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Abstract

The Silicon Carbide (SiC) Static Induction Transistor (SIT) is based on the original

SIT concept first proposed by 1. Nishizawa in 1950. The SIT structure provides high

breakdown voltage, high current density and high frequency operation while remaining

thermally stable. SiC has a high breakdown field (lOX), increased thermal conductivity

(4X), increased saturation drift velocity (2X), and wide bandgap compared with

comparable Silicon structures. These characteristics have made SiC SIT devices ideal

for high power and high frequency applications.

Although the SIT offers the above-mentioned advantages, a reliability issue arises if

charges are present in the overlying oxide in the 'shoulder' region between the source

'post' and the metallic gate electrode. The presence of charges in this region, if not

controlled, will modulate the barrier height of the saddle point in the channel region

which controls the current for a specific drain voltage, thereby reducing the holding

voltage for a fixed OFF current specification. In this thesis, the influence of the oxide

charge in the 'shoulder' oxide region on the operation of a 4H-SiC recessed-gate SIT

(RGSIT) has been studied using Silvaco's Atlas software program. The effect of

interface charge on the 'shoulder' region is seen to change the effective gate bias of the

device. Therefore, RGSIT with positive/negative interface charge is expected to have its

I-V characteristics shift to the left/right due to barrier height lowering/increase.

Additionally, the subthreshold operation of the SIT has been analyzed assuming

thennionic emission of carriers flowing over a potential barrier located in the 'intrinsic'



regIOn. The barrier heights, effective channel widths, and drain currents are calculated

usmg a superposition analysis of the Poisson and Laplace components of the

electrostatic potential in the 'intrinsic' region of the SIT. For a given gate-to-source bias,

the analysis shows a barrier height decrease for an increasing drain-to-source bias.

Additionally, the effective channel width increase due to a drain-to-source bias increase

is shown to be minimal. Current due to thermionic emission is empirically fitted to

experimental data of fabricated SiC RGSIT devices using the theoretical results of the

barrier height and effective channel width.
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Chapter 1

Introduction

1.1 Review of SiC

SiC is the most prominent of a family of materials that exhibit a one-dimensional

polymorphism. The SiC polytypes are differentiated by the stacking sequence of the

tetrahedrally bonded Si-C bilayers. While the individual bond lengths and local atomic

environments are identical, the overall symmetry of the crystal is determined by the

stacking periodicity. Each SiC bilayer, while maintaining the tetrahedral bonding

scheme of the crystal, can be situated in one of three possible positions with respect to

the lattice. The three most commonly known polytypes are 6H, 4H, and 3C. These

different polytypes have a wide range of physical properties. The bandgaps differ

among the polytypes ranging from 2.3 eV for 3C-SiC to 3.26 eV in 4H-SiC. Amongst

these polytypes, 4H is most ~mmonly used because of its superior electronic properties.
--\

A comparison of important semiconductor properties has been summarized in Table 1.1.

It can be seen that SiC has much more promise in the area of high power and high

frequency applications over that of Si. [I]



Property Si 6H-SiC 4H-SiC 3C-SiC

Bandgap (eV) at 300K 1.12 3.0 3.26 2.3

400 ( II c-axis) 960 (II c-axis)
Electron mobility RT, cm2Ns 1400 800

85 ( 1 c-axis) 800 U c-axis)

Breakdown Field (Eb), MV/cm 0.3 3 3 2

Thermal conductivity (cr), W/cm 1.5 4.9 4.9 5

Saturation drift velocity (vsat ), 10' crn/s I 2.0 2.0 2.0

Dielectric constant, ks 11.9 9.7 9.7 9.7

Intrinsic carrier concentration, nj (cm· j
) 1.45x 101U 2.3xlO'o 8.2xI0'~ 6.9

Table 1.1: Comparison of semiconductor properties for SiC and Si [2]

One major advantage that SiC enjoys over other wide band-gap semiconductors is

an established, commercially available, process for the growth of high quality substrate

material. Additionally, suitable dopants for SiC have been established; Nitrogen being

the most popular n-type dopant, with Aluminum and Boron used for p-type dopants.

Nitrogen acts as a donor level approximately 100 meV below the conduction band.

Aluminum acts as an acceptor level at about 220 meV above the valence band. Boron

has two acceptor levels at 330 and 700 meV above the valence band [3]. Diffusing

dopants into SiC is extremely difficult, making implantation the sole way to introduce

dopants for well and junction formation. Ion-implantation at room tcmpcrature tends to

amorphize the SiC and limit ion-activation [4]. Therefore, implantation is perfonncd at

elevated temperatures ncar 700°C with a subsequent anncal at ncar 1600 0c. Another

feature that sets SiC apart from that of other wide band-gap semiconductors is its ability

4



to form a stable silicon oxide (Si02) layer when thermally oxidized as is the case of Si.

Additionally, the large band-gap of SiC reduces minority-carrier generation rates and

dramatically increases charge retention in MaS devices and would inherently increase

the life-span of similar SiC MOS devices.

Present difficulties with SiC include a low diffusivity constant of ions, as previously

mentioned, which may result in low surface dopant concentrations and increased contact

resistances. Another important concern is the low mobility values seen in SiC inversion

layers primarily due to high interface trap densities and surface roughness. It is obvious

that progress is required in the fabrication of high quality gate oxides with low

concentrations of fixed oxide charge and interface trap densities. The overcoming of

these obstacles is very important for the fabrication of high speed, high power devices.

1.2 Historical Review of SIT

Operation concepts of the field effect transistor (FET) were offered by Lilienfeld in

1930 and 1933 [5],[6]. In 1952, Shockley provided a theoretical analysis of a FET,

which provided much of the understanding of its operation. However, an ambiguity

remained since after saturation, current remained constant against theoretical

expectations. Nishizawa proposed the constant current under saturation to be a result of

negative feedback of transconductance through the series channel resistance. Series

channel resistance could be decreased and its effect minimized by the shortening of the

channel length [5]. [7]. [8]. The decrease of the channel length and reduction of the

series channel resistance produced output characteristics that are non-saturating or

5



"triode-like"; resembling the output of the triode vacuum tube or present-day short

channel MESFETs and JFETs. In 1950, Nishizawa formulated the concept of a vertical

device with short channel length, originally called the "analog-type transistor," now

known as the SIT [5]. The vertical structure provides high breakdown voltage and high

current density between the source and drain terminals. The SIT is a majority carrier

device that eliminates speed dependence on minority carrier storage charge as seen in

IGBT devices [9]. Electrons reach saturation velocity at high electric fields, allowing

the devices to operate at high frequencies and high voltage levels. The SIT is also

thermally stable because carrier mobility decreases with increasing temperature,

eliminating thermal runaway.

w
--------_'f __

Figure 1.1 SIT structure showing cross-section dimensions [10]
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The design of the SIT structure is shown in Fig 1.1 [10]. This particular structure is

known as the recessed-gate SIT (RGSIT), with Schottky gates positioned in the trenches.

The SIT is a vertical structure comprised of finger-like protrusions having the source

contact at the top of the fingers, gate contacts surrounding the fingers and the drain

contact resides on the underside of the structure. To make a power device, many of

these fingers are connected in parallel to obtain the desired periphery. The device

channel, otherwise called the channel width, is defined by the dimension of 2a. A

depletion region defined as ao forms in the channel semiconductor due to the built in

potential, Vb; of the gate. The distance between the two depletion regions in the channel

is defined as b. The distance from the bottom of the n++ source to the bottom of the

recessed-gate/trench is defined by the dimension of L. The distance from the bottom of

the recessed-gate/trench to the n++ drain is defined by the dimension of d. The distance

between the bottom of the recessed-gateltrench to the end of the depletion region formed

by the gate-to-drain reverse bias is defined as W.

