
Lehigh University
Lehigh Preserve

Theses and Dissertations

1992

A modular approach to designing software for real-
time actuator control for destructive testing
Poulomi Bharatkumar Damany
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Damany, Poulomi Bharatkumar, "A modular approach to designing software for real-time actuator control for destructive testing"
(1992). Theses and Dissertations. Paper 62.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/62?utm_source=preserve.lehigh.edu%2Fetd%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

AUTHOR:

Damany, .

Poulomi Bharatkumar

TITLE:

A Modular Approach to

Designing Software for

Real-Time Actuator Conrtol
f\

For Destructive Testing

DATE: May 31, 1992

A MODULAR APPROACH TO
DESIGNING SOFTWARE

FOR REAL-TIME ACTUATOR
CONTROL FOR

DESTRUCTIVE TESTING
BY

POULOMI BHARATKUMAR DAMANY

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science
.
In

Computer Science

Lehigh University

June 1992

i

(

ACKNOWLEDGEMENTS

The author would like to express her gratitude to her advisor,
Professor Stephen P. Pessiki; for taking a chance on a female, non
Civil Engineer teetering on the brink of financial insolvency: This
work would not have been possible without his constant
encouragement and guidance throughout this past year. I would be
remiss if I did not thank Mark Kaczinski, research engineer at
ATLSS, for all his help, insights and patience, CE graduate
students John Abruzzo, Alain Nussbaumer and Guy Decorges for
seeing that I did not kill myself or anyone else while on the test
floor and Dave Scott for rescuing me everytime my program
threatened to self-destruct.

Finally, my special thanks to the ATLSS - Engineering
Research Center for funding me for my graduate studies and for
introducing me to the world of hard hats, steel beams and lean,
mean pounding machines - I hope the work I did when not trying to
single-handedly destroy all the computers on the floor, will be of
some use in the future.

iii

1.

2.

TABLE OF CONTENTS
ABSTRACT

INTRODUCTION

1.1 Introduction

1.2 Objective

1.3 Outline of the Report

DESCRIPTION OF A SERVO LOOP CONTROLLER

2.1 Introduction

2.2 General Description of a Servo Loop

2.3 The Vickers DCI Servo System

2.4 The Vickers Servo Valve Operation

1

3

3

5

5

7

7

7

9

12

3. GENERAL DESCRIPTION OF PROGRAM MODULES 14

3.1 Introduction 14

3.2 Program Structure 14

3.3 Installation 15

3.4 Initialization and Start-up 15

3.5 Setup 16

3.6 Run 25

4. PARALLEL INPUT-OUTPUT

4.1 Introduction

iv

30

30

4.2 The Burr-Brown PIO Board 30

5. PROGRAMMING GUIDE 32

5.1 Introduction 32

5.2 Program Organization 32

5.3 Program Files 32

5.4 Linking User Test-Control (run) Programs 33

5.4.1· Linking the setup module with the user program 33

5.4.2 Linking individual routines with the user program 34

6. INITIALIZATION 36

6.1 Introduction 36

6.2 Communication Port Initialization 36

6.2.1 asyncjnit() 36

6.2.2 async_mode() 38

6.2.3 async_clear_errors() 40

6.2.4 async.h 41

6.3 Parallel I/O Initialization 41

6.3.1 piojnit() 41

6.3.2 pio_read() 43

6.3.3 pio_write() 44

7. SETUP

7.1 Introduction

v

45

45

7.2 Scr_setup() 45

7.2.1 chk-J'arameter_typeO 48

7.2.2 dcLbootO 49

7.2.3 read......saved_setup(} 50
! .,

7.2.4 read...,parameterO 50

7.2.6'read......eqn(} 51

7.2.6 writeJ>arameterO 52

7.2.7 write.....eqnO 53

7.2.8 blocksO 54

7.3 LimitsO 55

7.3.1 chk_fbkJirnitsO 57

7.3.2switch_fdbks(} 58

8. RUN

8.1 Introduction

8.2 Run_dclO

8.2.1 check....chn_faults(}

59

59

59

62

9. GRAPHICS 63

9.1 Introduction 63

9.2 InitializeO 63

9.3 Menu(} 63

9.3.1 box(} 66

9.3.2 itemi~e(} 66

vi

9.3.3,cleacwindowO 67

9.3.4,cursorO 67

8.3 Printing 68

8.3.1 intprintO 68

8.3.2 numprintO ' 69

8.3.3 longprintO 70

8.3.4 strprintO 70

10. FUTURE WORK 72

10.1 Introduction 72

10.2 Tasks Ahead 72

REFERENCES 73

APPENDIX A 74

APPENDIXB 83

APPENDIXC 91

VITA 111

vii

LIST OF FIGURES
FIGURE 1.1 Schematic Diagram Of A Computer Controlled Test System 4

FIGURE 2.1 Schematic Diagram Of A Control System 9

FIGURE 2.2 Servo Valve Construction 11

FIGURE 2.3 Controller Switches 12

FIGURE 3.1 Main Menu 14

FIGURE 3.2 Setup Screen1 18

FIGURE 3.3 Setup Screen2 19

FIGURE 3.4 Run Menu 25

FIGURE 3.5 Run Screen1 28

FIGURE 3.6 Run Screen2 29

FIGURE 6.1 Initialization Module 37

FIGURE 7.1 Setup Module 46

FIGURE 7.3. Tuned Signal 52

FIGURE 8.1 Run Module 60

FIGURE 9.1 Graphics Module 64

viii

ABSTRACT

The laboratories for the Center for Advanced Technology for large

Structural Systems (ATlSS) conduct a wide range of experiments (fatigue, quasi
static and dynamic tests) on structures, which have different requirements for
actuator control, data acquisition, and data disp,lay. Project D2- Computer
Controlled and Integrated Experimentation involves developmental work to

expand the experimental testing capabilities of ATlSS.

In a computer-controlled test, all aspects of actuator control and data

acquisition are controlled by commands issued from a single test computer, with
information about the current system state being displayed to the operator. The
purpose of the actuator control software is to generate an interface between the
Vickers X8700 Digital Closed Loop (DCl) servo controller and the end-user so
that the user can easily communicate with the servo controller and send force or
motion control parameters, while having information about the actuator on the
monitor.

At present, ATlSS is using software written by Test Systems & Simulation,
Inc. (TS&S) for actuator control. The software works well in isolation for fatigue
testing but imposes limitations on other tests. This is because the software does
not communicate easily with other test hardware/software. Actuator control is the
primary task of the TS&S software while the actual test is viewed as a sub-task.

The efforts of this project have been towards the development of a
software package for actuator control, which can be called within the user-specific
test control program as a sub-task. This allows the user to modify the test control
program while leaving the basic actuator communication shell intact. In addition to
this actuator control software, one user-specific test control program for constant
amplitude fatigue testing was also developed.

The software is written in Borland Turbo C to run under MS-DOS version
3.2 or 3.3 on an IBM PC AT with a clock speed of at least 8 MHz. It requires the
following minimum hardware configuration:

640K Memory

EGA Color Monitor

Math Co-processor

1

20 MB Hard Drive

EGA Graphics Adaptor Card

The memory address map used by the software:

Interrupt vector table - OOOOOH BIOS data area - 00400H

Video buffer - B8000H Burr-Brown I/O-DOOOOH, CDOOOH, COaaaH

The I/O port addresses used:

Serial I/O to controllers - 3F8H, 2F8H, 3E8H, 2E8H (anyone of 4 COM ports).

2

CHAPTER 1

INTRODUCTION

1.1 Introduction

To obtain true "computer-controlled testing" it is necessary to integrate the
separate activities of actuator control and data acquisition, as well as other
aspects of a test such as data manipulation and display. Figure 1.1 is a schematic
diagram of such an integrated test system. In this system, all aspects of actuator
control and data acquisition are controlled by the commands issued by the test
computer.

It is not essential to have just one computer as shown in Figure 1.1. What
is essential is that the information about actuator control and data acquisition are
available in some common environment so that their activities can be coordinated,
and so that information about the current state of a test are available for
manipulation and for presentation to the test operator. This is a key requirement.

At present, ATLSS is using software written by Test Systems & Simulation,
Inc. (TS&S) to achieve control of the hydraulic actuators. The TS&S software
works well for actuator control in constant amplitude fatigue testing. In theory, the
desired command signal, consisting of an amplitude (force or displacement) and
frequency, is issued by the computer to the actuator controller, and the computer
is then available to perform other tasks. Application of the TS&S software to
variable amplitude fatigue testing is somewhat more complicated because of the
need to constantly update the command signal. Nonetheless, the software has
been used to control variable amplitude fatigue tests.

Use of the TS&S software has imposed severe limitations on tests other
than fatigue tests. This is because the software does not easily communicate with
other test hardware/software (such as data acquisition hardware/software).
Rather than have actuator control as just one task in a computer-controlled test,
use of the TS&S software forces all other tasks (such as data acquisition) to be
sub-tasks of the activity of actuator control.

The forgoing is not intended to suggest that combined hardware/software
test packages are in all aspects undesirable. For example, as noted above, the
TS&S software works well for constant amplitude fatigue tests, particularly if data
acquisition is not necessary and the test can be monitored with a separate stand
alone data acquisition unit. In addition, there may be many tests performed in

3

_------1... Digital Servo-controller

Pressure

Feedback
Transducer

Servo
Valve

Actuator

Return

Computer

I...o- ---II~ Hydr~ulic

Service
Manifold

Hydraulic
Pump

Line Printer
&

Monitor

High-output
Transducer

AID

Low-output
Transducer

Signal
Conditioning

Schematic Diagram Of A Computer Controlled Test System - Figure 1.1

4

which integration of actuator control and data acquisition is not needed. It can be
argued, however, that the sole reliance on packaged test systems (hardware and
software) which teat only one component of a test (actuator control or data

acqufsition) impedes efforts to obtain true integration of a test. Communication
between stand-alone software/hardware packages has proved to be an extremely
difficult task.

1.2 Objective

The work described in this report was performed as part of the ATLSS
project D2 - Computer Controlled and Integrated Experimentation. The objective
of the project was the development of a modular software package for actuator
control which could be called within the user-specific test control program as a
sub-task. This actuator control software would allow the user to modify the test
control program while leaving the basic actuator communication shell intact. The
modularity of the software would allow inclusion of needed modules only thereby
significantly reducing memory requirements and improving overall speed of
execution.

1.3 Outline Of The Report

This report combines two manuals- one intended as a users' guide and the
other as a programmers' guide. Chapter 2 gives a brief description of a servo
feedback controller and the issues involved in using it for position or force control.
Chapters 3 and 4 describe the basic structure of the software package, along with
a description of all the user display screens and how to operate in them. Chapters
5 through 9 are a programmers' guide to the software and are intended as
documentation and reference for future revisors of the code. The following is a
brief listing of the contents of each chapter:

Chapter 2 DESCRIPTION OF A SERVO LOOP CONTROLLER: This chapter
describes a Digital Closed Loop Controller and its various elements.

Chapter 3 GENERAL DESCRIPTION OF PROGRAM MODULES: This
chapter is intended to give an overview of the software, showing the relationships
between the program modules.The modules are described in order of appearance
in the system menus.

5

Chapter 4 PARALLEL INPUT-OUTPUT: This chapter describes the Parallel

I/O option that allows the user to control external hardware such as panel

switches, service manifolds, etc. through computer control of parallel I/O. This

feature is most useful in case of an error condition in the control loop that requires

the automatic shut down of hydraulic pressure, display warning lights, etc.

Chapter 5 PROGRAMMING GUIDE: The next four chapters describe in detail,

each module and the lower level routines it calls. The description format is top

down, starting with the main module and going down to the component routines

and the functions they call.

Chapter 6 INITIALIZATION: This chapter describes the routines executed

during start-up. Two separate entities need to be initialized - the serial

communication port (8250 UART chip-Appendix A) and the parallel input/output

board (Burr-Brown PIO board- Appendix B).

Chapter 7 SETUP: This chapter describes the routines which interface

between the controller parameters and the user display (screens 1 & 2). They

read and write the controller parameters, convert between engineering units and

controller counts and display the information onto the screens for the user's

benefit.

Chapter 8 RUN: In addition to the general purpose software for actuator
control, a user-specific program for constant amplitude fatigue testing was also

written. This user-specific program is described in this chapter.

Chapter 9 GRAPHICS: This chapter describes the routines that have to do

with drawing menus, borders and boxes, changing the background and

foreground colors, writing to specific portions of the screens and all other screen

entity manipUlations.

Appendix A INTEL 8051 UART HARDWARE DESCRIPTION: This is a pullout

from the INTEL Peripheral Components manual and presents a complete

description of the hardware and programming features of a NS16450 type

Asynchronous Serial Communications controller through which the computer can

''talk'' to the servo controller on the valve.

Appendix B PROGRAMMING THE BURR-BROWN PIO BOARD: This deals

with the programming of the PC20001 C parallel I/O board in more detail and also

expands on the memory addressing scheme of the board.

6

Appendix C CONTROLLER PARAMETERS: This is a listing of the controller
parameters along with some information about their engineering units-counts
conversion equations and scaling factors, the registers assigned to them and the
amount of memory (in bytes) they occupy.

7

CI1APTER 2

DESCRIPTION OF A SERVO LOOP CONTROLLER

2.1 Introduction

This chapter provides a general description of the operation of closed-loop
servo hydraulic control systems such as those used for structural testing in the
ATlSS laboratories. This chapter also presents some of the details of the Vickers
Xpert Del servo system, which is the particular system in wide use in the ATlSS
laboratories.

2.2 General Description of a Servo Loop:

A servo system is a feedback system in which the output or some function
of the output is fed back for comparison with the input and their difference (error)
is used to control a source of power1. In the ATLSS laboratories, such servo
systems are used to control the displacements or forces applied by the hydraulic
actuators used in structural tests.

Figure 2.1 is a schematic diagram of a generic control system for the
operation of a hydraulic actuator. The main components of this system include
the test computer, controller, actuator and feedback transducer. Briefly, the
operation of the system is as follows. The test computer issues a command to the
controller. The command is the desired force or displacement which is to be
implemented by the actuator. The controller also receives from the feedback
transducer. Also input to the controller is a feedback signal which is an indication
of the current force or displacement applied to the structure by the actuator. The
controller computes an error signal which is the difference between the command
and feedback signals. The error signal gives rise to a drive signal to the
servovalve. The servovalve is a mechanical device used to adjust the flow of oil in
to the actuator. The servovalve adjusts this flow of oil in response to the drive
signal, porting oil to the actuator in a manner that causes the error signal to
reduce to zero, thus implementing the commanded force or displacement.

One end of the hydraulic actuator is normally attached to the test structure,
and the other end reacts against the reaction wall, strong floor, or other similar
reaction point. The hydraulic actuators are usually operated in one of two modes:
load control or displacement control. In the case of .Ioad control, the command
signal is the desired force, and the feedback signal is the force currently applied
by the actuator. The feedback transducer in this case is a load cell. In

8

displacement control, the command. signal is the desired displacement, and the
feedback signal is the current displacement of the actuator, Le. how far the piston
is currently extended. The feedback transducer in this case is a displacement

transducer. This displacement transducer is often mounted internally in the body
of the actuator, but may also be external to the actuator. Other type of control are

also possible, such as acceleration control or strain control. Finally, the actuators
are operated in a closed loop mann~r, Le. the valve command is sent
automatically without intervention by the test operator.

Controller Valve
Drive

Commar d Signal

Test Signal ~ f) error

Computer
+

-
~

Feedback Servo
Transducer Valve

Actuator

Schematic DIagram of a Control System - Figure 2.1

2.3 The Vickers Del Servo System

The rest of this chapter is condensed from the Vickers Xpert DCl User's
Manual 2 and is included here for completeness. The Vickers Xpert DCl system is
a force and motion control system. It consists of a display board, a microboard
containing the software for bi-directional serial communication between the
computer and the Controller, a digital closed loop servo valve and a feedback
transducer. The servo valve consists of a polarized electrical servo motor and two
stages of hydraulic power applications - a pilot flapper/nozzle arrangement and a

9

power sliding spool arrangement (See Figure 2.2). The servo motor converts low
level electrical input signals fro,m an amplifier to a mechanical force and motion.
When the command signal is applied, the motor is activated and the servo valve
provides flow to the actuator proportional to the electrical current applied. The
direction of the flow is dependant on the polarity of the DC command signal. Flow
from the valve controls actuator movement. Actuator movement is measured by
the feedback transducer. The feedback signal from the transducer is compared
with the command signal, the difference amplified and a new electrical current
sent to the servo valve. The actuator will continue to move until the actuator
position approaches that called for by the command.

Controller:

The Vickers controller contains the power display drive board to control the
valve driver and the display lights and address switches, the microboard holding
the on-board software and the feedback transducer conditioner which converts
the signal from the feedback sensor to a digital signal for computer access.

Servo Motor:

The Vickers motor consists of two coils surrounding an armature. Lead
wires from the coils are connected to the power display drive board. A flexible
tube supports the armature and also acts as a fluid seal between the hydraulic
and electronic areas of the valve.

Pilot Stage:

Attached at the center of the servo motor armature is a flapper with a
nozzle on each side, that extends down inside the flexible tube. Flapper
movement between the nozzles creates pressure variations, which act on the
ends of the power stage spool. Attached to the flapper is a feedback spring which
engages into a hole at the center of the spool. When the spool moves, the
feedback spring senses the spool movement and a force proportional to this
movement is fed back to the flapper.

Power Stage:

Actual flow in the valve is controlled by a four-way spool that slides within
a sleeve. The porting system is arranged so that the spool movement in one
direction opens fluid supply to control port #1 and opens port #2 to return.
Movement in the opposite direction opens fluid supply to port #2 and opens port
#1 to return.

