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ABSTRACT

As the most flexible, unmanned material handling system, automated

guided vehicles (AGV) are being used in many flexible manufacturing

systems. However, designing an optimized AGV system can involve months

'of planning. Knowledge of which design variables have the largest

impact on an AGV system would reduce the design time.

This research project examines a set of AGV design variables to

determine which have the largest impact on an AGV system. The impacts

of these variables (track layout, delivery load, number of extra

vehicles, load/unload time, segment control size, and delivery

distance), are evaluated with respect to four optimization goals:

maximize the traffic factor, minimize the number of vehicles, minimize

system response, and flexibility to adapt to changing production needs.

The number of extra vehicles has the largest impact on the AGV system

design. One extra vehicle, beyond the vehicles required to minimally

service the material delivery requests, needs to be added to the factory

to balance the traffic factor and system response time.

The design of the track is critical to optimizing the AGV system.

However, it is clear that a detailed simulation would be required to

design the optimal track. Developing general track guidelines for this

facility is not possible.

Finally, the ability of the AGV system to withstand future manufacturing

process changes was evaluated by changing the delivery distance and the

delivery load (deliveries per hour). All four layouts were able to
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accommodate manufacturing process changes without major material

handling system changes.
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INTRODUCTION

With increased global competition, manufacturers are turning to computer

integrated manufacturing and flexible manufacturing systems to remain

competitive. Among the key components in a flexible manufacturing

system is the material handling system which links the pieces of

manufacturing equipment or workstations.

The Automated Guided Vehicle System (AGVS) is the most flexible unmanned

material handling system available in industry today. As a result, AGVs

are often the material handling system of choice for flexible

manufacturing system design.

Description of the Problem

The flexibility available in an AGV system inherently makes designing

and procuring such a system complex. Table 1 shows a listing of the AGV

variables which can be evaluated during the AGV system design. The

combinations of system design variables are staggering and a detailed

simulation of the manufacturing facility is the only way to design an

optimal AGV system.

With the large number of design variables, simulation can be a very

complex process taking months to evaluate all the options. If one knew

ahead of time which variables had the largest effect on the AGV system,

the process of simulating the AGVS would be much less time consuming,

and much less complex because simulation could focus on key variables.
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AGV Design Variables

Number of vehicles
Vehicle speed
Vehicle acceleration/deceleration
Vehicle charging
Vehicle collision control
Number of loads per vehicle
Vehicle guidance
vehicle dispatching rules
Task assignment rules
Empty vehicle policy
Track design
Uni- vs bi-directional track
Park spurs
Load/unload spurs
Track control segment size
Material delivery distances
Delivery routes
Intersection design
Load scheduling
Deliveries per hour
Load/unload times

Table 1. List of AGV Design
Variables

Objective of Research

The objective of this research project is to take a subset of all the

possible AGV design variables and determine what effect they have on the

design of an AGV system. However, the effect of the design variables

can only be measured if there are parameters to optimize. For this

project, there will be four goals upon which to design an optimized AGV

system.

One important goal is to maximize the amount of material transported by

each vehicle. To maximize the material transported, the amount of time

a vehicle is blocked waiting for a vehicle to move out of its way must

be minimized. The measure of the time a vehicle spends moving product
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(not blocked) is c~lled traffic factor and is defined by Fitzgerald [14]

as "a measure of a vehicle's 'competition' for a guidepath". The

traffic factor can vary from zero to one, where a value of one means a

vehicle spends all its time productively moving product. According to

Fitzgerald, in properly designed AGV systems, traffic factor varies

between 0.85 and 1.0. "If the traffic factor is less than 0.85, the AGV

network is poorly designed." Fitzgerald [14] This indicates that the

variables used to design the AGV network influence the traffic factor.

Table 1 lists AGV design variables and therefore is a list of the

variables which influence traffic factor. The first design goal is to

maximize the traffic factor.

The AGV vehicle cost is a significant portion of the AGV system cost.

Therefore, an additional goal is to minimize the number of vehicles

required. In contrast with this goal is the need to provide the fastest

response time to requests for material transportation.

The final goal is to design a system which can adapt to the changes in

the current products made in the factory and the introduction of new

products. This goal can be tested by changing the average distance

required to make material deliveries. When a factory is first built,

the workstations are often located to minimize material transport

distances. However, as the products change, the order of the

manufacturing processes changes, resulting in an increase in material

transport distances. The adaptability of the material handling system

design is also tested by increasing the number of material deliveries
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required in the facility. This evaluates how expanded production will

affect the material handling system.

In summary, the four design goals are:

1. Maximize the traffic factor
2. Minimize the number of vehicles
3. Minimize system response time
4. A design which is flexible for changing

production needs.

As indicated earlier, there are a large number of possible AGV design

parameters. For this research project, a subset of variables in Table 1

will be used to design an AGV system and evaluate the effect on the four

goals. The design variables chosen for this evaluation are:

1. Number of branching segments or short-cuts
designed into the track

2. Number of deliveries per hour
3. Number of extra AGVs
4. Material load/unload time
5. Use of spurs for loading/unloading
6. Size of track control segments
7. Delivery distance

6



LITERATURE SEARCH

Overview of AGV Implementation

The first large scale use of AGVs in manufacturing was in 1974 in the

Volvo plant in Kalmar, Sweden. Since then, AGVs have been appearing

more frequently in manufacturing installations as a means of achieving

high manufacturing flexibility. Many authors report on the successful

implementation of AGV systems, among them Gould [21] and Muller [37].

