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Abstract

Bi-level and tri-level charge pumping are widely used in the study of devices.

These techniques allow the measurement of capture cross section and the density

of states. This thesis describes how the computer simulations have been used to

further the understanding of charge pumping. The program includes the effects of

quantization of the conduction band. The simulations allow the actual waveforms

to be examined. Experimental work does not allow the individual hole and electron

currents to be viewed.

The simulations were carried out on a Sun SparcStation using standard C. It has

also been tested on IBM RS600 workstations. The software is designed to be easily

modified to incorporate other effects.

To confirm proper operation the results were compared to theories, which are

also developed in this thesis. The simulations were then compared to devices that

were fabricated in the lab. The devices were fabricated using the standard 211m

processmg sequence.

1



Chapter 1

Introduction

1.1 Historical Review

As devices become smaller, variations in the device's parameters can change the

performance of the device. Interface traps are among the effects of interest. Interface

traps are created at the boundary between the Si and Si02 layers (please see figure

1.1 ). These traps exist over the entire energy range of the forbidden zone of the

energy gap. By contrast, a bulk trap has one distinct energy level associated with

it (see figure 1.2). A third type of traps are oxide traps. The effects of these traps

are not included in this thesis.

Charge Pumping was first reported by Brugler and Jespers[2]. They investigated

the two sources of the charge pumping current: the geometric component and the

surface-state component. The surface-state component is the important effect in

characterizing the interface traps. The geometric component results from the mo­

bile charge recombining under the gate instead of traveling back to the source and

drain[3]. It depends on the shape of the device under study. Brugler and Jespers

[2] showed that when W / L ~ 1, few proportionally carriers will recombine before

reaching the source or drain. In practice, the geometric component is minimized to

improve the accuracy of the interface trap measurements. The geometric component

is not included in the analysis presented in this thesis or in the simulation program.

Groeseneken, Maes, Beltran and De Keersmaecker improved on the previous work

2



1.1. HISTORIOAL REVIEW

0 0
0 0 0 00

0 0 0 0
p

0

X Interface Trap o Bulk Trap

Figure 1.1: Location of interface and bulk traps

and developed a method to allow to the average interface state density, mean value

of capture cross sections, and the distribution of interface states to be found[3].

The usefulness of charge pumping method was extended when Tseng introduced

tri-level charge pumping [4]. Tri-level charge pumping allows more information to

be gathered.

As table 1.1 shows, tri-level charge pumping is among the techniques that have

the best Dit , density of interface traps, resolution. It also allows the capture cross

sections ((Tn and (Tp) to be found for the same device. MOSFETs are harder to

fabricate than capacitors due to the increased number of masks needed, so there

are advantages to using the methods that only require capacitors. However, since

the purpose of these investigation is to explain the performance of devices used in

circuits, the transistor studies allow the results to be directly applied to the actual

devices.

3
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CHAPTER 1. INTRODUCTION

Energy

Bulk Trap
Ec

Si

Ev

Interface Traps
Oxide Trap

Figure 1.2: Location of interface traps as a function of energy
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1.1. HISTORICAL REVIEW

Measurement Test Vehicle Parameters Dit Resolution

High freq. CV [5] Capacitor Dit(E) 1011

(Termin's Method)

Gray Brown CV [6] Capacitor Dit(E) 1011

Quasi-Static CV [7, 8] Capacitor Dit(E) 1010

Hi-Lo CV [8, 9] Capacitor Dit(E) 1010

Conductance[10, 11] Capacitor Dit(E),CTn(E) or CTp(E) 109

Constant Capacitance-

Deep Level Transient Capacitor Dit(E),CTn(E) or CTp(E) 109

Spectroscopy [12, 13]

Electron Spin Bulk Si Dit(E) 1012

Resonance [14]

Gated Diode [15] MOS structure Dit 1010

Charge Pumping MOSFET Dit(E),.jCTnCTp 109

Tri-level CP MOSFET Dit(E),CTn(E),CTp(E) 109

9m,!sub[16] MOSFET Dit 1011 1010,

Table 1.1: Comparison of interface trap measurement techniques.[l]

5



CHAPTER 1. INTRODUCTION

Charge pumping has been used to study the increase in interface traps after

radiation[17], hot electron injection[18], and repeated cycling of MNOS memory

devices[19]. It has also been used to investigate the reduction in trap density in

MNOS devices after hydrogen annealing[20]. In practice, experiments measure the

average current per cycle. It is not possible to see the actual current waveform

as a function of time. However, computer simulations can show the waveform as a

function of time. Viewing the waveforms allows a closer study of the charge pumping

current and the individual contributions of the electrons and holes together with

their emission and hole processes.

Processing of devices in the fabrication lab normally takes at least a month.

However, changing the constants used in the program to simulate different devices

takes a couple of minutes.

1.2 Scope of this Thesis

This work covers the development of the time domain analysis of the charge

pumping current in MOS devices. The waveforms corresponding to the currents

and potentials can be viewed. This gives more insight into the physical processes

that are occurring in the device. This thesis covers the problems encountered in

implementing the equations into a C program designed to run on Sun workstations,

and how they were overcome.

Analytical techniques to study charge pumping are also developed. The two

methods are compared to confirm that the simulations are actually producing rea­

sonable results. Experimental results further attest to the accuracy of the results.

For the first time, the quantization effects that occur at high doping densities

6



1.2. SCOPE OF THIS THESIS

have been included in computer simulations. The effects of emission to levels above

the conduction band will increase in importance as devices become smaller. The

effects of the quantization can be isolated and their effects can be investigated.

7



Chapter 2

Theory of Charge Pumping

2.1 Introduction

In order to simulate charge pumping the equations governing the device per­

formance must be studied. Ghibaudo and Saks[21] derived the equations for the

simulation for simple charge pumping experiments. The main advantage of this ap­

proach is that the currents flowing into the substrate and source and drain can be

studied as a function of time. Analytical theories are also developed. These theories

predict the expected results. These have been shown to be close to the actual values

measured in experiments.

2.2 Capture and Emission of a Single Trap Level

Shockley-Read-Hall statistics [22,23] statistics describe the capture and emission

of holes and electrons from traps. The rate of capture of electrons into a trap at 'lj;t,

is the product of the capture cross section of the electron (an), the thermal velocity

(Vth), and the concentration of electrons at the surface (n 6 ) is shown by

(2.1)

8



2.2. CAPTURE AND EMISSION OF A SINGLE TRAP LEVEL

Hole Emission

Hole Capture

_Electron Capture

Electron Emission

Figure 2.1: The four processes that take place with Interface Traps
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GHAPTER 2. THEORY OF GHARGE PUMPING

Velocity

Capture Cross
Section

Cp - l7p 1JthP8

(2.5)P8 - Poeq.p·/kT

(2.6)ep - l7pVthPI

(2.7)PI ~ poe -q.pt/kT

(2.8)10

W'bere n8 is given by

The rate of emission of electrons from the trap into the conduction band is

Figure 2.2: Probability of an electron becoming trapped is proPortional to the
capture cross section times the thermal velocity.

with n" the concentration of electrons in the trap, as follows

The equations relating to hOles are similar and are Shown below:



2.3. HOLE AND ELEOTRON REOOMBINATION CURRENTS

where no and Po are shown in section A.3. The thermal velocity also varies with

temperature as follows [24]

Vt' = J8kT
m~7l"

(2.9)

In all these equations, Vth refers to the thermal velocity of the electron, with the

variation of the thermal velocity with respect to holes and electrons included in

the capture cross sections. Since, there are traps at every energy level between the

conduction and valance level, equations 2.10 and 2.11 must be integrated over the

entire energy band. It can be shown that only the traps within 7l" kT/2 1 of the trap

level contribute to the current.

2.3 Hole and Electron Recombination Currents

The electron and hole recombination currents from a single trap level are equal

to the net-rate of change of the trap charge multiplied by the number of states at

that energy and the charge per particle.

(2.10)

(2.11)

with units of A/cm2
•

If there were no interlace traps to store charge, the hole and electron currents

would both sum to O. Since charge can be stored in the trap, the currents will not

sum to 0, however the currents over an entire cycle must have the same magnitude.

1Please see appendix D.2
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CHAPTER 2. THEORY OF CHARGE PUMPING

Gate

Figure 2.3: The charge pumping currents. II and 12 are the electron capture and

emission components, respectively and 13 and 14 are the hole capture <;nd emission

components, respectively.
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2.4. CHANGE IN TRAP POTENTIAL

2.4 Change in Trap Potential

If the semiconductor is in equilibrium, the trap and surface potentials will be

the same, 7/J1I .- 7/Jt. Under these conditions, there will be no net electron or hole

capture, so both the electron and hole currents will be zero. Most of the time the

device will not be operating in equilibrium.

The differential interface trap charge is given by

(2.12)

The change in the interface trap charge is given by

(2.13)

So, by applying equations 2.12, 2.11 and 2.10,

(2.14)

The Taylor expansion of 7/Jt about t is

(2.15)

If !:it is small,

(2.16)

so expansion can stopped after the first two terms. Using equations 2.14 and 2.15,

the value for 7/Jt at some future time can be written as.

(2.17)

13



CHAPTER 2. THEORY OF CHARGE PUMPING

2.5 Charge Pumping Current

The total current is the value of interest. It can be found either from the hole

or electron current.

Iep

where Tp is the time of each cycle.