10

.. ;.,:.
• • w":' ...,J,I>

Pilo: S:a~e

Power DiS;:lay /"
Driver Beare

Micrc::care I

~~'j ~:;;:i{;~; I
j./,id _ ,. ":.-' ···~l I cr~t!e l"lc:or-.------ ~I~I A'~""" II

_. __
'__... 1:,,::, '"
~ t=i2.=.::er

::::;;::::;;;~;;;;:;;:;;;;-;;'~T3~~ ;';1 N~--'o I
~-----: j q& . :! "'R' il 2£ ~.,: ' ---. . i

t.! II I', c~~,;;i1· l~! ~oo"':'-ac< Wiro I

I
, t.-J U~~L;~ :::j .----. -:
I r- '" I ,,;;;::::-.~,-,- .-n~?"""""'.:

i r··

RIt" Co ~

.' In:erlace Seals

Feecback
Ccnnec:cr

Pc\"{erf
Communica:icn

Connec::r

Servo Valve Construction - Figure 1.3

11

Address Switches:

A given application can contain up to 16 of the above described DCl
Controllers on one serial port. To distinguish one from the other, each is assigned
an address. This is done by setting the address switches (1-4) on each individual

valve. Another setting to be made is that of the baud rate which is the speed with
which communication takes place between the valve and the computer. Switches
5 and 6 on each valve have to be set to the desired rate. For example, for a baud
rate of 38400 the setting is as shown below in Figure 2.3:

ON

OFF
••

*(Power Indicator Light-Green)

*(Communicating Indicator Light-Yellow)

1 2 3 4 5 6

Controller Switches-Figure 2.3

2.4 The Vickers Servo Valve Operation

1. An electrical input current is applied to the servo motor.

2. The coils in the motor magnetize the armature.

3. The armature moves clockwise or counterclockwise, depending on the

polarity of the current applied.

4 This causes the flapper to move between the nozzles creating a change in

fluid pressure at the ends of the power stage spool.

5. As a result of the pressure change, the spool moves away from the high

pressure end of the valve.

6. Depending on the direction of spool movement, the pressurized fluid will

then flow from either port.

7. As the spool moves, it causes the feedback spring to deflect. This creates

a force on the pilot stage flapper opposing the motion caused by the

armature.

12

8. When the force from the feedback spring equals the magnetic force of the

armature, the flapper returns to center between the nozzles.

9. The power stage spool stops moving and remains in that position until the

input current changes to a new level.

13

CHAPTER 3

GENERAL DESCRIPTION OF PROGRAM MODULES

3.1 Introduction

This chapter is intended to
give an overview of the software,
showing the relationships
between the program modules.
The modules are described in
order of appearance in the
system menus.

3.2 Program Structure

-
-

The software is a menu- Main Menu- Figure 3.1
driven collection of modules with
each module performing one aspect of the total controller communication task.
The three main modules are Initialization, Setup and Run. The Initialization and
Setup are constant, general routines which can be used without any changes to
establish communication with any controller. The Initialization module is executed
as soon as the program starts up and is not a user choice from the main menu
(see Figure 3.1). The Run program is intended to be a user test-control program
which can use the other two routines for controller communication while running
the test at a higher level. The Run program described here is a sample constant
amplitude fatigue test-control program.

The Initialization routine does exactly that - it establishes the
communication channel, resets the parallel I/O logic board (for more details see
Appendix B) and reads in the current values of the controller parameters. The
Setup module is similar to the TS&S Multi-scan program in that it is used to
facilitate the storage of controller parameters and to manipulate the controller
during setup. Data about the controller can also be saved from this module. The
Run module is a sample fatigue test control program with 16-channel configuring
capability. The controllers can be run as a group from this routine while still
maintaining individual starting/stopping capabilities.

14

3.3 Installation

To install the package on the hard drive of the host computer, first create a

new directory of any name. Copy the following files to the directory - note that all

the files must be in the same directory - do not attempt to divide the program files
among sub-directories.

The header files are:

1. Async.h

The data files are:

2. Run.h 3. Params.h

1. Chn11.lst

2. Chn12.lst

The object files are:

1. Menu.obj

2. Setup.obj

3. Chn21.lst 5. Pioasgn.wgd

4. Chn22.lst

3. Run.obj 5. Async.obj

4. Pio.obj

The graphics drivers are: (TURBO C files)

1. EGAVGA.BGI 2. EGA.BGI

The executable files are:

3. BGIOBJ.BGI

1. DCL.PRJ 2.DCL.EXE

3.4 Initialization And Start-up

To enter the system from DOS, type: DCl <ENTER>

The initialization routir.le is then activated which sets the following parameters as

ENTRY

Channels

PIO

DATA FILE

Params.h

Pioasgn.wgd

15

VALUE

0-16

BOI (parallel ports)

Parallel Interface Params.h

Serial Port Async.h

COOO (Hex address)

COM1

Serial Port Type

Baud Rate

Pioasgn.wgd I (input)

User config. (9600,19200,38400)

At present, these default values are stored in data files as listed above and
cannot be viewed by the user while in the program. The values can be changed
by editing these data files from DOS.

The main menu will then appear and the user can select the module to
execute from here. If the user choice is setup, control is transferred to the setup
module (controlling routine scr_setup - see Section 7.2) and if the user selects run
dc/s, the run module is stepped into (controlling routine run_dcl - see Section
8.2).

3.5 Setup

This is a User Interface program that provides the capability to
communicate with the controller. The main use of this routine is to setup and tune
a channel. It allows communication with only one channel at a time. This module
reads and displays all the controller user-configurable and status-only parameters
on two screens (toggle between screens using F4). The user is allowed to select
the channel to be displayed at the start of the routine (it is assumed that each
channel has been assigned with a controller address and the identification
switches have been set to the corresponding address). Channels beyond the
selected range will cause the routine to routine to quit and go back to the main
menu.

When a valid channel is selected, the screen will show all the values as
currently present in the controller for that channel. If the channel has been
previously backed up, a file will be present on the hard drive that can be used to
recall the data and send it to the controller. When first communicating with the
controller, to ensure no erroneous setup parameters are present, it is a good idea
to re-boot the controller.

All user configurable values can be edited by merely moving the field
indicator (using the 4 arrow keys-up, down, right & left), inserting the numeric

16

value or letter (for non-numerical parameters, the first letter of the desired option)
I

and confirming with the ENTER key. The new value is communicated to the
controller as soon as the value is set, that is, the controller will be immediately
affected by the changes that the user makes.

The setup screens also have Function key (F1-F1 0) definitions displayed at
the bottom of each screen. These are used to call initialization routines, recover
saved parameter values and other desirable activities.

Screen1 is associated with most of the numerical parameters of the
controller (See Figure 3.2). For example, the Proportional Gain may be modified
from Screen 1 to improve performance. If the channel is sluggish, one can
increase the P GAIN from this screen, if it is unstable, decrease P GAIN. Polarities
of the servo loop or the feedback signal can be reversed from here for proper loop
closure. Again, to change a value, the user must press the ENTER key after
entering the value and before moving onto another menu selection. Alt-F4 from
this screen will operate the PIO function. Screen1 toggles to screen2 when F4 is

pressed.

Screen2 displays controller limits and abort modes (see Figure 3.3). These
are three separate controller monitored limit conditions: the signals that can have
limits assigned are the feedback signal, the monitor signal and the control loop
error signal. These signals can have thresholds assigned (in the engineering
units of the signal being monitored) to set the boundaries for the feedback signal,
the monitor signal and the error window. The status of these limit boundaries is
also shown (SET if limit exceeded). The user can also assign PIO modules to a
limit here by entering a PIO function number in the appropriate column. The PIO
functions are used to control hydraulic power units, service manifolds or blocking
manifolds. If a PIO function entry is "0" the function will be ignored.

17

18

19

The following parameters are displayed on Screen1 :

STATUS ONLY:

Channel #:

Command:

Feedback:

Error:

Waveform Status:

Counter Now: -,

Fdbk In:

USER CONFIGURABLE:

Waveform Type:
(Non-numerical S/R/H)

Run Mode:
(Non-numerical R/AlZ/H)

Integrator Type:
(Non-numerical S/R/H/O)

(S}ines (On):

This is the current channel that is being addressed.

This is the current output of the internal signal
generator for the desired force or motion (The
controller does not receive the entire force/motion
command; rather it is sent small incremental steps
- this is the command).

This is the current output from the controlling
transducer (force/hlOtion- See parameter Fdbk In).
It is the actual load/position of the actuator.

This is the difference between command and
feedback.

This displays the status of the internal waveform
generator (either in process or complete).

This displays the current number of cycles (on
Sines).

Displays the active (controlling) feedback (1 or 2).

The controller has 3 options for its internal
waveform generator: (S)ine, (R)amp and
(H)aversine.

There are 4 options: Run, Abort, Zero (return) &
Hold.

This is the integrating function to the feedback
loop. There are 4 options:

This continuously sums the integrator term of the
loop into the loop output).

20

(R)amp (Threshold): This zeroes the integrator term in the loop output if
'error is greater than the integrator threshold.

(H)old:

(O)ff :

Set Point:
(numerical)

Amplitude:
(numerical)

Havertime:
(numerical)

Frequency:
(numerical)

Velocity:
(numerical)

Acceleration:
(numerical)

P Gain:
(numerical)

I Gain:
(numerical)

o Gain:
(numerical)

CPE:
(numerical)

Loop Freq:
(numerical)

Fdbk Freq:
(numerical)

Sends a constant value for the integrator to the loop
output.

No integral action - zero for the integrator term to

the loop.

This is the endpoint (Haver/Ramp) or the mean
value (Sine) of the waveform.

This is the desired amplitude for a Sine waveform.

For a Haversine, this is the desired length of time in
seconds; for a Sine it is the period.

This is the desired frequency of the Sine waveform
in Hz.

The desired velocity to set the ramp rate for a
Ramp.

The desired acceleration for a Ramp waveform.

The proportional loop gain.

The integral loop gain.

The derivative loop gain.

The feed-forward compensation to adjust the phase
shift between command and feedback at a given

frequency.

Desired loop output frequency (3db) in Hertz for the
output low-pass filter (zero-filter off).

Desired feedback cutoff frequency (3db) in Hertz
for the output low-pass filter (zero-filter off).

21

Hipass Gn: .
(numerical)

Return Time:
(numerical)

Lap:
(numerical)

SV Bias:
(numerical)

Max Flow:
(numerical)

Int Thresh:
(numerical)

Fdbk1 +/-:
(non-numerical +/-)

Fdbk2 +/-:
(non-numerical +/-)

Servo +/-:
(nonnumerical+/-)

Loop Status:
(non-numericaIO/C)

Desired feedback cutoff frequency (3db) in Hertz for
the output high-pass filter (zero-filter off).

Haversine 1ime for a profile return.

The servo valve lap compensation value.

The servo valve electrical null bias value.

The maximum allowable flow limit in percent (0-100)

The threshold value in controller counts of the
integrator function to the loop output.

Sets the polarity of feedback 1.

Sets the polarity of feedback 2.

Sets the servo valve polarity.

Set to open or close loop.

At the bottom of screen1 are the Function key assignments:

F1 : Exit from the screen - return to main menu.

F2: Recall previously saved backup of controller parameters.

F3: Save current setup to disk.

F4: Toggle to Screen 2.

F5: Boot controller- clear present parameter values and reset limits.

The following parameters are displayed on Screen2: (F4 to toggle between

22

screens1 & 2)

STATUS ONLY:

Command: Same as screen 1.

Feedback: Same as screen 1.

Error: Same as screen 1. Monitor: The non-controlling feedback value.

At the bottom of screen2 are the Function key assignments:

F1: Exit from screen 2 - return to main menu.

F2: Switch controlling feedbacks. Only works if the controller is not in process.

F4: Toggle to screen 1.

23

USER CONFIGURABLE:

Abort Modes:
(Non-numerical O/N/RlS)

Off:

Null Pace:

Return & Hold:

Center Servo:

Parallel 1/0:
(numerical 1-32)

There are 3 definable controller monitored limit
conditions for the user; the signals that can
have limit actions assigned are the feedback,
the monitor and the control loop error
signals. Four independent limit actions can be
set for each of these.3

Limits are checked and fault displayed but not
acted on.

The internal command generator is turned off
while the fault exists. Thus the command value
at the time of the fault is held until the feedback
falls back within set limits. It then resumes
command sequence unlike the other abort
modes. (useful when running Sines between
defined limits. Not available with monitor/non
controlling feedback).

When a fault is detected, the controller
generates a haversine to the previous setpoint
with a havertime equal to the Return time (on
screen 1).

When a fault is detected, the controller
immediately centers the servo valve. The servo
valve mechanical null should be adjusted so
that the actuator does not drift. (Not available
with monitor/non-controlling feedback).

PIO can be defined for each of the three signals
(feedback, monitor and error) .These are used
to allow the controller to operate the parallel
functions when a limit threshold has been
exceeded. (see Appendix B for PIO definitions).
The PIO functions can be used to control
hydraulic power units, service manifolds, panel

24

lights, etc. It this entry is less than or equal to
zero or greater than 32, it will be ignored.

Thresholds:
(numerical) The feedback and monitor inputs each have ·Iimit

threshold window defined by a Hi and Lo value.
Abort action is taken if the signal strays outside
this window. The error signal only has an
absolute threshold (or a Hi value), the crossing of
which leads to an abort action specified in the
abort mode.

Threshold Status:
(Non-numerical SIR) Indicates the state of the corresponding threshold

for the 3 signals- can be manually SET and
RESET. These are automatically updated to
reflect the true state of each of the five limits.

3.6 Run

-

A constant-amplitude

The purpose of this routine is to demonstrate the method in which user
test-specific programs will link with the general controller setup and initialization
routines and be able to call the screens and routines of the former from within the
test program. It is also a valid fatigue test control program. The basic idea was to
free the user from the low-level II
o and communication protocols
(which are repetitive for every
test) by providing easy-to-use
commands and means for
accessing all parameters. This
allows the user to spend time on
designing the test sequence
instead of having to write the code
to communicate with the
controllers. The communication
mechanism is thus subordinate
to the test (Run) program. This
module is a constant-amplitude
fatigue test control program.

25
Run Menu- Figure 3.4

fatigue test involves running 1 or more actuators as a group in continuous
.sinewave mode with either force or displacement as the controlling feedback. The

number of sine waves performed by each actuator (counts) have to be constantly
monitored and it is desirable to be able to start and stop each actuator individually
without affecting the others in the group. The routine first pops up a menu (see
Figure 3.4) with four choices: Setup, Specify, Run andExit. The following is a
brief description of each.

Setup Individual DCLS:

This allows access to individual channels (setup screen1)

Specify Active DCLS:

This pops another menu shown in Figure 3.5, which allows the user to configure
controllers for groups. Up to 16channels can be specified as (A)CTIVE or (O)FF.

The function key defined is:

F1: Exit to the main RUN menu.

Run DCLS:
Starts the test. This displays another screen with the following information for
each active channel: (See Figure 3.6)

Channel #:

Count:

Limit Modes:

PIO:

Number of the active channel.

Total number of sines sent to the controller-constantly

updated.

Abort modes for feedback, monitor and error (setup

screen 2)

The PIO function for the 3 signals (setup screen 2).

The function keys defined are:

F1: Exit to the main RUN menu.

Counts will be backed up in a file CQUNT.!FTon the hard drive.

26

/

F2: Modify counts (only if controllers are not running).

F3: Start/Stop the test-all actuators.

Exit: Return to the main menu.

27

I\)
co

l.. ,-to
:.:':.

Run ~creenl

:.1.

Figure

."< i

29

29

CHAPTER 4

PARALLEL INPUT-OUTPUT

4.1 Introduction

This chapter describes in detail, the Parallel I/O option that allows the user
to control external hardware such as panel switches, service manifolds, etc.
through computer control of parallel I/O. This feature is most useful in case of an
error being tripped as it allows the user to automatically shut down hydraulic
pressure, display warning lights, etc. in the event of a fault.

4.2 The Burr-Brown PIO Board

A Burr-Brown Parallel Logic board is used to interface between the
external devices and the computer. The I/O board contains up to 16 I/O modules
each of which can be divided into two ports with 8 points each. There are four
types of these modules: DC input, DC output, AC input and AC output. The
software can operate 2 Burr-Brown boards for a total of 32 external points. Each
port of 8 modules can be specified as input or output by the user. Once the port is
defined as input or output,the I/O modules must be chosen to match the
configuration. The Parallel Input/Output configuration table has the following
fields:

FUNC#NAME INIT VAL. PORT INIOUT BIT MASK

1 tI " 0 0 OUT *
2 " " 0 0 OUT *.
3 "PRESS" 0 0 OUT *..
and so on up to 32.

FUNC#: This is the numerical designation used by the PIO commands to
represent different sets of 1/0 points. One or more I/O points maybe controlled
using a single function number.

NAME: This is the user-defined label for the given function number.

INIT VAL: This is a decimal number between 0 and 255 which is the initial state
for a given function (to be set at start-up). It is converted to a binary form and sent
to the port.

30

PORT: This a number between 0 and 3 identifying the port which the function
point belongs to. Each I/O module or point is one bit of an 8-bit PIO control word
sent through the given port.

IN/OUT: This defines the port direction (read/write) according to the initial system
configuration (PIO configuration = BOI means B=Burr-Brown, 0 = port "0" as
output, I = port "1" as input. A maximum of 4 letters can follow the B Le. 4 output

ports can be defined). When a user selects a port # for a particular function, tt:1is
automatically switches to the type of port defined in the initial configuration.

BIT MASK: This determines which I/O modules are affected by the function value

when it is sent to a given port. An asterisk H indicates that a module is
addressable and a period (.) indicates that it is not. When more than one asterisks
are used, (Le. > 1 modules), the (*) must be in consecutive bit positions. The
maximum value that has meaning for a function is determined by the number of
asterisks in the bit mask of a function:

MAX VAL = (2#Of asterisks) - 1

e.g. Bit Mask =••***.•. indicates that the third, fourth and fifth outputs of that PIO
port are addressable by the function.

MAX VAl = 23 -1 = 7 = 111 in binary.

If the value =5 =101 is sent to the PIO port, I/O points 3 and 5 will turn on, 4 will
be off.

If value> 7 all outputs of that port will turn on.

The information shown above is stored in a file PIOASGN.WGD for the PIO
initialization routine. (At present, to change any of these values, one must
externally edit the file.ln the future, this will be a menu selection from within the
program). The control actions defined will occur when a particular PIO function is
activated during execution of a motion control waveform. In the above example,
Bit zero of output port "0" will be addressed by function 1. When this function is
called from a motion control waveform the module will close its contact.