In his article, Gould details the successful implementation of AGVs at

GM's Oshawa truck assembly plant. Through installing 424 AGVs, the GM

plant was able to realize "an unprecedented degree of manufacturing

flexibility" and more ergonomic work stations. Muller details the

success Europeans have had in installing AGVs. Included in his book is

a detailed list of the major European installations.

To aid people who are new to the AGV industry, many people have written

articles on the basics of AGV systems. A sampling of these articles

include Adams [1], Bose [3], Gould [20], Higgins [25], Jacobson [26],

Koff [30], Koff [31], Miller [35], and Zygmont [51]. These articles

provide two general types of information. The first are recommendations

on what types of installations could benefit most from an AGV material

handling system. secondly, these articles provide information on AGV

hardware and control issues such as vehicle types, guidance systems and

traffic control.

AGV Dispatching Policies

Determining which vehicle to dispatch to a request can have a large

impact on the number of vehicles required to do the job, and the time to
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service each request. Egbelu and Tanchoco [12] and Cheng [6] have

explored AGV distance and AGV attribute-based rules for assigning

vehicles to requests.

A second way to approach this issue is to assign vehicles to jobs based

on a job priority system. Egbelu [8] and Han and McGinnis [24] suggest

dispatching vehicles based on the state of the workstation for which the

load is destined. This system serves to deliver parts just in time,

while trying to minimize station idle time.

Moreno et ale [36] propose a plan-based dispatching system. In this

system, jobs are assigned to vehicles as they come in, before the

vehicles become idle. This system anticipates where vehicles will be in

the future to minimize the time required for jobs to be serviced.

Egbelu and Roy [10] explore how best to dispatch material into the

production facility to minimize the wait time and the idle time. They

examine a system where the material remains on an AGV through the entire

manufacturing process. This concept is unique; product flow and vehicle

flow through the factory cannot be separated.

AGV System Design

A wide variety of options in designing AGV systems have been offered by

researchers. Ashayeri [2] presents a mathematical model for flow path

design when the layout of the factory is known. Gaskins and Tanchoco

[16] present a mathematical approach for designing a flow path which

minimizes the total travel of loaded vehicles. The output of their

model is an optimized factory layout. Goetz and Egbelu [18] build on

8



the work of Gaskin and Tanchoco by proposing a heuristic approach to the

problem which allows for the design of larger factories.

Tanchoco and Sinriech (49) suggest using a single-loop guide path. In

this design, the vehicles travel around a ring, eliminating the need for

intersections. The trade-off with this system is gaining simplicity in

system control while requiring additional vehicles. They propose using

a bi-directional track as a way to reduce the number of vehicles

required. A similar system presented by Bozer and Srinivansan (4) uses

multiple single-loop guide paths, with one vehicle servicing each loop.

There are queues between the guide paths to allow product to pass from

one vehicle to the next. As with the single-loop guide path, this

system eliminates the need for intersections and further eliminates

congestion due to blocking. However, this system requires more floor

space and is less tolerant of vehicle breakdowns.

Most conventional AGV systems allow vehicles to travel only in one

direction. Egbelu and Tanchoco [11) propose a system which allows

vehicles to travel in two directions. They explore systems with

parallel tracks where vehicles can travel in two directions but not on

the same track, and systems where some track segments are bi­

directional. This system does provide efficiencies over the

conventional uni-directional systems especially where there are limited

numbers of vehicles. Ozden (39) explored a system which combines the

approaches of Tanchoco and Sinriech (49) and Egbelu and Tanchoco (11).

Ozden combines using bi-directional track, multi-capacity AGVs and
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queues at the work stations to produce a system capable of larger

throughput than is available with only one of these optioqs.

Number of Vehicles

Determining the number of vehicles required to service a factory is one

of the first steps in determining the overall cost of implementing an

AGV system. Several methods to calculate the number of vehicles are

mathematically based, Fitzgerald [14], Egbelu [9], and Tanchoco et ale

[48]. Schmidt [44] and Kasilingam [27] have developed models which

minimize overall system cost as a way to determine the number of

vehicles required. Newton [38] has written a short Fortran simulation

program to solve this problem, but the simulation cannot take into

account many of the details typically required of simulation models. As

a result, this model is only good for a first pass determination of the

number of vehicles required.

Simulation

Simulation is the best way to get a detailed analysis of an AGV system.

Using simulation to design material handling systems is described in

several general articles: Kerpchin [28], [29], Maxwell [33J, and

Phillips [40J. There are many simulation languages available for

analyzing AGV systems. Chang et ale [5J describe the use of SLAMR 1 and

Gaskins and Tanchoco [15] the use of AGVSim2. unfortunately, many of

the simulation languages are complex. Gong and McGinnis [19J have

written a simulation code generator to simplify the simulation process.