Other arrangements of the gate electrode are possible. The planar SIT has p-n

junctions as the gate electrode [5],[ 11 ],[12]. This was the configuration that was

originally used in SITs when they were realized in Si. However, because of deep ion

implantation difficulties, RGSIT structures are favored in SiC [13].

7



Chapter 2

Operation of the Static Induction Transistor (SIT)

2.1 Modes of Operation

The output I-V characteristics of the SIT are divided roughly into 4 different regions

of operation as shown in Fig. 2.1. The SIT exhibits (A) ohmic conduction for a non-

fully depleted channel at small drain and gate bias, (B) exponential current due to

thermionic emission for a fully depleted channel and low drain bias, (C) space charge

limited conduction (SCLC) at high current densities, and (D) velocity saturated space

charge limited conduction (SCLC with Vsat) at high current densities with electrons

approaching velocity saturation [14]. For each of these regions, approximate analytical

formulas can be written. These formulas are useful to see a relationship between

terminal voltage and current, but lacks accuracy. In practice, the total current may have

overlapping contributions from each of these regions.

A: Ohmic
B: Thermionic Emission
C:SCLC
0: SCLC wrth Vsat

Fig. 2.1 Different current conduction mechanisms in a Static Induction Transistor (SIT)
8



2.1.1 Ohmic Conduction

At zero gate and drain bias, the channel is depleted to a width ao from each gate due

1>

to the built-in potential Vbj. The challenge of computing the ohmic conduction is

defining the extent and shape of the depletion region around the Schottky gates. A

simple approximation is to assume the depletion width can be computed by the one-

dimensional depletion approximation and the depletion width itself is in the shape of a

rectangular box as shown in Fig 2.2 [15]. This leaves a neutral channel of thickness

b=2(a-ao) where ohmic conduction can occur.

Source

Drain

Figure 2.2 SIT structure showing rectangular depletion width [15]

Using the [oHowing equations. the intrinsic carrier density IIi. built-in potential Fri. and

initial depiction width ail can be approximated:

9



11; =JNcNv exp{- EG
}

2kT
(2.1)

(2.2)

(2.3)

where Nc and Nv are the effective density of states in the conduction and valence bands.

EG is the bandgap of 4H-SiC, k is Boltzmann's constant, and T is absolute temperature.

In Eqn 2.2 the barrier height, ¢ B, is defined as the difference between the metal work

function and the electron affinity of the semiconductor, ¢ AI - X, and ND is the doping

density of the channel. The dielectric constant of 4H-SiC is G
5

and q is the electron

charge in Eqn 2.3. The application of negative bias on the gate terminal relative to

source bias will increase the depletion width as shown in Eqn 2.4.

,
a = (2.4)

b =2(a - a')

The resistance between source and drain can now be easily computed assuming the

(2.5)

current flow is within rectangular box with width b and length d + L. The drain current

due to ohmic conduction can be written as:

I = q/(Nnp)'n
n L+d

10

(2.6)



where Ac is the cross-sectional area for the current flow. If the gate-to-drain bias, VGD,

becomes more negative, then the depletion regions expand and the cross-sectional area

narrows, which decreases the current analogous to a short channel JFET or MESFET.

2.1.2 Thermionic Emission

For a specific gate-to-drain bias, VGD, the channel becomes fully depleted and a

potential barrier forms in the channel to inhibit electron flow from source to drain. The

potential barrier, shown in Fig 2.3, has shape of a saddle with its minimum value, ~BO,

located halfway between the two gate electrodes, y = O. A majority of the current will

flow through the small cross section in the center of the channel where the barrier

minimum and saddle point, is located. The current flow in this mode is due to

themlionic electron emission over the potential barrier and given by the expression [5],

[7]

<1'

•• 2 • {q }In = AcA T exp --<1>80
kT

Fig. 2.3 Potential Saddle in SIT

11
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where Ac, A", and T in Eqn. 2.7 are the cross section, Richardson's constant, and

absolute temperature, respectively. Dimension b may vary in the SIT as shown in Fig.

2.3, making the calculation of the cross-sectional area difficult. We will define in

Chapter 5, a dimension bejJ, which represents an effective width of the conducting

channel.

The height of the barrier depends upon the two dimensional capacitive coupling

(static induction) between the two gates, source and drain electrodes shown in Fig 2.4.

The application of the drain bias results in the reduction of the barrier height, drain

induced barrier lowering (DIBL), causing an increase of electron flow from source to

drain through the means of thermionic emission.

Gate

++

Drain

CD

Gate

Fig. 2.4 The coupling capacitance detennine the saddle point potential when a Static
Induction Transistor (SIT) is completely depleted under bias \'oltages

12



The DIBL coefficient of the drain voltage can be found using a static charge analysis for

a fully depleted structure. Eqn. 2.8 is the sum of charge to the various electrodes using

the appropriate capacitances:

where:

5 S
Cs =-/-bp

L 2

C = 5 s b
D d + L/2 'P

5 sCG =-Lpy
a

(2.8)

(2.8.1)

(2.8.2)

(2.8.3 )

where p is the device periphery, y is a field-enhancement factor due to electric field

crowding near the edge of the gate electrodes, Vs is the source voltage, VG is the gate

voltage, VD is drain voltage, and Vr is the saddle point potential. The DIBL coefficient

can be obtained as follows:

where:

oV" C/) Ia == -- = = ---,---,.---
eF/) Cs +CD +2CG 2(I+d/L)+J1

J1 ~ ~ ::: I"" . ","', = 2~: = 2L(d ;/>L2)1

13

(2.9)

(2.10)
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where a is the drain-induced barrier lowering (DIBL) coefficient and J.1 is the voltage

gain of the SIT device. The current flow, due to thermionic emission shown in Eqn. 2.7,

can be re-written as

(2.11 )

where <Do is the barrier height at zero drain bias and a is the DIBL coefficient given

approximately by a;::;; 1/ J.1 •

2.1.3 Space Charge Limited Conduction (SCLC)

As the drain bias is increased, the barrier induced by the gate electrodes is

completely lowered (aVD =C1>o) and the current density in the cross-section becomes

high. When the carrier concentration becomes higher than the doping density, n» N: .
the current becomes SCLC. Assuming low-field transport, SCLC can be analyzed with

the following Poisson's and current drift equations (assume steady state all = 0):at

a21' -q(N~ -11) aE
= =ax 2

&.. ax

J = -qlll"

\' = II E
j '!'7

14

(2.11 )

(2.12)

(2.13)



where v is the electron velocity (assumed low-field transport) and Jin is the electron

mobility in 4H-SiC.

v
v = V sat

--~------/:~:~---~-=-----------
1

/
1

/
1

~

1
/

1/ "'"~' V = u En

E

Fig. 2.5 Analysis of electron velocity in high/low field transport conditions

The SCLC regime I-V characteristics may be expressed by the following equation:

(2.14)

(2.14.1 )

where W is the depletion width. Note, in Eqn. 2.14.1, as the reverse potential flCD is

increased. IV is increased and when W=d. the n-region of the SIT is fully-depleted.

15



2.1.4 Velocity Saturated Space Charge Limited Conduction (SCLC)

As the drain bias is increased further, the electrons begin to reach their saturated

drift velocity. This occurs when high electric fields span the SIT device. Assuming the

carriers move with saturated drift velocity, v sal> throughout the channel, the SCLC is

given by

(2.15)

Here W has been replaced with d, assuming the entire SIT structure has been depleted.