31

CHAPTERS

PROGRAMMING GUIDE

5.1 Introduction

The next four chapters describe in detail, each module and the lower level
routines it calls. The description format is top-down, starting with the main module
and going down to the component routines and the functions they call.

At every level, a functional description of the routine is given, along with the
names of the higher level routines that use it, as well as a listing of the routines
one level down that it calls. The global data structures that each routine affects or
uses are also individually mentioned along with the header files included at the
time of compilation. Pertinent local variables that are useful in understanding the
purpose behind the routine are also described. Finally, the files opened (for
reading or writing) by the routine are mentioned.

5.2 Program Organization

The routines are grouped under four headings on the basis of their
function. The groups are: Initialization, Setup, Run and Graphical. The first three
are the program modules already described in Chapter 3. The fourth contains
routines which initialize for graphics, draw menus, print numbers or strings at
specific screen locations, change background color and in other ways affect and
control the displaying of information in all the user interface screens and menus.

At start-up, the first routines executed are the initialization routines async
initO and piojnitO. Then the main menu pops up and the setup or the run
routines are entered into depending on the user selection. If the user choice is
setup, the control is transferred to routine scr_setupO. If the choice is run, routine
run_dclO is executed.

5.3 Program Files

The files which hold these routines are async.c (for all communication
routines) , setup.c (for all the setup module routines), run.c (all the run module
routines) and menu.c (graphical routines - also holds mainO - the main menu).

32

Header files include async.h (communication default values), params.h
(controller parameters) and run.h (data structures associated with run_dclO like

ACTIVE_CHN). In addition, C library header files like stdio.h, stdlib.h, graphics.h,

string.h, etc. are included in the appropriate files. These contain useful C library
functions (e.g. printf, file open, etc.) and constants (NULL, EOF, etc.) which can

be used in the program without redefinition.

5.4 Linking User Test-Control (Run) Programs

One of the objectives of this endeavor was to allow the user freedom of

control over the test programs while being able to benefit from the canned
communication routines in the package. Because of the modularized structure of

the software, the user can incorporate just the required modules in his/her test

specific control program, thus saving memory and improving speed of execution.

Listed below are a few examples of how the modules can be called within a user
program written in TURBO C - Note the TURBO C compiler must be available to
link all the modules. .

5.4.1 Linking the setup module with the user program

To be able to access the setup screens 1 & 2 from the user program, the
user code must have the lines:

mainO {

1* user variables definition - integer, real etc. */

}

NOTE: When the program steps into scr_setupO, there will be no updating /
checking of user-defined variables and screens until the Function key F1 is

pressed to exit from the routine. Standard parameter and pio functions checking

33

will be done by scr_setup itself from setup screen 1 & 2.

The following files must be linked with the user routine at compile-time:

Menu.c Setup.c Async.c Pio.c

To do this internally from the TURBO C editor:

1. create a project file of any name and list in it, the above file names along
with the name of the user program file. (one on each line).

2. Then choose Project File from the Options menu of the TURBO C editor

and enter the name of the created project file in the space provided.

3. Choose Compile/Run from the Run menu and an executable file with the

same name as the project file but with the extension .EXE will be created.

To compile from outside the editor enter the following lines at the DOS prompt:
'---

tcc -eexecutable filename menu.c setup.c async.c pio.c user filename .c

tcc -mx menu.obj setup.obj async.obj pio.obj user filename.obj

The -mx option on the second line refers to the memory model size (room the
program occupies when executing) where x can be one of t, s, m, I ,h (tiny, small,

medium, large or huge - generally medium is the size chosen when the program

contains graphics).

5.4.2 Linking individual routines with the user program

The user code must have the lines:

mainO {

1* user variables definition - integer, real etc. */

name of routine (e.g. read-parameter)

.......}

34

The files containing the routine and the lower-level routine it calls must be
linked with the user routine at compile-time in the same fashion as described
above. For a graphical representation of the program routines and their hierarchy,
refer to Figures 6.1, 7.1 ,8.1 and 9.1.

35

Chapter 6

INITIALIZATION

6.1 Introduction

The initialization module is described in this chapter. Figure 6.1 shows the
structure of this module.These are the routines executed during start-up. Two
separate entities need to be initialized - the serial communication port (8250
UART chip-Appendix A) and the parallel input/output board (8urr-Brown PIO
board- Appendix 8).

6.2 Communication Port Initialization

The Universal Asynchronous RecieverfTransmitter model 8250 is the serial
device which supports up to 16 controllers and located at one of four possible I/O
addresses (COM1-4). The serial port allows the CPU to communicate with
peripheral devices that recognize serial data signals. Data transmission is
interfaced through a 9-pin connector and controlled by an Intel 8250 or equivalent
programmable asynchronous communications controller. When serial data is
transmitted to a peripheral device, the controller converts the data stream into an
8-bit byte and stores it into a temp register until the CPU executes a read
operation. When the CPU writes to the peripherals device, the controller converts
the data byte into a serial format in preparation for transmission.

At start-up, the communications port and the 8250 UART chip have to be
setup for asynchronous serial receive/transmission. For this, a set of control
words pertaining to baud rate, parity, word length and the number of stop bits
must be output to the line control register of the UART chip. The modem control
register must be set for no modem control and the interrupt enable register for no
interrupts. Also, data interrupts must be enabled and the port reset. The higher
level routine that does this is asyncjnitO.

6.2.1 async_initQ

This routine sends all the relevant control words to configure COM1 or
COM2 for communication at the user-specified baud rate
(89600,819200,838400), parity (even, odd, mark, space, none), word length This

36

CON.nvruNICATIONS
INITIAUZATION

PARALLEL I / 0
INTIAUZATION

ASYNC
MODEO

ASYNC
CLEAR
ERRORS0

Initialization Module-Figure 6.1

37

(constants WpRD8, WORD7,WORD6,WORDS), and the number of stop bits
(STOP1, STOP2).

The default configuration is: (see 6.2.2 for other options)

Port COM1 (Ox03F8)

Baud rate 9600 (OxOOC)

Parity None(n) (OxOO)

Wordlength Word8 (3)

Stop bits 1 (0)

Header file: Async.h.

Data file: None.

Global Var: None.

Local Var: Structure PROTOCOLSTRUCT protocol {

Protocol is an example of protocolstruct with the following data fields:

integer portnum (1 or 2 whether COM1 or COM2)

unsigned integer baud (9600,19200 or 38400)

character parity (E,O,M,N,S)

integer wordsize (WORD8, WORD?, WORD6 or WORDS)

integer stopbits (1 or 2)}

Called by: mainO

6.2.2 async_mode()

This converts the user-specified mode values into the corresponding binary
control words and sends them to the UART chip. The routine first breaks up the

38

defined baud rate into a low and high byte and outputs them individually at the·

UART base address (3F8). It then ORs (binary addition) the parity, word length

and stop bits into a mode value and sends it to the line control register (LCR) of

the UART chip. The default addresses on the UART as defined in async.h (6.2.4)

are:

BAUDLO =Address lower byte of baud sent to =UART_ base =Ox03F8(COM1)

BAUDHI =Address higher byte of baud sent to =UART_base + 1

Line Control Register = LCR = UART_base + 3

Modem Control Register = MCR = UART_base + 4

Modem Status Register =MSR =UART_base + 6

Header file: Async.h.

Data file: None.

Global Var: None.

Local Var: Structure PROTOCOLSTRUCT protocol (see asyncjnit())

Called by: Async_initO.

Calls: None.

The Mode Byte Breakdown is:4

BIT DESCRIPTION

7 6 5 U ~ L.Q

Baud Rate Parity Stop bits Word Length.

000-110 00- None o-One o0 - Don't care.

001 - 150 o1 - Odd 1 - Two o1 - Don't care.

o1 0 - 300 1 0 - Don't care 1 0 - Seven bits.

39

L-

01 1 - 600

1 00- 1200

1 0 1 - 2400

1 1 0 - 4800

1 1 1 - 9600

1 1 - Even 1 1 - Eight bits.

The above information is sent as the higher order byte of the mode word.
For a baud rate greater than 9600, the lower byte is significant - (19200 - control
word = Ox006; 38400-control word=Ox003).

This enables the programmable interrupt controller (PIC), resets all errors
and sets the Data Ready line (DSR) in the UART. To do this, it first disables
interrupts, reads the line status register (LSR) to reset errors and then enables the
data ready interrupt. It then sends a request to read interrupt throughout the
interrupt enable register (IER) and sets the request to send (RTS) line by reading
and writing to the modem control register (MCR). At exit, it enables all normal
interrupts (like keyboard interrupts) again.

Line Status Register = LSR = UART_base + 5

Interrupt Enable Register = IER = UART_base + 1

Modem Status Register = MSR = UART_base + 6

Header file: Async.h.

Data file: None.

Global Var: None.

Local Var: None.

Called by: AsyncJnitO.

Calls: Built-in C functions- disableO and enableO for software interrupts.

40

6.2.4 async.h

This is the header file containing the values of all the default addresses

used in the communication initialization routines. It is included with all the modules
at compile-time. Constants for configuring the communications mode like WORD8
(word length), PARNONE (parity), STOP1 (stop bits) and B9600 (baud rate) are
defined here. The base addresses of the UART and its registers are also stored
her~. Functions to read the communications port, the UART registers and port
errors are also written in this file.

Header file: C library header files like stdio.h, bios.h, stdlib.h

Data file:

Used by:

Calls:

None.

AsyncjnitO, Scr_setupO, Run_dclO (the main module routines).

Built-in C functions, outportO, inportO for reading the comm. port.

6.3 Parallel I/O Initialization

The parallel I/O is a Burr-Brown PCI-20001 C located at the user-specified
memory address (CDOOO, COOOO or 00000). The following routines configure and
enable the PIa board ports with the appropriate direction controls and define the
pins to which external devices are connected. The existing port status is also
cleared and the board reset.

6.3.1 pio_initO

This routine executes the following sequence to initialize the PIa board
according to the configuration specified in the file PIOASGN. WGD. This file holds
the user's choices for the Parallel function. The file is opened and the PIO ports,
the set functions (devices attached), their initial values and direction (input/output)
are read into an array of structure PARALLEL_IO, PI0[32]. The ports directions
are then output to the appropriate control register-83H for ports 1 & 2 and C3H for

41

ports 3 & 4. (O=output, 1=input). The next step is to enable the direction of each
port buffer by writing to the enable register, 82H. Finally, all PIO channels are
cleared by writing the set initial values to the four output data registers. Digital

data can be output through the appropriate I/O register (80H, 81 H, COH, C1 H) - to
send a HIGH the corresponding bit in the output byte must be set to 1; to send a
LOW set to O. Data can also be read from the above I/O registers. (see Appendix

B for details).

Header file: Async.h.

Data file: PIOASGN.WGD.

Global Var: Arrays of Structure PIO[32]

PlOD - array of structure PARALLEL_IO and holds the user PIO
specifications.

Structure PARALLEL_IO (and each index of PlOD) has the data fields:

integer fn; (PIO function number 1-32)

integer init; (initial value of PIO function 0-1)

integer port; (function port number 1-4)

integer posn; (bit number 0-7 of port assigned to the function)

integer bits; (number of port bits addressable by function)

char star; (layout of function bits assignment

* = addressable; • = not addressable)

Local Var: baseadd, offset.

baseadd

offset

assigned memory location of Burr-Brown board

memory location of ports relative to baseadd -128/190.

Calls: pio_readO, pio_writeO, peekO and pokeO for initializing the PIO

board.

42

6.3.2 pio_read()

This routine reads the channel value in the I/O registers at addresses 80H,

81 H, COH & C1 H, one byte at a time. To check the value for a corresponding

channel its bit position in the byte must be isolated - if the bit is 0, the input is

LOW; if 1, the signal is HIGH.

Header file: Async.h.

Data file: PIOASGN.WGD.

Global Var: Arrays of Structure PlOD.

Local Var: baseadd, pinno, offset, port_val.

baseadd

offset

pinno

see 4.2.1

see 4.2.1.

channel to be read.

byte read in from the port

Called by: piojnitO, scr_setupO, limits, check_chn_faultsO.

Calls: peekO and pokeO for initializing the PIO board.

6.3.3 pia_writeO

This routine writes to the corresponding channel in the I/O registers at
addresses 80H, 81 H, COH & C1 H, one byte at a time. To output a HIGH level for a

corresponding channel its bit position in the byte must be set to 1; for a LOW to O.

The byte is then output from the corresponding port.

Header file: Async.h.

Data file: PIOASGN.WGD.

43

Called by:

Calls:

Global Var: Arrays of Structure PlOD.

Local Var: baseadd, pinno, offset, port_val.

baseadd see 4.2.1

offset see 4.2.1.

pinno channel to be read.

port_val byte read in from the port

piojnitO, scr_setupO, limits, check_chn_faultsO.

peekO and pokeO for initializing the Pia board.

44

CHAPTER 7

SETUP

7.1 Introduction

This chapter describes the routines which interface between the controller
parameters and the user display. (Screens 1 & 2). The main controlling routine is
secsetupO (see Figure 7.1). It reads and writes the controller parameters,
converts between engineering units and controller counts and displays the
information onto the screens for the user's benefit. It continuously updates the
values of the status only parameters and calls different routines based on the
sequence of keys pressed by the user. It is essentially a huge case statement
which branches on the key pressed; for example: when function key F5 is
pressed, the dcLboot routine is executed. The information about the parameters
is stored in the header file params.h. Appendix B has a listing of all the
parameters and other information about them.

It first draws the valid screen, then reads each parameter value from the
controller, converts it to engineering units, and fills it in the appropriate position on
the screen. It calls readyarameter() and writeyarameter() to communicate
with the controller. While in screen1, the user is permitted to browse through these
values using the four arrow keys (up, down, right & left) and can directly modify
and send the desired value to the controller from the screen. The numerical
values are converted from engineering units to controller counts and written to the
correct controller register, while t he non-numerical parameters (e.g. waveform
type-Sine, Haver, Ramp) are taken and the corresponding control word generated
and conveyed to the controller register (e.g For Sines, the control word is 192) by
calling chkyarameter _type(). Note that data is sent or read from the controller in
blocks of 5 bytes by the routine blocksO

Function key assignments:

F1: return.

F3: Save current setup to disk.

45

CHK
PARAMETER

TYPEO

Setup Module-Figure 7.1

46

WRITE

EQNO

F4: Toggle to Screen 2, IimitsO.

F5: dcLbootO.

Header file: Async.h, Params.h, Run.h.

Data file: CHN(chn#)(fdbk#).IST for saved setup (read/write).

e.g. Setup file for chn=1 with controlling feedback = fdbk1 is CHN11.!ST

Global var:-Arrays of Structures PARAMETERS[32], ACTlVE_CHN[16], b[5].

PARAMETERSD - array of structure param and holds all the controller
parameters.

Structure param (and each index of PARAMETERSm has the data fields:

integer reg; (register # of controller parameter)

float scale; (scaling factor for units-counts conversion)

int no_bytes; (maximum size of parameter value

int bit;

int eqtyp;

int xpos;

int ypos;

(masking bit)

(conversion equation #)

(row position on screen1)

(column position on screen 1)

char name; (name of parameter)

double val; (last read value)

ACTIVE_CHND defined in Run module.

47

bD array of five bytes to cqmmunicate a single parameter to the controller.

b[1] 240 + channel# (e.g for chnl1 =241)

b[2] reg (for write, parameter register# e.g. for waveform = 150)

(for read = 155 always)

b[3]) Data MSB for write / reg# for read.

b[4] Data LSB for write/ "0" for read

b[5] checksum.

To read chnl 1 waveform: bD = {241 , 155, 150, 0, checksum}

To write chnl 1 Sine wave: bD ={241, 150, 192, 0, checksum}

Local Var: Chnl, Keyb, Curr, Prev, Waveform.

Chnl current channel being addressed

Keyb last key pressed

Curr current cursor (at parameter value) position

Prev last cursor position

Waveform last written waveform and mode type.

Called by: mainO.

Calls: chk-J)arameter_typeO, dcLbootO, read_saved_setupO,
read-J)arameterO, write-J)arameterO, blocksO, check_chn_faults, pio_writeO,
pio_readO·

7.2.1 chk.-parameter_type()

This is called every time a parameter is read from or written to the
controller. This routine takes each parameter value, prints it in the set position on
the screen if it s numerical or, if non-numerical, converts the control word into a
string understandable to the user.

48

For example, if the setpoint value is to be printed, whatever is held in
PARAMETERS[6].val will be printed as a floating point number. To print the
waveform type, however, the value in PARAMETERS[3].val is taken and a lookup
is done to match it to the correct mode (e.g. sines = 192) and the matched string
is printed (in this case, "Sines" is printed in the screen position).

Header file: Async.h, Params.h, Run.h.

Data file: None.

Global Var: Array of structures PARAMETERS[32] (see 7.2 for details).

Local Var: chnl, par_no.

chnl

Called by: scr_setupO

current channel being addressed.

index for the array PARAMETERSD

Calls: read-parameterO.

7.2.2 dcLbQOtO

This is called when function key F5 is pressed when in screen1 of the
Setup module. It causes the controller parameters to be reset and all limit
thresholds to be cleared. It puts the controller in Hold, so that the reset
parameters sent to the controller are not acted upon. This is useful when tuning
the controller in the beginning or when restarting from a fault.

Header file: Async.h.

Data file: None.

Global Var: None

Local Var: chn, b[5].

chn current channel being addressed.

bD (see 7.2. for details)

49

Called by: scr_setup()

Calls: blocks().

This is called when function key F2 is pressed when in screen1 of the

Setup module. It is used to transfer previously backed up data (a particular saved

configuration) to the controller. It first checks if the controller parameter values

have indeed been saved previously for that channel. If so, it opens the file

CHN(chn#){fdbk#).IST, reads each parameter value into the array PARAMETERSD

and writes it out to the controller by calling writeJJarameter(). It then calls

chkyarameter:.-type() to update the values on the screen.

