the divide between the James and Potomac Rivers. Data with

a resolution of 30m2 was used instead for the entire basins north of the James and south

of the Potomac. Internally, comparison between concavity, raw and modeled steepness

can be made because these data have the same resolution.

Table 3. Longitudinal profile modeling values

All Streams Shale Streams
Lehigh west Lehigh west
raw steepness (log) -2.8272 raw steepness (log) -3.6440
raw steepness 1.488e-3 raw steepness 2.26ge-4
concavity 0.05764 concavity 0.2064
r 2 3.74ge-4 r 2 5.711e-3
modeled steepness (log) 0.5103 modeled steepness (log) 0.5996
modeled steepness 3.2382 modeled steepness 3.9774
Schuylkill east Schuylkill east
raw steepness (log) 0.02704 raw steepness (log) 0.6367
raw steepness 1.0642 raw steepness 4.3316
concavity -0.4272 concavity 0.5234
r 2 0.01971 r 2 0.02868
modeled steepness (log) 0.4765 modeled steepness (log) 0.4975
modeled steepness 2.9957 modeled steepness 3.1441
Schuylkill west Schuylkill west
raw steepness (log) -4.0842 raw steepness (log) -2.9234
raw steepness 8.238e-5 raw steepness 1.193e-3
concavity 0.2536 concavity 0.09651
r 2 7.73ge-3 r 2 9.073e-4
modeled steepness (log) 0.4275 modeled steepness (log) 0.6673
modeled steepness 2.6761 modeled steepness 4.6484

Susquehanna cast Susquehanna cast
raw steepness (log) -2.3050 raw steepness (log) -2.6874

raw steepness 4.955e-3 raw steepness 2.054e-3
conc3yitv -0.06122 concayity 0.01251
r 2 4.72ge-4 r 2 2.32ge-5

modeled steepness (log) 0.2929 modeled steepness (log) 0.3564

modeled stcepncss 1.9629 modeled steepncss 2.2720
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Susquehanna west Susque4anna west
raw steepness (log) -0.2868 raw steepness (log) -2.8617
raw steepness 0.5166 raw steepness 1.3750e-3
concavity -0.4129 concavity 0.02678
r 2 0.03698 r 2 4.076e-3
modeled steepness (log) 0.2350 modeled steepness (log) -0.5704
modeled steepness 1.7179 modeled steepness 0.2689
Potomac north Potomac north
raw steepness (log) -4.1605 raw steepness (log) -4.1861
raw steepness 6.911e-5 raw steepness 6.514e-5
concavity 0.2482 concavity 0.2534
r 2 7.901e-3 r 2 6.66ge-3
modeled steepness (log) 0.3279 modeled steepness (log) 0.2827
modeled steepness 2.1276 modeled steepness 1.9173
Potomac south Potomac south
raw steepness (log) 0.3718 raw steepness (log) 2.4849
raw steepness 2.3541 raw steepness 305.4063
concavity -0.4387 concavity -0.7715
r 2 0.01521 r 2 0.04147
modeled steepness (log) 0.7369 modeled steepness (log) 0.8751
modeled steepness 5.4563 modeled steepness 7.5007

James north James north
raw steepness (log) 0.1316 raw steepness (log) 0.9245
raw steepness 1.3538 raw steepness 8.4052
concavity -0.4064 concavity -0.54317
r 2 0.01543 r 2 0.02440
modeled steepness (log) 0.6873 modeled steepness (log) 0.6701
modeled steepness 4.8674 modeled steepness 4.6784
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Table 4. Comparison of longitudinal profile mod~ling for 10m resolution data and 30,
resolution data for the same basin
Lehigh west 30m - all streams Lehigh west 10m - all streams
raw steepness (log) -2.3968 raw steepness (log -2.8273
raw steepness 4.011e-3 raw steepness 1.488e-3
concavity -0.04543 concavity 0.05764
r 2 9.376e-4 r 2 3.74ge-4
modeled steepness (log) -2.397 modeled steepness (log) 0.5103
modeled steepness 4.00ge-3 modeled steepness 3.2382
Lehigh west 30m - shale streams Lehigh west 30m . shale streams
raw steepness (log) -2.7111 raw steepness (log) -3.6440
raw steepness 1.945e-3 raw steepness 2.270e-4
concavity 0.02185 concavity 0.2065
r 2 . 2.5046e-4 r 2 5.71052e-3
modeled steepness (log) 0.2682 modeled steepness (log) 0.5996
modeled steepness 1.8544 modeled steepness 3.9774
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Figure 14. Black circles show the area-slope pairs for all of the first order streams in

each basin and the black line is a least squared regression through the data. The slope of

the line is the concavity and the y-intercept is raw steepness. Both axes are on a

logarithmic scale.
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Figure 15. Black circles show the area-slope pairs for the shale first order streams in

each basin and the black line is a least squared regression through the data. The slope of

the line is the concavity and the y-intercept is raw steepness. Both axes are on a

logarithmic scale. Note that the scale for the x-axis on the Susquehanna west basin is

different than the scale on the x-axis of the other graphs.
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Discussion

The long term evolution of the Great Valley can be reconstructed from an analysis

of upland gravel deposits and the metrics of first-order streams present at the watershed

divides of the major transverse drainage of the Atlantic slope. Control of these divides

may depend on a sensitive adjustment to rock type (Braun, 1983) and climate (Zaprowski

et aI., 2005) or base level (Powell, 1875), either local, regional or ultimate. Ultimately,

these data can then be reconciled with the concepts of impulsive uplift and peneplanation

(Davis 1889) and dynamic equilibrium (Hack 1960).

Upland gravels and origin oft/Ie current drainage divide

The presence of upland gravel deposits in a divide area are interpreted in terms of

the relative mobility and evolution of the divide as the first order streams, which

currently flank these divides, are not responsible for the deposits. In fact, most divides

have a scarcity of cobbles that argue for either originally small deposits or poor

preservation of initially larger, more widespread deposits. In contrast, the modem fluvial

system in the Cumberland Valley has extensive fluvial deposits preserved as terraces

along the major strike paralleL trunk streams. Cobbles collected from each upland

deposit were analyzed for provenance. Unfortunately, the two main source rocks for

cobbles in upland deposits of the Great Valley. the Antietam Quartzite. and Tuscarora

Sandstone, look \'ery similar in hand sample: both are white to tan in color (fig. 3). Only

one of the deposits identified in this study. the Orchard deposit. contained distinct clasts

of Juniata Sandstone. which is characteristically purple. Thin sections (fig. 11) made

from cobbles from each of the deposits showed that all but one of the cobbles are
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sandstone consisting of cemented, metamorphosed quartz grains. Both the Antietam

Quartzite and Tuscarora Sandstone are composed of metamorphosed quartz. The

Roxbury Rd. (map plate 1) deposit contained a metamorphosed cobble, which indicated

that it had its source in South Mountain and the Antietam Quartzite. Skolithos, a trace

fossil, was found in several cobbles from the Salem deposit. Skolithos is prevalent in the

Antietam Sandstone but can also be found in the Tuscarora Sandstone.

