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ABSTRACT 
 

 
The persistence of rugged topography and considerable relief in the Appalachian 

Mountains of eastern North America is difficult to explain in the context of an old and 

long-decaying mountain range. Despite an influential history of tectonic and geomorphic 

investigation an explanation of the drivers of long-term evolution of the Appalachian 

landscape has remained elusive. Along their length, the relationship between bedrock 

geology, tectonic history, and relief varies widely, suggesting that the modern topography 

is decoupled in space and time from the collisional orogenies of the Paleozoic and rifting 

in the Mesozoic.  This dissertation addresses the use of U-Th/He thermochronometry on 

the mineral apatite to constrain the low-temperature cooling history of the Appalachian 

region in order to understand the processes responsible for the long-term preservation or 

rejuvenation of the Appalachian landscape.   

Chapter 1 addresses the problem of intra-sample age dispersion in apatite U-Th/He 

thermochronometry, which is frequently encountered in slowly eroding regions like the 

Appalachians.  Using protocols developed for grain abrasion it was found that the sources 

responsible for causing the age dispersion could be mitigated or deciphered in the context 

of other acknowledged sources.  One such source is radiation damage, which impedes He 

diffusion and results in the ages of different grains from the same sample being 

dependent on the cooling rate and the grain specific concentration of U and Th.  In 

Chapters 2 and 3 I use different sampling techniques to explore the low-temperature 

thermal history information that the age dispersion caused by radiation damage provides 

to address pace and variability of erosion throughout the Appalachian landscape.  This 
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research gives the first evidence of unsteady erosion of the southern portion of the range 

and in so doing suggests a more nuanced history that until now has not been detectable 

through other geochronological tools.  
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CHAPTER 1 

 

Effects of physical and chemical abrasion on AHe thermochronometry 

 
Ryan E. McKeon* 
Peter K. Zeitler 
Bruce D. Idleman 
 
Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA  
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CHAPTER ABSTRACT 

 

Intra-sample age dispersion in apatite U-Th/He thermochronology that exceeds analytical 

uncertainty of laboratory measurements can be caused by a number of factors, making the 

identification and mitigation of a single or combination of sources of dispersion difficult 

using the standard analysis protocol.  We explored the use of grain abrasion as a means of 

addressing observed dispersion using rapidly cooled samples from sediment cores 

collected offshore from Bermuda and slowly cooled samples from Proterozoic gneiss 

from western North Carolina in the southern Appalachians of eastern North America.  

We removed a minimum of 25 µm from the surface of individual apatite grains 

physically using an air abrasion cell and experimented with a potentially more efficient 

chemical abrasion protocol using dilute nitric acid.  Using our established protocols, we 

found that chemical abrasion replicated the positive effects of physical abrasion for the 

Bermuda samples, which are known from previous studies to suffer from He implantation 

from external sources.  For the slowly cooled Appalachian samples, abrasion by both 

methods did not significantly decrease age dispersion, however, it uncovered a 5X greater 

range of eU concentrations (eU = [U] + 0.235*[Th]) than was observed for untreated 

grains, which we interpret as evidence of sometimes severe, but not pervasive core-rich 

zonation of U and Th.  We show how core-rich zonation of this magnitude can produce 

wide age dispersion with no correlation to eU concentration if the whole grain is analyzed 

using standard AHe protocols.  We illustrate that useful and compelling low-temperature 

thermal history information can be derived from the eU-age relationship of the abraded 

grains by exploiting the age dispersion using known effects from radiation damage.  We 
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argue that for datasets that suffer from age dispersion, grain abrasion by either method 

provides an effective and rapid means to assess the sources of age dispersion without 

resorting to time and resource-intensive studies that are unrealistic to apply to a large 

sample suite. 

 

1.1  INTRODUCTION 

 

Apatite U-Th/He thermochronometry (AHe) is a low-temperature thermochronometer 

widely applied by investigations interested in processes affecting the uppermost few 

kilometers of the crust. (e.g. House et al., 1998; House et al., 2002; Reiners et al., 2003; 

Ehlers et al., 2006; Stock et al., 2006; Berger et al., 2008; Flowers et al., 2008; Ault et al, 

2009) As use of the technique has increased, so too has the number of studies reporting 

dispersion of data that exceed the analytical uncertainty of the laboratory measurements.  

Commonly this problem is associated with samples from regions with very slow cooling 

histories resulting from low long-term erosion rates in cratonic or stable continental 

margin settings (Belton et al., 2004; Spotila et al., 2004; Green et al., 2006; Fitzgerald et 

al., 2006; Danišík et al., 2008), however, rapidly cooled samples have also illustrated 

similar issues (Spiegel et al., 2009).  

 

The proposed sources of age dispersion in AHe thermochronology fall into three 

categories: 1) internal and external impurities, 2) assumptions about U, Th, and Sm 

homogeneity, and 3) kinetic complexities and have been thoroughly reviewed by Farley 

(2002), Ehlers and Farley (2003), and Fitzgerald et al. (2006).  The reality is that these 
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problems can occur in combination, making identification and mitigation of the sources 

of age dispersion difficult when using the standard analysis protocols (e.g. Farley, 2002).  

Grain size reduction through abrasion can address several potential sources of age 

dispersion.  The removal of the outer portion of the grain prevents contamination from 

helium implanted into the grain from external sources as explained by Farley (2002) and 

illustrated by Spiegel et al (2009).  Additionally, analysis of the abraded cores of apatite 

grains in conjunction with untreated grains from the same sample gives an indication of 

the variability of U, Th, and Sm zonation, which is unknown following traditional 

analysis protocols.  

 

Following from the demonstration of the benefits of grain abrasion in reducing age 

dispersion (Danišík et al., 2008; Spiegel et al., 2009), we present protocols for physical 

and chemical abrasion of apatite for the controlled reduction of grain size.  We present 

results from chemical abrasion of Durango apatite, an accepted age standard, and rapidly 

cooled apatites from the Bermuda Rise (Spiegel et al., 2009) to test the validity of this 

technique.  We then apply both techniques to slowly-cooled apatites from the southern 

Appalachians that demonstrate the kind of problematic age dispersion that does not 

correlate specifically to any one source, similar to the observations of other studies from 

regions characterized by slow long-term erosion rates.  Using these methods we 

demonstrate that abrasion can be an effective and easily implemented tool that for some 

samples can reveal the causes of age dispersion and potentially extract added constraints 

on low-temperature thermal histories.   
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1.2  SAMPLES 

 

We conducted experiments on both chemical and physical abrasion. To test chemical 

abrasion as a means of grain-size reduction, we conducted experiments using an accepted 

analytical standard (Durango apatite) as well as samples from sediment cores from the 

Bermuda Rise for which physical abrasion has been documented to decrease age 

dispersion (Spiegel et al., 2009).   Durango apatite has a simple, rapid, and well 

constrained cooling history that is bracketed through 40Ar/39Ar dating of feldspars from 

volcanic rocks that date the emplacement of the Durango apatite deposit at 31.44 ± 0.18 

Ma (2σ) (McDowell et al., 2005).  Although it is used as an analytical standard, Durango 

apatite has an unusually high Th/U ratio and also documented heterogeneity of U and Th 

concentrations (Boyce and Hodges, 2005).  Aliquots of Durango apatite used for 

chemical abrasion experiments were taken from our lab age standard supply, which are 

180 – 220 µm internal shards derived from a single large crystal.  To test our chemical 

and physical abrasion protocols we used the same apatite separates as Spiegel et al. 

(2009). These samples from the Bermuda Rise were derived from DSDP leg 43, site 386, 

located about 140 km southeast of Bermuda.  The apatites were collected from turbiditic 

sandstones at a burial depth of less than 200 m with vitrinite reflectance and fission track 

length analysis giving no evidence for significant reheating following deposition (Spiegel 

et al., 2009).  The apatites are volcanic in origin and are thought to have experienced 

rapid cooling, transport, and burial.  Thus the AHe age should be equivalent with the 

stratigraphic age of the two turbidites used in this study: 43-2 (26.5 ± 3.5 MA) and 43-3 

(29.5 ± 2.5 Ma) determined though calcareous nannoplankton (Okada and Thierstein, 
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1979).  Spiegel et al. (2009) found large age dispersion and generally too-old ages from 

untreated grains that were corrected for He ejection (resulting from the energetic decay of 

U, Th, and Sm) using the FT correction (Farley et al., 1996), whereas uncorrected 

physically abraded grains yielded ages that fit the geologic constraints and had much 

lower dispersion.  They interpreted these results to illustrate that the low concentration of 

U, Th, and Sm (henceforth collectively referred to as effective uranium or eU, where eU 

= [U] + 0.235[Th] (Shuster et al. 2006)) of the apatites made them susceptible to 

contamination from implanted He making FT corrected ages too old, the effects of which 

were mitigated through physical abrasion.   

 

We also used apatites from the southern Appalachian bedrock to explore abrasion as a 

means of identifying the sources of age dispersion in regions characterized by slow 

cooling.  During slow cooling, ages become dispersed between different aliquots that 

experienced the same thermal history as a result of variations in grain size (Farley, 2000; 

Reiners and Farley, 2001) and diffusion kinetics from the accumulation of radiation 

damage as a function of the eU concentration (Shuster et al., 2006; Flowers et al., 2009).  

These characteristics impact age dispersion when the sample is in the Partial Retention 

Zone (PRZ), where the transition from complete diffusive loss to total retention of He is 

made between ~40 – 80˚C (Stockli et al., 2000).  The rate at which a sample is exhumed 

through the PRZ dictates the amount of age dispersion that will occur as a result of these 

combined effects, which has been successfully exploited to constrain low temperature 

cooling histories in regions of slow cooling (Flowers et al., 2007; Flowers, 2009; Flowers 

and Kelley, 2011).  
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We focused on two samples derived from Proterozoic gneiss of North American affinity 

that outcrops in the rugged topography of western North Carolina.  These samples were 

collected as part of a broader investigation aimed at constraining the exhumation history 

of the highest and most rugged portion of the southern Appalachians, the results of the 

broader dataset and the geologic implications this work will be discussed a separate 

article (McKeon et al., - Chapter 2).  Apatite fission track ages from the region suggest 

steady slow cooling corresponding to a long-term average exhumation rate of ~20 m/Myr 

(Naeser et al., 2004).  The samples discussed here represent end-member locations in the 

modern landscape, a ridge top sample (SY-2) from Waterrock Knob at 1775 m and a 

valley bottom sample (SY-13) near the Little Tennessee River at 512 m.  Multi-grain 

AHe ages for both samples produced extreme age dispersion (McKeon et al., - Chapter 

2).  For SY-2, ages ranged from 111 to 183 Ma (n = 4); for SY-13, ages ranged from 89 

to 131 Ma (n = 6) with neither sample displaying any correlation to acknowledged kinetic 

complexities or the presence or absence of inclusions when using more rigorous hot HF 

dissolution protocols typically reserved for zircon digestion, motivating this exploration 

of grain abrasion to address the causes of age dispersion. 
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1.3  METHODS 

 

1.3.1 Abrasion Protocols 

 

1.3.1.1 Physical Abrasion:  Physical abrasion was carried out using a stainless steel air 

abrasion chamber similar to the design of (Krogh, 1982) with several milligrams of 220-

grit aluminum oxide added for abrasive media. Abrasion of greater than one alpha 

stopping distance of the outer portion of the grain removes the potential contamination of 

helium implantation from external sources and the need to correct the resulting age for 

helium loss through alpha ejection.  Grain size reduction during abrasion was calibrated 

by abrading grains individually and documenting the size reduction of the three principle 

grain axes through measurement using digital images.  During abrasion, grain 

morphologies evolved from hexagonal prisms to oblate ellipsoids, with the original long 

axis experiencing the greatest reduction in size and the overall volume loss from pre-

abrasion to post-abrasion being 85% ± 3.3 (1σ, n = 11).  Tracking the location of 

inclusions relative to the grain surface during abrasion suggests that grain size reduction 

is uniform for each individual grain axis, such that both sides of the same axis are 

abraded equally, though the different axes experience different amounts of total size 

reduction (Figure 1.1).  It was found that the speed of grain size reduction was strongly 

dependent on the air pressure, however, similar abraded grain morphologies resulted 

from both slow (1 psi for 65 min) or fast (3 psi for 6 min) abrasion protocols.  It should 

be noted that the protocol necessary for the confident removal of at least one alpha 

stopping distance from a grain will be specific to the individual abrasion chamber and  
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thus must be calibrated for effective application of the abrasion technique.  For specific 

details on how we calibrated grain size reduction see Appendix A1.  Once the conditions 

for grain size reduction were calibrated to remove a minimum of 25 µm from both sides 

of the three principle axes, grains from an individual sample were abraded in batches of 

up to 15 grains.  Not all grains survived the abrasion process; we suspect this is a result of 

grains breaking up along fractures or partings that were not visible during the optical 

selection process.  

 

1.3.1.2 Chemical Abrasion:  We experimented with using weak nitric acid as a 

potentially less labor-intensive and more reproducible means of achieving the necessary 

grain size reduction.  Published dissolution rates from digestion of Durango apatite 

(Guidry and Mackenzie, 2003) were used as a starting point for calibrating the necessary 

temperature and duration of immersion to attain the desired abrasion extent.   In an effort 

Figure 1.1:  Images showing the evolution of grain size and morphology of a single grain 
as a result of physical abrasion.  The time above each image reflects the cumulative 
duration of abrasion to that point.  The white circle tracks the location of a single mineral 
inclusion within the grain and illustrates that the reduction in grain size through physical 
abrasion is uniform for each individual grain axis, such that both sides of the same axis 
are abraded equally, though the different axes experience different amounts of total size 
reduction.  This grain is from Bermuda sample 43-2 and was not dated. 
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to achieve a uniform reduction in grain size we used a weak 1:1000 nitric acid solution 

(pH ~1.8, 0.0158 M) to slow chemical attack of the grain surface.  Repeated single-grain 

trials indicated that immersion in 10 mL of 1:1000 nitric acid solution at 50˚C for 4.25 

hours (stirring every 45 min) resulted in greater than or equal to the necessary grain-size 

reduction of 25 µm from all three axes of the grain.  To maintain the temperature and 

prevent evaporation of the acid solution, beakers containing the grains and acid solution 

were covered with aluminum foil and placed in a convection oven set to 50˚C.  During 

these calibration trials the post-abrasion surface texture of grains from different samples 

varied widely (Figure 1.2), however, the extent of grain size reduction was found to be 

relatively consistent.  Exactly what causes the variation in surface morphology following 

chemical abrasion is beyond the scope of this investigation, however we speculate that it 

could be related to eU concentration, dislocation density in the crystal lattice, or other 

grain specific characteristics such as chemical composition.  Similar to our 

implementation of physical abrasion, grain size reduction was calibrated using single 

grains and then once the protocol for reproducibly removing 25 µm from all axes was 

established we chemically abraded grains in batches of up to 15 grains.   

 

 

1.3.2 AHe Thermochronometry 

 

For all samples analyzed in this study, grains were selected for AHe analysis using 

standard optical selection criteria (e.g. Farley, 2002; Ehlers and Farley, 2003) to be free 

of inclusions, fractures, and grain coatings, and when possible, euhedral prior to any  
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Figure 1.2:  Before and after electron backscatter images illustrating the range of surface 
textures that resulted from chemical abrasion of apatite.   These images were collected 
from grains used during the calibration process and were not used in this study.  The 
abrasion conditions were very similar for these three grains and the extent of grain-size 
reduction was also quite similar.  (A) Large shard of Durango apatite that experienced 
grain-size reduction from chemical abrasion while showing little change to surface texture.  
(B) Large grain from crystalline basement gneiss from southwestern Colorado showing 
relatively little change in surface texture with extensive grain size reduction. (C) Medium 
grain from diorite sample from northern Pakistan near Nanga Parbat showing an extreme 
change in surface texture with extensive grain size reduction.  Black box shows the 
location of the higher magnification image of the pitted surface texture.  
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abrasion treatment.  For Durango apatite, we chose internal shards from our lab age 

standard supply based on geometry, preferring blocky shapes to blade-like shapes in an 

attempt to decrease the chance of losing any portion of the shard due to breakage during 

handling between the multiple steps of the analysis.  For the Bermuda rise samples, we 

obtained apatite separates used by Spiegel et al. (2009) and chose individual grains based 

on standard selection criteria.  For the Appalachian samples, apatites were separated from 

bedrock samples using traditional crushing, sieving, magnetic, and density sorting 

techniques.  Apatites from these samples contained abundant mineral inclusions and 

grains were picked under isopropyl alcohol or refractive oil to assist in identifying grains 

of suitable clarity for dating.  Subsets of selected grains from all three samples were 

chemically abraded following the protocol outlined above.  Similarly, a subset of selected 

grains from the Bermuda and Appalachian samples were physically abraded following 

our protocol.  Untreated grains from all three sample pools were analyzed as a control to 

observe the affect of abrasion.  Abraded and untreated grains from all samples were 

loaded individually in Nb micro-tube carriers for He, U, Th, and Sm analysis.  Sample 

preparation and He analysis was conducted at the Noble Gas Geochronology Lab at 

Lehigh University and U, Th, Sm analysis was conducted at the Arizona Radiogenic 

Helium Dating Lab at the University of Arizona or the Caltech Noble Gas Laboratory (as 

indicated on Tables 1.1 – 1.3).  Further discussion of analytical methods for measurement 

of He, U, Th, and Sm, calculating the FT correction, and eU concentration are described 

in Appendix A2. 
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1.4  RESULTS 

 

1.4.1 Chemical Abrasion Calibration 

 

Figure 1.3 and Table 1.1 show how chemical abrasion of internal shards of Durango 

apatite systematically produced younger ages with higher Th/U ratios than untreated 

shards that were run as age standards throughout this experiment.  Chemically abraded 

shards of Durango yielded ages ranging from 26.36 to 31.22 Ma (n=16; mean of 28.50 ± 

1.42 (all errors and standard deviations reported are 1σ unless otherwise indicated)) Ma 

and Th/U ratios ranging from 21.0 to 24.0 (mean of 22.60 ± 1.05).  By comparison, 15 

untreated shards dated during the chemical abrasion experiment yielded ages from 30.49 

to 32.63 Ma (mean of 31.52 ± 0.69 Ma) with Th/U ratios from 18.6 to 21.6 (mean of 

20.23 ± 0.89).   

 

For the fast-cooled samples from Bermuda, our analysis of untreated, physically, and 

chemically abraded grains replicate the results of Spiegel et al. (2009), where ages from 

abraded samples (by either method) show decreased age dispersion and are more 

plausible given geologic constraints (Figure 1.4 and Table 1.2).  Note that ages for all 

abraded grains reported herein are not corrected for alpha loss with the FT correction 

because of the removal of the portion of the grain where ejection is possible.  For 

simplicity, we combine the published data from Spiegel et al. (2009) with our datasets of 

untreated and physically abraded aliquots for comparison to the chemically abraded 

grains for both samples.  For sample 43-2 the stratigraphic age is 26.5 ± 3.5 Ma and the  
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means of untreated, physically abraded, and chemically abraded aliquots were 35.80 ± 

3.68 Ma, 31.90 ± 5.96 Ma, and 27.54 ± 4.08 Ma respectively.  For sample 43-3 the 

stratigraphic age is 29.5 ± 2.5 Ma and the means of untreated, physically abraded, and 

chemically abraded aliquots were 33.64 ± 4.86 Ma, 28.56 ± 1.72 Ma, and 28.34 ± 0.66 

Ma respectively, with one young and geologically implausible outlier removed from the 

chemical abrasion pool.  For both samples chemical abrasion successfully replicated the 

results of physical abrasion and resulted in ages that fit the presumed geologic history.    