(2.18)

(2.19)

2.6 Theory of Two Level Charge Pumping

In conventional two-level charge pumping, a repetitive pulse is applied to the gate

of the MOS transistor (please see figure 2.5). If we consider a n-channel transistor, a

voltage higher than VT biases the traI;lsistor into inversion. The positive gate voltage

pulls electrons toward the gate where they fill the interface traps between the Si and

Si02 If the lower voltage is below VFB , the device will be biased into accumulation.

Since the gate is composed of Si02 , an insulator, the current flowing through the

gate is much smaller than the currents flowing through the source, drain and the

substrate. The source and drain supply the electron current, and the hole current

----i~s~li~d by the substrate (please see figure 2.3). As stated previously, we are

-~~ ass~ming that the geometric component is negligible.

At the start of the cycle when VL < VFB is applied the device will be in accumu­

lation, and traps will be empty of electrons. As the voltage increases from VL < VFB

14



2.6. THEORY OF TWO LEVEL CHARGE PUMPING

to VH > VT, holes will start to emit from the traps to the valence band. As long,

as the voltage is low enough, the device will be operating in steady-state. At a

gate voltage close to flatband, a transition to non-steady state will occur. As the

pulse continues to rise, the device will be operating in the depletion region. Since,

there are few free carriers, the rate of emission of holes will set the trapping time

constant. Close to weak inversion, the electrons will be captured into traps that

are still occupied by holes. This results in Recombination of an electron-hole pair.

When the device is in strong inversion all the traps will be filled and the device will

once again be in equilibrium. When the voltage pulse descends, electrons will start

to emit back to the conduction band. When the device is the depletion region, the

electron emission becomes less than the capture of holes, once again resulting in

Recombination. Finally, the device will reach equilibrium in accumulation and the

process will start over. The current can be measured through either the electrons

moving through the source and drain or the holes moving through the substrate of

the device.

The current is averaged over the cycle and from the current, various parame­

ters can be determined. Groeseneken, et al. [25] have developed equations for the

behavior of devices under simple two-level charge pumping experiments. Assuming

the base voltage level is VL , the amplitude is ~VG , the rise and fall transient times

(assumed to be independent of the frequency, J) are t f and t r , the maximum current

per unit area is for n-channel

(2.20)

The charge per cycle Qcp which can be written as

(2.21 )

will remain constant as a function of frequency. 2 These equations assume that

2Recent work suggests that near-interface oxide traps cause Qcp to increase at low
frequencies[26]. These traps are located in the bulk of the Si02 , but close to the surface. Paulsen
sh~wed that interface to bulk dielectric trap tunneling explains these results.[27]

15



CHAPTER 2. THEORY OF CHARGE PUMPING

Accumulation

------------------~g----- E:Ev F
++++ + + ++

Flat Band

Ec
------------------------- E:
++++ + ++ ++F

Ev

Depletion

Ec
-------------------------- E:

F
+ + + Ev +

Inversion

Ec
------------------------ .. E:

+ + + + Ev+ F

Figure 2.4: N-channel transistor under different biases
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2.6. THEORY OF TWO LEVEL CHARGE PUMPING

VL < VFB and VH = VL +,0.Va > VT. If the entire region from VFB to VT is not

scanned, the current will be less than the value given in 2.20.

In the experiments performed in our lab, ,0.Va is is set so that

(2.22)

and the base voltage is swept from a value below VFB - ,0.Va to a value above VT.

The maximum value of Icp is used to determine Dit by applying equation 2.20.

The values of VL that correspond to the locations where the current is half of its

maximum value are VTH -,0.Va and VFB . The values obtained for VTH and VFB by

this method are not very accurate and are generally used only as a check that they

are reasonable.

Another useful technique, also from Groeseneken[25] is to use a sawtooth wave

as the applied signal. The high voltage is set so VH > VT and the low voltage is set

so VL < VFB . The waveform consists of two sections. During the first a fraction

of the pulse width the voltage is linearly increasing from VL to VH and during the

remaining 1 - a is linearly decreases. The equation for QcP can be derived from

2.20 as follows:

(2.23)

(2.24)
I-a

=? Qcp

From the sawtooth pattern, both y'C7n C7p and D IT can be found. If QcP = 0 in

(2.25),

(2.26)

Also,
dQcp

dlog f
2qkTJ5"";;

log e
(2.27)

17



CHAPTER 2. THEORY OF CHARGE PUMPING
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Figure 2.5: Waveforms used in two level charge pumping
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2.7. THEORY OF TRI-LEVEL CHARGE PUMPING

which leads to a value of DIT .

The equations for QcP developed in this section, were done assuming the tran­

sition from steady state to non-steady state occurs when Vc = VFB and that the

transition from non-steady state to steady-state is when Vc = VTH . Groeseneken

justified these approximations in his paper [25].

The derivation of the equations in this section was done independent of the time­

domain analysis method of determining the charge pumping current, thus equations

2.20 and 2.25 can be used to verify the operation of the simulator.

2.7 Theory of Tri-Ievel Charge Pumping

Tri-level charge pumping expands two-level charge pumping to allow more infor­

mation to be gathered. In addition to the voltage above the threshold voltage and

the voltage below flat-band (both held long enough to reach equilibrium), a third

voltage v,tep is applied so that

(2.28)

This step voltage is either applied either before or after the device is brought into

accumulation. If the mid-voltage is applied following the high voltage, the electrons

will start to emit back to the conduction band. If the time is long enough all the

traps above the trap level will be empty of electrons, while all the traps below this

level will be filled. The charge that remains gets recombined when the surface is

inverted. The more electrons that were re-emitted to the conduction band the lower

the recombination current will be. The time the device is held at this level, i step ,

is varied to allow study of the states at the energy level being probed. The pulse

is applied either to the leading edge or the trailing edge of the high voltage pulse.
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Step Voltage

Threshold Voltage

,...-------~-------------_.
I
I
I
I
I
I
I I

£latbaod:_\LQltage 1_
I I

I:<11--------£>1
: Step time :
I I
I I

Figure 2.6: Waveform used in tri-level charge pumping with step voltage on trailing

edge.

When the the pulse is on the trailing edge the upper part of the energy gap is

investigated.

For the case of electron emission the total charge recombining with holes from

the conduction band is[1]

(2.29)

where Em(t) is the energy ofthe uppermost-filled trap level referenced to the valance

band. It is given by[28]

Em(t) = Et - kTln[1 - (1 - e(Et-Ecs)/kT)]e-(t.tep+tj)/re (2.30)

Where Te = e~l (see equation 2.3) is the time constant of the emission of electrons.

The total current is just the charge per cycle multiplied by the frequency.

I ep (2.31 )

(2.32)

As the step time approaches 0, the current approaches the value given by the two­

level experiment equation 2.20 where Et = E i . This equation is independent of the
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2.7. THEORY OF TRI-LEVEL CHARGE PUMPING

value of the step voltage. As the step time increases the current will saturate at a

final value of

(2.33)

This enables one to find the trap energy level, Et , when Dit is known.

(2.34)CTn = ----­
TeVthNC

A plot of lcp vs. log(t) has a breakpoint at Te • Once Te and Et are known, the

capture cross section for a particular energy level can be found from

e(Ecs-Et}/kT

If the pulse is instead placed on the leading edge, then a similar analysis can be

used to find Th and CTp ' By solving the rate equations, analytical expressions for Te

and Th are found to be[l]

Te
1 e(Ec-Et)/kT (2.35)

CTnVthNe

Th
1 e(Et-Ev)/kT (2.36)-

CTpnthNv

When Te = Th, Et = ETP , where ETP is the pinning level (The energy level where

maximum electron-hole pair generation occurs). The equation for ETP can be de­

veloped as follows:

(2.37)

(2.38)

since everything is referenced to Ev and Ee - Ev = Ea ,

Eg +2ETP

kT

CTnNe

CTpNv

CTn Ne
In- +In-

CTp Nv

_ kT In CTn + Ea _ kT In Ne

2 CTp 2 2 Nv

(2.39)

(2.40)

(2.41)
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(2.42)

CHAPTER 2. THEORY OF CHARGE PUMPING

kT Un
ETP - Ei = --In-

2 Up

States close to the pinning level are hard to probe. Very slow waveforms must be

used because the time constants will be large. Tseng [4] developed an expression for

calculating Dit (E) by looking at the current at two different step levels as shown

below:
D. (nl. ) _ ~ I !1Icp I

It 'fIstep - f I .1. nl. Iq 'fIstep1 - 'fIstep2

2.8 Quantum Mechanical Considerations

(2.43)

Siergiej has extended the knowledge of interface traps by considering the quan­

tization of energy levels in the conduction band[l]. Previous work considered the

interface traps to emit to the lower edge of the conduction band. However, Siergiej

showed the electrons actually emit to the first quantization level (please see figure

2.7), Eo, where

Eo Ecs + !1Eo

~ (~)1/3( ~7rq[.s)2/3
2ml 8

The surface electric field, [.S can be found from

£s = QB + Qinv
KsEo

where

Qinv ~ Cox(Vas - VT )

QB ~ V2KsEoqNB(VSB + 2~F)

22
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2.8. QUANTUM MECHANICAL CONSIDERATIONS

if we assume Vns ~ 0, In charge pumping experiments the source and drain are

generally tied together, so this condition will be satisfied. The effect of the quan-

Figure 2.7: Electrons from interface traps emit to Eo instead of Ecs .

tization changes the effective capture cross section for eleetrons[l].