1 SLAMR is a registered trademark of Pritsker & Associates, Inc.
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Simulation can be used to solve several types of manufacturing design

issues. Ulgen and Kedia [50] show how simulation is used to design an

AGV-based assembly plant. Lee et al [32] used simulation to evaluate

the effects of several design parameters (i.e. number of vehicles,

vehicle speed) on the AGV system performance.
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DESCRIPTION OF THE SIMULATION ~XPERIHENTS

As stated previously, the objectives of this research were to evaluate a

subset of AGV design variables to satisfy the four goals. The tool used

to do the evaluation was computer simulation using SLAMR, a simulation

package by Pritsker & Associates, Inc. [41].

Parameter Selection

SLAMR is a very flexible simulation package which allows the system

modeler many options in specifying how the AGV layout will look and what

rules govern its operation. To describe to SLAMR the characteristics of

an AGV system, the vehicle characteristics, handling of material

requests, track layout, and material-movement scheduling must be

specified. What follows is a description of the available SLAMR AGV

variables and how they were fixed for this evaluation.

Vehicle Characteristics

SLAMR allows the user to define what type of AGV is used: how long it

is, how fast it goes, acceleration rates, and how many loads it can

carry at one time. For this evaluation, the vehicle is 5 feet long,

travels at a constant 3 ft/sec, and can carry one unit load.

SLAMR requires information on how to handle empty vehicles which do not

have a request to service. To minimize traffic congestion, these

vehicles will pull off the main AGV track onto one of two parking spurs.

These parking spurs were intentionally designed on opposite sides of the

factory to minimize the distance the vehicles had to travel to the

parking spurs, and ultimately to their next assignment. Other empty

12



vehicle options in SLAMR include having the vehicle stop on the track

until it receives a move request, or having the vehicle roam the track.

Both of these options would severely increase the traffic congestion.

Finally, one must define which vehicle services a request when more than

one vehicle is available. The two options available in SLAMR are FIFO

in which the vehicle which has been idle longest services the call, and

CLOSEST where the vehicle which is closest to the request is chosen.

The CLOSEST option was chosen because it minimizes the time to service a

delivery request.

Material Requests

Requests to move a load of material are queued in a buffer while waiting

assignment to an AGV. A request is assigned to a vehicle only when a

vehicle becomes idle. Assigning the material delivery request to a

vehicle can be done in several ways:

1. First in, first out (FIFO) basis - the oldest job request
serviced first.

2. Last in, first out (LIFO) - the newest job gets serviced first.
3. The job which is closest to the idle vehicle gets serviced.

FIFO guarantees that all jobs get handled in a timely manner. In

contrast, LIFO could cause a few jobs to wait a long time for service,

and assigning jobs closest to the idle vehicle could also cause a few

jobs to wait a long time especially if a manufacturing workstation is

located far from the other workstations. Since minimizing the time to

service material-movement requests was a goal of this project, FIFO was

chosen to determine which jobs get assigned to idle vehicles.

13



Track Design

Using SLAMR, there are nearly infinite possible AGV track layouts. For

this project, four manufacturing layouts were designed and evaluated.

In all cases, there are nine pick-up/drop-off locations (workstationsl,

and two parking spurs. In layout A (see Figure 1), the departments are

laid out in a 3 by 3 grid. All adjacent departments in the layout are

connected. In layout B (see Figure 2), the departments are laid out in

a 3 by 3 grid, but several adjacent departments are no longer connected.

Therefore, the average distance the AGVs have to travel is greater. In

the third layout (see figure 3), all nine departments are located on a

loop. This layout maximizes the distance the vehicles have to travel

between departments. The final layout, layout D, (see figure 4) is

similar to Layout C except all the departments are on spurs. The

vehicle leaves the main track to deliver a load, and then returns to the

main track.

SLAMR allows for vehicles to travel either in one direction only, or in

both a forward and backward direction across the same section of track

(bi-directional). Unfortunately, if the track is not designed

correctly, a bi-directional system can grid-lock and manual intervention

is required to free the vehicles. As a result, in the four simple

layouts used here, only uni-directional travel is allowed.

Track segment control is used to avoid vehicle collisions. In this

scheme, the track layout is divided into segments, where only one

vehicle can be in a segment at a time. A vehicle seizes control of the

segment as it enters the segment, and does not relinquish control until

14
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it exits the segment. Since the size of the segment can contribute to

excessive traffic congestion, several different segment lengths, 10, 20

and 40 feet, are being evaluated.

Material Movement

The factory modeled here makes two kinds products. Each product

requires four manufacturing operations. The product begins in the

warehouse (workstation 1), progresses to four workstations, and finally

back to the warehouse. Therefore, during the manufacturing process,

each product is moved by the materials handling system five times.

Since this is a newly designed factory, the delivery of product

progresses logically from one workstation to the next adjacent

workstation and finally back to the warehouse. However, as the products

built in this factory change, a logical flow from one workstation to the

next may not be possible. As a result, two types of delivery systems

are being evaluated, see Figure 5. In the first delivery system,

movement is between adjacent departments, and in the second, deliveries

are frequently made from one side of the factory to the other. This

will indicate how traffic congestion in the factory may change over the

life of the factory.

