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ABSTRACT

Epoxies are the mostly used and studied thermosetting materials with a very wide

range ofindustrial applications. However, neat epoxies have low resistance to crack initiation

and propagation. Addition ofa second rubbery phase has been used to increase the toughness

of these materials. Although the toughening effect has been modelled by many researchers,

there is still no predictive model available for rubber-toughened epoxies that considers the

effect of blend morphology. The morphology of the dispersion of the rubber particles in the

epoxy matrix has been shown to be very important to the toughness performance, but only

qualitative information is available. More understanding is needed.

In Chapter I, some results of the influence of the morphological parameters of

rubber-toughened plastics in the literature are summarized. The Objective and the

Experimental Approach are discussed in Chapter 2 and 3, respectively. Chapter 4 shows the

details of the experimental procedure and results. A summary and recommendation for this

research are found in Chapter 5.

In this research, two model systems to further research the influence ofthe dispersion

of the rubber particles to the toughness of the rubber-toughened epoxies have been

developed. Both system use emulsification methods to control the overall blend morphology.

One addresses the connectivity issue, and the other one addresses the clustering issue. The

results show that the connectivity of the rubber particles may indeed be very important to the

fracture toughness of the rubber-toughened epoxies. The results are preliminary and more

control to the model systems is needed to further correlate the dispersion of the rubber

particles to the fracture toughness performance of the rubber-modified epoxies.
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1. INTRODUCTION

Epoxy polymers have been increasingly used as adhesives and as matrices for fiber­

reinforced composites because of their outstanding mechanical and thermal properties such

as high strength, high modulus, and high glass-transition temperature. However, pure

epoxies have low resistance to crack initiation and propagation. It is very important to

increase the toughness of these materials without causing any major losses in the other

properties. Incorporation of a second phase of dispersed rubbery particles into these

polymers can greatly increase their toughness without a significant loss ofthe other important

properties.

It has been shown that morphology of these two-phase systems significantly

influences the mechanical performance[I-3]. However, there are few quantitative studies of

the relationships between blend morphology and mechanical properties because of the

difficulty in estimation ofregularity or randomness ofmorphology and the lack ofa synthetic

means to systematically vary morphological parameters, such as particle concentration,

particle size, particle size distribution, interparticle distance, and particle dispersion. Reviews

of these morphological parameters are briefly summarized in Section 1.1. Section 1.2

includes some morphology quantification methods and introduces a method developed

recently for the correlation of the blend morphology with fracture toughness.

2



1.1 MORPHOLOGICAL PARAMETERS OF RUBBER­

MODIFIED PLASTICS

1.1.1 Rubber Concentration

The toughness ofa rubber-toughened plastic generally increases as the concentration

of dispersed rubbery phase is increased. This tendency has been reported by many

investigators[I,3,4-13]. The probably reason for this tendency is that the particle-particle

interaction increases with rubber content[4]. However, there exists a maximum achievable

toughness.

Bagheri[8] used MBS and CTBN rubber toughened DGEBA epoxy cured with

piperidine and showed that the fracture toughness increases as concentration of rubber

increases and then exhibit a plateau or slightly decline after the maximum. The results are

showed in Fig.l-l. The optimum concentration might be due to the fact that at high rubber

contents, not much matrix material is available for absorbing the fracture energy[l].

Kinloch and Hunston[7,12] used the concept of time-temperature superpositioning

to separate the effects of changing the concentration and the properties of the matrix phase

and claimed that there is no one unique relationship between toughness and the concentration

ofrubbery particles. These researchers demonstrated that the relationship between toughness

and concentration of rubbery particles depends on the value of t!aT(tris the time to failure

and aT is the time-temperature shift factor). This means that the relationship between fracture

toughness and concentration of rubbery particles depends greatly on the test conditions[I 2].

3
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then exhibit a plateau or slightly decline after the maximum.[l]
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1.1.2 Rubber Size

Wu[14] found that the notched impact toughness of rubber-toughened nylons

increases as the size of the rubber particles decreases. This researcher claimed that the

smaller the rubber particles the better for the fracture toughness[14]. However, Sultan and

McGarry[15] have shown that 40nm particles are not as efficient as larger, 111m particles in

improving the fracture toughness of the epoxy resin. Wu[14] found that a sharp tough-brittle

transition occurs at a critical particle size for a given rubber content and constant adhesion

for nylon/rubber blends. The critical particle size was related to the rubber volume fraction

cPr by

where de is the critical rubber particle diameter, and t js the critical surface-to-surface

interparticle distance. When the average particle size is smaller than de' a blend is tough;

when larger than de' brittle. The critical particle size de depends on the amount of rubber i.e.,

decreasing with decreasing the amount ofrubber[16]. In other words, if the rubber particles

are large, larger amount of rubber will be needed to achieve toughing, and vice versa[16].

Pearson and Yee[4] concluded that the effect of rubber particle size on fracture

toughness is not significant based on a O.2~5Ilm range of particle sizes. In a later

publication[17], these researchers found that the fracture toughness is very dependent on

particle size when the particles exceed 10Ilm in diameter. Tablel-l lists the fracture

toughness values of some rubber-modified epoxies[17]. It suggests that fracture toughness

increases with decreasing particle size. These researchers concluded that relatively large

particles provide only a modest increase in fracture toughness by a particle bridging/crack

deflection mechanism. In contrast, smaller particles provide a significant increase in fracture

toughness by cavitation-induced shear banding[17]. At present, the optimal rubber particle

size for toughing epoxies is in the O.l~5.0 11m range[12,17,18].

