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Abstract

The carries in a carry-Iookahead adder can be computed by using a separate prefix tree for

each bit location. This is nearly twice as fast as the standard Brent and Kung addition tech-

nique. This thesis shows that the primary carry input signal can be incorporated into the

prefix trees without incurring any additional delay. The proposed architecture reduces the
, .

logic depth of an n-bit adder by one, compared to existing architectures. Using this tech-

nique with fully-static circuits, a 32-bit, radix-2 prefix tree adder has a delay of 1.0 nsec in

the Lucent O.25um CMOS Technology. The proposed adder architecture can easily be

extended to other word sizes and radices.

,
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Chapter 1: Introduction.

1.1 Carry Loo~head Addition

With ever shrinking VLSI process geometries, transistor count and chip

area are becoming second~considerations to delay and power. Hence, it is necessary to

reexamine the tradeoffs thathave been made in existing designs and implementations of

computer arithmetic algorithms.

The carry lookahead technique, first reported by Weinberger and Smith,

speeds up the addition process by unrolling the recursive carry equation [1]. Both transis-

tor count and interconnection complexity have typically limited unrolling to four bits.

Larger adders have been built as block carry-Iookahead adders, where the lookahead oper-

ation occurs within small blocks [2].

The recursive carry-computation can also be reduced to a prefix computation [3] and [4].

With this te~hriique, a prefix tree computes the carry at the most-significant bit position"

.'.:' , ,_ '--":::_:< _h' '-:;_~~'~. _.:';c..-.:"--,-_'.~":~__ -=-'_ ~;':_~, .~'~:;_-:-~'-f..-_ •. ,,~,_-.- _7_C-~,_-",-: -~.~-~~_~::;_:._:-_::~ .~~ .. =;:.~~:~,·,~_,?;~~~:-~.~:~ .. ,,;~.-,,(-:::i.s+.-:'.~,':':'."'f~ =-_':;~--'.~-:-,"'~- :: ._.:~. _.
':>~7..:'::_ .~~.. ..::: ai1(f·ai1~ufd1tf6riilltree's\iperiinposeaon-iheprefix tree is used to compute the intermediate .
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carries [5]. Faster computation of the carries can be achieved by usiI).g a separate prefix

tree for each bit I'bsition [6], [7], however, this approach requires more hardware.

Full prefix tree adders, also known as Kogge-Stone adders, have not been

frequently used because of the additional delay and area introduced by their exponentially

growing interconnect complexity [2], [8]. Existing architectures have emphasized the

reduction of interconnection complexity at the expense of higher gate fanouts [6], [9].

Interconnection complexity can also be reduced by using hybrid carry-lookahead / carry-

select architectures, which eliminate the need to implement a full prefix tree for each bit

position [10]. The imminent, widespread use of low Rand C materials [11] reduces the
. r J

negative effects of architectures thatdepend on large amounts of interconnect [12]. Fur-

thermore, with additional levels of interconnect, the area overhead of implementing these

adders is alleviated through the use of extensive over-the-cell routing, which removes the

routing channels and further minimizes the interconnect capacitance.

This thesis show that the primary carry input can be incorporated into the

full prefix tree adder without additional overall delay. To demonstrate the benefits of this

approach, 32-bit prefix tree adders were implemented with the carry input based on both

the existing and proposed architectures. Both implementations use fully static circuits in

the standard Lucent O.25-um CMOS technology. Static circuits are preferred to dynamic

circuits for their low power, and their ease of design. The measured delay of the adder

with the existing architecture is 1.1 nsec, while the measured delay of the adder with the

proposed architecture is 1.0 nsec. This delay is expected to be lower if the adders are

implemented in technologies w~th lower interconnect RC delays [12] .

3



1.2 Binary addition

The addition of two numbers,

n-2
n-1 ~ j d

A = - an -1 . 2 + LJ aj' 2 an
j=O

n-2
n-1 L jB=-b 1.2 + b.·2n - J

j =0

represen~'s complement binary form, can be accomplished by compnting:

gj=aj·bj ,

P · = a,(fYb·
J J J

s· = p.Etlc. 1J J J-

where 0 ~ j < nand c_1 is the primary carry-input. An overflow occurs, and the

resulting sum is invalid, if

A straightforward implementation of a I-bit adder is achieved through a full adder, which

implements the above equations. In an n-bit addition, the longest path through the adder is

the carry propagation path. Hence, the design of the full adder is optimized to minimize

the delay of the carry path. The diagram for a modified full adder is shown below. The

following equations are used to implement the full adder:

c· = a··p,+p"c. 1J J J J J-

.. 4
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~

aj·-----L-\I
bj---J/

FIGURE 1. Modified full adder for fast carry path propagation.