The difference between the low and high field conditions can be determined by the

current dependence on thickness of the transport region, d.

2.2 Small Signal Output Resistance, Voltage Gain, and gm

Assuming a velocity saturated SCLC, the output resistance, ro, voltage gain, J1 , and

transconductance, gm, are related by the following expressions:

(2.16)

(2.17)

(2.1 S)

16



where the voltage gain, f.1 , is fonnulated using the capacitive coupling (Eqn. 2.10.1) and

the output resistance, ro, is fonnulated using the velocity saturated SCLC current

equation (Eqn. 2.15). The transconductance, gm, of the device can now be detennined

from Eqns. 2.16, 2.17, and 2.18

4L&sVsa,(d +L/2)py 4L&svsa, PY
gm= a(d+LY ~ a(d+L)

(2.19)

From Eqns. 2.17 and 2.19, the voltage gain and transconductance may be improved by

increasing the gate length, L, rather than decreasing the finger dimension a because of

lithography and yield considerations. Additionally, device dimension d may be

increased to improve the voltage gain, but at the expense of the transconductance and the

DIBL coefficient (Eqn. 2.10).

2.3 Breakdown Voltage

As the reverse bias VGD increases, the n-type 4H-SiC immediately under the

Schottky gate depletes towards the drain electrode. When the entire drain region is

depleted the electric field at the surface (y' =0) is

(2.20)

which rcprcscnts a punch-through situation. As thc drain bias increases. thc surface ficld

is raiscd to\\"ards a critical ficld yalue. Ec. Nonnally. the surfacc brcakdown at the outcr

17



edges will take place before the field in the interior of the gate reaches the critical value.

The ideal breakdown voltage, VB, is given by the area under the trapezoidal electric field

distribution shown in Fig. 2.7,

qNDd-----
2£s

(2.21 )

Breakdown
occurs in this Gate
region

++

Drain

Gate

- y'=d

Fig. 2.6 Breakdown diagram of the SIT structure

y'=O y'=d

Fig. 2.7 Trapezoidal electric-field distribution

18



Eqn. 2.21 is valid for the punch-through case only. If the doping density, ND, or the

dimension d is high, a non-punch-through condition may occur as shown in Fig. 2.8.

This being the case, the ideal breakdown voltage under these conditions is the area of the

triangular electric field distribution:

V
_ E~Es

B -
2qND

The condition for punch-through is given as:

(2.22)

(2.23)

If the relationship of Eqn. 2.23 is valid, then the ideal punch-through expression for VB

given in Eqn 2.21 should be used. Otherwise, Eqn. 2.22 is appropriate.

y'=O y'=d

Fig. 2.7 Electric Field distribution for the Trapezoidal electric-field distribution in the
non-punch-through case

19



2.4 Additional SIT Concepts

The basic theory of the SIT has been discussed in this chapter. The four different

modes of SIT conduction have been described. Expressions for voltage gain,

transconductance, output resistance, and breakdown voltage have been developed.

There are trade-offs that occur between device performances and device dimensions and

doping. Although power, RF performance, and thermal issues have not been considered

in this thesis, the SIT has the capability of providing a large signal power gain at high

frequencies, including S and X-bands. The maximum total power and operating

frequency is detennined by the scaling of the device. Thermally, the SIT is like most

power devices where the heat is dissipated to a heat sink usually attached to the back of

the wafer. As in most devices, there exists a maximum internal temperature at which

the device can operate. In this sense, the SiC SIT has advantages due to its large energy

band gap and thermal conductivity in comparison with Silicon power devices. Heat

generation can be limited through pulse operations in which the device is allowed to

cool between pulses [15].
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Chapter 3

Software Modeling of the Recessed Gate Static Induction

Transistor (RGSIT) in SILVACO ATLAS

The creation of computer-aided design (CAD) software to model and predict the

physical behavior of semiconductor devices, both electrically and mechanically, has

been of great assistance to engineers and scientists. The use of CAD software is

different from empirical modeling (the obtaining of analytical formulae that

approximates existing data). A physically-based simulation is an alternative to

experiments as a source of data. Physical-based simulation has become important

because it is frequently quicker and less expensive than performing actual experiments

and may provide information and insight - quantities otherwise difficult or impossible to

obtain through measurements [16]. As shown in the sections to follow, insight into the

basic internal mechanisms associated with device operation can be explored easily using

CAD software analysis. In this thesis, SILVACO software ATLAS has been used to

model and simulate the device characteristics of the RGSIT.

3.1 Modeling the RGSIT Device Structure

When running a simulation with a simulator, such as ATLAS, an existing device

structure can be read in from a file. In this thesis. a RGSIT device structure was created

in a previous ATLAS program. which defined the dimensions and materials used in the

device. The dimensions of d. L. and a used for the RGSIT device are 3.65~lm. 1pm. and
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O.75Jlm, respectively. Other dimensions, such as the ~ source length, ~ source

height, and half-gate length are O.7Jlm, 0.35Jlm, and O.6Jlm, respectively. Additionally,

a more lightly doped epitaxial layer, relative to the channel doping, has been

incorporated in this RGSIT structure 0.35Jlm under the gate electrode. The N- doping of

the epitaxial layer, N doping of the channel, and N++ doping of the source and drain

regions are set as 4xlO l5 cm-3
, 1.35xlOl6 cm-3

, and lxlO I9 cm-3
, respectively. The drain

contact is set as the entire under area of the SIT device. The gate is set as a square

contact (for programming ease) surrounding the structure and the source is set at the

appropriate spacing on the top finger. An oxide overcoat is placed in all areas not

occupied by the metal and SiC. The various dimensions and doping levels can be seen

in Fig. 3.1.

Metal
Gate

0.6 J.1

I+-

Source

N
0.35 J.1

I+- 0.6 ~I ~0.4 J.1

Gate ~~ICl:Xld..__.mCCl:x:ll~

3.3 p

Fig. 3.1 ~fodc1 dimensions used in Si\\"aco's ATLAS software
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Using appropriate mesh point settings (calculation points), the RGSIT device is modeled

into ATLAS as shown in Fig. 3.2.

ATlAS

Ollllrom ct<:hO'os.llr

Uluon,

Fig. 3.2 Example ofa RGSIT structure modeled in Silvaco's ATLAS software

Table 3.1 Physical parameters of the device used in the simulation of Fig. 3.2

Parameter Definition Notation Value Units

Bottom of gate to drain d 3.65 11m

Channel length L I 11m

Channel half-width a 0.75 11111

SourcelDrain doping N
H IxlOI'] cm-3

Channel doping N 1.35x I01
(1 cm-J

Epi-Iayer doping
I

N-

I
4xI0!) ::<cm -
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3.2 Simulation of the RGSIT

Once an acceptable model of the SIT device is constructed, simulation and

verification of the model commences. Additional data required for the 4H-SiC material

is given by the following parameters: the bandgap, EG, electron affinity, 'X,s, electron

mobility, ~n, electron velocity saturation, vs, work function, ~m, and trap energy level, ET,

which are set at 3.25eV, 3.65eV, 350 cm2/(V s), 2.2x107 cm/s, 5.05eV, and 0.5eV below

the conduction band, respectively. Using varying gate voltages and sweeping the drain,

the I-V characteristics of the device are analyzed. Additionally, the fields, potentials,

and electron flows and velocities are analyzed in the SIT structure at fixed drain to gate

voltages. Using gate voltages from VGS = -6V ... -16V and sweeping the drain, the I-V

characteristics shown in Fig. 3.3 are obtained.
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:;1 lVelchO.OSVGI6VDJOO.1og-
)
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- )

- ,.
.'