Nc (3D) eAEo/kT
O"n(3D)

Nc (2D) VD.Eo/ kT
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Figure 2.8: !:lEo for different biases and doping levels at 300K and 77K
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e!::..Eo/kT

~ 3.55J CTn (3D)
I1Eo/kT

(2.50)

Different bulk biases produce different emission times, however as long as the same

5
4
3

2

1

1019 20
10

(cm-3)
18

10

N S
Figure 2.9: Ratio of 2D capture cross sections to 3D capture cross sections for

different bias conditions and doping levels at 300K

trap level is being probed the final current values should be the same. The ratio of

emission times can be expressed as

(2.51 )

(2.52)

where
a = ( 1i

2
qNB )1/3( 97fq )2/3

KSf.oml 8
The quantum effects associated with the holes and the valence bands have much

faster time constants, so they are not considered in this work.
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CHAPTER 2. THEORY OF CHARGE PUMPING

The ratio of capture cross sections was done with the assumption that the first

quantization level was constant. The level is dependent on the electric field and will

vary as the gate voltage changes. The simulation program treats the capture cross

section as a constant. When the currents are viewed it will be shown that most of

the emission takes place when the gate pulse is at a fixed value.
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Chapter 3

Program Development for Computer

Simulation of Charge Pumping

Experiments

3.1 Introduction

The results of the previous section can be easily applied to a computer routine

to simulate charge pumping, since the computer can carry out millions of operations

each second. The program used in this thesis was written in standard C, and run on a

Sun workstation. It was also run on IBM RISC System/6000 work stations. On both

systems, speed was a major problem especially for the long tri-Ievel simulations (see

E for the times of the simulations). Since many calculations are involved and much

memory is needed, these programs were not even attempted on slower machines

such as personal computers.

Many of the numbers used in the program are small. In order to provide accurate

results it was necessary to use double precision numbers. The use of double precision

numbers slows down the calculations, but in this case they are needed.
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OHAPTER 3. PROGRAM DEVELOPMENT

3.2 Algorithm for Calculating Currents

Subroutine Function

cale-constants Calculates band gap, intrinsic doping density,

Thermal velocity, and capture cross sections

cale-jp Returns hole current at a given time

cale-jn Return electron current at a given time

calc_dpsit Returns change in trap potential

f Returns f( us)
qs Returns semiconductor charge (Q s)

calc3g Returns gate voltage for a given surface potential

cale-vgtpsis Calculates table of gate voltage and surface potential

calc_psis Looks up surface potential for given gate voltage

return3g Returns gate voltage at the given time

fwopen Opens the files and checks for errors

calcj Returns total charge per cycle for chosen waveform

mam The main program

Table 3.1: List of subroutines used in program

The first task the program performs is to calculate the various constants used in

the program. E g , ni, no, Po, etc. vary with the temperature and the doping level of

the device, but they remain constant for the duration of the simulation.

The next task is to calculate a table of 'ljJs vs. VG using equation A.15. This

speeds up the execution of the program, since it is impossible to determine 'ljJs from

VG without using an iterative approach. The program calculates VG for 1000 values

(this value can be changed via the POINTS constant in the pump.h file) of 'l/Js

between 'ljJsmin and 'ljJsmax. The value of 1000 was picked to allow 'ljJs to be found
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Start

•Calculate Constants

•Calculate Surface potential
vs. Gate Voltage Table,
Set Initial Conditions

Decrease Calculate Change inStep ~
....

Trap Potential
~

Size

"t Yes
// Is Chanqe too biq? /

No

Increase Step Size if First
Try at This Point,

No
/ Done with Waveform?

/

Yes

No

/ Repeat Waveform? /

Yes

/ Other Waveforms? / Yes
/

• No

Write Output Files

Figure 3.1: Flow chart of main program used to simulate charge pumping
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I Constants Name I Symbol I

CHAPTER 3. PROGRAM DEVELOPMENT

Meaning

NA N A Acceptor Doping Density

NIT Nit Number of Interface traps per eV

SN O"n 3D Capture Cross Section of electrons

SP O"p 3D Capture Cross Section of holes

T T Temperature

VFB VFB Flat Band Voltage

VSB "V:b Bulk Bias

XO XO Oxide Thickness

COUNT Number of times to run through waveform

POINTS Number of Points in Va vs. 'l/Js table

Table 3.2: User supplied constants to simulation program (located in file pump.h)

I Constant Name I Symbol I Equation I
CIT Cit A.24

COX Cox A.17

EG Ea A.1 & A.3

LD LD A.2I

NI ni A.4

PO Po A.9

NO no A.10

UF Uf A.23

VT ~ A.18

VTH Vth 2.9

PSIMAX 'l/Jsmax A.25

PSIMIN 'l/Jsmin A.26

Table 3.3: Program calculated constants
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3.2. ALGORITHM FOR CALCULATING CURRENTS

accurately enough while not using too many points which would slow down the

system.

Initially the device is assumed to be in accumulation and equilibrium so

(3.1 )

where 7./;8(0) is found from VG(O) and the 7./;8 vs. VG table calculated previously.

Once the initial value is known for 7./;t, equation 2.17 can be used to find the

value of 7./;t for the next time value. Care must be taken to make sure the value used

for !:i.t is not too large. However a too small value is not good either since it slows

down the computer. After study it was decided that a variable time step would be

best. Initially the program, chooses a step size equal to the time of initial transition

from accumulation to inversion divided by 251 . This value was picked through trial

and error as the largest time step that produced good results. The computer will

adjust this step size if the current value is either too high or too low. It calculates a

value for 7./;t(t +!:i.t) and also a value for 7./;t(t +!:i.t/2). From the 7./;t(t +!:i.t/2) value

it re-calculates the value for 7./;t(t + !:i.t). If the two values of 7./;t(t + !:i.t) differ by

more than (7./;8max -7./;8min)/1000 then the step size is reduced by a factor of ten and

the program attempts the problem again. Again, the number 1000 was determined

through trial and error, but this method seems to produce values of qn and qp that

were closest to each other for the entire cycle. If the computer did not have to scale

back the time step, the time step is multiplied by 5 before the next step is taken.

The computer is limited to a maximum step size of 4 times the initial step size.

Higher values caused the jn and jp values to differ from each other.

The computer integrates both the hole and electron currents over the time cy­

cle. It uses Simpson's rule to approximate the integral. The differential charge is

1If the simulation is saving the waveforms the step size is reduced by 10. This produces smoother
graphs for the currents and potentials but the large step size still produces results that are off by
less than 1% for the overall charge. In the case of a sawtooth wave, the transition time of the
rising edge is divided by 2500..
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OHAPTER 3. PROGRAM DEVELOPMENT

expressed as follows

(3.2)

(3.3)

This method produced good results, and was more stable than the trapezoidal rule

method.

Over a complete time cycle, Icp should be the same no matter whether jn or jp

was summed to calculate it (equations 2.19 and 2.18). This provides a convenient

check to make sure the program is producing reasonable results.

To improve the accuracy of the simulation, the entire waveform is simulated

multiple times. It was found that simulating the waveforms four times, produced

results that were more stable than just a single time. This results since the step

size has already been adjusted and the effects of the computer's lack of precision

with small numbers cancelling itself out with more points. Once again, there are

tradeoffs between increased accuracy and the computer time needed.

3.3 Program Variations

While the basic technique remains the same, different versions of the program

are used to carry out the different simulations. The main routine calls one of the

subroutines listed in table 3.4.
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3.4. VIEWING THE OUTPUT

ISubroutine I What it simulates

varybase two-level waveform, vary base voltage

varyfreq two-level waveforms vary frequency

tri tri-Ievel waveforms

Table 3.4: Major subroutines

3.4 Viewing the Output

The computer produces various output files, depending on what simulation was

run. The computer places comments at the head of the data. The output files are

designed to be used with Gnuplot2 Gnuplot expects the data to be in x y format

with comments lines marked with 'I' at the start of the line. The program places

comment lines at the start of each file listing the key parameters for the simulation.

The data file could be used by other programs (like IslandChart, Lotus 123 and

Borland Quattro) that accept standard ASCII format. Gnuplot can be used to

create postscript files that can be printed or further enhanced by other programs.

The graphs in this thesis were further enhanced by IslandDraw.

Gnuplot can also be used to plot out error bars. If a third number is added after

the x y data, then the number is assumed to be the possible error in y. The program

takes advantage of this when saving the current data. The y value is taken to be the

average of the magnitude of the hole and electron components. The error is taken

to be the difference in the magnitudes. This provides a check that the values are

2Gnuplot is a shareware program. It copyrighted by Colin Kelley and Thomas Williams, but
they allow users to freely distribute the source code as long as the person copying the software
agrees to a few basic conditions. As a result this package is available on many types of computer
systems.
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CHAPTER 3. PROGRAM DEVELOPMENT

I File Narne I Contents I
curr.dat QCP(VL)
currf.dat Qcp(j)

jn.dat jn(t)
jp.dat jp(t)

psis.dat 'l/;s( t)
psit.dat 'l/;t( t)
vg.dat ~(t)

vgt 'l/;s vs. ~

Table 3.5: Output files

34



Chapter 4

Computer Generated Waveforms

4.1 Introduction

Simulations have been carried out to check the accuracy of the simulations. The

results are all close to what was predicted. The current waveforms can not be

directly compared to experimental data, but they can be compared to theoretical

data. Unless otherwise specified, the user supplied constants (please see table 3.2

for the descriptions) used in the following simulations are given in table 4.1. The

I Constant I Value I
NA 1016

NIT 1010

SN 10-17

SP 10-17

T 300

VFB 0

XO 10-6

VSB 0

Table 4.1: Constants used in simulations

graph of surface potential and gate voltage for these conditions is shown in figure
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OHAPTER 4. WAVEFORMS

A.4. The quntization effects were only simulated in the quantization section, since

these effects are handled by changing the capture cross sections of the devices.