It is possible to conclude that the source of the Roxbury Rd. deposit was in part

from South Mountain and that the source for the Orchard deposit was in part from Blue

Mountain. Otherwise, concluding the source of anyone deposit with certainty is not

possible. Cobble shape is indicative of function, the shape of the cobble is directly

influenced by the process by which it was formed. The Flinn diagram of average cobble

shape (fig. 7) shows that most of the deposits and modem stream samples are clustered

around the one to one line. The Salem deposit lies outside of this cluster as being, on

average, more prolate. The next most prolate samples are both from modem streams fed

by Blue Mt. and composed of gravels from Blue Mt. The Salem deposit is high in the

landscape (-760ft asl) compared to the other deposits. Surficial deposits, higher in the

landscape are older, thus, the Salem deposit may be a pre-Quaternary deposit while the

other gravel deposits, which more closely resemble modem streams are Quaternary in

age. The Salem deposit may be a deposit from one of the strike parallel streams, as it is

in the middle of the valley, while the other deposits may be relicts of feeder streams

coming off either Blue or South ~lts .. as thev arc closer to the flanks of the Great Vallev.
~ . .

This diffcrence may explain the diffcrcnce in average shape betwcen Salem and thc other

dcposits. Additionally. as the dcposits become younger they probably havc stronger



periglacial influence than older deposits. Evidence from these upland deposits does not

suggest watershed expansion of the large transverse rivers of the Atlantic margin at the

expense of others. Additionally, all but one of the deposits, Orchard, is found on

carbonates. Lowering of the landscape through dissolution rather than erosive transport,

which is dominant on the shale lithologies, may allow for the preservation of upland

deposits. The sedimentology of each deposit is indicative of an integration of drainage

from both South and Blue Mts. by both river and fan deposits but not of a dynamically

shifting divide driven by differences in the regional base level controlled by the major

transverse drainages. Over time, drainage systems migrate within an overall stationary

system and ultimately leave formerly topographically low cobble deposits at high points

in the divide area.

Mobility ofthe drainage divide inferred from stream long profiles

Slope-area modeling of stream longitudinal profiles has proven to be a useful tool

in quantifying the rate of rock uplift and subsequent river incision in tectonically active

settings (Duvall, 2004; Merritts, 1989; Molin et al., 2004; Snyder, 2000; Whipple, 2004).

Given the key assumption of equilibrium profiles, which are attainable in tectonically

active regions where surface processes are rapid, this study embarks on a test to see how

well the method perfonns in the tectonically stable setting where surface process rates are

slow. and discquilibrium pcrsists in the profile for long periods of time. In summary.

modeled long profilcs in thc low-gradient channels of Grcat Valley dividcs gencratcd

data with a high dcgrce of scattcr and with few apparcnt trcnds within a single basin or

among comparable basins (figs. 14 and 15). Thc lack of trcnds could be duc to two major
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factors; (l) streams in this study violate the assumption of equilibrium inherent in the

10gA-logS method or (2) the channel slopes of the study area are too gentle to be

uniquely discemable on 10gA-logS plots.

A river long profile is said to be in equilibrium when the incision is everywhere

uniform and the rate is both steady and equal to the rate of rock uplift. In the Great

Valley, the fluvial incision is directly related to base level fall, namely that of the master

transverse Atlantic Slope ri verso Landscape erosion is throttled by changes in base level

but translation of this signal upstream as fluvial incision is not immediate or linear.

Translation of base level fall can be envisioned evolving in two ways; an overall

steepening of the channel as the nickzone lays back, or as an incisional wave that

marchcs hcadward as a stecp, paralicI retrcating nickzone (Gardner, 1983). Both

processes should affect thc concavity (8) and ovcrall stccpncss (ks) of modeled long

profiles.

An incrcasc of channel stccpncss would not nccessarily lead to increascd scattcr

in a 10gA-logS plot but would hclp define a rclationship bctwccn 10gArca and 10gSlopc.

Knickzoncs Icavc channcls in a statc of discquilibrium. Knickzoncs rcprcscnt a transicnt

statc of incision bctwccn thc rcach bclow and abovc thc knickzonc. With thc

introduction of scvcral falls in basc Icvcl and thc translation of thcsc cvcnts upstream. as

nickzoncs. a complicated sct of channel rcachcs unfolds. each out of cquilibrium with

other portions of thc channcl creating a scrics of differcnt rcgional basc Icvcls and cach

out of phase with ultimatc hase le\'cl as wcll. Additionally. it is possible for knickpoints

to stall indcfinitcl\' at one location. Introduction of onc or more base Ie\'cl falls in the

fonn of knickpoints can leavc channels in a complc\ statc of discquilibrium. violating
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one of the assumptions of the method, and may cause increased scattered in 10gA-IogS

plots.

The James, Potomac and Susquehanna Rivers, three transverse rivers which drain

the Great Valley, have disequilibrium long profiles as demonstrated by numerous

nickzones, overall convex lower reaches (Pazzaglia et al., 1998), and unsteady incision

(Pazzaglia and Gardner, 2003; Reusser et al., 2004). These trunk channels are not in

equilibrium, a condition that appears to persist into the major tributaries of these streams

based upon the average steepness and concavity of areas.

The data do not suggest that a singular factor such as regional base level controls

all of the first order streams in a single basin, let alone more than one basin. Highly

variable 10gA-IogS plots (Figs. 13 and 14), with low r2 values (tables 2 and 3) for

regression lines, yielded from the longitudinal profile modeling do not suggest first order

streams that are in equilibrium with trunk channels. Low initial slope values are one

reason for poorly correlated data but in this case, there seems to be very little change in

the slope of a first order stream based on its upstream drainage area. The data for

modeled steepness values for first order streams from two different basins, which

eventually drain into the same transverse drainages (regional base level), are no more

similar than the steepness values for any two of the basins studied despite to which

transverse river they arc tributary.

