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EXECUTIVE SUMMARY

Laser engineered net shaping (LENSTM) is a solid freeform fabrication process

that has the capability of fabricating intricately shaped, 3-D structures from a CAD

model. A study of the effects of LENSTM processing parameters (laser power, travel

speed, and powder mass flow rate) on process efficiencies. was conducted. The materials

used in this study were H-13 tool steel and copper powder deposited on H-13 tool steel

substrates. Laser energy transfer efficiency (l1a) was measured using a Seebeck envelope

calorimeter and it was found that Tla varied from 30-50% under the range of processing

parameters tested. (Laser output power: 125-500W, travel speed: 5-15mm/s) Powder

material feed rate and the type of powder delivered to the molten pool showed no effect

on laser beam absorption. Melting efficiency (TIm) was found to increase with increasing

laser input power, travel speed, and powder mass flow rate. A dimensionless parameter

model that has been used to predict melting efficiency for laser beam welding processing

was investigated for the LENSTM process. Good agreement was obtained between

experimentally measured 11m data and 11m calculated from the model. From these results, a

semi-empirical model was developed specifically for the LENSTM processing window.

Deposition efficiency (TId) was also investigated and results show that under optimum

processing conditions, the maximum attainable deposition efficiency was approximately

14%. A semi-empirical model was developed to predict TId as a function of process

efficiencies and LENSTM processing parameters. A dilution model, that incorporates

process efficiencies to estimate the degree of mixing between the substrate and deposit

material, was investigated. The arc welding dilution model was found to be applicable for

the LENSTM process and good correlation existed between experimentally measured and

calculated dilution values. A new method of predicting dilution based on Rosenthal's

heat flow solution was developed. The method showed good correlation between

measured and calculated results. Knowledge ofLENSTM process efficiencies measured in

this study are crucial since these results are needed to develop accurate heat flow and

solidification models for the LENSTM process.

1



1.0 INTRODUCTION

Laser engineered net shaping (LENSTM) is a solid freeform fabrication process

that has the capability of producing dense, near net-shaped parts through the use of a

computer aided drawing (CAD). The LENSTM process has gained interest throughout

academia and industry where the goal is to move this proof of stage concept into full-

scale manufacturing, prototyping, and/or repair implementation. In order for this to occur,

it is essential to conduct research on the effects of processing parameters on heat flow

and solidification behavior during LENSTM processing.

Heat flow models can be developed to control and predict residual stress and

distortion that occur during deposition. The results of these models can provide an insight

to how processing parameters can be manipulated to produce a metallurgically sound

r
structure while maintaining dimensional tolerance. Tailoring of microstructure and

resultant mechanical properties can be predicted and controlled by developing

solidification models that incorporate heat flow and thermal cycling behavior during

LENSTM processing. The development of these process optimization models is a crucial

step before the full capabilities ofthis rapid prototyping process can be exploited.

The objectives of this research are to measure LENSTM process efficiencies so

that results can be used in future heat flow and solidification modeling studies. There are

three main dimensionless process efficiencies that can be measured for this process: laser

energy transfer efficiency, melting efficiency, and deposition efficiency. Laser energy

transfer efficiency, is a parameter that is used to describe the fraction of energy that is

actually absorbed by the workpiece from the total laser output energy. In past research,

there have been studies in which the laser energy transfer efficiency was measured for
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laser welding processes as a function of laser beam irradiance and travel speed by means

of calorimetry; however, there have been no studies conducted that directly measure

energy transfer efficiency specifically for the LENSTM process. What sets the LENSTM

process apart from other laser welding process is that powder mass additions are

incorporated into the weld pool to fabricate a component, i.e. by laser deposition. Powder

mass additions may have an effect on the energy transfer efficiency: either by increasing

laser beam absorption or by decreasing absorption by reflective losses off of the powder

particles.

The second process efficiency to be measured is the melting efficiency, which is a

parameter used to describe the amount of energy that is utilized to create a molten pool

from the total energy absorbed by the workpiece. Several models have been developed

that predict melting efficiency from knowledge of processing parameters (laser power

and travel speed), heat flow geometry, and base metal thermophysical properties. These

models can be compared to experimental measurements of actual laser deposits to

determine ifthese predictive models can be applicable to the LENSTMprocess.

Lastly, deposition efficiency is a parameter that is used to describe the ratio ofthe

actual deposition rate to the output powder mass flow rate. From a processing standpoint,

the deposition efficiency is an important quantity to recognize because only a small

fraction is actually fused to the substrate leaving a large amount to be recycled or

scrapped. It is thus essential to understand what roles processing parameters have on the

joining of powder material to the workpiece so as to avoid excess costs attributed to

wasted powder.
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2.0 LITERATURE REVIEW

2.1 Solid Freeform Fabrication

2.1.1 Introduction

A recent advancement in automated manufacturing has been the development of

solid freeform fabrication (SFF). In this approach, dense, three-dimensional, near net

shaped parts are produced directly from computer-aided drawings (CAD) without the

need for molding or additional tooling. This fabrication process has evolved from a

combination of conventional manufacturing techniques that utilize the following

processes to achieve the desired part geometry: near-net shape, subtractive, and additive. 1

Near net-shaped processes are distinct forms of forging, molding, or casting. The

component is formed through the use of molds and dies whereby the final product takes

on the geometry of the mold or die. The subtractive processes are commonly performed

when a component is initially created by methods such as casting, but then must undergo

subsequent machining operations to remove any unwanted material from the structure in

order to achieve final part tolerance. Additive processes usually take on some form of

joining or welding to create structures with more complex shapes than the original. The

limiting steps in conventional manufacturing techniques are the design and fabrication of

molds and dies, machining, and welding. A significant amount oftime and labor must be

invested to manufacture a product from start to finish. For example, in forgings and/or

castings, several weeks to a year can elap'se in the development and testing of a mold or

die before it can even be employed in a manufacturing process.2

The desire to reduce manufacturing times, cost, and the multi-step processing

associated with the movement of a part from the initial design stages to full scale

4
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manufacturing has been the driving force for the development ofSFF. One such method

of solid freeform fabrication is laser engineered net shaping (LENSTM), developed by

Sandia National Laboratories and commercialized by Optomec Design Company.3-6 The

following section gives an introduction to the components that comprise the LENSTM

system and how they are employed to fabricate near net-shaped, 3-D structures.

2.1.2 Laser Engineered Net Shaping (LENSTM)

The LENSTM workstation in itself consists of a Nd:YAG laser, controlled

atmosphere glovebox, a 3-axis (or 5axis) computer controlled positioning system, and

multiple powder feed assemblies. To produce a structure using the LENSTM workstation, a

computer-aided drawing (CAD) is first developed of the desired part geometry using 3-D

solid modeling software having a stereolithography (.stl) file format. After the CAD model

has been created it is sent through a file-slicing program (decomposition package) where it

is· subdivided into discrete planar cross sections of a finite thickness yielding a .sli file

format. 1 The cross sections are in turn converted into machine code (.dmc), which is used

to direct the movement of a multi-axis motion control system through a sequence ofbinary

ASCII commands. The component is constructed by the laser deposition of powder

material in a line-by-line, layer-by-Iayer manner in a shape that is dictated by the CAD

model.

The molten pool is created when the continuous wave Nd:YAG laser beam is

focused onto the substrate. Powder material is then delivered directly into the molten pool

by the powder feed mechanism through a series of four copper nozzles. Upon solidification

a metallurgical bond is formed between the substrate and the powder material. The

programmed part geometry (CAD model) controls the movement and direction of an X-Y
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stage upon which the component resides and is continuously in motion when a part is being

built. The nozzles, as well as the focusing lenses of the laser, are incremented in the (+) z

direction to begin the deposition process of subsequent layers thereby building the three

dimensional form ofthe component. Successive layers are deposited atop one another until

the three-dimensional part is completed in a layer-by-layer manner. A schematic illustration

of the LENSTM process can be seen in Figure 2-1. Powders that have not been fused to the

workpiece and fall into the catch tray may be recycled since the entire process is performed

in an inert, contamination free environment but must be sifted in order to remove unwanted

contaminants and agglomerated powder particles.

Part Motion

Figure 2-1. Schematic illustration of the LENSTM laser deposition process.

The LENSTM process has gained interest throughout industry where the goal is to move

this proof of stage concept into full-scale manufacturing, prototyping, and/or repair

implementation. In order for this to occur, it is important to conduct research on what

effects processing parameters have on microstructure and mechanical properties and

overall part integrity.
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2.1.3 LENSTM Processing Parameters

A fundamental understanding of the effect of LENSTM processing parameters on

microstructure and mechanical properties are essential in that the results can be used to

develop process optimization models, which will enable LENSTM operators to choose an

optimal set of parameters to rapidly produce a nearly defect free structure for a given

class of materials. LENSTM processing parameters can be divided into two discrete areas.

The first set of parameters deals primarily with the computer workstation, CAD model

decomposition process, and the machine codes that dictate stage movement. The purpose

of these parameters are to control the CAD model slicing algorithms and slice file

conversion into machine code, which in turn directs the deposition sequence. The second

set of parameters affect heat transfer and solidification behavior of each deposited layer.

These parameters form the basis of the present research- and thus will be discussed in

detail.

There are three main processing parameters that can be controlled by the LENSTM

process that in combination with one another, affect heat transfer, thermal cycling,

solidification behavior, and layer build height. The parameters are laser input power,

travel speed, and powder mass flow rate and they will be discussed in the following

sections.

2.1.3.1 Laser Input Power

Laser input power is the amount of energy that is transferred from the laser head

into the work piece. The input laser power and travel speed, are extremely important

processing parameter in that they control the temperature gradient, cooling rate, and

mode of solidification which will in turn affect the resultant microstructure. The

7



temperature gradient of a single point source can be derived based on the principles of

2-D and 3-D heat flow and knowledge ofthe laser input power, travel speed, and material

thermophysical properties. 2-D heat flow exists when the substrate thickness is on the

same order of the weld depth as depicted in Figure 2- 2. 3-D heat flow occurs when the

substrate thickness is much larger than the weld depth as illustrated Figure 2- 3. hi the

LENSTM process, heat flow can either be 3-D or 2-D. During the deposition of the first

few layers of a solid object, heat flow is predominately 3-D because heat is conducted in

the substrate radially in all directions because the substrate thickness is significantly

larger than the depth ofpenetration. Ifhowever, a thin walled structure is being deposited

heat flow is initially 3-D, because the heat is conducted through the substrate in a 3-D

manner, but becomes 2-D when the heat can escape only in the downward and

forward/backward directions away from the molten pool. This is attributed. to the high

depth to width ratio ofthe thin walled structure.

Figure 2- 2. Schematic illustration of 2-D heat flow conditions that exists when the plate
thickness is on the same order as the weld depth.

Figure 2- 3. Schematic illustration of 3-D heat flow conditions that exists when the plate
thickness is much larger than the weld depth.
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Heat flow is affected by base metal thickness, thermal properties ofthe base material, and

process variables such as: power and travel speed of the heat source.- The effects were

examined by Rosenthal.7 Analytical solutions for 2-D and 3-D conduction heat flow were

developed and are presented in Equations· [2-1] and [2-2] respectively.

T - T = 1]a
P ex (- SX)K (sr)

o 21ikd P 2a 0 2a

T T 1]aP (-s(r-x))
- 0 = 21ikr exp 2a

Where:

[2-1]

[2- 2]

T ;, Temperature (OC)
To = Initial Temperature ofthe Workpiece (OC)
P =Power (Watts)
11a = Energy Transfer Efficiency (Unitless)

. S = Travel Speed (mmls)
Ko = Modified Bessel function.
d =Plate Thickness (mm)
r2

= Radial distance from origin ofheat source (x2+r+:c) (mm2
)

k =Thermal Conductivity (W/mm-°C)
a =Thermal Diffusivity (mm2/s)

Rosenthal's equation takes into account several assumptions which include: a point heat

source, no melting, heat flow by conduction only, constant thermal properties, and no

heat loss from the work piece surface. A point to inject about the equations above is that

the model used in the development ofthese solutions does not take into account any mass

additions into the melt pool. Information on thermal conduction with powder mass
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additions is key for accurate predictions oftemperature gradients and cooling rates for the

LENSTM process.

The general form of Rosenthal's heat flow solutions can be modified so that

equations relating thermal conduction heat flow conditions to the temperature gradient

and cooling rate can be formulated.8 The temperature gradient is given as the change in

temperature with respect to a change in position. To determine the temperature gradient

along the weld centerline (y=O and z=O) at a distance from the heat source along the x-

axis, Equation [2-2] can be reduced to yield the following equation:

[2- 3]

From this equation it can be seen that the temperature gradient decreases with a decrease

in preheat temperature, a decrease in thermal conductivity, and an increase in the net

input power (l1aP). Travel speed will also have an affect on the temperature gradient. If

the travel speed of the heat source is increased, holding all other welding variables

constant, there is less time available for heat to be conducted away from the locally

heated region. This will lead to a decrease in the temperature gradient and will inevitably

change the temperature gradient along specific distances ofthe weld pool.

High-speed thermal imaging was used to deduce temperature gradient information

from the vicinity of the molten pool as a function of laser input power by Hofmeister et

al.9 A digital 64x64 CCD video camera was used to capture images of the laser and 316
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stainless steel powder interactions in the molten weld pool at 990 frames per second. The

thermal imaging system was calibrated using a tungsten-strip lamp radiance source

obtained from National Institute of Standards and Technology (NIST). A thermal image

from the molten pool can be seen in Figure 2- 4. As seen from this image, the weld pool

and surrounding areas were colorized and converted to a temperature scale. The images

convey information on the maximum temperature of the molten pool as well as the

temperature profile within its vicinity.

Figure 2- 4. Thermal image taken from the molten pool of a LENSTM deposit using a color CCD
thermal imaging camera.