4.2 Two Level

The gate voltage shown in figure 4.1 was simulated. The graph of the surface

and trap potentials are shown in graph 4.2. The surface potential follows the gate

voltage exactly, while the trap potential takes time to catch up.

The hole and electron currents are also shown. When jn > a electrons are

emitting and when jn < a electrons are being captured. For holes jp > a is hole

capture and jp < a is hole emission. When 'l/;s and 'l/;t are far enough apart the

currents become saturated and stay at that value until 'l/;t can catch up with 'l/;s'

At lower temperatures with the same applied voltage, the surface potential

changes a larger amount (figure 4.4). However, due to the decreased thermal veloc­

ity, fewer carriers, and fewer traps contributing to the current, it takes longer for

the trap potential to catch up. In the example shown, the trap potential does not

reach the surface potential and equilibrium is not reached. Figure 4.5 shows the

hole and electron capture for this simulation. The electron current remains at its

maximum value until the voltage on the gate changes. This is expected since the

trap potential is changing linearly, and is not equal to the surface potential during

the high gate pulse.

If we look at the rising edge waveform close up shown in figure 4.6 and the

associated graph of the potentials in figure 4.7, we can see the distinct stages. First,

the holes are emitted. While holes are still emitting, the traps start to capture

electrons. When the trap potential, reaches the flatband voltage ('l/;t = 0) the
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Figure 4.1: Waveform of square VG used in two-level simulations
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Figure 4.4: 'l/;s and 'l/;t at 77 K for the square wave of figure 4.1.
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electron current reaches its maximum value. It stays at this value until the trap

potential reaches the threshold value ('l/Jt .79). After this point, the electron

current rapidly decreases toward O.

The falling edge waveforms are shown in figure 4.7 and 4.8. First the electrons

0.01

..-.. 0.009 Electron Current
C\I

E
0.008 ,------------------',

I \

~
0.007 I \

I \
0.006 I \

I \
'-"" I \0.005 I \01-' I Hote Current --.\c: 0.004 I
(1.) I \

I \
~ 0.003 I \
~

:::J
I \

0.002 I \

() I \
0.001 \

\,
a

5 5.5 6 6.5 7 7.5 8

x10-7 Time (seconds)
Figure 4.8: Closeup of the falling edge currents of the waveform shown in figure 4.3

emit from the traps, this continues until the trap potential is close to the threshold

value. The hole capture starts to increase when the surface potential reaches the

flatband voltage. It reaches its maximum value when the trap potential reaches the

threshold value and stays there until the trap potential reaches flat band.

One of the assumptions in the formulation of the equations of the two-level

pumping experiments is that the current will remain constant independent of the

high and low voltage levels as long as the high level is above the threshold voltage
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Figure 4.9: Surface and trap potentials for the currents shown in figure 4.8
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and the low level is below the flat band voltage. The high and low voltages in

the waveform of figure 4.1 were changed from 1.5 and -.5 volts to 2.0 and -1.0

volts respectively. The rise and fall times were also changed to 75 nS, so that

.;r;:r:r;/!J..Vi = vr;:;Jf2/ !J.. 112 and the current per cycle should remain the same. The

charge per cycle only changed from 1.415nC/ cm2 to 1.437nC/ cm2
• The waveform

of the trap and surface potentials are shown in figure 4.10. The waveform of the

1.21.0.8.6.4.2
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>
CD 0.6
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ctS 0.4.-......
c:
CD 0.2......
0
0- 0
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Figure 4.10: 'f/;8 and 'l/;t for an applied waveform of D.V = 2.0V and D.V = 3.0V

currents during the rising edge are shown in figure 4.11. Even though the high and

low voltages both changed by .5 V the high an~ low values for the surface potential

hardly changed at all. The trap potential for the waveform with the larger !J..V

actually took less time to reach equilibrium than the other one did. This was due
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Figure 4.11: Currents corresponding to the potentials shown in figure 4.10
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to a greater number of carriers at the surface. As a result the waveforms were very

different even though the total current was almost the same.

4.3 Tri-Level

To simulate tri-level charge pumping a waveform similar to figure 2.6 is applied.

If the step size is too short the transistor will not reach equilibrium by the end of

the step (figure 4.12). The currents will not reach zero before the the gate voltage

decreases again (see figure 4.13).

On the other hand, if the step time is increased equilibrium can be reached as

figures 4.14 and 4.15 show. (Please note the scale change between the figures.)

As figure 4.15 shows the current did reach zero before the gate voltage decreased

the second time. The charge per cycle decreased from 1.42nCIcm2 to 1.24nCIcm2

when the step size was increased. The two-level waveform (the limit when step size

approaches zero) produced a charge per cycle of 1.47nCIcm2
.

4.4 Quantum

When a bulk bias is applied, two main effects occur. First, the curve of surface

potential vs. gate voltage changes and there are fewer free carriers. Also the capture

cross section changes. With computer simulations we can look at the cont,ribution

of these effects. Referring to figure 4.16 we can see that the two curves that use

the curve for surface potential assuming zero bulk bias start at the same point, and
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device.
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those that assume a -2V bulk bias start at a different point. All the curves end up

at the same point. This is because the ~ curves are equivalent for negative gate
./'~/'

voltages independent of the bulk bias. After a short while, the trap pote:ptials for

the 2 cases corresponding to the larger capture cross sections come together and

the other two curves also come together. This proves that once the gate voltages

becomes below the threshold value, the trap potential is determined by the emission

rates, which are determined by the capture cross sections.
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Figure 4.16: Trap potential for the various combinations of two different capture

cross sections and two different bulk biases
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Chapter 5

Computer Simulation of Charge

Pumping Experiments

5.1 Introduction

The overall currents were compared to theoretical as well as to devices fabricated

in the lab. Table 4.1 contains the constants that were used for these simulations,

except where noted. Unlike the previous sections these results can be compared

with actual devices and not just theoretical results.

The devices used in the experiments were fabricated in the microelectronics

laboratory following Lehigh University's standard processing sequence shown in ap­

pendix B. The tests were carried on with the experimental setup shown in appendix

C.

5.2 Two-Level Results

The graph of QcP vs. log of frequency (shown in figure 5.1) for the sawtooth

pulse agrees well with the expected results. When the frequency is varied with a
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square waveform applied the charge per cycle remains constant as figure 5.2 shows.
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0.8

10000
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Figure 5.1: QcP as a function of frequency for sawtooth pulse (a = .5).

The graph of QcP for different base levels in shown in figure 5.3. The Flatband

voltage for this simulation was 0 volts. This is slightly higher than the location

where the current is at half of its maximum value. The threshold voltage (where

7./;" = 27./;1) is at .97 volts. The other location corresponding to half the maximum

current is when VL = -1, since ~V = 2 the estimated threshold voltage from the

graph is /:).VG +VL = 1.
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5.3 Tri-Ievel

By graphing QcP for different step sizes and various step voltages the different

parameters can be extracted. As shown in figure 5.4 the program produced reason­

able results. The curves came close to one another for short step times and also

saturate for longer step times. The curves that did not saturate have emission times

that are longer than the time period of the simulations.

1. 2 '--_--'-_--'-__.........0.....1 ..L-__"--.......r. ---........l

-5-9 -8 -7 -6

Log of step time (s)

1.3

1. 5 .-------..---......--....-...-,,--.........--.-....---....--..-,--....................,

1. 25

1. 45

1.4
0)-U
~ 1.35

U
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O)
C)
~
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.c
()

Figure 5.4: Graph of QcP vs. step size for different step voltages

The emission time for electrons, Te can be estimated from the breakpoint of the

curves. If the voltage step had been on the leading edge, then Th would be the

breakpoint. Equations 2.33 and 2.34 can be used to find E(t) and Un' Since Un was
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one of the inputs to the program, the value used in the program can be checked

'with the value calculated from the graph. A plot of the emission times vs. trap

level is shown in figure 5.5. The intercept of the lines is at the pinning level. This

again compares well with the theoretical value. Tri-level experiments find Dit as
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Figure 5.5: Graph of emission times

a function of trap level by using equation 2.43. As figure 5.6 shows Dit was fairly

constant over the entire range of energies.

5.4 Quantization
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Figure 5.6: Graph of Dit as a function of trap level
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5.5. COMPARISON TO FABRICATED DEVICES

By applying equation 2.50, the quantization levels can be simulated. As shown

in figure 5.7 the current varies depending on VSB . As the step time increases, the

the currents become equal, which means that the same trap level is probed in each

case. The curves do not have the same vall.!es for small times because the bulk bias

changes the threshold voltage, which affects the current for the two-level pulses and

the short step times. The values for the breakpoints are similar to the experimental

data taken by Siergiej [1].
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Figure 5.7: Charge per cycle for differing values of bulk biasing

5.5 Comparison to Fabricated Devices
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Once the correct operation of the program was confirmed by the simulations

shown above, it was compared to experimental data from devices fabricated in the

processing lab. The devices were manufactured following the NMOS processing

sequence shown in appendix B.

Figure 5.8 shows the results of the simulations compared to the experimental

results for different base voltages. The simulated results are close to the experimental

results. The user supplied constants were set to try to approximate the values of

the device used in the experiment.
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Figure 5.8: Simulation results compared to experimental data

Since each processing run is slightly different, the flatband voltage and bulk

doping density had to be determined experimentally. These parameters were ob­

tained from FLUTE (Friendly Lehigh University Transistor Extraction program).