In practice, when designed in 0.25um technology, all pass-gate structures, such as muxes

and latches, are buffered for better performance. This also applies to the full adder cell..

Thec~ out signal is inverted to ~uffer the 2-to-1 mux. The full adder which follows the

one with the inverted carry out signal recovers the positive logic, as shown in Figure 2B.

(A) ~

aj_---L-\I
bj---J/

(B)~

aj_--'-\\
bj·---J/

I'

FIGURE 2. Modified full adder for fast carry path propagation with carry buffering.

Section 1.3 covers basic blocks for the adder design in 0.25um technology. Assuming, the

delay for an inverter cell (2 transistors) is O.5~, the delay for XORI XNOR (10 transis-

tors) is 2~ and the delay for a mux (4 transistors) is 1~ , the following hold for the dia-

gram in Figure 2(B):

Number of transistors = 28

logic depth from Cj _ 1to Sj = 2~

logic depth from

logic depth from a}o Sj = 4~

5



..... logic depth from a}o Cj = 3.5~

1.3 Implementation issues.

With shrinking process geometries, it is critical to find the best implementation for the

basic cells, due to threshold voltage limitations of static CMOS technology. Simulation

shows that for high performance 0.25um designs should have 2-input NOR gates, 2-input

or 3-input NAND gates, and full CMOS type structures such as muxes and latches.

XOR and XNOR cells are designed using mux-type structures as shown in Figure 3.

.....
Although the transistor count is larger than typical implementations of XOR and XNOR

gates, these designs are about 20% faster than the standard weak PMOS pull-up structures

in 0.25 urn technology at 1.6 Volts. These XOR and XNOR designs each require 10 tran-

sistors.
.'

All the mux structures are designed with fully complementary pass gates, with local buff-

ering to reduce capacitive loading on the output nodes.

(A) ~D-

aj
Qi

(B) ~I>-

aj,-t.....l.-_--{

(C)

sell

{Lout
~o

out

- FIGURE 3. XOR and XNOR mux-typedesign.
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2 Existing architectures for binary addi-
,

tion.

Parallel adders can be classified into two categories based on the way in which internal

carries from stage to stage are handled; rippl~ carry and lookahead carry. Externally, both

types of adders are the same in terms of inputs and outputs. The differences are the speed

at which they operate, the area of the layout, and the power consumption. Carry-ripple

adders, as described in Section 2.1, are simpler to design, require very little area and hard-

ware. However, they are also the slowest type of adder. Hence, if the performance is not an

issue, carry-ripple adders are often used. To improve the speed of binary addition, carry-

skip techi).iques, as described in Section 2.2, were introduced. Although, it takes more

hardware to incorporate the skip logic, the gain in speed is more than 200% for 16-bit

implementations, according .to simulations data presented in Figure 11. When designing

even faster adders, it is essential to get around the rippling effect of the carry that is present

in both carry-~kip and carry-ripple adders. The carry-Iookahead principal offers a possible

way to do so. Thisthesis describes 3 types of carry-Iookaheadadders: Brent-Kung adders

[Section 2.2], Ling adders [Section 2.3], and superimposed prefix tree adders [Section

2.4].

7



2.1 Carry-ripple adder design.

The ripple carry adder (RCA) provides a slow, but hardware efficient, method for adding

two binary numbers. An n-bit RCA is formed by cascading n full adders (FAs). For high

speed, two types of FAs are used, as described in Section 1.2. The carry out of /h FA is

used as the carry in of the (j + 1)th FA, as S.Q9wn in Figure 4. The carry propagation delay

for each full adder is the time from the application of the input carry until the output carry

is valid, 'assuming the a and b inputs are already present. For the n-bit RCA, the ll;umber of

transistors and number of logic stages (or logic depth) are

Number of transistors = 28 . n

depth for RCA adder = 4il + (1.5il· (n - 2)) + 2il = (1.5n + 3)il

&(lI-l) b(Q-1) 1(11-2) b(lI-2)

S(II-I) S(II-2) SOl S(2) S(I) S(O)

FIGURE 4. N·bit RCA design.