Variable slope-area plots fuel an investigation into what is causing the apparent

disequilibrium in Appalachian first-order channels. It is known that climate. for example.

affects the cquilibrium condition and cvolution of long profiles (Roe ct al.. 2002:

Whipple. 2004: Zapro\\'ski ct al.. 2005). A wetter climate produces stream channels with
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increased concavity and eventually lower steepness values, opposite the effect of base

level fall because of the large increase in discharge down stream. A dryer climate will

produce opposite results, which mimic the effects of a base level fall. Climatic

differences between the basins within the Great Valley are small as the entire study area

is within the temperate zone of the Koeppen classification system (Ritter 2003).

If climatic factors control differences in concavity and steepness values between

the basins of the Great Valley then we would expect that basins that share a divide would

be more similar to each other than divides of separate basins. The northern six basins

(fig. 2) have positive concavity values for the shale streams indicating that the first order

channels in these basins have convex profiles. These basins all have values that fall

between 0.0 1251 and 0.5234 (table 2) but show no trends. The southern two basins (fig.

2), Potomac south and James north, which share a divide have negative concavity values

for the shale streams indicating that the first order channels in the these basins have a

concave profile. Similarly, the northern six basins have modeled steepness value which

range from 1.7179 to 3.2382 (table 2) for all streams and from 0.2689 to 4.6484 (table 2)

for the shale streams. The two southernmost basins have modeled steepness values of

5.45634 and 4.8674 (table 2) for all the first order streams in the Potomac south and

James north. respectively. Modeled steepness values for just the shale streams of 7.5007

and 4.6784 (table 2) of the Potomac south and James n011h. respectively. arc similarly

higher than modeled steepness \'alues of shale streams from the northern six drainages.

which range frolll 4.6484 to 0.2689 (table 2). Upon examination of the long profile

modeling values. especially those which considered only shale streams. the James north

and Potomac south basins show consistently higher steepness values. in some cases
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almost double, while the northern six drainages fall within the noise of any natural

system. The concavity values of the shale channels show a clear change in channel shape

between the two southernmost drainage and the six northern drainages. Unfortunately,

there is the complicating factor of different resolution DEM between these basins and the

other basins. The steepness values for the Lehigh west basin are lower when they were

modeled from the 30m data rather than the 10m data indicating that, if the data are not

comparable, at least it is known that the 30m data yields an underestimate for steepness

values. Intriguingly, the hypsometric plots for all of the basins show that basins have

hypsometries similar to the basin with which they share a divide rather than the basin

with which they share a regional base level. Modeling and whole basin metric data

indicates a connection between the James north and Potomac south drainage basins.

Modem incision rates for the James, between 160m/my (Harbor 2000) and 110m/my

(Ries 1998), and Potomac Ri vers, 10-20m/my (Ruesser 2004), indicate that first order

streams flanking the divide are not controlled by differential incision rates of these two

large rivers. There are two possible reasons for the first order streams to be out of

equiliblium with their regional base levels; either the base level signal has not been

translated to these streams yet: or there is another factor such as bedrock or climate that is

controlling steepness, concavity and hypsometry.

The assumption of equilibrium requires that tectonic forces of uplift arc equal to

erosional forces of downcutting. Tectonic forces in the Great Valley and on the Atlantic

margin arc virtually non-existent. Isostatic forces in the Great Valley arc minimal and

limited to glacial rebound. forebuldge. and long teml uplift due to erosion. These factors

are low ma(Tnitude forces which affect large regions (glacial forebuldge and rebound) orc - .......... .....

51



the entire Atlantic margin (long term uplift). Additionally, the time scale on which

glacial factors have an effect are smaller than the time scale of the landscape evolution of

the Great Valley, whereas, uplift due to erosion has continued from the opening of the

Atlantic.

Conclusions

Landscape morphology within the Great Valley is delicately adjusted to rock type

and climate rather than base level. Low order streams flanking the divides between the

major transverse drainages are similar in shape and steepness to streams in adjacent

di vides. Over time, these streams tend to have a concave rather than convex shape (fig.

16). Drainage networks in the Great Valley are organized to move water from the divide

areas through subsequent, strike parallel, drainages to consequent, transverse, drainages

and eventually to the Atlantic Ocean. The system will naturally change in order to allow

the water to move to base level as quickly as possible. The purpose of this study was to

detem1ine whether a competitive advantage in anyone of transverse drainage system was

dliving drainage capture and divide migration within the Great Valley. The progressive

breaching. which is supported by modem incision rates, of the Great Valley by the

Susquehanna River. then the Potomac River and finally the James river as indicated by

increasing cun-cnt incision rates does not seem to have affected the divide areas between

these livers in the Great Valley. Additionally. this study attempted to reconcile the

paradigms of dynamic equilibrium (Hack) versus orogenic impulse and decay (Davis).

• E\'idence from upland gra\'el deposits in the Cumberland Valley does not

su££est active divide migration and drainage expansion of one master
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drainage at the expense of another. Gravel deposits indicate the

integration of South and Blue Mt. drainages with the eventual inversion of

topography over a long period of time.

• Similarly to the transverse drainages of the Great Valley, channel metrics

of the strike parallel drainages from longitudinal profile modeling suggest

systems in disequilibrium with base level that are sluggishly connected to

changes in base level.

• Despite disequilibrium in the system, the channels flanking either side of

the divide between the James and Potomac Rivers have higher average

concavity and steepness values. In conjunction with the hypsometric plots

from all basins, there is the suggestion of a stronger connection between

basins that share a di vide than basins that share a base level.

• Suggestions of connections between strike parallel basins may exist but

the 10gA-LogS method is insensitive. Ultimately, in this low slope

environment, modeling longitudinal profiles using the 10gA-logS method

is inadequate.

Upland gravel data supports a steady lowering of the landscape rather than divide

mobility. Insensitivity of slope to upstream drainage area, indicating a system ill adjusted

to base level and connection of basins across divides rather than between transverse

drainages supports the concept that the landscape of the Great Valley is adjusted to

climate and rock type rather than regional base le\·el. In the Davisian model. the steeper

slopes and com'exity of the James north and Potomac south drainages indicate a more

recently incised landscape as compared to the drainages fUl1her to the north.