From this, Hofineister et al were able to study the effects of laser beam input power on

the temperature gradient.9 In their study line deposits of 316 stainless steel were made at

a travel speed of7.62mm/s. Powder mass flow rates, however, were not specified so it is

impossible to decipher what effects powder mass additions had on the temperature

gradient for a given laser power and travel speed. Figure 2- 5 depicts how the temperature

profile varies across the molten pool as a function oflaser input power.
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Figure 2- 5. Thermal profile at distances from the center of the molten pool at varying laser
powers.

In this figure, the maximum temperature reached for each laser input power is shown for

laser powers of 165, 200, 275, 345, and 410 watts. There was no mention of whether or

not the laser powers used in this study were the actual power absorbed by the workpiece

or simply the output power of the laser. The region, at x=0, corresponds to the zone

directly underneath the heat source. A high initial temperature is observed then it appears

to taper off the further away it is from the heat source. At the highest laser power (410

watts), the slope of the temperature profile abruptly decreases at a distance ofx=0.5mm.

This region corresponds to the length of the molten weld pool in the x-direction. A

gradual decrease in the temperature profile follows in wake of the weld pool

corresponding to the temperature gradient in the solidified weld metal. The length of the

weld pool was observed to decrease for lower laser power settings. On the low laser
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power end, 165 watts, the length of the weld pool is approximately O.25mm. The

information gained from this research is that for a given material and travel speed, the

size ofthe weld pool is predominately controlled by the laser input power.

2.1.3.2 Travel Speed

Cooling rate can be described as the change in temperature with respect to time.

The same factors, which affect the temperature gradient, will also affect the cooling rate;

however, the ~ooling rate is also largely dependent upon the travel speed of the heat

source. By multiplying the temperature gradient Equation [2-3] with the travel speed

(dx/dt) ofthe heat source it is possible to calculate the cooling rate:

[2- 4J

Where S is the travel speed ofthe heat source. It should be noted that Equations [2-3] and

[2-4] are not general expressions of the temperature gradient and cooling rate but rather

specific expressions for estimating the temperature gradient and cooling rate along the

weld centerline at distances away from the heat source in the x-direction. Examination of

Equation [2-4] reveals that the same factors that affect the temperature gradient also

affect the cooling rate; however, an increase in the travel speed will result in an increase

in the cooling rate.

Cooling rate measurements were also conducted by Hofmeister et al.9 Thermal

profile information were collected by the same methods described in Section 2.1.3.1.

From the thermal gradient information the authors were able to calculate cooling rates at
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the solid-liquid interface for different laser powers. Since the travel speed (dx/dt) was

fIxed at 7.62mm/s the cooling rates (dT/dt) were calculated by multiplying this quantity

by the temperature gradient (dT/dx). The results of cooling rate measurements as a

function of laser power are displayed in Figure 2-6.
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Figure 2- 6. Cooling rate as a function laser power for LENSTM deposits of316 stainless steel.

From this fIgure it can be deduced that at lower energy inputs high cooling rates result,

while at higher energy inputs the cooling rates fairly remain constant. The high cooling

rates at low heat inputs occur mainly because the molten pool is small when compared to

the molten pool of high heat inputs. The smaller molten pools allow for heat to be

extracted by conduction through the surrounding base metal due to high thermal

gradients. A high energy input is associated with a lower temperature gradient because

there is less of a driving force for heat removal and thus the cooling rates in turn become

low. From Figures 2-5 and 2-6 it has been shown that the input power of the laser beam
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has a vital impact on the temperature gradient and cooling rate and hence, the

solidification behavior ofthe component.

2.1.3.3 Powder Mass Flow Rate

Layer build height is influenced by the combination of laser power, travel speed,

and powder flow rate. The combination ofpowder flow rate and the travel speed govern

the amount ofmaterial that can be deposited per unit time (i.e. deposition rate) for a given

laser power. Powder mass flow rate is the amount of powder, typically expressed as a

mass per unit time, which is delivered to the molten pool. This differs from the deposition

rate in that deposition rate is the amount ofmaterial that is deposited on the substrate per

unit time. The laser power comes into effect since it controls the amount of energy that is

available to melt the filler material and the underlying substrate.

The influence of laser power, travel speed, and powder mass flow rate variables

were studied by McLean et al in a laser deposition process similar to that ofLENSTM.lO

Their results show that at constant laser power, the build height is mainly dependent upon

travel speed (process velocity) and powder mass flow rate. The effect oftravel speed and

powder flow rate on deposition rate can be observed in Figure 2- 7. An interesting point

to make about this graph is that the deposition rate appears to scale linearly with the

powder flow rate.

An ideal deposition process would be to have all of the powder that is delivered to

the molten pool be used to form a metallurgical bond. In actual laser deposition

processes, a majority ofthe powder will not be fused to the workpiece because 1) the size

of the molten pool is either too small to accommodate a large flux of powder, 2) there is

not enough melting power available in the localized melt region to effectively melt the
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substrate and the incoming powder material, and/or 3) powder is injected at such a high

velocity that a particles will have a sufficient amount of momentum that when impinged

upon the surface it is deflected away from the melt pool. A term used to describe this

phenomenon is deposition efficiency and it is a dimensionless parameter of the ratio

between the actual deposition rate (i.e. powder that is fused into the melt pool) to the total

mass flow rate of powder. Deposition efficiency will be discussed in more detail in

Section 2.2.4.

D<poJldClODk
(m.,31o)

o 1

C41ldiMtt, , p~ 1.1 .'" SlmtItJJ!SIMI
Na=1dlA1 -UWflZS l//mill
P.>wdtr .~flLtlJI6L(.'SO+JSJH)

Figure 2-7. Effect of powder mass flow rate and travel speed on deposition rate.

2.2 Process Efficiencies

2.2.1 Introduction

As described above in Sections 2.1.3.1-2.1.3.3, knowledge ofLENSTM processing

parameters are essential in that they affect the temperature gradient, cooling rate, and

mode of solidification, which in turn has an affect on the microstructure and mechanical
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properties of the work piece for the duration of melting, solidification, and subsequent

thermal cycling. In the following sections, an attempt has been made to review current

research that has been conducted on the efficiencies of related arc welding and laser

welding processes to determine how they can be used to measure and/or predict the

process efficiencies of the LENSTM process since the LENSTM process can be envisioned

as a combination of laser welding and consumable arc welding process where filler

material is added to the weld joint. There has been a significant amount of research that

has been conducted on well established welding and joining processes dealing primarily

with energy transfer, melting, and deposition efficiencies.

More recently, attention has been focused upon the use of these efficiency

measurements to select process variables that give optimal joining results and for

compositional control of consumable filler metal processes. This research can be

extended to the LENSTM process to develop optimal processing parameters.

2.2.2 Laser Energy Transfer Efficiency

Energy transfer efficiencies of arc welding and laser welding have been

extensively studied for a variety of welding processes and under a range of processing

parameters in order to determine the amount ofenergy that absorbed by the workpiece. A

term used to describe this is energy transfer efficiency and it is a dimensionless parameter

that is defined as the fraction of energy transferred into the work piece over the energy

generated by the heat source:

Energy Transferred to the Work Piece
17 =

a Energy Generated by the Heat Source

17

[2- 5]



In the case of laser welding, the transfer efficiency can be defined as the ratio of heat

absorbed by the work piece to the incident laser energy. 11 This fraction is always less

than unity because not all of the energy generated by the heat source makes it to the

workpiece. In laser welding, a fraction of the laser light is reflected by surface of a

material. This will be discussed in more detail in Section 2.2.2.1.

The transfer efficiency factor is an important quantity to recognize for any given

welding or joining process as it governs how much energy is delivered into the workpiece

under a specific set processing parameters. An equation used to describe the net heat

input of conventional arc welding and laser welding processes can be applied to calculate

the net heat input of the LEN8™ process through knowledge of the energy transfer

efficiency. This equation is given in Equation [2-6]:

H _1]aP
Net - S

Where:

HNet = Net Input (J/mm)
Tla = Energy Transfer Efficiency (Unitless)
P = Laser Output Power (Watts)
8 = Travel Speed (mm/s)

[2- 6]

Note: In the LEN8™ process the travel speed (8) is implied to be the crosshead velocity

of the moveable X-Y stage because of the fixed optics in the laser delivery system. The

two terms are interchangeable. Power has units of Watts (J/s) and the travel speed S has

the units of mm/s; therefore, the unit for heat input into the work piece is energy per unit

length, or J/mm.
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2.2.2.1 Factors Affecting Laser Energy Transfer Efficiency

The mechanism by which laser energy is absorbed by the work piece is complex

as there are many factors that influence absorption. For laser beam welding processes,

energy transfer efficiency typically range from 20-90% which is dependent mainly upon:

1) angle of incidence, 2) wavelength of the laser beam, 3) optical reflectivity of the

material surface conditions of the work piece, and 4) laser beam irradiance. These four

major factors that effect laser energy transfer will be discussed in the following sections

and will be presented in a manner that is general to laser beam processing and ifpossible,

specific to the LENSTM process.

The first two factors that affect laser beam coupling, angle of incidence and laser

beam wavelength, are fixed for the LENSTM process because the angle of incidence is

perpendicular to the x-y stage upon which with substrate resides and type of laser used is

an Nd:YAG laser with a fixed wavelength of 1064nm (1.06~m). The laser beam

wavelength also has a profound affect on laser absorption. This is evident when welding

the same material at the same parameters but with a different laser. The wavelength of a

C02 laser at 10.6~m is ten times greater than the wavelength of aNd:YAG laser is at

1.06~m. Laser beam absorption is directly related to the wavelength of the incident laser

light. At shorter wavelengths, such as in the Nd:YAG laser, the more energetic photons

can be readily absorbed by a greater number of bound electrons in the material which

decreases the reflectivity and thereby increasing the absorptivity of the laser beam into

the workpiece. 12·

Laser beam coupling is highly material dependent as some materials are more

optically reflective than others. For example at the Nd:YAG laser beam wavelength
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(l.06Jlm), highly reflective materials such as copper and aluminum reflect approximately

99% and 91% of the incident laser beam energy.13 This is significantly higher than

materials such as iron and nickel, which is 64% and 74% reflective, respectively.

Surface roughness will also have an effect on laser beam absorption. Surface

roughness will vary from one material to another depending on the manufacturing

method and whether or not any surface preparation was done to remove surface

irregularities. Surface roughness is measured with a profilometer and is commonly

expressed as a root-mean-square roughness. A decrease in laser beam absorption is

associated with a rougher surface since the laser light can be reflected from the material

off of the local peaks and valleys In general, a surface is optically smooth if the surface

roughness is less than the wavelength ofthe laser beam.14

Besides laser beam characteristics, material reflectivity, and surface roughness,

processing parameters will also have a profound effect on laser beam absorption.

Processing parameters such as laser power and· travel speed are controllable and by

varying these parameters it is possible to alter the transfer of laser energy into the

workpiece. When referring to the laser power processing parameter, two terms are

commonly used in place of laser power: laser beam irradiance and laser beam intensity.

Laser beam irradiance is simply the ratio of laser output power per unit area (power

density) and its value is found by dividing the laser output power by the laser beam

focused spot area while laser beam intensity is the ratio of the laser output power to the

focused laser spot diameter.

In a study of laser energy transfer efficiency of C02 laser welding process

Fuerschbach observed the effects of processing parameters on laser beam absorption for
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304 stainless steel, 1018 steel, and tin. The objective ofhis research was to observe what

effects laser output power, travel speed, and focus spot size had on transfer efficiency.ll

Travel speed was found to have no effect on transfer efficiency. The level of irradiance

however did affect the transfer efficiency. Transfer efficiencies were shown to increase

with the level of irradiance (Refer to Figure 2- 8).
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Figure 2- 8. Variation of energy transfer efficiency with laser beam irradiance.

After an irradiance level of approximately 3MW/cm2 the transfer efficiency begins to

plateau where a further increase in irradiance causes no change significant in transfer

efficiency. The information gained from this graph was that laser energy transfer

efficiency varied from 20%-90%. The higher end values are of interest from a processing

standpoint because it entails that most of the energy is absorbed by the workpiece with

minimal loss of laser beam energy. An interesting point to note in the results is the

dramatic increase in transfer efficiency from approximately 1MW/cm2-3MW/cm2
• This
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region can be explained by the keyhole cavity formation, which is characteristic to laser

beam welding.

The creation of the keyhole like cavity occurs at high levels of irradiance. At low

irradiance levels, a small amount of heat is delivered to the substrate causing some

surface heating and a small amount oflocalized melting; however, much of the incident

light energy is reflected from the surface (Figure 2- 9a). At even higher irradiance levels

a keyhole is formed (Figure 2- 9b). When the laser beam creates the keyhole cavity

energy is absorbed and multiple internal reflections of the laser light occurs within the

cavity. The series of beam deflections within the keyhole minimize light being reflected

out of the keyhole and thereby maximizing laser absorption into the workpiece. This has

been concluded as the main reason why laser processing can attain 90% energy transfer

efficiency. 11

Figure 2- 9. Schematic illustration of a) laser beam reflective losses at low laser beam irradiance .
and b) keyhole cavity formation at high laser beam irradiance.

For the LENSTM process, the transfer of energy from the laser beam to the

substrate is slightly different than that of other laser fabrication processes because of the

addition ofpowder material into the melt pool and the lower levels of irradiance used in
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the deposition process. In the above paragraph it was stated that the maximum attainable

transfer efficiency for laser beam welding was 90%, corresponding to high levels of

irradiance and keyhole cavity formation. In laser deposition processes, the keyhole mode

is rarely ever achieved since the purpose of the laser beam is to create a small molten

weld pool into which powder material is injected. Creation of a keyhole cavity would

prove detrimental to part build up since previously deposited layers will be destroyed and

part tolerance will subsequently be unattainable. Energy transfer efficiency may be

affected by powder additions transferred to the weld pool in laser deposition processes.