Header file: Async.h, Params.h, Run.h

Data file: CHN(chn#){fdbk#).IST (see 7.2 for file naming details)

Global Var: PARAMETERSD

, Local Var: chn, b[5].

chn current channel being addressed.

bD (see 7.2. for details)

Called by:. scr_setup()

Calls: write..J)arameterO, chk..J)arameter_typeO.

7.2.4 read-'parameter()

This is called every time a parameter value has to be read from the
controller. Each parameter value is stored in an addressable register in the
controller and make take anywhere from one to four bytes of memory. (in the
register). When, read, the value is in controller counts and has to be converted to

50

meaningful engineering units using one of six conversion equations (depending
on the type of parameter being read). This is done by calling the routine
read_eqnO. The converted value is stored at the appropriate index in the array
PARAMETERSD as a double precision floating point number.

Header file: Params.h, Run.h.

Data file: None.

Global Var: None.]

Local Var: chn, b[5], structure PARS.

chn current channel being addressed.

bD (see 7.2. for details).

PARS is an example of structure param (see 7.2 for definition of param).

Called by: scr_setupO, IimitsO, chk-parameter_typeO, switch_fdbksO,
run_dcIO, check_chn_faultsO.

Calls: read_eqnO, blocksO.

7.2.5 read_eqn()

This is called by read-parameterO to convert between controller counts
and engineering units. Each parameter uses one of six conversion equations and
its individual scaling factor along with a preset slope and offset value (fixed when
tuning the channel) to do this (see appendix b for a listing of all the parameters,
their scaling factors, equation types, etc.).

The six conversion equations are:

1. V# = U#*scale

2. V# = scale/U#

3. V#= U#

4. V# = (U#*scale - offset) * slope

51

5. V# = U# * slope.

6. V# = U# * scale * slope

offset =offset from zero when tuned.

scale =scaling factor for that parameter.

where V# =engineering units

U# =controller counts

slope =slope of tuned signal.

/\

I
V#

Slope

} offset

U#-->
Tuned Signal - Figure 7.2

Header file: Params.h.

Data file: None.

Global Var: . offset, slope (defined in params.h)]

Local Var: eqn_id, seal, u.

eqnjd

seal

u

the no. of conversion equation used by that parameter.

scaling factor of that parameter.

counts read from the controller.

Called by: readJ>arameter.

Calls: None.

7.2.6 writejlarameter()

This is called every time a parameter value needs to be written to the
controller. Each value has to be first converted from engineering units to controller
counts using write_eqnO and sent as bytes of data. If the counts occupy more
than n2 bytes two registers (consecutive numbering) need to be addressed with
low and high words (1 word = 2 bytes). The data bytes aresent a pair at a time

using blocksO.

52

Header file: Params.h, Run.h.

Data file: None.

Global Var: None.]

Local Var: chn, b[5], structure PARS.

chn current channel being addressed.

bD (see 7.2. for details).

PARS is an example of structure param (see 7.2 for definition of param).

Called by: scr_setupO, IimitsO, chk-J)arameter_typeO, switch_fdbksO,

run_dcIO, check_chn_faultsO.

Calls: write_eqnO, blocksO.

7.2.7 write_equationO

Called by write-parameter to convert user entered value from engineering
units to controller counts using one of the six conversion equations (see 7.2.6 for

equations)

Header file: Params.h.

Data file: None.

Global Var: offset, slope (defined in params.h)]

Local Var: eqnjd, scal, v.

eqnjd

scal

v

the no. of conversion equation used by that parameter.

scaling factor of that parameter.

user input value in engineering. units.

Called by: read-J)arameter.

Calls: None.

53

7.2.8 blocksO

This is the" routine which performs the actual read/write to the controller. It

takes five bytes of data at a time and writes it to the output port. The five bytes
are:

READING WRITING

BYTE 1 240+channel# 240+channel#

BYTE 2 155 Paramo register#

BYTE 3 Paramo register# Most Significant Data Byte (Upper)

BYTE 4 0 Least Significant Data Byte (Lower)

BYTE 5 checksum checksum (of the first 4 bytes)

For every block of data written to the controller, except for the warm boot

del command*, the controller sends back a confirming block; if the checksum of

this confirming block is NOT equal to the checksum (BYTE 5) of the written data

block, there is a malfunction in the communication channel (usually the program is

writing out data faster than the controller can receive it). In such a case, re

initialize the communication port by restarting the program and if the problem still

persists, check the UART in the outport port. For writing a parameter value, only

the checksum verification is important; for reading, the parameter value is stored

in BYTES 3 and 4 of the confirming block and is interpreted by readJ)arameterO

Header file: Async.h.

Data file: None.

Global Var: None.]

Local Var: b[5], IN[5].

bD (see 7.2. for details).

INO array of five bytes to returned by the controller.

b[1] 128+ channel# (e.g for chnl1 = 129).

54

b[2] parameter register#.

b[3]) Data MSB.

b[4] Data LSB.

b[5] checksum.

Called by: scr_setupO, IimitsO, chk.J)arameter_typeO, switch_fdbksO,
run_dclO, check_chn_faultsO, read-parameterO, write.J)arameterO.

Calls: None.

7.3 LimitsO

This routine is responsible for drawing and controlling screen 2 of the
Setup module. It is called from scr....setupO when function key F4 is pressed and
ends when the same key is pressed in screen 2 (scr_setupO is called at exit). The
three monitored signals, the feedback, monitor and error, along with their current
limit modes, pio functions, status and thresholds are displayed on this screen (2).
The present values of the three are constantly updated and browsing through the
limit modes, pio functions, status and thresholds is permitted using the UP and
DOWN arrow keys. As in scr_setupO, different specialized routines are called up
based on the keys pressed by the user. Again, numerical parameters (pio, hi and
10 thresholds) can be modified directly from the screen while non-numerical (abort
modes, threshold status) can be set by pressing the first letter of the desired
configuration. (see 3.5 for the choices).

Function key assignments:

F1: return.

F2: Switch_fdbksO

F4: Toggle to Screen 1, scr_setupO.

Header file: Async.h, Params.h, Run.h.

Data file: None.

55

Global Var: Arrays of Structures PARAMETERS[32], Fbk[3].fbkval[6],

MONITOR, b[5].

PARAMETERSD - See 7.2 for details.

FbkD is an array of structure Feedback which contains an array fbkval[6] with six
examples of structure param (see 7.2 for definition) as data fields:

fbkval[1] struct param mode; (abort mode parameter)

fbkval[2] struct param pio; (pio parameter)

fbkval[3] struct param hi; (threshold high limit parameter)

fbkval[4] struct param 10; (threshold low limit parameter)

fbkval[5] struct param hLstat; (threshold high limit status parameter)

fbkval[6] struct param lo_stat; (threshold low limit status parameter)

The above fields are defined for each of the 3 signals-feedback, monitor &
error. To reference a field (e.g. value) from anyone of the above, the naming
convention is:

fbk[control signal# 0-2].fbkval[param# O-S]->value.

MONITOR is an example of struct paramo It holds information about the non
controlling feedback (See 7.2 for details on struct param).

bD - See 7.2 for details.

Local Var: Chnl, Keyb, Curr, Prevo

Chnl current channel being addressed

Keyb last key pressed

Curr current cursor (at parameter value) position

Prev last cursor position

56

Called by: scr_setupO.

Calls: chk_fbkJimitsO, switch_fdbksO, readJ>arameterO, blocksO,
writeJ>arameterO, pio_writeO, pio_readO.

This is called from screen 2 every time a parameter pertaining to a
feedback or error signal is read from or written to the controller. It is identical in
function to chkJ>arameter_typeO in screen 1.This routine takes each parameter
value, prints it in the set position on the screen if it s numerical or, if non
numerical, converts the control word into a string understandable to the user.

For example, if the threshold value of the error signal is to be printed,
whatever is held in fbk[2].fbkval[2]->value will be printed as a floating point
number. To print the current abort mode of the error signal, however, the value in
fbk[2].fbkval[O]->value is taken and a lookup is done to match it to the correct
mode (e.g. Return & Hold =4) and the matched string is printed (in this case,
"Rtrn & Hold" is printed in the screen position for abort modes). If a fault occurs on
a particular signal, this routine conveys that information to the user by typing
"FAULT" at the top of the screen and also writing out to the pio if a pio function has
been set for that signal.

Header file: Async.h, Params.h, Run.h.

Data file: None.

Global Var: fbkO.fbkvaIO. (see 7.2 for details).

Local Var: posn.

posn index for the array fbkO.fbkvaIO.

Called by: IimitsO.

Calls: pio_writeO.

57

7.3.2 sWitch_fdbksO

This is called from screen 2 when function key F2 is pressed. This allows
the user to switch controlling feedbacks from force to motion control and vice
versa. The routine first checks if the controller is in process (Le. executing a
waveform) by checking the status parameter (PARAMETERS[3])- if running, it
alerts the user with a beep and does not allow switching. If the controller status is
complete, the following sequence is executed. All abort modes are turned off. The
controller is set in DIRECT waveform mode. The bias value
(PARAMETERS[25])and the average servo out value (controller register# 204)are
read and

their difference (servo out - bias) is sent out to the open loop (controller register #
:::: 155) so that the controller does not go full stroke when feedbacks are switched.
The loop is then opened (no feedback) and the feedbacks switched. The loop is
closed and a backup file is then opened which contains the default parameter
values for the new feedback using read_saved_setupO. The parameters are read
from the file and written to the controller. The routine the n exits to screen 1. Note
that abort modes and thresholds have been reset at this point.

Header file: Async.h, Params.h, Run.h.

Data file: CHN(chn#)(fdbk#).IST (see 7.2 for file naming details)

Global Var: fbkD.fbkvalD, PARAMETERSD. (see 7.2 for details).

local Var: chn, b[5],.

chn current channel being addressed.

bD (see 7.2. for details).

Called by: limitsO.

Calls: readJ>arameterO,writeJ>arameterO, blocksO, read_saved_setupO.

58

CHAPTERS

RUN

8.1 Introduction

This chapter describes the routines which are used for the constant amplitude

fatigue test. The main controlling routine is run_dclO (see Figure 8.1).

This routine starts up with a menu outlining four tasks for the test:

Run

Specify

Setup

Exit

(running the controllers as a group)

(set which of the channels from 1 to 16 are to be used)

(setup individual channel parameters - scr_setup())

(go to main menu).

Based on the user's selection, the program goes into different run screens.

Specify pops up run screen 1 with t he list of valid channels and their run status

(active or off). Setup calls scr_setup and screen 1 of the current channel is
displayed. Exit draws the main menu. Run brings up the fatigue test screen (run

screen 2). It is an information screen with the active channels, their current count

values, pio functions and preset abort modes.

Run Screen 1: This is used to decide which actuators will be controlled by the

test. up to 16 actuators can be active. The user specifies whether a given channel
is active (A) or off (0) by pressing the appropriate key. As with all menus, the

ENTER key is to be pressed to confirm the selection. If a channel is set as
ACTIVE, it is added to the end of a linked list, ACTIVE_CHND along with other

useful information about it. Browsing is permitted in the up or down direction using
the arrow keys of the same name.

Run Screen 2: This is the main display screen for the test. The current active

channels, their current counts, pio functions and abort modes are displayed. If the

test is running, the counts are recovered from a backup file, COUNT.IFT, and the
current cycles added on to this read value. The function key assignments are:

59

Run Module-Figure 8.1

60

'.

F1 : Exit to main

F2: .Modify counts - if the user wishes the counts to start from a number other

than zero or the saved counts.

F3: Start /Stop test - toggle.

If no key is pressed, the program sends sets of 100 sinewaves to each of the
active controllers and continuously updates the counts on the screen. Faults for all
active channels are continuously monitored using check_chn_faultsO.

Header file: Async.h, Params.h, Run.h.

Data file: COUNT.!Ff (The current active channels and their counts are
backed up in this file anytime the user steps out of run screen 2 when the test is
running.)

Global Var: Array ACTIVE_CHN[16], fbkD.fbkvaID, PARAMETERSD, RUNNING.

ACTIVE_CHN[]-array of structure chn_arr, holds run screen2 information

Structure chn_arr (and each index of ACTIVE_CHNO) has the data fields:

boolean ch;

long int count;

int oldct;

int set;

int pio;

int xpos;

int ypos;

charfmode;

int next;

(channel ACTIVE or OFF)

(current count value)

(last count when stepping out of run screen2)

(no of sine cycles to set at a time-1 00,500,etc)

(set pio function number)

(row position on run screen2)

(column position on run screen 2)

(fault modes)

(number of next active channel in linked list)

61

(

RUNNING-boolean variable set when test starts running (F3)

fbkO.fbkvaIO, PARAMETERSO. (see 5.2 for details).

Local Var: Chnl, Keyb, Curr, Prevo

Chnl current channel being addressed

Keyb last key pressed

Curr current cursor (at channel #) position

Prev last cursor position

Called by: mainO.

Calls: read.J)arameter(),

pio_writeO·

write.J)arameterO,

This is called by both Setup and Run to check for any faults in the current
active channels. For each channel, it checks if any of the limit thresholds have
been exceeded and reports the fault along with the channel number to the current
display screen. It also writes out to the valid pio function.

Header file: Async.h, Params.h, Run.h.

Data file: None.

Global Var: fbkO.fbkvaID, ACTIVE_CHND (see 6.1 for details).

Local Var: faulty.

faulty the channel number of channel where the fault has occurred.

Called by: run_dclO, scr_setup().

Calls: blocks(), pio_write().

62

CHAPTER 9

GRAPHICS

9.1 Introduction

This chapter describes the routines that have to do with drawing menus,

borders and boxes, changing the background and foreground colors, writing to
specific portions of the screens and all other screen entity manipulations. See
Figure 9.1 for a delineation of the different graphical routines and their hierarchy.

9.2 Initialize{)

This initializes the screen for graphics mode using a C function initgraphO.
It detects the graphics hardware and drivers and selects the screen resolution on
the basis

of that. It also checks for the number of colors available.

Header file: C library file Graphics.h.

Data file: None.

Global Var: None.

Local Var: None.

Called by: MainO·

Calls: C function initgraphO.

9.3 Menu{)

This draws the menu outlines and places the choices within. It also returns
the user selection from the choices. The menus are scaled according to the size
and number of the choices using ItemizeO. All menus have the same foreground
and background color as defined in a structure mnuAtr which holds all the
graphical attributes of the menus. The outline is drawn by calling BoxO. This is
used to display the main, setup and run menus.

. ~

63

NUM
PRINTO

BOXO

Graphics Module-Figure 9.1

64

Header file:

~ata file:

'tlobal Var:

Async.h, run.h

None.

struct menus.

menus is an example of structure mnuAtr with the following fields:

int fgNormal;

int fgSelect;

int fgBorder;

long bgNormal;

long bgSelect;

long bgBorder;

int centered;

(foreground color for unselected menu choices)

(foreground color for selected menu choice)

(foreground border color)

(background color for unselected menu choice)

(background color for selected menu choice)

(background border color)

(set if menus to be centered on screen)

char nw, ne, se, sw; (menu outlines constructed from these strings)

char ns, ew; (menu outlines)

Local Var: char items, xcol, ycol, prey, curr, keyb.

items array holding text of the menu choices.

xcol starting x position for the menu to be drawn onscreen

ycol starting y position for the menu to be drawn onscreen

Keyb last key pressed

Curr current cursor (at channel #) position

Prey last cursor position

Called by: main{), run_dcl{), scr_setup{).

65

Calls: BoxO, ItemizeO, clear_windowO.

9.3.1 boxO

This draws the menu outline. It uses the two-character strings from
structure menus - nw, ne, se, sw, ns, ew which are actually directional lines (ns =
"I", ew = "--",ne = 'T", nw= "T',se = "1_", sw= "_I") and constructs a rectangle
of height = number of menu choices and width = length of the longest menu
choice.

Header file: Async.h, Run.h.

Data file: None.

Global Var: structure menus (see 9.2 for details).

Local Var: xrow, ycol, num, max.

xrow starting x position for the outline to be drawn onscreen

ycol starting y position for the outline to be drawn onscreen

hi number of menu choices.

wid maximum text length of the longest menu choice.

Called by: menuO, run_dclO, scr_setupO.

Calls: None.

9.3.2 itemizeO

This takes each item to be printed in the menu and writes it to the
appropriate screen position. All choices have the same length = length of the
longest menu choice; the shorter choices are padded with blanks.

Header file: Async.h, Run.h.

66

,..

Data file: None.

Global Var: structure menus (see 9.2 for details).

Local Var: xrow, ycol, str, max.

xrow screen x position for the choice text to be written to.

ycol screen y position for the choice text to be written to.

str choice text.

len text length of the current menu choice.

Called by: menuO, run_dclO, scr_setupO.

Calls: None.

9.3.3 clear_windowO

This clears the current text window and resets the screen colors to default.
It calls a C function, clrscrO.

Header file: None.

Data file: None.

Global Var: structure menus (see 9.2 for details).

Local Var: None.

Called by: menuO, run_dcIO, scr_setupO.

Calls: C function clrscrO.

9.3.4 cursorQ

This is a hardware level routine which is used to turn the cursor off or on
(blinking). It writes a control value to the 6845 CRT controller in the 2-409 video
card, using a programmable video interrupt (INT 10H). The interrupt can be used

67

to program 16 different video I/O functions, based on the value in register AH. The
one function used to turn the cursor OFF is function code 1 which sets the cursor

size on the basis of the value in registers CH & CL. Bits 0-4 -pt register CH
represent the starting scan line number of the cursor while bits 0-4 in Cl, the
ending scan line number. Values for these usually range from 0-7 (OxOO-Ox07). If

the starting scan line value is greater than the ending scan line value, the cursor is
turned off.4

Header file: None.

Data file: None.

Global Var: registers AX, ex.

local Var: None.

Called by: menuO, run_dcIO, scr_setupO.

Calls: C function int860.

9.4 Printing

The next few routines deal solely with printing integers, real numbers and

strings on to set locations in the screen text window.

9.4.1 intprintO

Prints an integer on to the screen. Takes a row and column position nad
prints up to six digits of a given value. If the value is less than six digits, it pads the
screen with blank spaces.

Header file: None.

Data file: None.

Global Var: None.