5~





References

Bagnold, R., A., 1973, The nature of saltation and of bedload transport in water:

Proceedings of the Royal Society of London, v. ser. A, p. 473-504.

-,1977, Bed-load transport by natural rivers: Water Resources Research, v. 13, p. 303­

312.

Braun, D., D., 1983, Lithologic controls of bedrock meander dimensions in the

Appalachian valley and ridge province: Earth Surface Processes and Landforms,

v. 8, p. 223-237.

Davis, W.M., 1889, The rivers and valleys of Pennsylvania: National, v. Geographic, p.

183-253.

-,1899, The peneplain: American Geologist, v. Geologist, p. 207-239.

Duvall, A., Kirby, E., Burbank, D., 2004, Tectonic and lithologic controls on bedrock

channel profiles and processes in coastal California: Journal of Geophysical

Research, v. 109, p. doi: 1O.1029/2003Jf000086.

Gardncr, T.W., 1983, Experimental study of knickpoint and longitudinal evolution in

cohesive, homogcncous material: Geological Socicty of Amcrica Bulletin, v. 94.

Gilbert. G.K., 1877, Rcport on thc Geology of thc Jenry Mountains: Washington D.C.,

Govcrnmcnt Printing Officc.

Glock. W.S" 1931, Thc development of drainage systcms: A synoptic vicw: Gcography

Rcvicw. v, 21, p. 475-482.

Hack. J.T.. 1960. Intcrprctation of erosional topography in humid tcmpcratc rcgions:

Amcrican Journal of Sciencc. \'. 258-A. p, 80-97.

-. 1982. Physiographic divisions and diffcrcntial uplift in the Piedmont and Blue Ridge.

55



Hancock, G.S., Harbor, D. 1., Felis, 1., Turcotte, J., 2004, lOBe Dating of river terraces

reveals piedmont landscape disequilibrium in the central James River basin,

Virginia: Geological Society of America Abstract with Programs, v. 36, p. 95.

Harbor, D., 2000, Landscape evolution in the Upper James River basin, ill Harbor, D.,

ed., Southeastern friends of the Pleistocene: Washington and Lee University,

Lexington, VA.

Hulver, M.L., 1992, Mass balance and the long term denudation of the Appalachians:

Geological Society of America Abstract with Programs, v. 24, p. 237.

-, 1996, Post Orogenic denudation and mass-balances topography of the Appalachian

Mountain systen from maturation indicators, thermochronology, and metamorphic

petrology.: Geological Society of America Abstract with Programs, v. 28, p. 500.

Jacobsen, E.F., and Lyons, P.c., 1982, Stratigraphy, structure, and coal-bed correlations

in the Castleman Basin, Garrett County, Maryland: Abstracts with programs,

Northeastern and Southeastern combined section meetings Abstracts with

Programs - Geological Society of America, v. 14, p. 28.

Long, R.S., 1975, Soil Survey of Franklin County, Pennsylvania, United States

Depat1ment of Agriculture Soi I Conservation Service.

Menitts, DJ .. Vincent. Kirk R., 1989. Geomorphic response of coastal streams to low.

intern1ediate and high rates of uplift, Mendocino triple junction region. northern

California: GSA Bulletin. v. 101. p, 1373-1388,

Molin. P.. Pazzaglia. F.J .. and Dramis. F.. 2004. Geomorphic expression of active

tectonics in a rapidly-deforn1ing forearc. sib massif. calabria. southern Italy:

American Journal of Science. \'. 30·+' p. 559-589.

56



Pazzaglia, FJ., and Brandon, M.T., 1996, Macrogeomorphic evolution of the post­

Triassic Appalachian mountains determined by deconvolution of the offshore

basin sedimentary record: Basin Research, v. 8, p. 255-278.

Pazzaglia, FJ., Gardner, T.W., 2003, Late Cenozoic landscape evolution of the US

Atlantic passive margin; insights into a North American Great Escarpment, ill

Summerfield, M.A., ed., Geomorphology and global tectonics: Chichester, John

Wiley & Sons.

Pazzaglia, FJ., Gardner, T.W., Merritts, OJ., 1998, Bedrock Fluvial Incision and

Longitudinal Profile Development Over Geologic Time Scales Determined by

Fluvial Terraces, ill Tinkler, KJ., Wohl, E., ed., Rivers Over Rock: Fluvial

Processes in Bedrock Channels, Volume 107: Washington D.C., American

Geophysical Union.

Pierce, K. L., 1965, Geomorphic significance of a Cretaceous deposit

in the Great Valley of southern Pennsylvania: U. S. Geological Survey

Professional Paper 525-C, p. C152-C 156.

Potter, N., 2001, The Geomorphic Evolution of the Great Valley near Carlisle,

Pennsylvania, Southeast Friends of the Pliestocene: Carlisle, Pennsylvania.

Powcll, J.W., 1875. Exploration of thc Colorado River of the Wcst: Washington D.C..

U.S. Governmcnt Printing Officc. p. 291.

Reusser, L.J.. Biernl:m, Paul R.. Pavich. Milan J., Zcn. E-an. Larsen. Jennifer. Finkcl.

Robert. 2004. Rapid Late Pleistocenc Incision of Atlantic PassiYc-ivtargin Riyer

Gorges: Science. v. 305. p. 499-502.

57



Reuter, J.M., Beirrnan, P. R., Pavich, M., Gellis, A. c., Larsen, 1., Finkel, R. c., 2004,

Erosion of the Susquehanna River basin: Assessing the relations between lOBe­

derived erosion rates and basin characteristics: Geological Society of America

Abstract with Programs, v. 36, p. 94.

Ries, 1., Merritts, D., Harbor, D. J., Gardner, T, Erikson, P., Carlson, M., 1998, Increased

raes of fluvial bedorck incision in the Central Appalachian Mountains, Virginia:

Geological Society of America Abstract with Programs, v. 30, p. 140.

Ritter, M., 2003, The Physical Environment:

http://www.uwsp.edu/e.co/faculty/rittcr/!!co!!IOlltcxtbook/titlepaQ.c.html.

Roe, G.H., Montgomery, D.R., and Hallet, B., 2002, Effects of orographic precipitation

variations on the concavity of steady-state river profiles: Geology (Boulder), v.