 

Figure 1.3:  Results of chemical abrasion of Durango apatite.  The plot shows the 
relationship between the measured Th/U ratio and age for chemically abraded shards of 
Durango apatite (open circles) compared with untreated shards (black circles) analyzed as 
analytical standards during the chemical abrasion experiment.  This plot illustrates how 
chemically abraded shards are systematically enriched in Th and produce younger ages 
than the untreated shards.  When this Th enrichment is corrected for (gray circles – see 
discussion (1.5.1) for description of the correction), the Th/U ratios and ages become more 
consistent with the accepted age of Durango apatite.  Error bars are not visible because the 
uncertainty is smaller than the size of the symbols. 
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1.4.2 Appalachian Samples 

 

Figure 1.5 and Table 1.3 summarize the results of nearly 80 aliquots from our attempts to 

understand the sources of age dispersion through physical and chemical abrasion of two  

Figure 1.4:  Results of physical and chemical abrasion from this study (filled symbols) 
compared with Spiegel et al. (2009) (open symbols) of two samples of volcanic apatites from 
turbidite deposits from offshore of Bermuda.  For both samples, chemically abraded grains 
replicate the results from physically abraded grains where AHe ages are younger than 
untreated grains and fall within the range of the stratigraphic age of the unit they were derived 
from. (A) Results from sample 43-2 where more dispersion was found in physically abraded 
grains versus chemically abraded grains which correlate with the stratigraphic age.  (B) 
Results from sample 43-3 where both physical and chemical abrasion drastically decrease 
age dispersion and fit well with the stratigraphic age.  Where error bars are not visible, the 
uncertainty is smaller than the size of the symbol.  
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slowly cooled Appalachian samples.  Untreated single-grain aliquots from both samples 

produced wide age dispersion with no correlation to eU concentration or grain size 

(reported here as the radius of a sphere with an equivalent FT correction after 1.ham et al. 

(2011)), reflecting the results of the multi-grain aliquots from earlier work (McKeon et al, 

in prep).  For SY-2 (ridge top sample) ages ranged from 111 to 219 Ma with one grain 

producing an age of 66 Ma, eU ranged from 2 to 16 ppm, and grain size from 72 to 93 

µm.   For SY-13 (valley bottom sample) ages ranged from 75 to 154 Ma, eU ranged from 

2 to 7 ppm and grain size from 68 to 163 µm.  Abrasion by either method produced a 

modest reduction in age dispersion and interestingly revealed a large increase in the range 

Figure 1.5:  Results of untreated (open squares), physically (black circles), and chemically 
(gray triangles) abraded grains from two slowly cooled samples from the Southern 
Appalachians of western North Carolina.  Panel A illustrates the wide age dispersion observed 
from untreated and abraded single-grain aliquots from samples SY-2 and SY-13 (note the 
different vertical scales for the two samples).  Error bars represent the 1σ analytical age 
uncertainty for each aliquot, where error bars are not visible the range of uncertainty is smaller 
than the symbol. Panel B shows the eU-age relationship for all the aliquots presented in panel 
A for both samples.  Of particular note is the generally low eU and lack of correlation between 
eU and age for the untreated grains (open squares) when compared with the strong 
correlation between eU and age observed from the abraded grains (circles and triangles) for 
both samples. 
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of eU concentrations observed in both samples (Figure 5).  For SY-13, ages from 

physically abraded grains (n = 14) ranged from 74.9 to 154.3 Ma and were positively 

correlated with a range of eU concentrations from 6 to 162 ppm.  Chemically abraded 

grains (n = 14) displayed similar ranges for age (82.9 – 162.2 Ma) and eU (6 – 70 ppm) 

and were also positively correlated.  SY-2 produced similar results for physical (47.6 – 

185.0 Ma, 6 – 140 ppm, n = 12) and chemical abrasion (57.5 – 141.7 Ma, 3 – 123 ppm, n 

= 15) with age and eU also being positively correlated.   

 

1.5  DISCUSSION 

 

1.5.1 Chemical Abrasion 

 

Chemical abrasion successfully replicated the results of physical abrasion for samples 

from widely varying thermal histories, but it was found that high Th apatites showed a 

systematic tendency to produce younger than expected ages.  The ages of chemically 

abraded grains from the Bermuda (Figure 1.4) and Appalachian (Figure 1.5) samples 

were indistinguishable from ages of physically abraded grains, indicating that although 

chemical abrasion produces variable and sometimes startling surface textures (Figure 

1.2), it does not appear to have systematically impacted the results from these samples.  

However, chemically abraded shards of Durango apatite were systematically younger 

than the accepted age and numerous untreated shards that were analyzed during the same 

experiment (Figure 1.3).  To produce ages younger than expected, either He must be 

preferentially leached from the abraded shard, which seems unlikely, or U, Th, or Sm 
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must be somehow enriched during the abrasion process.  In addition to being 

systematically younger, the abraded shards were also systematically enriched in Th 

relative to the untreated pool (Figure 1.3), which we interpret as a result of Th 

reprecipitating on the surface of the shard during abrasion while U and Sm do not.  To 

explore this hypothesis we corrected for the suspected Th enrichment of the abraded 

shards by multiplying their observed Th concentration by the ratio of the mean Th/U 

observed from the untreated and abraded sample pools (Table 1.1).  This correction 

decreased the Th concentration of the abraded grains producing older ages.  When using 

the corrected Th concentration, the mean age for abraded shards becomes 30.93 ± 1.42 

Ma relative to 31.52 ± 0.69 Ma for the untreated shards, compared to a mean of 28.50 Ma 

for the uncorrected chemically abraded shards (Figure 1.3).  In this light, it is interesting 

to note that the only chemically abraded grain (C43-2D) from the Bermuda samples that 

was younger than the stratigraphic age of the rock it was derived from had a Th/U ratio 

equivalent to Durango apatite and was the highest Th/U ratio for all of the Bermuda 

samples analyzed for this study.  Further refinement of the abrasion protocol is needed to 

address issues with Th fractionation, it is possible that this issue could be avoided by 

rinsing chemically abraded samples in a stronger nitric acid solution before packaging 

them for analysis.  Overall, our results suggest that chemical abrasion holds promise as a 

viable and efficient option for grain size reduction that does not appear to impact the 

helium concentration of the treated grain. 

 

1.5.2 Physical Abrasion and Age Dispersion 
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The results of physically abraded grains from the Bermuda and Appalachian samples 

illustrate that grain size reduction and the elimination of the FT correction can decrease 

age dispersion for some samples, but for others wide age dispersion will persist.  For the 

Bermuda samples, our untreated and physically abraded single-grain analyses nicely 

replicate the results of multi-grain analyses by Spiegel et al. (2009) (Figure 1.4).  Our 

results corroborate their observation that abrasion is an effective means to address 

suspected contamination from He implantation resulting from U and Th rich grain 

coatings, neighboring minerals, or migrating fluids and validate the protocol for physical 

abrasion outlined above.  For the Appalachian samples, modest decreases in age 

dispersion were observed for both samples as a result of physical abrasion, however, age 

dispersion from single grains still greatly exceeded analytical uncertainty following grain 

size reduction (Figure 1.5).  Taken together, our results suggest that for fast-cooled 

samples physical abrasion addresses first-order sources of age dispersion such as He 

implantation and the assumption of homogeneously distributed U, Th, and Sm for the FT 

correction.  Whereas, for slowly cooled samples, these sources play a lesser or more 

complex role in the sourcing of age dispersion and will be considered in detail below.  

 

1.5.3 Zonation and Radiation Damage 

 

The most interesting result to come from our work with abrasion by either method was 

the dramatic increase in the range of eU concentrations observed in the abraded grains 

from the Appalachian samples and the positive correlation between the eU concentration 

and the age that the abraded samples displayed (Figure 1.5).  The nearly 5X increase in 
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eU concentration observed in the abraded grains suggests the presence of strong core-rich 

zonation in these Appalachian apatites; however, the presence of very low eU grains in 

the abraded pool also suggest that it is not be a pervasive pattern.  Zonation is an often-

cited source for unconstrained age dispersion due to the fact that traditional analytical 

methods assume eU homogeneity when determining the FT correction.  The subject has 

recently received thorough consideration through the development of LA-ICP-MS 

mapping of 2-D U and Th concentrations within individual apatite grains (Farley et al., 

2011, Flowers and Kelley, 2011, and Ault and Flowers, 2012).  While the dispersion 

rooted in the incorrect application of the FT correction may average to a small impact 

over a large suite of samples (Ault and Flowers, 2012), for any single analysis the actual 

age can vary from 21% too old, to 39% too young for the end-member cases where all 

parent nuclides are either in the center of a grain or along its edge (assuming a radius of 

80 µm).  Furthermore, the dilution of the eU concentration through the presence of a large 

volume low eU rim surrounding a low volume high eU core can completely change how 

one views the data in context of well documented and explainable kinetic controls on 

AHe ages resulting from radiation damage during slow cooling (Shuster et al., 2006; 

Flowers et al., 2009).   

 

To illustrate this point, we used eleven grains from SY-2 and SY-13 for which the pre- 

and post-abrasion geometry and eU concentration of the abraded core were measured.  

We made the simplifying assumption of severe core-rich zonation, such that all of the U, 

Th, and Sm in the pre-abrasion grain was sequestered within the abraded core.  We then 

calculated the change in volume using the pre- and post-abrasion geometries and use that 
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to dilute the eU concentration as if the intact pre-abrasion grain was digested and 

analyzed following standard U, Th, and Sm analysis protocol.  Finally, we applied an 

appropriate FT correction to the age for the pre-abrasion geometry, as is standard practice 

for any non-abraded grain.  The results of this thought experiment (Figure 1.6) illustrate 

how the dilution of the eU concentration and the unnecessary application of the FT 

correction for alpha loss that did not occur, create widely dispersed ages with no 

correlation to eU and appear surprisingly similar to the observed eU-Age relationship of 

the untreated grains from the Appalachians (Figure 1.5).   

 

 

The Radiation Damage Accumulation and Annealing Model (RDAAM - Flowers et al, 

2009) predicts that differences in eU concentration will lead to increasingly dispersed 

Figure 1.6: A) Cartoon illustrating the reduction in size from physical abrasion of an apatite 
grain, which was observed to result in an average volume loss of 85% +/- 3.3% 1σ. B) Plot of 
eU vs. age observed for 11 abraded grains from the two Appalachian samples (gray circles), 
modeled Ft corrected ages using the pre-abrasion volume and the observed eU concentration 
from the abraded core (black circles), and untreated single-grain aliquots (open gray squares). 
This plot illustrates how severe core-rich zonation of U and Th can dramatically impact the eU-
age relationship that is observed in unabraded vs. abraded grains.  In this thought experiment 
where all eU is sequestered in the core of the grain, the eU of an untreated grain is moved 
along the X axis to low eU values through dilution caused by the low concentration rim and the 
age is increased through the FT correction for alpha ejection that never occurred.  Analysis 
uncertainty is not show for the observed samples on this plot for clarity. 
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ages as the rate of cooling slows down.  Thus, an eU-age correlation as seen in the 

abraded grains from both Appalachian samples, can be interpreted in the context of the 

thermal history required to produce the observed age dispersion, provided that thermal 

history fits within the context of other known constraints.  We used the RDAAM model 

within the kinetic model HeFTy (Ketcham, 2005) to predict the ages for a range of eU 

concentrations (1 - 175 ppm) and grain sizes (radii of 60 – 100 µm) for a long-term 

average erosion rate of 20 m/Myr and an assumed geothermal gradient of 20˚C/km for a 

long-term cooling rate of 0.4˚C/Myr.  We find that while there is still modest dispersion 

of the ages from abraded grains, the general shape of the eU-age trend from both samples 

closely mimics that of the RDAAM predicted forward model data for slow long-term 

erosion (Figure 1.7), which corroborates regional apatite fission track data (Naeser et al, 

2004) and is in stark contrast to the untreated grains.  These results suggest that strong 

core-rich zonation concentrates radiation damage within the core of the grain, 

progressively altering the kinetics of He diffusion during slow cooling through the PRZ.  

This relationship suggests that in this scenario the core could be more retentive than the 

rest of the grain and as a result of the kinetic differences, different parts of the grain could 

effectively close to He diffusion at different points in the cooling history. 

 

1.5.4 Implications of Abrasion for AHe Thermochronometry  

 

A simple argument against abrasion is that as a bulk thermochronometric technique, AHe 

cooling ages are derived by measuring all of the He within the natural diffusive profile of 

a grain, which accumulates as a function of the thermal history.  Thus, as has recently  
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been pointed out for the dating of fractured grains (Brown et al., 2011), any tampering 

with the natural 4He concentration profile through abrasion will affect the age derived 

from that grain.  For rapidly cooled samples the impact is negligible because the diffusive 

profile is essentially flat.  However, for slowly cooled samples with uniform distributions 

of U, Th, and Sm, the age calculated from an abraded grain would be older than the age 

would have been if the whole grain were analyzed due to the loss of the low 

concentration rim (Farley, 2002).  In spite of this reality, we would argue that the 

beneficial constraints on the thermal history that can be derived from the analysis of 

 
 
 
 
 
 
 
 
 
Figure 1.7:  Plots comparing the 
eU-age relationship of the 
Appalachian samples to that 
predicted by radiation damage for 
a long-term average erosion rate 
of 20 m/Myr that matches apatite 
fission track data for the region.  
The dashed black line represents 
a grain size of 80 um and the gray 
shading shows the range in age 
for a grain radius of 60 to 100 um.  
Forward modeling of the affects of 
radiation damage and grain size 
where accomplished using the 
RDAAM in HeFTy.  
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abraded grains illustrated above outweigh the cost of the loss of low temperature 

information that is stored along outer edge of the diffusive concentration profile.  

Furthermore, if one was interested to do so, calculating a dimension-modified closure 

temperature through modeling the ingrown diffusive profile and then integrating over the 

non-abraded portion that was analyzed could address the discrepancy between abraded 

and untreated ages.    

 

The implications of abrasion with respect to zonation of U, Th, and Sm and alpha 

redistribution are similar to the FT correction for untreated grains.  Correcting the 

measured age for He ejection improves the accuracy of AHe age determinations (Farley 

et al., 1996), however, the assumptions of U, Th, and Sm homogeneity within the grain 

and a zero concentration of He producing elements outside the grain are implicit in the 

use of the FT correction and have been shown to introduce dispersion due to zonation 

(Farley et al., 2011; Ault and Flowers, 2012) and implantation (Spiegel et al., 2009).  

While abrasion removes the portion of the grain that is subject He ejection and 

implantation, by abrading a zoned grain He redistribution within the grain can cause 

similar problems to FT correcting an untreated zoned grain, only the relationship is 

reversed.  Abrading and not correcting a rim-enriched grain will produce too old an age 

due to more He being redistributed into the core much the way that FT correcting an 

untreated core-enriched grain would produce too old an age from over-correcting the 

alpha loss.  Similarly, abrading and not correcting a core-enriched grain will produce too 

young an age because a greater amount of He is redistributed into the rim, in the same 

manner that FT correcting an untreated rim-enriched grain will under-correct for alpha 
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loss.  The ideal would be to measure the zonation pattern and date the same grain and 

thus know the correct way to deal with alpha redistribution or ejection prior to any 

treatment.  However, current methods for measuring the spatial variation of U, Th, and 

Sm concentration are destructive to the grain and preclude this style of dual analysis.  As 

a result, the safest assumption for untreated grains is that alpha loss occurred and 

therefore the age should be corrected.  Similarly, for abraded grains, the safest 

assumption is that alpha redistribution occurred, where He lost from the core is balanced 

by He contributed from the removed rim, and therefore no correction should be applied to 

the age determined for abraded core.   

 

A simple argument in support of abrasion is that most applications of AHe 

thermochronometry require the analysis of large number of samples (not to mention 

replicate aliquots) to effectively capture the complexity that transient topography, 

changes in relief, and the rate of erosion impose upon shallow isotherms (e.g. Braun, 

2002; Reiners et al., 2003; Ehlers et al., 2006).  Thus, detailed characterization of every 

sample quickly becomes unrealistic due to the time and resources required.  It is 

interesting that the majority of studies reporting problems with age dispersion are from 

regions characterized by slow cooling (e.g. Belton et al., 2004; Green et al., 2006; 

Fitzgerald et al., 2006; Danišík et al., 2008, McKeon et al, in prep).  This is an 

unfortunate predicament because it is the very nature of slow long-term cooling, resulting 

from small magnitudes of exhumation, that creates a dependence on the low temperature 

sensitivity of AHe thermochronometry to investigate interactions between tectonic and 

erosive processes in these settings.  We have illustrated how the combination of U, Th, 
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and Sm zonation, the FT correction, and the impact of radiation damage on the kinetics of 

He diffusion can severely impact the ages acquired by traditional bulk AHe analysis, 

making an understanding of the zonation of U, Th, and Sm a beneficial data set when 

interpreting AHe data from these regions.  We would argue that for datasets that display 

wide age dispersion, abrasion is an effective means to quickly and cheaply assess the 

dominant characteristic responsible for the dispersion observed, from which valuable 

information constraining the thermal history can be derived.  

 

1.6  CONCLUSIONS 

 

Here we have presented protocols for abrasion of apatite using physical abrasion in an air 

abrasion chamber and chemical abrasion using dilute nitric acid.  We find that chemical 

abrasion can replicate the results of physical abrasion from rapidly cooled samples, 

corroborating the findings of Spiegel et al. (2009) using single grain analysis and from 

slowly cooled samples from the Appalachians.  However, following chemical abrasion 

ages of Durango apatite are systematically younger than the accepted age and have higher 

Th/U ratios.  We interpret these results to be caused by reprecipitation of Th on the grain 

surface during abrasion and suggest that further refinement of the chemical abrasion 

protocol will address and remediate this result.   

 

For the slowly cooled Appalachian samples, through abrasion we found dramatic 

increases in eU concentration relative to untreated grains and interpret this as evidence of 

severe, but not pervasive core-rich zonation of U, Th, and Sm.  We show how core-rich 
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zonation of this magnitude can produce wide age dispersion with no correlation to grain 

size or eU if the whole grain is analyzed using standard AHe protocols.  We illustrate that 

useful and compelling low-temperature thermal history information can be derived from 

the eU-age relationship of the abraded grains by exploiting the age dispersion using 

known effects from radiation damage.  Finally, we argue that grain abrasion by either 

method provides an effective and rapid means to assess the sources of age dispersion 

without resorting to time and resource-intensive studies that are difficult to apply to a 

large sample suite.  
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APPENDIX - A 

 

A1:  Calibrating Grain-size Reduction 

 

For both abrasion techniques, our goal was to establish protocols that reliably removed a 

minimum of 25 µm globally from the surface of the grain and to do so for batches of 

grains so that abrasion could be conducted on many grains from one sample, not just a 

single grain at a time.  Here we describe the tests that we used to test our ability to 

accomplish these goals. 

 

A1.1.  Physical Abrasion: 

 

During the calibration of the correct air pressure, abrasive media amount and grit size, 

and duration of abrasion we conducted numerous abrasion trails using apatites from a 
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variety of locales and spanning varying ranges of grain size.  We did not find any 

significant variations to the rate of grain size reduction on the part of the apatite grains.  