68

Local Var: fgcolr, bgcolr, x, y, value.

fgcolr

bgcolr

x

y

value

foreground 'color of text to be printed.

background color of text to be printed.

screen x position for the choice text to be written to.

screen y position for the choice text to be written to.

integer value to be printed.

Called by: menuO, run_dcIO, scr_setupO.

Calls: CursorO.

9.4.2 numprintO

Prints a real number on to the screen. Takes a row and column position
and prints up to eight digit~given value. If the value is less than eight digits, it
pads the screen with blank spaces.

Header file: None.

Data file: None.

Global Var: None.

Local Var: fgcolr, bgcolr, x, y, value.

fgcolr

bgcolr

x

foreground color of text to be printed.

background color of text to be printed.

screen x position for the choice text to be written to.

y screen y position for the choice text to be written to.

value floating point value to be printed.

Called by: menuO, run_dolO, scr_setupO.

Calls: CursorO.

69

..

9.4.3 longprintO

Prints a long integer on to the screen. Takes a row and column position and
prints all the digits of a given value. If the value is less than six digits, it pads the
screen with

blank spaces.

Header file: None.

Data file: None.

Global Var: None.

Local Var: fgcolr, bgcolr, x, y, value.

fgcolr

bgcolr

x

y

value

foreground color of text to be printed.

background color of text to be printed.

screen x position for the choice text to be written to.

screen y position for the choice text to be written to.

long integer value to be printed.

Called by: menuO, run_dcIO, scr_setupO.

Calls: CursorO.

9.4.4 strprint()

Prints a string value on to the screen. Takes a row and column position and
prints the string as text.

Header file: None.

Data file: None.

Global Var: None.

70

Local Var:

Called by:

Calls:

fgcolr, bgcolr, x, y, str.

fgcolr foreground color of text to be printed.

bgcolr background color of text to be printed.

x screen x position for the choice text to be written to.

y screen y position for the choice text to be written to.

str text to be printed.

menuO, run_dcIO, scr_setupO.

CursorO·

71

CHAPTER 10

FUTURE WORK

10.1 Introduction

This chapter details some of the tasks still to be worked on. A Brief ~utline
of the effort involved and suggestions on how to proceed with these tasks is also
given.

10.2 Tasks Ahead

1. Include a calibration utility as part of the setup module.

This allows for setting up minimum and maximum amplitudes (force or
displacement) for the actuators which are different from ,the physical values.
Essentially, the signal will be offset from zero by some amount.

Coding this utility might involve the displaying of a screen with the tuned
signal (see Figure 7.3) along with the current minmum and maximum values in
both engineering units and controller counts. These should be user-configurable
and the user-adjusted value should be conveyed to the controller and the Juned
signal correspondingly updated to show the offset from zero.

2. Porting the software to a SUN workstation.

Running the software on a SUN workstation would not only enhance the
speed and performance of the software, but it would also allow for multiple tests to
be run from the same computer. This would be a distinct advantage from the
point of view of safety as tests could be remote-controlled from another location
without having to visit the testing floor during a test.

Tasks involved in transferring to a SUN workstation include:

(1) Confirming that the low-level communication routines between host computer
and controller work.

(2) Re-writing the graphical routines (see Chapter 9) for displaying as windows
on the screen.

(3) Verifying that the C library functions and interrupts used in the software are
available on the SUN. If not, the nreplacing them with their equivalents.

72

REFERENCES

1. White D., "Se:rvo Tuning with Five Mode Controllers" MOTION,
September/October 1988, pp 14-23.

2. Vickers Xpert DCl User's Manual, pp 17-20.

3. TS&S Software User's Manual, pp 3.1 - 3.16

4. Zenith Z-200 PC Series Technical Reference Manual, pp 9.2 -11.7

5. Burr-Brown PCI-20000 System User's Manual, pp~;:-5.

6. INTEL Peripheral Components Manual (1986).

7. Borland Turbo C Reference Manual & User's Guide.

73

APPENDIX A

THE INTEL 8250 UART

(UNIVERSAL ASYNCHRONOUS RECIEVERITRANSMITIER)

This appendix describes the 8250 UART which is a standard chip used
for serial communication in a PC. The rest of the pages of this appendix are
condensed from the INTEL Peripheral Components Manuals. They outline the
chip's function, its internal hardware, its various operating modes and the
special issues involved in programming them.

74

.,

8250 ORGANIZATION

Here we shall examine carefully the 8250 asynchrollocls communications element.
which is the controller chip of the adapter of Fig. 10-3. The Ie of the 40-pin DIP
is fabricated with NMOS technology. With associated circuits. it provides the
interface between the parallel data bus of the computer and the serial data lines of
the modem. Parallel-to-serial conversion of data is implemented by a shift registe~

for transmission to the modem. A second shift register provides serial-to-paralle:
conversion when receiving from the modem.

The 8250 is commonly referred to as' a universal asynchronous receiver/trans·
micrer (VART). Some communications chips are designed for control of eithe~

synchronous or asynchronous transfe~s and these are called IlIli"'usal synchronous':
asynchronous receiver/transmiuer (USART).

Registers

The 10 addressable byte regis~ers of the 8250 require 9 pon numbers for inpt::
(READ) and 8 for output (WRITE). Because the three pins dedicated to intern:::
addressing provide only eight combinations. the ;,,\55 of the line control registc:
is used to distinguish between pom with the same numbers. This bit is called t1'::
di"'isor latch access bie (DLAB) because it must be set in order to read or write the
two divisor latches with port numbers 3F8H and 3F9H. When DLAB is O. addresse:
3FSH and 3F9H relate to other registers. When~ver an address that depends on tr.:
state of DLAB is given. it will be followed by the state in parentheses. Figur:
10-8 lists the 10 registers and their he~adecimal addresses.

Block Diagram

Figure 10-9 shows a block diagr:m of the 8250 element. with mos~ of the inter::::
concro[lines omitted. Immediate:y above each addressable register is the addres~

induding in parentheses. where appropriate. the st:He of the DLAB. With DL-\':
low. address 3F8H applies to e:ther the receiver buffa or the tr:msmitter buf::
regis~er. depending on whether It:e oper:Hion is READ or WRITE. and with DU·.':

~

Addr::ss Register 1 R::c. Wri::

3i'"3 (0) Tx buffer Writ: only
JF3 (0) . Rx buffer R::d only
JF3 tl) Divisor Leach LSB Rr::d'''''ri'te
3F9 (I) Divisor I:ach :-.tS B Re:,j"wri:e
3F9 (0) . Interrupt en:lble Re:d:writ:
·3FA ,,' Intcrrupt ID Rc:d only
. JFB Line eontrol . Rc:d .",Tit: i: =-
JFC Modem control Rc:d writc
JFD Line st:ltUS Rc:><i write
JFE ~odem st:ltus Rad ",·rite

FIGURE 10-8. 8250 registers and addresses.

75

(

JF3 (0)
T., T.,D

Tx ShiftOat:>
.~

Buffer .;.. Buife: Regisl"':--- f-
Regis:e: G:\O

Rx
:PISTR -"C .';:::- Br.;ff:: R.' RxD,.'

:~ Reg's:e:
...-\........

Shift~DOSTR ----e.
'---'('AO- Register

ZAI- Control
,A2- JF3

CS ---<
~lR-

,
li•.:

XTAL- ..':::- Cer.::ol RCLK
r-- R.'l.3·n '-- -'- Rq'stc:

Jt Conlrol I
MHz I

3FD I
.T., IJF9 (0)

Cont:ol I
~

t..:-. I IInt"rupt - =-- SI!:::S
IE::able - - Reg's:::
IRegist::
I

j
+

JF3 (I) I
'.~ Divisor r I";.•...

u:e:: Ir-
LS3 Baud I

Inte::upt Rate
I:-IT JF~ (I) Gene:~:or 8AUOOl:T

Cont:ol
:~ Di'".sor

.- .~ u:e::
MS3

3FA .::-t-

" . ;-Z.l Interrupt f-:U ~lcCe~ e-- DB
10

i
Co;:::ol r-- e-- RTS

"egis::: Re~:::

e-- DS"Mode:::
Contrel)::>-- CIS

JF:: legic . P--iU
)::>--CD

Moec::l
S~t:.:s r--

R.:r..!::: P-- Out"

FIGURE 10-9. Block diagram of the INS 8250 asynchronous communications '
element.

....

high. the address ac::esses the low Jyte of the divisor ben. Address 3~9H is use:::
for the interruot en:lble re<zister whe:1 DLAB is low. but when rhe bit is hi£h. [he. -
most signinc:lnt byte of the divisor btcn is addressed.

In the block diagr:lm 29 pins are indic:lted. including [he 8 pins of the d:Ha bus.
In addition. cwo pins provide [he 5-V supply. and [he ocher nine are connecte:::
direcdy [0 either a logic:!l 0 or a logic:1 I. or simply noe connected.

Connected internally [0 [he [r::nsmiccer concrol block is the BAUDOUT line from
the baud ra(~ genermor. which provides a ·pulse train co th~ transmiccer clock. Tne
vertic:l(dashed line at the right is :In''external connection of BAUDOUT co the
receiver clock (RCLK). The conne:::ion m:lkes th~ bit r::t~ for rec~?tion the S:lme
a~~:it for tnnsmission. which is [h~ usual condition. The :lCCU:l1 bit r:lce equ:!ls
the frequency of tht: puls~ [rain of BAUDOUT divided by 16.

76

The XTAL input to the comrol block is a I.8432-MHz pulse train. This pc
train is generated from a circuit having a crystal oscillator that has 10 times t

frequency, with the output of ,~e oscillator passed through a di'/ide-by-IO netwc
The frequency of BAUDOUT \s that of the XTAL input divided by the numbe:
the two divisor btches.

-baud Rate Generator

Figure 10-9 shows a baud rate gene::1tor with::m input from the two divisor latc~.

In addition, the generator receives the 1.8432-MHz pulse train from the Xl.
input. Division of this freque~c: by the 16-bit number of the divisor btc~

gives the frequency of the pulse train of BAUDOUT. Because tr:e frequency
BAUDOUT also equals 16*b~s, it follows th:lt the bit rate is

Bit rate == 1,843,200 I (16 * civisor) bps

For example, if the divisor number is 0060H (96 decimal), the cit rate is I:
bps. The divisor must be written inro the latches during the initidization of
chip prior to communications. The maximum allowed bit rate is 9600 bps.

TxD and RxD Buffer Registers

\Vnen a character is written to the trallsmiuer buffer register, it is held uncil :
rransmiaer shift register has shif,d out serially the last charac:e, se:it to it. T~

the charac:er of the buffer is rr.oved to the shift register. and the buffer beco::
e:-npty. Writing to it when it is r.ot e:-npty repbces the prior characre,. which she.
ce avoided, of course. The Lsa is data bit 0, and it is the firs, one shifted to

communica,ions line. Because ,he buffer holds a chJrac:er until it can be tr:
witted, it is ofren called the trmsmirrer hoMillg register.

Tne recei'.'er buffer register cor;t:lins the last chJrJcte, moved :0 it from
r=cei~'er shifl register. Its LSB is :he first one that se:ially ente,e-: :r:e shift reg::
f:om the cOffimunic:lCions line. L'r.les5 the charac:e: is read bet-ore :::e next er.:
received, it is des:royed. which is :he O\'erntll e:7or. Both the tr::iSi7::t and re::e
buffe~ regis,e:s have JddreS5 3f3H. with DLAB ze,o. The:e is no cc::Rict. be:::.
CGe is In input pore ~r.d the o:::e: is In output FO". Be:~use the ::::.nsmir:e: :
le::eiver have buffer regisre:s iii :cdit:on to their shifr reg!s~~:s. ~~e:: ::.re said tc
cauble buffered.

Line Control Register

The fo"rmat of the Jsynchronous d~(a word is specified by writing to :::e lille call:
register. Also, the stJte of DU.S is defined by bie 7. The conce:1ts :md encoc
are shown in Fig. 10-10. The pore number is 3FB H. and both writing and re:.:c
are Jllowed.

The set break bit 6 of che linc control n:gi~ter is set when it is desired co ::
a distJnt computer or [c,minal for ~ttencilln. It sirnply chJnges the output line f:
the norm:ll mark st:lCe ttl the sp::cing St:ltc. Set bre:Jk is disabled by writing J C
bit 6. 7T

./

Er.coding:

Bit 6:

Bit 5:

Bit ~:

Bit J:
Bit 2:
BilS 1.0:

FIGURE 10-10.

When I. the TxD output line is forced to the space State and
remains there as long as bit 6 is J.
When I veith bit J also I. the pa:ity bit is 0 if bit 4 is J, and it is
I if bit ~ is O.
Even parity = I; odd parity =O.
Parity enable = J: no pority bit =o.
Two stop bits = I (for 6- to g·bi: worcs); one Stop bit = O.
5 bits =00-.6 bilS = 01: 7 bits = 10: 3 bits = J I.

Line control register.

Tnree of the bits reI:lte to parit::. If bit 3 is 0, there is no parity bit. and bits 4
and 5 are don't-cares. However, if bit 3 is 1, there is a parity bit. with choices of
even, odd, 1, or 0. The selection de?e:1ds on the states of bits 4 and 5. If bit 5 is
0, the parity is either even or odd. as specified by bit 4. Even parity is most often
used.

However, with parity enabled ar:d bit 5 set, the parity bit is always °if bit 4 is
1, but it is always 1 if bit 4 is 0. Some systems with echoplex do nor allow p<!rity
error checking and may require a f:":ark parity or perhaps a space parity.

Bit 2 is used to specify either 1 or 2 stop bits for words having lengths of 6 to
8 bits. However, 5-bit words can have only I or 1.5 Stop bits, and in this special
case. a value of I for bit 2 gives 1.5 SlOp bits. Most common is I stop bit.

Each transmitted or received serial character can have a specified length of either
5, 6. 7, or 8 bits. Usually, text char:!cters have 7 bits and binary coces have 8
bits. Encoding of bits I and °spe-::fies the word leng(h.

The proper data must be wntte:1 into the line control register before communi
cation is possible. Once the word for;:;at has been set, it is not necessa:;: to write
to the register ag:tin. or to read it. except to set or clear DLAB. The instruc:ior.
sequences that follow will set or c:e::: the bit without changing the other bits of
the line control register:

MOll DX, -..~ -
-~ _...

IN AL, DX
OR AL, WE
OUT DX, AL

Modem Control Register

MO'l
IN
AND
OUT

DX,
AL,
AL,
D'.I"

" I

::?3:i
DX
7 ~··rn
At

POrt 3FCH accesses the read/write modem control register. which comrols ehe
interface with ehe data set. Indic:Hd in Fig. 10-1 I are its contents. Bits 3 and 2
control the outputs of pins OUT2 and OUTI, which are available for control 3.S
desired. In the Pc. an active OUTl :'::1::bles the output buffer of the IRQ4 interrupt.
and OUTI is not used.

In ehe full-duplex mode, bies °:lna I are written with Is. thereby turning ON
the data-terminal-reJdy and request-to-send signals of output pins DTR 3.nd RTS.
These remain O~ at all times during communications. When half-duplex is used.
the RTS bit is Set "v·hen the computer w:mts to se:1d data. but once the tr::nsmission
has ended. it is reset to return the mQ(km to the receive mode. This operation is
called fillt: llIrJlarolll1c1. I ~

765 4 J 2 10

o 0 ~ Loo;> oun IOUTI 6 OTR

Encoding:

Bits, 7. 6. 5: Always O.
Bit 4: When I. the output of the trJr-smiller shift re~ister is looped back into

the receiver shift recist<r.
Bit J: The complement or the bit goes to pin oun.
Bit 2: The complement of the bit gees to pin OUT I.
Bit I: The complement of the bit gees to pin RTS.
Bit 0: The complement of the bit go<:S (0 pin OTR.

FIGURE 10-11, Modem control register.

To en:!bk interrupt IRQ4 from the 8250, bit 3 must be se:. Resetting the
dis:!bles the interrupt line out of the buffer.

Bit 4 provides a'loopback fe:Hure for diagnostic testing of the 8250. For nc~
communications, the bit is rese:. \Vhen it is set, however, the output of the ir:
mitter shift register is fed intern:!!ly into the recei.,'er shift register, so that a';·
wnuen co the transminer buffer register returns immediately vi:! the receiver L
register. Tr::msmiuing a chJr::.cter and then comparing it with the one re':e
provides a way of verifying the transmit and receive data p:lths of the chip.

When the loopoJck feature is activated, the serial Output line TxO is set tc
mark (I) state, and the serial input line RxO and inputs OS R. CTS, RI. anc
from the modem are disconnected. In addition, outputs OTR, RTS. OUTI.
OUT2 are intemally connected to respective inputs OSR. CTS, RI, and CI:
the diagnostic mode, all inte.-rupts are operational and can be tested.

The Divisor Latches

Pon 3F8H is that of the least significant byte (LSB) of the di\'isor iafcl:. anc
3F9H is th:!t of the MSB. The OLi.S bit must be set prior to addressing, and
reading and writing are allowed. The latches are progrJmmed prior to com~.

cations to give the desired bit '"-te, which is 1,8~:; ,200 divided by [he prodl':
16 and the divisor.

Line Status Register

The re:!c!lwrite lille.swrus regis:a "vith Jddress 3FDH provides m.:.!s infor;;::
conceming data transfer. Its conte::ts are indic:Hd in Fig. [0-12. Bit 7 is ~!'.

0, and bit 6 is reJd-only, not ;!ffe:::ed by write ope:~tions.

Whenever a ch:lracter is moved from the transmitter buffer regisie: to the .~

miner shift register. bit 6 is rese:. It is set only after the ch:lrac:er h::s been se~

shifted out. Tnus, state I signifies :m empty shift register.
StJte I in the bit 5 position indic::tes thJt the tr:!nsmitter buffer (holding) reg;

is empty and ready to accept a new word for tr:lnsmission. Tftis bit should a/;·.
be e:mmilled prior fO writing fO tll,- Tx buffer regiSter in order fO amid lIT

O\·U a character tllm is waifing to be transmiued. In Jdditil1n, when :he bit is
the output interrupt pin is Jctive if bit I of the in[~rrupt ~1l:1blc:: regi~(er is se:.