30, p. 143-146.

Schultz, C.H., 1999, The Geology of Pennsylvania: Harrisburg, Pennsylvania Geological

Survey and Pittsburgh Geological Survey.

Schumm, S.A., and Rea, D.K., 1995, Sediment yield from disturbed earth systems:

Geology (Boulder), v. 23, p. 391-394.

Sevon, W.D., 1989, Erosion in the Juniata Rivcr Drainagc Basin, Pennsylvania, i1l

Gardncr, TW., Scvon. W.D.. cd.. Appalachian Gcomorphology, Volumc 2: Ncw

York, EIScvicr, p. 303-318.

Snydcr. N.P.. Whipple, Kclin X.. Tucker. Gregory E.. Merrits, Dorothy J.. 2000.

Landscape rcsponsc to thc tectonic forcing: Digital clevation model analysis of

stream profiles in thc ~1cndocino triple junction region. Ilorthcm Califomia: GSA

Bulletin. v. 112. p. 1250-1263.

58



Strahler, A.N., 1952, Hypsometric (area-altitude) .analysis of erosional topography: GSA

Bulletin, v. 63, p. 1117-1142.

Whipple, K,X., 2004, Bedrock rivers and the geomorphology of active orogens: Annual

Review of Earth and Planetary Sciences, v. 32, p. 151-185.

White, W.B., 1984, Rate processes: chemical kinetics and karst landform development, in

LaFleur, R.G., ed., Groundwater as a gemorphic agent: Boston, Allen and Unwin,

p.227-248,

-, 2000, Dissolution of limestone from field observations" in Kimchouk, A.B., Ford, D.

c., Palmer, Ao No, and Dreybrodt, W., cd., Speleogenesis, evolution of karst

aquifers, Volume January 2000, National Speleological Society.

Zaprowski, BJo, Pazzaglia, FJ., and Evenson, E.B., 2005, Climatic influences on profile

concavity and river incision: Journal of Geophysical Research-Earth Surface, v.

110.

Zarichansky, J" 1986, Soil Survey of Cumberland and Perry Counties, Pennsylvania,

United States Department of Agriculture Soil Conservation Service.

59



Appendix A- Upland Gravel Data

KEY
*All numerical measurements are in millimeters.
Color: Rock Type: Weathering:
p-pink I - limestone 1 - least weathered
r-red s - sandstone 7 - most weathered
b-black m - mudstone
br-brown q - quartzite/quartz sandstone
u-purple
t-tan
w-white
g-gray
e-green

Roxbury Rd.
avg. rind

A-axis B-axis C-axis thickness color rock type weathering fabric
144.6 84.7 76.5 2.1 t s 3 n
60.5 59.5 36.4 1.2 r/t q 4 n
81.8 62.4 46.6 3.6 w q 4 n
62.2 49.1 25.6 2.55 P q 3 n
79.7 71.8 41.2 6.85 tlb s 4 y
60.9 51 36.2 4.9 P q 3 n
33.7 27.4 22.9 2.6 pIt s 3 y
35.9 23 18.9 3.3 w q 4 Y
52.3 55.4 48.8 1.6 t q 3 n
60.1 58.9 30.6 3.1 P s 4 n
46.1 35 26.6 2.4 w/b q 3 n
45.9 32.7 22.4 1.8 r/w/b q 4 n
46.3 27 22.1 0 t q 3 n

Frccon Rd.
avg. rind

A-axis B-axis C-axis thickncss color rock typc wcathcring fabric
141.1 95.5 26.2 0 \\' q 4 n
73.2 72 51.9 3.3 p/w s 3 Y

117.4 72.2 48.3 1.6 t s 3 n
74.3 54.8 44.4 0 t s 3 n
58.9 40.5 23.4 4.9 g s 4 n
90.2 62.7 32 5.1 P s 3 11

91.7 76.6 35.1 2.9 W/l1 s 3 \'
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80.2 65.1 41.3 2.3. plb s 3 Y
65.9 39.4 27.9 0 r q 4 n

108.6 96.3 69 2.1 t s 3 n
91.1 86.5 54.3 2.4 w s 3 n
73.4 52.7 38.6 3.4 g q 3 n
96.3 78.2 51.4 0 w q 2 Y

135.8 54.5 41 2.5 P s 3 n
47.2 44.9 22.2 0 t q 3 n
67.5 59.4 48.1 2.6 P s 3 n
48.3 32.1 22.1 2.5 P s 3 n
86.2 60.5 36 0 P q 4 n
49.3 40.3 33.5 1.4 t s 3 n
98.7 31.5 27.7 3.3 t s 3 n
96.4 87.8 26.4 0 t s 3 Y
56.3 56.2 20.2 1.3 t s 3 Y

BeistIe
avg. rind

A-axis B-axis C-axis thickness color rock type weathering fabric
105.5 77.7 48.2 1.1 wit s 5 n
106.6 56.1 52.6 2 P s 3 n
132.5 94.3 55.1 3.2 bl-br s 3 y
107.1 62.1 41.4 6.3 w s 3 Y

21 18.1 13 1.5 t s 3 y
103.9 95.7 51.4 3 P s 3 n
48.2 34.3 28.1 2.8 w/b q 4 n
66.3 42.4 40.3 2.9 t1w s 3 Y
58.6 38 31.6 7.4 w s 3 n
62.4 40 25.3 1.1 br s 4 n

Salem
avg. rind

A-axis B-axis C-axis thickness color rock type weathering fabric
78.4 54.7 49.3 0 w q ') n

149.2 87.8 64.4 3.7 g q 3 Y
73.1 58.2 36.2 3 wlb s 4 n
94.5 40.2 35.4 0 r s 3 n
126 79.S 43.7 ') g1w s 3 n

78.2 64.9 38 4.1 pit s 3 n

94.8 76.8 47.3 1.3 w s 4 y
82 43.8 23.1 0 t q ') y

88.3 55.2 46.3 0 bit s 5 n
95.9 85.1 54.8 0 t s 3 n
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115.5 56.3 36.1 3 b q 5 n
128.7 73.1 39.6 2.8 w/p q 3 Y