Two additional delivery parameters were evaluated in the simulation. In

all the layouts except D, the vehicles load and unload product from the

main AGV track. Excessive load/unload time can result in significant

vehicle blocking. To determine the contribution of load/unload time,

the times were varied from 5 to 25 seconds. Another parameter which was
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varied was the number of delivery requests made per hour. As the number

of requests increased, more vehicles would be placed in a given area,

possibly causing congestion. For this evaluation, the number of requests

per hour ranged from 60 to 180.

Description of SLAMR Model

The model begins by creating entities at predetermined intervals. Figure

6 shows a network drawing of the SLAMR model. As an example, when there

are 60 deliveries per hour, the model creates a new entity every minute.

This entity is then assigned a material delivery request. As indicated

earlier, for the two products made in the factory, there are ten unique

material moves from one workstation to another (five moves for each

product made). Each material move has an equal probability (.1) of

occurring. When SLAMR creates a new entity (material move request), it

randomly assigns the request so that each material move occurs ten

percent of the time on the average.

Once created, the material move request is placed at the bottom of the

queue and awaits its turn to be serviced. When it is at the top of the

list, the next available AGV services the request by picking up the

designated load and unloading it at its final destination. When the

move request is completed, the AGV is assigned to another move request,

or it parks in the parking spur waiting for a delivery request.

Procedure for Running the Simulation

Each simulation was run for 50000 seconds (approx 14 hours), however

much of this time was spent reaching steady state.

18
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all the simulations was reached by 40000 seconds.) Since factories

typically run at steady state except after the plant start-up, the data

,
used for analysis were collected between time 40000 and 50000 seconds

(2.8 hours). To minimize experimental error, each simulation was run

twice. A different random number seed was used for the two runs to

change the order of the delivery requests. Data from both simulations

were used in the data analysis. Appendix A shows a list of the

simulations which were run.

For each combination of AGV parameters, several simulations were run to

determine the minimum number of vehicles required to service the

factory's material-movement requests. Once the minimum number of

vehicles required was determined, the simulation was repeated an

additional 5 times, adding one vehicle each time to test the effect of

extra vehicles on AGV system performance. In total, 672 simulations

were run.

Simulation Data

The simulation data provide a detailed accounting of the vehicle

activities, and information on the system response time. The vehicle

actlvities were categorized into the following groups:

Traveling to load - empty
- Loading
- Traveling to unload - full
- unloading

Traveling empty blocked
Traveling full blocked
Traveling idle
Stopped idle
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For analysis purposes, these are regrouped into the following 5
categories:

1. Traveling empty to a job
2. Traveling full
3. Loading/unloading
4. Idle - either traveling or stopped
5. Blocked - either full or empty

SLAMR reported system response time in two different ways. First,

system response time is reported as the average time required to assign

a job to a vehicle, and second, the time required to assign the job and

have the vehicle arrive at the load station. The ultimate judge of

system response time is the time required for a vehicle to arrive at the

load station. Therefore, for this analysis, the system response time is

defined as the time required to assign the job and have the vehicle

arrive to pick up the materials.

Traffic Factor

The traffic factor is the percent of the time a vehicle spends

productively moving product. Three vehicle states are considered

productive activities, traveling empty to a job, traveling full, and

loading/unloading. Blocked time is considered unproductive time, and

idle time is considered neutral time (neither productive nor

unproductive).

The formula for the traffic factor is:

Tf
Non-Productive time

= 1 -
(Productive time + Non-Productive time)

[1]

Using the simulation data, the traffic factor would be:

Blocked
Tf = 1 -

(Blocked + Empty + Full + Load + Unload)

21
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However, this can be simplified to:

Blocked
Tf = 1 -

(I-Idle)
[3]

The data used in these equations are expressed as a percent of the time

a vehicle is in each state. This results in the following equation:

1 = Blocked + Empty + Full + Load + Unload + Idle

22
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MODEL DEVELOPMENT

SASR Models

The statistical package SAsR 2 was used to develop mathematical models

from the simulation data. Two models were generated, one for the

traffic factor and one for the time to respond to delivery request, to

assist in determining which design parameters affected the four

optimization goals. However, analyzing the traffic factor using only

the traffic factor model is difficult because there are many competing

factors which contribute to the traffic factor. Equation 3, page 22,

shows the most simplified version of the traffic factor calculation.

Using this equation, an analysis of idle and blocked models will give a

better overall understanding of the traffic factor model. As a result,

SASR models were generated for both blocked and idle time.

Each model is composed of a combination of seven variables. Three of

the variables are qualitative or class variables: track type,

load/unload spurs, and delivery distance. The other four variables,

load/unload time, segment size, deliveries per hour, and number of

vehicles, are continuous variables.