Tne break.iJl{errltpf (BI) bit -+ is set when the RxD input lin~ is hc!d in the s~

state for longer thJn a full word tr:lnsmission til11~. Wh~n set, it gencr::te:'
79

7 6 S 4 2 0

__0 T_SR_E-..l-I_T_H_R_E-..l-_B_I FiO_-,--_P_E---J[?EJ DR

Encoding:

Bit 6:
BiIS:
Bit 4:

Bil J:
Bit 2:
Bit I:
Bit 0:

FIGURE 10-12.

Tx shift register empty (TSR E) inc,nt::! :,y I.
Tx holding register emplY (TH RE) i~.dic~ted by I.
Break interrupt (BI) indiotor.
Fr:lming error (FE) indicator (no Stop bit).
Parity error (PE) indicator
Overrun error (OE) indicator
Receiver data re~dy (DR) indic3tor.

Line status register.

incer.upt, provided bit 2 of the ince:7l.!pt-enable register is sec. Rec:l!l til<'.t bit 6 of
the line control register can be set to force the serial output line [0 the s?:lce state
to ale" another computer. The BI bit of the Hne st,l[US register is [he detector of
such a signal on the serial input" line. BI is reset when the serial input !iiie returns
to the normal mark condition.

Bits 3, 2, and I are error indicacors. Ajraming error (FE) occurs whc:l <'. received
character is without a stop bit, in which case the character is improperly framed.
A pariey error (PE) is detected whe:l [he parity is not the one specified. and an
overrun error (OE) results when a char,,;::cr is transferred inca the recei\"e~ buffer
register before the last one was read. Each of these errors C:luses the co..es;:onding
bit of the line status register to be set, 2r.d each gener:lCes an incern:pr if bit::?' of
the interrupt-enable register is sec. Reading the line status register c!ears tr.e error
indicators. I

The dara-ready (DR) bit 0 is set wher:e';er a complete incoming c.h::lrJc:er has
been received in the receiver buffer register. It is reset when the character is reJd
by the CPU, and it can also be reset by writing to [he line staeus rc~is[e;. 3it DR
should always be examined before reading the receiver buffer register in cider to
dete;mine if a valid character is present. \Vl:en bit 0 is set, an intcrrupt is ge~.er:ltd

provided bit 0 of the interrupt-enable register is set.

Modem Status Register

Pon 3F::H is that of the reJdlwrite mode.'1l s(aws register. The c:..!ITe::: s,:te of
eJch of .he con[rol lines CTS, DSR.. ~!. :l:G CD from the mod::m (J t::e C?l: C::l
be re:d rrom a bit of the high nibbie of this register.

In accition. e:ch bit of the low nicc!e of the register rev~JIs whether or ::Ot tr.e
corrcsFonding input signo.I has changed s:c(e since (he {as; reading of (Ize modem
swws regis;er. Whenever a control ir.p'.1(c~anges Sl::lte. its associ:ted low-::ibble
bit is set, and whenever [he modem st:ws register is reo.d. it is reset. Also. a bit
tho.t is set generates o.n interrupt if bit 3 of the interrupt en::lblc regis(er :s se:. The
comerlts of the modem status register ::re si":own in Fig. 10-13.

CD

6

RI Ddt~ Ddl:!
CD "I

Ddl~

DSR

o

Ddt~

CIS

FIGURE 10-13. Modem status register.

8-'P.

'I.:.

'.'

Status bits 7-4 of the figure ar~ th~ complements of the bits received at the inpL1:
pins. The word Delro denot~s a ch:lnge. For the bit 2 ring indicator, the Delta RI
bit is set only when the RI input to the chip goes from ON to OFF, and it is rese:
when the register is read.

Prior to a transmission, the modem SlaWS register should be read to aseertai.~

that the data set is ready and thac a 'character can be sent. Bics 5 and 4 are tf:,
indicators CO be examined. Also, bit 5 of the line status register should be checkec
to determine that the transmitter buffer register is empty. Before reading ocher
aecer from the receiver buffer regisceT. the modem slaWS register should be recc.
for inspection of the DSR bit. Th~:J the data-ready bit 0 of the line status registe:
should be checked.

Interrupt Enable Register

Po~ 3F9H with DLAB zero is the address of the read/write illterrupt-enable reg
is;er. Tne bits of the high nibble c.re always 0, but those of the low nibble provice
.for enabling individually the four allowed types of interrupts, with a bit set to :
for enable. Tne contents of the inteIT'..Jpt enable register are indicated <It the top 0:'

Fig. 10-14; and the interrupt priori!:es are shown in the t:lblc: of the figure. No:~

tbt the bit numbers of the t<lbre ~e out of order.
All interrupts are disabled by writing OOH to the r~gister; when this is done, lir,e

IRQ4 is inactive. Interrupts can also be inhibited by a reset of the OUT2 bit C:'
of the modem control register, which disables the ex:ernal buffe: th:lt feeds Iir.e
1R94_1!Je different interrupt types em be selectively enabled. of course, by seuir,;
the OUT2 bit and writing to the ime;.upt enable register.

Interrupt 10 Register

Tr.e re:ld-only interrupt identific(1ciol! (ID) register with port number 3FAH h;:s :
high-order bits that are always O. as shown in Fig. 10-[5. Thus. only the 3 lowe~:

bies have significance_ Bit 0 is 0 'Nne::ever an interrupt is pending, which ir.;?Ee~

t:::lt pin I~T is acti\'e. When it is I, t;;ere is no pe:',ding inte:-r..!pt.
The output of the Il'1i pin of the PC is used to ger.er;lte a h:lrdware inte:T..!~:

through level 4 of the 8259 cor:troi!e:-, implementing INT OCH in the Pc. .-\~

a!temate method is to poll bit 0 Fe:-:odica!ly with softw:lre to ce:e:-;nine if ~~.

inte:7Upt is per-Icing. The h:lrdw:::re :::e:hod provides a more e:nc:e:Jt use or CPt..
tir.:e.

6 3 2 0

:'10.::::: I Linea a 5:::::s StJtUS
1:'-, E~ I:-.'T E."

• j

Priority Bit In:errupt Ty;x: I Acti\'Jted by

Hishest 2 line stJtus Bits 1--1. line stJtu>
Second a DJtJ r:::dy Bil aof line stJtus
Third 1 T., buffer ernpty Bit S of line stJtus
L"west J ~Iodem StJlUS Bits (}-J. mode:':! >tJtus

. 'FIGURE 10-14. Interrupt-enable register and interrupt priorities.

~I

o4 3567

LiJ__O 0 0_~--,I__0_-,-_I_:-;_'T_I_0_b_i_t5_L.--P_<:1_d_in_g-,1

Encoding:

Bi:s 2. I: 10 or pending interrupt or high<s: prieri:y,
Bit 0: 0 ir an interrupt is pending: olhcrw,s< I.

FIGURE 10·15. Interrupt JD register.

Bits 2 and I simply identify which j:e:1ding interrupt has the highest priority.
Bit values II, 10, 0 I and 00 cor.es~oiid to priorities \, 2. 3, and ~, respe::tiveiy,
fith the priorities defined in Fig. 1O-1~. A reading of the interrupt ID reg!ster
allows J. program to determine whe:::er cr Iiot an inte;TJ?t is pending. ::!:.d if so,
ta asce~ain the highest priority.

10-3

MODEMS

,.

i\lcder;Js can be cbssified by speed, i:ous:r:g design, type of coupling. fe:l.tC!res ::.r.d
inrellige:1ce, and prococo!. Usu::!ly :::c·':e:7ls with bit r:l.ces betow 1200 bps t!re
considered low speed. from 1200 to 9600 bps is mediur.: speed, and over 9600 is
high speed. Both sialld-alolle and .?:-:pc::sioll board modems are aV:l.ibb:e. The
former is ,a separ:l.te unit that has LE~ s:::.:us indicators ::!nd can be used \;'i:h :Iny
system. whereas the laeter reqC!ires an ex~::.nsion slot and is designed for:!. p::.::icC!br
type of computer.

The expansion board mode:n is less ex;:e::sive, c:!.n be lcc:Ited on the bo::.r;: with
the cCrilnlunicJ.tions adapter circ:ut~s. ~s ;::or~ port;J.br~, ~nd r:=quiies ne~th~:-::':1 RS
232-C c:IDle nor 2n exrernill ~o\\'e:- c~r:r:~::ion. Ho\ve\"e~. it ir1c:-e:1ses t~e :nr~:71:11

he~t, has no visibI.e indicators. ~nd :::.r.;".v~ C~ [rJnsfe~ed ~o J. dissimilJr cCl7:puce:-.
Stm. i: is quite popular for use wit:; l.::crccomputers. V;:rious ciassi,ic::.::c::s ::~e

shown in Fig. 10-[6.
Coupling is either dire::t or acoust:: ..:.. cirecr-collpled i::cderrJ conne:::s c:~e:::!y

through a caole co the wall jack of t;;e :e!e?hone line. An Gcousiic cO:ip!e:, is
C '-"'!""II~,; b" ""., t" ro' I :""'P ,:.:l, ~ r-o,'.::to .. ' ":i-t-=,~ ,.J"l" .:.-:.. 1- ~"'''y ~- : m~_ns 0 sou•.G ._.~s . .-... ~. ~ .,U".C". IS '-""'~". a '-'_la S\I," \,if ".~

2.COUS~!C coup!er is turned on. :!nc ~r:= ~e:e;:hone hJndse~ is plJc~d n:T:'iiy ~=-.:o ~· o
cyi~ilc:-:c:lI rubber grommets of ~ c::·.::~ :~nt~ining a Si7::!.l1 spe2.ke:- ::.~d ~ ::-:ic:-o
phone. D:!::l [iJnSiilission is frCl7l :::e ~~~::.:,e:-:o the te~e?r:ci:e mcurhFie:e o.;~: :'..1c:o
[or:~s, ~~d re~e?t:cn is from ~he ie;-:~:-:Ci..e re:e:\"e:-- [hlO~g~ sound \\·2.\·e~ :0 ::-:e
mic':"oFhone of (he ciJdle. In g~:1e:::.1. :!:~'':si:ic:ou~';::-s ::lre !~ss e.'\pc:1sive. :~~ :~~y

Luw
~k:.!ium

H:gh

o:0 I :00 o~s

I:00 to 9600 005
over 9600 bps'

S::.:.': :-\:or:-:
;:.<;:::;:0:1 30ard

Hair I
Full

Duplc~

Smart
Dumb

rntdl igc::«

FIGURE 1 0-16. Various classifications of data sets.

B.2

APPENDIX B

PROGRAMMING THE BURR-BROWN PC- 20001C PIO BOARD

This appendix deals with programming of the PC20001 C in more detail
and also explains the memory addressing scheme for the board.

The PC20001 C supports up to 32 channels of TIL-compatible parallel
digital information to/from the computer. These channels maybe used to monitor/
control external devices like relays or switches. The 32 lines are arranged as four
ports of eight bits each. Each port may be configured as a group of eight inputs or
eight outputs.SThe direction enabling reading and writing to the bits in the ports .
is dealt with in this section.

Addressing:

Address switches on the board allow it to be mapped to any 1-KByte
block in the PC's 1-MByte memory space. When its base address is chosen care
must be taken to select a location in memory not used by any other hardware. The
base address is selected by switches 1 through 10 on the board with switch 1 =
address bit 10 and switch 10 =address bit 19. A setting of OFF =bit value 1 and
ON =bit value O. The addressing scheme used by the PIO board is the same as
that of the 8086 microprocessor family with a 16-bit SEGMENT register in
conjunction with a 16-bit OFFSET to specify a 20-bit address as:

, ADDRESS = SEGMENT * 16 + OFFSET.

The remaining pages of this appendix are taken from the Burr-Brown
PCI-20001 C programming manualS.

Programming Notes

The 8086 microprocessor family addresses memory using a 16-bit
SEGMENT register in conjunction with a 16-bit OFFSET to specify a
20-bit ADDRESS, as follows:

ADDRESS = SEGMENT * 16 + OFFSET

Most programming languages reflect this addressing scheme in
their provisions for absolute memory reference. Consult your
programming manual ·to find out how to read and write absolute
memory locations. It does not matter how you divide the address
specification between SEGMENT and OFFSET, but for simplicity we
will assume that the SEGMENT is chosen so that the base address
of the Carrier is at OFFSET O. When OFFSET is 0, the 20-bit
ADDRESS will correspond exactly to the. setting of the be.se ad
dress switches on the Carrier.

In the programming procedures that follow, single-byte reIerences
are identified as BYTE (address), and two-byte references are
identified as WORD (address). For example, a word e.t local
register offset 02 (Eex) on a Carrier would be identified as
WORD (02H). A byte at local register offset 40 (Hex) on a
Carrier would be identified as BYTE (40H).

The programming language you use must have the capability of
absolute memory reference, since the PCI-20000 Modules and
Carriers are configured as memory-mapped I/O.

The hardware registers on Ce.rriers and Modules can be read and
written as if they were random-access memory, with the fallowing
limitat ions . Registers iilay be read-only, -wri te-only, 0:" :-ee.d
write. In some cases the same register may be used for two
different functions, deoendina on whether it is read or written.
In such a case, or if ~ regiiter is write-only, you will ~Qt be
able to read back data that was previously wTitten to the regis
ter. You must save the data in program memory if you will need
to use it again. I~ some cases, just reading or writing a regis
ter may trigger an event, such as an analog conversion, :"egard
less of the data involved. 5e careful not to inadverten~ly read
or write command registers.

Programming Procedures: PCI-2000lC-2A with 32 Bits of Digital I/O

Port Configuration Procedure

The following procedure will configure an eight-channel digitcl
port as inputs or outputs. Note that the control and enable
registers cannot be read. If you change the direction of a
single port, your program must remember the configuration of the
other ports so that they can be reconfigured correctly.

Step 1. Write the control code to set the port direction to the
appropriate control register, BYTE (83H) or BYTE (C3H).
Since each control register controls two ports, you must

__ be sure to set bo~h_ports correctly when you write this
register.

Step 2. Write the enable reaister, BYTE (82H) to set the direc
tion of the port buffer and enable it. Since this
register -controls 2.11 four ports, you must be sure to
set 2.11 bits correctly when you write this register.

Step 3. Write all four output data registers. The reprogramming
procedure resets all output lines, so you mus~ re-write
all output data any time you change the direction of a
port.

Digital Output Procedure

The following procedure will write data to an output port.

Step 1. Set up the output byte. For each channel to be 9rogra~

med with a nIGE level, set the corresponding bit in the
output byte to 1; to program a LOW level, set the ~it to
a O. The lo",,-est-numbered channel of the poce corres
ponds to the low-order bit of the output byte. \

Step 2. \'-irit~he outout byte to the appropriate I/O regis:e::-,
BYT t:' (soe) P'l"';:' (S"') ~"'T't:' (COU) - BY''j11=' (C"')...., Go, _ ... -' l.:: I bi_..., , OJ- .. -.J _~.

Diaital Inout Procedure

The following procedure will read data from an input channel.

Step 1. Read the appropricte I/O register, BYTE: (60E)
BYTE (81H), BYTE (CGH), or BYTE (CIH).

Step 2. Test the bit corresponding to the desired channel. If
the bit is 0, the inout sianal is Lm-i; if the bit is I,
the inpu t s ianal is HIGH. :

- 95

Offset Cl Input/Output Port 3.

If programmed as an input r reading this location will transfer
the states of the bits of Port 3 to the data bus. If programmed
as.an output r writing to this location will transfer the contents
of the data bus to Port 3.

Offset C2

Offset.C3

Not Used

Port.2 r 3 Control.

This register controls the direction assigned to digital I/O
- ports 2 and 3. After assigning port direction r buffer direction

and enable must then be assianed at Offset 82 .8it assignment:s
are as follows: ~

Bit Function Conunents

7 Bit value is always l.
6 B'" vc.lue lS c.lways O.ll.

5 Bi.:.. value is always o._l.

4 Port 2 direction 1 = input; 0 = out.put.

3 Bo"" vc.lue is ah,-ays O.ll.

2 Bit value is always O.

1 Port 3 direction 1 = input; 0 = output.

0 B·L. value lS always o.ll.

Note: Due to he.rd·,.;are restrictions r Ports 0
configured before Ports 2 and 3 can be used even
are not used. -

e.nd 1 must: be
if Ports 0 and 1

Offset 82 Buffer Direction and Enable.

This location controls the direction and enabling for the Hod
ule (s input/output buffers. Before setting buffer direction,
port direction must be set at Offset 83 for ports a and I, and at
Offset C3 for ports 2 and 3. The format of the Buffer Direction
and Enable register is as tollows:

Bit

7
6
5
4
3
2

-I
o

Offset 83

Function

Direction 3
Direction 2

'Enable 3
Enable 2 .'
Direction 1
Direction a
Enable 1
Enable a

Port 0, 1 Control.

Comments

Direction Bits:
o = input.
1 = output

. Enable Bits:
o = enabled
1 = disabled

This register controls the direction assigned to digital I/O
ports 0 and 1. After assigning port direction, buffer direction
and enable must· then be assianed at Offset 82. Bit assignments
are as follows: -

Bit

7
6
5

Q

4

3
2

1

0

Function Comments

B· ... value is always 1.l,-

Bit value is always O.
Bit value is always o:

Po!:'t a direction 1 = input; a = ou:'::'..:'":. ..

Bit value is always O.
Bit value is always a.

Port 1 direction 1 input; a = cut::lt.:t.

Bit value is clways a.

Offset 84 - Offset BF Not Used

Offset CO Input/Output Port 2.

If programmed as an in9ut, reading this location will t::-e.nsfe!:'
the s ta tes 0 f the bits 0 f Pori: 2 to the data bus. I f programmed
as an output, writing to this location will transfer the coni:ents
of the data bus to Port 2. 87

.... !,.

Carrier· 1.0. Bits

43210

11011

1 1 101

Carrier Type

PCI-20001C-1A . Plug-in Modules. No on-
board Digital I/O.

PCI-20001C-2A Plug-in Modules. On-board
Digital I/O.

Offset 01, - Offset 03F Not Used

Offset 40 Module Interrupt Status.