122 56.3 39.9 7 br s 3 n
56.8 57.9 41.5 0 t q 3 n
72.3 42 24.2 2.4 w/b s 3 n
67.9 51.7 51.4 5.4 p/b s 3 y
71.9 64.3 33.3 0 w s 3 y
76.6 50.1 39.6 1.5 P s 3 y
58.5 27.7 19.3 2.7 w/b q 4 Y
47.4 33.4 29.9 0 wlr s 3 n
52.1 50 26.3 0 w s 3 n
77.6 59.8 22 0 w q 3 n
56.8 40.9 25.5 1.6 r s 3 n
56.8 46.9 22 2.4 p/w/br q 4 Y
58.6 40 23.9 0 w s 3 n
52.1 38.8 29.8 0 w q 2 n
55.1 39.4 37.9 2.2 w q 2 Y
49.3 49.2 24.8 3.9 w/b s 4 y
91.9 60.7 60.4 0 w s 3 n
72.5 44.5 43.3 1.9 w q 2 n
55.9 32.8 22.5 0 w q 2 n
70.1 36.2 28.9 0 t q 3 n
72.1 54 20.8 1.9 t/b s 3 y
76.5 51.9 51.5 1.7 t s 3 n
73.3 54.1 37.6 2.5 w s 3 n
92.9 56.2 53.9 0 s 3 n
70.4 41.7 37.5 0 s 3 n
42.9 25.3 18.5 0 s 3 n
67.8 45.7 26.5 0 s 3 n
50.2 31.6 30.3 0 w q 2 Y
71.2 48.2 20.4 1.4 w/b s 3 n
63.1 55.8 11.7 0 P q 2 n
58.8 43.6 36.1 ") w/b s 3 n
58.1 46.4 35.9 2.1 br s 3 y
61.2 51.1 15 ") t s 3 n

61 47.4 27.6 1.2 \\. s 3 n
46.6 34 32.8 0 w s 3 n

Orchard

A-axis B-axis C-axis
67.5 47.4 23.5

a\'g. lind
thickncss color rock typc wcathcring fabric

2.4 u s 3 n

73.2 46.1 40.5 3.8
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107.4 95.5 65 4.9 tlbr/r s 3 n
77.7 75.7 53.9 0 w/b/r s 2 n
67.4 66.8 53.5 2.6 u s 3 n

121.5 46 32.8 3.7 rIb s 2 n
93.1 73.9 23 5.5 w s 2 n
87.1 51.7 43.6 1.6 t s 2 n
92.2 68.7 51.2 0 wIt s 6 n
47.8 39.6 11.6 1.3 t s 3 n
69.2 39.5 21.5 0 b/p s 2 n

81 51.8 22.7 2.7 rIb s 2 n
62.7 60.5 3.63 1.6 t s 3 n
45.5 42.5 29.2 0 wIt s 3 n
65.7 53 32.7 0 u s 3 n
75.9 52 26.7 1.7 t s 3 n
57.4 48.8 23.5 6.1 t s 3 n
70.5 39.3 35.9 0 t s 3 n
50.6 39.3 16.8 1.4 t s 3 n
33.9 28.6 27.1 1 t s 3 n
57.3 41.2 27.5 1.3 t s 3 n
39.2 29.2 17.7 3.2 u/r s 4 n
54.9 48.6 29 1.3 t s 3 n
57.4 49 21.3 2.9 w s 3 n

62 35.9 13 0 b/w/r s 3 n
36.6 19.3 18.5 3.3 u s 3 n
53.1 35.1 15.4 0.5 s 3 n
49.2 39.2 37.2 0 s 3 n

Mainsville Quarry
avg. rind

A-axis B-axis C-axis thickness color rock type weathering fabric
65.1 51.6 26.6 N/A til' Saprolite 7 N/A

123.4 75.5 41.1 N/A til' Saprolite 7 N/A
88.6 61 55 N/A til' Saprolite 7 N/A

137.5 101.5 34.8 N/A til' Saprolite 7 N/A
131.5 120.9 45.6 N/A til' Saprolite 7 N/A
100.6 70.6 33.4 N/A til' Saprolite 7 N/A
101.6 64.7 64.2 N/A til' Saprolite 7 N/A
94.5 73 50.3 N/A til' Saprolite 7 N/A

104.7 72.8 49.1 N/A til' Saprolitc 7 N/A
95.8 58.5 57.2 N/A til' Saprolitc 7 N/A

104.4 92.3 35 N/A til' Saprolitc 7 N/A
87.3 77 28.1 N/A til' Saprolite 7 N/A
81.8 57.3 39.6 N/A til' Saprolite 7 N/A
104 74.5 47.7 ":\/A til' Saprolitc 7 N/A
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88.7 59 47.2 N/A tJr Saprolite 7 N/A
94.5 71.6 46.7 N/A tJr Saprolite 7 N/A
86.2 68.8 47.7 N/A tJr Saprolite 7 N/A
76.2 60.8 41.4 N/A tJr Saprolite 7 N/A
89.8 75.3 40.3 N/A tJr Saprolite 7 N/A

101.7 68.1 48 N/A tJr Saprolite 7 N/A
91 51.3 27.9 N/A tJr Saprolite 7 N/A

76.5 44.7 37.2 N/A tJr Saprolite 7 N/A
69.6 68.3 57.3 N/A tJr Saprolite 7 N/A
86.3 48.6 30.1 N/A tJr Saprolite 7 N/A

73 39.3 31.4 N/A tJr Saprolite 7 N/A
82.8 68 44.5 N/A tJr Saprolite 7 N/A
85.9 69 48.4 N/A tJr Saprolite 7 N/A
76.2 69.2 51.4 N/A tJr Saprolite 7 N/A
93.4 75 25 N/A tJr Saprolite 7 N/A
61.5 40.8 37.4 N/A tJr Saprolite 7 N/A
74.9 57.8 30.5 N/A tJr Saprolite 7 N/A
68.1 40.3 27.4 N/A tJr Saprolite 7 N/A
85.2 47.2 26.8 N/A tJr Saprolite 7 N/A
84.2 51.4 25.8 N/A tJr Saprolite 7 N/A
73.9 65.5 29.1 N/A tJr Saprolite 7 N/A
59.9 39.9 29.2 N/A tJr Saprolite 7 N/A
61.1 68.4 33.4 N/A tJr Saprolite 7 N/A
47.2 37.6 21.2 N/A tJr Saprolite 7 N/A
69.5 49 44.5 N/A tJr Saprolite 7 N/A
70.4 51 33 N/A tJr Saprolitc 7 N/A
58.7 41.4 34.5 N/A tJr Saprolitc 7 N/A
71.8 45.7 32.5 N/A tJr Saprolitc 7 N/A
55.7 51 36.9 N/A tJr Saprolitc 7 N/A
66.9 38.1 30.2 N/A tJr Saprolite 7 N/A
68.6 39.5 26.8 N/A tJr Saprolitc 7 N/A
85.9 51.9 40.5 N/A tJr Saprolitc 7 N/A
49.5 29.9 16.2 N/A tJr Saprolitc 7 N/A
58.7 49 24.4 N/A tJr Saprolitc 7 N/A
39.7 36.5 34 N/A tJr Saprolitc 7 N/A