When developing the model, the degrees of freedom for each variable are

used to determine how the variable can be used in the model. As an

example, segment size is evaluated in the simulations at three levels

(i.e. 10 ft, 20 ft, and 40 ft) and therefore has two degrees of freedom

2 SASR is a registered trademark of SAS Institute Inc., Cary NC, USA.

23



~

(Degrees of Freedom = number of r~vels minus one). Therefore, segment

size can appear in the model as a second order polynomial with linear

and quadratic terms. Both load/unload time and deliveries per hour were

also evaluated at three different levels and can be used in the model as

linear or quadratic terms. The number of extra vehicles was evaluated

at five different levels so it could appear as a linear, quadratic,

third order or fourth order polynomial. The qualitative variabies have

only one degree of freedom so they can only appear in the model as

linear terms.

Data Transformations

The variables used in the models varied over different ranges (i.e. the

number of deliveries per hour varies from 60 to 180 while the number of

vehicles varies from 0 to 5). Since deliveries per hour varies over a

much larger range, it can appear mathematically to contribute more

significantly to traffic factor than the number of extra vehicles. This

statistical analysis problem is called multicollinearity and is resolved

by transforming all the variables to the same range (-1 to +1) before

being used to generate the models. As an example, the variable

deliveries per hour is transformed so 60 deliveries per hour became -1,

120 became 0, and 180 became +1. Appendix B shows a listing of the

transformation equations used.

The variable vehicle received additional transformations before it was

used in the models. The simulation output gave the number of vehicles

used in the simulation. However, the important parameter is the number

of extra vehicles used in the simulation above what was required to
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reach steady state. The number of extra vehicles was the variable used

in the models.

Model Formulation

The SASR procedures used in developing the models were PROC STEPWISE

[43) and PROC GLM [42]. PROC STEPWISE was used to determine which

independent variables were statistically significant enough to include

in the model. In this analysis, a 95% confidence was used to include a

variable in the model. Once the variables for inclusion in the model

were determined, PROC GLM was used to determine the mathematical model.

R-Square was used as a measure of how successfully the model explained

the experimental data. A target of 0.7 (70% of the experimental data

are explained by the model) was chosen, but in most cases, the R-Square

value was greater. In addition, plots of residuals were made for all

models to ensure that there was not an obvious bias.

A major goal of this project was to build mathematical models to

determine the influence of each design variable on the four optimization

goals. However, since the models include many linear combinations of

variables, it is difficult to determine the influence of each variable

from the mathematical model. To determine the effect of each variable,

a technique called correlated histograms is used. This technique

averages all the response variables at each level of the variable. As

an example, for segment size, an average traffic factor is calculated

for all simulation runs made at a segment size of 10 ft, another average

for 20 ft and another for 40 ft, as shown in figure 7. This technique
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indicates the effect of each design variable independent of the other

design variables.

menlSize

0.7 0.75 0.8 0.85 0.9 0.95

Traflie Faelor

Figure 7. Example of Correlated Histograms
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RESULTS

Maximizing Traffic Factor

As indicated in the previous section, the traffic factor is calculated

using the vehicle blocked time and the vehicle idle time, as shown in

equation 3 on page 22. To understand which AGV design parameters

maximize the traffic factor and why, it is important to examine the

influence of the AGV design parameters on blocked and idle time.

Blocked Model

Using SASR, a general model was developed to show the relative

contributions of the AGV design parameters to the time a vehicle is

blocked. Figure 8 shows the mathematical model. The R-Square for the

model was 0.92, meaning 92 percent of the variation in the simulation

data is explained by the model. To determine the influence of each AGV

parameter, correlated histograms are used. Figure 9 shows the

correlated histograms for the blocked model. Table 2 details the

relative contribution of the AGV design parameters to the blocked model.

The number of extra vehicles had the largest influence on the time a

vehicle is blocked. In general, as each successive vehicle was added,

the blocked time went up significantly. Adding the first two extra

vehicles added only 0.8 percent to the blocked time, but the fourth and

fifth vehicles added almost 5 percent each. The relationship between

extra vehicles and percent time blocked is exponential. The reason for

the strong relationship between number of extra vehicles and blocked
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Block -0.158 + 0.322*veh~+ 0.500*veh T*DeI T + O.l71*Veh T*Lu T

+ O. 211*Veh T*TrackC + O. 515*Veh T*Long + O. 416*Veh T*Short

+ 0.108*vehT*~egT - 0.255*DeI T*Long - 0.463*DeI T*Short

- 0.529*veh~+ 0.093*veh T*TrackA - 0.062*Lu T*Long

- O. 210*Lu T*Short + 0.24 7*Lu T*TrackA + O. 265*Lu T*TrackB

+ 0.311*Lu T*TrackC + 0.167*DeI T*TrackA + 0.093*DeI T*TrackB

+ 0.218*DeI T*TrackC + 0.148*Del~ + 0.147*LU; + 0.082*seg;

- 0.082*seg T*TrackB.

segT
DeIT
LUT
vehT
Short=
Long =

Segment Size (Transformed)
Deliveries Per Hour (Transformed)
Load/Unload Time (Transformed)
Number of Extra Vehicles (Transformed)
Short Delivery Distance
Long Delivery Distance

NOTE: All continuous variables were
transformed before running the model. See
Appendix 2 for the transformation equations.