2.2 Carry-Skip adder design.

~

To reduce the carry propagation path of the RCA, the carry-skip adder (CSKA) is intro-

duced, where each carry is evaluated from the previous adder stages. The CSKA is based

on the following observation. The propagation process can skip any adder stage for which

.; .a· '# b·, or equivalen~. a :ffi·b. :;:: 1 . Several stages can be skipp'ed if all.satisfy
oJJ o.·~JJ

. ....... -' .

. a j '# b j . Thus, an adder consisting of.n stages is divided into blocks of consecutive stages
8



with a simple RCA scheme used within each block. Every block of length k (which is

called the block size), also generates a block-carry-propagate signal that is defined as

The carry out of block k is expressed as

j+k-l j+k-l
c· k = p. ·c·+G·J + J J J

where c j + k is the carry out of the last FA in subgroup k.

A good strategy when designing CSKA is to vary the block size to optimize

the carry propagation timing. Also, for improved performance multi-level skip is per-

formed. This is illustrated in Fig. 5. Empty squares represent full adders, filled rectangles

implement skip equations, dashed lines are propagate signals, and solid lines are carry

paths. Appendix [Figure A-I] shows the circuit implementation of a 32-bit carry-skip

adder.

FIGURE 5. A 16·bit carry-skip Adder design using multi-level skip and variable block size
techniques.

.. -

r
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2.3 Carry-lookahead adder design.

In the RCA, the speed with which an addition is performed is limited by the time required

for carries to propagate, or ripple; through all stages of the adder. One method for speed-

ing up the addition process is to eliminate this ripple carry delay by carry look-ahead addi-

tion. This method is based on the two ways in which the full-adder produces an output

carry: carry generation and carry propagation. Carry generation occurs when an output

carry is set independently of the carry input. A carry is generated only when both a j and

b j is one. The generate signal is expressed as:

An input carry is propagated by the full-adder when either aj or b j is one, as discussed

in Section 2.3. The propagate signal is expressed as:

p. = a·ffib.
J J J

Alternatively, a transmit signal can be used, where

(. = a·+b.
J J J

The truth table for carry generation and carry propagation conditions are shown in Table 1.

Table 1: Truth table for the full adder cell.
a j bj c

j
_

1 Pj t j gj Sj cj

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 1 1 0 1 0

0 1 1 1 1 0 0 1

1 0 0 . 1 1 0 1 0

1 0 1 1 1 0 0 1.
1 1 0 . 0 1 1 0 1

1 1 1 0 1 1 1 1

10



From Table 1, we can derive the relationship between the carry in Cj _ 1 and carry out Cj :

c· = g. +P .. C· 1 or c· = g. + t .. c· 1
J J J J- J J J J-

As mentioned previously, an overflow occurs when cn - 1 ffi cn _2 = I.

2.4 Brent and Kung adder.

The Brent and Kung adder uses a generic associative operator, called the dot operation (0).

The associativity property implies that the following statement is valid:

a . (b . c) = (a· b) . c . Under these conditions, combining "n" arguments using the dot

operator "0" can be executed with critical path equal to f!0g2n l· to' where to is the

propagation delay of the dot-operator, defined later as a propagation stage. This property

can be applied to an n-bit adder. This requires the definition of a "0" operator that estab-

lishes the following relationship between two tuples (g j'p),

As in [5] and [6], we define (Gj,Pj) = (gj'p) ,and
"

where "0", the fundamental carry operator, is associative [5]. In particular for radix-2

2peration, the "0" operator is a function that takes in two sets of two inputs (g j'p) and

11



(gi,Pi) and produces a set of two outputs (G{,p{) . At each bit position, the carry is

given by

- G j pjc j - 0 + o' c_1

where the C_1 is the primary carry input. If there is no primary carry input, then c j IS

simply G~ . This is illustrated in Fig. 6 for a 16-bit adder. Filled circles implement the

fundamental carry equation, empty circles are buffers, and empty squares compute first

order of propagate and generate signals. The circuit diagram is shown in the Appendix

[Figure A-2].