To date, there has been no published research in the open literature that has dealt with

measuring transfer efficiencies as a function of power, travel speed, and powder mass

flow rate in laser deposition process. Powder additions into the weld pool are envisioned

to have some effect on transfer efficiency values.

2.2.2.2 Measuring Laser Energy Transfer Efficiency

Energy transfer efficiencies have been measured for various arc and laser welding

processes using a gradient layer type calorimeter. Validation of arc efficiency

measurements by the Seebeck envelope calorimeter was conducted by Geidt et al. 15 In

their study, DC straight polarity gas tungsten arc welding was used to produce bead on

plate welds under a matrix of arc currents and arc voltages on 304 stainless steel base

material. The sample was placed in the calorimeter and after each weldment was made,

the calorimeter lid was immediately closed to measure the heat content evolved from the

workpiece. The calorimeter works on the gradient layer principle whereby a voltage

output signal is generated by a temperature difference through a series of heat flux

transducers that line the inner chamber walls of the calorimeter. The resultant output
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voltage signal is integrated, and then multiplied by a calibration constant (units ofWV-I
)

to yield the amount of heat that is absorbed by the work piece from the welding process

(i.e. the net heat input). By measuring the total heat content evolved from the sample

(Ecal), it is possible to determine the transfer efficiency for a specific set of welding

variables through the use ofthe following equation:

[2- 7]

Where:

v =Voltage (Volts)
I = Current (Amperes)
t = Welding "on time" (seconds)

The units for Ecal are joules and the unit of the product in the denominator (VIt) is in

joules as well. The results of welding calorimetric measurements by the gradient layer

approach, was compared to that ofother calorimeter-type measurements to prove that this

method of measuring transfer efficiencies is feasible. I5 Measured transfer efficiencies of

80% for the gas tungsten arc welding process were consistent with results of other

calorimeter type devices (liquid nitrogen calorimeter and water-cooled copper anode

measurements) under the same processing conditions.

Through the proven feasibility of energy transfer measurements by calorimetry,

research has been extended for arc welding processes. DuPont et al has conducted

research on arc efficiency measurements for four arc welding processes using this

approach. I6 The four arc welding processes that were studied can be subdivided into two
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types of processes: consumable and non-consumable. In consumable arc welding

processes, the electrode is used as filler material to fill the weld joint and/or for alloying

purposes. These processes are gas metal arc welding (GMAW) and submerged arc

welding (SAW). The non-consumable electrode processes are plasma arc welding (PAW)

and gas tungsten arc welding (GTAW). Consumable processes were found to yield higher

arc efficiencies because there is a high rate of net energy transfer from the electrode to

the substrate.

2.2.3 Melting Efficiency

From Section 2.2.2 it was shown that it is possible to measure the amount of

energy that is transferred into the work piece. By knowing this quantity it is possible to

determine how much of the energy that actually makes it to the workpiece is used for

melting. Only a small portion of the energy is actually used for melting the fusion zone;

the rest is dissipated to the surrounding area by thermal conduction. The term used to

describe this is melting efficiency (11m) and it is defined as the ratio of energy used for

melting to that which is delivered to the substrate:

Heat Required For Melting

17m = Heat Delivered to the Substrate
[2- 8]

The heat required to melt the material can be calculated from the following equation:
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Where:

8Hm = Melting Enthalpy (1)
Vs = Total Volume ofMelted Substrate (mm3

)

T =Temperature (OC)
To =Initial Temperature (OC)
Cp = Heat Capacity (J/mm3

- °C)
8Hf = Latent Heat ofFusion (J/mm3

)

Equation [2-9] canbe incorporated into Equation [2-8] to yield the following:

[2- 9]

[2-10]

Where T\aVIt is the energy delivered to the substrate. Notice that the transfer efficiency

term comes into effect in the denominator as it governs the amount ofenergy delivered to

the substrate. This illustrates how an accurate value of energy transfer efficiency is

necessary in order to accurately estimate the melting efficiency.

2.2.3.1 Factors Affecting Melting Efficiency

Through examination of 2-D and 3-D conduction heat flow conditions, as

described in Section 2;1.3.1, it is possible to observe which parameters will have the most

effect on melting efficiency. These ''process controlled" parameters are the magnitude of

the power from the heat source and the travel speed. Several researchers have formulated
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theoretical equations that can be used to predict the meltmg efficiency.17-19 These

equations incorPOrate heat flow conditions, processing parameters, and thermophysical

properties ofthe materials in use.

Melting efficiency equations were developed to predict the melting efficiency

behavior for the 2-D and 3-D heat flow conditions. For the 2-D heat flow case, Wells17

developed an analytical expression to predict melting efficiency in terms of base metal

thermophysical properties and processing properties:

1

Where:

'lJ
m

= ( Sa .J-+2
5Sd

a = Thermal Diffusivity ofthe Base Metal (mm2/s)
S =Travel Speed (mm/s)
d =Weld Width (mm)

[2-11]

Okada18 also formulated an expression ofmelting efficiency for the 3-D case as shown in

Equation [2-12].

1.35

1
'lJm =--~-----~

1+(1+ 1(~;y2)i]
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In the 2-D case, the theoretical melting efficiency maxunum is 0.48 whereas the

theoretical maximum for the 3-D case 0.37. From the equations stated above, the sole

processing parameter that has an effect on the melting efficiency is the travel speed.

Continued research on melting efficiency revealed that this quantity is not dependent

solely upon travel speed but it is also dependent upon on the power that is delivered to

the base metal as wel1. 11
, 17-19 Okada also proposed another formula, which accounts for

the power delivered to the base metal:

[2-13]

Where E is the enthalpy change due to melting. Fuerschbach and Knorovsky later

developed an equation that relates the melting efficiency to welding parameters and

material properties.2o

[2-14]

Where A and B are constants that can be extracted from a plot of In(llm) against

(llaVISlEavrl and v is the kinematic viscosity at the melting point.

More recently a model has been developed to estimate the melting efficiency

using dimensionless parameters.21 To represent the heat transfer mechanism in arc and
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laser welding processes, the dimensionless parameters Ry and Ch incorporate welding

input parameters and base metal properties.

[2-15]

[2- 16]

Where:

lla = Energy Transfer Efficiency (Unitless)
P =Laser Power (Watts)
S = Travel Speed (mm/s)
a = Thermal Diffusivity at the.Liquidus Temperature (mm2/s)
MIm= Enthalpy ofMelting (J/mm3

)

A = Weld Cross Sectional Area (mm2
)

The ratio ofRy/Ch yields the melting efficiency:

Ch SAMlm1] =-=--.;;.;..
m Ry 1]aP [2-:- 17]

Good correlation has been shown to exist between the dimensionless parameter model

and experimental results. From the theoretical equations described above, it is important

to understand how each of the processing parameters and thermophysical properties of

the material affect melting efficiency; therefore, the effects of laser input power, travel
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speed, base metal geometry, and base metal properties will be discussed in the following

sections.

2.2.3.1.1 Laser Input Power

The input power has a profound effect on the melting efficiency. The melting

efficiency was shown to increase with an increase in the amount of power delivered to

the substrate. Figure 2- 10 depicts the gradual increase of melting efficiency with

increasing power for several arc welding processes. This trend can also be seen in Figure

2- 11 for laser beam welding. An explanation of this effect is as follows: if heat is

delivered to the substrate at a faster rate (Le. higher laser input power) then there would

be a lesser amount of time available for heat to be dissipated away and thus heat can

effectively be used to increase melting in the fusion zone. For this reason, the

combinations of laser power and travel speed are processing parameters that govern that

amount and rate ofheat delivered to the workpiece.
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2.2.3.1.2 Travel Speed

The net heat input to the base metal is governed by the travel speed as indicated in

Equation [2-6]. Travel speed would then have an impact on the melting efficiency.

Examination of the melting efficiency equations shows that the travel speed term is

located in the numerator. Therefore, when the travel speed is increased one would expect

the melting efficiency to increase as well. The physical explanation for this is as follows:

if travel speed is increased, energy would be delivered to the work piece at a much faster

rate than it can be dissipated. Under these circumstances, the energy is effectively used to

melt the material rather than being dissipated away by conduction. (i.e. more melting

would occur). The effect of travel speed on melting efficiency has been studied for a

variety ofarc and laser welding processes while keeping power constant.

In a study conducted by DuPontet ai, the melting efficiencies were examined as a

function of travel speed for four arc welding processes. 16 The results of this work are

presented in Figure 2- 12. The trend of increasing melting efficiency with travel speed is

apparent for each ofthe processes examined. Another observation that can be made when

examining this graph is that the melting efficiency reaches the theoretical maximum

value of0.48 for GMAW and SAW and not for PAW or GTAW. The discrepancies arise

because GMAW and SAW processes can attain far greater travel speeds when compared

to PAW and GTAW. Melting efficiency in laser beam welding showed results similar to

that ofarc welding. Fuerschbach measured the melting efficiency for laser beam welding

on 1018 steel, tin, and 304 stainless steel using a CO2 laser. The results are presented in

Figure 2- 13. As with DuPont et aI with conventional arc welding processes, Fuerschbach
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observed that the maxImum attainable melting efficiency was 0.48 for laser beam

welding under 2-D heat flow conditions.
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Figure 2- 13. Variation of melting efficiency with travel speed for CO2 laser beam welding.
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2.2.3.1.3 Base Metal Geometry

In order for researchers to formulate theoretical melting efficiency equations, it

was important for them consider the cases of 2-D and 3-D heat flow because these heat

conditions exist for varying weld joint geometries. The effect of melting efficiency on

base metal geometry can be seen in Figure 2- 14. Okada generated this graph from an

approximation of melting efficiencies, which were based on Rosenthal's heat flow

solutions,zz The differences can be explained by the 2-D and 3-D heat flow geometry of

the substrate. It is apparent the 3-D heat flow condition is more effective in removing

heat away from the heat source because there are more avenues for heat conduction when

compared to that of the 2-D case. Because there are more heat conduction avenues, the

melting efficiency is effectively lowered because heat is rapidly dissipated away from the

fusion zone at a much faster rate than it can be used for melting.
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Figure 2- 14. Variation of melting efficiency with 2-D and 3-D heat flow geometry.
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2.2.3.1.4 Base Metal Properties

From the examination of Equations [2-11] --c [2-17], it is apparent that base metal

properties have a strong influence on melting efficiency. Each of these equations

incorporates the term a, which is the thermal diffusivity of the base metal. Thermal

diffusivity is defmed as the ratio of thermal conductivity to the specific heat per unit

volume and is an indicator of how effective a material is in transferring energy by

conduction rather than storing energy.22 When welding on materials with a high thermal

diffusivity it is expected that greater travel speeds and higher heat inputs are required to

attain a high level of melting efficiency. The reason for this is that heat would be

transported away from the fusion zone at a faster rate by thermal conduction thereby

causing a.decrease in melting efficiency if not compensated by the higher heat inputs and

higher travel speeds. The effect of base metal diffusivity on melting efficiency can be

seen in (Figure 2- 15) for GTAW of 304L stainless steel and Ni 200. The thermal

diffusivity ofNi 200 (a=0.220cm/s) is much greater than that of304L SS (a=0.041cm/s)

and thus has a lower melting efficiency for the same processing parameter.
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Figure 2- 15. Effect of travel speed and base metal thermal diffusivity on melting efficiency for
304L SS and Ni 200 base metal.

2.2.3.2 Measuring Melting Efficiency

Once the energy transfer efficiency is known for a given set ofprocess variables it

is possible to experimentally measure the melting efficiency. This is done through

measurements of the cross sectional area of the weld deposit. The cross sectional area of .

the deposited filler material is multiplied by the total length ofthe deposit and vise versa

for the cross sectional area of the melted substrate. Equation [2-10] can then be

manipulated to include terms for melting ofthe substrate and filler material:

(VI{IC/T)dT + Ml1)1 +(V'{IC/T)dT+Ml1),
17m = 17aV1t [2-18]
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Where Vf and Vs is the total volume of the melted filler metal and substrate (mm\ The

terms directly adjacent to Vf and Vs correspond to the enthalpy terms for the filler

material and the substrate, respectively.

2.2.4 Deposition Efficiency

For consumable welding processes there is a need to know the rate at which filler

metal can be deposited to the weld pool under a given set of process parameters. (i.e.

deposition rate) Typical deposition rates for the LENSTM system range from O.25in3/hr

lin3/hr.23 Only a fraction of the powder material that is delivered to the weld pool is

actually fused to the substrate to create a metallurgical bond. A term used to describe the

ratio of actual deposition rate (i.e., powder that is fused into the melt pool) to the total

mass flow rate of powder delivered to the melt pool is the deposition efficiency.

Deposition efficiency is given in the following equation as:

[2-19]

Where:

Ai =Cross Sectional Area ofthe Deposit (mm2
)

Vfm = Volumetric Powder Material Feed Rate (mm3/s)

S = Travel Speed (mm/s)

This equation explains how to determine the deposition efficiency experimentally;

however, it doesn't explain what physically controls the deposition efficiency. Processing

parameters such as powder feed rate, melting power (TJaTJrnP), and travel speed have a

large effect on deposition efficiencies and thus there is a need for an analytical equation
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to be developed that relates these variables to the'deposition efficiency. The deposition

efficiency term can be formulated through an energy and mass balance approach,

incorporating the use of process efficiency terms, filler metal/substrate material

properties, and process variables including: filler metal feed rate, travel speed, and power.