Figure 8. Blocked Mathematical Model

Percent
Design Variable Effect

Deliveries Per Hour 5.0
Segment Size 2.6
Extra Vehicles 12.6
Load/Unload Time 5.3
Track Layout

Remove one branch -1.4
Remove 2nd branch 1.8

Spurs -2.5
Delivery Distance - 0.4

Table 2. Effect of design
parameters on
Blocked model.
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time is straightforward. The more vehicles on the AGV track, the more

congestion there is on the track.

The number of deliveries per hour and load/unload time had nearly

equivalent effects on the blocked model. Over the range examined, both

variables accounted for approximately a 5 percent increase in the time a

vehicle was blocked. Adding more deliveries to the factory increases

the AGV traffic, and the increased congestion causes more vehicle

blocking. The load/unload time also contributed to extra blocking

because vehicles loaded and unloaded material while they were on the

main track.

Increasing the size of the track control-segments can cause up to a 2.6

percent increase in vehicle blocking. With long track control­

segments, a vehicle takes longer to get through the segment causing a

greater occurrence of vehicles blocked waiting for access to the

segment.

Adding load/unload spurs to the track decreased the vehicle blocking by

2.5 percent. The decrease in blocked time resulted from a vehicle not

holding up other vehicles while loading or unloading.

The effect of removing branching segments in the layout had mixed

results. On going from track A to track S, the blocked time was

decreased by 1.4 percent. Removing one branch in the layout resulted in

removing two places where the vehicles merged together (See figure 10)

resulting in less vehicle blocking. At the same time, removing one

branch increased the distance the vehicles had to travel to deliver
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Figure 10. Comparison of Merging Points

loads, causing an increase in vehicle blocking. In this case, removing

two merging intersections had a larger effect resulting in an overall

decrease in blocked time. However, removing one additional branch,

going from track B to track C, resulted in an increase in vehicle

blocking of 1.8%. Although the one remaining merge intersection in the

layout was removed, this could not compensate for the drastic increase

in the distance vehicles traveled to deliver loads.

The final design factor, going from a delivery system where the

deliveries are made to neighboring stations, to a system where the

deliveries are spread throughout the factory, had very little impact on
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blocking. Going from short to long delivery distances decreased the

blocking 0.4 percent.

Idle Model

Using SASR Procedure GLM [42], a model was built to characterize the

influence of the AGV design parameters on vehicle idle time. Figure 11

shows a full description of the model. The R-sguare for the model was

0.93. To analyze the model, correlated histograms were plotted and used

to determine the influence of each AGV parameter. Figure 12 shows the

correlated histograms, and Table 3 shows a numerical tabulation of the

data.

As with the blocked model, the number of extra vehicles had the largest

influence on idle time. However, in this model, the first two extra

vehicles had the largest influence. Adding the first vehicle increased

idle time by 6.5 percent, and the second vehicle added 16.7 percent.

The last two vehicles only added 2 percent and 0.8 percent respectively.

The dramatic decrease in additional idle time results from the extreme

congestion on the tracks because of the extra vehicles. Percent blocked

time and percent idle time counterbalance each other; the more blocked

time, the less idle time.

Decreasing the system delivery demands resulted in an increase in idle

time. This is seen as a decrease in both deliveries per hour and

distance vehicles transport the loads. Decreasing the distance the

vehicles transport their loads increases idle time 6.7
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Idle 14.838 - 42.266*veh~+ 43.437*veh~ - 19.022*veh*

+ 3.033*veh T - O.006*veh T*TrackB - 0.116*veh T*Del T

+ O.006*Del T - O.03S*Lu T*TrackC - O.021*ve~*Seg

0.319*Del T*Seg - O.04S*veh T*Long + 0.018*seg T*Long

+ 0.029*seg
T
*Short + O.014*veh T*TrackA + O.OlS*Seg T*TrackC.

SegT
DelT
LU T
Veh T
Short=
Long =

Segment Size (Transformed)
Deliveries Per Hour (Transformed)
Load/Unload Time (Transformed)
Number of Extra Vehicles (Transformed)
Short Delivery Distance
Long Delivery Distance

NOTE: All continuous variables were
transformed before running the model. See
Appendix 2 for the transformation equations.

Figure 11. Idle Mathematical Model

--

\

Design variable

Deliveries Per Hour
Segment Size
Extra Vehicles
Load/Unload Time
Track' Layout

Remove one branch
Remove 2nd branch

Spurs
Delivery Distance

Percent
Effect

-13 .5
-1.2
37.5
5.2

-3.7
1.6
0.1

-6.7

Table 3. Effect of design
parameters on
Idle model.
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percent, and decreasing deliveries per hour increases idle time 13.5

percent.

Load/unload time contributes up to a 5.2 percent increase in idle time.

Short load/unload times reduce vehicle blocking and time to deliver a

load. Both contribute to a reduced need for vehicles, which causes an

increase in idle time.