This program was developed by Dr. Thomas Krutsick and Dr. Richard Booth. The

tests were carried out by FIDDLER (Friendly Interactive Data Dowser for Learned
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Extractors by Richard). Please see Appendix C for a more detailed description of

the test setup and these programs.

5.6 Conclusions

All the tests run both those shown here as well as other tests, confirmed the

proper execution of the program. It produces results that are close to what is

expected theoretically. The hole and electron currents were normally off by less

than .1 %from each other.

Actual 0 .97

Simulation -.2 .9

Table 5.1: Threshold and flatband Voltages found by varying the base level com­

pared to theory

I Method I D IT

Actual 1010 10-17

Sawtooth 9 * 109 3 *10-18

Vary Base 1.1 * 1010

Tri-level 1010 1.1 * 10-17

Table 5.2: Summary of experiments for D it and capture cross sections.

The simulations that incorporated the quantization effects produced results that
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were close to the theory. The experiments that Siergiej [1] performed were simulated.

The simulation program was also close to the actual experimental results. There

Substrate Emission In( T
e )

TeJVSB=O

Bias (V) Time of Simulation (S)

0 3 *10-7 Simulation Experiment [1] Theory

1 2 *10-6 1.9 2.2 2.85

2 6 *10-6 3.00 3.67 3.67

Table 5.3: Summary of simulation of quantization effects

are several factors that may explain the slight differences. The oxide thickness was

not measured on the actual device that was tested. Instead control wafers were

measured, and the device wafer was assumed to have similar thickness. Also, the

exact capture cross section of the sample was not known. The simulated capture

cross sections were both set equal to 1*1016
. Fiddler assumes that V(J"n(J"p = 1*1016

.

The simulation assumed a constant Dit(E) which may not have been the case. In

spite of these possible sources of errors, the simulation results were close to the

FLUTE numbers as well as the experimental results. Table 5.4 provides a summary

of the results.

Method

FLUTE -.098 .00335

Experimental 2.63 * 1011 -.853 -.164

Simulation 2.33 * 1011 -1.3 .05

Table 5.4: Comparison of experimental data to simulations with square wave pulses
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Conclusions

6.1 Accomplishments

The simulations produced results in agreement with the theories for the different

cases tried. It also was in agreement with actual experimental data. A theory is

worthless if it does not explain what happens in real experiments.

The current waveforms allow further understanding of the operation of charge

pumping. Unlike the actual experiments, these waveforms can be analyzed. It could

make a good teaching tool to explain how the various components are related to one

another.

These simulations serve as further proof of Siergiej's theory of quantization layers.

For the first time, these effects have been included in a computer simulation program.

The assumption that CTn (2D) can be treated as a constant was confirmed.

6.2 Suggestions for Future Work

The computer simulations required a long time to run. The algorithm could

63



CHAPTER 6. CONCLUSIONS

be studied and possibly improved to increase the speed. Changing the code to

produce acceptable results was done by trial and error instead of theoretical studies

of numerical techniques.

Another simple study would be to check operations of p-channel semiconductors.

This would require very few changes to the program. These simulations were not

carried out because of the extra time required. The simulations could be easily com­

pared to new devices fabricated in the lab. If new devices are fabricated they could

be designed to increase the quantization effects by increasing the doping densities.

The simulations could be improved by adding the effects of near-oxide inter­

face traps. This would increase the number of conditions where this simulator will

produce correct results. Since the geometric component was not included, the sim­

ulations are only valid for transistors of high width to length ratios. The recent

work of Van den bosch, et al. [29] may make it fairly easy to include these effects.

It would also be interesting to view the current waveforms associated with both of

these effects. Instead of just the hole and electron currents, the current into the

near-interface oxide traps and the geometric current would also plotted.

The program assumes a constant density of traps throughout the energy gap.

It has been shown that this is probably not a good assumption [6, 30]. Also, the

capture cross sections are assumed to be independent of energy. The approach could

be changed to include these two effects.

As it is currently written a uniform doping density is assumed. Actual devices

don not have a uniform doping density. The effect of a non-uniform doping density

could be included. Another effect that could be considered would be the incomplete

ionization of the dopants. This would be harder to incorporate since the amount

that is ionized depends on the surface potential, so it would have to be recalculated

at each point in time. This would allow accurate results to be obtained even at low

temperatures and high doping densities.
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Currently the user must find Te or Th by eye balling the breakpoint. The computer

could be set to automatically find this value. This would make the results more

uniform and less subject to human interpretation.

Finally, the program could be made easier to use. In order to change the param­

eters, the user would have to change the actual program and recompile it. If the user

accidently changes something they are not supposed to the entire program could be

destroyed. Either an interactive interface or a separate file for the constants could

be used.

In the area of measurements, the Sun workstations could be set up to control

the equipment. This would allow the data between experiments and simulations to

be compared more easily. One of the lab's workstations has an IEEE card in it to

connect to the IEEE Bus. The auto prober could be employed to step across the

wafer to measure different devices and compare them to one another.

Dr. Richard Siergiej's low temperature setup[31] could be used to study the low

temperature effects. This would allow operation at temperatures down to liquid

Helium. The low temperature would increase the quantization effects.
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Appendix A

Properties of Si

A.I Introduction

In order to understand how charge pumping varies under different operating

conditions and doping levels, it is necessary to look into the physics of the semi­

conductor used in the experiments. The following sections develop the equations

for the band gap, intrinsic carrier concentration, and the surface potential vs. gate

voltage. These effects are included in the program to enable correct results to be

obtained over a wide range of conditions.

A.2 Band Gap

All semiconductors have bands where electrons are allowed to exist and a region

between the valance and conduction bands where they can not. The valance band,

Eu , ends at the lower edge of the energy gap. The conduction band, Ec, is the upper

edge of the band gap. The energy gap, Eg , is the difference between the two levels.

It can be expressed as[24]

4.73 * 1O-4T 2

Ego = 1.170 - T +636
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At room temperature, Ego ~ 1.12 (eV).

If high enough dopants are present, the band gap will become narrower because

of the stored electrostatic energy of the majority-minority carrier pairs. The band

gap reduction is given by[24]

b.E
g

= ~q2NB
167rEs EskT

where NB is the bulk doping density. The final value for the bandgap will be

(A.2)

(A.3)

A.3 Carrier Concentration

The intrinsic carrier concentration, ni, is a strong function of temperature. [32]

(A.4)

where Nc and N tJ , the effective densities of states at the edges of the conduction

and valence bands, respectively, are given by

(A.5)

(A.6)

where m~ and m; are the effective masses of electrons and holes. The electron and

hole densities in the bulk are related to the intrinsic level as follows:

(A.7)
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Figure A.I: Band Gap as a function of temperature for different doping levels
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Temperature (T)
Figure A.2: ni as a function of temperature
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A.4. SURFACE POTENTIAL VS. GATE VOLTAGE

If a bulk bias is applied the concentration of free carriers will decrease.

(A.8)

In this study, it is assumed that there is uniform doping, the net doping level is much

greater than the intrinsic level and there is complete dopant ionization (NA ~ NA

and Nfy ~ Nn ).l For n-channel this leads to

po

Po

For p-channel the corresponding equations are

Nn

(A. g)

(A.I0)

(A.H)

Po (A.12)

A.4 Surface Potential vs. Gate Voltage

The surface potential, 'l/Js, varies depending on the gate voltage (~) applied to

the device where

The bulk potential is defined as

E-B - E·s./. -' ,
'fIs -

q
(A.13)

(A.14)

'l/Js is not however a direct function of the applied voltage, so some approximations

must be used.
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Figure A.3: Energy Bands of a n-channel semiconductor

Mode Name Surface Potential Gate Voltage

Accumulation -Eg /2q + 'l/;F < 'l/;" < 0 VG < VFB
Flatband 'l/;s = 0 VG = VFB
Depletion 0< 'l/;" < 'l/;F VFB < VG < VTweak

Weak Inversion (Subthreshold) 'l/;F < 'l/;" < 2'l/;F VTweak < VG < VT

Strong Inversion 2'l/;F < 'l/;s < Eg /2q + 'l/;F VG> VT

Table A.I: Regions of operations of a n-channel semiconductor
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Figure A.4: Surface potential as a function of gate voltage at 300 K (VSB = 0)
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The gate charge conservation equation is[21]

We assume that the interface charge (Qit('ljJt)) can be ignored, since,

Qs('ljJs) ~ Qit
Cox Cox

The oxide capacitor, Cox is found from X o, the oxide thickness by

C
_ toko

ox -
Xo

The thermal voltage vt is given as

vt = kT
q

The semiconductor charge, Qs, is given by

where

J(U s ) = Ve-u • +Us -1 + e-(2uj+VSB)(eU , - useVSB - 1)

The source to bulk bias is VSB ' and, assuming n-channel,

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

Ln
kstokT

(A.21 )= q2NA

q'lj;s
(A.22)US -

kT

Uf - EiB - E f = kT In(NA ) (A.23)
q q ni

The total interface charge Cit is approximated by assuming it is constant, indepen­

dent of 'ljJt, for the purpose of determining 'ljJs vs. ~. It is given by

(A.24)

1Incomplete Ionization or "freezeout" occurs mainly at low temperatures and high doping den­
sities as the Fermi level comes close to the donor or acceptor level. [33, 34]
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where Dit is the number of interface states per eV and cm2. and '1f;s varies between

'1f;smax and '1f;smin (to avoid degeneracy), where

Eg
,psmax = 2 + ,pF

Eg
'1f;smin = -2 +,pF

(A.2S)

(A.26)
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Figure A.S: Surface potential as a function of gate voltage at different temperatures
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Appendix B

Fabrication Sequence

The MOS devices used in this study were fabricated by Dr. R. Siergiej following

an abbreviated NMOS fabrication sequence[35, 36]. These devices were designed to

study radiation effects.