- ;

- f,
-

- i
-
-

l-
- 1

- I-
- ~-
-

I I I I I I I

50 100 150 ~

On*l Va1tal:lO (V)

Fig. 3.3 Characteristics of a 4H-SiC RGSIT with "CiS = -6V ... -16V
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From the simulations in Fig. 3.3, we can observe the various modes of operation. For

example, in the far left I-V curve, VGS = -6V, the channel region has not been fully-

depleted and no barrier potential exists as shown in the simulations of Fig. 3.4. The SIT

device, under these bias conditions, operates in the Ohmic conduction mode. As the

drain-to-gate voltage increases, VDG in the simulations, for a fixed VGS, the channel

becomes fully-depleted and a space charge region forms switching the mode of

conduction to SCLC. In the far right I-V curve in Fig. 3.3, VGS = -16V, the channel is

fully depleted and a potential barrier exists (Fig. 3.5). The mode of operation is initially

Thermionic emission as electrons cross over the potential barrier. As the drain-to-gate

voltage increases, the barrier potential is modulated by the drain voltage. Once the

barrier potential has been completely lowered, as shown in Fig. 3.6, the mode of

operation switches to SCLC.

I
~::~

~ ...."- ..
·u ~. • 1 .. " -

Fig. 3.4 4H-SiC RGS1T, VG = -6V, Vo = OV, Depletion region (left), 2-D potential
(middle), 3-D potential (right). No potential barrier (no saddle point)
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:-J,11

1-4.5'

5-5.21

=-1

Fig. 3.4 4H~SiC RGSIT, VG = -6V, Vo = OV, Depletion region (left), 2-D potential
(middle), 3-D potential (right). No potential barrier (no saddle point)
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~U ... , ..... I U U U-- ·U""·UI ... UU--
Fig. 3.5 4H-SiC ROSIT, VG = -16V, VD = OV, Channel fully depleted (left), 2-D
potential barrier (middle), 3-D saddle point (right)

=:::nc.....
m

;:.;.:;;1.=1.

ill
-1.1 -u -1.4 .. u

Fig 3.6 VG = -16V. VD = 300V. Barrier has been completely lowered. 2-D potential (left)
3-D potential (right)
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-1.2 ...... -11.4 • 0.4 , .. 1.2

Fig. 3.5 4H-SiC RGSIT, VG -16V, VD = OV, Channel fully depleted (left), 2-D
potential barrier (middle), 3-D saddle point (right)
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Fig 3.6 VG = -16V, VD = 300V, Barrier has been completely lowered, 2-D potential (left)
3-D potential (right)
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3.3 Analysis of Simulation Results

From the above simulations, we can conclude Silvaco's ATLAS software presents a

reasonable picture for the operational modes of the SiC SIT device, although some

problems are apparent with regards to the magnitude of the results. When simulated

drain currents at specific drain-to-gate voltages are compared with the drain currents

given from actual tested devices, the simulated current level is a great deal larger than

the actual device data. The photo of a 4H-SiC SIT device (5 cm width and 1.34E-3 cm2

area) shown in Fig. 3.7 shows a gate voltage stepped from -6 to -16V. A ImA drain

current flows for VG = -12V and VD = 250V. A VG = -12V and VD = 200V in

simulations suggest the drain current would be 2A! The reason for the elevated current

level is not well understood; however, a problem with regards to velocity saturation and

carrier mobility may contribute to this elevated current level. Electron velocities

collected from simulations often exceed values for a programmed saturation velocity in

the 4H-SiC material. In addition, problems with regards to the flow of current density

have also been encountered, which Silvaco engineers are currently addressing.

Fig. 3.7 Output I-V characteristics of a 4H-SiC RGSIT (5 cm width and 1.34E-3 cm2

area)



Chapter 4

Interface Charges and their effect on the Operation of 4H-SiC

Recessed Gate Static Induction Transistors (RGSITs)

4.1 Theory of Interface Charge Effects

The SIT may have issues relating to device reliability similar to previous studies

with GaAs MESFETs [9]. The possibility exists that interface charges on the 'shoulder'

region of the SIT device, shown in Fig. 4.1, serve to modulate the barrier height of the

previously discussed saddle point, resulting in a changed drain current at a specific

source to drain voltage.

Gate

Source

o G) Jv, 0 (±)
\ \ N+ 1L xide

1Q ~ !~o 0 X
?~ Io 0 YJ( yx

Gate

Y YYYYYYY YYYYXXXN

Fig. 4.1 RGSIT structure to be analyzed \\'ith interface charge on 'shoulder' region
- ,.I ....... _
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Positive interface charge (possibly due to sodium contamination in an overlaying oxide)

on the shoulder region may decrease the barrier height of the saddle point and negative

interface charge (possibly due to electrons occupying traps at the SiC-Si02 interface)

may increase the barrier height. Positive interface charge will effectively pull the

internal electric fields towards the 'shoulder' region, inhibiting field penetration into the

full channel of the device. The opposite is true of negative interface charge, allowing

stronger fields to penetrate into the channel.

The effect of interface charge on the' shoulder' region is to change the effective gate

bias of the device. A RGSIT device with positive/negative interface charge on the

'shoulder' region will see an effective gate bias that is smaller/larger than the applied

gate voltage. Therefore, a device with positive interface charge can maintain a fixed

drain current at a lower drain bias than a device with no interface charge. It should also

be true that a device with negative interface charge must increase its drain bias to

maintain a fixed drain current with respect to a device with no interface charge. The

expected impact on the I-V characteristics due to 'shoulder' interface charge is shown in

Fig 4.2.
10

Vo

Fig 4.2: Positiyc intcrfacc chargc is expccted to shift the I-V curyc to the left duc to
barrier hcight lo\\·cring. Ncgatiyc intcrfacc charge is expccted to shift the I-V CUfYC to
thc right duc to barricr hcight incrcasc.
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4.2 Simulation Analysis of Interface Charge Effects

Using interface charge concentrations of Q+ = 1012 cm-2 and Q- = 1012 cm-2 the

potential barrier is modulated in the manner described in Fig 4.2. This value of Q- is

selected for ease of simulation. A negative charge concentration of 1013 cm-2 will not

allow convergence. Fig. 4.3, 4.4, and 4.5 show the potential barriers for a specific drain-

to-gate voltage, comparing barrier height to interface charge. With no interface charge

on the 'shoulder' region, the height of the potential barrier with VGD=-14 is 1.6V. With

Q- = 1012 cm-2 negative interface charge concentrations on the 'shoulder' region, the

potential barrier increases to approximately 1.8V at VGD=-14V. A Q+ = 1012 cm-2

positive interface charge concentration decreases the potential barrier to approximately

1.5V under the same gate-to-drain bias. The effects of a given interface charge on the 1-

V characteristics can be viewed in Fig. 4.6 using the same gate-to-source biases, VGS=-

14V.
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Fig. 4.3 Potential barrier with no interface charge. VG = -14V Vo = OV
Peak Potential Barrier yalue - -1.6V
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4.2 Simulation Analysis of Interface Charge Effects

Using interface charge concentrations of Q+ = 10 12 cm-2 and Q- = 10 12 cm-2 the

potential barrier is modulated in the manner described in Fig 4.2. This value of Q- is

selected for ease of simulation. A negative charge concentration of 10 13 cm-2 will not

allow convergence. Fig. 4.3, 4.4, and 4.5 show the potential barriers for a specific drain-

to-gate voltage, comparing barrier height to interface charge. With no interface charge

on the' shoulder' region, the height of the potential barrier with VGD=-14 is 1.6V. With

Q- = 10 12 cm-2 negative interface charge concentrations on the 'shoulder' region, the

potential barrier increases to approximately 1.8V at VGD=-14V. A Q~ = 10 12 cm-2

positive interface charge concentration decreases the potential barrier to approximately

1.5V under the same gate-to-drain bias. The effects of a given interface charge on the 1-

V characteristics can be viewed in Fig. 4.6 using the same gate-to-source biases, VGS=-

14V.
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Fig. 4.3 Potential barrier with no interface charge, VG= -14V VD= OV
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Fig. 4.6 I-V characteristics from left to right, Q+ = 1012 cm·2
, no charge,

and Q' = 1012 cm·2 on the interface.