Air pressure was found to dramatically effect the duration necessary to attain the desired 

25 µm of grain size reduction, however, the resulting morphology of the abraded grain 

was not affected.  Once establishing a general protocol, 12 grains from the two 

Appalachian samples were abraded individually.  Digital images for tracking grain size 

reduction were captured frequently during single grain abrasion trials as a second check 

on the variability of the rate of grain size reduction.  We were careful about this point 

because we did not want to systematically bias our data if only large grains survived 

while smaller grains were withered away in the time necessary for all grains to attain the 

desired size reduction.  Finally, to test if having multiple grains in the abrader at one 

affected the size reduction we had observed in single grain trials we used three grains of 

nearly identical size for each of the three principle grain axes.  The three grains were 

measured before and after abrasion and due to the change in morphology no abraded core 

could be linked to the original grain.  Thus any of the post-abrasion measurements of 

length and the two width axes could have come from any of the pre-abrasion 

measurements.  As a worst-case test, the smallest dimension of each pre-abrasion axis for 

the three grains was compared to the largest post-abrasion measurement of the same axis, 

such that in this hypothetical case, the smallest original grain was abraded the least, 

leaving the largest post abrasion core.  For all axes it was found for the worst-case that a 

minimum of 20 µm was removed.  Follow this demonstration and our numerous, well-

documented single-grain abrasion trials we felt confident abrading grain in batches of up 

to 15 grains at once.       
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A1.2.  Chemical Abrasion: 

 

The calibration of chemical abrasion followed a similar pattern to that of physical 

abrasion.  Initially a wide variety of apatite separates and grain sizes were used to assess 

how grains reacted to prolonged exposure to weak nitric acid solutions.  It was during this 

period where the wide range of surface textures resulting from chemical abrasion was 

observed.  Once the general conditions for acid strength, duration, and temperature were 

established, multiple trials were conducted using the same conditions but different 

samples to address differences in the rate of size reduction.  Finally, as a test of the 

reproducibility of grain size reduction, 17 grains were individually abraded as part of a 

single trial.  Of these 17 grains, 14 were recovered and comparison of before and after 

measurements confirmed the reproducibility of the desired grain size reduction using 

chemical abrasion.   

 

 

A2.  Apatite U-Th/He Thermochronometry 

 

Apatite grains were selected for analysis under isopropyl alcohol using a stereographic 

microscope and are selected to be clear, euhedral, and free of inclusions and fractures. 

(e.g. Farley, 2002). Once selected for analysis, grains were photographed and measured 

along three principle axes to determine the FT correction for each grain (Farely et al., 

1996).  For analysis, individual apatite grains are packed in 1 mm Nb stents, loaded into 
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an all-metal vacuum extraction line and heated at 1150˚C for 15 minutes in a resistance 

furnace.  After gettering, the evolved gas was analyzed using a Balzer’s Prisma 

quadrupole mass spectrometer, with abundances being determined two ways: via a 3He 

spike calibrated for mass discrimination using a 1:1 4He/3He mix, and manometrically 

using the 4He beam observed in the calibration shots, which were run before, in the midst 

of, and after the analysis of each batch of unknowns. Agreement between spiked and 

manometric data was usually within 1%, and where these values deviate, the cause 

appears to be interference at mass 3 due to the presence of high hydrogen loads. As a 

result, all data reported in this paper are based on the manometric calibration.  Following 

degassing, grains were recovered and sent to the Arizona Radiogenic Helium Dating 

Laboratory at the University of Arizona or the Noble Gas  for U, Th, and Sm analysis.  

There, stents containing degassed apatite grains are placed in Teflon vials and spiked 

with 233U, 229Th, and 147Sm in solution and the apatite is dissolved directly from the stent 

using dilute (~20%) warm nitric acid.  Radiogenic isotope concentrations are measured 

using ICP-MS.  Effective uranium (eU) concentrations (Shuster et al., 2006) are 

calculated using the volume from the geometric approximation of the grain from the FT 

correction to calculate a mass of the grain, which is then used in conjunction with the 

measured amounts of U and Th (in ng) to derive a concentration of eU in ppm.  At 

Caltech, U, Th, and Sm are also calculated through isotope dilution using ICP-MS, the 

only notable difference being the use of 51V as a tracer for the measurement of Ca, from 

which the mass of the dissolved grain was estimated for converting measured U and Th 

into concentrations.  Agreement between the eU calculated using the FT volume 
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approximation or 51V tracer for Ca to convert to concentrations was within several 

percent.   

 

A2.1 Calculating the FT correction 

 

The FT correction is calculated using the measured axes and either a cylindrical 

(including flattened cylinder), ellipsoidal (including sphere), or tetragonal prism 

geometry dependent upon which best approximates the shape of the grain.  The tetragonal 

prism geometry can accommodate the sharp tips of some grain morphologies (e.g. zircon 

grains) that have been shown to improve the accuracy of the FT corrections (Hourigan et 

al., 2005).  Instead of using the surface-to-volume ratio of an equivalent sphere to 

calculate the FT correction for a non-spherical grain (Meesters and Dunai, 2002), we 

instead use a Monte-Carlo method that causes decays of all alpha producing isotopes at 

random x, y, and z coordinates within the input geometric approximation of the grain.  

The new point created by the decay (the alpha particle’s stopping point) is then 

determined to be in or out of the grain.  This is then repeated for 107 decays and the ratio 

of alphas that are “in” to the total number of alphas created is the FT correction for that 

grain geometry.   

 

Additional References: 

 

Farley, K.A., 2002, (U-Th)/He dating: Techniques, calibrations, and applications: 
Reviews in Mineralogy and Geochemistry, v. 47, no. 1, p. 819–844. 
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Table 1.1:  Apatite U-Th/He data for Durango chemical abrasion experiment.  

     !      
Aliquot Age 

± 
1σa eUb FT

c Radiusd 4He U Th Sm Th/U 
ID (Ma) (Ma)  (ppm)   (µm) (pmol) (pmol) (pmol) (pmol)   

Untreated Age Standards 
10dur-22 32.63 0.29 61.63 NA NA 1.85E-13 7.60E-13 1.58E-11 1.26E-11 20.76 
10dur-23 31.55 0.27 62.58 NA NA 2.61E-13 1.08E-12 2.32E-11 1.60E-11 21.45 
10dur-24 31.18 0.26 63.68 NA NA 2.59E-13 1.08E-12 2.33E-11 1.59E-11 21.62 
10dur-25 31.78 0.28 70.99 NA NA 3.93E-13 1.79E-12 3.38E-11 2.20E-11 18.82 
10dur-26 30.49 0.28 68.00 NA NA 3.07E-13 1.34E-12 2.80E-11 1.98E-11 20.96 
10dur-27 31.41 0.28 78.89 NA NA 2.90E-13 1.28E-12 2.54E-11 1.67E-11 19.81 
10dur-28* 32.36 0.57 NA NA NA 2.42E-13 1.05E-12 2.05E-11 2.23E-11 19.52 
10dur-29* 31.41 0.54 NA NA NA 5.88E-13 2.73E-12 5.09E-11 6.41E-11 18.63 
10dur-30* 31.99 0.46 NA NA NA 4.72E-13 2.06E-12 4.06E-11 6.13E-11 19.69 
10dur-31 30.30 0.21 61.67 NA NA 1.70E-13 7.49E-13 1.56E-11 1.34E-11 20.82 
10dur-32 32.53 0.20 60.31 NA NA 1.54E-13 6.29E-13 1.32E-11 1.24E-11 20.96 
10dur-33 31.25 0.16 76.35 NA NA 2.35E-13 1.04E-12 2.08E-11 1.49E-11 19.91 
10dur-34 32.01 0.36 60.08 NA NA 1.20E-13 5.15E-13 1.04E-11 1.02E-11 20.11 
10dur-36 32.15 0.20 59.77 NA NA 1.30E-13 5.44E-13 1.12E-11 9.57E-12 20.65 
10dur-37 30.94 0.14 72.66 NA NA 2.64E-13 1.19E-12 2.35E-11 1.65E-11 19.76 

Mean Th/U Ratio (Used for Th Correction) = 20.23 
Chemically Abraded Durango 
10DUR-A22 31.22 0.30 63.50 NA NA 1.18E-13 4.65E-13 1.07E-11 8.62E-12 22.92 
10DUR-A23 27.75 0.25 74.96 NA NA 1.68E-13 7.51E-13 1.71E-11 1.08E-11 22.72 
10DUR-A24 27.09 0.24 69.96 NA NA 1.63E-13 7.14E-13 1.71E-11 1.13E-11 24.02 
10DUR-A25 28.12 0.24 78.96 NA NA 2.18E-13 9.33E-13 2.20E-11 1.30E-11 23.54 
10DUR-A26 29.91 0.27 60.46 NA NA 1.49E-13 6.63E-13 1.39E-11 1.10E-11 20.96 
10DUR-A27 30.02 0.25 72.31 NA NA 3.68E-13 1.60E-12 3.43E-11 1.90E-11 21.40 
10DUR-A28 28.97 0.24 76.97 NA NA 2.72E-13 1.16E-12 2.66E-11 1.76E-11 22.91 
10DUR-A29 26.36 0.22 81.47 NA NA 2.74E-13 1.37E-12 2.90E-11 1.78E-11 21.22 
10DUR-A30 27.36 0.23 85.10 NA NA 2.10E-13 1.01E-12 2.15E-11 1.35E-11 21.27 
10DUR-A31 30.61 0.30 66.35 NA NA 1.11E-13 4.45E-13 1.03E-11 8.14E-12 23.13 
10DUR-A32 27.84 0.25 71.55 NA NA 1.69E-13 7.23E-13 1.72E-11 1.29E-11 23.81 
10DUR-A33 27.63 0.18 68.25 NA NA 1.94E-13 8.46E-13 1.99E-11 1.34E-11 23.52 
10DUR-A34 28.25 0.22 76.75 NA NA 1.10E-13 4.93E-13 1.10E-11 8.81E-12 22.30 
CDUR-1 28.92 0.32 81.66 NA NA 1.36E-13 6.01E-13 1.32E-11 8.38E-12 21.99 
CDUR-2 26.70 0.13 81.71 NA NA 2.04E-13 9.04E-13 2.17E-11 1.23E-11 24.03 
CDUR-3 29.20 0.18 73.43 NA NA 1.27E-13 5.57E-13 1.22E-11 8.19E-12 21.83 

Mean Th/U Ratio (Used for Th Correction) = 22.60 

! ! ! ! ! ! ! ! ! ! !a ± 1σ  Analytical uncertainty from propagated error of He, U, Th, and Sm analyses along with  
            FT and blank measurements 
b eU  Effective Uranium = [U] + 0.235*[Th]  
c FT  Alpha-loss correction factor from monte carlo simulation - Not Applicable to Durango shards. 
d Radius  FT equivalent spherical radius of the grain (Ketcham et al., 2012) - Not Applicable to Durango   
!!!!!!!!!!!!!!!!!!shards.!

NA  Not Analyzed 
*  U, Th, Sm analyzed at U. Arizona, all other Durango aliquots analyzed at Caltech. 

 
 



 

 40 

 
 
Table 1.2:  Apatite U-Th/He data for Bermuda samples*.  

     !      Aliquot Age ± 1σa eUb FT
c Radiusd 4He U Th Sm Th/U 

ID (Ma) (Ma)  (ppm)   (µm) (mol) (mol) (mol) (mol)   

Untreated 
43-2A 31.48 0.57 13.03 0.84 87.3 2.23E-14 5.25E-13 5.68E-13 2.47E-12 1.08 
43-2B 34.41 0.86 9.83 0.77 61.4 7.17E-15 1.65E-13 1.97E-13 6.32E-13 1.20 
43-2C 34.04 0.67 3.13 0.88 114.5 1.55E-14 2.68E-13 5.69E-13 5.03E-12 2.12 
43-3A 38.55 1.19 3.68 0.77 59.4 2.38E-15 2.92E-14 1.39E-13 1.73E-12 4.77 
43-3B 31.94 0.71 6.74 0.74 57.2 5.59E-15 6.71E-14 4.91E-13 3.20E-12 7.32 
43-3C 31.97 0.59 7.50 0.82 83.1 1.87E-14 1.82E-13 1.58E-12 7.47E-12 8.65 
Physically Abraded 
P43-2A 30.38 1.02 1.88 NA NA 3.39E-15 7.97E-14 2.46E-14 1.70E-12 0.31 
P43-2B 37.53 1.30 1.78 NA NA 3.05E-15 4.71E-14 6.54E-14 1.30E-12 1.39 
P43-2C 34.18 0.46 42.36 NA NA 5.04E-14 3.44E-13 3.45E-12 6.99E-12 10.03 
P43-3A 30.46 1.50 3.63 NA NA 8.19E-16 9.37E-15 4.77E-14 6.62E-13 5.09 
P43-3B 30.87 0.66 8.98 NA NA 5.37E-15 4.96E-14 3.62E-13 2.61E-12 7.31 
P43-3C 28.92 0.69 6.40 NA NA 3.43E-15 3.23E-14 2.53E-13 1.98E-12 7.86 
Chemically Abraded 
C43-2A 33.69 1.30 2.24 NA NA 2.30E-15 4.41E-14 3.58E-14 9.76E-13 0.81 
C43-2B 27.99 0.68 6.94 NA NA 6.81E-15 1.30E-13 2.45E-13 3.23E-12 1.88 
C43-2C 27.22 0.66 6.29 NA NA 6.60E-15 1.29E-13 2.56E-13 9.87E-13 1.99 
C43-2D 22.33 0.27 48.94 NA NA 4.82E-14 2.93E-13 5.98E-12 6.71E-12 20.42 
C43-2E 26.49 0.85 5.80 NA NA 3.92E-15 1.06E-13 4.06E-14 4.22E-13 0.38 
C43-3A 28.53 0.42 10.26 NA NA 1.00E-14 7.24E-14 8.52E-13 4.82E-12 11.76 
C43-3B 29.19 0.43 9.94 NA NA 8.46E-15 4.61E-14 7.64E-13 3.63E-12 16.58 
C43-3C 27.94 0.50 9.86 NA NA 6.34E-15 6.60E-14 4.67E-13 3.23E-12 7.07 
C43-3D 10.73 0.19 18.09 NA NA 2.63E-15 6.74E-14 5.31E-13 1.39E-12 7.87 
C43-3E 27.71 0.49 29.34 NA NA 8.22E-15 1.07E-13 5.31E-13 1.42E-12 4.96 

! ! ! ! ! ! ! ! ! ! !*  U, Th, and Sm analyzed at Caltech for all Bermuda aliquots.  
a ± 1σ  Analytical uncertainty from propagated error of He, U, Th, and Sm analyses along with  
            FT and blank measurements 
b eU  Effective Uranium = [U] + 0.235*[Th]  

 c FT  Alpha-loss correction factor from monte carlo simulation - Not Applicable to abraded grains. 
d Radius  FT equivalent spherical radius of the grain (Ketcham et al., 2012) - Not Applicable to abraded   
!!!!!!!!!!!!!!!!!!grains.!

NA  Not Analyzed 
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Table 1.3:  Apatite U-Th/He data for Appalachian samples.  
     !      

Aliquot Age 
± 

1σa eUb FT
c Radiusd 4He U Th Sm Th/U 

ID (Ma) (Ma)  (ppm)   (µm) (mol) (mol) (mol) (mol)   

           Sample SY-2 - Ridge Top 
Untreated 
NC-SY-2AB  (2) 66.33 1.92 3.0 0.84 86.5 1.50E-14 1.97E-13 4.63E-14 9.84E-14 0.23 
SY2-1 110.67 2.55 6.4 0.84 85.0 4.31E-14 3.40E-13 7.66E-14 8.82E-13 7.90 
SY2-2 132.23 3.15 2.7 0.85 92.7 2.09E-14 1.27E-13 6.60E-14 1.69E-12 6.07 
SY2-3 152.17 3.44 52.8 0.85 92.8 4.89E-13 2.76E-12 6.27E-13 6.47E-12 5.64 
SY2-4 219.09 4.95 12.25 0.84 85.0 1.21E-13 4.76E-13 1.12E-13 3.08E-12 3.94 
SY2-5 147.07 3.49 9.1 0.82 76.7 6.65E-14 4.14E-13 3.91E-14 1.73E-12 6.22 
SY2-6 143.52 3.33 17.6 0.81 72.4 8.32E-14 5.30E-13 8.49E-14 1.89E-12 6.38 
SY2-8 217.52 4.98 10.1 0.84 88.1 1.86E-13 7.40E-13 1.48E-13 1.98E-12 3.98 

           Physically Abraded* 
sy2-pa01 75.31 3.31 16.25 NA NA 2.90E-15 2.61E-14 1.53E-14 2.27E-13 9.01 
sy2-pa02 96.86 2.76 27.6 NA NA 1.91E-14 1.42E-13 4.33E-14 7.14E-13 7.43 
sy2-pa03 47.55 1.96 8.1 NA NA 2.42E-15 3.62E-14 1.28E-14 4.46E-13 14.97 
sy2-pa04 127.05 3.34 39.2 NA NA 3.49E-14 2.05E-13 2.93E-14 9.23E-13 5.86 
sy2-pa05 195.03 5.34 24.5 NA NA 4.36E-14 1.60E-13 4.73E-14 3.73E-13 3.67 
sy2-pa06 119.34 1.90 21.65 NA NA 1.32E-13 8.40E-13 5.87E-14 2.21E-12 6.35 
sy2-pa07 115.19 4.50 6.25 NA NA 7.51E-15 4.82E-14 7.67E-15 5.09E-13 6.41 
sy2-pa08 184.96 2.28 140.45 NA NA 3.51E-13 1.41E-12 2.05E-13 2.22E-12 4.01 
sy2-pa09 131.78 1.93 80.95 NA NA 1.75E-13 9.91E-13 1.38E-13 2.26E-12 5.66 
sy2-pa10 116.78 2.58 61.6 NA NA 5.55E-14 3.56E-13 4.41E-14 1.22E-12 6.41 
sy2-pa11 128.89 2.49 79.75 NA NA 8.75E-14 4.99E-13 9.77E-14 1.87E-12 5.71 
sy2-pa12 93.72 3.69 5.95 NA NA 6.18E-15 4.95E-14 5.80E-15 1.11E-13 8.02 

           Chemically Abraded 
SY2-A1 123.78 2.20 72.4 NA NA 2.04E-13 1.19E-12 3.16E-13 3.48E-12 5.86 
SY2-A2 124.57 2.29 21.7 NA NA 6.51E-14 3.88E-13 6.48E-14 6.58E-13 5.95 
SY2-A3 57.54 1.11 6.1 NA NA 9.35E-15 1.17E-13 3.52E-14 8.31E-13 12.55 
SY2-A4 84.04 1.67 14.55 NA NA 2.31E-14 2.06E-13 2.86E-14 3.99E-13 8.91 
SY2-A5 126.78 2.37 17 NA NA 2.39E-13 1.38E-12 3.28E-13 4.44E-12 5.75 
SY2-A6 68.49 1.39 8.7 NA NA 1.01E-14 1.09E-13 1.77E-14 3.21E-13 10.89 
SY2-A8 85.58 2.45 1.4 NA NA 7.56E-15 6.49E-14 1.46E-14 1.61E-13 8.58 
SY2-A9 122.20 2.07 123.05 NA NA 1.92E-13 1.15E-12 2.42E-13 3.16E-12 6.01 
SY2-A10 82.90 2.56 0.4 NA NA 3.19E-15 2.63E-14 1.46E-14 9.04E-14 8.26 
SY2-A11 130.21 2.50 32.6 NA NA 1.90E-13 1.08E-12 1.66E-13 1.60E-12 5.71 
SY2-A12 84.57 1.65 7.8 NA NA 1.86E-14 1.63E-13 2.74E-14 2.25E-13 8.80 
SY2-A13 141.67 2.76 10.7 NA NA 5.97E-14 3.16E-13 3.51E-14 2.12E-13 5.30 
SY2-A14 88.01 2.29 2.6 NA NA 4.52E-15 3.61E-14 1.47E-14 3.94E-13 7.98 
SY2-A15 118.94 2.08 17.15 NA NA 3.26E-14 1.72E-13 1.70E-13 7.87E-13 5.27 
SY2-A17 67.56 1.37 6.9 NA NA 4.21E-14 4.71E-13 4.82E-14 1.32E-12 11.19 