Processing parameters affect the deposition rate because they govern the amount

of material that is delivered to the work piece and the quantity of energy that is available

to melt the filler material and the substrate to form a metallurgical bond. Figure 2- 16

depicts the effect of powder mass flow rate on deposition/catchment efficiency. For a

given laser power and gas flow rate, the deposition efficiency increases with an increase

in powder mass flow rate. The researchers from which this work was reviewed indicated

that the low values for deposition efficiencies was attributed to poor nozzle and high

powder stream divergence. 10
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Figure 2- 16. Effect of powder flow rate and axial gas flow on deposition/catchment efficiency.
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Further studies have suggested that deposition efficiencies can achieve values as high as

85% under optimal processing conditions and efficient nozzle design. However, a simple

factor that may have been overlooked is the ratio ofthe molten weld pool area to that of

the impingement area of the inco~g flux of powder. If this ratio is small, a lesser

amount ofpowder can be fused to the workpiece because there is an insufficient amount

of energy available to melt the powder. Moreover, a larger weld pool area could

conceivably melt more powder material because there is more energy available to melt

the incoming powder.

2.2.4.1 Factors Affecting Deposition Efficiency

There are several factors that have an effect on the deposition efficiency for the

LENSTM system. The design of the powder delivery system has a large impact on

deposition efficiency in that it directs the flow of powder into the weld pool. If for

example the nozzles are misaligned, then a fraction of the powders will not be fused to

the substrate because a majority of the powder will not even come in contact with the

weld pool; thereby causing a decrease in the deposition efficiency.24 Deposition

efficiency can also decrease when particles do not adhere to the substrate in which case

they ricochet from the surface of the substrate as depicted in Figure 2- 17. This figure

depicts a laser deposition process similar to LENSTM with one main difference: there is

only one main powder feed nozzle instead offour. What can be observed from this figure

is that the powder is flowing at such high velocities that when it does impinge upon the

molten weld pool it still has enough momentum to be deflected from the surface.
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Figure 2- 17. Powder deflection from substrate during laser deposition.

2.2.4.2 Measuring Deposition Efficiency

Experimentally, the deposition efficiency can be determined by measuring the

cross sectional area of deposited material (AI) and dividing it by the ideal value of

deposited cross sectional overlay given by the ratio of Vim IS. Where Vim is the volumetric

fllier metal feed rate and S is the travel speed.

2.2.5 Composition Control

Solid freeform fabrication processes have demonstrated the feasibility of

producing functionally graded structures for improved mechairlcal properties and

microstructural tailoring by selectively depositing the powder material that is injected

into the molten poo1.25-30 The LENSTM process is one such method. The adaptation of

multiple powder feeders in the LENSTM system makes this feasible. Dissimilar powder

materials can be placed into separate powder hoppers. Computer software, which is
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2~ 17. Powder deflection from substrate during laser deposition.

Experimentally. the deposition efficiency can be determined by measunng the

cross sectional area of deposited material (Ad) and dividing it by the ideal value of

deposited cross sectional overlay given by the ratio of ~<III IS. Vvl1ere ~:. is the volumetric

filler metal feed rate and S is the travel speed.

2.2.5 Composition Contro~

Solid free form fabrication processes have demonstrated the feasibility of

producing functionally graded structures tor improved mechanical properties and

microstructural tailoring by selectively depositing the powder material that is injected

into the molten poo1.25-30 The LENSTM process is one such method. The adaptation of

multiple powder feeders in the LENSTM system makes this feasible. Dissimilar powder

materials can be placed into separate powder hoppers. Computer software. which is
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integrated into the powder feed system, enables the user to precisely control the deposit

composition as a function of position. Research on controlling the composition in

functionally graded materials is essential. To date, there has been no such research that

has been conducted that deals primarily on composition control in the LENSTM process

from a process parameter standpoint. Composition in multi-layered fabrication processes

can be by controlling the dilution in each pass ofthe deposit.

2.2.5.1 Dilution

For any welding or surfacing operation that involves the addition offiller metal in

the form of an electrode or powder, it is important to select optimal processing

parameters to control the properties of the fusion zone and surrounding heat affected

zone. A scheme used to control weld metal composition, which incorporates the use of

process efficiency terms described in Sections 2.2.2-2.2.4 will be discussed in this

section. In welding, filler material is generally added to a weld joint for two reasons: 1) to

fIll joint geometry and 2) for alloying additions. A term used to describe the degree of

base metal and filler metal amalgamation during welding is dilution and it is defined as:

[2- 20]

Where:

D = Dilution
As = Cross Sectional Area ofMelted Substrate (mm2

)

A<J = Cross Sectional Area ofDeposited Filler Metal (mm2
)
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For constant length weld deposits the cross-sectional areas can be multiplied by the weld

length to obtain percentage ofdilution in terms ofweld volumes.

2.2.5.2 Factors Affecting Dilution

The ability to predict dilution levels depends mainly on the ability to predict and

control process efficiencies. This concept was the focus ofresearch conducted by DuPont

et al. 19 Through a series ofpower balance equations, DuPont was able to estimate dilution

for single pass arc welds in terms of filler metal feed rate, melting enthalpy, power, and

process efficiencies. The results are presented below in Equation [2-21].

[2- 21]

Where:
Vfin = Volumetric Melting Rate ofthe Filler Metal (mm3/s)

Lllim,s = Melting Enthalpy ofthe Substrate Material (J/mm3
)

Lllim,f =Melting Enthalpy ofthe Filler Metal (J/mm3
)

11allmVI = Melting Power (Watts)

By analyzing this equation, it is possible to determine the effects of processing

parameters on dilution. Both Lllim,s and ~Hm,f are materials properties and thus the only

other variables are Vfin and 11allmVI. Let's examine the cases when we hold one constant

over the other. If Vim were increased, while llaTlmVI was held constant, then the level of

dilution would decrease. The reason for this is that the filler metal consumes more ofthe

melting energy and less energy is available for melting the substrate. Ifon the other hand,
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V1m was held constant and the melting power were increased, there would be enough

power to adequately melt the filler metal and the substrate causing an increase in the level

ofdilution. This effect is shown in Figure 2- 18.
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Figure 2- 18. Effect of processing parameters on dilution for conventional arc welding processes.

The diagram in Figure 2- 18 depicts how the level of dilution can be altered for different

arc welding processes by varying filler metal feed rate and melting power. Included with

the figure are regions, which were deemed operable and inoperable. The operable region

indicates the range ofmelting powers that can be used to create a metallurgical bond for a

given filler metal feed rate. Dilution increases with increasing melting power under a

fixed filler metal feed rate. 19 For fixed melting power, dilution will decrease when there

is an increase in filler metal feed rate. The inoperable region exists when no bonding

occurs because there is not enough melting power to adequately form an adhesion

between the filler metal and the substrate. In this region there will be no dilution.
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Tailoring processing parameters to yield low levels of dilution will increase the build

height and the deposition rate. This is key from a manufacturing standpoint whereby

more components can be fabrication is a shorter period oftime.

2.3 Literature Review Summary

Laser engineered net shaping (LENSTM) is a newly emerging rapid prototyping

process that has the capability of producing dense, three dimensional, near net-shaped

components through the use of CAD models. In an effort to understand the combined

effects of LENSTM processing parameters (laser power, travel speed, and powder mass

flow rate) on energy transfer efficiency, melting efficiency, deposition efficiency, and

dilution it is important know how processing parameters influence process efficiencies. A

summary ofthe effects of laser output power, travel speed, and powder mass flow rate on

dilution and process efficiencies can be seen in Table 2- 1.

Table 2- 1. Process Parameter Effects on Process Efficiencies.

Process Variable 11a 11m 11d Dilution

Laser Input Power (W) S S M S

Travel Speed (mm/s) N S S S

Powder Mass Flow Rate (g/min) U U S S

S= Strong Effect, M=Moderate Effect, N=No Significant Effect, U=Unknown Effect

Travel speed was found to have no effect on energy trans;~r efficiency for laser beam

welding. The level of irradiance (power density) however did affect the transfer
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efficiency. Transfer efficiencies were shown to increase with increasing levels of

irradiance. No information in the open literature was found on what effects, if any,

powder additions into the weld pool had on transfer efficiency. Melting efficiency is

dependent upon thermo-physical properties of the substrate as well as laser power and

travel speed. The melting efficiency was shown to increase with an increase in the

amount of power delivered to the substrate because more energy is made available to

melt the underlying substrate. When travel speed is increased, energy is delivered to the

work piece at a faster rate than it can be dissipated by thermal conduction, which causes

an increase in the melting efficiency. Powder mass flow rate has an unknown effect on

melting efficiency. On the other hand, the deposition efficiency is heavily dependent

upon powder mass flow rate and travel speed since these process variables govern how

much material is deposited over time. Dilution was found to be strongly dependent upon

the combination of laser power, travel speed, and powder mass flow rate processing

parameters.

1
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2.4 Research Objectives

The objectives ofthis research are as follows:

• Measure laser energy transfer efficiency (l1a), melting efficiency (11m), deposition

efficiency (l1d), and dilution under a matrix ofoperating parameters.

• Develop a semi-empirical model that can be used to predict melting efficiency for

the LENSTM process.

• Compare melting efficiency data to the semi-empirical model and available

predictive models found in literature.

• Develop an analytical expression that relates the deposition efficiency to

processing parameters such as powder mass flow rate, melting power (llallmP),

and travel speed.

• Compare dilution data to available predictive models.

• Develop a scheme to model dilution in multipass LENSTM deposits.
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3.0 EXPERIMENTAL PROCEDURE

The following experimental procedure section is subdivided into four sections:

1) materials selection, 2) equipment, 3) experimental design matrix/methodology, and 4)

measurement techniques. The ftrst section describes the selection ofmaterials used in this

study. The second section describes the components of the laser deposition equipment

and how it was used to fabricate samples for process efficiency measurements. The third

section describes the experimental design matrix as well as the manner in which it was

generated. Lastly, the laboratory techniques used to measure laser energy transfer

efficiency, melting efficiency, deposition efficiency, and dilution is presented.

3.1 Materials Selection

A metal-metal functionally graded material that has gained interest in the tool and

die industry is H-13 tool steel to copper. The main applications are injection molding

tools and dies with tool steel contributing to wear resistance and toughness whereas

copper facilitates heat removal from the part during production. The microstructure and

properties oflaser deposited H-13 tool steel has been studied by Mazumder et al.31 Their

results indicate that the microstructure of the solidifted structure consists primarily of

tempered martensite with some retained austenite. Maziasz has shown similar results.32

Further research is however needed for microstructural characterization of the graded H

13/Cu structure. From the past research conducted on the laser deposition of H-13 tool

steel for injection molding dies, H-13 tool steel and copper were selected as a model

material system in the examination of processing parameter effects on process

efficiencies and composition control of functionally graded structures.
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3.2 Laser Deposition Equipment

The laser deposition equipment used in this study was the LENSTM 750 Directed

Metal Deposition System (DMDS) manufactured by Optomec Design Company. The

LENSTM 750 equipment is shown in Figure 3- 1. The LENSTM system utilizes a 750 watt,

continuous wave (CW), Nd:YAG laser as its energy source to create a molten pool into

which powder material is deposited.

Figure 3- 1. LENSTM 750 Directed Metal Deposition System (DMDS) laser deposition
equipment used in this study of process efficiencies at Lehigh University.

Powder material is delivered to the molten weld pool via two separate powder feeders

which can be operated one at a time or simultaneo·usly. To fabricate a component, a CAD

model is frrst developed of a given part geometry. A substrate is fastened to the fixture
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plate on the x-y stage and the component is built in a line-by-line, layer-by-Iayer manner

that is dictated by the geometry ofthe CAD modeL

3.3 Experimental Design Matrix/Methodology

To evaluate the effects ofprocessing parameters on LENSTM process efficiencies,

an experimental design matrix was developed in order to test the full processing

capabilities of the LENSTM 750 system. The processing parameters were chosen based on

the capability limits ofthe system.

The maximum attainable laser power at the substrate's surface was measured to

be approximately 500 watts (W) with a laser power meter from Kentek. Note: the laser

power meter from Kentek is accurate within ± 5%. The working envelope ofthis system

is thus laser powers up to 500W. The specifications for laser output power of the

Nd:YAG laser used in this study is 750W. The nearly 66% loss in laser power from the

laser head to the substrate is attributed to power losses through the optics of the laser

beam delivery system. Four laser output powers were used in this study and they were

chosen in 125W increments, yielding the following laser powers to be tested: 125W,

250W, 375W, and 500W.

In the LENSTM system travel speed refers to the traverse velocity ofthe x-y stage.

Preliminary testing has shown that above 35mm/s an unsuitable deposit is formed

regardless of the laser input power and powder mass flow rate. Four travel speeds were

chosen in 5mm/s increments, yielding the following travel speeds to be tested: 5, 15,25,

and 35mm/s.

The powder feed mechanism consists ofa vertical, gravity fed powder hopper that

feeds powder material to a rotating disc which in turn lifts the powder to a constant
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supply ofargon carrier gas that delivers the powder to the nozzles and then on to the melt

pool. Controlling the motor speed of the rotating. disc controls powder mass flow rates.

The range of motor speeds was from 0-20 RPM. Different powders flow differently

. because of particle size distribution and density; therefore, for the H-13 tool steel and

copper powder used in this study powder mass flow rates were calibrated to the motor

speed RPM.

3.4 Laser Energy Transfer Efficiency Measurements

Laser energy transfer efficiency was measured for the LENSTM process using a

Thermonetics Seebeck envelope calorimeter. The calorimeter works on the gradient layer

principle whereby a voltage output signal is generated by a temperature difference through

a series of heat flux transducers that line the inner chamber walls of the calorimeter. The

experimental setup of the Thermonetics Seebeck envelope calorimeter inside of the

LENSTM workstation can be seen in Figure 3- 2. The calorimeter itself is labeled a in the

figure.