4.3 Sources of Interface Charge

Simulations have shown that interface charge on the 'shoulder' region may lead to

unexpected I-V characteristics. Positive charge near the shoulder interface, based on

previous experience with sources of contamination, is very likely to be due to an alkali

ion contamination, such as sodium contamination of the oxide. Sodium present in

processing equipment can contaminate devices. SIT device exposure to human activity

during mid-processing can also lead to sodium contamination [17]. Negative interface

charge can be a result of electrons occupying interface traps in the shoulder region. The

sharp comers in the 'shoulder' region create a crowding of the electric field. High

electric fields in the 'shoulder' region. shown in Fig. 4.7. can accelerate electrons into
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the oxide where they become trapped leading to a negative interface charge. This

section of the device is often a source of breakdown due to poor oxide quality and/or

lack of thickness control. Fig. 4.7 illustrates an increase of2 to 5 times in the magnitude

of the electric field strength in the presence of a sharp comer (electric field crowding),

which may be present in the shoulder region of the RGSIT.

-1.Z -D.I -0.4 - OA D.I 1.Z -1.Z -D.I -0.4 0.4 0.8 1.Z

Fig. 4.7 Electric fields in comers of a RGSIT (left) VGS = -14V (right) VDS = OV
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Chapter 5

Modeling the Subthreshold Drain Current Characteristics in a

Static Induction Transistor (SIT)

5.1 Introduction

With regards to the published literature, it appears the basic theoretical modeling of

the SIT is lagging behind its practical realizations. This is particularly true in the

subthreshold region, which experiences an exponential current dependence on the gate

voltage. The drain current in this subthreshold region is the result of thermionic

emission of carriers over a potential barrier [5],[7]. The height of the barrier is modeled

by a linear dependence on gate and drain voltages. This assumption would be

acceptable if the barrier height occurred at a fix location, which may not be the case in

RGSIT devices. C. Bulucea and A. Rusu from the Polytechnic Institute of Bucharest

have proposed a first order method of calculating the internal electrostatic potential in

planar and RGSITs [18]. From their analytical method, the potential barrier height can

be estimated.

Another factor required for analyzing the subthreshold drain current is the effective

cross-section of current conduction in a SIT. As shown in Fig. 2.3, the width of the

device. where electrons propagate. b, may vary depending on the location of the barrier

height in the longitudinal or 'x' direction in the SIT. Therefore, an effective width. belT.

must be calculated to estimate the total current flow in a SIT. As A. Strollo and P.

Spirito have mentioned [19]. several authors have developed a function that estimates
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the effective width of the channel depending on the gate voltage and barrier height of the

SIT.

In this chapter, the methods/results included in [18] and [19] shall be presented and

re-analyzed. Then the subthreshold current due to thermionic emission, having been

estimated using the results in [18] and [19], shall be compared to subthreshold I-V data

collected from fabricated 4H-SiC RGSIT devices.

5.2 Defining the Intrinsic Region

The device model shown in Fig. 5.1 is an approximate description of the planar SIT

device and is ideally suitable for the RGSITs. In this model, the channel and epitaxial

layer share the same uniform doping and are re-defined as N-. It is assumed that the

channel and epitaxial layer are completely depleted. Additionally, the source and drain

doping densities are re-defined as N+. The electrical-field structure depicted in Fig. 5.1

illustrates the opposite action of two fields along the channel produced by the gate

source (£A) and drain-source (£8) voltages. This gives rise to a potential minimum, or

barrier, which blocks the flow of electrons from the source to the drain. The location of

the minimum potential can move anywhere along the channel axis, according to the

relative strengths of the fields. The p'"/N- junction replace the 'recessed' Schottky Metal

Gate electrodes to control the barrier height in the channel and, thereby, the flow of

electrons from source to drain electrodes. The built-in potential of the gate (same as

that deriyed in Chapter 2) is stil1 assumed to be that of a Schottky contact.

35



...._--+

GATE

-IVcsl 'j~~
t;=i=~;;=i=~r--------11'i;i&~::<t'::!.., ':;....::<t. .",

••.••••.•••••••••- ••••••_ •••••• + r·~'~; .

r-...:.....:-..-..-...-..-..-..-.•--N----i+tfl
1·/....··· ..··..~·r.!.J ~

.....--------f~~fi~

DRAIN

+"os

Fig. 5.1 A SIT geometric model illustrating barrier formation by the opposite actions of
the electric fields generated by the gate-source and drain-source voltages [18]

In order to find a simple analytical function describing the electrostatic potential,

¢(x, y), and the location of its minimum value, the main attention will be focused on the

intrinsic region of the device shown in Fig. 5.2. The intrinsic region is defined as the

area inside the ABB' A' rectangle. This is also the channel region of the device where

the potential minimum occurs. The remaining region defined by the rectangle CDD'C'

is referred to as the extrinsic region. Since the intrinsic region contains all of the biased

contacts of the device except the drain contact, it is efficient to consider a point on the

BB' boundary line biased by a virtual drain voltage now referred to as the intrinsic drain.

The intrinsic drain V~s is to be applied at the center point, Bo, of the BB' boundary. The

electrostatic potential along the BB' boundary has been given a cosine variation from the

center value, V[~S ' to the constant potential along the AB and A' B' gate boundaries. The

relationship between V~s and the extemal1y applied voltages of VGS and VDS will be

discussed in the last section of this chapter.
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Fig. 5.2 SIT model is divided into an intrinsic region (ABB'A') and extrinsic region
(eDD'C). A virtual drain, V~s' is considered applied at point Bo[18]

5.3 Defining the Intrinsic Potential Function

The electrostatic potential in the intrinsic region must to be constructed to satisfy

Poisson's equation. Therefore, the potential can be given as:

(5. I)

Using the superposition principle, the potential function can be written as

9(x.y) =9/,(Y)+9o(x,y) (5.2)

where ¢)y) is the Poisson component (i.e. the component involving fixed and mobile

space charge varying in the 'y' direction of the channel) of ¢(x..\'). and ¢)x..\') is the

r- I



,--

two dimensional Laplace component of ¢(x,y) (i.e. the component free of space charge)

due to the electrode biases. Based on the depletion approximation (i.e. neglecting

mobile charges in the channel), the Poisson component ¢p (y) can be expressed by

(5.3)

where ¢G is the gate potential

(5.4)

and 'a' is the distance from the center of the source to the p+ gate electrode. VGS, Vbi, and

¢o are the gate-to-source voltage, built-in potential of the gate (same as that derived in

Chapter 2), and built-in potential of the source, respectively. Here we have assumed VGS

< O. The built-in potentials can be calculatcd as

kT (N+ J9o=-ln~ >0
q No

9r is a positin~ly dcfincd potcntial givcn by:
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All potentials are referred to the source, where we assume ¢o (0,0) = O. Defining a

positive pinch-off voltage, Vp, Eqn. 5.3 can be rewritten as

(5.8)

(5.9)

A natural Laplace function for the intrinsic SIT geometry, which satisfies the boundary

conditions, can be defined as follows:

(5.10)

where VA and VB are constants to be determined, which have dimensions of volts. Eqn.