           Sample SY-13 - Valley Bottom 
Untreated 

          NC SY 13 400(1) 96.31 5.59 7.5 0.92 163.3 4.02E-13 3.43E-12 3.23E-13 NA 0.09 
NC-SY-13   2 75.03 4.35 4.9 0.87 102.1 5.36E-14 6.06E-13 1.11E-13 7.76E-13 0.18 
NC-SY-13   3 75.51 4.38 18.1 0.87 103.2 1.18E-13 1.27E-12 4.97E-13 1.17E-12 0.39 
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NC-SY-13   1 111.26 6.45 12.9 0.83 78.7 8.89E-14 6.95E-13 1.85E-13 9.92E-13 0.27 
SY13-1 141.51 4.25 4.5 0.79 66.6 1.60E-14 8.69E-14 9.94E-14 1.69E-12 5.42 
SY13-2 154.38 3.66 9.3 0.82 75.2 5.49E-14 3.15E-13 8.11E-14 2.17E-12 5.74 
SY13-3 117.38 2.58 20.1 0.85 95.2 1.96E-13 1.30E-12 8.65E-13 1.40E-11 6.64 
SY13-4 133.67 3.17 4.6 0.80 71.5 1.96E-14 1.18E-13 9.36E-14 1.98E-12 6.01 
SY13-5 110.42 2.25 18.7 0.80 73.0 7.19E-14 4.47E-13 7.64E-13 5.42E-12 6.23 
SY13-6 151.50 2.93 17.1 0.78 68.3 7.18E-14 2.71E-13 8.26E-13 6.68E-12 3.78 
SY13-7 114.72 2.42 28.5 0.81 74.4 1.21E-13 7.83E-13 9.75E-13 6.69E-12 6.45 
SY13-8 104.92 2.06 12.9 0.81 80.1 6.08E-14 3.21E-13 9.69E-13 7.26E-12 5.28 

           Physically Abraded 
PA-SY13-1 107.43 1.65 81.3 NA NA 5.78E-14 3.17E-13 4.18E-13 2.76E-12 5.49 
PA-SY13-2 154.28 1.95 61.55 NA NA 8.94E-14 2.04E-13 1.04E-12 5.20E-12 2.28 
PA-SY13-3 85.75 1.68 33 NA NA 2.65E-14 2.34E-13 1.66E-14 1.50E-12 8.84 
PA-SY13-4 81.64 1.27 71.3 NA NA 2.42E-14 1.78E-13 2.23E-13 4.04E-13 7.35 
PA-SY13-5 74.89 1.31 25.45 NA NA 9.64E-15 7.47E-14 1.06E-13 7.42E-13 7.75 
PA-SY13-6 79.77 1.40 20.3 NA NA 1.12E-14 9.31E-14 5.89E-14 2.91E-12 8.30 
PA-SY13-7 114.08 1.48 58.7 NA NA 5.12E-14 1.73E-13 7.46E-13 3.45E-12 3.37 
PA-SY13-8 118.69 1.73 161.85 NA NA 2.31E-13 1.11E-12 1.69E-12 3.26E-12 4.81 
PA-SY13-9 85.24 1.30 25.4 NA NA 2.07E-14 1.33E-13 2.36E-13 1.26E-12 6.41 
PA-SY13-10 81.34 2.24 12.05 NA NA 3.21E-15 2.15E-14 3.62E-14 8.85E-13 6.71 
PA-SY13-11 104.15 1.76 95.25 NA NA 9.07E-14 6.16E-13 2.29E-13 5.01E-12 6.80 
PA-SY13-12 105.02 1.85 106.9 NA NA 8.48E-14 5.61E-13 2.58E-13 4.84E-12 6.61 
PA-SY13-13 96.30 1.66 60.15 NA NA 3.21E-14 2.37E-13 8.56E-14 1.52E-12 7.38 
PA-SY13-14 77.83 2.04 6.15 NA NA 4.09E-15 3.72E-14 1.24E-14 8.60E-13 9.09 

           Chemically Abraded 
SY13-A1 121.48 2.03 54.4 NA NA 1.89E-13 8.39E-13 1.57E-12 3.42E-12 4.43 
SY13-A2 162.15 4.36 10.2 NA NA 1.60E-14 4.50E-14 1.33E-13 4.88E-13 2.81 
SY13-A3 88.95 2.54 18.6 NA NA 2.44E-14 2.06E-13 2.66E-14 1.34E-12 8.41 
SY13-A5 116.11 2.11 50.4 NA NA 1.28E-13 6.69E-13 7.58E-13 1.09E-11 5.22 
SY13-A6 106.92 1.79 60.1 NA NA 1.11E-13 5.45E-13 1.11E-12 1.51E-12 4.92 
SY13-A7 115.70 2.53 7.5 NA NA 1.93E-14 1.07E-13 7.46E-14 5.61E-12 5.56 
SY13-A8 107.69 1.63 34.5 NA NA 1.26E-13 4.75E-13 1.85E-12 3.43E-12 3.77 
SY13-A9 82.85 2.30 40.1 NA NA 2.38E-14 2.10E-13 5.30E-14 9.61E-13 8.80 
SY13-A10 110.94 1.80 70.4 NA NA 4.85E-14 1.58E-13 7.75E-13 1.56E-12 3.26 
SY13-A101 100.75 1.55 83 NA NA 1.70E-13 9.68E-13 1.45E-12 4.86E-12 5.69 
SY13-A102 106.61 1.53 29.3 NA NA 4.04E-14 1.83E-13 4.65E-13 2.95E-12 4.54 
SY13-A103 83.95 1.56 6.3 NA NA 1.08E-14 8.41E-14 5.35E-14 3.80E-12 7.81 
SY13-A104 117.95 2.18 60.7 NA NA 8.51E-14 5.40E-13 6.25E-14 2.92E-12 6.35 
SY13-A105 109.49 1.52 57.4 NA NA 1.53E-13 6.25E-13 1.96E-12 7.86E-12 4.08 

! ! ! ! ! ! ! ! ! ! !a ± 1σ  Analytical uncertainty from propagated error of He, U, Th, and Sm analyses along with  
            FT and blank measurements 
b eU  Effective Uranium = [U] + 0.235*[Th]  
c FT  Alpha-loss correction factor from monte carlo simulation - Not Applicable to abraded grains. 
d Radius  FT equivalent spherical radius of the grain (Ketcham et al., 2012) - Not Applicable to abraded   
!!!!!!!!!!!!!!!!!!grains.!

NA  Not Analyzed 
*  U, Th, Sm analyzed at Caltech, all other Appalachian aliquots analyzed at U. Arizona. 
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CHAPTER ABSTRACT 
 
The Appalachians are the archetypal old, long-decaying orogen from which major 

theories for the drivers and patterns of long-term landscape evolution have been derived. 

However, the modern topography of the range bears no connection to the regional 

tectonic history and the along strike variability of maximum elevation and relief make it 

difficult to describe the range in the context of an old and uniformly decaying landscape.   

Long-term estimates of erosion rates from apatite fission-track match short-term 

estimates from cosmogenic nuclide data and suggest slow and steady erosion at 20 

m/Myr.  Intermediate data like sediment accumulation rates and river incision point to 

unsteadiness, which we assess using apatite U-Th/He thermochronology.  We collected 

samples from the central Appalachian hinterland in Pennsylvania and New Jersey and 

from the rugged Blue Ridge Mountains of western North Carolina.  All cooling ages were 

pre-Cenozoic, precluding significant exhumation in connection with the large pulse of 

Miocene sediment observed offshore.  Considerable age dispersion was observed 

between and within samples that did not correlate with known sources of dispersion for 

apatite U-Th/He thermochronology.  Using two “bad actor” samples from the southern 

Appalachians we found through abrasion of the grain surface that our observed dispersion 

was rooted in U and Th zonation, which masked the dispersion expected from radiation 

damage given the evidence for slow cooling.  By taking advantage of the known closure 

temperature variation caused by grain-specific radiation damage using the abraded grains 

we are able to show unsteady cooling histories for our two bad actors suggesting that 

Appalachian landscape evolution is more nuanced than previously documented. 
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2.1 INTRODUCTION – The Enigma of Appalachian Topography 

 

Topography is an important signal in geodyamics.  However, compared to young or 

active settings, the topographic signal in old orogens can be more enigmatic than 

telegraphic.  Along their length, the Appalachians are a good example of this.  Often set 

forth as a classic mountain belt, the Appalachians are quite curious in their topographic 

expression (Pazzaglia and Brandon, 1996).  Along strike, relief in the Appalachians 

varies considerably, from 1500 meters in the southern Appalachians to less than 200 

meters in Pennsylvania.  Independent of the magnitude of relief, the location of highest 

elevations and relief varies in its tectonic setting: the highest values in the southern 

Appalachians are developed in the Grenville-aged crystalline rocks of the Blue Ridge, 

compared to the topographic inversion seen in the central Appalachians, where elevations 

in the orogenic core have been reduced to sea level and the highest elevations occur in the 

foreland thrust belt.  Finally, Mesozoic rift basins, the youngest major tectonic feature in 

the region, are strung along the length of eastern North America, yet their boundaries are 

not defined by any noticeable change in local relief.  In summary, the modern 

Appalachian Mountains do not simply equate to the Appalachian compressional or 

extensional orogen. 

 

Appalachian landscapes are also enigmatic in their evolution, which is not consistent with 

simple erosional decay of an original orogenic welt. Data that can constrain this long 

evolution are surprisingly sparse for a region that has played such a central role in the 

origin of ideas about landscape development (e.g., Davis, 1889, 1899; Hack, 1960). For 
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much of the unglaciated Appalachians, long-term inference of erosion rates from low-

temperature thermochronology gives very low rates of erosion, on the order of 20 to 40 

meters per million years averaged over the past ~100 Myr (e.g. Blackmer et al., 1994; 

Boettcher and Milliken, 1994; Miller and Duddy, 1989; Naeser et al., 2004; Roden and 

Miller, 1989; Roden, 1991).  At face value these rates are perplexingly similar to shorter-

term values obtained by cosmogenic methods averaged over past several tens of 

thousands of years (Pavich et al., 1985; Matmon et al., 2003; Hancock and Kirwan, 2007; 

Portenga and Bierman, 2011 and references therein). The conundrum here is that if 

landscape evolution has been driven by the progressive isostatic consumption of an 

orogenic root, where slope and relief dictate the erosion rate (Ahnert, 1970), it is hard to 

see how older and presumably greater relief (resulting from a thicker crustal root) was 

being removed at the same slow rate that pertained during relatively recent (yet glaciated) 

times, especially if the buoyancy of the crustal root can decrease through time (Fischer, 

2002). Moreover, the low rates are observed over a wide range of localities in different 

topographic settings, and seem at odds with the observed variations in topography, 

stratigraphic evidence for pulses of higher sediment-sourcing rates (Pazzaglia and 

Brandon, 1996), and evidence in some areas for a considerably active landscape, e.g., the 

dynamics of the New River (Ward et al., 2005) and drainage capture along the Blue 

Ridge escarpment (Prince et al, 2011). In particular, through summarizing the earlier 

work of Poag and Sevon (1989) among others, Pazzaglia and Brandon (1996) 

documented a Miocene pulse of sediment accumulation in the Baltimore Canyon Trough 

that amounts to some 1000 meters of erosion apportioned over an area stretching from 

Virginia to New Hampshire, an event that fits in no obvious way with either simple post-
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orogenic decay of a Late Paleozoic orogen, or relaxation following Mesozoic reactivation 

of Appalachian orogenic lithosphere by Atlantic rifting.   

 

In this study we combine new apatite U-Th/He data with previous thermochronological 

data to investigate the spatial and temporal variability of exhumation in the central and 

southern Appalachians. The original motivation of this work stemmed from the Pazzaglia 

and Brandon (1996) observation of pulsed Miocene sedimentation, which raised the 

possibility that the very low closure temperatures associated with U-Th/He dating of the 

mineral apatite might allow us to locate the source of this sediment through bedrock 

dating in the Appalachian landscape.  We begin by reporting the general patterns of the 

data we collected and the large intra-sample age dispersion that we encountered.  Next 

we describe our detailed experiments involving two samples that were aimed at 

identifying and mitigating the source(s) of the age dispersion we observed.  We discuss 

our results in the context of known sources of age dispersion, updating reviews (Farley, 

2002; Ehlers and Farley, 2003; Fitzgerald et al., 2006) with recent advances.  Finally, we 

demonstrate that despite wide age dispersion, interpretable results can be derived from 

apatite U-Th/He dating in some areas that have experienced slow cooling and provide the 

first evidence for unsteady erosion of the southern Appalachians. 
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2.2 THE APPALACHIAN LANDSCAPE AND PREVIOUS WORK 

 

2.2.1 The Modern Appalachian Landscape 

 

The general bedrock geology and topographic characteristics of the central and southern 

Appalachians can be grouped into five physiographic provinces that are parallel to the 

strike of range (Figure 2.1).  Starting to the east, the Coastal Plain is flat, near sea level, 

and composed of Cretaceous to Quaternary clastic sediment shed off of the higher 

topography to the west.  The Piedmont province is composed of Paleozoic metamorphic 

and igneous rocks that represent the core of the Paleozoic Appalachians, thought to have 

been Andean in scale (Slingerland and Furlong, 1989), now characterized by very low 

relief and low elevation.  The Blue Ridge escarpment, a topographic step of 300 - 500 m 

along its ~500 km length, separates the Piedmont from the Grenville-aged gneisses and 

late Proterozoic through early Cambrian metasediments of the Blue Ridge province.  The 

highest elevations and greatest relief of the modern Appalachians is found in the southern 

Blue Ridge province in the mountains of western North Carolina, which has recently 

been described as isostatically compensated by a 45-55 km thick crustal root (Hawman et 

al., 2012).  Stepping further west, the Valley and Ridge province is composed of 

deformed Paleozoic sedimentary rocks of the Appalachian fold-and-thrust belt and the 

Appalachian Plateau furthest to the west is the undeformed foreland basin of the 

Paleozoic Appalachian.  Elevation and relief in the Valley and Ridge and Appalachian 

Plateau vary considerably along strike, from subdued topography in Pennsylvania and the 

southern Appalachians to higher elevations and relief in area of the New River of West 
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Virginia.  Finally, the Baltimore Canyon Trough offshore of Maryland is the largest 

passive margin sedimentary basin along eastern North America, which has collected an 

average thickness of 10 km of clastic sediment in unsteady pulses of rapid deposition 

most recently during the late Cretaceous and the Miocene (Pazzaglia and Brandon, 1996). 

 

2.2.2 Low-Temperature Thermochronology 

 

2.2.2.1 Fission-Track dating.  Extensive apatite fission-track analysis from the 

Appalachian landscape provides a baseline for the pattern of long-term exhumation.  

Apatite fission-track (AFT) ages reflect cooling through 90 - 110˚C, which translates to 

approximately 4 km depth within the crust assuming a post-orogenic geothermal gradient 

of ~20 ˚C/km.  All AFT ages from throughout the Appalachian landscape are pre-

Cenozoic, which places an upper limit on the extent of recent exhumation that can 

explain the observed pulse of Miocene sediment in offshore basins.  Generally speaking, 

the oldest AFT ages in the Appalachian region are found in the sedimentary units of the 

former Appalachian foreland basin now exposed in the Appalachian Plateau and the 

Valley and Ridge provinces of the central portion of the modern Appalachian Mountains, 

ranging from 100 to >200 Ma (Blackmer et al., 1994; Boettcher and Milliken, 1994; 

Miller and Duddy, 1989; Roden and Miller, 1989; Roden, 1991).  AFT ages are youngest 

in Northern New England (Roden-Tice, and Tice, 2005; Roden-Tice et al., 2009) and the 

Adirondack region (Roden-Tice and Tice, 2005; Taylor and Fitzgerald, 2011) ranging 

from ~80 to 150 Ma, which are interpreted to be a result of thermal doming and incision 

caused by passage of that region over the Great Meteor hotspot during the early 
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Cretaceous.  In the southern Appalachians Naeser et al. (2001) describe a pattern of the 

oldest AFT ages from the Valley and Ridge (~ 200 Ma), younger and more varied ages 

from the Blue Ridge (95 - 185 Ma), and intermediate ages from the Piedmont province 

(130 – 200 Ma).  Samples from the high relief region of the Blue Ridge in western North 

Carolina show an age-elevation relationship that suggests prolonged slow cooling at an 

average rate of 20 m/Myr since the Jurassic (Naeser et al, 2004).  

 

2.2.2 U-Th/He dating.  Previous application of Apatite U-Th/He Thermochronology 

(AHe) within the central and southern Appalachians is limited to a single study by Spotila 

et al. (2004).  Using a combination of AHe and AFT data from the Piedmont and Blue 

Ridge physiographic provinces of Virginia they found relatively old AHe ages with most 

ranging from 90 – 200 Ma.  They observed the oldest ages from the high topography of 

the Blue Ridge province, the youngest at the base of the escarpment that separates the 

Blue Ridge from the Piedmont province, and increasing ages progressively southeast 

towards the center of the low elevation and low relief Piedmont.  They interpreted this 

pattern to represent the slow and systematic northwestward retreat of a rift flank 

escarpment across the Piedmont province after it was generated during Mesozoic rifting, 

explaining both the existence and position of the modern topographic break and the 

distribution of ages they observed.  It should be noted that AHe ages for this study were 

determined on fairly large composites of many grains and for those samples where 

replicate aliquots were analyzed; age dispersion exceeding analytical uncertainty was 

common. 
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2.3 APATITE U-TH/HE THERMOCHRONOLOGY 

 

Apatite U-Th/He (AHe) thermochronology is based on the production of alpha particles 

(4He ) from the decay of U and Th (and to a minor degree Sm) and the thermally 

controlled retention of that He within individual grains. The closure temperature 

(Dodson, 1973) of the AHe system is dependent upon the cooling rate and defined by a 

zone of partial retention (PRZ) of He from ~35-90 °C (Stockli et al., 2000, House et al., 

2002; Flowers et al., 2009).   At slow cooling rates, similar to those found in decaying 

orogens, helium diffusion in apatite can remain active at temperatures below 40˚C, and 

bulk closure for helium could be as low as 50˚C (Shuster et al. 2006), which enables 

detection and quantification of small magnitudes of exhumation that are not possible with 

deeper thermochronologic systems.  It has been shown that grain specific characteristics 

of size (Farley 2000) and effective uranium concentration (henceforth referred to as eU 

where eU = [U] + 0.235 * [Th]) (Shuster el al., 2006; Flowers et al., 2009) impact the  

closure temperature. Thus, as result of slow cooling through the PRZ, grains experiencing  

the same thermal history can produce different ages from which more detailed thermal  

 

Figure 2.1:  (A) Map showing the location of central and southern Appalachian study areas in 
the context of the bedrock geology and physiographic provinces of the Appalachian landscape 
of eastern North America.  (B) Map showing the location and results of AHe thermochronology 
in the central Appalachians surrounding the Mesozoic Newark rift basin overlaid over the 
bedrock geology.  (C) Shaded-relief map with bedrock geology showing the location and 
results of AHe and zircon U-Th/He (ZHe) thermochronology from the southern Appalachians 
of western North Carolina.  All of the samples were collected from the rugged topography of 
the Blue Ridge province to the northwest of the escarpment that separates the Blue Ridge 
from the Piedmont province.  (D) Detailed shaded-relief map of the location and results from 
the Sylva (open circles) and Hornbuckle (filled circles) transects sampling east and west 
respectively from Waterrock Knob.  Of note is the contrast in the age-elevation relationship of 
these two transects, where the Sylva samples show a positive correlation, but the Hornbuckle 
samples on the western side of the ridge show no correlation and much older ages at low 
elevation. 
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history information can be derived (e.g. Reiners and Farley, 2001; Flowers et al, 2007; 

Flowers, 2009).  It is important to note that thermochronologic data measures cooling 

rates, which are interpreted to represent erosion rates through a temperature for depth 

transformation using a (typically assumed) geothermal gradient.  For the southern 

Appalachians the modern geothermal gradient is ~15 ˚C/km (Nathenson and Guffanti, 

1988).  Presumably the gradient was higher immediately following the orogenies of the 

Paleozoic and has been relaxing since.  For comparisons of erosion rates using our results 

and modeling exercises we assume a constant geothermal gradient of 20˚C/km, which we 

feel is a plausible assumption of the long-term geothermal gradient for this post-orogenic 

region.   