5



Table 1-1 Fracture toughness values of some rubber-modified epoxies[17]

Formulation Particle size K IC GIC

( urn) ( MmLrn
1l2

) (J m-2
)

DGEBAIPIP o(neat resin) 0.80 180

DGEBAIPIPICTB-162 200 1.10 410

DGEBAIPIP/CTB/CTBN 1-2, 100-200 1.95 1275

DGEBAIPIPICTBN-8 1-2 2.10 1440

DGEBAIPIP/CTBN-31 1-2, 10-20 2.00 1300

DGEBAIPIPIMBS ~0.2 2.90 2725

DGEBAIPIP/MBS/CTBN 0.2, 1-2 2.75 2465
Note: all rubber-modified epoxies contain 10 phr. rubber.
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1.1.3 Rubber Size Distribution

The evidence concerning the influence of particle size distribution on measured

toughness is somewhat contradictory. Riew and Bascom[19] have shown that a bimodal

distribution ofparticle sizes enhances epoxy polymer toughness more than a mono-dispersed

formulation. These researchers claimed that the large particles have induced localized shear

yielding and that this yielding is facilitated by the presence of the smaller elastomer

particles[19]. Pearson and Yee[17] questioned the "synergistic effect," since the

investigators[19] used bisphenol A to obtain the bimodal particle size distribution and

bisphenol A also acts as a chain extender, hence improving the toughenability of the matrix.

Pearson and Yee[l7] have found that there is some evidence of interactions between bridging

particles(large particles) and cavitating particles(small particles), but no synergistic

toughening was observed.

Chen and Jan[20] used two kinds of reactive liquid rubbers, CTBN1300x9 and

CTBN1300x13, to modify Epon 828 epoxy resin. Piperidine was used as the curing agent.

These researchers[20] attempted to keep the matrix property and total rubber content

constant, while varying the relative amounts oflarge and small rubber particles and observed

that the toughened systems with bimodal rubber particle size distribution can dissipate more

strain energy through higher values of stress and elongation after yielding, i.e. they are more

resistant to break through the formation of a localized shear yielding. Fig. 1-2 shows the

dependence offracture energy on rubber composition. These researchers claimed that the role

of the small particles and the role of the large particles work by different mechanisms and

that an interaction exists. The interaction gives rise to a synergistic toughening effect for the

bimodal rubber particle distributed epoxy system[20].(Note that the average diameter of

CTBN 1300x9 is 1.35 ~m and the average diameter ofCTBN 1300x13 is 0.2 ~m.)
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1.1.4 Interparticle Distance (ID)

Interparticle distance has been reported by some investigators as an important

parameter to the brittle-to-tough transition of rubber-modified plastics[6,8,14,16,21,22].

Wu[14] found that the brittle/tough transition of rubber/nylon blend occurs at a critical

surface-to-surface interparticle distance. The ID is independent of the size and volume

fraction of rubber and is a characteristic property of the matrix at a given mode, rate, and

temperature of deformation[2l ]. That is, a polymer-rubber blend will be tough, when the ID

is smaller than the critical value. A polymer-rubber blend will be brittle, when the ID is

greater than the critical value[14]. Wu[14] attributed this phenomenum to stress field around

isolated particles. When the particles are significantly close together, the stress field is no

longer additive, and the field around neighboring particles will interact considerably[14].This

will result in enhanced matrix yielding, and a transition to tough behavior[14].

Bagheri and Pearson[l], used different rubber modifiers to toughen epoxies and

found that the transition in fracture toughness occurs at different ID for different modifiers.

In other words, there is no specific ID in which the brittle/tough transition occurs[l]. Fig. 1-3

illustrates the fracture toughness data versus ID for modified epoxies. These researchers[1 ]

proposed that the fracture toughness(K1c) and the ID are correlated via a power law in the

transition region:

where "a" and "m" are constant parameters and vary with different modifiers. "m" has an

almost value of -0.5 regardless the type and size of the modifier. "a", however, increases with

the particle size. These researchers[1 ] believed that the brittle-to-tough transition is a kind

of plane strain/plane stress transition. In other words, a ligament between two particles

experiences a transition from plane strain to plane stress state by decreasing the ID. This

conclusion is the same as what claimed by Borggreve et al.[6].

-9
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1.1.5 Dispersion of Rubber Particles

The dispersability of rubber in the epoxy has been reported by many investigators[l­

3,23,24] as an important parameter to fracture toughness. Yamanaka et al.[23-24] obtained

two types ofparticle dispersion, i.e. uniformly dispersed and inter-connected morphology via

controlling the curing schedule. These researchers showed that a higher peel strength and

damping efficiency of the inter-connected structure compare to that of the discrete

morphology and predicted that the inter-connected structure may further enhances shear

deformation in a rubber-modified epoxy[24]. Fig. 1-4 is a schematic representation ofinter­

connected structure.

Huang[3] developed two spatial parameters, normalized interparticle distance index

and relative angle index, and used Finite Element Method(FEM) to develop a distribution

profile and an energy absorption index. Through the energy absorption index, one can

successfully correlate the morphology with the toughness performance[3]. This researcher

concluded that the optimal dispersion pattern for low rubber concentration(lower than 10%)

blends is uniform dispersion and inter-connected morphology is desired for high rubber

concentration[3]. However, Bagheri[l] disproved it since he found that the low rubber

content blends still show higher fracture toughness with an inter-connected morphology and

the greater the inter-connected the higher the fracture toughness.

Qian[2] synthesized custom core-shell rubber particles to toughen epoxies and found

that the degree ofparticle dispersability in the epoxy matrix plays a crucial role in toughening

of epoxies. A higher degree of segregation(clustering) of the particles in the epoxy matrix

yields a higher fracture toughness of the modified epoxies[2]. Fig. 1-5 is a representation of

the formation of the "clustering" in the epoxy matrix. Before curing, the PMMA shell was

miscible with liquid epoxy, and the PMMA chains and epoxy molecules interdiffused into

each other. Entanglements of the PMMA chains can also take place between the particles[2].