5.10 satisfies the Laplace equation,¢o(.\:,Y), and also vanishes at y =±a, so it does not

interfere with the gate boundary condition imposed on the Poisson component. Eqn.

5.10 is similar to a function used by Shockley to describe the potential in the so-called

extrapolated pinch-off region [20]. Combining Eqns. 5.9 and 5.10, the complete

potential function is

¢(x. y) = -~Vcs 1- VI' + ¢o)- ¢I'( ~.)

[ / I ()] ( ). ,7X. ,7X ;".
+ J { cxp l- - + J .9 cxp - cos -'-

2a/ 2a 2a
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Constants VA and VB are determined by imposing the boundary conditions on points AD

and Bo where L is the channel length (Fig. 5.2)

¢(o,o)= 0

yielding

¢(L,O) =V~s (5.12)

110 [. 110 - 1(I I ,/, )JVB =-2- Vos +--~VGS - Vp + 'f'o
110 -1 110

where

(5.13)

(5.14)

(5.15)

is called the intrinsic electrostatic gain and characterizes the relative importance of the

drain with respect to the gate in controlling the electrostatic potential. It is the

equivalent of the triode gain factor 11,4 used in the vacuum-tube literature.

We can prove¢(x,y), with constants VA and VB, satisfies Poisson's equation, Eqn.

5.1, as well as the boundary conditions at the gate electrodes and at the points AD and Bo.

9(x, y) is characterized by cosine potentials along the intrinsic region boundaries AA'

and BB'. Due to the symmetric nature of the intrinsic region, this approximation is

expected to prO\'ide an accurate description of the potential along the center axis of the

region, AoBo,
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5.4 Calculating the Barrier Height

Since ¢(x,y) is symmetrical in y, the potential minimum'¢min' is expected to occur

along the x axis and is easily obtained by setting the derivative of ¢(x,O) equal to zero.

a¢(x,o) =!!...- [_ VA exp(- JrX) + VB exp( JrX)] =°
ax 2a 2a 2a

yielding

From this point, we can calculate the potential minimum, ¢min

(5.16)

(5.17)

(5.18)

This solution gives xmin = L/2 at V~s = 0 regardless of the gate voltage. Additionally,

the solution shows, for a particular v~s, the barrier vanishes at the source end of the

channel shown in Fig. 5.3. V~s is limited by the condition

(5.19)

Invoking the condition of V;s ~ V;s/ (lim) ensures nonzero barrier and also V4 > O. Since

the minimum potential occurs at the AoBo center of axis where the current flows. the

¢rc," calculated is the potential barrier height in the thennionic equation.
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Table 5.1 Physical parameters of the device used for calculations of ¢(x,y)

Parameter Definition Notation Value Units

Channel impurity
1.35xlOI6N- cm-3

D

concentration

Source/drain impurity
IxlO 19 cm-3N+

D

concentration

Channel center to gate A 0.75 11m

Channel Length L 1 11m

Metal built-in voltage Vbi 1.3 V

Phi vs x

2.0

1.5

1.0

s: 0.5

-1.0

x

-"

a
m,
o
O'l

-+- Vds* = OV

-.- Vds*= 1.5V

Vds*= 3V

Vds*= 4.5V

Fig. 5.3 Electrostatic potential. ¢(x.O) . along the channel axis for VGS = -7V
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5.5 Channel Effective Width, berr, in the Subthreshold Regime

For small current values the potential distribution in the channel of the SIT is not

affected by the charge of electrons injected by the source. In the subthreshold regime,

the device analysis can be performed by evaluating the carrier flow over the potential

barrier in the channel. In previous a publication [19], this analysis has been developed

by several authors [21 ]-[23] and can be summarized in the following paragraphs.

Due to the increase of ¢(x, y) along the y-axis going from the channel center to the

gate regions, the mobile carrier will be confined in a transverse length bejJ less than the

minimum cross-section of the channel 2a. Following the analysis of others [9], the

effective channel width can be written as

(5.20)

which can be rewritten as

(5.21)

where 11', x', and VT are the electron concentration at the saddle point, the abscissa of the

potential minimum, and the thennal voltage, VT = kT/q. If the potential distribution in

the y direction is assumed to have a simple parabolic shape, then the integral in Eqn.

5.21 can be casily evaluated as

-/ V ( V + Ir'-1- 6 Jb - 1-. r , _/- ,', (.s , "':~
("T - a, ,L I I t.:l \

\ 1~'1 + 1'(;S ,- 9""r:·· 1',
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In Eqn. 5.22, we see the effective channel width remains almost constant with increasing

drain voltage, despite lowering the value of¢min , due to the larger term of Vbi + IVGS I.

5.6 Modeling Parameters and Experimental RGSIT Devices

Expressions have been developed to describe the barrier height and the cross-section

of the SIT. The remaining factor to be analyzed is the relationship between V~s and the

externally applied voltages ofVGS and Vos. We will assume V~s is linearly dependent

upon VGS and Vos [18]

(5.23)

where Vo , aG ' and aD are geometry and doping dependent constants. This linear

relationship is a result of the linearity of Poisson's equation and is valid as the

boundaries of the source, gate, and drain electrodes are fixed. Using numerically

calculated data, the values of Vo, a G and aD were found to be -0.02, 0.76 and 0.20,

respectively [18].

In our work. a similar approach has been used with the exception subthreshold data

has been taken from fabricated 4H-SiC RGSIT devices. As a result. the thennionic

emission equation has been able to model accurately the subthreshold I-V characteristics

of the fabricated devices. The results of this study are described in the next two sections.
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5.6.1 I-V Characteristics of the Experimental4H-SiC RGSIT Devices

The experimental 4H-SiC ROSIT devices are common source devices each with a

source length of 2.5 em per cell. The geometries of these devices are reasonably close to

the values employed in the simulations and listed in Table 3.1. The devices are

hermetically sealed with a lidding operation in dry nitrogen. An example of a packaged

ROSIT under test is shown in Figs. 5.4 and 5.5, with its lid removed.

Fig. 5.4 4H-SiC ROSlT package showing four of the common source devices
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Fig. 5.5 4H-SiC ROSIT package showing connections of source, gate, and drain

Using a HP 4145A Semiconductor Parameter Analyzer connected to a computer running

National Instruments LabVIE\VR'4, version 4.0.1, the drain current was measured for a

fixed gate voltage, VGS, while sweeping the drain voltage, VDS. The I-V characteristics

ofa common source device arc shown in Figs. 5.6 and Fig. 5.7.
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Fig. 5.6 Drain current vs. drain voltage for fixed gate voltages
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Fig. 5.7 Logarithmic drain current vs. drain voltage for fixed gate voltages
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5.6.2 Determination of Modeling Parameters

Considering the experimental 4H-SiC RGSIT device measurements in Fig. 5.7, the

subthreshold region shall be referred to as the operation where the drain current values

are less than I/lA. The subthreshold I-V characteristics of the experimental 4H-SiC

RGSITs are compared with the computed subthreshold currents using the thermionic

emission equation (Eqn. 2.7). Using the results of [18] and [19] to compute the barrier

height (Eqn. 5.18) and effective width (Eqn. 5.22), values for Vo, a c , and aD are chosen

to fit the experimental data. The values are Vo , a c ' and aDO, 0.45, and 0.08,

respectively. The fitted curves are shown in Fig. 5.8. The experimental subthreshold

current is accurately modeled with the thermionic emission equation using the

empirically fitted drain voltage. As the drain current exceeds I/lA, SCLC becomes the

dominate mode of operation and thermionic emission has less influence on the I-V

characteristics.