57 52.6 33.8 N/A tJr Saprolitc 7 N/A
42.5 37 29.8 N/A tJr Saprolitc 7 N/A
61.3 43 26.5 N/A tJr Saprolitc 7 N/A
65.2 46.1 29.5 N/A tJr Saprolite 7 N/A
54.5 25.8 24 N/A tJr Saprolite 7 N/A
52.4 41.4 23.8 N/A tJr Saprolite 7 N/A
51.4 38.4 21.3 N/A tJr Saprolite 7 N/A
54.2 40.8 23.2 N/A tJr Saprolite 7 N/A
46.5 34.6 27.4 N/A tJr Saprolite 7 N/A
55.3 38.4 25.7 N/A tJr Saprolite 7 N/A
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45.3 38.2 25.6 N/A tJr Saprolite 7 N/A
60.4 36 20.9 N/A tJr Saprolite 7 N/A
67.1 52 17 N/A tJr Saprolite 7 N/A
69.8 37.9 30.7 N/A tJr Saprolite 7 N/A

55 36.1 32.9 N/A tJr Saprolite 7 N/A
52.9 25.3 17.1 N/A tJr Saprolite 7 N/A
43.4 35.8 26.6 N/A tJr Saprolite 7 N/A

47 36.4 25.7 N/A tJr Saprolite 7 N/A
43.9 41.4 37.8 N/A tJr Saprolite 7 N/A
49.2 30.5 26.2 N/A tJr Saprolite 7 N/A
44.7 25.3 16.3 N/A tJr Saprolite 7 N/A
50.8 45.1 25.2 N/A tJr Saprolite 7 N/A
49.9 43.7 16.8 N/A tJr Saprolite 7 N/A
48.4 38 21.3 N/A tJr Saprolite 7 N/A
37.7 26.6 15.3 N/A tJr Saprolite 7 N/A
44.8 31.9 20 N/A tJr Saprolite 7 N/A
43.9 33.9 19.6 N/A tJr Saprolite 7 N/A

46 30.5 26.6 N/A tJr Saprolite 7 N/A
38.8 27.9 18.6 N/A tJr Saprolite 7 N/A
48.1 34.5 23.1 N/A tJr Saprolite 7 N/A
40.6 26.4 16.6 N/A tJr Saprolite 7 N/A

52 31.9 22.6 N/A tJr Saprolite 7 N/A
44.2 33.2 21.7 N/A tJr Saprolite 7 N/A
43.2 30.6 24.6 N/A tJr Saprolite 7 N/A
37.8 32.6 25.3 N/A tJr Saprolite 7 N/A
42.7 29 17 N/A tJr Saprolite 7 N/A

Roxbury Gap
avg.rind

A-axis B-axis C-axis thickness color rock type weathering fabric
180 106.5 64.9 0 u s 3 n
195 102.8 84.5 1.8 tJg q 3 n

101.6 85.4 82 2.3 tJw q 3 n
133.6 96.2 61.5 0 r s 4 n

189 64.6 29.1 0 \\' q 3 n
152.4 71.1 70.1 .., t s 3 n

138 86.5 43.3 2.8 u s 3 n
108 101.5 33.7 0 tJp s 3 n
119 82.9 45.8 0 u s ..,

n
52.5 90 58.3 0 e s 3 n
99.7 85.4 21.1 2.4 \\' q 3 n

97 73.9 42.4 0 b 111
..,

n
98.5 66.5 43.4 0 u s 3 n

104.7 72.7 28.3 0 u s 3 n
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78.4 62.4 55.5 2.5 w q 3 11

108.2 92.5 35.9 2 t S 3 11

87.1 42.6 31.6 3.4 t/w q 3 11

83 33 31.3 3.6 t q 3 11

85.6 50.8 43.3 0 u s 3 11

86.4 50.2 42.6 0 u q 4 11

8704 28.9 24.6 1.9 w q 3 11

Ill.7 46.1 37.6 1.5 glt s 3 11

92.6 32.2 31.1 5.5 w q 3 11

94.2 53.4 12 4.4 s 5 11

70.7 60.3 36.4 2.8 q 3 11

59 49.5 25.7 4.5 q 3 11

62.9 43.3 28.5 4.5 q 3 11

63.5 40.1 34 0 P s 3 11

68.4 34.5 22.7 0 r/w q 4 11

42.4 36.5 27.1 4.3 glt s 3 11

50.3 46.1 31.4 0 u s 3 11

56.1 27.5 20.7 3.6 w q 3 11

64 44.3 27.7 0 t S 3 11

25.9 25.4 6.6 0 c s 3 11

63 30.1 16.6 0 c s 3 11

77.1 52.7 54.3 0 br s 3 11

95 65.5 31.7 0 br s 3 11

61.8 47.6 45.3 0 br s 3 11

69.3 58.5 20.7 0 b m 3 11

67.7 44.2 41.8 0 u s 3 11

71.3 49.4 34.2 0 u s 3 11

84.2 42.1 22.9 0 u s 3 11

61.2 43.5 22.1 0 u s 3 11

66.6 31.9 18.2 0 u s 3 11

70.6 42.1 23.4 0 u s 3 11

61.5 20 16.5 0 u s 3 11

49.4 42.1 20.8 0 u s 3 11

57.1 37.7 29.8 0 u s 3 11

50.8 40.9 30.6 0 u s 3 11

74.4 38.7 28.4 0 u s 3 11

53 37.4 22.4 0 br s 3 11

53.9 17.9 13.3 2.6 u s 3 11

47.4 28.6 21.6 0 u s 3 11

51.7 29.7 31.1 ') ") t/w q 4 11

47.5 37.9 31.2 2.1 glt s 3 11

58.6 35.9 23.3 0 \\. q 3 11

42 37.5 33.2 2.4 w q 3 11

58.8 45.7 18.4 4 glt S 3 11

50.4 40 27 0 t S 3 11
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37.6 29.9 11.4 1.3 w q 3 n