After a sample is prepared, it is quickly placed in the ealorimeter and the lid is

immediately closed. The sample is allowed to equilibrate to the temperature of the

constant temperature water bath. For this study, a NESLAB HX300 recirculating chiller

was used to flow a constant supply (flow rate of 100cc/min) ofwater at 25°C. A National

Instruments data acquisition (DAQ) system, utilizing LabVIEW 6.0i, an instrumentation

amplifier, and a PC was interfaced with the calorimeter to acquire the output voltage

signal as a function of time. A typical output signal during an actual measurement is

shown in Figure 3-3.
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Figure 3- 2. Experimental setup of Seebeck envelope calorimeter used for energy transfer
efficiency measurements. a) Seebeck envelope calorimeter, b) laser delivery
system, c) substrate, and d) ccd camera for weld pool monitoring.
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The calorimeter was calibrated by placing a resistive heater inside the calorimeter and

inducing a known voltage across the heating element with a constant voltage power

supply. An ammeter was placed in series with the circuit to measure the resultant current

that was imposed on the heater by the constant voltage power supply. By knowing the

voltage and current it was possible to calculate the input power across the resistive heater.

Different input powers were used to measure the output voltage signal from the

calorimeter at steady state. A plot of input power versus output voltage can be seen in

Figure 3- 4. The slope of the plot yields the calibration constant that, when multiplied by

the voltage output signal, yields the corresponding output voltage value in watts.

Slope =279.7WN
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Figure 3- 4. Plot of input power versus output voltage for calorimeter calibration

Note: With amplifier calibration constant was O.598WN
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To measure the amount ofenergy that is transferred from the laser beam and absorbed by

the substrate, the LENSTM process was used to produce single pass 1) bead on plate

autogenous welds, 2) deposits ofH-13 tool steel and 3) deposits ofcopper powder under

the combination ofprocessing parameters shown in Table 3-1.

Table 3- 1. Experimental test matrix of processing parameters used in laser energy transfer
efficiency measurements.

Material Laser Power (W) Travel Speed (mmls) Powder Flow Rate (ws)

Autogenous

H-13 Tool Steel

Copper

125-500

125-500

250-500

5,15

5,15

5,15

0.08-0.33

0.11-0.22

The substrate material upon which laser welds and deposits were made was ~ inch thick

H-13 tool steel substrates that were cut into 4 x 4 inch test specimens. The test specimens

were placed upon insulating ceramic bricks during welding/deposition so as to avoid heat

loss from the sample through the metal fixture plate. By doing this, it is possible to retain

the heat absorbed by the substrate so that more accurate measurements may be obtained.

Also, by depositing single pass "bead on plate" deposits it was possible to simplify the

layer additive process by concentrating on only the main variables (laser power, travel

speed, and powder mass flow rate) while disregarding other processing variables such as

hatch angle, hatch spacing, beam offset, etc. of which are used to deposit larger 3-D

structures.

After the weld/deposit was made on the substrate, the test speCImen was

immediately placed into the calorimeter and allowed to cool to the temperature of the
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constant supply of cooling water. Average transfer times of2-3 seconds elapsed between

welding/deposition and the placement of the sample into the calorimeter. The total heat

content absorbed by the substrate (Ecal) was determined by integrating the resultant output

voltage vs. time signal then multiplying that quantity by the calibration constant. Laser

energy transfer efficiency (11a) was then calculated by the following equation.

Where:
Ecal
P
t

= Total Energy Absorbed by the Workpiece (J)
= Laser Output Power (W or J/s)
= Laser "on time" (s)

[3-1]

Prior to each energy transfer efficiency measurement; the laser power was measured

using a laser power meter by Kentek to have an accurate value ofthe laser output power.

Laser "on time" was found by dividing the total deposit length by the travel speed. The

deposition pattern was in the shape of a rectangular with a total length of 7 inches. This

was done to increase the heat input into the test specimen so a greater output voltage

signal could be measured with the amplifier at maximum gain. Energy losses due to

convection, radiation, and evaporation were found to be less than 1% for this type of

calorimetry experiments. IS

As previously mentioned in Section 2.2.2.1, surface conditions have an affect on

laser energy transfer efficiency; therefore, in order to examine the effects of surface

roughness on laser beam absorption the H-13 tool steel substrates were prepared by first
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performing a grinding operation with 120 grit sandpaper to remove mill scale, surface

scratches, and any other irregularities that were present on the outer extremities of the

material in the as received condition. The substrates were then grit blasted with 120 grit

Ah03 to obtain a more uniform surface finish. These substrates were then used for

energy transfer efficiency measurements. A select set of substrates were set aside and

prepared in such a manner that mimics the surface topography of an actual LENSTM

deposit. This was accomplished by cladding an entire substrate with H-13 tool steel

powder in a single layer then energy transfer efficiency measurements were made by

tastering the laser 90° to the cladding direction. An optical profilometer was used to

measure the root-mean-square (O'm) surface roughness ofthe 120 grit blasted substrates as

well as the cladded substrates. A 3x3mm area was scanned across representative grit

blasted and clad substrates at a step size of51lm to measure height fluctuations. From the

resulting profiles, O'm was measured.

3.5 Melting Efficiency Measurements

Single pass H-13 tool steel and copper deposits were made on the grit blasted

substrates under the matrix ofprocessing parameters presented in Table 3-2 and Table 3-3,

respectively.
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Table 3- 2. Experimental test matrix of processing parameters used in melting efficiency
measurements ofH-13 tool steel deposits on H-13 tool steel substrates.

Power (W) Travel Speed (mmls) Powder Flow Rate (gJs) Volumetric Flow Rate (mmJ/s)

125-500 5-35 0.08-0.33 11.2-42.5

Table 3- 3. Experimental test matrix of processing parameters used in melting efficiency
measurements of copper deposits on H-13 tool steel substrates.

Power (W) Travel Speed (mmls) Powder Flow Rate ('?Is) Volumetric Flow Rate (mmJ/s)

250-500 5-15 0.11-0.22 12.4-24.7

Macroscopic observations of the 3.5 inch deposits showed that they were uniform and

thus sectioning the deposit perpendicular to the deposit direction at 1.75 inches into the

deposit yielded a cross section that would be representative of the entire deposit length.

The weld cross sections were mounted in epoxy, polished to a IJ.lm diamond finish, then

etched with 2% Nita!. Image analysis was then performed with the LEeD 3001

Quantitative Image Analysis (QIA) system to measure the cross sectional area of the

deposit (Ai) and melted substrate (As) as shown in Figure 3- 5.

Figure 3- 5. Schematic illustration of weld cross sectional area for dilution measurements.
(~-deposit cross sectional area. As- melted substrate cross sectional area)
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From the deposit cross sectional areas ofthe melted substrate and the deposit, the melting

efficiency (11m) was calculated from the following equation:

Where Vd and Vs is the total volume of the deposited filler metal and substrate (mm\

respectively. Vd and Vs were determined by multiplying the cross sectional area of the

deposit and the substrate by the deposit length. The terms directly adjacent to Vd and Vs

in parentheses correspond to the melting enthalpy terms for the deposit and the substrate,

respectively, where Cp is the specific heat and L\Hf is the latent heat of fusion. For the H-

13 tool steel powder deposited on the H-13 tool steel substrate the melting enthalpy

(which is defined as the energy required to raise the temperature ofthe material above its

melting temperature plus the latent heat of fusion) ofthe deposit and the substrate are the

same since they are ofthe same material, 10.5 J/mm3
• 33 The copper deposits on the H-13

tool steel substrates on the other hand, have different melting enthalpies because they are

different materials. Therefore, values of 10.5 J/mm3 and 5.9J/mm3 were used to calculate

melting efficiency for the H-13 tool steel substrate and copper deposits, respectively. 33

Note that the laser energy transfer efficiency term is incorporated into the

denominator of Equation [3-2]. To make melting efficiency measurements accurate, it is

important to have values of laser energy transfer efficiency for the same set ofprocessing
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variables. Therefore, the results of energy transfer efficiency measurements, as described

in Section 3.4, were used for melting efficiency calculations.

3.6 Deposition Efficiency Measurements

Deposition efficiency (l1d) was experimentally determined from measurements of

deposit cross sectional areas by quantitative image analysis as described in Section 3.5.

The deposition efficiency was then calculated from the following equation:

[3- 3]

The deposits cross sectional area Ai term was divided by the ideal value of material

deposited, which is given by the ratio Vfin IS, where Vfin is the volumetric filler metal

feed rate and S is the travel speed. The ideal value is indicative of the total weld

deposited assuming that all of the powder delivered to the weld pool adheres to the

substrate.

During the deposition of each deposit in the experimental matrix, a color CCD

camera was used to record images ofthe interaction between the powder material and the

molten weld pool. This information was then used to observe the manner in which

powder material is fused to the substrate to form a deposit.

3.7 Dilution Measurements

Single pass dilution measurements were conducted on samples of the H-13 tool

steel and copper deposits used in melting efficiency and deposition efficiency
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measurements. Dilution was calculated from geometric measurements of deposit cross

sectional areas and melted substrate cross sectional areas by the following equation:

A
%D= s x 100

As +Ad

Where:
D =Dilution
As = Melted Substrate Cross Sectional Area (mm2

)

AI = Deposit Cross Sectional Area (mm2
)
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4.0 RESULTS & DISCUSSION

4.1 Laser Energy Transfer Efficiency

The results of laser energy transfer efficiency measurements are shown in plots of

laser energy transfer efficiency as a function of laser output power for autogenous laser

welds and deposits ofH-13 tool steel and copper powder on grit blasted H-13 tool steel

substrates. Figures 4-1 and 4-2 correspond to weld/deposits made at travel speeds of

5mm/s and 15mm/s, respectively. Within each plot there are several energy transfer

efficiency measurements for each value of laser output power tested. At the lowest laser

output power (l25W), there are only three measurements and they correspond to

autogenous laser welds and deposits of H-13 tool steel powder at two different powder

mass flow rates (0.08g/s and 0.17g/s). The remaining laser output powers (250, 375, and

500W) tested each have five energy transfer efficiency measurements, corresponding to

autogenous laser welds, deposits ofH-13 tool steel powder at two different powder mass

flow rates (0.08g/s and O.l7g/s), and deposits of copper powder at two different powder

mass flow rates as well (O.llg/s and O.l7g/s). Autogenous laser welding was used to

establish baseline values ofl1a solely as a function of laser output power and travel speed

for the cw Nd:YAG laser used in the study. From that, a comparison was made between

the baseline measurements and measurements that incorporate powder material into the

weld pool in order to determine what effect, if any, powder mass additions have on laser

energy transfer efficiency.
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Figure 4- 1. Plot of energy transfer. efficiency measurements as a function of laser beam
irradiance for autogenous laser welds and H-13 tool steel and copper powder
deposits on grit blasted H-13 tool steel substrates. (Travel Speed Smmls)
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Figure 4- 2. Plot of energy transfer efficiency measurements as a function of laser beam
irradiance for autogenous laser welds and H-13 tool steel and copper powder
deposits on grit blasted H-13 tool steel substrates. (Travel Speed 15mm/s)
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From the range ofrrocessing parameters tested, the resulting laser energy transfer

efficiency measurements ranged between 30 and 50%. This indicated that more than half

of the incident laser energy is never transferred to the substrate. A direct comparison

between results found in this study and published results in the open literature could not

be made since there have been no reported results of energy transfer efficiency

measurements on a Nd:YAG or laser deposition process that include powder mass

additions into the molten pool. As indicated in the introduction section, there are many

factors that can affect laser beam absorption. The following sections highlight some

probable causes oflaser beam loss from a materials and processing standpoint.

4.1.1 Effect of Processing Parameters on Energy Transfer Efficiency

Laser beam irradiance is known to have a large effect on energy transfer

efficiency. At higher levels of beam irradiance increased absorption occurs by the

formation of a depressed keyhole like cavity. This absorption mechanism yields high lla

because laser light is effectively absorbed by the vapour column and weld pool cavity,

which minimizes laser beam reflective losses because of the occurrence of multiple

internal reflections within the cavity. 11 Laser deposition under these conditions would

prove to be detrimental to part build up during LENSTM processing since previously

deposited layers will be destroyed and part tolerance will subsequently be unattainable.

Laser beam irradiance is determined by dividing the laser power by the laser beam spot

size. The deposits were all made at the same focal length; therefore, the spot size is the

same for each. Thus, increasing laser beam irradiance is the same as increasing laser

output power.
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From Figures 4-1 and 4-2, it can be seen that under the range of laser output

powers/irradiance tested, there was no dramatic increase in energy transfer efficiency.

This suggested that the levels of irradiance used in the laser deposition process are less

than that required to initiate keyhole cavity formation. Further examination of the weld

pool geometries by light optical microscopy of weld cross sections showed a semi

circular weld pool geometry, which is indicative of conduction mode and not keyhole

mode of welding. A representative photomicrograph can be seen in Figure 4- 3 for a

deposit made at a laser output power of 500W, travel speed of 5mm/s, and powder mass

flow rate QfO.08g/s.

Figure 4- 3. Photomicrograph of H-13 tool steel deposited on an H-13 tool steel substrate.

Travel speed has been shown to have no effect on energy transfer efficiency. 11

Fuerschbach indicated that precision error was the probable cause of scatter since no

discernible trend could be found as travel speed was varied. Some scatter did however

exist in this study when energy transfer efficiency was measured at travel speeds of

5mm/s and 15mm/s, while holding all other variables constant. The variances may be the

result ofthe time it took to process the samples before they were placed in the calorimeter
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INTENTJONAL SECOND EXPOSURE

From Figures 4-1 and 4-2, it can be seen that under the range of laser output

powers/irradiance tested, there was no dramatic increase in energy transfer efficiency.

This suggested that the levels of irradiance used in the laser deposition process are less

than that required to initiate keyhole cavity formation. Further examination of the weld

pool geometries by light optical microscopy of weld cross sections showed a semi

circular weld pool geometry, which is indicative of conduction mode and not keyhole

mode of welding. A representative photomicrograph can be seen in Figure 4- 3 for a

deposit made at a laser output power of 500W, travel speed of 5mm/s, and powder mass

flow rate ofO.08g/s.