Consistent with the blocked model, removing branching segments in the

layout had mixed results on the idle model. Removing the first

branching segment resulted in a 3.7 percent decrease in idle time and

removing the second branch resulted in a 1.6% increase. Upon closer

examination of the simulation data, the initial decrease in idle time

results from the vehicles in the track B facility spending more time on

average traveling empty to pick up a new load. The vehicles in track C

spend less time traveling empty to pick up new loads, increasing idle

time. Therefore, in this facility, idle time is minimized with track B

where the empty vehicle travel is greatest. Adding spurs to the track

layout had no effect on the vehicle idle time.

Increasing track control segment size resulted in a 1.2 percent decrease

in idle time. The idle time decrease is due to the extra blocking that

occurs with large control segments.

Traffic Factor Model

SASR was used to develop a mathematical model for traffic factor.

Figure 13 shows the model. The R-square for the model was 0.78. The

correlated histograms used to make a detailed analysis of the
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Traffic
Factor

0.926 - O. 019*veh; + O. 0007*Seg T*LUT - O. 0245*veh T*Track

- O.018*veh
T
*TrackA + O.074*veh

T
*Long + O.061*VehT*Short

- O.012*vehT*seg
T

+ O.212*Seg T*Del + O.039*Veh *Del
T T

- O.013*SegT*TrackB - O.030*LuT*TrackA - O.033*Lu T*TrackB

- O.027*Lu
T
*TrackC - O.Oll*DelT*Long - O.OlO*LuT*Short

- O.OlO*Seg *TrackC.
T

seg
T

= Segment Size (Transformed)
DelT = Deliveries Per Hour (Transformed)
Lu T = Load/Unload Time (Transformed)
Veh T = Number of Extra Vehicles (Transformed)
Short= Short Delivery Distance
Long = Long Delivery Distance

NOTE: All continuous variables were
transformed before running the model. See
Appendix 2 for the transformation equations.

Figure 13. Traffic Factor Mathematical Model

Percent
Design Variable Effect

Deliveries Per Hour -3.5
Segment Size -3.2
Extra Vehicles -22.2
Load/Unload Time -5.6
Track Layout

Remove one branch 2.2
Remove 2nd branch -2.7

Spurs 3.5
Delivery Distance -1. 8

Table 4. Effect of design
parameters on
Traffic Factor
model
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contributions to the traffic factor are in figure 14 and the tabulation

of the results is in table 4 •

The traffic factor is calculated based on the average vehicle percent

idle time and blocked time. The idle and blocked models were described

in detail in the previous two sections and will be used as the basis to

explain how the AGV design parameters affect the traffic factor.

Examining the traffic factor equation indicates that an increase in

blocked time results in a decrease in traffic factor (more congestion on

the track). In addition, as idle time increases, each vehicle spends

more time unproductively, resulting in a decrease in traffic factor. If

idle time per vehicle goes up, but the blocked time stays constant, each

vehicle will spend more time blocked per time spent productively

servicing requests, thus decreasing the traffic factor.

The number of extra vehicles in the facility has the largest

contribution to the traffic factor. If five extra vehicles are

introduced into the facility, the traffic factor will decrease 22.2

percent. Adding the first two vehicles has a much smaller impact on

traffic factor, 1.2 percent and 1.7 percent respectively. In contrast,

the final two vehicles add 8 percent each. Idle time and blocked time

both increase as extra vehicles were added, resulting in a decrease in

the traffic factor.

Increasing the load/unload time, deliveries per hour, and segment size

all decrease the traffic factor. Their contributions are 5.6, 3.5 and

3.2 percent respectively. Idle time and blocked time play opposite
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roles in how these three variables affect the traffic factor.

Increasing load/unload time, delive6ies per hour, and segment size

increase blocking time while decreasing idle time. However, in all

three cases, blocked time has a larger impact resulting in an overall

decrease in the traffic factor.

Examining track design, the layout which maximizes traffic factor is

track B. This indicates that when designing a track, putting in the

maximum number of branching segments or short-cuts does not maximize the

traffic factor. comparing all three track designs, track B results in

the lowest idle time and the lowest blocking time, resulting in the

highest traffic factor.

The second track design parameter was load/unload spurs. Adding spurs

increased traffic factor 3.5 percent. This increase results directly

from less vehicle blocking since idle time was not impacted by spurs.

The final design parameter examined the influence of the delivery

distances. Substantially increasing the delivery distances only

decreased the traffic factor by 1.8 percent. Nearly all of this

decrease results from a 6.7 decrease in idle time when long delivery

distances are used. This is an indication that the material handling

system will serve the factory well through future changes in the

manufacturing process.

Minimizing Response Time

An important requirement in any materials handling system is to minimize

the time required to respond to a material delivery request. A model
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was generated to determine which AGV design parameters influenced the

response time to material requests. Figure 15 shows a description of

the model. This model explains 70% of the variation in the data. In

the model, only two variables significantly influenced the response

time: the number of extra vehicles, and the number of deliveries per

hour.

The number of extra vehicles had a dramatic effect on the system

response time, as shown in figure 15. Adding one additional vehicle

reduced the response time 14X, with subsequent vehicles having little

effect on system response time.