During curing, the miscibility between the PMMA shell and the curing epoxy decreased and

11



Fig. 1-4 Schematic representation of inter-connected structure[24]
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(A) Core/Shell Particles (B) Extended particles
in Epoxy

(before curing)

(C) Segregated particles
in Epoxy

(after curing)

Fig. 1-5 Schematic representation of"cluster" formation mechanism during the epoxy curing
: A) original core/shell latex particles; B) extended particles in the epoxy before curing; C)
segregated particles in the epoxy after curing[2]
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caused the phase separation of rubber from matrix and formed the "clusters"[1-2]. These

researchers[1-2] showed that the degree of dispersability can be changed by changing the

chemistry of the shell, the type of curing agent, and the mixing procedure.

Some mechanisms responsible for the superior fracture toughness of inter-connected

morphology have been proposed[3,16,23]. Wu[16] applied the percolation concept to the

rubber-toughened nylon system and concluded that the higher fracture toughness provided

by the inter-connected structure was due to its lower percolation threshold. Yamanaka et

al. [23] predicted that the shear yielding ofthe epoxy might be enhanced by the co-continuous

morphology. The schematic diagram ofthis concept is represented in Fig.l-6. A cooperative

cavitation of the particles would be formed in front of the crack tip due to the clustering

morphology of the particles in the epoxy matrix; while in the case of the epoxy with a

uniform dispersed morphology, a random cavitation of the particles is formed. Therefore the

size of the plastic zone in the modified epoxy with a clustering morphology should be much

larger than that of the modified epoxy with a uniform dispersed morphology and thus results

a much higher fracture toughness of the epoxy. This propose was confirmed by Bagheri[l]

and Qian[2].

Fig. 1-7 a and b represent the TOM micrographs taken from the crack tip damage

zone of MBS and MBS-COOH modified epoxies respectively. ( Note that the blend

morphologies for them are inter-connected and uniformly dispersed respectively, as shown

in Fig. 1-8 a and b ). As seen in the figures, the blend with an inter-connected morphology

has a significantly larger plastic zone size than the blend with a uniformly dispersed

morphology. Thus the superior fracture toughness performance of the inter-connected

morphology can be explained.

14



Plastic zone

A) Uniform particle dispersed morphology B) Micro-clustering morphology

Fig. 1-6 Schematic diagram of the plastic zone in the modified epoxy with (A) a uniform
particle dispersed morphology and (B) a micro-clustering morphology[2]
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A

250 pm

B

250pm

Fig. 1-7 The TOM micrographs taken from the crack tip damage zone of piperidine-cured
epoxies which are modified by 10wt% of (a) MBS and (b) MBS-COOH particles. As seen
in these figures, the MBS-modified material has significantly larger plastic zone size than

that of the MBS-COOH modified material.[1]
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Fig. 1-8 SEM micrographs taken from the stress-whitened zone of piperidine-cured epoxies
which are modified by 10wt% of (a) MBS and (b) MBS-COOH particles. As seen in these
figures, particles that are dispersed uniformly in the presence of acid groups, have formed
a continuous-like morphology in the absence of reactive groups.[I]

17



1.2 QUANTIFICATION OF MORPHOLOGY

Particle dispersion has been reasoned to be related to the local stress state and thus

may affect the final failure mechanism[14,21]. But, attempts to correlate particle dispersion

with any macroscopic mechanical properties have been severely hindered by the lack of

constitutive models and suitable quantitative parameters. The quantitative analysis of a

spatial distribution are summarized in 1.2.1 and 1.2.2. The correlation of distribution with

mechanical properties is summarized in 1.2.3.

There are several mathematical methods to extract the information on the spatial

distribution of points in a pattern.

1.2.1 Special Functions Characterizing The Randomness[25]

(a) P function

P function is a cumulative distribution function of the distance between random

points and the nearest object rl. The P function pet) is defined by

pet) = Pr (r1<t)

= Pr ( random point is in the circles of radius t with center Xi)

= S-1 ( area of union of circles of radius t which have the centers at each

object)

Where Pr ( ) is the probability, S the total area, and Xi the coordinate of the ith point. The P

function is a smooth function of t.

18



(b) Q function

Q function is a cumulative distribution function of the distance between two nearest­

neighbor points r2• The Qfunction is defined by

Q(t) = Pr ( r2<t )

Q(t) is not a smooth function oft, but it is more sensitive to the randomness than pet).

19



1.2.2 Thiessen Tessellation

Thiessen polygons were first proposed by A. H. Thiessen[26], and later further

developed by R. E. Horton[27]. Thiessen polygons are formed from drawing vertical

bisectors of the lines joining any two particles. The smallest polygons encompassing each

particle (or center) are defmed as the Thiessen polygons, as shown in Fig. 1-9. All locations

inside each polygon are closer to its center than to any other center, and the particles that

share a common edge are call "Thiessen Neighbors", as shown in Fig. 1-10. The distribution

profiles of the number of cell sides ( number of Thiessen neighbors ), the perimeter of the

cell, and the area of the cell can all be used to represent the dispersion characteristics.

However, all the statistical parameters above are "scalar" and can only represent the

deviation from random dispersions.

1.2.3 Normalized Interparticle Distance Index and Relative Angle Index

More recently, Huang[3] proposed two spatial parameters. One is the normalized

interparticle distance index (Fig. 1-11 ), and the other is relative angle index (Fig. 1-12 ).

This researcher calculated these two parameters of every pair of first neighbors to generate

a normalized frequency distribution. Fig. 1-13 is the histogram of the normalized frequency

distribution of a material. The x-axis is the interparticle distance index, Lifn , and the y-axis

is the relative angle index, 8fn' The shade represents the frequency of a particular Lifn and efn

interval; the lighter the shade, the higher the frequency is. The shade variation, in either

direction, then represents the frequency distribution along that axis[3]. Huang[3] assumed

that toughness, which is a macroscopic property and is interpreted as the ability to absorb

energy, might be comparable to the sum of the local microscopic energy absorption events.