B.l The NMOS Processing Sequence

Positive fixed oxide charge induced by radiation tends to invert lightly doped p­

substrates. Therefore, heavily doped p-substrate material (0.1-0.2 n-cm) was used.

This process sequence is summarized below.

1. Starting material: p-< 100 > 0.1-0.2 n-cm

o Number device wafers

o Number control wafers

2. Field Oxide, Active Device Regions: tox =5kA

o RCA clean

o High temperature oxidation. 5kA oxide: 1100°C, 50min
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B.l. THE NMOS PROCESSING SEQUENCE

o Phtolithography: p+ mask

o Buffered HF etch: 5kA oxide

o Strip photoresist: PRS-2000

3. Gate Electrode: ONO prepared in Triple Wall Oxide (TWO) system[37]

o RCA clean

o Flourinate: (optional) 1% HF, 5min

o High temperature TWO oxidation: POA in Argon ambient, 900°C, 15min

I) LPCVD Nitride: 735°C, 250mTorr, 20sccm SiH2Cl2 , 100sccm N H3

o High temperature reoxidation of Nitride: 1000°C, steam, 50min

o LPCVD Polysilicon: 5kA, 625°C, 30min, 800mTorr, SiH4 20% and N2

80% mix, 180sccm

o Photolithography: polysilicon mask

o Plasma Etch: 5kA polysilicon; 250 Watts, 265mTorr, 100sccm SF6

I) Etch: Oxide, Buffered HF; Nitride, Hot phosphoric acid

o Strip photoresist: PRS-2000

4. n+ Diffusion

o RCA clean

o High temperature diffusion: POCl3 , 900°C, 20min

o Diffusion drive-in: Nitrogen anneal; 900°C, 30min

o Strip P20 S glass and pad oxide: Buffered HF etch

5. Contact Windows

o RCA clean

• High temperature wet oxidation: 1kA, 900°C, 18min
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o Photolithography: Contact window mask

o Etch oxide: Buffered HF etch

o Strip photoresist: PRS-2000

6. Metallization

o Etch oxide: 1% HF solution

o Metallization: 7kA Aluminum, sputtered

o Photolithography: Metallization mask

o Etch: 7kA Aluminum, PAN etch, 45°C, 2min

o Strip photoresist: PRS-2000

7. Backside Metallization

o Spin photoresist on the front side

o Plasma etch: Backside, 300 Watts, 300mTorr, 100sccm BFs

o Etch oxide: Buffered HF etch solution (backside)

o Metallization: 7kA Aluminum, evaporated

o Strip photoresist: PRS-2000

8. Post Metal Anneal

o Organic clean: 10min Acetone, 10min Methanol

o Nitrogen/Hydrogen Anneal: 350°C, 30min
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Appendix C

Experimental Setup

C.l Introduction

The experiments carried out in this lab are controlled by an HP9000 computer.

The control program, FIDDLER, was written by Dr. Richard Booth and modified

by many other students. This program allows data to be stored, manipulated and

graphed on a printer or plotter.

C.2 Charge Pumping

The HP8115A pulse generator applies the pulse to the gate of the device under test.

The source and drain are tied together and this is the current that is measured. The

measured current is the electron current, while the current through the substrate is

the hole current. As explained in the rest of the report the two currents differ only

by sign.

A Keithley 616 Electrometer measures the current. The output is converted to

digital and stored in the HP computer. Since the current is small care must be

taken to remove any sources of noise and too keep the wires as short as possible. To

further improve the measurements the surface of the devices is kept dry by nitrogen.
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HP9000
Computer

IEEE Bus

HP8115A
Pulse Generator DEUUl113I:Ulla'iClfu113 HP59313A
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: AID Converter
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B
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Keithley 616
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HP4145 III m III m II lUll Ell 11I11I III dI

Figure C.1: Experimental setup
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0.3. DETERMINATION OF FLATBAND VOLTAGE

The Bulk bias is supplied by the HP4145.

e.3 Determination of Flatband Voltage

The program FLUTE[38, 39] extracts the threshold voltage and the bulk doping

density. It also determines the the flatband voltage which is what we are interested

in. The user supplies the width, length, tax, e(this is normally assumed equal to

1) and a guess for NB . The device is measured using the HP-4145 and the HP

computers. It uses a linear region parameter extraction method to compute the

parameters of the device.

Figure C.2: The MOS transistor from the TP-300 mask set used in the experiments
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Appendix D

Derivation of Equations

D.I Capture and Emission Rates

The rate of capture for electrons by interface traps is the product of the capture

coefficient (ClnVth), the number of free electrons at the surface (ns), and the fraction

of empty traps (Jp(E)). Where,

jp(E) = 1 - j(E)

and j(E) is the fraction of filled traps. This results in (for a single trap)

where

(D.l)

(D.2)

(D.3)

The emission rate is given by, the emission coefficient (e~) times the number of filled

traps.

(D.4)

The emission rate can be found by considering the case of equilibrium. Fermi­

Dirac statistics describe the the occupation probability, j, of occupancy in a trap

at energy level E under equilibrium, with EF the Fermi level as

(D.5)
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D.2. ELECTRON AND HOLE CURRENTS

At equilibrium, the capture rate will equal the emission rate (Cno

emission rate can be derived as follows:

eno)' The

Cno eno (D.6)

(JnVthfp( E)ns e~f(E) (D.7)

*
fp(E)

(D.8)en (JnVthns f(E)

* (J V n e(E-EF)/kT (D.9)en n th s

smce,

we have,

e* - (J v n e(E-EF+EiB-EiS/kT
n - n th 0

By substituting equation D.ll into equation D.4, en can be written as:

(D.lO)

(D.ll)

(D.12)

As long as the device is close to equilibrium, the equilibrium rates can be used

(Cn ~ Cno and en ~ eno)' The equations fGr the hole emission and capture can be

found in a similar manner.

D.2 Electron and Hole Currents

(D.13)

(D.14)

The electron and holes flowing into and out of the traps lead to a current flow.

The electrons lead to the electron current (jn) and the holes cause the hole current
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(jp). To find the equations for these currents, we first find the generation rate (G)

for steady state. In general

df
(D.15)dt = (en - en) - (Cp - ep )

and

G= df (D.16)
dt

If we look at steady state,

df = 0 (D.17)
dt

which leads to

en - en = Cp - ep (D.18)

By substituting equations D.2, D.13, D.12 and D.14 into the above, one has

Solving for fss,

(D.19)

(D.20)

(D.21)

By placing the results of equation D.20 into equation D.16, the expression for G

becomes,
2G _ ni - np

- n +nl P+PI--+--
O'pVth O'nVth

The region of interest is the depletion mode, since we are interested in the times

when the gate voltage is above the :flatband voltage, but below the threshold voltage.

In this region there are few free carriers, so n ~ p ~ O. This allows G to be simplified

to

Recalling that the pinning level ETP can be expressed as

1 (O'n)ETP = E is - -kTln -
2 O'p
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D.2. ELECTRON AND HOLE CURRENTS

G can be expressed as

G
e(ET-ETP)/kT + e-(ET-ETP)/kT

kTVO'nO'pVthni
G =

2cosh(ET - ETP )

(D.24)

(D.25)

Equation D.25 applies to a single trap at energy level ET , since there are interface

traps at all the energy levels between Ev and Ee, (D.25) must be integrated over

the entire energy gap to find the current density. If we assume the capture cross

sections are constant over the energy gap, we have

J = q {E
e

G(ET)dET
lEy

kT lEe dET
J = -2qVO'nO'pVthni h(E E)

Ey cos T - TP

(D.26)

(D.27)

Since h(E 1 E ) ~ 1 and h(E 1 E ) ~ 1, we can let Ev ~ -00 and Ee ~ 00cos y- TP cos e- TP

in equation D.27.

kT JOO dET
J = -2qy!O'nO'pVthni h(E E)

-00 cos T - TP

This equation can be evaluated analytically to give,

(D.28)

(D.29)

So, the effective current of all the interface traps is ~ times the amount due to

the trap at the pinning level. We assume that this approximation holds for the

non-steady state conditions encountered during the simulations.
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Appendix E

Time of Simulations

The simulations were carried out on various workstations and the results were com­

pared. The Unix time command was used to record the results. The times listed

below are the user times. The user times are the time the machine spent executing

that particular program. Since more than one program can be running at a time, the

time a user would have to wait is often much longer. In theory the user time should

be independent of the number of other users; however, this is not the case since

programs may need to be swapped into and out of memory and the hard disk if the

load is too high. This explains why csl.cc was slower than cs2.cc even though csl.cc

is the faster machine. The IBM machines run under the AIX operating system. The

Sun machines use SunOs. Both are versions of the Unix operating system.

I Machine Name I Model I Time (seconds) I
Calvin.sfc Sun Sparc 1 10.2

Hobbes.sfc Sun Sparc SLC 10.5

Spiff.sfc Sun Sparc IPC 8.9

Cs1.cc IBM RS 6000 950 1.52

Cs2.cc IBM RS 6000 580 .86

Table E.1: Comparison of User times for simple two-level simulation on varIOUS

machines

The time required for the different simulation experiments was also calculated.

The time required for the full tri-level simulations were several days on the Sun

Workstations. For this reason, it is suggested that the programs be run using the
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Unix nice command which allows a user to lower the priority of their process so

other users will not be slowed down as much. Even running with a reduced priority

other users will notice the s10w down of the machine so the longer simulations should

be run at night or on weekends.