 

2.3.1 Sampling 

 

With the goal of identifying the spatial and temporal variability of exhumation and 

perhaps a locality that gave young ages and might thus be a source of Miocene sediment, 

we examined two Appalachian regions that had not yet been subject to bedrock sampling 

for U-Th/He dating, the southern Blue Ridge Mountains in the southern Appalachians 

and a broader swath across the central Appalachians largely in southeastern 

Pennsylvania. For the New England Appalachians, in another publication we report the 

results of alternative method, U-Th/He dating of detrital apatites sampled from modern 

drainages (McKeon et al., Chapter 3). 
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In the central Appalachians where relief is low, we used a reconnaissance approach to 

search for any regions that might give anomalously young ages.  Samples were collected 

from outcrops of Precambrian crystalline rock surrounding the Mesozoic Newark rift 

basin of New Jersey and Pennsylvania.  In the southern Appalachians, we focused 

sampling on two areas of high relief in the Blue Ridge province of western North 

Carolina.  Samples were collected from Mt. Mitchell, the highest point in the 

Appalachians, and from the Waterrock Knob along the Blue Ridge Parkway near the 

Great Smoky Mountains.  We collected samples along crude vertical transects in the 

hopes that age-elevation relationships and the ages of the lowest-elevation samples might 

be informative about more recent landscape evolution. Sample locations are given in 

Table 2.1 and can be seen in Figure 2.1. 

 

2.3.2 Methods.  

 

As we discuss below, our results are quite complex and we found slowly cooled bedrock 

apatites from the Appalachians to be analytically challenging. We expended considerable 

effort over a number of years in trying to understand the origin of this complexity, and as 

a result the analytical methods we used evolved during this time span. Technical details 

about analytical methods are given in Appendix 1; in general these methods are similar to 

those used in most U-Th/He laboratories (e.g. Farley, 2002).   

 

2.3.2.1 General Methods. Conventional mineral-separation procedures were used to 

extract apatite from bedrock samples from which grains were selected for AHe analysis 
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using standard optical selection criteria (e.g. Farley, 2002; Ehlers and Farley, 2003) to be 

free of inclusions, fractures, and grain coatings, and when possible, euhedral.  Apatites 

from these samples contained abundant mineral inclusions and grains were frequently 

picked under isopropyl alcohol or refractive oil to assist in identifying grains of suitable 

clarity for dating.  Some analyses, particularly those made early in the project, used 

multiple grains per aliquot, up to as many as 20 or more, but many of our analyses were 

done on single grains (Supplemental Table 1).  Alpha-loss (FT) corrections (Farley et al., 

1996) were calculated for each grain using 2D measurements and then pooled for multi-

grain aliquots.  Selected grains were loaded in to Pt or Nb micro-tube carriers for He, U, 

Th, and in later years Sm analysis.  Sample preparation and He analysis was conducted at 

the Noble Gas Geochronology Lab at Lehigh University.  U, Th, and Sm analysis was 

conducted using ICP-MS isotope dilution at Yale University and later the Arizona 

Radiogenic Helium Dating Lab at the University of Arizona.  

 

2.3.2.2 Data Reduction. Uncertainties on the ages reported for individual analyses are 

based on a blanket 2.9% error (1s) derived from Monte Carlo simulation that propagated 

uncertainties in the lab’s long-term reproducibility on the Durango apatite standard, 

typical uncertainties in U and Th measurements, and a 1% error in the FT alpha-

correction factor. We feel this is the best measure of overall precision for these analyses 

made earlier in the history of our laboratory.  For purposes of general discussion about 

our conventional results, we choose to report pooled ages (Vermeesch, 2008) as the best 

representation of the age of our samples.  This choice is justified by the fact that the 

component analyses for each sample involved both single- and multi-grain analyses and 
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due to the wide intra-sample age dispersion we encountered they are the simplest means 

to compare between samples and with the results of Spotila et al (2004).  For pooled ages, 

the uncertainty represents the propagated uncertainty of the individual component ages. 

Because it is based only on the fairly good analytical precision, the pooled-age 

uncertainty will be quite low, so as a qualitative indicator for the actual dispersion 

between individual analyses that contributed to the pooled ages, we also report the 2s 

standard deviation of the component ages. 

  

2.3.3. Results 

 

Figure 2.1 and Table 2.1 summarize the results using pooled ages for 30 samples from 

the central and southern Appalachians.  Individual component ages (from more than 200 

aliquots) and analytical data can be found in Supplemental Table B1. 

 

2.3.3.1 Data Quality and Dispersion. In the form of pooled ages, our results are relatively 

consistent, as can be seen in Figure 1. However, more locally among some adjacent 

samples and especially internally, within samples for which we analyzed a number of 

aliquots, the age dispersion can be very large, certainly greater than that predicted from 

analytical uncertainties (Table 2.1; Supplementary Table B1). For example, 10 single- 

and multi-grain aliquots from sample NC-SY-13 produced a range of FT-corrected ages 

from 75 to 131 Ma, where the pooled analytical uncertainty (2σ) was 1.9 Ma, but the 2s 

standard deviation of the component ages was 38.2 Ma.  This sort of behavior is often 

seen in older slowly cooled apatites (e.g. Belton et al., 2004; Spotila et al., 2004; Green et 
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al., 2006; Fitzgerald et al, 2006; Danisik et al., 2008). We conducted a number of 

experiments to explore the cause for this internal dispersion, which we describe and 

discuss below. 

 

2.3.3.2 Central Appalachians. Pooled ages from this region range widely between 70 and 

185 Ma, with no direct indication of Cenozoic cooling related to significant exhumation 

from this region.  Ages tend to be younger on the western, footwall side of the Newark 

rift basin, with all ages post-dating extensional deformation. These results are consistent 

with available fission-track apatite ages from Newark Basin sedimentary rocks (Roden 

and Miller, 1991), which range from 129 to 196 Ma. 

  

2.3.3.3 Southern Appalachians. Pooled ages from this portion of the southern 

Appalachians are also relatively old, ranging from 70 to 171 Ma.  Pooled ages from the 

rugged topography of the Blue Ridge province show complex relationships with 

elevation and landscape position, such that neither is a universal predictor of the age 

observed.  For the Mt. Mitchell and Sylva transects, ages are oldest at the highest 

elevations and then decrease towards the valleys (Figure 2.2), however, the Hornbuckle 

transect, which descends the opposite side of the ridge from the Sylva transect, shows no 

correlation between age and elevation (Figure 2.1) with all ages being quite old (~ 150 

Ma).  Similarly, all three transects locally display a younger to the southeast, older to the 

northwest trend, but this trend does not appear to be influenced by position relative to the 

Blue Ridge escarpment as was described by Spotila et al (2004) for samples further to the 

north (Figure 2.2).  Given the complexity of the pooled ages and the wide intra-sample 
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age dispersion we observed, these results motivated our detailed experiments described 

below.   

 

 

Figure 2.2:  Results of pooled AHe ages from the southern Appalachians and the data from 
Spotila et al. (2004) plotted against elevation and landscape position. (A) Inset plot of Age-
elevation relationship for all AHe samples from the southern Appalachians (open circles from 
this study, filled circles from Spotila et al. (2004)) and selected samples from the Sylva and Mt. 
Mitchell transects (large circles) with their component ages showing the intra-sample 
dispersion (small gray circles) on the main plot.  These plots collectively illustrate that 
potentially intriguing information about exhumation rate unsteadiness may be stored in the 
cooling history of these rocks; however, the regional data set suggests significant complexity.  
(B) Shaded-relief map of the southern Appalachian region showing the location of the samples 
relative to the strike of the escarpment topographic brake used in (C).  (C) Plot of pooled age 
vs. strike normal distance from the escarpment topographic brake (black dashed line in (B)) 
that separates the Piedmont from the Blue Ridge physiographic provinces.  Error bars 
illustrate the 2σ analytical uncertainty of the pooled age, not the dispersion of the component 
ages.  Of note is that locally our samples show a similar pattern of younger samples to the 
southeast and older ages to the northwest, as was observed by Spotila et al., however, this 
trend shows no correlation with distance from the escarpment for our samples.     
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2.4 ADDRESSING AGE DISPERSION 

 

2.4.1 Constraining Internal and External Impurities.   

 

Previous studies have also acknowledged problems with age dispersion when using AHe 

thermochronology in regions characterized by slow cooling (Belton et al., 2004; Spotila 

etal., 2004; Green et al., 2006; Fitzgerald et al, 2006; Danisik et al., 2008).  As a result we 

conducted several experiments to constrain possible sources of dispersion from internal 

and external impurities using two “bad actor” samples from the southern Appalachians 

that displayed wide age dispersion.  Because of the energetic decay of U and Th, He can 

be implanted into an apatite grain from neighboring U and Th bearing minerals or pour 

fluids, however, this problem can be mitigated through physical abrasion of outer portion 

of the apatite grain (Spiegel et al., 2009; McKeon et al. - Chapter 1).  We dated additional 

single grain aliquots of untreated and physically abraded apatite grains from NC-SY-2 

(ridge top sample) and NC-SY-13 (valley bottom sample) in an attempt to constrain age 

dispersion sourced from external impurities.  Grains were abraded with several 

milligrams of aluminum oxide abrasive media in an air abrasion cell similar to the design 

of Krogh (1982) and grain size reduction was documented through digital imagery.  

Grains were abraded until greater than 25 µm was removed from all sides of the grain to 

remove the entire portion of the grain that could be affected by helium ejection due to 

energetic decay or helium implantation from external sources.  Abraded apatite grains 

were loaded individually in Nb micro-tubes and analyzed for He, U, Th, and Sm as per 

the untreated grains.   
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U and Th bearing mineral inclusions are often cited as a potential source for age 

dispersion (Farley 2002; Ehlers and Farley, 2003; Fitzgerald et al., 2006, Vermeesch et 

al., 2007) because they implant all of their helium into the host grain, but are not 

dissolved using the standard nitric acid dissolution protocol and therefore produce too old 

ages because of the “parentless” helium.  Due to the tendency of apatites from this region 

to contain both large (up to 25 µm) and small mineral inclusions (1-5 µm), we selected 14 

inclusion-bearing grains from NC-SY-13 of suitable morphology and analyzed half using 

the standard nitric acid dissolution protocol and half with the more rigorous hot 

Hydrofluoric acid dissolution protocol for digesting zircons (Reiners, 2005) in order to 

fully digest the grain and its inclusions.  In addition, 5 inclusion-free grains that were 

representative of those used for untreated and abraded aliquots were also digested using 

hot HF to test for the presence of impurities that could not be detected using optical grain 

selection techniques.  For this experiment with inclusions, samples were loaded 

individually in Nb micro-tubes and He, U, Th, and Sm analyses were all conducted at 

Arizona Radiogenic Helium Dating Lab at University of Arizona.    

 

 

2.4.2 Results of Abrasion and Inclusion Experiments  

 

Our inclusion and abrasion experiments were an attempt to understand the dispersion in 

our data. In this paper we summarize the results of additional untreated single-grain 

analyses and physically abraded grains from “bad-actor” samples NC-SY-2 (ridge top) 
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and NC-SY-13 (valley bottom) that were reported in McKeon et al. (Chapter 1) and we 

report results of our inclusions experiment from NC-SY-13.  Both “bad-actor” samples 

displayed wide age dispersion for additional single-grain analyses.  None of these ages 

could a priori be dismissed as geologically unreasonable, nor were they easily 

interpretable in the context of known sources of age dispersion related to slow cooling 

such as grain size (here defined as the radius of a sphere with an equivalent FT correction 

after Ketcham et al. (2011)) or eU (Figure 2.3).  

 

2.4.2.1  Abrasion results. Physically abraded grains from both samples displayed nearly 

the same wide range of ages as untreated aliquots; however, abraded grains were 

observed to have a much wider range of eU concentrations than their untreated 

counterparts (McKeon et al., Chapter 1).  Due to the removal of the portion of the grain 

that is subject to alpha particle ejection, ages reported for physically abraded grains are 

not FT corrected.  For physically abraded grains, age was positively correlated with eU 

for both samples, a relationship that is predicted through the accumulation of radiation 

damage during slow cooling (Shuster et al. 2006; Flowers et al., 2009), but was not 

observed in the untreated aliquots (Figure 2.3) or the pooled ages (Table 2.1). 

 

2.4.2.2  Inclusion results.  For sample NC-SY-13, neither the presence of inclusions nor 

the protocol used for dissolving apatite grains was found to impact the observed age 

dispersion (Figure 2.3). Ages of inclusion-bearing grains that received the standard nitric 

acid dissolution protocol ranged from 79.9 to 129.8 Ma versus 98.2 to 132.0 Ma for 

grains digested with the more rigorous hot HF dissolution protocol.  Five inclusion-free  
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Figure 2.3:  Results of inclusion and abrasion experiments for the “bad actor” samples. (A) 
Results of 45 single-grain aliquots with different treatments from NC-SY-13, boxes represent 
clear grains appropriate for AHe analysis, triangles represent grains with inclusions, and 
circles represent physically abraded grains.  Light gray shading of boxes and triangles 
indicates aliquots that received the more rigorous hot HF dissolution protocol to fully digest 
inclusions.  (B and D) Plots showing the lack of correlation between grain size (radius of a 
sphere of equivalent FT) and age for all unabraded aliquots for NC-SY-13 (B) and NC-SY-2 
(D).  (C and E) Plots showing the lack of correlation between eU and age for all unabraded 
aliquots and the strong positive correlation that is uncovered by physical abrasion for NC-
SY-13 (C) and NC-SY-2 (E).  For all plots, error bars represent the 2σ propagated 
uncertainty of He, U, Th, and Sm, measurement and the FT correction (where appropriate), 
where error bars are not visible, the analytical uncertainty is less than the size of the symbol.  
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grains digested using hot HF that are representative of the grains selected for all non-

inclusion-bearing analyses ranged from 76.1 to 111.2 Ma.  Regardless of the presence of 

inclusions or the dissolution protocol, ages from this experiment displayed no correlation 

to grain size or eU (Figure 2.3). 

 

2.5 DISCUSSION  

 

2.5.1 U-Th/He Data: Origin of Age Dispersion and Thermochronological Significance  

 

Before turning to landscape evolution, we first need to address the dispersion inherent in 

some of our samples and assess to what degree our ages can support geologically 

meaningful interpretations. A key question is whether there is evidence for a single factor 

that has led to this dispersion, and if this dispersion suggests that the youngest, oldest, or 

pooled ages are the best representation of each sample’s cooling history. 

 

There are at this point quite a number of explanations for why a set of apatite U-Th/He 

analyses might show dispersion. These explanations range from the analytical and 

sample-specific to those that reflect a more thorough understanding of the systematics of 

He accumulation in apatite. We briefly review these here in the context of our samples.  

Farley (2002), Ehlers and Farley (2003), and Fitzgerald et al. (2006) provided a similar 

reviews; our review serves as an update. 
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2.5.1.1 Analytical sources of age dispersion.  Clearly there are analytical issues that could 

impact apatite U-Th/He determinations, and as some of our analyses hail from the earlier 

days of the method’s application, these could in theory pertain. Sample fragments could 

physically be lost in the transfer from helium-extraction system to U-Th analysis or there 

could be incomplete sample dissolution or incomplete equilibration of the U and Th 

spikes with the apatite aliquots. These effects could impact the measured parent/daughter 

ratio severely, but our reproducibility and experience with the Durango standard makes 

this unlikely other than an isolated case. Most of our samples were only measured in 2D 

for the purposes of determining the alpha-loss correction, so any flattening in the third 

dimension (common in some apatites) would have made some of our FT values 

inaccurate, but this effect would only amount to a few percent, and in any case would be 

insufficient to explain the far larger dispersion we observed in some cases.  

 

2.5.1.2 Internal and external impurities.  As stated earlier, dispersion could result from 

pathologies within the samples themselves. The presence of refractory inclusions of 

zircon or monazite would significantly impact our results because we used a standard 

apatite dissolution procedure in nitric acid that would not dissolve such inclusions, 

resulting in the helium contribution from these inclusions not being supported by the 

corresponding U and Th from them.  However, the similarity of the age dispersion 

observed from inclusion-bearing grains analyzed with the standard nitric acid dissolution 

versus the more rigorous hot HF dissolution protocol would suggest that the inclusions in 

these apatites are not U and Th bearing phases and therefore they are an unlikely source 

for our observed age dispersion.  Similarly, the test group of five inclusion-free grains 



 

 65 

that were digested using hot HF showed no dramatic decrease in age dispersion and 

corroborate the suggestion of Vermeesch et al. (2007) that mirco-inclusions which go 

undetected during optical selection are not likely to severely impact the age dispersion.  

Brown et al. (2011) recently pointed out that for slowly cooled samples, analysis of 

broken grains could result in considerable observed age dispersion since different parts of 

crystal will contain different portions of the master grain’s 4He diffusion profile. 

However, we were careful to date only unbroken grains, and many of our apatites had 

complex metamorphic morphologies that would be less prone to mis-identifying a grain 

parting as a grain termination.   

 

Alternatively, age dispersion could arise from the geological environment of our dated 

grains. It has been speculated that the presence of a high-U or high-Th neighbor could 

pollute a grain with high levels of excess 4He (e.g. Spiegel et al. 2009), but this unlucky 

situation would seem very unlikely to be a common effect. As a variant on this concept, 

Kohn et al. (2008) noted late fluids percolating along grain boundaries might leave a film 

high in U and Th, and that this might act in the same way as a bad neighbor; they 

reported mechanical abrasion results supporting this hypothesis, in which removal of a 

“skin” equivalent to an alpha-ejection radius led to less dispersed ages. In part our 

abrasion experiments were motivated by this suggestion. 

 

2.5.1.3 Kinetic variations.  Diffusion and retention systematics in apatites provides an 

additional explanation for age dispersion, particularly for slowly-cooled samples such as 

ours. The Radiation Damage Accumulation and Annealing Model (RDAAM) of Flowers 
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et al. (2009; Shuster et al., 2006) shows convincingly that the kinetics of He diffusion are 

an evolving function that is controlled by the accumulation of radiation damage.  This 

phenomenon is most prevalent in the closure of slowly cooled samples because the 

increased time spent in the partial retention zone magnifies the differences in He 

retentivity between grains that experience the same thermal history.  Because closure age 

would then be dependent on U and Th content, dispersion might readily be observed 

between aliquots and samples, as is commonly seen (e.g Flowers 2007; Flowers, 2009; 

Ault et al., 2009; Flowers and Kelley, 2011).  To a first order, this should manifest itself 

in a correlation between age and eU. However, in our samples the eU-age correlation is 

not strong, both between samples and within samples aside for the physically abraded 

grains where both of our “bad actor” samples display the expected positive correlation 

between eU and age.  Effective diffusion dimension, which in apatite appears to be the 

physical grain size (Farley, 2000) could also contribute to modest variations in 

retentivity. For the fairly narrow range in sizes we dated this effect would be equivalent 

to only a few degrees in closure temperature, but at very cooling rates as low as 

0.1C/m.y., this could produce age variation of tens of millions of years (e.g. Reiners and 

Farley, 2001). However, in our samples, there is no correlation between internal age 

variations and grain dimension. 

 

2.5.1.4 Thermal structure of the shallow crust.  Between samples but not among aliquots 

from a single sample, the geologic context of the samples could result in dispersion 

relative to a simplistic explanation that invoked layer-cake cooling-age stratigraphy. In 

particular, the response of isotherms to paleotopography and the transient lowering or 
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raising of isotherms relative to the surface during and then after erosion events could 

complicate age distributions (e.g. Braun, 2002, Ehlers et al., 2006; Olen et al., 2012). 