Figure 4- 3. Photomicrograph of H-13 tool steel deposited on an H-13 tool steel substrate.

Travel speed has been shown to have no effect on energy transfer efficiency. I I

Fuerschbach indicated that precision error was the probable cause of scatter since no

discernible trend could be found as travel speed was varied. Some scatter did however

exist in this study when energy transfer efficiency was measured at travel speeds of

5mm/s and l5mm/s, while holding all other variables constant. The variances may be the

result of the time it took to process the samples before they were placed in the calorimeter
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for measurements. At the higher travel speed the total laser on time was approximately

11.85 second, while at the lower travel speed the total on time was 35.56 seconds. At the

slower travel speed, it took nearly 3x as much time to produce a sample. During this time,

heat that is transferred throughout the sample by conduction may escape from the

sample's surface by convection. Although a significant amount of heat is retained within

the sample, it stands to reason that slight deviations among data points may be attributed

to the loss of heat from the sample before it can be measured. However, calorimetric

studies done on energy transfer efficiency measurements indicate that there is only about

a 1% loss in heat from the time the sample is welded to the time it is placed within the

calorimeter. IS From this standpoint, it was concluded that variance among data points is

the result ofprecision error and not due to changes as a result ofvarying travel speed.

The LENSTM system is unique to other laser welding processes in that powder

material is incorporated into the weld pool for laser deposition. An increase in laser beam

absorption would indicate that the incoming powder is readily absorbed by the laser beam

and the energy is effectively transferred to the workpiece with minimal losses to the

surroundings. Moreover, a decrease in laser beam absorption would indicate that the laser

light is reflected off of the powder particles and thus energy would not be efficiently

transferred to the substrate. Laser energy transfer efficiency values appear to be relatively

insensitive to changes in powder mass flow rates. This can be seen in

Figure 4- 4 in a plot of energy transfer efficiency as a function of heat input for

autogenous laser welds and H-13 tool steel and copper powder deposits at two different

powder flow rates. Heat input is defined as the quantity of energy incident upon the

workpiece per unit length of deposit and is given by the ratio of input power to travel
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speed. Energy transfer efficiency was plotted as a function of heat input so as to

normalize the effects of power and travel speed. No trend is observed that would suggest

any influence ofpowder additions on laser beam absorption

.Autogenous • H-13 (O.08g/s) • H-13 (0.17g1s) • Cu (0.11g/s) XCu (0.17g/s)
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Figure 4- 4. Plot of energy transfer efficiency as a function of heat input for varying powder mass
flow rates.

4.1.2 Material Effects on Energy Transfer Efficiency

Aside from processing parameters, laser beam absorption is also heavily

dependent upon the type of material that is to be deposited. The materials used in this

study have varying optical reflectivity. Copper has a higher reflectivity than the tool steel;

therefore, one would expect that depositing copper powder would decrease the energy

transfer efficiency if laser light could reflect off the surfaces of the individual powder

particles that come in contact with the laser beam. The section above showed how
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powder mass additions had no effect on energy transfer efficiency. The type of powder

delivered to the weld pool also appeared to have no effect on energy transfer efficiency.

This can also be seen in

Figure 4- 4, where energy transfer efficiency is plotted as a function of heat input at the

same powder mass flow rate. for the H-13 tool steel powder and the copper powder. These

results suggest that powder mass flow rate and the type of powder delivered to the weld

pool have no significant effect on energy transfer efficiency. Thus, it appears that only

the substrate material governs energy transfer efficiency because a larger portion of laser

light actually interacts with the substrate material rather than with the individual powder

particles. If for example, copper substrates were used in this study, it is expected that the

energy transfer efficiency would be significantly lower than what was measured for the

steel substrates regardless of the type of powder deposited. This is due to the inherently

high optical reflectivity ofcopper.

4.1.3 Effect of Surface Roughness on Energy Transfer Efficiency

3-D images taken from surfaces ofthe grit (120 grit Ah03) blasted and clad H-13

tool steel substrates with the optical profilometer are shown in Figures 4-5 and Figures 4

6, respectively. The surface profile from the grit blasted substrate shows a uniform

dimpled appearance, which corresponds to surface depressions that occurred from the

impact of the 120 grit Ah03 particles as they impinged upon the substrate. The clad

substrate on the other hand shows a series of peaks and valleys, corresponding to the

outline of deposit traces. The measured root-mean-square surface roughness of the grit

blasted and clad substrates were 220/lm and 330/lm, respectively.
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Figure 4- 5. 3-D image from the surface of grit (120 grit Ah03) blasted H-13 tool steel
substrates used in the measurement of energy transfer efficiency in the LENSTM
process. (crm=220Jlm)

Figure 4- 6. 3-D image from the surface of H-13 tool steel powder clad onto a H-13 tool steel
substrates used to evaluate surface roughness effects on energy transfer efficiency
in the LENSTM process. (crm=330Jlm)
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To evaluate the effect of -surface roughness on energy transfer efficiency,

autogenous laser welds were made on the substrates at 5mm/s while varying laser output

power. Powder deposition was not used in the study so as to eliminate one more variable.

The results of energy transfer efficiency measurements of the clad and unclad substrates

are shown in Figure 4- 7. While the energy transfer efficiency measurements for the grit

blasted substrates were slightly higher than the clad substrates, the differences are small.

The results are expected to be similar because once a stable weld pool is formed; surface

roughness should have no effect on laser beam absorption. From that in itself, it stands to

reason that the energy transfer efficiency of the clad and unclad substrates should be

relatively equal for each laser beam irradiance tested. The largest difference (37%)

occurred at a laser power of 375W while the smallest difference (4%) occurred at the

highest beam irradiance tested 500W. An average difference for all measurements was

15%. Since there were only four data points to compare to no finite conclusion about the

effects of surface roughness on laser beam coupling can be made without further

experimentation.
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Figure 4- 7. Plot of energy transfer efficiency as a function of laser output power for clad and
unclad substrates that were used to evaluate the effect of surface roughness on laser
beam coupling.
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4.2 Melting Efficiency

From the total energy that is transferred to the workpiece, only a small fraction of

it is used to create and maintain a molten pool by melting a localized region of the

workpiece (i.e. melting efficiency). For laser deposition processes to be efficient, the total

energy transferred from the energy source to the workpiece must posses enough energy to

melt the underlying substrate and the incoming powder flux. The melting efficiency is

affected by processing parameters, material thermophysical properties, and heat flow

conditions. In this study, the heat flow conditions were entirely 3-D since the weld pool

penetration depths of the deposits were significantly less than the substrate thickness.

Results from the calorimetric study on energy transfer efficiency indicated that laser

absorption was relatively insensitive to the range of processing parameters tested.

Therefore, an average laser energy transfer efficiency value of 0.4 was used to determine

melting efficiency from geometric cross sectional area measurements and Equation [3-2].

4.2.1 Effect of Processing Parameters on Melting Efficiency

The effect of processing parameters on melting efficiency was examined for the

entire test matrix of H-13 tool steel single pass deposits. The effect of laser input power

on melting efficiency is displayed in Figure 4- 8. It should be noted that the laser input

power is implied to be the actual power delivered to and absorbed by the workpiece.

Thus, -the laser input power was calculated by multiplying laser output power by an

average value of energy transfer efficiency, 0.4. A trend is revealed which shows how

melting efficiency increases with increasing laser input power. A maximum is reached at

a melting efficiency of approximately 0.33 and then tapers offat the highest input power.
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These results are to be expected since the theoretical maximum for 3-D heat flow

conditions is 0.37. 18
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Figure 4- 8. Melting efficiency as a function of laser input power for varying travel speeds and
powder mass flow rates.

Melting efficiency increases with the increasing rate ofenergy (i.e. laser input power)

delivered to the workpiece. When energy is distributed to a localized region at a faster

rate, there is less time available for the energy to be transported away from the weld

region by thermal conduction to the surrounding material. If all other processing

variables were held constant, then increasing the laser power alone would cause an

increase in melting efficiency because there is a greater amount of energy available to

melt the incoming powder and the underlying substrate. This can be seen in Figure 4- 9 a-

c, which displays deposit cross sectional micrographs for varying laser input powers at a
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constant travel speed (5mm/s) and powder mass flow rate (0.17g/s). Note: melting

efficiency and deposit cross sectional area increase as laser input power increases.

a)

b)

c)

TlaP =50W
TIm = 0.16
A=0.05mm2

TlaP = 100W
TIm = 0.25
A=0.l1mm2

TlaP=150W
Tlm=O.27
A=0.27mm2

Figure 4- 9. Effect of laser input power on melting efficiency and deposit cross sectional area.
(Travel s'peed of 5mm/s and powder mass flow rate of O.17g1s)
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INTENTIONAL SECOND EXPOSURE

constant travel speed (SJ1l-l1vs) and powder mass flow rate (O.17g/s). Note: melting

efficiency and deposit cross sectional area increase as laser input power increases.

a)

b)

c)

11aP = SOW
'11m = 0.16
A = 0.05mm2

11aP = WOW
11m = 0.25
A = 0.l1mm2

11aP=150W
'I1m=0.27
A= 0.27mm2

Figure 4- 9. Effect of laser input power on melting efficiency and deposit cross sectional area.
(Travel speed of 5mm/s and powder mass flow rate of O.17g/s)
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To determine the rate at which energy is delivered to the workpiece, it is

important to examine the effects of travel speed. It is known that an increase in travel

speed will increase melting efficiency.34 The reason being that when melting occurs at

faster heat source travel speeds, less time is available for heat to be transported away

from the localized melted region. Therefore, more total energy is used to create and

maintain the molten weld pool.35 Travel speed was also included in Figure 4- 8 to show

the dependence of travel speed on melting efficiency. Results show that there is a slight

increase with an increase in travel speed for the range of travel speeds tested. A plot of

melting efficiency as a function of travel speed for varying laser powers (125, 250, 375,

and 500W) can be seen in Figure 4- 10.
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Figure 4-10. Melting efficiency as a function of travel speed for varying laser powers.
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Under closer examination ofthis plot, it can be seen that the there is an increase in

melting efficiency with an increase in both laser power and travel speed. Figure 4- 11 a-d

also depicts the dependence of melting efficiency on travel speed and laser input power

for constant powder mass flow rates. Melting efficiency is not solely dependent upon

travel speed but rather it is codependent with laser power and powder mass additions into

the weld pool. Visually, the effect of travel speed (while holding all other variables

constant) on melting efficiency and deposit cross sectional area can be seen in Figure 4

12a-c. The influence oftravel speed on melting efficiency can clearly be seen in Figure 4

13, which shows a plot of melting efficiency as a function oflaser input power for travel

speeds of 5 and 35 mm/s under a fixed powder mass flow rate. For each data point, the

higher travel speed corresponds to a higher melting efficiency.

Previous work has shown that the combination of the laser input power and travel

speed governs the rate at which energy is transported to the workpiece and when both

processing parameters increase, either independently or together, melting efficiency

increases as well.34 This trend can be seen in Figure 4- 14 where melting efficiency is

plotted as a function ofthe product between laser input power and travel speed. At higher

travel speeds, while holding laser power constant, a larger fraction of the total energy is

retained to melt the underlying substrate and vice versa for higher laser power with a

fixed travel speed. At some point, travel speed can become too high to cause further

melting of the material because there is less time available for transferring energy to the

workpiece.34
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Figure 4- 11. Effect of melting efficiency on laser input power and travel speed for powder mass
flow rates of a) 0.08, b) 0.17, c) 0.25, and d) 0.33g1s.
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a)

b)

c)

S = 5mm/s
11m = 0.27
A=0.77mm2

S = 15mm/s
11m = 0.27
A= 0.27mm2

S=25mm/s
11m =0.28
A= 0.17mm2

Figure 4- 12.Effect of travel speed on melting efficiency and deposit cross sectional area.
(Laser input power of 150W and powder mass flow rate ofO.17g/s)
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a)

b)

c)

S = 5mm/s
11m = 0.27
A= 0.77mm2

S = 15mm/s
11m = 0.27
A= 0.27mm2

S = 25mm/s
11m = 0.28
A = 0.17mm2

Figure 4- 12.Effect of travel speed on melting efficiency and deposit cross sectional area.
(Laser input power of 150W and powder mass flow rate of O.17g/s)
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Figure 4- 13. Plot of melting efficiency as a ,function of laser input power for travel speeds of 5
and ISmmls for fixed powder mass flow rate. (O.08g1s)
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Powder mass additions into the molten pool was also observed to have an effect

on melting efficiency. This was evident when melting efficiency was plotted as a function

of laser input power at varying powder mass flow rates while holding travel speed

constant. The results are presented in Figure 4- 15 a-d, which correspond to plots of

melting efficiency as a function of laser input power and powder mass flow rate for travel

speeds of 5, 15, 25, and 35mm/s, respectively. At the lowest travel speed of 5mmJs

(Figure 4- 15 a), two distinguishable trends are immediately evident. The first trend

depicts how melting efficiency increases with laser input power, as observed in the

section above. The second noticeable trend clearly depicts an increase in melting

efficiency with an increase in the amount ofpowder material that is delivered to the weld

pool. At the higher travel speeds, (15, 25, and 35mmJs) these trends are also apparent

although there is some overlap among data points. A pictorial representation showing the

increasing effect ofmelting efficiency with increasing powder mass additions can be seen

in Figure 4- 16 a-c.