FIGURE 6. A 16·bit Brent and Kung adder [5] where the carries propagate from top to bottom.

The number of stages needed to implement a Brent-Kung adder is 2· f!0g2nl.

12



2.5 Superimposed tree CLA adder.

With a superimposed tree CLA, the computation of (G~,P~) for 0 s:; j < n from

PO ... Pn-1 and gO ... gn-1 can be accomplished in pogzn l stages [3], [6]. A com-

plete adder is constructed by implementing the following steps.

Step 1 (1 stage)

calculate gj = aj ' bj

Step 2 ( pogzn lstages)

and p. = a.fB b . 0 s:; j < n
J J J

For k=1 to pog zn l calculate

j j j j j_Zk-l j_Zk-l
(Go,Po) = (G. Zk-l l'P, Zk-l l)o(GO ,Po )

J- + J- +

Gj p j _ j. j j_Zk-l j_Zk-l
( . Zk l' . Zk. 1) - (G. Zk-l l'P, Zk-l l)o(G. Zk l'P, Zk 1)J- + J- + J-'- + J- + J- + J- +

Step 3 (1 stage)

Step 4 (1 stage)

calculate s· = p. EEl c· 1
. . J J J-

13



This is illustrated in Fig.? for a 16-bit adder. The open squares at the top compute Pj and

gj for each bit position according to step 1. The empty circles apply the fundamental carry

operator according to step 2, and the filled circles represent buffers. The last stage shown

in Fig. 6 using crossed circles applies C_1 to every (G~,P~) according to step 3. The out-

put of this array is the carry at each bit position.

FIGURE 7. Computation of the carry equation using prefix trees for a 16-bit adderlsubtractor or a 16-bit
adder with carry input. The empty circles implement the fundamental carry operator, the filled circles are
buffers, the crossed circle implement the equation in step 3, the empty squares compute generate and
propagate signals.

An additional stage (not shown) is needed to generate the sum at each bit position from Pj

and Cj _ 1 according to step 4. The logic depth of this adder is 3 + f!0g2n l. If there is no

carry input, then the last stage shown in Fig.? is not needed.

Alternatively, the contribution due to the carry input can be incorporated by redefining the

first generate in adderlsubtractor as [6]

with this change

14



This is illustrated in Fig. 8 for the 16-bit adder. This replaces the hardware required to

implement step 3 above and reduces the fanout on the C_l input from n to 1. However, the

logic depth remains 3 + pog2nl, and the overall theoretical delay of the adder IS

unchanged.

Cin

FIGURE 8. Computation of the carry equation using prefix trees for a 16-bit adder with carry input
according to [6]. The filled square implements the equation for the first generate signal, the empty
squares compute generate and propagate signals, the empty circles implement the fundamental carry
operator, the filled circles are buffers.

In CMOS technology a small speedup can be achieved by using transmit signals instead of

propagate signals to compute the carries for each bit position. The final sum computation

still requires the propagate signals to be generated from the primary inputs. The addition

operation in this case is defined as

t· = a·+b.
J J J

c.=g.+t"c· lJ J J J-

s· = p.Ei1c. 1
J J J-

'. . .
where 0 ~ j < nand c_1 is the primary carry-input.

15



We define (G~,T~) = (g j,t) and

where "0" is fundamental carry operator. The computation of (G~,T~) follows the same

methodology as in step 2 for (G~,P~). At each bit position, the carry is given by

If there is no primary carry input, then Cj is simply G~ .

The t. signals can be computed faster than the p. signals since an OR gate is typically
J J

faster than an XOR gate. Hence, the carry computation through the prefix tree can start

slightly earlier if transmit signals are used. Since, the sum generation step still uses the

propagate signals, the load on the transmit signals in this architecture is smaller than the

load on propagate signals in the earlier architecture. However, the load on the input signals

is now higher since both transmit and propagate signals need to be generated.

In Fig.?, the open squares at the top ne.ed to compute the transmit signal in

addition to the generate and propagate signals. The remaining circles operate on the trans-

mit signals instead of the propagate signals. The circuit diagram is shown in the Appendix

[Figure A-4].