Conococheague Creek
avg. rind

A-axis B-axis C-axis thickness color rock type weathering fabric
144.1 86.1 61.8 a w q 2 n
100.7 78.5 51.1 2.8 w s 3 n

103 58 41.9 3.1 g q 3 n
120.1 77.6 45.8 2.3 w q 3 n
89.2 87.8 37 2.7 t s 3 n

133.5 90.5 54.8 a r q 2 n
92.9 66.6 59.5 1.1 t q 3 n

116.8 74.1 27.4 a g q 3 n
107.7 74.6 31.5 1.1 t s 3 n

114 91.4 30 2.6 w q 3 n
103.4 64.4 47.9 a t s 4 n
110.9 91. 1 29.9 a w q 2 n
117.4 69.4 44.4 a t/u q 2 n
92.8 75.2 43.4 4 g q 3 n

89 44.4 29.9 1.4 w q 3 n
68.1 56.9 38.2 a u/t q 4 n

82 62.3 52 1.5 g m 3 n
106 45.7 20 a t q 5 n

85.5 38.5 36.1 1.8 w q 3 n
85.4 65.5 35.6 a w q 3 n

67 46.1 22.9 1.5 w q 3 n
77.5 59.4 22.8 1.5 t/w q 3 n
70.2 50.9 24.3 2.1 t/b s 5 n
55.2 48.5 41.4 3.6 w s 4 n

74 49 38 a r s 4 n
75.6 37.5 23.3 2.9 w q 3 n
63.7 56.6 29.5 ..,

\\' q 3 n
83.8 35 20.1 1.9 pi\\' q 4 n
72.2 47.6 36 a (l q 4 nb

63.4 50.3 20.7 1.1 t q 3 n
59.8 35.5 10.2 a (l m 3 nb

64.6 38.4 34.5 a q 4 n
62 51. 1 25.1 1.8 q 3 n

49.2 36.5 22.7 a \\' q ..,
n-

65.1 39.1 20.7 a \\' q .., n
50.8 38.4 20.8 a \\' q 3 n
53.5 32 19.7 1.7 \\' q 3 n
52.3 36.5 18.3 3.6 \\' q 3 n
47.2 41.9 25.8 0 \\' q '1 n-
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56.8 37.1 23.2 1.5 wIt q 3 n
44.2 37.2 15.2 2.6 wIt q 3 n

South Mountain Stream
avg. rind

A -axis B-axis C-axis thickness color rock type weathering fabric
128.9 86.1 79.4 0 w q 2 n
149.9 119.8 71.2 0 u s 2 Y
123.1 118 74.3 4.2 plu/t s 4 Y
154.6 73.1 56.6 3.2 r s 3 n
127.3 98.6 70.4 0 t s 3 n
112.2 98.2 68.2 6.7 w/t/r s 3 n
106.2 69.8 61 4.2 w/r s 4 n
114.6 93.8 44.2 2.1 e m 3 n

100 59.9 45.1 0 w s 3 n
126.9 100 50.9 0 t s 4 Y
85.9 44 40.9 0 pit s 3 n

155.5 72.4 65.2 1.9 t s 3 n
154.6 79.5 41.6 4.2 w s 3 Y
100.6 64.3 44.6 1.75 P s 4 n
128.4 73.6 49.4 3.5 g q 3 n
79.1 58.1 49.2 2.1 t/w q 3 n

110.2 67.6 29.9 0 w q 3 Y
114.9 83 53.1 0 s 3 n

93 88.1 36.5 0 s 4 Y
110 63.7 36.3 4.9 w q 3 Y

104.3 80 43 2.9 w s 4 n
93.4 74.7 35.9 ") P s 4 n

94 60.1 48.6 0 t s 3 11

84.7 52.9 30.8 1.7 0 q 3 n:=
73.1 50.7 41.5 3.6 g q 3 Y
75.3 57.7 49.5 0 t s 3 y
78.1 77.3 27.8 2.5 \\' q 3 11

76.3 60.8 22.7 4 {1 q 3 Y:=
72.6 53.6 40.1 2.4 pit q 3 11

94.9 60.6 35.5 0 \\' q 3 Y
77.5 68.1 27.6 0 t s 3 11

62.5 59.7 25.1 0 \\' q 3 Y
57 39 24.5 4.1 \\' q 3 Y
42 23.9 17.1 3.8 l q 3 11

63.1 38 13.2 0 P q 3 11

47.5 23.9 21.3 0 t q 3 n
27.2 11 1 16.1 0 {1 m 5 11:=

68



Vita

Sarah M. Flanagan was born in Exeter, New Hampshire on October 4th
, 1981 to

Marguerite G. and John B. Flanagan and raised in Newbury, MA and Pound Ridge, NY.

She graduated from Smith College, Northampton, MA in May 2003 with Honors in

Geology. While at Smith she also attended Westchester Community College, Valhalla,

NY in May of 2000, Cornell University, Ithaca, NY in July of 2001 and The University

of Edinburgh, Scotland in the fall of 2001.

While at Lehigh University, she taught two laboratory sections of Introduction to

Planet Earth.

69







ENDOF
TITLE


	Lehigh University
	Lehigh Preserve
	2006

	Transverse drainages, divides and landscape evolution in the Great Valley, Eastern United States
	Sarah Flanagan
	Recommended Citation


	00658
	00659
	00661
	00662
	00663
	00664
	00665
	00666
	00667
	00668
	00670
	00672
	00673
	00674
	00675
	00677
	00678
	00679
	00680
	00681
	00682
	00683
	00684
	00685
	00686
	00687
	00689
	00690
	00691
	00692
	00693
	00694
	00695
	00696
	00698
	00699
	00700
	00702
	00703
	00704
	00705
	00706
	00707
	00708
	00709
	00710
	00711
	00712
	00713
	00714
	00715
	00716
	00717
	00718
	00719
	00720
	00721
	00722
	00723
	00724
	00725
	00726
	00727
	00728
	00729
	00730
	00731
	00732
	00733
	00734
	00735
	00736
	00737
	00738
	00739
	00753