Reading this register will return the state
from each of the three Modules plugged into
meanings of the status bits is specific to
generally a state of "0" indicates that some
cance has occurred on the Module in auestion.
byte returned is as follows: -

Bit Function

7 Interrupt Status, Module 1
6 Interrupt Status, Module 2
5 Interrupt Status, Hodule 3

4 - 0 Not Used

of the IRQO line
the Carrier. The
each Module, but
event of signifi
The format of the

Offset 41 - Offset iF Not Used

Offset 80 Input/Output Port o.

I f programmed as an input, reading this res is ter ;.·;ill trans fer
the states of the bits of Port 0 to the data bus. If pr'::;>grammed
as an output, writinG to this reaister will transfer the contents
of the data bus to Por~ O. ~

Offset 81 Input/Output Port 1.

I f programmed as an input, reading· this location will tr2.ns fer
the states of the bits of Port 1 to the data bus. If programmed
as an output, writing to this location will transfer the contents
of the data bus to Port 1.

Register Offsets

All register addresses are expressed in hexadecimal, and are
shown below as offsets from the Carrier's base address. To
determine the absolute addresses of these registers in the com
puter's memory space, refer to the Carrier Addressing section
above, and to the Programmimg Notes below.

Carrier Register Offsets

Register
Offset

Function (Read/Write)

C3 Control ports 2 , 3 (W)
C2 Not Used
C1 Digital I/O port 3 (R/'d)
CO Digital I/O port 2 (Rjw)
BF - 84 Not Used
83 Control ports 0, 1 (i~)

82 Buffer direction and enable (R/'r'i)
81 Digital I/O port 1 (R/~'1)
80 Digital I/O port 0 (R/W)
7F - 41 Not Used
40 Module interrupt status (R)
3F - 01 Not Used
00 Carrier I. D. ; module present (R)

A detailed description of the function of each register follows:

Offset 00 Carrier 1.0.; Module Present.

Reading this register returns the Carrier I. D. in the lo·,.;-order
five bits, and the three Module Present bits in the up~er Lhree
bi ts . A" 0" in a t10dule Present bit indicates that 2. ~oc.ule

is plugoed into the corresDondina slot on the C2.rrier. The
format of the register is as -follow~:

Bit Function Comments

7 ~!odul e 1 Present }!odule is prese,,:'
6 l-!odule 2 Present only if b' .. vc.lL:elI.-

S Eodule 3 Present is 0

4 Carrier 1. D. b· ... 4 I
lol- I

3 Cc.rrie:::- 1. D. bit 3 I See bela'..... ft"'\.,.-
I ~-

2 Cc.rrier 1. D. bit 2 I Carrier typesI

1 Carrier 1. D. bit 1 I
I.

0 Carrier 1. D. bit 0 Value is always 1

8<1

The 8086 microprocessor family addresses memory using a' 16-bit
~EGMENT register in conjunction with a l6-bit OFFSET to specify a
20-bit ADDRESS, as follows:

ADDRESS = SEGMENT * 16 + OFFSET

Therefore, in the above examole, the 20-bit absolute address of a
Module's register, which wai calculated to be C0203 (Hex), could
be expressed by a programming language as

SEGMENT COOO:OFFSET 0203

Following are some Carrier and Instrument Module addressing
examples. Note that Carrier ~2, with its switches set to a base
address of C0400 (Hex), is ·shown with two different ",;ays for a
program to address it; one way is with the SEGMENT e.ddress at
COOO (Hex), and the other is with the SEGMENT address e.t CO";O
(Hex). It does not matter how the address specification is
divided between SEGMENT and OFFSET, as long as the SEGl'fENT is
evenly divisible by 16 (or 10 (Hex))--the choice is up to the
programmer.

Carrl.'e_r =.','1 (~dd 't 'h ~ t COOOO)_ __ ress SWl. c es se\.. 0

Carrier
Base Addr~ss

Hodule 1
Block .A,ddress

Module 2
Block .A.ddress

Module 3
Block Address

SEGNENT

COOO

OFFSET

000 100 200 300

Carrier #2 (Address switches set to C0400)

Carrier
Base Address

Hodule 1
Elock }l..dc:-ess

Module 2
Block _u_ddres s

Module 3
Bloc k }l..cic:-e~ s

SEG.L1ENT

cooo

C040

or

OFFSET

400

000

sao

100

90

600

200

700

300

APPENDIX C

CONTROLLER PARAMETERS LISTING

Below is a list of all the addressable controller parameters. Information
about the parameter register, its conversion between engineering units and
counts, its initial value etc. is given here exactly in the format accessed by the
program. This is stored in the array PARAMETERS (see 6.1 - sccsetup) at start
up. The different fields are:

REG:

SCALE:

#BYTE:

register on the controller where the parameter is stored.

scaling factor for units-counts conversion

number of bytes the parameter occupies on the controller. Values

from 1-7.

1- Upper byte of register.

2- Upper &lower bytes of register.

3- Upper byte of register + both bytes of immediately preceding register, reg-1

4- Both bytes of register and of preceding register (reg-1).

5- Both bytes of register + Lower byte of preceding (reg-1).

6- Lower byte of register.

7- Upper byte of register multiplied by mask (bit#).

BIT#: for parameters governed by bits in a single register, this provides a

mask to isolate the relevant bit number.

EQTYP: units-counts conversion equation number. Values from 1-6.

1. V# = U#*scale

91

2. V# = scale/U#

3. V#= U#

4. V# = (U#*scale - offset) * slope

5. V# = U# * slope.

6. V# = U# * scale * slope

V# =engg. units U# =counts scale =scaling factor offset =offset from zero

slope = slope of tuned signal.

NOTE: The values of offset and slope are from the controlling feedback
(feedback in) and CANNOT be used to convert the non-controlling (MONITOR)
feedback- a separate offset and slope are read in for the non-controlling feedback
when tuned. Currently, tuning is only possible using the TS&S software where the
values are: slope = (d5-d3) / (d6-d4) where d3, d4, d5 and d6 are the feedback
values in engg. units (physical 1 &2 - d3 and d5) and counts (del values 1 &2 - d4
and d6) in the TS&S calibration utility (Function key F9 from the main TS&S
menu) offset is the value of d4 (count 1) when d3 (physical 1 is at zero).

XPOS:

YPOS:

row position on screen1

column position on screen 1

NAME: name of paramet~

INI'lVAL: initialization value when rebooting.

REG SCALE #BYTE BIT# EQTYP XPOS YPOS NAME INI'lVAL

139

153

238

148

1

1

1

1

2

2

2

1

o 4

o 4

o 5

255 3

92

o

o

o

o

o

o

o

o

COMMAND" 0

"FEEDBACK" 0

"ERROR" 0

"STATUS" 0

mill SCALE #BYTE mn EQTYP XPOS YPOS NAME INITVAL

150 1 7 BIT7 3 0 0 "WAVEFORM" 0

150 1 7 BITS 3 0 0 "RUNMODE" 0

150 1 7 BIT3 3 0 0 "INTTYPE" 0

152 1 2 0 4 0 0 "SETPOINT" 0

223 1 2 0 5 0 0 "AMPLITUDE" 0

222 50382. 3 0 2 0 0 "HAVERTIME" O·

222 9.9x10·6 3 0 1 0 0 "FREQUENCY" 0

158 0.0051 4 0 6 0 0 "VELOCITY" 0

160 1.3021 4 0 6 0 0 "ACCl" 0

219 1 3 0 1 0 0 "COUNT SET" 0

220 1 5 0 1 0 0 "COUNT NOW" 0

255 0.00153 2 0 1 0 0 "PGAIN" 0
,

254 0.00153 2 0 1 0 0 "I GAIN" 0

253 0.00153 2 O. 1 0 0 "DGAIN" 0

249 0.00153 2 0 1 0 0 "CPE" 0

252 0.185 2 0 1 0 0 "lOOP FREQ" 0

252 0.185 2 0 1 0 0 "FDBK FREQ" 0

251 0.392 2 0 1 0 0 "HIPASS GN" 0

161 0.625 1 255 1 0 0 "MAX FLOW" 0

251 1 2 0 1 0 0 "AREA" 0

250 0;625 2 0 1 0 0 "lAP" 0

250 0.625 2 0 1 0 0 "SV BIAS" 0

164 1 1 255 1 0 0 "INTTHRSH" 0

93

REG SCALE #BYTE BIT# EQTYP XPOS YPOS NAMEINITVAL

149 1 6 BIT5 3 0 0 "SERVO +/-" 0

149 1 6 BIT4 3 0 0 "INPT1 +/-" 0

149 1 6 BIT3 3 0 0 "INPT2 +/-" 0

149 1 6 BIT1 3 0 0 "FDBK IN" 0

150 1 1 BIT1 3 0 0 "LOOP STAT" 2

143 1 2 0 4 0 0 "MONITOR 0

205 1 7 BIT5 3 0 0 "FDBK MODE 0

201 1 6 255 1 0 0 "FDBCK Pia" 0

241 1 2 0 4 0 0 "FDBCK HI" 10.0

244 1 2 0 4 0 0 "FDBCK La" 0

149 1 1 BIT4 3 0 0 "FBK HI STAT" 0

149 1 1 BIT1 3 0 0 "FBK La STAT" 0

205 1 7 BIT3 3 0 0 "MaN MODE" 0

201 1 1 255 1 0 0 "MaN Pia" 0

242 1 2 0 4 0 0 "MaN HI" 0

243 1 2 0 4 0 0 "MaN La" 0

149 1 1 BIT3 3 0 0 "MaN HI STA" 0

149 1 1 BIT2 3 0 0 "MaN La STA" 0

205 1 7 BIT? 3 0 0 "ERR MODE" 0

200 1 6 255 1 0 0 "ER Pia" 0

240 1 2 0 5 0 0 "ABS ERROR" 10

240 1 2 0 5 0 0 "ERROR HI" 0

149 1 1 BIT5 3 0 0 "ERR HI STAT" 0

149 1 1 BIT5 3 0 0 "ERR HI STAT" 0

94

PARAMETER nEF~NITIONS

This section defines the function and location of the user
accesable parameters. Parameters range in size from one bit
to 32 bits. Parameters with sizes greater than 16 bits
require two write cycles to the DCL. For read / write
parameters, an example w~ITE BLOCK is shown. For read only
parameters, an example READ BLOCK is shown. Any parameter
can be read using the READ parameter defined in the
following section.

Definitions of terms used in this section:

nata range - Maxi~um and minimum values for each parameter

DeL address - Current address setting of the DeL via switch
settings or software override

~arameter size - Number of bits in this parameter

Data type - Defines the parameter as read only or read /
write

Data format - Par~~eter formats are defined as follows:

A) Unsigned binary - Natural binary in the
range of 0 to 255 for 8 pit data, 0 to
65535 for 16 bit data, 0 to 16777215 for 24
bit data and 0 to 4294967295 for 32 bit
data.

B) signed binary - The uppermost bit of the
parameter is used as the sign bit for
simplicity (Not 2's complement). A 10 1

represents a positive nUmber and a III

signifies a negative number. Since the
uppermost bit is used for sign, the range is
-127 to +127 for·8 bit data and -32767 to
+32767 for 16 bit data. No 24 or 32 bit
signed pa~a~eters are used.

Parameter scaler - Many parameters need a conversion factor
----- to convert engineering units to binary to

load or read DCL parameters. Divide the
engineering units by the scaler to obtain
the proper binary number to send to the
DeL. Multiply the binary n~uber received
from the DeL by the scaler to obtain the
engineering units.· When converting to
binary, truncate the fractional portion
of the result •

.~5

SETPOINT - Address 152 '(09SH)

The SETPOINT has different uses depending on the profile
type currently selected.

Profile type

Ramp
Haversine
Sine

Use of setpoint

Defines the endpoint
Defines the endpoint

,Defines the mean level

Parameter size - 16 bit
Data type - Read / write
Data format - Unsigned binary
Data range - 0 to 65535
Parameter scaling - None

Example WRITE BLOCK:

Byte 1 - 240 (OFOR) + DeL address
Byte 2 - 152 (098R) - Register address for SETPOINT
Byte 3 - SETPOINT MSB data
Byte 4 - SETPOINT LSB data
Byte 5 - Checksum

FEEDBACX - Address 153 (099H)

The FEEDBACK parameter contains the actual feedback sensor
value.

Parameter size - 16 Bit
Data type - Read only
Data format - Unsigned binary
Data range - 0 to 65535 (Depending on type of sensor)
Parameter scaling - None

Example WRITE BL.QCK:

Byte 1 - 240 (OFOR) + DCL address
Byte 2 - 153 (099E) - Register address for FEEDBACK
Byte 3 - FEEDBACK MSB data
Byte 4 - FEEDBACK LSB data
Byte 5 - Checksum

COUNTER - Address 219 (ODBH) LSB
Address 220 (ODCH) MSB,LSB

COUNTER is the actual number of cycles completed when the
sine profiler is active.

Parameter size - 24 Bit
Data type - Read only
Data format - Unsigned binary
Data range - 0 to 8388607

Example WRITE BLOCK (two are required):

Byte 1 - 240 (OFOR)
Byte 2 - 155 (09BH)
Byte 3 .- 219 (ODBH)
Byte 4 - 0
Byte 5 - Checksum

+ DeL address
- Register address for READ

Read COUNTER (Upper· 8 bits)

The DeL response to ·the above WRITE BLOCK is a READ BLOCK ~s
follows: /

Byte 1 - 128 (080H) + DCL address
Byte 2 - 219 (ODBH) - COUNTER data being read
Byte 3 - XXX (OXXH) - Ignore this byte (Except for checksUl'11)
Byte 4 - COUNTER (Highest 8 bits)
Byte 5 - Checksum

Second WRITE BLOCK:

Byte 1 - 240 (OFOH) + DCL address
Byte 2 - 155 (09BH) - Register address for READ
Byte 3 - 220 (ODCH) - Read COUNTER (Lower 16 bits)
Byte 4 - 0
Byte 5 - ChecksUl'11

The DCL response to the ~ove WRITE BLOCK is a READ ELOC~ as
follows:

Byte 1 - 128 (080H) + DCL address
Byte 2 - 220 CODeR) - COUNTER data being read
Byte 3 - COUNTER (Middle 8 bits)
Byte 4 - COUNTER (Lowest 8 bits)
Byte 5 - Checksum

---- - -----------~--

INTEGRATOR TIMER ----- Address 164 (OA4H) HSB
INTEGRATOR THRESHOLD ~ Address 164 (OA4H) LSB

The DeL Integrator has a 'Smart' mode which allows
integration to be used only when required to eliminate the
overshoot and instability commonly found when using
continous integrators. The INTEGRATOR TIMER adjusts the
minimum time between Integrator ON / OFF and OFF / ON
cycles. The INTEGRATOR THRESHOLD sets maximum velocity at
which the integrator will operate.

INTEGRATOR TIMER
-------~------------------- .

Parameter size: 8 Bit
Data type: Read / write
Data format: unsigned bin.
Data range: 0 - 765 illS

Parametter scaling: 3. 000

Example 'WRITE BLOCK:

INTEGRATOR THRESHOLD

Parameter size: 8 Bit
Data type: Read / write
Data format: Unsigned bin.
Data range: 0 - 765 bits/ms

Parameter scaling: 3.000

Byte 1 - 240 (OFOR) . DeL address
Byte 2 - 164 (OA4H) - Reg. address for INTEGRATOR TIMER and

INTEGRATOR THRESHOLD
Byte 3 - INTEGRATOR TIMER data
Byte 4 - INTEGRATOR Th~SHOLD data
Byte 5 - Checksum

RAVERSINE TIME - Address 221 (ODDR) MSB,LSB
Address 222 (ODEH) MSB

HAVERSINE TIME sets t~e haversine endpoint to endpoint time.

Parameter size - 24 Bit
Data type - Read / Write
Data format - Unsigned binary
Data range - 0 to 330 seconds
Parameter scaling - 0.00001984835

Example WRITE BLOCX:

Byte 1 - 176 (OBOE) + DCL address
Byte 2 - 221 (ODDH) - Register address for upper 16 bits of

HAVERSINE TIME
Byte 3 - HAVERSINE TIME (Highest 8 bits)
Byte 4 HAVERSINE TIME (Middle 8 bits)
Byte 5 - Checksum

Byte 1 - 224 (OEOR) + DeL address
Byte :2 - 222 (ODEH) - Register address for lower 8 bits of

Byte
HAVERS INE--;!'IME

3 - HAVERSINE TIME (Lowest 8 bits)
Byte 4 - 0
Byte 5 - Checksum ')8

RAMP VELOCXTY - Address 157 (09DR) MSBfLS~

Address 158 (09ER) MSB,LSB

RAMP VELOCITY is used when the ramp profiler is active.

Parameter size - 32 Bit
Data type - Read / write
Data format - Unsigned binary
Data range - 0 to 21845000 bits/second
Parameter scaling - 0.0050862

Example imiTE BLOCK:

Byte 1 - 176 (OBOH) + DCL address
Byte 2 - 157 (09DH) - Register address for upper 16 bits of

~..MP VELOCITY
Byte 3 - RAMP VELOCITY (Highest 8 bits)
Byte 4 - RAMP VELOCITY (Upper middle 8 bits)
Byte 5 - Checksum

Byte 1 - 224 (OEOH) + DCL address
Byte 2 - 158 (09EH) - Register address for lower 16 bits of

R..~':I:P VELOCITY
Byte 3 - RAMP v""ELOCITY (Lower middle 8 bits)
Byte· 4 - RAMP v""ELOCITY (Lowest 8 bits)
Byte 5 - Checksum

RAMP ACCE~RATION - Address 159 (09FH) MSB,LSB
Address 160 (OAOH) KSB,LSB

RAMP ACCELE~.TION is used when the ramp profiler is active.