The superimposed prefix tree adder has smaller logic depth than the Brent-

Kung adder, hence there is less delay through the adder. Although the superimposed prefix

tree adder implementation in VLSI requires more hardware than the Brent-Kung adder as

shown in Figure 11 (transistor count), the layout area in the regular datapath structure is

16



smaller, due to the decreased number of stages (rows in the layout), with interconnect

complexity not being an issue with the use of the multilevel metal interconnect.

2.6 Ling CLA.

A new approach to represent the carry formation and propagation was introduced in [18].

A new H function was derived that represents the relationship of neighboring bits, similar

to group transmit (represented as T) and group generate (represented as K) signals in the

CLA. The adder can be constructed using the following steps

Step 1 (1 stage)

calculate k, =a,' b '
J J J

Step 2 ( IIogzn1stages)

O'5:.j<n and t, = a '+ b '
J J J

O'5:.j<n

For k=1 to IIogzn1calculate

H j j
J' = K, Zk-l 1 + T, Zk-l l' H, Zk-I

J- + J- + J-

Zk -1'5:. j <n

Step 3 (Z stages)

1 j j j-l
calcu ate s· = H, EB To + To' K0 . H .

J J . J

17
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and c 1 = H . Tn- n n

To reduce the fanout of C_1 to 1, C_ 1 is incorporated into the first H func-

tion. This is illustrated in Figure 8. The filled square now calculates the H0 and the

remaining circles operate on the transmit/kill signals instead of the propagate/generate sig-

nals. The final sum computation still requires 2 stages according to step 3. The logic depth

of this adder is still 3 + flogn l . The proof of algorithm is given in [18]. The circuit

implementation of superimposed tree [Section 2.4] Ling adder is shown in the Appendix

[Figure A-3].

The significance' of the Ling adder compared to other adders is the use of

the OR gate for the transmit signal in conjunction with superimposed prefix trees with low

order H functions used inside the tree for generating the high order H function. Also, sim-

ilar to the adder shown in Figure 8, the primary carry input C_1 of the adder has a fanout

of one, compared to adder in Figure 7. It requires the same layo'ut area as the superim-

posed prefix tree adder with smaller propagation delay. This is due to the use of the OR

gate for the transmit signal, instead of XOR for the propagate signal, and faster logic for

the final sum calculation.

18



3 New architecture for prefix tree CLA.

3.1 New architecture for prefix tree· adder.

An alternative solution to the carry computation shown in Fig. 7 is to allow the low order

carries to be used to compute the high order carries in parallel inside the prefix tree. For

example, Co can be used in stage 2 and further stages of the prefix tree without affecting

the delay of the carry at the higher bit positions. This algorithm is described below for a

radix-2 prefix tree.

Step 1 (l stage)

and t· = a· + b .
J J J

o<::;,j<n

For k= 1 to flog 2nl calculate

CJ. = G~ 2k - I 1 + T~ 2k - I I· C. 2k - I
J- + J- + J-

l-I- 1<::;,j<2k -l

.. . . . i-I . 2k - 1

(G~ 2k I,T~ 2k I) = (G~ 2k - 1 + I,T~ 2k - 1 l)o(G~-2k I,T~-2k I)
J- + J- + J- J- + J- + J- +

Step 3 (1 stage)

n-I n-I d
calculate Cn _ 1 = Go + To· C-I an S j = Pj EEl Cj _ 1
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This is illustrated in Fig. 9 for a l6-bit adder. The open squares at the top compute tj and

gj for each bit position according to step 1. The crossed circles implement the first equa-

tion in step 2 and the first equation in step 3. The empty circles apply the fundamental

carry operator according to the second equation in step 2, and the filled circles are buffers.

An additional stage (not shown) is needed to generate the sum at each bit position from

Pj and Cj-l according to step 3. The sum computation occurs in parallel with the com-

putation of the final carry output Cn _ 1 • The logic depth of this adder is 2 + rlogn l .The

fanout of C_1 is I + rlogn l .This algorithm can also be extended to higher radix prefix

trees. The circuit implementation is shown in the Appendix [Figure A-5].

FIGURE 9. Prefix tree adder with carry incorporated into the tree. The empty circles implement the
fundamental carry operator, the filled circles are buffers, the crossed circles compute carries according to
Step 2 and 3, the empty squares compute generate and propagate signals.
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3.2 Improved architecture of prefix tree
adder for low power.