Theoryv5 Experimental

1.000E"{)6,

o
1.000E"{)7 .

1.000E"{)B .

{l 1.000E"{)9 .

1.000E-10 .

1.000E-11 .

1.000E-12

40 o Computed VG=-7

-expVG=-7V

o Computed VG=-7.25\

exp VG=-7.25

o Computed VG=-7.5V:

- exp VG=-7.5

o Computed VG=-7. 75:

- exp VG=-7.75

Vds

Fig. 5.8 Computed drain current O\'erlaid by experimentally collected data
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Once the calculated drain voltage is known, the change of the effective width, befJ, (Eqn.

5.22) with respect to the change of the drain voltage is shown in Fig. 5.9. As the drain

voltage increases, the increase in the effective width is minimal due to the large term

Vb; +IVGS I in Eqn. 5.22. In addition, the values of the effective width are reasonable

when compared to the channel half width, a. As is expected theoretically, and observed

in simulation, the carriers are pinched into a small channel near the center of the device

due to the potential barrier and the geometry of the saddle point.

beffvs Vds

7.5000E-08
7.4000E-08

I

7.3000E-08 -'
7.2000E-08:

7.1000E-08; ............
:; 7.0000E-Q8~· _.............
.c 6.9000E-08~

6.8000E-08
6.7000E-08
6.6000E-08
6.5000E-08

o 10 20 30

Vds

•-+- Aeff (VG=-7)

___ Aeff (VG=-7.25)

Aeff (VG=-7.5)

Aeff (VG=-7.75)

Fig. 5.9 Effcctivc width, belT, \'s. Drain voltagc, Vos
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Chapter 6

Conclusions

6.1 Conclusions

The results presented in this thesis included the study of the 4 different regions of

the Static Induction Transistor (SIT) operation. In addition, the simulated effects of

interface charge on the operation of 4H-SiC recessed-gate SIT (RGSIT) devices are

examined. Finally, the mechanisms of subthreshold conduction are analyzed.

6.1.1 Effects of Interface Charge on the Operation of 4H-SiC RGSIT

The presence of interface charge on the 'shoulder' region has been shown to

modulate the barrier height of the saddle point in the channel region which controls the

current for a specific drain voltage. A RGSIT device with positive/negative interface

charge on the 'shoulder' region will see an effective gate bias that is smaller/larger than

the applied gate voltage. The expected impact on the I-V characteristics due to

positive/negative 'shoulder' interface charge is to shift individual I-V curves, for a fixed

VGS, to the leftJright due to barrier height lowering/increase.

6.1.2 Results of J\;lodeled Subthreshold Drain Current

The barrier heights. effcctiYC channel widths, and drain currcnts havc been

calculatcd using a supcrposition analysis of thc Poisson and Laplacc componcnts of thc

clectrostatic potcntial in the 'intrinsic' rcgion ofthc SIT. For a gi"cn gatc-to-sourcc bias.
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the analysis shows a barrier height decrease for an increasing drain-to-source bias.

Additionally, for a particular drain-to-source bias, the barrier vanishes at the source end

of the channel. Current due to thermionic emission is empirically fitted to experimental

data of fabricated SiC RGSIT devices using the theoretical results of the barrier height

and effective channel width; a linear approximation is used relating the intrinsic drain

voltage to the actual drain and gate voltages. Knowing the linear intrinsic drain

approximation coefficients, Vo,aG, and aD' it can be seen that an increase in the drain

voltage increases the effective width minimally; the path of the carriers in the channel

region is relatively independent of the drain voltage.

6.2 Recommendations

6.2.1 Further Study of Interface Charge

As stated previously, positive interface charge near the shoulder interface is very

likely to be due to an alkali ion contamination, such as sodium contamination of the

oxide [17]. Sodium present in processing equipment can contaminate devices. SIT

device exposure to human activity during mid-processing can also lead to sodium

contamination. Negative interface charge can be a result of electrons occupymg

interface traps in the shoulder region.

Continued work with Silvaco engineers to discover the reason for differences

between simulations and experimental device stmctures is recommended. We should

examine another simulator from a company called Integrated Systcms Engineering (ISE).

which has a 3D simulation package callcd DESSIS with a 2Di3D Editor and Process
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Emulator called DEVISE. Another simulator package from Syborg, which operates on

PC platforms, should also be considered as possible upgrade from Silvaco ATLAS.

Results from these simulators may portray a more accurate prediction of experimental

RGSIT devices. Furthermore, the refinement of simulation structures and models with

experimentally determined modeling parameters extracted from device structures is

recommended.

6.2.2 Further Study of Subthreshold Conduction

To further aid in the understanding of the subthreshold region, I propose a more

extensive study to accurately model the modulation of the barrier height due to the drain

voltage at the electrode. Furthermore, experimental techniques to extract modeling

parameters from SiC RGSIT devices employing the various modeling expressions

described earlier in this thesis should be determined. These techniques already exist for

silicon-based devices and should be developed for the SiC RGSIT device structures.
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Appendix

SILVACO ATLAS: DEVICE SIMULATOR

A.I Introduction to Silvaco ATLAS

Silvaco ATLAS is a physically-based two and three dimensional device simulator

capable of simulating a wide range of devices including diodes, FETs, BJTs, and IGBTs.

ATLAS incorporates advanced physics models for mobility, band-gap narrowing,

tunneling, together with defect and trap states. ATLAS is also flexible in the sense that

the user can optimize the models to the user's liking. [16]

To simulate a device, the user needs to specify the device geometry, physical

parameters, and the various physics models that will govern the operation of the device.

ATLAS has a library of materials that the user can choose from to construct the device.

The user is also allowed to change individual parameters of the materials.

A.2 ATLAS Installation

ATLAS is presently installed in the SOLARIS work environment in Packard Lab.

Due to slow networking speeds. high mcsh point simulations using ATLAS can take

long timcs to finish. Shifting simulation softwarc from the UNIX servcrs to the reccntly

purchased desktop computers has been proposed. though not yet achicved. i.e. simulator

package from Syborg.
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A.3 Modeling a Structure in ATLAS

ATLAS is nonnally used in conjunction with the VWF Interactive Tools. These

include Deckbuild, Tonyplot, DevEdit, MaskViews and Optimizer [16]. In this work,

Deckbuild and Tonyplot were used to create, simulate, and visualize the modeled

devices. Deckbuild provides the interactive run time environment. For specifying the

device geometry, doping profiles, interfaces, and boundaries in ATLAS,a command file

must be written and saved with the extension *.in.

The command file contains a sequence of statements first starting with the command,

"go atlas". The mesh grid (calculation points) is defined using x and y coordinates.