This researcher argued that first neighbor interaction is the most dominant factor that

influences the local stress state, thus the toughness should be proportional to the sum of all

energy absorption events between all first neighbor pairs.
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Fig. 1-9 Thiessen polygons[3]
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Fig. 1-10 Thiessen neighbors[3]
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( Llln= (rlHZ) / L )

where r =radius of each individual particle

L =distance between the centers of the particles

..---- ....
L

Fig. 1-11 Normalized interparticle distance index[3]
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Fig. 1-12 Relative angle index[3]
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Fig. 1-13 2-D contour plot of a typical frequency distribution[3]
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Huang[3] first determined the dispersion profile ofa blend, in terms of the frequency

distribution of b.fn and efn' Then used FEM technique to characterize the energy absorption
,

between a pair of first neighbor particles. Afterward, the overall energy absorption potential

for a particular blend can be determined from a compilation of the local strain energy

absorption indices and the frequency distribution of b.fn and efn of the blend.

The overall energy absorption index (~ ) can be mathematically represented by

1 90°

~ = L L CD Nn,8fn xENn,8fn)
Nn=O 8fn=0°

DMn,8fn is the spatial distribution profile of the particles in a blend. EMn,8fn is the energy

absorption profile of different spatial arrangements. Fig. 1-14 shows the overall energy

absorption index (~ ) versus concentration for epoxy/EXL-2691 blends. The trend of ~ is

consistent with the trend of the fracture toughness.

It seems that through the energy absorption index, one can successfully correlate the

morphology with the toughness performance, but it only suggests an optimization of the

toughness with a given concentration of toughener particles. Further developments are

needed to predict the toughening performance of a polymer blend.
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Fig. 1-14 Overall energy absorption potential versus particle concentration for the
epoxylEXL-2691 blends. The trend of energy absorption index is consistent with the trend
of the fracture toughness.[3]
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2. OBJECTIVE

The morphology of the dispersion of the rubber particles has been shown that as an

important parameter that influences the fracture toughness of the blend[1-2]. However,

quantitative correlation between the morphology with toughness performance has not been

performed. The next most important step is to characterize the particle dispersion and

establish a quantitative correlation with the overall toughing performance.

Qian[2] proposed that in order to understand the effect of dispersion morphology to

the toughening performance, it is desirable to precisely control the degree of the segregation.

This can be achieved by emulsification ofthe uncured epoxy. The size of the epoxy particles

and number of the particles within each epoxy particle might be controlled by the degree of

emulsification and ratio of the rubber particles and epoxy. Thus we proposed some model

systems which are described in Fig.2-1.

Fig. 2-1 (A) is the description of the original system in which the rubber particles

disperse uniformly. Fig. 2-1 (B) is the description of the first model system which uses pre­

gelled epoxy particles to force the rubber particles segregate. Fig. 2-1 (C) is the description

of the second model system which uses rubber particles imbedded in pre-gelled epoxy

particles to control the micro-clusters of the rubber particles. Both systems can be achieved

by emulsification. Through these model systems we may systematically vary the dispersion

of rubber particles and then get some insight of the correlation between the dispersion of the

rubber particles with toughness performance.
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Fig. 2-1 Schematic representation of the proposed model systems[28]
(A) Randomly dispersed rubber particles(original system)
(B) Clustered but not connected(model I)
(C) Clustered and connected(model II)
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3. EXPERIMENTAL APPROACH

3.1 MATERIAL PREPARATION

The epoxy resin used was DER331 ( Dow Chem. ), a liquid diglycidyl ether of

bisphenol-A ( DGEBA ). Its properties are shown in Table 3-1. Piperidine ( Fisher Scientific

) was used as the curing agent. The molecular structures ofthe epoxy resin and the piperidine

curing agent are shown in Fig. 3-1. Table 3-2 is the description of the toughing agents used.

Table 3-1 Typical properties ofDER331 liquid epoxy resin[2]

n Epoxide Viscosity Color Flash Specific

Equiv. Wt. (cps@25° C) Max. Point Gravity

( Grader) ( ° F) (25/25° C)

I 0.15 I 182-192 111,000-14,000 I 125* I 485 I 1.16 I
* APHA Color --- ASTM method 1209

Table 3-2 Description of the modifier

I Modifier I Description of Modifier I
MBS Structured core/shell latex particles comprised of a methacylated

butadiene-styrenecopolymerfrom Rohm&Haas[EXL-2691(25%shell),

RJC-2680(60%shell)]

MBS-COOH Similar to MBS plus the acid functionality in the PMMA shell from

Rohm&Haas[EXL-26111
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Fig. 3-1 The molecular structures of the epoxy resin[l] and piperidine curing agent[2]
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3.1.1 Epoxy Systems

(A) The neat epoxy systems were first heated to 80°C in a silicone oil bath and degassed.

5 phr curing agent was then injected, mixed with epoxy, and degassed again. The liquid was

then poured into a preheated ( 80°C or 120°C depends on the curing schedule) mold. The

mold was then placed in an oven for the curing. After the curing, the mold was removed from

the oven and allowed to cool gradually to room temperature.

(B) For MBS(EXL-2691) modified epoxies, the rubber was first mixed with the epoxy

and followed the same cure procedure stated above.

(C) For MBS-COOH(EXL-2611) and MBS(RJC-2680) modified epoxies, a solvent­

based process was used to disperse the rubber particles since the segregation could not be

broken down by normal stirring[1-2]. The rubber particles was mixed with acetone at room

temperature for at least 12 hours and then be sonified for 2 mins. Then the epoxy resin was

added. The solvent was then removed by vacuum distillation at 80°C. After the solvent was

completely removed, the cure procedure in (A) was used.
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3.1.2 RubberlEpoxy particleslEpoxy System(model I)

(A) Fabrication of Epoxy Particles

Table 3-3 is the recipe used which was developed from a technical report of the

Emulsion Polymers Institute[29].