The phenomenon of increased melting efficiency with the increased incorporation

ofpowder material into the molten pool can be explained by examining the distribution

ofenergy from the laser beam to the substrate and powder flux. As energy is transferred

to the molten pool, a fraction of it is used to melt the underlying substrate while the rest is

dissipated by thermal conduction to the surrounding material. When powder is distributed

over the weld pool, the total energy available is utilized to create the molten pool and

melt the incoming powder flux. The energy is effectively used to melt the underlying

substrate and powder while leaving a lesser amount ofenergy to be dissipated away from
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the localized melt region. Since a greater amount of energy is available and used for

melting, it follows that melting efficiency will increase as well.
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Figure 4- 15. Effect of laser input power on melting efficiency for varying powder mass flow
rates and at travel speeds ofa) 5, b) 15, c) 25, and d) 35mm/s.
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a)

b)

c)

Mn= 0.08g/s
TJm= 0.12
A=0.23 mm2

Mn= 0.17g/s
TJm= 0.25
A=0.47mm2

Mn= 0.25g/s
TJm= 0.32
A=0.61mm2

Figure 4- 16.Effect of powder mass flow rate on melting efficiency and deposit cross sectional
area. (Laser input power of IOOW and travel speed ofSmm/s)
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INTENTIONAL SECOND EXPOSURE

a)

b)

c)

Mn = 0.08g/s
T]m = 0.12
A = 0.23 mm"

M n = 0.17g/s
T]m = 0.25
A = 0.47mm"

M n =0.25g/s
T]m = 0.32
A = 0.61mm"

Figure 4- 16.Effect of powder mass flow rate on melting efficiency and deposit cross sectional
area. (Laser input power of JOOW and travel speed of 5mm/s)
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4.2.2 Predicting Melting Efficiency from Processing Parameters

Attempts have been made to predict melting efficiency through knowledge of

process variables and material thermophysical properties. 17
"19 The theoretical models are

based upon steady state thermal conduction heat flow conditions fIrst described by

Rosenthal. The assumptions used by Rosenthal include a point heat source, constant

thermal properties, no melting/negligible heat of fusion, and no heat loss from the

workpiece surface.7 More recently a model has been developed for arc welding and CO2

laser welding processes to predict melting efficiency as a function of dimensionless

. parameters.21 Dimensionless parameters were used· to correlate the weld size to

processing parameters and they are defIned as follows:

[4-1]

[4- 2]

Where lla is the energy transfer efficiency (0.4), P is the laser power, S is the travel speed,

a is the thermal diffusivityat the liquidus temperature (1018 Steel-5.5 mm2/s and copper-

42.1 mm2/s), 36 ~Hm is the melting enthalpy, and A is the weld cross sectional area. For

copper powder deposits on the H-13 tool steel, the effect of thermal diffusivity should be

controlled by the substrate material as previously shown by DuPont and Marder. 16
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Therefore, the value of thermal diffusivity should be that of the steel substrate. (5.5

mm2/s) Since materials with dissimilar thermophysical properties have been deposited

(i.e. copper deposited on tool steel), an average melting enthalpy value between tool steel

and copper was used, 8.2 J/mm3
•16 The ratio of Ch to Ry yields the melting efficiency as

shown in the following equation:

Ch SAMfm1] =-=--......;.;.;...
m Ry 'laP. [4- 3]

To develop a relation between the two dimensionless parameters, Ch was plotted as a

function of Ry for deposits of H-13 tool steel and copper powder on grit blasted H-13

tool steel substrates under a wide range ofprocessing parameters. The results presented in

Figure 4- 17 depicts a linear relationship between Ch and Ry and the data was fitted to a

best-fit curve using linear regression analysis. The results yielded a correlation coefficient

of0.96 and the equation relating Ch to Ry is presented below:

Ch =0,31Ry - 0.47 [4- 4]

Since the ratio ofCh/Ry yields the melting efficiency, Equation [4-4] was manipulated to

yield the following:
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[4- 5]

Equation [4-5] is thus a semi-empirically based, equation that can be used to estimate

melting efficiency as a function of the dimensionless parameter Ry. Recall that Ry

incorporates processing parameters (P and S) and thermal physical properties (x, ilHm),

therefore Equation [4-5] can be used to predict melting efficiency when processing

parameters and material thermophysical data are known. Melting efficiency data was

plotted as a function of Ry so that it could be compared to calculated melting efficiency

values using Equation [4-5]. (Refer to Figure 4- 18) From the plot it can be seen that

there is not a tight correlation from data point to data point for the H-13 tool steel and

copper data. A direct comparison between experimentally measured melting efficiency

and melting efficiency calculated from Equation [4-5] can be seen in Figure 4- 19. At low

values of melting efficiency there is poor correlation and the correlation generally

improves at higher melting efficiencies. It has been shown that the deviations occur

because of the inability to predict melting efficiency due to the exponential relation

between melting efficiency and TlaPS.19 At high values of melting efficiency, there is

better correlation because melting efficiency asymptotically approaches the theoretical

maximum ofO.3?
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Figure 4- 17. Dimensionless parameter model Ch versus Ry for H-13 tool steel and copper
powder deposits on H-13 tool steel substrates.
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Figure 4-18. Melting efficiency as a function of the dimensionless parameter Ry for H-13 tool
steel and copper powder deposits on H-13 tool steel substrates.
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4.3 Deposition Efficiency

From deposit cross sectional area measurements, the deposition efficiency was

determined under a matrix of processing parameters. Deposition efficiency ranged from

0-14%. These results indicated that only a small fraction ofpowder delivered to the melt

pool was actually fused to the substrate to form a metallurgical bond. The low deposition

efficiency can be attributed to the following: 1) design ofthe powder delivery system and

2) an insufficient amount of energy available to melt the underlying substrate and

incoming powder. Case 1 will be discussed in more detail in Section 4.3.1 while Case 2

will be discussed in more detail in Section 4.3.2.

4.3.1 Design of the Powder Delivery System

The design of the powder delivery system has a large impact on deposition

efficiency in that it directs the flow of powder into the molten pool. If for example the

nozzles are misaligned, then a large fraction of the powders will not be fused to the

substrate because a majority ofthe powder will not even come in contact with the molten

pool; thereby causing a decrease in the deposition efficiency. The laser beam focal point

was set by the manufacturer, which resulted in a stand off distance between the tip ofthe

nozzles and the substrate to be 8.89mm. At this distance, powder was evenly distributed

over the molten pool in an area that was 16.26mm2
• Macroscopic images of single pass

line deposits at a constant travel speed ofSmm/s and at laser powers of2SOW and SOOW

can be seen in Figure 4- 20 a-b, respectively. The lighter area, sectioned off with dotted

line, corresponds to the powder impingement area. As evident from these macrographs,

the molten pool is significantly smaller than the total area that the powder is distributed

over. Thus, it stands to reason that a larger amount of powder will not fuse to the
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workpiece since the majority of it does not even come in contact with the molten pool.

This gives one explanation as to why the deposition efficiency is so low. From the

powder that does come in contact with the molten pool, the deposition efficiency would

be dependent upon processing parameters since they control the size of the melt pool as

well as the rate at which powder is delivered to the weld pool.

I•
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Figure 4- 20. Macrograph ofpowder convergent area for laser output powers of a) 250W and b)
500W.

4.3.2 Effect of Process Variables on Deposition Efficiency

Deposition efficiency is affected by the combination of laser power, travel speed,

and powder mass flow rate. By examining the data that corresponds to l'ld(P,S,Mfr) it is

possible to observe general trends on how deposition efficiency varies with respect to one

variable while holding all others constant. For example, the effect of laser power on

deposition efficiency while holding travel speed and powder mass flow rate constant at

5mm/s and O.08g/s, respectively can be seen in Figure 4- 21. From this figure, it is readily
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apparent that deposition efficiency increases with an increase in laser power when

examining corresponding micrographs for each data point. This trend can be explained by

the fact that at higher laser powers a greater amount of energy is utilized for melting.

Melting efficiency increases and a larger molten weld pool is created. Under these

circumstances, there is a sufficient amount of energy available to melt the substrate and

the powder, as evident in the size of the deposit cross sectional area. Travel speed also

has an affect on deposition efficiency. (Refer to Figure 4- 22) With an increase in travel

speed, while holding laser power and powder mass flow rate constant, deposition

efficiency was shown to decrease. This occurs because at higher travel speeds, the size of

the molten pool decreases. Lastly, the effect of powder mass flow rate on deposition

efficiency (while holding laser power and travel speed constant) is shown in Figure 4- 23.

From this it can be seen that there is little dependence on the rate at which powder is

delivered to the molten pool. The small amount ofpowder that comes in contact with the

molten pool will not fuse to the workpiece because powder is injected at such a high

velocity such that the individual powder particles will have a sufficient amount of

momentum to be deflected away from the weld pool and ricochet off of the substrate

even when it gets heated by the molten weld pool.

Laser energy transfer and melting efficiency results from Sections 4.1 and 4.2

were used to examine the effects of melting power (llallmP) on deposition efficiency. As

melting power increases, a greater amount of energy is utilized for melting which will

subsequently increases the size of the molten weld pool. This will in turn increase

deposition efficiency, as more energy is available to melt the powder material over a

larger area Figure 4- 24 a-b depicts representative still images of the laser deposition
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process taken with a color CCD camera. The images show the effect ofmelting power on

deposition efficiency while holding all other variables constant. It can be seen in Figure

4- 24 a that there is an insufficient amount of energy available for melting and this

powqer that impinges upon the weld pool will not be effectively melted and fused to the

substrate. When melting power increases as in Figure 4- 24 b the energy available for

melting is effectively utilized for melting the powder material and thus a larger fraction

of incident powder is fused to the workpiece.
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Figure 4- 21. Deposition efficiency as a function of laser input power for ftxed travel speed and
powder mass flow rate.
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Figure 4- 23. Deposition efficiency as a function of powder mass flow rate for fixed laser input
power and travel speed.
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Figure 4- 24. Real time weld pool monitoring.of laser deposition process at laser output powers
of a) 12SW and b) SOOW at constant travel speed (Smm/s) and powder mass flow
rate (O.08g/s).
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4.3.3 Predicting Deposition Efficiency from Processing Parameters

The effect ofprocessing parameters on deposition efficiency can be seen in a plot

of deposition efficiency as a function of the parameter r for the H-13 tool steel and

copper deposits (Refer to Figure 4- 25). The r parameter [Vjinl(Y1aYl rnP/S)] is a ratio of

the volumetric filler metal feed rate (Vfin) over the actual heat input that is used for

melting (Y1aYl rnP/S). The r parameter was used because it incorporates the main LENSTM

processing variables that affect deposition. The volumetric powder feed rate is simply the

volumetric amount ofpowder that is delivered to the molten pool. The melting heat input

governs the size of the molten pool. When Y1aYl rnP/S increases by increasing laser input

power or decreasing travel speed, it follows that the size of the molten weld pool

increases as well since there is a greater amount of energy that is utilized for melting.

Conversely, when Y1aYl rnP/S decreases, less energy is available for melting. When the r

parameter is small (low Vjin and high Y1aYlrnP/S), deposition efficiency is high because the

molten pool size increases and a greater amount of powder is incorporated into the melt

pool. Moreover, when the r parameter is large (high VIm and low Y1aYl rnP/S), deposition

efficiency is low because there is an insufficient amount of energy available to melt the

substrate and the large flux of incoming powder.

In order to develop a method of predicting deposition efficiency based on

LENSTM efficiencies and processing parameters the data in Figure 4- 25 was fitted to a

best-fit curve by regression analysis, which resulted in the development of equations

relating deposition efficiency to r.
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B-13 Tool Steel

Copper

'lJd = -0.02ln(f) + 0.10

'lJd = -0.07ln(f) + 0.30

[4- 6]

[4-7]

Equation [4-6] and [4-7] are thus semi-empirical equations that can be used to estimate

deposition efficiency as a function of r, which in turn is a function of process

efficiencies and processing parameters such as laser power and travel speed. As can be

seen in Figure 4- 25, there is a significant amount ofscatter for the copper data.
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Figure 4- 25. Plot of deposition efficiency as a function of the ratio of volumetric powder feed
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4.4 Dilution

The development of functionally graded materials for industry related

applications has been one aspect of solid freeform fabrication research. Designers now

have the ability to fabricate intricate shaped components with local compositional

control, resulting in unique mechanical properties throughout the graded structure. The

LENSTM process is one such solid freeform fabrication method that has the ability to

produce functionally graded structures by selectively depositing different elemental

powders or premixed blends into the molten pool at discrete locations. The adaptation of

multiple powder feeders in the LENSTM system makes this feasible. Dissimilar powder

materials are placed into separate powder hoppers. Computer software, which is

integrated into the powder feed system, enables the user to precisely control the deposit

composition as a function of position. During the build process, the powder feeders

operate simultaneously at different motor speeds to deliver more or less of a specific

powder to the melt pool.

The chemical composition in each layer of a LENSTM fabricated component is

dependent upon the degree of mixing, or dilution, between the previously solidified layer

and the newly formed deposit. Previous research has shown that the distribution of

alloying elements is fairly uniform across the substrate and the deposit weld metal and

that a concentration gradient exists over a distance of only ~75~m, which is very small

when compared to the overall deposit size. 19 Estimation of deposit composition from

geometric measurements of dilution has been shown to be representative of the entire

weld deposit composition.19 For a functionally graded component, each layer will exhibit

a discrete composition. This occurs because the composition of the incoming powder is
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continuously changing between each pass. This is depicted in Figure 4- 26 where the

initial composition in the ftrst pass is of material A and as material B is functionally

graded into successive layers the composition exhibits a "stepped" proftle.

....................... ~ ..
V,;;;·~7":7S@-,;IT!;{j =.....

...................... fIl ..

~

Composition, %B

Figure 4- 26. Schematic illustration ofa functionally graded line build with corresponding
composition profile of material B into material A.