With shrinking technology, the interconnect capacitance becomes a major

factor in the loading per node. Especially, the routing in the datapath used to connect the

high and low bits of the structures. In the adder structure of Fig. 9, the previous stage (low

order) carries are used to produce the high order carries. The interconnect lines to the last

stage of carry generation need to run a distance of nI2 bits, where n is the adder size. Also,

to generate the carry out (cn-J)' the primary carry in ( C_J ) needs to run from bit position 0 .

to n-l.

The carry out (Cn-1) in Fig. 9 with n=16 uses EQ. 1 below, requiring an extra column of

carry operators for calculating (G~,T~).

(EQ 1)

Instead, the new design implements the EQ. 2, thus, eliminating some one the long inter-

connecting wires, which compensates for the increase of the load on c 14 .
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(EQ 2)

FIGURE 10. Prefix tree adder with carry input incorporated into the tree and with the low power
solution with the same delay as the carry tree shown in Figure 9.

The same idea is applied to the intermediate carry out in bit position '7', which is c7 '

shown in EQ.3 and EQA. c7 is an intermediate carry, which was generated by (G~,T~)

and c_1 EQ.3. Eliminating the cell which generated (G~,T~) and using (G~,T~) and

C3 to generate c7 reduces the total number of gates needed to implement the above archi-

tecture. Since. the fanout of the cell which generates (G~,T~) is reduced from 2 to 1, and

the fanout of c 3 is increased from 1 to 2. This balances the overall delay for c3 gener-·

ation.

(EQ 3)

(EQ4)

This idea can be generalized for an n-bit prefix-tree adder with the primary carry input

incorporated into the tree. The final carry out is generated as:

22



n-l n-l
Cn_I=GO +To ,Cn_2

(EQ 5)

The first (from the right) intermediate carry for every carry generation stage starting with

C7 ' as shown in Figure 9, is generated as follows:

(EQ 6)

, where j =8, 16,32,....

Table 4 compares the 32-bit prefix tree adder according to Fig. 9 with the new and

improved low power version of the same adder according to Fig. 10. This shows that for

the same delay in both designs, the number of transistors used is improved by 3.3%. The

circuit implementation is shown in the Appendix [Figure A-6].

The power numbers improve for two main reasons: 1) A full bit slice for en _ I generation

and an additional cell in each row, shown in Figure 10, represented as C j with j=8, 16,
2-I

32... were eliminated. This reduces the amount of hardware required for the adder irnple-

mentation; 2) The fanout of the primary carry input signal was reduced to 3.
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4 Prefix tree CLA architecture compari-

SOD.

4.1 Architecture comparison.

Table 2 compares different prefix tree adder architectures with primary carry input. The

architecture shown in Figures 9 and 10 have the smallest logic depth and intermediate

amounts of fanout on the C_1 input. The wiring complexity is manageable in 0.25um and

smaller CMOS technologies, which have several levels of interconnect.

Table 2: Comparison of different prefix tree adder architectures.
Figure G, P, T fanout C_I fanout logic depth wiring

la [6] n/2 1
3 + flogn l low

Ib [6] 2 1
3 + rlogn l high

2 [6] 2 1
3 + rlogn l med

Fig. 7 2 n
3 + rlognl high

Fig. 9 2
1 + flogn l 2 + rlogn l high

Fig. 10 2 3
2 + rlogn l high

4.2 VLSI Implementation.

32-bit versions of the following adders were implemented in the Lucent 0.25-um. CMOS

process: the Brent-Kung adder, carry-skip adder, Ling adder, adders from Figures 6 and 7,
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Figure 9, and 10. All designs use fully static circuits. Table 3 summarizes the characteris-

tics of the Lucent 0.25-um. CMOS process.

Table 3: Lucent O.25-um. CMOS process parametrics.
NMOS PMOS

Tox 50A 50A

Lpoly 0.24um. 0.28um.

Vth 0.55V 0.85V

Ion 570uNum. 230uNum.

Ml pitch 0.84 0.84um.

M2 pitch 0.88 0.88um.

M3 pitch 0.88 0.88um.

The appendix [Figure A-7] shows the layout of a 32-bit prefix tree adder according to the

architecture shown in Fig. 7. Appendix [Figure A.:8] shows the layout of a 32-bit prefix

tree adder according to the architecture shown in Fig. 9.