Table 3-3 Description of the recipe

DDI water: 150 g

Water Phase Hexadecyltrimethylammonium bromide: 0.67 g

Cetyl alcohol: 1.36 g

Epoxy(DER 331) : 25 g

Toluene: 6.3 g

Oil Phase Methyl isobutyl ketone(MIBK) : 6.3 g

Piperidine: 1.5 C.c.

The oil phase was mixed at 80°C and then 5 phr curing agent was added. The oil

phase was then mixed and then cured in an oven for the curing procedure(details will be

discussed in section 4.1). The water phase was mixed at 80°C. After the curing, the oil phase

was then dispersed into the water phase by mechanical stirring. The solvents and surfactant

were removed by vacuum distillation(80°C) and repeated hot DDI ( Distilled-Deionized)

water extraction(50°C), respectively[30]. The liquid was then dried(50°C) in an oven to get

the epoxy particles.

(B) Rubber/Epoxy particlesiEpoxy System

The same procedures stated in section 3.1.1(C) was followed.
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3.1.3 Epoxy Particles(with rubber particles in them)/Epoxy System(model II)

(A) Fabrication of epoxy particles

10wt% rubber particles was mixed with acetone at room temperature for at least 12

hours and then be sonified for 2 mins. Then the epoxy resin was added. After the solvent was

totally removed by vacuum distillation at 80°C, the other elements of the oil phase(Table 3­

3) were then added. Then the procedure in 3.1.2 (A) was used.

(B) Epoxy Particles(with rubber particles in them)/Epoxy System

The epoxy particles(with rubber particles in them) were added into the liquid epoxy

and then followed the same procedure stated in section 3.1.1(A).
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3.2 CHARACTERIZATION TECHNIQUES

3.2.1 Light Scattering Particle Analysis

A Coulter N4MD sub-micron particle analyzer was used to observe the size and size

distribution ofthe epoxy particles. A drop of the epoxy emulsion was put in a clear cuvette

and diluted by water to a suitable concentration for observation.

3.2.2 Transmission Optical Microscope ( TOM)

An Olympus BH-2 transmission-light microscope was used to observe the size and

size distribution ofthe epoxy particles. A'drop ofthe epoxy emulsion was spread onto a glass

slide for the observation.

3.2.3 Fracture Toughness

A single-edge-notched 3 point bending ( SEN-3PB ) method was used to determine

the average critical stress intensity factor K1C of at least 5 specimens per formulation. The

specimens were either generated by cutting from a plaque or by using a mold which was

designed for 3PB specimen for casting. Fig. 3-2 illustrates the geometry used. The ASTM

D5045[31] guideline was followed. Pre-cracks were introduced to the notched specimens by

hammering a razor blade which was immersed in liquid nitrogen to generate a sharp crack.

The fracture toughness tests were performed using an Instron 1011 screw-driven

Instron testing frame at a cross-head speed of lmmlmin. The following relations[l] were

used to calculate K1C :
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Fig. 3-2 Schematic diagram of geometry used for fracture toughness assessment[l]. All

dimensions are millimeters.
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fix) =3x 1/2 [1.99 -x(1-x)(2.15 -3.93x +2.7x 2)]

2(1 +2x)(1 _x)3/2

where P: critical load for crack propagation in kilo-newton

S: Span length in millimeter (50.8 here)

t: specimen thickness in millimeter

w: specimen width in millimeter

f(x): non-dimensional shape factor

x: a/w, the crack length to specimen width ratio

a: crack length in millimeter ( measured after the specimen breaks)

3.2.4 Compression Test

The compressive behavior of materials were evaluated by the ASTM D695 test

method[32]. 5x5x10 mm specimens were machined from the cured plaques. An Instron 1011

screw-driven Instron testing frame at a cross-head speed of 1.5 mm1min was used. The

results are average of at least 3 tests.

3.2.5 Scanning Electron Microscope ( SEM )

Fracture surface of the SEN-3PB specimens were examined using a JEOL 6300F

scanning electron microscope at an acceleration voltage of 5kv. Samples were cut from the

fractured specimens and coated with a thin layer of Au-Pd to reduce any charge build-up.

Fig. 3-3 represents the fracture surface ofthe SEN-3PB specimen. As seen in the figure, three

different deformation regions were formed. They.are pre-crack region, slow crack growth
"
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Fig. 3-3 Schematic representation of the fracture surface[2]
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region(stress-whitened zone), and fast crack growth region. The SEM observations were

performed in the slow crack growth region(stress-whitened zone) since it represents the

plastic zone.

3.2.6 Differential Scanning Calorimetry ( DSC )

Glass transition temperature ( Tg ) ofneat and modified epoxies were measured using

a Mettler TA 3000 Thermal Analysis System. Powder or a small piece from the specimens

weighted 15~20 mg were used. DSC analysis were conducted at a heating rate of 10
0

C/min

in the range ofO~150°C.
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4. RESULTS AND DISCUSSION

4.1 EMULSIFICATION OF EPOXY

The epoxy particles were produced by a direct emulsification method[33]. The liquid

epoxy is added to a mixture of water and volatile solvents and emulsified in water

containing surfactant using conventional emulsification methods. The epoxy existed as small

spherical droplets surrounded by surfactant which forms a "skin" over the droplets and thus

prevented coalescence of the particles[34]. Since the curing agent is present the particles are

allowed to gel. The solvent and surfactant were then removed by vacuum distillation and hot

DDI water extraction respectively. The liquid was then dried in an oven to get the epoxy

particles. Fig. 4-1 is a schematic drawing of the procedures of the making of the epoxy

particles. As seen in Fig, 4-1, the oil phase and water phase were made separately first and

then the oil phase was dispersed into water phase by mechanical stirring. The curing step of

the oil phase was to confirm that the epoxy particles will not deform during the drying and

the later steps. This will be discussed later.