Although the response of the temperature field will not be spatially sharp, closure 

temperatures for helium in apatite are low enough that short-wavelength variations are 

possible, and in addition, low-temperature isotherms will get up under longer-wavelength 

topography sufficiently to invalidate assumptions about horizontality and complicate 

attempts to think about simple kinematic interpretations involving monoclinal tilting. 

Fluid flow is one other process that might impact the relative ages in an area, because 

with the low closure interval for apatite of well below 70˚C, even just warm fluids could 

significantly alter the diffusion process. However, such phenomena cannot explain 

dispersion internal to samples, and would be mostly limited to more localized and recent 

resetting rather than alteration of the closure process itself, since it seems unlikely that 

spatially localized fluid flow would take place over the tens of millions of years involved 

in slow-cooling closure. 

 

2.5.1.5 Zonation of U, Th, and Sm.  Finally, the one other phenomenon that could lead to 

dispersion of observed ages is zoning of U, Th, and Sm within grains. The problem arises 

from a mismatch between the alpha-ejection process that occurred and the assumption 

made in the age-correction process that U and Th are uniformly distributed.  The worst-

case scenarios would amount to all U and Th being located more than an ejection 

distance from the grain margin resulting in no alpha loss (effectively an FT of 1), and all 

U and Th being located only at the grain boundary (effectively an FT of 0.5).  For these 

two cases, corrected ages assuming a 80 µm grain radius and uniform distributions of U 
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and Th would be, respectively, 21% too high, and 39% too low.  Extreme zoning could 

thus explain the magnitude of the scatter seen on our data, however, studies that map the 

U and Th zonation patterns of a range of apatites from cratonic basement (Farley et al., 

2011; Flowers and Kelley, 2011; Ault and Flowers, 2012) suggest that on average the age 

dispersion resulting from the FT correction and assumption of homogeneity is on the 

order of several percent.  Zoning has been found to be more the rule than the exception in 

apatites (Ault and Flowers, 2012), and of significance to our samples, Spotila et al. 

(2004) noted based on fission-track data that their basement apatites from the southern 

Appalachians were often zoned. While apatites of igneous origin are sometimes zoned in 

a systematic fashion which would in turn lead to a systematic mis-correction of U-Th/He 

ages, the largely metamorphic, polygenetic apatites we dated are more likely to be 

patchily heterogeneously zoned in U and Th. In this case pooled ages based on multiple 

grains would give more consistent results, as we observed, because positive and negative 

mis-corrections would tend to approximately cancel out.  

 

Our working explanation for the excess age dispersion in our data would be a 

combination of radiation-damage variations in kinetics during slow cooling and patchy 

zoning in U and Th. In this case it would not be possible to generalize about whether the 

youngest or oldest ages are most significant, as the eU content and nature of zoning in 

each grain would need to be known and considered, and this precludes any attempt to 

build accurate thermal histories. 
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2.5.1.6 Geological significance of pooled ages.  Despite the dispersion we see in aliquots 

and in some samples, we feel that the pooled ages represent a useful estimate for time of 

cooling through low temperatures, and our ages are comparable to other results obtained 

from AHe and AFT dating in the Appalachians. Most significantly, based on these pooled 

ages (and the data from Spotila et al., 2004), at any locality we studied in the central and 

southern Appalachians there is no evidence for significant Cenozoic erosionally induced 

cooling sufficient to be manifested as Cenozoic cooling ages (e.g., cooling of tens of 

degrees, equivalent to kilometer-scale exhumation as a result of erosional unroofing). 

 

The age-elevation data in the southern Appalachians also do not provide evidence for 

Cenozoic cooling, nor are they informative about cooling history. Simple thermal models 

run using Pecube (Braun, 2003) and rules of thumb (e.g, Reiners and Brandon, 2006) 

suggest that topography having the wavelength observed in the southern Appalachians 

will most likely have an isotherm structure that is sub-parallel to it, meaning that age-

elevation data from surface samples will not be able to sample the true isotherm-normal 

age-elevation relationship. The only exception to this would be if the entire landscape 

were carved recently such that the paleoisotherm structure was not in equilibrium with 

the current topography.  This would require recent erosion of significant magnitude at 

rates far inconsistent with recent cosmogenic measurements (Pavich et al., 1985; Matmon 

et al., 2003; Hancock and Kirwan, 2007; Portenga and Bierman, 2011 ). The only slim 

signature in the age-elevation data takes the form of the few old ages seen at highest 

elevations; these could be interpreted as representative of an older, very slow-cooling 

regime, with the younger low-elevation ages, however dispersed, representing a period of 
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accelerated cooling that exhumed the fringe of a fossil partial-retention zone. Given the 

low number of old ages and the overall dispersion, it does not seem advisable to press 

this line of reasoning.  Therefore, from the pooled ages we do not find evidence of 

extensive recent exhumation, but more importantly, we lack the resolution necessary to 

comment on the steady or unsteady behavior of the evolution of this landscape as it could 

relate to the observed unsteadiness of sediment deposition rates offshore (Pazzaglia and 

Brandon, 1996).  

 

 2.5.2 Insights from abrasion analysis   

 

2.5.2.1 Sources of age dispersion.  The analysis of physically abraded grains from NC-

SY-2 and NC-SY-13 produced three key observations that explain the dispersion 

observed for untreated grains.  First, abraded grains produced widely dispersed ages that 

were similar to untreated grains suggesting that implanted helium from external sources 

was not a major factor contributing to the observed age dispersion.  Second, unlike the 

untreated grains that tended to have low eU concentrations, the physically abraded grains 

spanned a wide range of eU concentrations with maximum concentrations nearly three-

fold greater than the maximum of the untreated grains.  This observation can only occur 

if there is significant zonation of U, Th, and Sm.  The fact that eU concentrations for the 

abraded grains ranged from 1 to over 100 ppm for both samples suggests that the pattern 

of zonation is not systematic in these metamorphic apatites and thus neither is the age 

dispersion resulting from the assumption of U, Th, and Sm homogeneity that is implicit 

with the FT correction applied to untreated grains.  Third, the positive eU-age correlation 
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observed for the physically abraded grains is expected given regional evidence for slow 

cooling (Naeser et al., 2004) and the impact of radiation damage (Shuster et al., 2006); 

however, the untreated grains did not display this relationship.  McKeon et al. (Chapter 1) 

illustrate how zonation of U, Th, and Sm can mask the eU-age relationship for untreated 

grains through the combined effect of incorrect application of the FT correction and the 

dilution of a high eU and low volume core by the low eU and high volume rim of a grain.  

Abrasion mitigates this problem by partially removing the low eU rim and the need to 

correct for alpha-ejection using the FT correction.  Taken together, these observations 

corroborate our suggestion that the age dispersion observed from untreated grains is 

rooted in the combined effect of radiation damage-induced variations in closure 

temperature and zonation of U, Th, and Sm.  

 

2.5.2.2 Inferences about cooling history.  Because the variation of diffusion kinetics 

caused by radiation damage results in grain-specific closure temperatures (Shuster et al., 

2006; Flowers et al., 2009), we take advantage of the wide range in eU and age observed 

for both bad actor samples to infer their low-temperature cooling histories.   As stated, 

the widely dispersed ages for NC-SY-2 and NC-SY-13 were positively correlated with 

eU concentration, a situation that can only arise as a result of slow cooling through the 

PRZ.  The slower a sample cools through the PRZ, the greater the age dispersion 

resulting from variations in the concentration of eU will be.  We compare our eU-age 

relationships from the two samples to the regional apatite fission track derived long-term 

average erosion rate of 20 m/Myr (Naeser et al., 2004) using the diffusion modeling 

software package HeFTy (Ketcham, 2005) and the RDAAM to forward model the age 
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dispersion resulting from variations in eU for a grain radius of 80 µm (Figure 2.4).  

Assuming a stable geothermal gradient of 20 ˚C/km we find that the ridge top sample 

(NC-SY-2) generally fits the prediction of slow and steady exhumation at a rate of 20 

m/Myr, but the valley bottom sample (NC-SY-13) shows distinctly less age dispersion 

than that predicted by the forward model, suggesting that it cooled through the PRZ at a 

faster rate.   

 

2.5.2.3 Thermal modeling using abraded grains.  To more fully explore the cooling 

history information stored in the eU-age relationship from our physically abraded 

datasets we used an inverse modeling approach again using HeFTy and the RDAAM.  

Aside from parameters that control different aspects of how the model runs, the core 

input into an inverse model in HeFTy are currently up to 7 eU-age pairs with an 

analytical uncertainty on the age from different aliquots of a single sample.  HeFTy 

generates random time-Temperature (tT) paths and then uses the RDAAM to calculate 

what the age should be given a particular eU.  As such, HeFTy is not designed to account 

for sources of age dispersion other than radiation damage and grain size, thus, the model 

cannot fit thermal histories to moderately dispersed data resulting from other sources 

because the age dispersion is typically much greater than the analytical uncertainty.   

 

To combat this limitation but still use HeFTy and the RDAAM for the valuable cooling 

history information that it can elucidate, we fit an exponential regression to the observed 

eU-age data and then use discrete eU-age points along the regression and the 68.3% C.I 

bounds (representative of 1σ) on the regression for the age uncertainty as input in the 
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inverse model (Figure 2.4).  We chose to use an exponential regression because it 

afforded the best compromise between simplicity and accurately fitting the results of 

RDAAM predicted eU-age relationships for a range of cooling rates.  We chose the 

location of points along the regression to capture both the range of eU concentrations 

observed and the eU concentrations where the observed data was most densely clustered.  

 

In an attempt to let the inverse model explore the full ramifications of radiation damage, 

we placed as few constraints on the model as possible.  As a result of physical abrasion 

removing the portion of the grain subject to alpha ejection we turned off both alpha 

redistribution and ejection from the model and used a standard grain radius of 80 µm to 

represent the average size of pre-abrasion grains from our Blue Ridge samples.  HeFTy 

allows for radial zonation of U and Th to be input for each age model, however, given 

that we did not measure the distribution of U and Th within the abraded grains and the 

evidence for patchy and therefore unpredictable zonation patterns described above, we 

made the simplifying assumption of homogeneity of parent material within the abraded 

grains.  We applied no constraints to random tT paths other than their starting and ending 

positions.  The starting constraint required paths to begin between 140 - 170˚C at 230 – 

250 Ma which was based on regional zircon U-Th/He ages we acquired as part of this 

study, paths were required to end today at 10˚C which was chosen as an average 

temperature for the region during the late Cenozoic.  For NC-SY-13 (valley bottom 

sample) we generated 100k random tT paths with the model finding 828 “acceptable” and 

288 “good” statistically significant fits to the input data from the exponential regression.  

For NC-SY-2 (ridge top sample) the greater uncertainty of the exponential regression  
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Figure 2.4:  Cooling histories derived from inverse modeling of physically abraded grains from 
NC-SY-2 and NC-SY-13 using HeFTy and the RDAAM.  (A and B) Plots showing the 
observed eU-Age data for the physically abraded grains from both samples (black circles), 
exponential regressions (solid black lines) and 68.3% confidence intervals (light gray shading) 
fit to the observed data.  The open circles and error bars lying along the exponential 
regressions indicate the eU-Age data input into the HeFTy inverse models.  The eU-Age 
relationship predicted by the RDAAM for an exhumation rate of 20 m/Myr (assuming a 
geothermal gradient of 20 ˚C/km) is shown by the dashed lines.  (C and D)  Results from 
inverse modeling showing time-temperature (tT) paths yielding acceptable fits (light gray) and 
good fits (dark gray) to the input eU-Age data points from the exponential regressions.  The 
dashed box indicates the starting constraint for the tT paths and a 20 m/Myr exhumation rate 
is indicated by the dashed black line.  The Partial Retention Zone (PRZ) is indicated to 
illustrate the temperature range where He diffusion transitions from fully open to fully closed 
system behavior and indicates where variations in eU between individual aliquots can 
influence the shape of the tT paths that produce acceptable and good fits for each sample.  
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resulted in the model finding more statistically significant fits in fewer iterations.  To 

fairly compare the results between the samples we chose to run the inversion for NC-SY-

2 until 300 “good” fits were found to match the results of NC-SY-13, this required 

~18,000 iterations and generated 752 “acceptable” fits in the process.  In HeFTy the 

statistical significance of a path is determined by applying a goodness of fit test to the 

predicted age for each of the seven input eU-age pairs and is described in detail in 

Ketcham (2005).     

    

The results of inverse modeling of the eU-age relationship from abraded grains illustrates 

the enhanced resolution of the thermal history that is stored in the age dispersion resulting 

from radiation damage and suggests that both samples have experienced unsteady cooling 

histories.  Figure 2.4 compares the tT path predicted by steady erosion at 20 m/Myr with 

the tT paths that produced statistically significant fits to the input eU-age data from the 

exponential regressions.  For NC-SY-2, the inverse model suggests relatively rapid 

cooling from the zircon U-Th/He window to the upper part of the apatite PRZ by ~160 

Ma and then steady slow-cooling in line with the 20 m/Myr exhumation rate.  The 

inflection point in the “good” fit tT paths is constrained by the need to quickly cool to fit 

an age of 170 Ma with an eU concentration of 140 ppm, but then cool slowly through the 

apatite PRZ to build the wide range of the eU-age relationship observed.  For NC-SY-13, 

the model does not constrain the high temperature cooling history prior to 120 Ma, 

however, at that point the statistically significant tT paths become narrowly restricted and 

suggest more rapid cooling than that predicted by the 20 m/Myr long-term average 

exhumation rate.  The tight clustering of “good” fits from 120 to 80 Ma is representative 
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of the portion of the thermal history that is constrained by the input eU-age data from the 

exponential regression.  For both models, below ~50˚C the RDAAM has reached or 

exceeded its limit to constrain the very low temperature thermal history, which is 

manifest in the fanning out of the good fits below these thresholds.  Taken together, these 

results suggest that while the long-term average rate of exhumation has been slow, there 

is evidence to suggest unsteady exhumation of this portion of the Blue Ridge Mountains.   

 

2.5.3 Appalachian Landscape Evolution  

 

2.5.3.1Interpreted from pooled ages.  The patterns of ages that emerge from the our 

pooled ages constrain the general pattern of Appalachian Landscape evolution, however, 

age dispersion between and within samples precludes our ability to draw detailed 

conclusions from this dataset.  From the Central Appalachians we find no evidence for 

significant exhumation in relation to the large increase in sedimentation rates in the 

Miocene observed offshore (Figure 2.1).  Beyond that there is a weak trend of ages 

getting younger to the west, but the dispersion between the pooled ages is considerable 

and therefore we hesitate to over-interpret this small and complex dataset.  From the 

southern Appalachians we find older ages at high elevations and also to the far west of 

our study area, but we also find strong contrasts in cooling ages and their relation to 

elevation over very short distances between the Sylva and Hornbuckle transects from 

Waterrock Knob (Figure 2.1).  We feel that these two suites of samples are emblematic of 

the reality using the standard protocols for bulk U-Th/He thermochronology analysis in 

the Appalachians specifically and slowly eroding landscapes in general.  Here we used a 
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relatively dense sampling strategy to try and combat age dispersion arising from 

problems associated with the warping of shallow isotherms and transient topography, 

however, we uncovered a complex series of problems related to grain-specific 

characteristics which were found to have such a strong impact on the ages derived that 

we could not address the problem we were trying to solve.  As a result we feel that one 

must interpret the results from our pooled ages very conservatively.  As with the Central 

Appalachian samples, we see no evidence for significant recent exhumation from the 

rugged landscape of Blue Ridge of western North Carolina, but the specifics of the pace 

and variability of the cooling history are out of reach of this dataset.   

 

2.5.3.2 Interpreted from radiation damage modeling.  By conducting detailed 

experiments to isolate the source of age dispersion we were able to describe why our 

untreated grains produced the age dispersion observed and take advantage of the expected 

dispersion caused by radiation damage to make inferences about the low-temperature 

thermal history of the Blue Ridge region.  Our work with the “rehabilitated” bad actors 

from the Sylva transect illustrate that until the sources of age dispersion are rooted out, 

analyzing more grains using the same protocols will not lead to more interpretable data 

(Figure 2.3).  As a result of this observation we suggest that studies interested in using 

AHe dating in slowly eroding landscapes collect fewer samples, but characterize them 

more carefully using the techniques that have been developed by Farley et al. (2011) or 

McKeon et al. (Chapter 1).  It is convenient that in slowly eroding landscapes we are 

typically interested in constraining variations in the thermal history on the order of 10’s 

of Myr, not 1’s of Myr, because then the dispersion that remains following attempts at 
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mitigation through abrasion or otherwise can be tolerated.  For example, from our two 

rehabilitated bad actor samples we find evidence for spatially variable cooling histories 

form the Appalachian landscape through the difference of the eU-age relationship 

observed from the abraded grains (Figure 2.3).  Though the data from the abraded grains 

still displayed dispersion that exceeded the analytical uncertainty we were able to 

interrogate the overall eU-age trends from the two samples by fitting an exponential 

regression to the data and using the uncertainty of that fit to guide the inverse models 

(Figure 2.4).  From this we infer that cooling from the zircon U-Th/He closure window 

was initially rapid for NC-SY-2, followed by a long period of generally slow erosion, in 

line with the long-term estimate of 20 m/Myr from apatite fission track analysis (Naeser 

et al, 2004).  For NC-SY-13, cooling through the PRZ is more rapid, which is expected in 

order to set the ages observed from the wide range of eU concentrations observed from 

abraded grains.  By isolating the causes of age dispersion for these two samples, we are 

able to derive much greater resolution of the thermal histories experienced by different 

points in the landscape.  Unlike the pooled ages, we feel that interpretation of the cooling 

history in context of landscape evolution is permissible with the abraded dataset and with 

the results of the inverse modeling.   

 

2.5.3.3 Summary from Low-Temperature Thermochronology.  The major contribution of 

our work in the Appalachian landscape has been to illustrate that although the long-term 

average erosion rate has been slow, the spatial variability of erosion rates through time 

suggests that landscape evolution has not been uniformly steady.  The pooled ages from 

the central and southern Appalachians corroborate the findings of previous studies and  
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give no evidence for significant recent exhumation to explain the observed pulse of rapid 

sediment accumulation rates observed in offshore basins.  Wide age dispersion resulting 

from the combined effect of several sources precludes meaningful interpretation of the 

pooled ages from our dataset in the context of landscape evolution, however, detailed 

investigation of several samples illustrates that the erosive history becomes more 

complex the closer one looks.  Figure 2.5 shows the difference in the cooling rate inferred 

Figure 2.5:  Comparison of the results of inverse modeling for NC-SY-2 and NC-SY-13 
showing only the time-Temperature (tT) paths that produced statistically good fits to the input 
data from the exponential regressions.  The paths are displayed with 90% transparent lines, 
thus the darker blue (NC-SY-2) and red (NC-SY-13) colors indicate where the random tT 
paths overlap.  The path density examples show the number of paths that pass through an 
approximately 5 Ma by 5˚C window to produce the color saturation observed.  The dark colors 
within the PRZ for samples illustrate how the good fits follow dominantly linear cooling paths 
(approximated by the dashed lines) that suggest the different positions in the landscape 
represented by the two samples experienced different erosion rates.  The ~20˚C offset 
between the samples prior to 120 Ma corroborates our assumption of the assumed 
geothermal gradient of 20˚C/Km because the samples are vertically offset by 1.2 km.       
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from inverse modeling of the abraded grains from the ridge top sample (NC-SY-2) and 

the valley bottom sample (NC-SY-13), which implies that different positions in the 

landscape of the Blue Ridge Mountains of western North Carolina experienced different 

erosion rates during the Cretaceous.  Interpreting these results in the context of landscape 

evolution suggests that the ridge top of Waterrock Knob cooled quickly flowing Triassic 

rifting and then cooling slowed to the range-wide background erosion rate of 20 m/Myr 

around ~160 Ma.  At that time, the rocks that now comprise the valley floor of the Little 

Tennessee River were ~20˚C hotter and about 1 km deeper in the crust.  Between ~130 

Ma and ~60 Ma the ridge top continued to erode slowly at 20 m/Myr, but the valley floor 

experienced nearly 2X faster erosion, which could be interpreted to reflect headward 

propagating river incision causing the valley floor to erode more quickly than the ridges, 

leading to the generation of greater relief.  By ~60 Ma, the thermal histories of the two 

points in the landscape converge at ~40˚C or 1-1.5 km depth in the crust, which is the 

lower limit of the AHe temperature range.  These contrasting cooling histories illustrate 

spatially unsteady erosion rates during the Cretaceous for the rugged mountains of 

western North Carolina and provide evidence for relief generation that matches the 

magnitude of relief in the modern landscape.  It should be noted that the entire region 

cooled from ~40˚C since ~60 Ma and we cannot constrain steady or unsteady nature of 

the final 1-1.5 km of exhumation that produced the modern landscape.  Because our 

samples are spatially restricted to a small area we feel confident that our contrasting 

cooling histories are reflective of geomorphic processes acting at different positions in 

the landscape.  However, because we only have detailed thermal histories from a very 
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small area, we cannot constrain what process is responsible for renewed valley incision 

during the Cretaceous in this region. 