Simulation Waveforms saved? Time (minutes)

Bi-Ievel yes 1:01

Tri-Ievel yes 5:17

Tri-Ievel yes 25:51

Table E.2: Comparison of User times for different simulations on ratool.
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Appendix F

Source', Code

The C source code for the program used in the simulations is shown below. The

C language is case sensitive, and it does not allow Greek symbols. Traditionally,

constants are specified as all caps and variables and functions are in all lower case.

This practice was followed in this program. The pump.h file is the header file. It

contains the constants used in the simulation. The user can edit this file to change

the characteristics of the device in the simulations. If the header file or the program

is changed, the program must be recompiled. To compile the program, the user

types cc -0 pump. out -0 pump. c at the unix prompt. The program is then run

by typing pump. out.

F.1 pump.h

,. pump.h for use gith pump. c.;
'.Define the constants used in the program.;
.define HA 5e16
.define DIT lel0
'.30 Capture Cross Sections.;
.define SP3D le-17
.define SH3D le-17
;.Flatband voltage.;
.define VFB 0
.define XO 1.95e-6
;.le-6.;
;.Temperature.;
.define T 300.0
'.Humber of times to run through gaveform.;
Uefine COUHT 1
;.Humber of points in PSIs vs. Vg curve.;
.define POIHTS 1000
Uefine VSB 0.0
.define ALPHA .5
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F.l. PUMP.H

,. Uncomment the follo~ing line to have the program print out the
~aveforms of the currents, potentials and voltages .•'
'.#define WAVEFORM.'

'.Uncomment out the follo~ing line to include quantization effects.'
Uefine QUANTUM

'.Uncomment the follo~ing line to include debugging information.'
#define DEBUG
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F.2 pump.c

APPENDIX F. SOURCE CODE

!. This program simulates Tri-level charge pumping
Written by Bill Wagner.!
~include <stdio.h>
~include <stdlib.h>
~include <math.h>

~include "pump.h"

!.Thermal velocity.!
~define K 1.38e-23
~define Q 1.6e-19
~define CIT Q.DIT
~define VT (K.T!Q)
~define KS 11.7
~define KO 3.9
~define EO 8.854e-14
~define LD sqrt«VT.KS.EO)!(Q.HA»
~define COX (EO.KO!XO)
~define TSTART 1e-9
~define ERROR 1e-8
~define KO 9.11e-31
~define KH (1.08.KO)
~define KP (.81.KO)
~define KL (.98.KO)
~define PI 3.14159
~define H 6.625e-34

!.T1, T2 and T3 are the length of the step.!
~define T1 1.1e-5
~define T2 .5e-6

!.The follo~ing are the transition times for the various steps.!
~define TR1 10e-9
~define TR2 10e-9
~define TR3 10e-9
!.These are the voltages of the various steps.!
~define V1 1. 5
~define V2 -.5
~define VL -0.5
~define VH .5
~define DV 2.0
~define VS .1
~define HBAR «H)!(2.0.PI»

double VTH,HI,EG,UF,PSISKIH,PSISKAX,HO,SP,SHj

!.Calculate Constants.!
void calc_constants ()
{

double deg,nc,nv,sigma,alpha,eoj

VTH=sqrt(8.K.T!(PI.KH».100.0j
EG=1.170-(4.73e-4. T.T)!(T+636)j
deg=(3.Q.Q!(16.0.PI.KS.EO».sqrt«Q.HA)!(KS.EO.K.T»j
EG-=degj
nc=2.0.po~«2.0.PI.KH.K.T!(H.H»,1.5)!1e6j

nV=2.0.po~«2.0.PI.KP.K.T!(H.H»,1.5)!1e6j

HI=sqrt(nc.nv).exp(-EG.Q!(2.K.T»j
UF=log(llA!HI) j
PSISKIH=-EG!2.0+UF.VTj
PSISKAX=EG!2.0+UF.VTj
PO=HAj
HO=(HI.HI.exp(-1.0.VSB).exp(-1.0.VSB»!POj
SP=SP3Dj
SH=SH3D;

94

.~.



F.2. PUMP.C

/* Use Quantun effects only if quantum defined */
alpha=po~(HBAR*HBAR*Q*HA/(KL*KS*ED),(1.0/3.0))*po~(9.0*PI*Q/a.O,2.0/3.0)j

eo=alpha*po~(2*K*T*UF/Q+VSB,(1.0/3.0))/(K*T)j

sigma=3.55*exp(Q*eo/(K*T))/sqrt(Q*eo/(K*T))j
ltifdef QUAHTUM

SH *=sigmaj
ltendif
hfdef DEBUG

printf ("HI='l.g EG='l.g VTH='l.g UF='l.g\n" ,HI,EG, VTH ,UF) j
printf ("sigma ratio='l.g alpha='l.g eo='l.g\n",sigma,alpha,eo)j
if (SH!=SH3D) printf ("Quantum effects included\n") j

#endif
}

/*Calculate the hole current given PSIt and PSIs*/
double calc_jp (psit,psis)
double psit,psis;
{

double cp, ep j

cp=SP*VTH*PD*exp(-Q*psis/(K*T))j
ep=SP*VTH*PD*exp(-Q*psit/(K*T))j
return (VT*CIT*(cp-ep));

}

/*Calculate the electron current given PSIt and PSIs*/
double calc_jn (psit,psis)
double psit,psisj
{

double cn,enj

cn=SH*VTH*HD*exp(Q*psis/(K*T))j
en=SH*VTH*HO*exp(Q*psit/(K*T))j
return (VT*CIT*(en-cn));

}

/*Calculate the change in PSIt from the previous point*/
double calc_dpsit (psit,psis)
double psit,psis;
{

double cp,cn,ep,enj

cp=SP*VTH*PD*exp(-Q*psis/(K*T));
cn=SH*VTH*HD*exp(Q*psis/(K*T))j
ep=SP*VTH*PD*exp(-Q*psit/(K*T))j
en=SH*VTH*HD*exp(Q*psit/(K*T))j
return (VT*(cn-en+ep-cp))j

}

/* The follo~ing 4 subroutines are used to generate the psis-vg table*/
double f(us)
double USj
{

double t1, t2;

t1=exp(-us)+us-1.0j
t2=exp(-2.0*UF-VSB)*(exp(us)-us*exp(VSB)-1.0)j
return(sqrt(t1+t2))j

}

double qs(psist)
double psistj
{

}

double calc_vg(psist)
double psistj
{

return (VFB+psist-qs(psist)/CDX-CIT/CDX)j
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}

void calc_vgtpsis (vgtest,psist)
double vgtest[],psist[];
{

int ij

for (i=Oji<POIHTSji++) {
psist[i]=PSISKIH+(PSISMAX-PSISKIH)*(1.0*i/POIHTS);
vgtest[i]=calc_vg(psist[i])j

}
}

/* The follo~ing subroutine returns psis for the given gate voltage*/
double calc_psis (vg,vgtest,psist)
double vg,vgtest[] ,psist[];
{

int ij
double t;

if (vg<vgtest[O]) return (psist[O]);
for (i=1ji<POIHTS;i++) {

if (vg<vgtest[i]) {
t=vgtest [i]-vgtest [i-1] ;
return (psist[i-1]+(psist[i]-psist[i-1])*(vg-vgtest[i-1])/t);

}
}
return (psist[POIHTS-1]);

}

/* Return the gate voltage for a given time t. */
double return_vg (t,t1,t2,t3,tr1,tr2,tr3,v1,v2,v3)
double t,t1,t2,t3,tr1,tr2,tr3,v1,v2,v3j
{

double vg;

/* The gate voltage is at V2 at time 0
It changes to V1 over tr1
It stays at V1 for t1
It changes to V3 over tr2
it stays at V3 for t3
It changes to v2 over tr3
It stays at v2 for the rest of the cycle */

/* First make sure time is reflected back into the first time period
since vg(t+period)=vg(t) */

~hile (t>=t1+t2+t3+tr1+tr2+tr3) t-=(t1+t2+t3+tr1+tr2+tr3);
vg=v2j
if (t<=tr1+t1) vg=v1;
if «t>=tr1+t1+tr2) tt (t<=tr1+t1+tr2+t3» vg=v3;
if (t<tr1) vg=t/tr1*(v1-v2)+v2j
if «t>tr1+t1) tt (t<tr1+t1+tr2» vg=(t-tr1-t1)/tr2*(v3-v1)+v1;
if «t>tr1+t1+tr2+t3) tt (t<tr1+t1+tr2+t3+tr3»

vg=(t-tr1-t1-tr2-t3)/tr3*(v2-v3)+v3j
return (vg);

}

/* The follo~ing subroutine opens up an output file, checks that the file
is opened properly and ~rites the user supplied constants to the file*/
FILE *f~open (s)
char *s;
{

FILE *out;

out=fopen (s,"~");

if (out==HULL) {
printf ("Can't open file Y.s\n",s);
exit (-1);

}
lIifdef DEBUG
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F.2. PUMP.C

printf ("Opened file %s\n" ,s);
#endif

fprintf (out,"# %s\n",s);
fprintf (out, "#HA=Y.g COUHT=%d temp=%g points=%d\n" ,HA,COUHT, T,POIHTS);
fprintf (out, "#VSB=%g DIT=%g XO=%g\n", VSB,DIT ,XO);
fprintf (out ,"#SP3D=%g SH3D=Y.g\n",SP3D,SH3D);

#ifdef QUAHTUM
fprintf (out, "#QUAHTUM EFFECTS IHCLUDED\n");

#endif
return(out) ;