As shown in Table 3-3, toluene and MIBK were used to lower the viscosity of the

epoxy to a level suitable for emulsification. Hexadecyltrimethylammonium bromide and

Cetyl alcohol acted as surfactants to stabilize the dispersed epoxy particles in the water.

Many batches were tried to develop this recipe because the amount of the solvents

and surfactant significantly affect the particle size and size distribution. Some solvent is

needed to lower the viscosity of epoxy but too much solvent will cause smaller particle size

and increase the difficulty in the solvent removing step. The amount of surfactant is

important also because too much will decrease the particle size and too little will decrease

the stability of the dispersion.
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Table 4-1 lists some representative batches tried. From batches a and b, we can know

the effect of ultrasonification. Ultrasonification is always used for emulsification to generate

small and narrow size distribution particles. However, a large particle size (larger than 5,um)

is preferred for this study since such particles would be effective to promote the clustering

of the O.2,um rubber particles. Sub-micron epoxy particles can not effectively force the

rubber particles to segregate. Thus only mechanical stirring can be used to disperse the oil

phase and this results in large particles with a broad size distribution. In batch c, no solvent

was used. The viscosity ofepoxy increased rapidly after the adding ofcuring agent and it was

impossible to use the spin bar to disperse the oil phase. Therefore some solvent must be used

to lower the viscosity of the epoxy. In batch d, the dispersion coagulated. This result

suggests more surfactant is necessary to stabilize the particles. In batch e, we used much

larger amount ofsurfactant and the result was small particle sizes. The recipes for batch f and

g were identical and the results were large particles and broad particle size distributions. The

difference of the recipe for batch h with batch f and g was the curing schedule. The longer

curing time can cause some very large particles. In batch i, the curing time was only 2 hours

and the result was similar to that of batch f and g. These results suggest that 2 hours curing

time is enough for our particle size requirements even though some sub-micron size particles

will be generated. Fig. 4-2 is the TOM photograph of the epoxy particles generated in batch

h. The particle size distribution is very broad, but we can get the suitable sizes we need for

the next step ( add these .pre-gelled epoxy particles into rubber-modified epoxies to control

the segregation of rubber particles). Fig. 4-3 is the TOM photograph ofthe epoxy particles

generated in batch i. The size and size distribution are pretty similar to Fig. 4-2. One can use

screen meshes to narrow the size distribution.

Table 4-2 shows the Tgs of the epoxy particles generated in batch hand i. It shows

that the Tg of the epoxy particles increases as the curing time increases. It means that the

crosslink density of the epoxy particles increases as the curing time increases.
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Recipe i and 2 hours curing time were used for the fabrication of the epoxy particles

in Section 4.3.

Table 4-1 Development of the recipe

Batch Water HB CA Toluene MIBK Epoxy PIP Curing Sonify Size

ID (g) (g) (g) (g) (g) (g) (cc) Time(hr) (min) ( tim)

a 150 0.67 1.36 12.6 12.6 25 1.5 1.6 2 0.326-0.357

b 150 0.67 1.36 12.6 12.6 25 1.5 2 0.306-0.345

c 150 0.22 0.45 0 0 25 1.5 *
d 150 0.22 0.45 6.3 6.3 25 1.5 2 0 **
e 150 2.04 6.3 6.3 25 1.5 2 0 0.207-0.352

f 150 0.67 1.36 6.3 6.3 25 1.5 4 0 14-35.6

g 150 0.67 1.36 6.3 6.3 25 1.5 4 0 8.9-35.9

h 150 0.67 1.36 6.3 6.3 25 1.5 4.5 0 8.45-70.8

150 0.67 1.36 6.3 6.3 25 1.5 2 0 O~37.9

* The viscosity of oil phase was too high to be dispersed.

** Dispersion coagulated

Table 4-2 The effect of curing time on Tg of epoxy particles

Curing Time ( hr )

4.5

2
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Fig. 4-2 TOM photograph of the epoxy particles generated in batch h
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Fig. 4-2 TOM photograph of the epoxy particles generated in batch h
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Fig. 4-3 TOM photograph of the epoxy particles generated in batch i
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4.2 THE EFFECT OF CURING SCHEDULE

The fracture toughness ofrubber-modified polymers depends on the properties of the

dispersed rubber phase. However, the properties of the rigid matrix are even more important,

since the plastic processes responsible for toughening take place in within the matrix. The

influence of matrix ductility on fracture toughness has been reported by many

investigators[7,16,35-40].

Wu[16] claimed that at the same amount of rubber, the extent to which a matrix can

be rubber toughened depends on the intrinsic brittleness/ductility of the matrix polymer.

Pearson and Yee[39] varied the matrix ductility by using epoxide resins of varying epoxide

monomer molecular weights. These researchers found that the fracture toughness values for

the neat epoxies are almost independent of the monomer molecular weight of the epoxide

resin used. However, the fracture toughness values of the elastomer-modified epoxies are

very dependent on the epoxide monomer molecular weight[39](Fig. 4-4). The toughenability

of a DGEBA epoxy by elastomeric addition depends upon the crosslink density of the epoxy

matrix. The lower the crosslink density ( the higher the monomer molecular weight ), the

greater the toughenability[39]. These researchers also concluded that simply adding a soft

elastomeric phase does not guarantee enhanced toughness. However, the addition of a soft

elastomeric phase to a ductile matrix results in the desired toughness enhancement[39].