4.3 Test results.

The adders have been implemented on a 0.25-um. CMOS test chip and hooked up as ring

oscillators that exercise their critical paths. The critical paths were identified from Path-

mill simulations. Pathmill is a static timing analysis tool from Synopsys Inc. The output

wave form frequency of the ring oscillators is divided by 2
12 for observation off-chip.

Additional test structures on the chip are used to determine the delay of the control cir-

cuitry in the ring oscillator path, as described in Section 4.4. The delay of these control

circuits is subtracted from the adder delay measured and reported results are given in

Table 4. The power numbers reported in Table 4 are based on Powermill simulations

(Powerrnill is a power analysis tool from Synopsys Inc.)

25



Table 4: Comparison with other 32-bit adders.
Reference Delay, Power, mW Area, urn

2 Vdd, V Technology Yearns

Fig. 7 1.1 32@400MHz 0.04 2.5 0.25um. CMOS 1999

Fig. 9 1.0 32@400MHz 0.03 2.5 0.25um. CMOS 1999

Fig. 10 1.0 30@400MHz 0.03 2.5 0.25um. CMOS 1999

Ref. [14] 1.27 114@580MHz 0.3 0.9 0.6um. GaAs 1997

Ref. [15] 2.7 0.71 5.0 l.2um. EMODL 1997

Ref. [16] 3.1 0.28 5.0 0.9um.MODL 1989

Ref. [17] 2.1 900@(?)MHz 27.84 4.5 3.5um. ECL 1988

Table 4 shows the speed of the adder shown in Figures 7,9 and 10 in comparison with

other published work. The speed was achieved with static CMOS circuits. Static circuits

are preferred to dynamic circuits because of their ease of design. In addition, static circuits

consume less power because they do not need clocks to precharge internal nodes. As

shown in Table 4, the area of the adders in Figures 9 and 10 are the smallest reported so

far. Figure 11 shows the trade-off in speeds of 32-bit adders vs. transistor count in 0.25-

urn.

i t
•

ns

6 ns Carry-ri.rle adder (eslinuJred delay from PatJrmiJI)

I

-I-

2 ns

• Ctu'TY"Skip adder

• BrenJ·Kutrg addtr
1.5 ns

Fif!.9adtle wiJhtlrtma altS; "al
• Fig.9tulJerIstroW"r.

-- t'UlJ" "'iJh trantmiJ Jivnal • I Lin,tuJJer
Fil!.9

Ins

Tr. count. !()( tr 21JOO tr 3000tr,

FIGURE 11. Speed vs. transistor count of different 32-bit adders in O.25-um.
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For the adder architecture in Figure 7, since it was implemented first on a test shuttle, three

different gates styles were implemented. The first of these used and-or-invert (AOI) and

or-and-invert (OAl) gates to implement the fundamental carry operator at alternate stages

of the prefix trees. The second implementation used and-or (AO) gates at each stage, and

hence had better buffering to drive the interconnect wires. The third implementation used

OAI and AOI gates at the first two stages of the prefix tree and AO gates for the remaining

stages. This was done to measure the effect of buffering and drive only on the stages with

large interconnect.

Table 5 summarizes the measured delays of the adders based on the archi-

tecture in Fig. 7. The fastest implementation is the one with AOI/OIA gates at alternate

stages of the prefix trees and with reduced interconnect coupling. Each adder has been

implemented with two different wiring schemes. An implementation with horizontal

metal3 and vertical metal2 is area optimal and an implementation with vertical meta13 and

horizontal meta12 is delay optimal.

Table 5: Performance of the different implementations of the adder in Figure 7.
Type implemented typical worst case Area, Vdd, Mt3 direction

delay, ns delay, ns 2 Vnm

AOI/OAI @ alternate 1.00 1.08 0.035 2.5 horizontal
stages

AO @ every stage 1.16 1.26 0.035 2.5 horizontal

OAIIAOI @ first two 1.06 1.14 0.035 2.5 horizontal
stages

AO @ other stages

AOI/OAI @ alternate 0.97 1.05 0.047 2.5 vertical
stages

AO @ every stage 1.12 1.22 0.047 2.5 vertical

OAIIAOI @ first two 1.02 1.11 0.047 2.5 vertical
stages

AO @ other stages
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The appendix [Figure A-lO] shows two layout styles of the adders discussed above one

with MT3 horizontal and MT2 vertical and the other one with MT3 vertical and MT2 hor-

izontal. The appendix [Figure A-ll] shows the .photograph of the die on which the

described adders were implemented.