}

/* The follo~ing subroutine calculates the total charge for a complete
~aveform */
double calc_i (t1,t2,t3,tr1,tr2,tr3,v1,v2,v3,vgtest,psist,error)
double t1,t2,t3,tr1,tr2,tr3,v1,v2,v3,vgtest[],psist[] ,*error;
{

double t,tstep,tstepmax,icp1,icp2,jp1,jp2,jp3,jn1,jn2,jn3,jp,jn;
double ovg,opsis,opsit,vg,psis,psit,vga,psisa,psita,dpsit,check,e;
int i,test;
FILE *out1,*out2,*out3,*out4,*out5;

#ifdef WAVEFORM
out1=f~open ("vg.dat");
out2=f~open ("psis. dat") ;
out3=f~open ("psit.dat");
out4=f~open (" jn.dat");
out5=f~open ("jp.dat");

#endif

tstep=tr1/25.0;
#ifdef WAVEFORM

tstep=tr1/250.0;
#endif

if (t1==O) tstep/=2000.0;
/*Set max. step size*/

tstepmax=4.0*tstep;
t=tstep;
ovg=return_vg (O.O,t1,t2,t3,tr1,tr2,tr3,v1,v2,v3);
opsis=calc_psis (ovg,vgtest,psist);
opsit=opsis;

#ifdef WAVEFORM
fprintf (out1,"%g %g\n",O.O,ovg);
fprintf (out2, "%g %g\n" ,0.°,apsis);
fprintf (out3,"%g %g\n",O.O,opsit);

#endif

/*Start calculations*/
icp1=icp2=0.0;
for (i=1;(t<COUHT*(tr1+t1+tr2+t3+tr3+t2))tt(i>0);i++) {

test=2j
do {

vg=return_vg (t,t1,t2,t3,tr1,tr2,tr3,v1,v2,v3);
psis=calc_psis (vg,vgtest,psist);

vga=return_vg (t-tstep/2.,t1,t2,t3,tr1,tr2,tr3,v1,v2,v3);
psisa=calc_psis (vga,vgtest,psist);
psita=opsit+calc_dpsit (opsit,opsis)*tstep/2.O;
check=psita+calc_dpsit (psita,psisa)*tstep/2.Oj
psit=opsit+calc_dpsit(opsit,opsis)*tstep;
if (test==O) test=1;
if (fabs(psit-check»«PSISKAX-PSISKIH)/1000.0)) {

test=O j
tstep/=10. j
t-=9.*tstep;

}
} ~hile (test==O)j
ovg=vg;
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jpl=calc_jp(opsit,opsis)j
jnl=calc_jn(opsit,opsis)j
jp2=calc_jp(psita,psisa)j
jn2=calc_jn(psita,psisa)j
jp3=calc_jp(psit,psis)j
jn3=calc_jn(psit,psis)j
jp=(jpl+4.0*jp2+jp3)/6.0j
jn=(jnl+4.0*jn2+jn3)/6.0j
icp1+=jp*tstepj
icp2+=jn*tstepj
opsis=psiSj
opsit=psit j
if (test==2) tstep*=5.0j
if (tstep>tstepmax) tstep=tstepmaxj

#ifdef WAVEFORM
fprintf (outl, "%g %g\n", t, vg) j
fprintf (out2, "%g %g\n", t ,psis) j
fprintf (out3, "%g %g\n", t ,psit) j
fprintf (out4,"%g %g\n",t,jn3)j
fprintf (out5,"%g %g\n",t,jp3)j

#endif

t+=tstepj
}

#ifdef WAVEFORM
fclose (out1) j
fclose (out2);
fclose (out3) j
fclose (out4) j
fclose (out5) j

#endif

e=fabs(icpl+icp2)/2.0j
*error=e*le9/COUHTj

/* if (20*e>fabs(icpl)I 120*e>fabs(icp2)) {
return (-1.0) j

}
else */return «icpl-icp2)*.5e9/COUHT)j

}

void varyfreq (vgtest, psist)
double vgtest [], psist [] j
{

FILE *outl j
double freq,tl,t2,el,tcurlj

outl=fllopen("currf.dat")j
fprintf (outl, "Ivl=%g v2=%g\n", Vl, V2) j
fprintf (outl, "ULPHA=%g TR1=%g TR2=%g\n" ,ALPHA, TR1, TR2) j
for (freq=1.0e6jfreq<2.0e6jfreq*=100.0) {

tl=ALPHA/freqj
t2=(1.0-ALPHA)/freqj

/* Use the follolling line for sal/tooth llaves*/
/* tcurl=calc_i (0.O,O.O,O.O,tl,t2,O.O,Vl,V2,V2,vgtest,psist,lel)j*/

tl=.5/freq-(TR1+TR1)/2.0j
/* Use the follolling line for square llaves*/

tcurl=calc_i (tl,tl,O.O,TR1,TR2,O.O,Vl,V2,V2,vgtest,psist,lel)j
if (tcurl==-1.0) {

fprintf (outl,"I%g problem\n",freq)j
fflush (out1) j

}
else {

fprintf (outl,"%g %g %g\n",freq,tcurl,e1)j
fflush (out1);

}
}
fclose (out1) j

}
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void varyBase (vgtest,psist)
double vgtest[], psist[] j
{

FILE *out1j
double e1, tcur1, v3j

out1=fl1open("currf.dat")j
fprintf (out1, "#delta v=Yog\n", T,DV) j
fprintf (out1,"#T=Yog TR1=Yog TR2=Yog\n",T,TR1,TR2)j
for (v3=VLjv3<=VHjv3+=.05) {

tcur1=calc_i (T1,T1,O.O,TR1,TR2,O.O,v3+DV,v3,v3,vgtest,psist,te1)j
if (tcur1==-1.0) {

fprintf (out1, "#Yog problem\n", v3) j
fflush (out!) j

}
else {

fprintf (out1,"Yog Yeg Yeg\n",v3,tcur1,e1) j
fflush (out!);

}
}
fclose (out!) j

}

void tri (vgtest,psist)
double vgtest[], psist[] j
{

FILE *out1 j
double e1, e2, cur, t1,t2, ts, tcur1, tcur2, v3j

out1=fl1open("testall.dat") j
fprintf (out1,"#TR1=Yog TR2=Yog TR3=Yog\n",TR1,TR2,TR3)j
fprintf (out1, "ltV1=Yeg V2=Yeg\n", V1, V2) j

for (v3=1.3jv3<=1.4jv3+=10.0) {
fprintf (out1, "\nltv3=Y.g\n" ,v3) j
tcur1=calc_i (T1,T1-TSTART,TSTART,TR1,TR2,TR3,V1,V2,v3,vgtest,psist,te1)j
if (tcur1==-1.0) {

fprintf (out1, "ltY.g problem\n", TSTART);
fflush (out!) j

}
else {

fprintf (out1, "Yeg Yog Yeg\n", TSTART , tcur1, e1) j
fflush (out!) j
t1=TSTARTj
for (t2=TSTART*100.0jt2<T1jt2*=100.0) {

tcur2=calc_i (T1,T1-t2,t2,TR1,TR2,TR3,V1,V2,v3,vgtest,psist,te2)j
if (tcur2==-1.0) {

fprintf (out1, "ltYog problem\n", t2);
fflush (out1) j

}
else {

if (fabs(tcur2-tcur1)<1e-6) {
fprintf (out!, "Yeg Yeg Yeg\n", t2, tcur2, e2) j
fflush (out1) j
t1=t2j

}
else {

for (ts=t1*1.77827941jts«t2*.90);ts*=1.77827941) {
cur=calc_i (T1,T1-ts,ts,TR1,TR2,TR3,V1,V2,v3,vgtest,psist,te1)j
if (cur==-1.0) {

fprintf (out1,"ltYog problem\n",ts) j
fflush (out1)j

}
else {

fprintf (out1,"Yog Yog Yog\n",ts,cur,e!)j
fflush (out1);

}
}
tcur1=tcur2j
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tl=t2j
fprintf (outl,"Y.g Y.g Y.g\n",t2,tcur2,e2)j
fflush (outl)j

}
}

}
tl=t2j
for (ts=tl*1.77827941jts<Tljts*=1.77827941) {

cur=calc_i (Tl,Tl-ts,ts,TR1,TR2,TR3,Vl,V2,v3,vgtest,psist,tel)j
if (cur==-1.0) {

fprintf (outl, "#Y.g problem\n", ts) j
fflush (outl)j

}
else {

fprintf (outl,"%g %g Y.g\n",ts,cur,e1)j
fflush (outl) j

}
}

}
}

}

1**** Main Program Starts Here*****1
main 0
{

double vgtest[POIHTS],psist[POIHTS]j
double tcur,ej
FILE *outl j
int ij

calc_constants 0 j
I*Calc the curve of VG vs. PSIt*1

calc_vgtpsis(vgtest,psist)j
1* Uncomment out the folloging lines to save PSIs vs Vg Oata to output file*1

outl=fgopen ("vgt .dat", "g") j
for (i=Oji<POIHTSji++) {

fprintf (outl,"Y.g %g\n",vgtest[i] ,psist[i])j
}
fclose (outl) j

I*Uncomment out the line belog corresponding to the gaveform to use*1
1* varyfreq (vgtest,psist)j*1
1* varybase (vgtest,psist)j*1
1* tri (vgtest,psist)j*1
1* tcur=calc_i (2e-7,2e-7,.5e-5,TR1,TR2,TR3,Vl,V2,.8,vgtest,psist,te)j

printf ("%g Y.g\n",tcur,e)j*1
}
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