Some investigators used the changing of curing schedule to vary the crosslink

density[36-38,40]. By employing different curing schedules the degree of crosslinking in the

matrix phase can be changed, but without altering the microstructure ofthe dispersed rubbery

phase. Levita[40] showed that the fracture toughness of Epon828-piperidine increases on

increasing curing temperature(Fig. 4-5). It shows that the networks obtained at high

temperature are looser and more flexible, as suggested by the progressive reduction of the

glass transition temperature(FigA-6).
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Fig. 4-4 Fracture toughness increases modestly with increasing monomer molecular weight
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dramatically with increasing epoxide monomer molecular weight. (0) Elastomer-modified
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Fig. 4-5 Fracture toughness, K1C' of the Epon 828-piperidine resin as a function of cure
temperature. The fracture toughness increases on increasing curing temperature. It shows that
the networks obtained at high temperatures are looser and more flexible.[40]
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Fig. 4-6 Glass-transition temperature of the Epon 828-piperidine resin as a function of cure
temperature. The Tg decreases as the cure temperature increases. It shows that high cure
temperatures result in lower cross-link. densities. [40]
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According to the information above we can know that the fracture toughness of

rubber-modified epoxies depends on the ductility of the matrix and the toughenability

increases as the ductility of the matrix increases. This is very important to the development

of the curing schedule in our research.

Table 4-3 lists the K1C and Tg of neat and rubber-modified epoxies cured by different

curing schedule. The original curing schedule for neat and rubber-modified epoxies is 120 0

C 16 hours. However, since we cure the epoxy particles at 80 a C, we have to use two step

curing schedule. The curing schedule b is 80 0 C 4.5 hours and 120 0 C 16 hours since we first

successfully generate epoxy particles by cured the oil phase at 80 a C for 4.5 hours. However,

the result of curing schedule b shows that the ductility of the matrix is too low ( high Tg )

and the fracture toughness difference between inter-connected and uniformly dispersed

structures is only 0.17. We have to find a suitable curing schedule to get a ductile matrix to

increase the difference of fracture toughness so that we can study the influence of the .

dispersion of rubbery phase. According to Levita[40], the ductility of the matrix increases

as the curing temperature increases. So, in curing schedule c we use 80 0 C 4.5 hours and

160 a C 6 hours. The results show that the matrix is more ductile and more toughenable than

that for curing schedule b. Curing schedule d is 80 0 C 2 hours and 120 0 C 16 hours. The

results show that the matrix is not ductile enough again. Curing schedule e is 80 a C 2 hours

and 160a C 6 hours. The results show that the matrix is sufficiently ductile and the difference

of the fracture toughness of inter-connected and uniformly dispersed structures increased to

0.47.

The 80 a C 2 hours and 160a C 6 hours curing schedule was used for the curing of the

models and original systems in Section 4.3.
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Table 4-3 The effect of curing schedule on K\C and Tg ofneat and rubber-modified epoxies

Sample Curing Schedule Neat Epoxy MBS*/Epoxy MBS-COOH/Epoxy

ID (hr) K,r.** Tg K1r. Tg K1r. Tg

a 120 (16) 0.67 89.9 2.58 90.0 2.15 90.6

b 80 (4.5), 120 (16) 0.78 100.4 1.89 94.3 1.72 92.3

c 80 (4.5), 160(6) 0.55 87.4 2.45 87.3 2.08 89.4

d 80 (2), 120(16) 0.69 89.8 2.23 90.7 1.94 92.0

e 80 (2), 160(6) 0.65 85.1 3.00 83.9 2.53 83.0

• EXL-2691 from Rohm & Haas

•• Mpa.ml12
, Fracture toughness results were get from SEN-3PB fracture toughness tests.
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4.3 THE EFFECT OF BLEND MORPHOLOGY

4.3.1 RubberlEpoxy particleslEpoxy System(model I)

25wt% epoxy particles of the total epoxy was used to generate this system. Higher

wt% ofepoxy particles was tried, but the viscosity of the system was too high for mechanical

stirring. MBS( RJC-2680) rubber was used since the dispersion of them in the epoxy matrix

is better than that of the MBS-COOH( EXL-2611 ). Fig. 4-7 and Fig. 4-8 are the SEM

micrographs taken from the stress-whitened zone of epoxies modified by EXL-2611 and

RJC-2680, respectively. The dispersion of the RJC-2680 modified epoxy is much more

uniformly than that ofEXL-2611 modified epoxy. 10wt% rubber particles ofthe total epoxy(

epoxy particles + liquid epoxy) was used. For comparison, a batch without epoxy particles

was made.

Fig. 4-9 and Fig. 4-10 are the SEM micrographs taken from the stress-whitened zone

ofthe model system. We can see that the epoxy particles still retain their shapes and more

importantly, the interfaces between the epoxy particles and the matrix epoxy do not

interference with the crack propagation. Table 4-4 lists the results of the SEN-3PB fracture

toughness tests and the yield stress results from the compression tests of the model system

and the original system.

Table 4-4 Mechanical properties of the original system and the model(model I) system

K 1C Oy

(MPa.m
1l2

) (MPa)

Original System* 1.98 87.97

Model System** 2.09 81.92
* The rubber content IS 10 wt% of the epoxy.