 

2.5.3.4 The Road Forward.  The treatments and modeling approach used for the 

rehabilitated bad actor samples establish a means to gain useful information about the 

thermal history from Appalachian bedrock samples, however, it appears that the 

Cenozoic portion of the thermal history is out of reach of the traditional bulk apatite U-

Th/He thermochronology.  To fully address the post-orogenic thermal history and thereby 

make inferences about the processes and drivers controlling Appalachian landscape 

evolution will require the extremely low-temperature sensitivity of 4He/3He 

thermochronometry (Shuster et al., 2004).  This technique enables observation of the 

natural diffusive 4He concentration profile within an individual apatite grain, the shape of 

which is very sensitive to the thermal history down to temperatures of ~30˚C at 

Appalachian cooling rates.  Through implementation of this technique and the abrasion 

and radiation damage modeling technique for bulk AHe dating we feel that an 

explanation of the paradox of young looking topography and unsteady sedimentation 

rates in a region that had previously appeared to be the definition of slow and steady 

erosion is within our grasp.         
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2.6 CONCLUSIONS 

 

Here we present results of over 250 apatite U-Th/He ages determined on bedrock samples 

from the central and southern Appalachians of eastern North America.  Samples were 

collected from high-grade polymetamorphic Proterozoic rocks that have experienced 

slow long-term averaged cooling rates following the close of the Alleghenian Orogeny.  

Wide age dispersion between and within samples that did not correlate with known 

sources for age dispersion was observed from both study areas.  We address the age 

dispersion in two ways; first we use pooled ages (Vermeesch, 2008) to compare the 

widely dispersed aliquots between samples, and second, we conducted detailed 

experiments using two samples from the southern Appalachians aimed at identifying the 

sources of age dispersion and take advantage of the thermal history information they 

provide. 

 

Owning to problems with age dispersion, we interpret the results of the pooled ages very 

conservatively.  From both the central and southern Appalachians there is no evidence of 

significant recent exhumation to correlate with a large increase of sedimentation rates in 

Atlantic passive margin basins (Pazzaglia and Brandon, 1996).  Beyond this result the 

pooled ages were too dispersed and their associations too complex to make meaningful 

interpretations in light of the apparent long-term steadiness of erosion at 20 m/Myr.  

However, through our efforts to identify the sources age dispersion, we found evidence of 

irregular and sometimes strong zonation of U and Th through physical abrasion of the 

outer portion of individual grains.  Once this problem was recognized, the ages from 
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physically abraded grains were found to correlate well with acknowledged age variation 

caused by radiation damage.  From this relationship and inverse modeling of the kinetic 

effects of radiation damage on He diffusion we were able to infer an unsteady pre-

Cenozoic cooling history for the Blue Ridge Mountains of western North Carolina. 

 

The recognition of unsteady cooling histories from our two samples from the southern 

Appalachians is the first direct evidence of unsteady exhumation from the Appalachian 

landscape.  From our experiences we suggest that future work should concentrate on 

collecting fewer samples, but concentrating more effort to address the sources of age 

dispersion.   
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APPENDIX B 
 
B1. U-Th/He Analysis Methods 
 
Hand-picked grains were photographed in 2D for use with image-analysis software to 

determine the alpha-loss correction. Grains were then packaged in high-purity Pt or later 

Nb microtubes, placed into Pt- or Nb-foil carrier packets, and loaded into an all-metal 

sample dropper that allowed samples to be introduced to the double-vaccum furnace for 

heating. Some early samples were heated to only about 960 ˚C, which should be more 

than adequate to outgas apatites, but the frequent observation of a few percent of 

refractory 4He in re-extract analyses led us to switch to an 1150˚C-15 minute heating 

schedule, which appeared to eliminate the re-extract issue. After gettering, the gas was 

analyzed using a Balzer’s Prisma quadrupole mass spectrometer, with abundances being 

determined two ways: via a 3He spike calibrated for mass discrimination using a 1:1 
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4He/3He mix, and manometrically using the 4He beam observed in the calibration shots, 

which were run before, in the midst of, and after the analysis of each batch of unknowns. 

Agreement between spiked and manometric data was usually within 1%, and where these 

values deviate, the cause appears to be interference at mass 3 due to the presence of high 

hydrogen loads. As a result, all data reported in this paper are based on the manometric 

calibration. After removal from the vacuum system, samples were sent to the University 

of Arizona for U, Th, and in later years, Sm ICP/MS isotope-dilution analysis at the 

laboratory of Dr. Peter Reiners.   
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CHAPTER ABSTRACT 

 

The high elevation and considerable relief of the Appalachians of northern New England 

stand in contrast to the topography of the range to the north and south, making the 

persistence or rejuvenation of this topography difficult to explain in the context of an old 

and uniformly decaying orogen.  We dated 117 apatite grains using U-Th/He 

thermochronology on detrital sediment collected from the Connecticut and Merrimack 

Rivers to compare with extensive apatite fission-track analysis from the region that 

suggests long-term exhumation rates of ~20 m/Myr.  All cooling ages from detrital 

sediment were pre-Cenozoic and age populations from the two watersheds were 

indistinguishable, suggesting they experienced similar exhumation histories.  The 

distribution of U and Th (eU) concentrations was large for both watersheds, prompting a 

forward modeling exercise to assess the impact of closure temperature variation resulting 

from radiation damage and slow cooling on detrital age populations.  We first modeled 

the age distribution caused only by the observed population of eU concentrations and 

0.4˚C cooling rate that reflects the 20 m/Myr erosion rate for a geothermal gradient of 

20˚C/km and found that nearly all of the age variation observed could be explained 

through radiation damage and the variance in eU.  When the added complexity of 

sampling an age-elevation stratigraphy with the hypsometric distribution was added the 

result was indistinguishable from the radiation damage only model.  A sensitivity 

analysis assessing the relative contribution of cooling rate, radiation damage, and relief 

was conducted using our New England data set and a published detrital apatite U-Th/He 

dataset from Inyo Creek of the eastern Sierra Nevada.  The dominance exerted on the age 



 

 102 

distribution by radiation damage at slow cooling rates was greatly diminished by only 

modest increases in the cooling rate and relief.  Collectively these observations suggest 

that for slowly cooled regions the long-term exhumation rate could be inferred by fitting 

models of eU-driven age distributions to measured detrital data.  Caution should be used 

when attempting to infer geomorphic processes from detrital datasets from slowly cooled 

regions. And lastly, that radiation damage will not significantly impact detrital age 

populations from regions with cooling rates faster than 1.0˚C/Myr. 

 

3.1  INTRODUCTION 

 

The persistence of rugged topography and considerable relief in the Appalachian 

Mountains of northern New England is difficult to explain in the context of an old and 

uniformly decaying landscape.  Long-term erosion rate estimates for the region (Roden-

Tice et al, 2009) and the Appalachians as a whole (McKeon et al. Chapter 2 and 

references therein) from low-temperature thermochronometry curiously match short-term 

estimates from cosmogenic nuclide studies (Portenga and Bierman, 2011 and references 

therein) with all signals indicating that the pace of erosion has been quite slow, on the 

order of 20 m/Myr over the last 100 Myr.  Within this context of slow and steady erosion 

of the northern Appalachians is the observation of unsteady sedimentation rates in 

Atlantic passive margin basins including a large pulse of sediment during the Miocene, 

the provenance of which is not known, but volumetrically represents 1 km of material 

eroded off of the Appalachian landscape stretching from Virginia to New Hampshire 

(Pazzaglia and Brandon, 1996).  Additionally the northern Appalachians were overrun by 
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the southern margin of the Laurentide Ice Sheet and locally accommodated alpine 

glaciers in the White Mountains of New Hampshire.  Here we take advantage of the low-

temperature sensitivity of apatite U-Th/He thermochronology applied to detrital samples 

to constrain the exhumation history of northern New England in the context of these 

observation and existing regional apatite fission-track data. 

 

The sampling of detrital mineral grains from fluvial sediment and sedimentary rocks has 

proven to be a useful tool for interpreting thermal histories over a range of spatial and 

temporal scales (Cerveny et al., 1988; Stock and Montgomery, 1996; Ruhl and Hodges, 

2005). The use of detrital sediment has the advantage that it samples broadly from 

throughout the entire drainage basin and provides a synoptic perspective that would 

require a large number of point specific bedrock samples to equal.  The closure 

temperature (Dodson, 1973) of the apatite U-Th/He system is dependent upon the cooling 

rate and the accumulation of radiation damage caused by the decay of U and Th (Shuster 

et al., 2006), which may be as low as 50˚C for Appalachian cooling rates.  It is plausible 

that the very low-temperature sensitivity could allow detrital apatite grains to record 

recent exhumation related to the Miocene sediment pulse or Pleistocene glaciation in the 

form of young cooing ages. 

 

Here we present two new detrital apatite U-Th/He datasets totaling 117 grains derived 

from large river systems that collectively drain the White Mountains of New Hampshire 

and the Green Mountains of Vermont.  The concentration of U and Th varied widely 

within each dataset and given the evidence for slow long-term exhumation of the region 
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we use our age and effective uranium (eU, defined as [U] + 0.235 * [Th]) populations to 

explore the impact of radiation damage on detrital datasets using forward models.  First 

we illustrate the wide age variation that can be caused solely by radiation damage and 

slow cooling rates.  Next we add the complexity of sampling an age-elevation 

relationship with the hypsometric distribution of topography within our watersheds.  

Finally, we conclude with a sensitivity analysis that illustrates the relative influence that 

cooling rate, radiation damage, and relief impose on detrital apatite U-Th/He datasets.   

 

3.2  STUDY AREA 

 

The northern Appalachians were formed through a series of collisional orogenies during 

the Paleozoic resulting in a complex history of deformation, polymetamorphism, and 

plutonism recorded in the bedrock of the northern New England study area.  

Metasedimentary and metaigneous lithotectonic terranes represent the various stages of 

sedimentation and tectonic accretion in the region and have been extensively intruded by 

granitic plutons during Paleozoic orogenesis and more recently in the Mesozoic with the 

emplacement of the White Mountain magma series and those related to passage over the 

Great Meteor hotspot (~120 Ma) (Foland and Allen, 1991).  (Figure 3.1)  Detailed 

explanations of the geologic units and timing of Paleozoic tectonic events can be found in 

Hatcher (1989), Rast (1989), and Zartman (1988).  Focusing on the watersheds sampled 

for this study, the Merrimack River sources sediment almost exclusively from the high-

grade metasedimentary and intrusive rocks of the Central Maine terrane, including 

Mesozoic intrusive rocks in central New Hampshire.  The Connecticut River sources  
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sediment from a more diverse assemblage of tectonic terranes.  From east to west it 

drains the high-grade metaigneous and associated metasedimentary rocks of the Bronson 

Hill terrane, which are juxtaposed against the low-grade slates and green schists of the 

Figure 3.1:  Inset map 
and rectangle show the 
location of the study 
area in northern New 
England.  Main map 
shows the Connecticut 
and Merrimack River 
watersheds sampled 
for this study.  The 
tectonic terranes that 
correspond to different 
metamorphic grades 
and protoliths are 
separated by the 
dashed lines and 
labeled, see Study 
Area section for a 
description.  Paleozoic 
intrusive rocks 
associated with 
collision and 
orogenesis are light 
gray. Mesozoic 
intrusive rocks of the 
White Mountain 
Magma Series (~180 
Ma) and resulting from 
passage over the 
Great Meteor hotspot 
(~120 Ma) are 
indicated in medium 
gray and darkest gray 
respectively.  Grenville-
age rocks that outcrop 
in the Green Mountains 
of Vermont are dark 
gray.  State names are 
abbreviated in italics. 
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Connecticut Valley terrane by the Ammonoosuc fault, which the modern river follows 

closely.  Further to the west the metamorphic grade increases in the schists of the Rowe-

Hawley terrane and Grenville-age metamorphic rocks that outcrop along the spine of the 

Green Mountains in central Vermont. 

 

Extensive 40Ar/39Ar (Harrison et al., 1989; Eusden and Lux, 1994; Zartman, 1988) and 

apatite fission track (Doherty and Lyons, 1980; Roden-Tice et al., 2009) 

thermochronologic investigations in northern New England suggest that long-term 

cooling has been generally slow, but age contrasts against faults suggest localized 

differential exhumation.  Harrison et al. (1989) observed a smooth east to west decrease 

of biotite 40Ar/39Ar ages from 300 to 240 Ma along a transect from central to western 

New Hampshire that is truncated by the Ammonoosuc fault separating the Bronson Hill 

and Connecticut Valley terranes where ages jump up to 320-340 Ma.  They interpreted 

this offset to represent post-orogenic tilting of western New Hampshire due to as much as 

6-8 km of normal fault movement along a structure that is along strike with the Deerfield 

Triassic rift basin to the south of the study area.  Apatite fission-track (AFT) ages from 

throughout New Hampshire define a bulls-eye pattern of younger ages (70 – 100 Ma) 

within the rugged topography of the White Mountains and older ages (100 – 130 Ma) to 

the south and west, which has been attributed to the presence of a pervasive thermal 

anomaly associated with the passage of the Great Meteor hotspot (Roden-Tice et al., 

2009).  The age-elevation relationship of AFT ages spanning 1.5 km of relief from Mt. 

Washington (at 1916 m the highest elevation in New England) indicate slow long-term 

average erosion rates of ~20 m/Myr, however, over shorter periods rates may have been 
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unsteady (Roden-Tice et al., 2012). 

The Merrimack River watershed (~10,380 km2) ranges from 28 to 1524 m above sea 

level and drains the southwestern portion of the rugged White Mountains in central New 

Hampshire along with large area of low elevation, low relief rolling topography in 

southern New Hampshire.  The Connecticut River watershed (~21,660 km2) ranges from 

37 to 1904 m and drains the eastern side of the spine of the Green Mountains in Vermont 

and the northwestern fringe of the White Mountains.  The whole region was overrun by 

the southern margin of the Laurentide Ice Sheet during the Pleistocene and White 

Mountains accommodated alpine glaciers that cut deep cirques modifying the distribution 

of relief within the range. 

 

3.3  DETRITAL U-Th/He THERMOCHRONOLOGY 

 

3.3.1 Methods 

 

Here we report 117 single-grain apatite U-Th/He (AHe) ages derived from two detrital 

samples from the Connecticut and Merrimack Rivers that drain the southern White 

Mountains and eastern Green Mountains of northern New England.  Sand-sized sediment 

samples from both rivers were collected from the active channels and then sieved to 

retain grains smaller than 350 µm.  Apatites were separated from sieved sediment using 

standard magnetic and density sorting techniques. The quality of individual apatite grains 

was assessed using a stereographic microscope and grains were selected for U-Th/He 

analysis, were unbroken, and optically free of fractures and inclusions, and where 
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possible, euhedral (e.g. Farley, 2002).  It should be noted that although these apatites 

were derived from detrital sediment, and therefore subjected to weathering and transport 

processes, the grains that survived to be sampled and selected for analysis did not 

illustrate the effects of significant physical or chemical abrasion of the grain surface.  

However, weathering and transport processes have been shown to exert a significant 

control on the apatite grains that do survive to become part of a detrital sample (Reiners 

et al, 2007)   Apatite grains were measured for calculating the FT correction (Farley et al., 

1996) and loaded individually in Pt micro-tube carries for He, U, Th, and Sm analysis.  

Sample preparation and He analysis were carried out at the Lehigh Noble Gas 

Geochronology Lab, U, Th, and Sm concentrations were determined through isotope 

dilution ICP-MS at Yale University.  

 

Following Ruhl and Hodges (2005), we use normalized synoptic Probability Density 

Functions (PDFs) to describe the distribution of cooling ages observed for each detrital 

sample along with their associated analytical uncertainty for comparing the results from 

the two watersheds, and forward modeling to follow.  In detrital sampling every grain is 

unique, which precludes repeat analyses because the provenance of a grain is unknown.  

Replicate analyses of bedrock samples from within the sampled watershed have been 

used to calibrate the uncertainty of detrital datasets (e.g. Stock et al., 2006), but  lacking 

replicate bedrock analyses from the Connecticut and Merrimack watersheds, we used our 

lab’s reproducibility of the Durango apatite age standard (± 3% 1σ) as a measure of 

analytical uncertainty.  This estimate of uncertainty likely underestimates the dispersion 

of ages derived from replicate analyses of slowly cooled bedrock samples (e.g. McKeon 
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et al. – Chapter 2), however, it is the impact of that dispersion on detrital datasets that we 

wished to explore.  Therefore we felt that it was better to use a smaller uncertainty that is 

known and allow the dispersion of ages to be more clearly evident than to guess at a 

larger uncertainty that would smooth over the complexity we were interested in 

identifying.  

 

3.3.2 Results 

 

Apatite U-Th/He age populations were found to be quite similar for both watersheds, 

comprised of primarily Cretaceous cooling ages, and lacking Cenozoic ages that would 

reflect significant recent exhumation from this rugged landscape (Figure 3.2).  For the 

Connecticut River watershed 54 single-grain ages ranged from 69.5 to 295.4 Ma with the 

majority falling between 90 and 125 Ma.  For the Merrimack River watershed 63 single-

grain ages ranged from 66.6 to 400.3 Ma with the majority again between 90 and 125 Ma 

(Table C1).  Interestingly, despite considerable lithologic variation, the distribution of eU 

concentrations was nearly indistinguishable between the two watersheds, encompassing a 

wide range from <1 to nearly 150 ppm with the vast majority of grains ranging from 1-50 

ppm.  Due to the similarity of the age distributions, the hypsometry, and the eU 

populations we combine the results from the two watersheds into one pooled dataset of 

117 grains for use with our forward modeling of the impact of radiation damage on 

detrital datasets.      
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3.4  RADIATION DAMAGE MODELING 

 

Detrital thermochronology is dependent upon the assumption that cooling ages derived 

from detrital grains are indicative of the spatial or topographic location from which that 

grain was derived.  Thus, the acknowledgement of grain-specific cooling age dependence 

Figure 3.2: (A) Results of detrital apatite U-Th/He thermochronology for the Connecticut and 
Merrimack River watersheds of Northern New England.  Far left plots display age populations 
for both watersheds, plotted as histograms with Probability Density Functions (PDFs -heavy 
black lines) that convolve the 1σ analytical uncertainty of the age measurement overlaid.  The 
center plots display the wide, but strikingly similar range of eU concentrations (eU = U + 0.235 
* Th, see text for discussion) observed in both watersheds.  To the far right are area 
normalized hypsometric curves from SRTM 90m elevation data sampled in 100 m bins.  Of 
particular note is the similarity of the age and eU data for both watersheds despite sourcing 
sediment from different tectonic terranes.  (B) Radiation damage modeling inputs derived from 
pooling the Connecticut and Merrimack watershed data into one 117 grain data set.   
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on the accumulation of radiation damage through a combination of cooling rate and the 

eU concentration has important implications for the application of detrital AHe 

thermochronology to regions characterized by slow cooling.  Given the wide range of eU 

concentrations observed in the Connecticut and Merrimack detrital populations and the 

evidence for slow long-term cooling rates, we explore the impact of radiation damage on 

detrital datasets through forward modeling.  We start with a simple model of the 

distribution of ages resulting solely from the population of eU concentrations we 

observed from the pooled New England dataset.  Next we add the complexity of 

sampling topography, with a simple age stratigraphy using the hypsometric curve, to the 

age variation resulting from eU.  Finally, we assess the relative impact of the three major 

factors that control detrital datasets; the cooling rate, the hypsometric distribution and 

relief, and the range of eU concentrations, using our New England dataset and the detrital 

AHe dataset from Inyo Creek from the eastern Sierra Nevada of California from Stock et 

al. (2006). 