High concentrations of mesh points will provide good simulation accuracy but at the

expense of calculation time; the trade-offs between accuracy/precision and simulation

time is adjusted through the mesh grid. Once the mesh is specified, every part of the

mesh must be assigned to be a particular material type, perfonned in the "region"

statements. After the regions and materials have been specified, at least one electrode

contact (max of 50) must be defined using the "electrode" statement. Finally, the doping

distributions are specified in the "doping" command. To output and save the structure to

a file, use the "save out" command and save the structure with the extension *.str. When

your file is complete, you may stop ATLAS by using the "quit" command. An example

code that specifics a RGSIT structure is given in the following section. The file name is

elchO.05.in

57



A.4 Example of Modeling File for a RGSIT in ATLAS

go atlas

mesh

x.mesh
x.mesh
x.mesh
x.mesh
x.mesh
x.mesh
x.mesh

1=-1.35
1=-0.75
1=-0.35
1=0
1=0.35
1=0.75
1=1.35

s=0.05
s=0.03
s=O.Ol
s=0.02
s=O.Ol
s=0.03
s=0.05

y.mesh
y.mesh
y.mesh
y.mesh
y.mesh
y.mesh

1=0
1=0.3
1=0.35
1=1.35
1=1. 7
1=6

s=0.05
s=O.Ol
s=O.Ol
s=0.04
s=0.4
s=0.4

#eliminate columns x.min=O x.max=4 y.min=l.l y.max=4

region num=l x.min=-0.4 x.max=0.4 y.min=O y.max=O.35 material=a-SiC
region num=2 x.min=-0.75 x.max=0.75 y.min=0.35 y.max=1.35
material=a-SiC
region num=3 y.min=1.35 y.max=6
material=a-SiC
region num=4 x.min=-1.35 x.max=-0.4 y.min=O y.max=0.35
material=oxide
region num=5 x.min=O.4 x.max=1.35 y.min=O y.max=O.35
material=oxide
region num=6 x.min=-1.35 x.max=-0.75 y.min=0.35 y.max=0.4
material=oxide
region num=7 x.min=O.75 x.max=1.35 y.min=0.35 y.max=0.4
material=oxide

elec num=l x.min=-0.25 x.max=0.25 y.min=O y.max=O name=source
elec num=2 bottom name=drain
elec num=3 x.min=-1.35 x.max=-0.75 y.min=0.35 y.max=1.35
name=gate
elec num=4 x.min=O.75 x.max=1.35 y.min=0.35 y.max=1.35 name=gate

y.min=O.35

y.max=5
y.max=1.7
x.max=O.7S

doping uniform conc=4e15 n.type y.min=1.7
doping uniform conc=1.35e16 n.type y.min=1.35
doping uniform conc=1.35e16 n.type x.min=-O.75
y.j7,ax=1.35
dcping uni~o~~ ccnc=1.3Se16 n.t~·~e x.~i~=-O.~ x.~ax=O.4 ~·.~in=O.3

y.:7,ax=O.3S
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doping uniform conc=le19 n.type x.min=-O.4 x.max=O.4 y.min=O y.max=O.3
doping uniform conc=le19 n.type y.min=S y.max=6

save outf=etchO.OS.str master

tonyplot etchO.OS.str

quit

A.5 Simulating the Modeled Structure

To simulate a saved device structure, *.str, another command file must be written

and saved with the extension *.in. The electrode, material, and physics models and

parameters can be adjusted in this file. The adjustable parameters are easy to change

and listed in entirety in the ATLAS user's manual [16].

ATLAS uses several numerical methods for calculating the solutions to

semiconductor devices. There are three different types of solution techniques; Gummel

(de-coupled), Newton (coupled), and Block. From these techniques, ATLAS can

calculate DC, AC small signal and transient solutions. Voltages must be defined on

each of the electrodes. In simulations, the device starts with zero bias on all electrodes

and solutions are obtained by stepping the biases from the initial equilibrium condition.

Voltage step sizes must be limited otherwise convergence problems will arise.

An example command file for the simulation of a modeled device is given in the

following section. The file name is etchO.05VG IO.in
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A.6 Example of Simulation File for a Modeled RGSIT in ATLAS

go atlas

Title Drain Sweep for SiC SIT For VG20
mesh inf=etchO.05.str

# specify the semiconductor material parameters for 4H-SiC
contact name=gate workfun=5.05
mater material=a-SiC taupO=20e-9 taunO=20e-9 eg300=3.25 affin=3.65
mater material=a-SiC munO=450 mupO=lOO eab=0.191 edb=0.065 vsatp=2e7
vsatn=2.2e7

models srh conmob analytic fldmob boltzmann incomplete ioniz print
numcarr=2 temperature=300
#mobility mrefln.watt=lOO mref2n.watt=120 mref3n.watt=400
#mobility mreflp.watt=20 mref2p.watt=25 mref3p.watt=100

mobility material=a-SiC muln.caug=O.O mu2n.caug=450 ncritn.caug=1.94e17
ncritp.caug=1.76e19 alphan.caug=O.O alphap.caug=O.O deltan.caug=0.61
deltap.caug=0.34 mulp.caug=15.9 mu2p.caug=100 betap=-2.5 gamman.caug=O
gammap.caug=O betan.caug=-2
mobility material=a-SiC betan=1.2
mater material=a-SiC ETRAP=0.5 TAUNO=20e-9 TAUPO=20e-9 NSRHN=3e17
NSRHP=3e17

#interface x.min=-0.75 x.max=-0.35 y.min=0.35 y.max=0.35 QF=le14
#interface x.min=0.35 x.max=0.75 y.min=0.35 y.max=0.35 QF=le14

output flowlines e.lines e.field e.mobility h.mobility e.velocity

solve init
method gummel newton trap
solve vgate=-O.l vstep=-O.l nstep=9 name=gate
solve vgate=-1.2 vstep=-0.2 nstep=19 name=gate
solve vgate=-6 vstep=-0.5 nstep=15 name=gate
solve vgate=-lO outf=etchO.05VGlO.str master

method gUlnInel neh"ton trap
log outf=etchO.OSVGlO.log master
load inf=etchO.OSVGIO.str master
solve vdrain=O.Ol vstep=O.l vfinal=4.S name=drain
solve vdrain=S vstep=0.25 vfinal=lO name=drain
save outf=etchO.OSVGlOVDlO.str master
solve vdrain=ll vstep=l vfinal=19 name=drain
solve vdrain=~O vstep=5 vfinal=SO name=drain
save outf=etchO.05\~G10\TD50.st~~aster

sol~e vd~ain=5S \-step=10 vfinal=105 na~e=drain

sa~e cutf=etchC.C5\~GIOVDI05.st~~aster
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solve vdrain=110 vstep=lO vfinal=170 name=drain
save outf=etchO.05VGlOVD170.str master
solve vdrain=175 vstep=lO vfinal=225 name=drain

save outf=etchO.05VGlOVD225.str master
tonyplot etchO.05VGIO.log

quit

A.7 Viewing of Simulation Results

The output I-V characteristics of a simulated device is saved into a pre-named file

with the extension *.log. Additionally, the structure of a device can be saved during

mid-simulation to a file with extension *.str. This provides a 'snap shot' of the device at

a particular bias point. Both the I-V characteristics, *.log, and the device structures,

*.str, can be viewed using Tonyplot.

Tonyplot plots the I-V characteristics saved in the *.log files and the device

structure saved in the *.str files. Tonyplot provides the option of viewing the doping

profiles, electric-field strengths, potential distributions, current flows, electron velocities,

etc. of the device structure. Using Tonyplot, it is also possible to create I-D cutlines and

2-D and 3-D contour plots.

In conclusion, the simulation results seen in this thesis are plotted using Tonyplot

and then cropped using Microsoft Photo Editor.
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