Parameter size - 32 Bit
Data type - Read / Write
Data format - Unsigned binary 2
Data range - 0 to 5592348066 bits/second
Parameter scaling - 1.30207

Example WRITE BLOCK:

Byte 1
Byte 2

Byte 3
Byte 4
Byte 5

- 176 (OBOH) + DeL address
- 159 (09FH) - Register address for upper

R..~':I:P ACCELERATION
- RAMP J\~_CELERATION (Highest 8 bits)
- RAMP ACCELERATION (Upper middle 8 bits)

Checks\L.'1t

16 bits of

'--

Byte 1 - 224 (OEOH) + DeL address _
Byte 2 - 160 (OAOH) - Register address for lower 16 bits of

R~~P ACCELERATION
Byte 3 - RAMP ACCELERATION (Lower middle 8 bits)
Byte 4 - RAMP ACCELERATION (Lowest 8 bits)
Byte 5 - Checksum ~9

AKP~lTUDE - Address 223 (ODFE)

When the sine profiler is active, AMPLITUDE is the peak (not
peak to peak) amplitude for the sine.

Parameter size - 16 Bit
Data type - Read / Write
Data format - Signed binary
Data range - -32767 to +32767

Example WRITE BLOCK:

-Byte 1 - 240 (OFOH) + DCL address
Byte 2 - 223 (ODFH) - Register address for AMPLITUDE
Byte 3 - AMPLITUDE MS3 data
Byte 4 --AMPLITUDE 1$3 data
Byte 5 - Checksum

FREQUENCY - Address 22l(ODDE:) MSB,!.SB
Address 222 (ODEE) MSE

FREQUENCY is used for the sine profiler.

Parameter size - 24 Bit
Data type - Read / Write c
Data format - Unsigned binary
Data range - 0 to 80 hz
Parameter scaling - 0.0000099341

Example WRITE BLOCK:

Byte 1 - 176 (OBOH) + DeL address
Byte 2 - 221 (ODDE) - Register address for upper 16 bits of

:~QUENCY

Byte 3 - FREQUENCY (Highest 8 bits)
Byte 4 - FREQUENCY (Middle 8 bits)
Byte 5 - Checksw~

Byte 1 - 224 (OEOH) + DCL address
Byte 2 - 222 (ODER) - Register address for lower 8 bits of

FREQu'LNCY
Byte 3 - FREQUENCY (Lo~est 8 bits)
Byte 4 - 0
Byte 5 - Checksum

\00

COUNTER BET - Address 218 (ODAH) MSB,LSB
Address 2~9 (ODBR) MSB

COUNTER SET selects the number of cycles to run when the
sine profiler is active.

Parameter size - 24 Bit
Data type - Read / write
Data format - Unsigned binary
Data range - 0 to 8388607

- 224 (OEOH) ~ DCL address
- 219 (ODBR) - Register address for COUNTER SZT

(I..Qwer B bits)
- COUNTER SET (Lowest 8 bits)
- 0
- Checksum

Byte 3
Byte 4
Byte 5

Byte 1
Byte 2

Byte 3
Byte 4
Byte. S

Example WRITE Btoc~ (~~O are required):

Byte 1 - 176 (OBOR) + DCL address
Byte 2 - 218 (OD&~) - Register address for the upper 16 bits'

of COUNTER SET
- COUNTER SET (Highest 8 bits)
- COUNTER SET (Middle 8 bits)
- Checksum

FLOW LIMIT -Address 15~ (OA1E) HSB

FLOW LIMIT sets the maximum possible servovalve spocl
displacement.

Parameter size - 8 Bit
Data type - Read / Write
Data format - Unsigned binary
Data range - 0 to 100 %
Parameter scaling - 0.625

Example h~ITE BLOCK:

Byte 1 - 224 (OEOE) + DCL address
Byte 2 - 161 (OAlH) - Register address for FLOW LIMIT
Byte 3 - FLOW LIMIT DATA
Byte. 4 - 0
Byte 5-=- Che-cksum

I t) \

OPEN LOOP - Address 203 (OCBH)

OPEN LOOP sets the servovalve spool position when the
control loop is set to OPEN.

Parameter size - 16 Bit
Data type - Read / write
Data format - Signed binary
Data range - -100 to 100 %
Parameter scaling - 0.0048828125

Example WRITE BLOCK:

Byte 1 - 240 (OFOR) + DCL address
Byte 2 - 203 (OCBH) - Register address for OPEN LOOP
Byte 3 - OPEN LOOP MSB data
Byte 4 - OPEN LOOP LSB data
Byte 5 - Checksum

CO~ - Address 139 (08BH)

COMMAND is the actual servo command entering the sU!i1.-rning
junction of the closed loop controller.

Parameter size - 16 Bit
Data type - Read only
Data format - Unsigned binary
Data range - 0 to 65535

EXanlple WRI1'E BLOCK:

Byte 1 - 240 (OFOE) + DeL address
Byte 2 - 155 (09BE) - Register address for READ
Byte 3 - 139 (OBBE) - Read COMMAND
Byte 4 - 0
Byte 5 - Checksum

~ha DeL response to the above WRITE BLOCK is ~ READ BLOCK as
follows:

Byte 1 - 128 (OaOH) + DCL address
Byte 2 - Address of DCL register being READ
Byte 3 - COMMAND MSB data
Byte 4 - COMMAND LSB data
Byte 5 - Checksum

IO;l..

FOLLOWING ~RROR - Address 238 (OEEH)

FOLLOWING ERROR is the actual difference between the COMMAND
and FEEDBACK.

Parameter size - 16 Bit
Data type - Read only
Data format -'Signed binary
Data range - -32767 to 326767

Exam.p1e iiRI'rE BLOCK:

Byte 1 - 240 (OFOR) T DeL address
Byte 2 - 155 (09BH) - Register address for READ
Byte 3 - 238 (OEER) - Read FOLLOWING ERROR
Byte 4 -·0 .
Byte 5 - Checksum

'rhe DCL response to the above nRITE BLOCK is a READ BLOCK as
follows:

Byte 1 - 128 (OaOH) + DeL address
Byte 2 - Address of DeL register being READ
Byte 3 - FOLLOWING EP~OR MSB data
Byte 4 -FOLLOWING ERROR LSB data
Byte 5 - Checksum

\ 0 3

PROPORTIONAL GAlN- Address 255 (OFFH)

The PROPORTIONAL GAIN is the main gain control used in the
closed loop control equation.

Parameter size - 16 Bit
Dat~ type - Read / write
Data format - Unsigned binary
Data range - 0 to 100%
Parameter scaling - 0.001525902

Ex~ple WRITE BLOCK:

Byte 1 - 240 COPOn) + DeL address
Byte 2 - 255 (OFFli) - Register address for PROPORTIONAL GAIN
Byte 3 - PROPORTIONAL GAIN MSB data
Byte 4 - PROPORTIONAL GAIN LSB data
Byte 5 - Checksum

INTEGRAL GAIN - Address 254 (OFEE)

The INTEGRAL GAIN is the offset compensator term used in the
closed loop control equation.

Parameter size - 16 Bit
Data type - Read / Write
Data format - Unsigned binary
Data range - 0 to 100%
Parameter scaling - 0.001525902

Example WRITE BLOCK:

Byte 1 - 240 (OFOH) + DeL address
Byte 2 - 254 (OPEn) - Register address for INTEGRAL GAIN
Byte 3 - INTEGRAL GAIN MSB data
Byte 4 - INTEGRAL GAIN LSB data
Byte 5 - Checksum

DERIVITIVE GAIN - Address 253 (OFDH)

The DERIVITIVE GAIN is the high speed damping term used in
the closed loop control equation.

Parameter size - 16 Bit
Data type - Read / Write
Data format ~ Unsigned binary
Data range - 0 to 100%
Parameter scaling ~ 0.001525902

Example WRITE BLOCK:

Byte 1 - 240 (OFOR) DCL address
Byte 2 - 253 (OFDH) - Register address for DERIVITIVE GAIN
Byte 3 - DERIVITIVE GAIN MSB data
Byte 4 - DERIVITlv~ GAIN LSB data
Byte 5 - Checksum

FEEDBACK FILTER - Address 252 (OFCH) MSE
FORWARD FILTER -- Address 252 (OreE) LSB

The FEEDBACK FILTER sets the cutoff frequency for the
feedback sensor before the summing junction. The FORWARD
FILTER sets the cutoff frequency in the forward loop after
the summing junction. setting a filter to 0 bypasses the
filter.

FEEDBACK FILTER

Parameter size - 8 Bit
Data type - Read / Write
Data format - Unsigned bin.

Data range - 0 to 47.1 hz
Parameter scaling - 0.184894

Example WRITE BLOCK:

FORWARD FILTER

Parameter size - 8 Bit
Data type - Read / write

Data format - Unsigned bin.
Data range - 0 to 47.1 hz

Parameter scaling - 0.184894

Byte 1 - 240 (OFOR) + DCL address
Byte 2 - 252 (OFCH) - Register address for FILTERS
Byte 3 - FEEDBACK FILTER data
Byte 4 - FORWARD FILTER data
Byte 5 - Checksum

105

GAIN RATIO Address 251 (OFBH) HSB
FEEDBAD::lEAD- Address 251 (OPBR) LSB

The GAIN RATIO provides compensation when single ended .
actuators are used. The FEEDBACK LEAD allows an additional
damping signal to be superimposed on the feedback signal at
the summing junction. Setting either parameter to 0 will
bypass the parameter.

GAIN RATIO

Parameter size - 8 Bit
Data type -·Read / write
Data format - Signed bin.

Data range - +/- 100 %
Parameter scaling - 0'.787402

Example WRITE BLOCK:

FEEDBACK LEAD

Parameter size - 3 Bit
·Data type - Read / Write
Data format - Unsigned bin.
Data range - 0 to 100 %

Parameter scaling - 0.392156

Byte 1
Byte 2
Byte 3
Byte 4
Byte 5

- 240 (OFOE) + DCL address
251 (OFBH) - Reg. address

- GAIN RATIO data
- FEEDBACK LEAD data
- Checksum

for G. RATIO & F. LEAD

BIAS ---- Address 250 (OFAR) MSB
OVERLAP r- Address 250 (OF1I1i) LSB

The BIAS parameter has the same effect as the mechanical
null adjust on the servovalve. The overlap parametey can be
used to compensate for an overlap condition on a no~
standard servovalve.

BIAS

Parameter size - 8 Bit
Data type - Read / write

Data format - Signed bin.
Data range - +/- 100 %
Parameter scaling - 0.787402

Example WRITE :BLOCK ~

OVERLAP

Parameter size - 8 Bit
Data type - Read / Write

Data format - Unsi;ned bin.
Data range - 0 to 100 %

Parameter scaling'- O.7S7402

Byte 1
Byte 2
Byte 3
Byte. 4
Byte 5

- 240 (OFOH) + DeL address
- 250 (OFAR) - Register address for BIAS & O\~R~.P

BIAS data
- OVERLAP data
- Checksum

\Ob

CPE - Address 249 (OF9H)

CPE adjusts the closed loop system following error.

Parameter size - 16 Bit
. Data type - Read / write

Data format - Unsigned binary
Data range -.0 to 100%
Parameter scaling - 0.001525902

Example WRITE BLOCl:

Byte 1 - 240 (OFOH) + DCL address
Byte 2 - 249 (OF9H) - Register address for CPE
Byte 3 - CPE MSB data
Byte 4 - CPE LSB data
Byte 5 - Checksum

LIMIT 1 - Address 244 (OP4H)

LIMIT 1 is the threshold for the low outer feedback limit.

Parameter size - 16 Bit
Data type - Read / Write
Data format - Unsigned binary
Data range - 0 to 65535

Example WRITE BLOCK:

Byte 1 - 240 (OFOH) + DCL address
Byte 2 - 244 (OF4H) - Register address for LIMIT 1
Byte 3 - LIMIT 1 MSB data
Byte 4 - LIMIT 1 LSB data
Byte 5 - Checks~"

LIMIT 2 - Address 243 (OP3E)

LIMIT 2 is the threshold for the low inner feedback limit.

Parameter size - 16 Bit
Data type - Read / write
Data format - Unsigned binary
Data range - 0 to 65535

Example WRITE BLOCK:

Byte 1 - 240 (OFOH) + DCL address
Byte 2 - 243 (OF3H) - Register addres~ for LIMIT 2
Byte 3 - LIMIT 2 MSB data
Byte 4 - LIMIT 2 LSB data
Byte 5 - Checksum \01

LIMIT 3 - Address 242 (Or2H)

LIMIT 3 is the threshold for the high inner feedback limit.

Parameter size - 16 Bit
Data type - Read / write
Data format - Unsigned binary
Data range - 0 to 65535

Example WRITE BLOCK:

Byte 1 - 240 (OFOH) + DCL address
Byte 2 - 242 (OF2H) - Register address for LIMIT 3
Byte 3 - LIMIT 3 MSB data
Byte 4 LIMIT 3 LSB data
Byte 5 Checksum'

LIMIT ~ ~ Address 241 (OFlH)

LIMIT 4 is the threshold for the high outer feedback limit.

Parameter size - 16 Bit
Data type - Read / write
Data format - Unsigned binary
Data range - 0 to 65535

Ex~p1e WRITE BLOCK:

Byte 1 - 240 (OFOH) + DCL address
Byte 2 - 241 (OF1H) - Register address for LIMIT 4
Byte 3 - LIMIT 4 NSB data
Byte 4 - LIMIT 4 LSB data
Byte 5 - CheckstL."'L'l.

LIXIT 5 - Aedress 240 (OrOa)

LIMIT 5 is the threshold for the servo error limit.

Parameter size - 16 Bit
Data type - Read / Write
Data format - Unsigned binary
Data range - 0 to 65535

ExamplQ 'WRITE BLOCK:

Byte. 1 - 240 (OFOn) + DeL address
Byte 2 - 240 (OFOH) - Register address for LIMIT 5
Byte 3 - LIMIT 5 MSB data
Byte 4 - LIMIT 5 LSB data
Byte 5 - Checksum

lOB

The remainder of the DCL parameters are in bit form to allow
on-off selection of various functions. Bit 0 is the lowest
bit (2 0) and bit 7 is the highest (2 7). Since many on-off
functions exist in a given register, th~ 16 bits must be
read, modified and written back ensuring" that other on-off
parameters 'are not disturbed.

LIMIT STATUS - Address 149 (095H) MSB

Bit 0 of is set to a 'I' state when a transducer fault has
occured.

Bits 1 through 5 correspond to limits 1 through 5 as
described previously. Each bit is latched into a 'I' state
when the limit has been exceeded. Writing a '0' to the
approproiate bit position will clear 'the limit, provided
the fault no longer exists.

Bits 6 and 7 of LIMIT STATUS must be set to '0'.

Example WRITE BLOCK:

Byte 1 - 224 (OEOR) + DeL address
Byte 2 - 149 (095H) - Register address for LIMIT STATUS
Byte 3 - LIMIT STATUS
Byte 4 - 0
Byte 5 - Checksum ,

I/O POLARITY - Address 149 (095H) LSB

Bit 5 of I/O POLARITY sets the servovalve polarity. All
other bits must be set to 10'.

E~ample "RITE BLOCK:

Byte 1 - 240 (OFOE) + DeL address
Byte 2 - 149 (095H) - Register address for I/O POLA.."UTY
Byte 3 - 0
Byte 4 - I/O POLARITY
Byte 5 - Checksum

log

LOOP CONTROL - Address 150 (096H) MSB

Bits 7 and 6 select the type of waveform as follows:

Bit 7
1
1
o
o

:ait 6
1
o
1
o

Waveform
Sine
Direct
Haversine
Ramp

Bits 5 and 4 control the waveform as follows:

Bit 5
1
1
o
o

Bit 4
1
o
1
o

Action
Abort
Zero
Hold
Run

Bits 3 and 2 control the integrator as follows:

~it 3
1
1
o
o

Bit 2
1
o
1
o

Tv~e of integrator
Continous
Smart
Hold
None

100'0 status
Open
Closed

Bit 1 sets the loop ,status as follows:

B{t 1
o
1

Bit 0 must be set to '0 1 •

Example WRITE BLOCK:

Byte 1 - 224 (OEOH) + DeL address
Byte 2 - 150 (096n) - Register address for LOOP CONTROL
Byte 3 - LOOP CON7ROL DATA
Byte 4 - 0
Byte 5 - Checks~u

\ \ 0

VITA

Poulomi Damany, scheduled to be born on April 1, 1969, decided to fool
her parents, Drs. Bharat and Saroj Damany, and arrivea into this world (smiling up
to the moment the obstetrician smacked her bottom) a day later on April 2 at the
Civil Hospital in Ahmedabad, India, much to the relief of the above mentioned
doctor who hadn't slept in 36 hours on her account. "

She has managed to keep this sense of humor through ten years of a
convent education at the St. Annes' High School, Bombay, India (run by nuns
need I say more?) and fours years as one of four female EE majors thrown in with
a class of eighty-six Indian male chauvinists at the University of Bombay and two
years in the graduate program of the Electrical Engineering & Computer Science
department of Lehigh University (formerly an all-male school - pure coincidence).

Her future plans include back-packing through Europe, buying a car,
getting a job in the land of opportunity and end with sailing away into the sunset in
her all-payed for, fully-owned yacht.

	Lehigh University
	Lehigh Preserve
	1992

	A modular approach to designing software for real-time actuator control for destructive testing
	Poulomi Bharatkumar Damany
	Recommended Citation

	00233
	00234
	00236
	00237
	00238
	00239
	00240
	00241
	00242
	00243
	00244
	00245
	00246
	00247
	00248
	00249
	00250
	00251
	00252
	00253
	00254
	00255
	00256
	00257
	00258
	00259
	00261
	00262
	00264
	00266
	00267
	00268
	00269
	00270
	00271
	00272
	00273
	00274
	00275
	00276
	00277
	00278
	00279
	00280
	00281
	00282
	00283
	00284
	00285
	00286
	00287
	00288
	00289
	00290
	00291
	00292
	00293
	00294
	00295
	00296
	00297
	00298
	00299
	00300
	00301
	00302
	00303
	00304
	00305
	00306
	00307
	00308
	00309
	00310
	00311
	00312
	00313
	00314
	00315
	00316
	00317
	00318
	00319
	00320
	00321
	00322
	00323
	00324
	00325
	00326
	00327
	00328
	00329
	00330
	00331
	00332
	00333
	00334
	00335
	00336
	00337
	00338
	00339
	00340
	00341
	00342
	00343
	00344
	00345
	00346
	00347
	00348
	00349
	00350
	00351
	00352
	00353
	00354
	00355
	00356
	00357
	00358
	00359
	00360