The number of deliveries per hour had a much smaller impact on system

response time. When deliveries per hour were low, system response time

was greater. At first pass, this goes against common sense. However,

this increase in response time was due in part to the small number of

vehicles required to service the facility. Also, the distance a vehicle

travels empty to pick up a load was proportionally higher when the

delivery requests per hour were low.
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Wait 169847.6 - 433495.8*veh~ + 4io399.3*veh~

170841.0*veh~ + 26396.0*veh T + 3836.9*seg T*DelT

+ 762.2*veh
T
*Del T+ 183.8*Del T - 198.4*DelT*Trac~.

seg T = Segment Size (Transformed)
DelT = Deliveries Per Hour (Transformed)
vehT = Number of Extra Vehicles (Transformed)

NOTE: All continuous variables were
transformed before running the model. See
Appendix 2 for the transformation equations.

Figure 16. Wait Mathematical Model
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CONCLUSIONS

The goal of this project was to determine which AGV design parameters

had the greatest effect on the four optimization goals:

1. Maximize the traffic factor
2. Minimize the number of vehicles
3. Minimize system response time
4. A design which is flexible for the changing

production needs.

Using these optimization goals, the following five design guidelines

were established based on the seven design variables (number of track

branching segments, number of deliveries per hour, number of extra AGVs,

material load/unload time, use of load/unload spurs, size of track

control segments, and delivery distances) evaluated in this research

project.

1. The number of vehicles had a significantly larger effect

compared to the other design parameters. To optimize

traffic factor, no extra vehicles should be placed in the

factory. Adding vehicles causes increased vehicle

blocking which results in lowering the traffic factor.

Similarly, to minimize the number of vehicles in the

factory, which reduces the cost of the material handling

system, no additional vehicles should be added.

Conversely, adding one additional vehicle drastically

reduced the time to respond to material requests. The

recommendation is to add one extra vehicle since it has a

small effect on traffic factor but a dramatic effect on

system response time. The cost of adding one extra
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vehicle is ju~tified by the drastic decrease in system

response time.

2. Minimizing the load/unload times increased traffic factor

by 5.6%. In comparison, adding load/unload spurs

increased traffic factor 3.5%. In this factory, it would

be more beneficial to focus on minimizing the load/unload

times rather than build in spurs at each station,

especially since spurs occupy valuable manufacturing floor

space.

3. Designing long track segment-control zones did not have a

large impact on traffic congestion. Using longer track

segments provides a less expensive traffic control system

and may outweigh the small increase in traffic congestion.

4. The results suggest that proper track design is critical

to optimizing the AGV system. In this nine workstation

facility, neither maximizing or minimizing the layout

branching gave the best results. Simulation is the best

way to optimize the track. Developing general track

design guidelines was not possible for this facility.

5. The final goal was to build a factory which could adapt to

production changes. Neither an increase in delivery

distances nor an increase in material requests (deliveries

per hour) had a major effect on the performance of the

material handling system. All four of the layouts
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evaluated could accommodate changes in the manufacturing

process without substantial changes in AGVS design.

Suggestions for further research include stUffying how AGV systems adapt

to changes in factory requirements and what can be done in the initial

design phase to anticipate those changes. In addition, work needs to be

done to determine the optimum method to schedule the introduction of

material into the facility, either at a constant rate or based on the

availability of workstations and AGVs.
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Appendix A

Simulations

The following variables were evaluated in the simulation runs:

Track Layout: Track A, Track B, Track C, and Track D
segment Size: 10 ft, 20 ft, and 40 ft
Load/Unload Time: 5 sec, 15 sec, and 25 sec.
Deliveries per Hour: 60, 120, and 180
Delivery Distance: Short and Long
Extra Vehicles: 0, 1, 2, 3, 4, and 5.

For each of the 4 layouts, the following 14 simulations were run:

segment Load/Unload Deliveries Delivery

Size Time per Hour Distance

l. 20 15 120 Short

2. 10 15 120 Short

3. 40 15 120 Short

4. 20 5 120 Short

5 20 25 120 Short

6. 20 15 60 Short

7 20 15 180 Short

8. 20 15 120 Long

9. 10 15 120 Long

10 40 15 120 Long

11 20 5 120 Long

12 20 25 120 Long

13 20 15 60 Long

14 20 15 180 Long

Each of the 14 combinations was run with the minimum number of vehicles

required to handle the delivery load and then an additional five times

"
adding one vehicle each time.

Each simulation was repeated with a different random number seed to

determine the experimental error.

A total of 672 simulations were run.
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APPENDIX B

Data Transformations

All continuous variables were transformed before they were entered into

SASR for data analysis. This was done to avoid a multicollinearity

problem. The general equation for the transformation is:
r

X
T

=

x . {XIDax + xmin}

2
{Xmax - xmin}

2

This equation was used to generate the transformation equations for the

specific continuous variables.

Del =
T

Seg T=

Lu T=

Del - 120
60

Seg - 25

15

Lu - 15
10

The transformation for the number of extra vehicles was handled

differently. Since the log of 'number of extra vehicles' was evaluated

while developing the models, the variable 'number of extra vehicles'

could not be less than or equal to zero. Therefore, +2 was added to the

" 50



transformation equation. The variable, the number of extra vehicles,

varied from +1 to +2 in the model.

Veh - 3
Veh T= 2 + 3
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