** The rubber content is 10 wt% of the total epoxy. 25 wt% of the total epoxy is epoxy particles.
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Fig. 4-7 SEM micrograph taken from the stress-whitened zone of epoxy modified by EXL­
2611. The rubber particles do not disperse uniformly.
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Fig. 4-7 SEM micrograph taken from the stress-whitened zone of epoxy modified by EXL­

2611. The rubber particles do not disperse uniformly.
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Fig. 4-8 SEM micrograph taken from the stress-whitened zone of epoxy modified by RJC­
2680. The rubber particles disperse very uniformly.
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Fig. 4-8 SEM micrograph taken from the stress-whitened zone of epoxy modified by RJC­

2680. The rubber particles disperse very uniformly.
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Fig. 4-9 SEM micrograph taken from the stress-whitened zone of the model system(model
I). As seen in this figure, the interfaces between epoxy particles and epoxy matrix do not
interference with the crack propagation.
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Fig. 4-9 SEM micrograph taken from the stress-whitened zone of the model system(model
I). As seen in this figure, the interfaces between epoxy particles and epoxy matrix do not

interference with the crack propagation.
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Fig. 4-10 SEM micrograph taken from the stress-whitened zone ofthe model sysytem(model
I). The epoxy particles still retain their shapes and the interfaces between epoxy particles and
epoxy matrix do not interference with the crack propogation.
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Fig. 4-10 SEM micrograph taken from the stress-whitened zone ofthe model sysytem(model
I). The epoxy particles still retain their shapes and the interfaces between epoxy particles and
epoxy matrix do not interference with the crack propogation.
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The results show that for the model system, the fracture toughness is somewhat

higher and the yield stress is lower. Therefore the toughness of the original system can indeed

be improved if we add some pre-gelled epoxy particles into the system. Moreover the

toughness of the system can be improved only if we increase the connectivity of the rubber

particles.

Fig. 4-11 shows the fracture surfaces of the model system(left) and the original

system(right). We can see that the deformation zone(stress-whitened zone) of the model

system is larger than that of the original system. It also means that the increase of the

connectivity of the rubber particles can improve the toughness of the blend.
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Fig. 4-11 The fracture surfaces of the model system(left) and the original system(right).The
stress-whitened zone of the model system is larger than that of the original system.
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•

Fig. 4-11 The fracture surfaces of the model system(1eft) and the original system(right).The
stress-whitened zone of the model system is larger than that of the original system.
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4.3.2 Epoxy Particles' with rubber particles in them )/Epoxy System(model II) .

10 wt% rubber particles was used for the fabrication of the epoxy particles. Higher

wt% of rubber particles has been tried, but the viscosity of the system was too high for

mechanical stirring. The weight of the pre-gelled epoxy(weight of epoxy particles - weight

of rubber particles) is 25 wt% of the total epoxy. RJC-2680 rubber was also used in this

research. For comparison, a batch without epoxy particles was made.

Fig. 4-12 and FigA-13 are SEM micrographs taken from the fracture surface of the

model system. We can see that the epoxy particles still retain their shapes and rubber

particles can be embedded into the epoxy particles to control the clustering of rubber

particles in the epoxy matrix.

Table 4-5 lists the results ofthe SEN-3PB fracture toughness tests and the yield stress

results from the compression tests of the model system and the original system.

Table 4-5 Mechanical properties of the original system and the model(model II) system

K1C Oy

(MPa.ml12
) (MPa)

Original System* 1.07 99.0

Model System** 0.89 99.1
* The rubber content IS 2.5 wt% of the epoxy.

** The rubber content is 10 wt% of the epoxy particles. 25 wt% of the total epoxy is epoxy particles.

From the results above we can see that for the model system, the fracture toughness

is somewhat lower and the yield stress is similar to that of the original system. These results

suggest that clustering may be a necessary but not a sufficient requirement to increase the

fracture toughness of the rubber-modified epoxies.. Clearly, there is support for the
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Fig. 4-12 SEM micrograph taken from the fracture surface of the model system(model II).
It shows that the rubber particles can be embedded into the epoxy particles to control the
clustering of the rubber particles in the epoxy matrix.

60



Fig. 4-12 SEM micrograph taken from the fracture surface of the model system(model II).
It shows that the rubber particles can be embedded into the epoxy particles to control the
clustering of the rubber particles in the epoxy matrix.
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Fig. 4-13 SEM micrograph taken from the fracture surface of the model system(model II).
As seen in this figure, the epoxy particles still retain their shapes. It also shows that the
rubber particles can be embedded into the epoxy particles to control the clustering of the

rubber particles in the epoxy matrix.
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Fig. 4-13 SEM micrograph taken from the fracture surface of the model system(model II).
As seen in this figure, the epoxy particles still retain their shapes. It also shows that the
rubber particles can be embedded into the epoxy particles to control the clustering of the

rubber particles in the epoxy matrix.
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conclusion that a co-continuous morphology is also required.

One important point of this research is that the epoxy particles is only 25 wt% of the

total epoxy. Obviously, in order to effectively correlate the connectivity and clustering ofthe

rubber particles to the fracture toughness performance, higher amount of the epoxy particles

is needed. So that the rubber particles are forced to segregate or cluster without significantly

reducing the connectivity.
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5. CONCLUSIONS AND RECOMMENDATIONS

In this research, we have proposed two models to control the blend morphology of

the rubber-toughened epoxies, one is rubber/epoxy particles/epoxy system(model I) which

addresses the connectivity issue, the other one is epoxy particles(with rubber particles in

them)/epoxy system(model II) which addresses the clustering issue. The results showed that

pre-gelled epoxy particles can be added to force the rubber particles to segregate and rubber

particles can be embedded into the epoxy particles to control the size of the micro-clusters

of the rubber particles.

These results also show that the connectivity of the rubber particles in the epoxy

matrix might be very important to the fracture toughness performance ofthe rubber-modified

epoxies, but further research is needed.

In this research, the amount of the epoxy particles added were only 25wt% since the

viscosity limit for the mechanical stirring. In order to further understand the effect of the

blend morphology to the toughening performance, higher amount of the epoxy particles is

desirable. One can use some solvent to overcome the viscosity problem of the processing to

increase the amount of epoxy particles.

More control to the epoxy particle size is suggested. One can use screen meshes to

control the size of the epoxy particles.

One might be get more insight of the effect of the blend morphology to the fracture

toughness performance ofrubber-toughened epoxies by using more and size controlled epoxy

particles.
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