4.4 Test structure.

MHz

hip
data

muxing tree

z ~ -
Drv: by 4

Divide by 1024
- r-- 10 bit division- V off-c
of the ring

-GH

output
oscillator

FIGURE 12. Divide network for testing the speed of adders off-chip.

To test the speed of the ring oscillators on the test chip, a mux-tree network was build with

separate enables to measure the speed of one ring oscillator at a time. Since the output fre-

quency of the ring oscillators are in the GHz range, which is hard to measure on a scope, a

division by 1024 (10 bits) is performed to slow down the output signal. Also, to allow

more time for the muxes in the mux-tree to switch, a divide-by-4 network is used before

the mux-tree for each oscillator circuit. This is shown in Fig. 12.

The same enable signals were used to allow for isolation of each oscillator

circuit via an AND gate (or a NAND gate depending on the output-to-input relationship),

where the output of the oscillator is feed back to the input of the AND gate. To measure

the delay of the AND (NAND) gate,S different ring oscillators were built: a chain of 7

inverters, a chain of 11 inverters, a chain of 15 inverters, a chain -of 19 inverters, and a

chain of 23 inverters of the same size gates connected via an AND gate, enabled by the
28 .



T(delay19) = T(AND) +T (19 inv.)

T(delay23) = T(AND) + T (23 inv.)

same enable signals as the adder's ring oscillators. To calculate the delay of the AND gate,

the delays of these 5 oscillators are measured as follows:

T(delay7) = T(AND) +T (7 inv.)

T(delayll) =T(AND) +T (11 inv.)

T(delayI5) = T(AND) + T (15 inv.)

The zero point on the time plot shows the delay for an AND gate. The results of this exper-

iment are shown in Fig. 13. According to Figure 13, the average measured delay for an

AND gate is 0.38 nsec. The circuit diagram for the test structure is shown in the Appendix

[Figure A-9].

FIGURE 13. AND gate delay measurement results.
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5 Conclusions and Future Research.

The prefix tree adders were implemented based on architectures that use a separate prefix

tree for each bit position. The architecture was described that incorporates the contribution

due to the primary carry input into the prefix trees without any additional overall delay.

Measured results from the test chip fabricated in the Lucent 0.25um. CMOS Technology

using fully static circuits verify adder operation at 1.0 ns or 1 GHz.

The new architecture presented in this work for 32-bit adders can be extended to 64-bit

adders or other word sizes. Also, the proposed adder could be compared with Tyagi adders

[19] and carry-select adders [20]. Furthermore, the architecture of the superimposed prefix

tree adder can be incorporated into other applications, such as comparators, arithmetic and

logic units (ALU and DAU (Data Arithmetic Unit)), and multiply-add units. Examples of

such applications for a prefix tree adder with carry-in incorporated into the tree are shown

in Figure 14.

Bit Manipulation Unit

Partial product
Generation

(A) DAU example (B) ALU/ACS example (C) Multiply-add
unit example

(D) Comparator example

FIGURE 14. Examples ofpossible applications for a prefix tree adder with carry-in incorporated
into the tree. Filled rectangles.indicate the place, where the adder! subtractor based on the new
architecture would be used.
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Figure A-I. 32·bit circuit implementation of the carry-skip adder.
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Figure A-2. 32-bit circuit implementation of the Brent-Kung adder.
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Figure A-2. 32-bit circuit implementation of the Brent-Kung adder.
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with carry in incorporated into the tree, according to Fig. 9.

Figure A-5. 32-bit circuit implementation of the superimposed tree CM adder
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Figure A-7. Layout of the 32· bit prefix tree adder according to Fig.7.
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Figure A-S. Layout of the 32 • bit prefix tree adder according to Fig.9.
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Figure A-9. Circuit diagram for the test structure on the shuttle.
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Figure A-10. Two different layout styles according to Table 5, discussed

in Section 4.3.
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INTENTIONAL SECOND EXPOSURE

Figure A-lO. Two different layout styles according to Table 5. discussed

In Section 4.3.



Figure A-II. Photograph of the die.
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