Composition control of each deposit is required to obtain the desired composition and

microstructural proftle. Composition in each layer can be estimated from a dilution

standpoint using Equation [4-8] when the composition ofthe substrate and material to be

deposited are known. The concentration of any alloying element, i, in the deposit is then

related to the dilution by the following expression:
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Where:
Cidep = Concentration ofelement i in the deposit
Cisub = Concentration of element i in the substrate
Cipow = Concentration ofelement i.in the powder

Previous research has shown that excellent agreement exists between composition

determined through geometric dilution and direct chemical analysis techniques. 19 The

composition in multiple pass deposits is determined through an iterative approach. The

composition in the first layer is determined by Equation [4-8], where Csub is the

composition of the substrate and Cdep is the composition of the incoming powder

material. After mixing, the resultant composition ofthe deposit is given as C1dep (Refer to

Figure 4- 27 a). The composition in the second pass is also determined from Equation [4-

8]; however, Csub now becomes C1dep and the resulting composition becomes C2dep (Refer

to Figure 4- 27 b).

a b

Figure 4- 27. Schematic illustration depicting composition in a) single pass and b) multiple pass
LENSTM deposits.

Cdep remains the same if the composition of the incoming powder remains the same;

otherwise, Cdep becomes the composition of new powder blend. This approach is used so
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on and so forth depending on the number of discrete passes in the functional graded

material structure.

4.4.1 Effect of Processing Parameters on Dilution

As with arc welding processes37
, dilution in the LENSTM process is controlled by

the input power, travel speed, and filler metal mass flow rate. Dilution was measured for

single pass H-13 tool steel and copper powder deposits on H-13 tool steel substrates as a

function of laser power, travel speed, and powder mass flow rate. Single pass deposits

were made in order to simplify the layer additive process so that the effects of process

variables could be extensively explored in a simplistic manner.

The effect ofprocessing parameters on dilution can be shown in a manner similar

to the results presented in Section 4.3.2. Dilution was plotted as a function oflaser input

power under fixed travel speed and powder mass flow rate (Refer to Figure 4- 28). The

plot displays a trend of increasing dilution with increasing laser input power. It has

previously been shown in Section 4.2.1 that an increase in laser power will result in an

increase in melting efficiency. A portion of the available energy for melting will

effectively be used to melt the incoming powder material and the substrate material,

while the rest is dissipated by thermal conduction to the rest of the substrate. As melting

efficiency increases, more energy is available to melt a greater amount ofthe substrate. A

portion ofthe energy available for melting will also be used to melt the incoming powder

material. As evident in the corresponding micrographs in Figure 4- 28, the size of the

deposit and melted substrate both increase with increasing laser input power. Since the

powder mass flow rate is constant, there is a greater amount of energy available for

localized melting of the substrate. The melted substrate area increases at a faster rate than
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the deposit cross sectional area when laser input power is increased. Since the melted

substrate cross sectional area increases much more than the deposit cross sectional area, it

follows that dilution increases as welL

Dilution was observed to increase as travel speed increased for constant laser

input power and powder mass flow rate (Refer to Figure 4- 29). The reason for this effect

can be eXplained through examination ofthe following equation:

[4- 9]

Where ~ is the cross sectional area of deposited filler material, lld, is deposition

efficiency, Vfm is the volumetric filler metal feed rate, and S travel speed. Recall that this

equation is simply Equation [3-3] rewritten in terms ofthe deposit cross sectional area. If

we assume a value of unity for lld, it follows that the deposit cross sectional area is

dependent upon the ratio of volumetric powder material feed rate to travel speed. As

travel speed increases, there is less powder delivered to the melt pool, resulting in a

decrease in the amount of material to be deposited. Also it has been shown that an

increase in travel speed will result in an increase in melting efficiency, which will result

in a greater amount ofenergy being utilized to melt the underlying substrate.34 Therefore,

the cross sectional area of the melted substrate increases, resulting in a subsequent

increase in dilution. This is evident when examining the corresponding micrographs for
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the data points in Figure 4- 29. The micrographs clearly depict a decrease in the deposit

cross sectional area as travel speed increases.

Dilution was also observed to decrease with increasing powder mass flow rate

when laser input power and travel speed are held constant (Refer to Figure 4- 30). This

effect can also be explained from Equation [4-9]. From this equation it is apparent that

when travel speed is constant, an increase in the volumetric powder material feed rate

will result in an increase in the deposit cross sectional area since more material is, made

available for deposition. Examination ofthe micrographs in Figure 4- 30 shows this trend

as well. As more powder is delivered to the melt pool a greater amount of energy is

utilized to melt the incoming powder flux, leaving a lesser amount of energy to melt the

underlying substrate. When this occurs, the melted substrate cross sectional area

decreases. Thus, the fusion zone is comprised of a larger fraction of deposit material.

Dilution therefore decreases as powder mass flow rate increases.
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Figure 4- 28. Dilution as a function of laser input power for ftxed travel speed and powder mass
flow rate.
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Figure 4- 29. Dilution as a function of travel speed for fixed laser input power and powder mass
flow rate.
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4.4.2 Methods of Predicting Dilution in LENSTM Deposits

A method ofpredicting dilution levels for arc welding processes, as a function of

processing parameters, has been proposed by DuPont and Marder.19 The model is based

upon a power balance approach across the arc where the total energy available for
/'

melting is set equal to the energy required to melt the filler and substrate materials. The

power balance can be seen in the following equation:

. .
17allmP =17dVjml1Hm,f +V/~Hm,s [4-10J

Where the left side of the equation CllallmP) represents the energy available for melting,

i.e. melting power. The right side ofthe equation has two terms that represent the amount

of energy required to melt a volumetric amount of material for the filler material and

substrate material, respectively. Deposition efficiency Clld) was incorporated into

Equation [4-10] to account for powder losses that is delivered to, but not fused to

substrate. Since the energy transfer and melting efficiencies can be estimated, rewriting

Equation [4-10] in terms ofthe only unknown C~) yields the following:

[4-11J
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As previously shown19
, Equation [3-4] can be rewritten in terms of volumetric melting

rates of the filler metal and substrate. Rewriting this in another form results in the

following:

4-12]

Substituting Equation [4-11] into Equation [4-12] yields an expression for dilution as a

function of melting power, volumetric filler metal feed rate, and melting enthalpy of the

substrate (M1m,s) and filler metal materials (~Hm,f).

[4-13]

Equation [4-13] is thus a predictive equation that can be used to estimate dilution since

the energy transfer efficiency is known and melting efficiencies can be estimated from

the dimensionless parameter model presented in Section 4.2.2. The results of Section

4.1.1 show that laser energy transfer efficiency was relatively insensitive to the range of

processing parameters used in this study. Therefore an average lla value of 0.4 was used

in all calculations.
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To determine if this model can be applied to predict dilution in the LENSTM

process, the data from actual dilution measUrements were compared to that of calculated

dilution values using Equation [4-13]. The melting efficiency term in Equation [4-13],

was calculated using Equation [4-5] as described in Section 4.2.2 in order to yield an

expression that is based fully on values that are predicted from processing parameters. A

plot of measured dilution versus calculated dilution from Equation [4-13] is displayed in

Figure 4- 31. The results indicate that there is reasonable correlation between dilution that

was found using actual experimental measurements to those calculated using the

predictive model that was based solely as a function of processing parameters and

material thermophysical properties. The correlation begins to break down at low levels of

dilution. The deviation from the 1:1 correlation line in the plot is the result of the

difficulty in predicting melting efficiency as previously described in Section 4.2.2 and by

DuPont and Marder. 19 Overall, Equation [4-13] can be used to estimate dilution for single

pass LENS™deposits with good agreement between experimentally measured and

calculated dilution values. However future work is still needed to determine if this model

is applicable for multipass LENSTM deposits.
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Figure 4- 31. Comparison between measured dilution and dilution calculated from Equation
[4-13] for H-13 tool steel and copper powder deposits on H-13 tool steel substrates.
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Another method of predicting dilution from a process parameter standpoint is by

using Rosenthal's analytical heat flow solution? to solve for the cross sectional area ofthe

melted substrate as a function of processing parameters. One of the limitations of

Rosenthal's moving heat flow solutions is that powder mass additions into the melt pool

are not incorporated into the solutions for heat flow during welding. Melted substrate

cross sectional areas were determined through the Rosenthal solutions using a

commercially available MATLAB based software program called SOAR (Smartweld

Optimization and Analysis Routines).38 The ISO 3-D routine in the SOAR program

enables users to easily compute constant temperature isotherms for a given set of weld

variables by rapidly solving for Rosenthal's heat flow solution.

To compute melt pool isotherms, laser input power (TJaP) and travel speed were

used as input parameters to solve for the melted substrate cross sectional areas using the

available 1018 steel thermal property database. The 1018 steel thermal property database

includes thermophysical properties such as thermal diffusivity and thermal conductivity

values of which are used to as inputs into the Rosenthal solution. Example output results

can be seen in Figure 4- 32. Actual melt pool cross sectional areas, taken from

experimental measurements, were compared to melt pool cross sectional areas estimated

by Rosenthal's 3-D heat flow solution using SOAR (Refer to Figure 4- 33). Results

indicate a good correlation between the two even though Rosenthal's solution does not

take into account powder additions into the weld pooL The good correlation arises from

experimentally fitted thermal property values. To determine effective thermal

conductivity and effective thermal diffusivity values, a least squares fitting method was

employed to fit measured cross sectional area data to the conduction modeL39 The

116



resultant effective thermal diffusivity and effective thermal conductivity were 6.2mm2/s

and 44W/m-K, respectively.

Figure 4- 32. Example visual output results from SOAR program ISO 3-D function. a) 3-D
isotherm contours, b) cross section view, and c) top view.
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rINTENTIONAL SECOND EXPOSURE

resultant effective thermal diffusivity and effective thermal conductivity were 6.2mm
2
/s

and 44 \V/111- K. respectively.

Figure 4- 32. Example visual output results from SOAR program ISO 3-D function. a) 3-D
isotherm contours. b) cross section view. and c) top view.
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Figure 4- 33. Comparison between experimentally measured weld cross sectional areas and weld
cross sectional areas estimated using Rosenthal's 3-D heat flow solution at varying
powder mass flow rates.
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To use the results presented above to estimate dilution, the SOAR program was

used to predict melted substrate cross sectional areas as a function of laser input power

and travel speed. Recall that calculation of dilution requires geometric measurements of

melted substrate and deposit cross sectional area. To estimate the deposit cross sectional

area for the H-13 tool steel and copper deposits, Equations [4-6] and [4-7] were ftrst used

to predict deposition efficiency for the same processing parameters used in the Rosenthal

solution. Once the deposition efficiency was known for the given set of parameters, the

deposit cross sectional areas were then back calculated using Equation [4-9]. Good

agreement was found between experimentally measured deposit cross sectional areas and

calculated deposit cross sectional areas using Equation [4-9] as evident in Figure 4- 34

for the H-13 tool steel data. The poor correlation for the copper data is attributed to the

initial scatter in data in Figure 4- 25.

In order to calculate dilution, estimated substrate melted cross sectional areas

from the Rosenthal solution and deposit cross sectional areas from Equation [4-9] were

incorporated into Equation [3-4]. A comparison between experimentally measured and

calculated dilution can be seen in Figure 4- 35. The plot shows good correlation between

measured and calculated dilution levels for the H-13 tool steel deposits; however, there

are deviations from the 1:1 correlation line for the copper deposits. Deviations from the

1:1 correlation line in Figure 4- 35 appears to be from the deviations in estimated deposit

cross sectional areas in Figure 4- 34.
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Figure 4- 34. Comparison between experimentally measured deposit cross sectional areas and
predicted deposit cross sectional areas using Equation [4-9] for H-13 tool steel and
copper deposits on H-13 tool steel substrates.
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Figure 4- 35. Comparison between experimentally measured dilution and dilution calculated
from predictive melted substrate and deposit cross sectional areas.
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5.0 RESEARCH SUMMARY AND CONCLUSIONS

Laser energy transfer, melting, and deposition efficiencies were measured for the

LENSTM process for H-13 tool steel and copper powder deposits on H-13 tool steel

substrates. The influence of laser power, travel speed, and powder mass flow rate on

these process efficiencies were investigated and the following results were revealed:

1) Laser energy transfer efficiency varied from 30-50% under the range of

processing parameters tested. Laser beam absorption was relatively insensitive to

changes in laser output power and travel speed. Powder feed rate and the type of

powder delivered to the molten pool showed no effect on laser beam absorption.

2) Melting efficiency was shown to increase with increasing laser 'input power, travel

speed, and powder mass flow rate.

3) A dimensionless parameter modelthat has been used to predict melting efficiency

for laser beam welding processes was applied to the LENSTM process. Calculated

melting efficiency values predicted from the model correlated reasonably well

with experimentally measured melting.efficiencies for H-13 tool steel deposits at

high melting efficiency values.

4) The influence ofprocessing parameters on deposition efficiency was described by

the r parameter [VtiJ(l1allmP/S)]. Deposition efficiency was observed to increase

when the r parameter is small and decreases when the r parameter is large. A

semi-empirical model utilizing the r parameter was developed to predict

deposition efficiency as a function ofprocessing parameters.

5) A semi-empirical model relating utilizing the r parameter was developed to

predict deposition efficiency as a function ofprocessing parameters.
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6) Processing parameters were shown to influence dilution. Varying laser power,

travel speed, or powder mass flow rate independently or simultaneously will alter

dilution.

7) Dilution in multiple pass deposits can be determined by Equation [4-8] when

dilution and the compositions ofthe substrate and incoming powder are known.

8) A previous model that was developed to predict dilution for arc welding processes

as a function of process variables and process efficiencies was shown to be

applicable for the LENSTM process with good correlation between calculated and

experimentally measured dilution values.

9) A method of predicting dilution was introduced which incorporates Rosenthal's

heat flow solution and the semi-empirical model developed to predict deposit

cross sectional areas. Good correlation was demonstrated when dilution found

from this approach was compared to experimentally measured values.
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