 

3.4.1 Radiation Damage Only Model 

 

3.4.1.1 Rationale and Setup.  To isolate the effect of radiation damage on the distribution 

of ages observed we envisioned New England to be flat and for erosion to be 

accommodated uniformly and simultaneously across the combined watershed resulting in 

all apatite grains experiencing the same thermal history.  We used the Radiation Damage 

Accumulation and Annealing Model (RDAAM – Flowers et al., 2009) within the thermal 

modeling software package HeFTy (Ketcham, 2005) to calculate the dispersion of 



 

 112 

cooling ages resulting from the range of eU concentrations we observe for different 

cooling rates.  To calibrate different cooling rates we used the median age (113.2 Ma) 

and eU concentration (13.75 ppm) from our pooled New England dataset (Figure 3.2) as 

fitting parameters to fix the passage of the cooling history through the AHe Partial 

Retention Zone (PRZ), where the transition from complete He loss to complete He 

retention is made and radiation damage induced variations in diffusion kinetics takes 

effect between ~40 – 80˚C (Stockli et al., 2000).  Once the thermal history was calibrated 

we adjusted the eU concentration to span the range observed from our pooled dataset (0.5 

– 140 ppm) to use RDAAM to predict the range of ages expected for a given cooling rate 

while holding grain size constant at a radius of 85 µm.  Finally, we used linear 

interpolation to derive ages for all of the observed eU concentrations from the pooled 

dataset for a particular cooling rate.  For all models we applied a 3% uncertainty to the 

modeled ages (as explained above) and generated PDFs to observe the different 

distributions of cooling ages resulting from different cooling rates in comparison to the 

observed pooled age population. 

 

3.4.1.2 Results.  Through isolating the distribution of ages produced by the range of eU 

concentrations observed using plausible rates of slow cooling we find that nearly all of 

the age variation we observed in our detrital dataset can be explained by radiation 

damage (Figure 3.3).  We fit cooling histories to pass through the PRZ ranging from 0.2 

to 1.0˚C/Myr assuming a geothermal gradient of 20˚C/km to model long-term erosion 

rates of 10 – 50 m/Myr.  We find that in order to fit the desired cooling rate none of the 

thermal histories are truly linear; instead they must cool faster or slower to produce the  
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target age as outlined above (Figure 3.3).  The range of ages predicted by RDAAM for 

the different cooling rates vary widely, indicating that the amount of variation resulting 

from radiation damage is quite sensitive to minor variations in the cooling rate (Figure 3).  

Comparison of PDFs that convolve the range of ages from all 117 eU concentrations 

 
 
 
Figure 3.3:  Radiation Damage 
Only model inputs and results.  
(A) Thermal histories that fit the 
median age of 113.2 Ma from the 
pooled New England dataset for 
an eU concentration of 13.75 
ppm.  The cooling rates span a 
range of 10 – 50 m/Myr erosion 
rates through the AHe Partial 
Retention Zone (PRZ – gray 
shading) assuming a geothermal 
gradient of 20˚C/km.  Note that 
to fit these cooling rates through 
the PRZ no thermal history was 
truly linear.  (B) Age dispersion 
as a result of radiation damage 
predicted by the RDAAM model 
for the different thermal histories.  
(C) Results of the Radiation 
Damage Only model overlaid 
over the PDF of the pooled New 
England dataset.  The 0.4˚C/Myr 
population (solid black line) 
represents a long-term 
exhumation rate of 20m/Myr that 
has been suggested by other 
studies.   
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observed from the pooled New England dataset illustrate this point; where relative fast 

cooling of 1.0˚C/Myr produces a strong, narrow peak centered on the target age of 113.2 

Ma, whereas the acknowledged long-term average rate of 0.4˚C/Myr (20 m/Myr) 

produces a much wider range that closely mimics that of the observed pooled New 

England dataset (Figure 3.3).        

 

3.4.2.Geologic Model 

 

3.4.2.1 Rationale and Setup.  Because real watersheds are not flat, the hypsometric 

distribution and relief of the landscape impact detrital datasets through the cooling age 

stratigraphy of the sampling region and the geomorphic processes generating and 

transporting the sediment.  For small watersheds such as Inyo Creek from the Sierra 

Nevada the age-elevation relationship may be quite simple (Stock et al., 2006) whereas 

for larger river systems or tectonically active areas the actual relationship is probably 

more complex due to the warping of shallow isotherms under potentially greater or 

transient paleo-topography (e.g Braun, 2002; Ehlers et al, 2006).  Though we 

acknowledge these complexities, here our interest was to identify the relative influence of 

radiation damage and hypsometry on detrital age populations.  For the purposes of this 

modeling exercise, we made the simplifying assumption that all points within the pooled 

New England watershed contributed equally observed age population and used the 

hypsometric distribution to weight the sampling of a cooling rate dependent age-elevation 

stratigraphy.  We generated a linear age-elevation relationship using the long-term 

average erosion rate of 20 m/Myr (Roden-Tice et al., 2012) and calibrated it to our  
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watershed by placing the median age (113.2 Ma) at the mean elevation for the pooled 

watershed (350 m).  We divided the hypsometric distribution into 100 m bins for which 

we then used the linear age-elevation relationship to calculate the cooling age for each 

bin.  Within each bin we used the eU distribution and RDAAM to generate the range of 

ages at that elevation given the impact of radiation damage as per the Radiation Damage 

Only model (Figure 3.4).  Finally we use the hypsometric distribution to weight the 

contribution of each bin to the full age variation caused by the age-elevation relationship 

and radiation damage that is possible within the pooled watershed.    

 

3.4.2.2 Results.  The Geologic Model illustrates that at slow cooling rates the added 

complexity of sampling an age-elevation stratigraphy does not significantly impact the 

overall distribution of ages predicted by the variation caused by radiation damage alone 

(Figure 3.5).  At a cooling rate of 0.4˚C/Myr (representing a 20 m/Myr erosion rate) the 

PDFs of the Radiation Damage Only model and the Geologic model are nearly 

Figure 3.4:  Schematic diagram of the input datasets and implications of the Geologic Model.  
The mean elevation (star) ties the median age from the pooled New England dataset to a 
linear age-elevation model that is cooling rate dependent.  The eU variation and the cooling 
rate dictate the width of age dispersion on the Geologic Model age-elevation model (gray 
shaded region) illustrating the range of ages possible for one elevation bin.  The output of the 
Geologic model performs the same process for each 100 m elevation bin and then weights the 
combined population of possible ages using the hypsometric curve.   
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indistinguishable, suggesting that the age variation introduced by the relatively low relief 

of the pooled New England watershed is swamped by the influence from radiation 

damage.  Monte-carlo simulations (adapted from Ruhl and Hodges, 2005; and Stock et 

al., 2006) that subsample the full age distribution of the Geologic model to mimic detrital 

datasets using a sample population of 50 ages (suggested as a rule of thumb minimum 

sample size by Hodges et al. (2005)) or 117 ages (suggested by Vermeesch (2004) from 

statistical analysis) illustrate that the range of ages is likely to be quite similar, but the 

peak of the distribution will vary between different samples (Figure 3.5).  It should be 

noted that both the Radiation Damage Only model and the Geologic model fail to predict 

the youngest ages observed from the pooled New England data set, which suggests that 

our simplifying assumptions and model inputs do not fully capture the reality of the 

thermal history for the New England study area.  However, it is striking how well the 

Radiation Damage Only model fits the measured data set, despite the obvious over-

simplification of what is certainly a complex system by this model. 

 

 

Figure 3.5:  (A) Results of the “Geologic Model where both age variation from eU and hypsometric 
sampling of an age stratigraphy are considered for a cooling rate of 0.4˚C/Myr.  The similarity of the 
Radiation Damage Only and Geologic models suggest that at slow cooling rates the age variation 
resulting from different eU concentrations dominates the age distribution observed.  (B) Results of two 
monte-carlo simulations where the Geologic Model distribution was randomly subsampled 10,000 times 
to represent a 50 or 117 grain detrital sample pool. 
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3.4.3. Sensitivity Analysis 

 

3.4.3.1 Rationale and Setup.  Having illustrated that radiation damage can significantly 

impact a detrital AHe population (Figure 3.5), we use our pooled New England dataset 

and the Inyo Creek dataset of Stock et al. (2006) to explore how cooling rate, eU 

variability, and hypsometry collectively control the distribution of ages from detrital 

sampling.  To conduct this sensitivity analysis we use the methodology of the Geologic 

Model.  We use the observed cooling rates for Northern New England (Roden-Tice et al., 

2012) and the eastern Sierra Nevada (House et al., 1997; Stock et al. 2006), 0.4˚C/Myr 

and 1.0˚C/Myr respectively, to represent slow and fast cooling rates.  We use three levels 

of eU variation; no variation, the Durango diffusion model of Farley (2000), moderate 

variation, the unimodal distribution observed by Stock et al. (2006) from the Sierran 

Batholith, and high variation, the pooled New England dataset.  Lastly, we normalized 

the hypsometric distributions of Inyo Creek and the pooled New England watershed to 

assess the role of relief; where Inyo creek is broadly distributed over 2 km of vertical 

distance and the New England watershed is skewed strongly to elevations below 800 m.  

Using these three variables we generated 6 predicted PFDs for both input datasets using 

the Geologic Model to compare to the observed data using a Kuiper goodness of fit 

statistic (Ruhl and Hodges, 2005).       

 

3.4.3.2 Results.  The sensitivity analysis indicates that at slow cooling rates the eU 

variability exerts the strongest control on detrital datasets, however, that influence 

disappears as the cooling rate increases to reflect modest cooling rates of 1.0 ˚C/Myr 
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(Figure 3.6).  The suite of models for the New England dataset nicely illustrate the impact 

of radiation damage on detrital datasets in slowly cooled regions.  For all possible eU  

 

 

Figure 3.6:  Results of the sensitivity analysis that illustrate how the cooling rate, watershed 
hypsometry, and eU variation impact the shape of detrital age distributions.  Panels A and B 
show the eU and hypsometry data used for the sensitivity analysis from the northern New 
England watersheds reported here and from Inyo Creek reported by Stock et al. (2006).  
Panel C compares the observed detrital age populations (gray shaded curves) with the results 
of forward models (lines) where the cooling rate and eU variability are changed.  Plots are 
arranged vertically by cooling rate and horizontally by the severity of eU variation.  The 
goodness of fit between the model and observed data are measured using a Kuiper test and 
indicated on each plot.  Of particular note is how strongly the eU variation impacts the age 
distribution in low relief watersheds at slow rates of cooling (New England – 0.4˚C/Myr case), 
but how that effect diminishes greatly at faster cooling rates. 
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variations, the predicted PFDs for fast cooling dramatically underestimate the range of 

ages observed; whereas for slow cooling, the amount of eU variability given to the model 

strongly impacts the fit between the predicted and observed PDFs with the true case of 

high eU variability producing a significantly better fit all of the other 5 models (Figure 

3.6).  From the suite of models using the Inyo Creek dataset, we find that the high relief 

of this watershed dominates the predicted PDFs for the case of slow cooling regardless of 

the eU variability (Figure 3.6).  For the faster cooling rate, we again find that eU 

variability plays a minor role in comparison to the hypsometric control on the predicted 

PDFs and as with the New England models, we again find the best statistical fit of all the 

Inyo models with the true case of fast cooling and moderate eU variation.     

 

3.5 DISCUSSION 

 

3.5.1 Interpretation of New England Detrital Thermochronology 

 

3.5.1.1 Geologic Implications.  From the rugged landscape of northern New England we 

find no evidence for extensive exhumation during the Cenozoic or for differential 

exhumation of tectonic terranes since the Cretaceous.  Our detrital datasets from the 

Connecticut and Merrimack Rivers were virtually indistinguishable from one another, 

with both centered around strong peaks at ~ 110 Ma with tails that skewed to much older 

ages (Figure 2).  The similarity of these two populations indicates that although there is  

evidence for localized differential exhumation along terrane boundaries during the 

Cretaceous (Roden-Tice et al., 2009), from the perspective of our large watersheds, the 
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region as a whole has likely experienced relatively uniform exhumation.  It is possible 

that the few young ages observed, which cannot be explained by either the Radiation 

Damage model or the Geologic model (Figure 3.5), are sourced from these areas.  The 

presence of ages greater than 200 Ma in both detrital populations is curious given that 

this region cooled below the 40Ar/39Ar biotite and K-spar closure windows around 330 

and 220 Ma respectively (Harrison et al., 1989).  Either some portion of the landscape 

cooled very quickly to below the AHe closure window, 15% of our analyses resulted in 

erroneously high ages while leaving the rest unaffected, or these grains were not sourced 

from northern New England bedrock, which is the explanation we prefer.  Given that this 

region has been repeatedly overrun by the Laurentide Ice Sheet flowing south over, and 

transporting material from, the Grenville age and older rocks from Canada, we explain 

these anomalously old ages as representing far traveled grains that were deposited in our 

watersheds during the Pleistocene.  Taken together these observations suggest that 

northern New England is not a likely source for the large pulse of sediment deposited in 

offshore sedimentary basins during the Miocene.       

 

3.5.1.2 Insights from Forward Models.  Through forward modeling of the influence that 

radiation damage and age stratigraphy impose on detrital datasets at different cooling 

rates we find that our pooled New England dataset is most consistent with slow cooling.  

The timing of the peak of the observed age distributions is closely aligned with the 

passage of the region over the Great Meteor hotspot and could perhaps be reflective of 

exhumation related to thermal doming of the region and river incision which has been 

suggested for the Mt Washington area based on apatite fission-track analysis (Roden-Tice 
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et al., 2012).  For this pulse of incision to set both AHe and AFT ages to immediately 

post-date the passage of the hotspot the cooling rate would have to be relatively fast.  

Though locally this is possible, the wide distribution of ages observed for both 

watersheds do not fit with fast cooling rates as illustrated by our sensitivity analysis 

(Figure 3.6).  Therefore we feel that the regional average cooling rate was closer to the 

long-term average of 20m/Myr and that the strong peak at ~110 Ma for both datasets is a 

product of both locally rapid incision related to the hotspot and the variation caused by 

radiation damage at slow rates of cooling where low elevation samples can be older and 

high elevation samples can be younger than that expected by the age-elevation 

relationship as a result of the grain-specific concentration of eU.  Finally, although the 

similarity between the Radiation Damage and Geologic models might suggest that nearly 

all age variation can be explained in the context of slow cooling and eU variation, the 

correlation between eU and age is not absolute (Figure 3.7).  There is considerable 

dispersion around the predicted eU-age trend from the Radiation Damage model, which  

 

we interpret to be caused by the position in the landscape from which the grain was 

sourced.  In summary we suggest that the models argue for slow cooling since the 

Cretaceous, but radiation damage does not explain all of the variation that we observe in 

 
 
 
Figure 3.7:  The relationship between eU 
and age for Connecticut and Merrimack 
River datasets compared to the eU-age 
prediction from the Radiation Damage 
model for a cooling rate of 0.4˚C/Myr.  
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the data, which is likely a combination of other factors including hypsometry, 

geomorphic sampling, and sources of age dispersion within the AHe dating technique 

(McKeon et al. - Chapter 2).   

 

3.5.2 Radiation Damage and Detrital Thermochronology.  The models presented here 

illustrate the impact that the cooling rate dependence of radiation damage induced age 

variation can impose on detrital AHe age populations.  For regions characterized by slow 

exhumation rates on the order of 10 – 30 m/Myr, which are typical of post-orogenic 

landscapes, radiation damage results in significant age variation that can dominate a 

detrital age population if the range of eU concentrations is wide, especially when 

watershed relief is low.  Given this reality, the Radiation Damage model illustrates that a 

good estimation of the long-term cooling history of the watershed can be determined by 

fitting the observed dataset to a predicted distribution of ages, where variation is caused 

only by differences in the measured eU concentrations.  As a result of the strong 

dependence of the age on the grain-specific concentration of eU, we suggest caution 

when attempting to use the age as an indicator of provenance for geomorphic or 

sedimentologic investigations in slowly eroding landscapes.  This is especially true for 

studies investigating paleo-relief using apatite grains from sedimentary deposits (e.g. 

Stock and Montgomery, 1996) because both the paleo-cooling rate (and therefore the age 

variation from radiation damage) and the paleo-hypsometry are not known and the 

relative influence of each on the dataset cannot be discerned.  Finally, it is important to 

point out that the sensitivity analysis clearly indicates the diminishing effect of radiation 

damage as cooling rate and watershed relief increase.  Thus, under the correct conditions, 
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it is perfectly reasonable to use detrital AHe thermochronology to address geomorphic 

questions as per the example from Stock et al. (2006). 

 

3.6 CONCLUSIONS 

 

Here we present 117 new U-Th/He ages determined on detrital apatite grains from 

collected from the Connecticut and Merrimack Rivers of northern New England.  All 

ages were pre-Cenozoic, which places limits on the magnitude of recent exhumation from 

the rugged White Mountains of New Hampshire and Green Mountains of Vermont 

despite offshore evidence for a large increase in sedimentation rate during the Miocene 

and Pleistocene glaciation.  Both samples produced wide and impressively similar 

distributions of the concentration of U and Th, which prompted a forward modeling 

exercise to explore the influence that radiation damage control of the closure temperature 

of the apatite U-Th/He system imposes on detrital data sets.   We found that nearly all of 

the age variation observed for our two datasets could be explained solely through the age 

variation caused by radiation damage at cooling rate equivalent to a long-term erosion 

rate of 20 m/Myr, corroborating past estimates for the region (Roden-Tice et al., 2012).  

Further we found that when the added complexity of hypsometric sampling of an age-

elevation relationship was added to the age variation caused by radiation damage the 

result was indistinguishable from the age distribution predicted only from radiation 

damage.  We conducted a sensitivity analysis of the relative influence of cooling rate, 

radiation damage, and hypsometry and found that at modest cooling rates of 1.0˚C/Myr 

the impact of radiation damage on detrital age populations diminishes greatly, however, 



 

 124 

below that threshold the effect dominates predicted age populations.  Given these 

findings we suggest: 1) For slowly eroding regions the long-term cooling rate can be 

approximated by fitting models of radiation damage derived age distributions to 

measured detrital data, 2) caution should be used when attempting to infer geomorphic 

processes from detrital datasets from slowly cooled regions, and 3) radiation damage will 

not significantly impact detrital age populations from regions with cooling rates faster 

than 1.0˚C/Myr. 
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