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Abstract

The vibrational problem arising III a high-speed cam-follower machinery IS

handled with a repetitive control scheme since a cam-follower system repeats the same

pattern of motion continuously. Repetitive control theory is an extension of learning
S\

control theory in the sense that it makes use of output errors in the previous repetition. It

also takes the changes in the state at the beginning of each repetition into consideration.

The design of a repetitive controller is achieved by applying adaptive control theory.

Also, optimal control theory is added to guarantee stability. The control algorithm is

applied to both the linear and the nonlinear portion of the cam-follower system. Due to

the strong nonlinearity of the entire cam-follower system, repetitive control has to be

modified to handle the tracking problem in a piecewise manner.



Chapter 1

Introduction

This thesis addresses problems concerning the control of a high-speed

cam-follower system. A cam-follower system, one of the most widely used mechanisms

in production machines, transforms rotational motion to linear back-and-forth motion.

When such a system performs a task at high speed, an increase in vibration is caused by

several features such as, the eccentric geometry of the cam, resonance between the

operation speed and the natural frequency of cam-follower body, the heavy load applied

to input and output of cam-follower system, and frame vibration caused by the power

source or other external disturbances.

Several investigations of such a high speed cam-follower system problem were

made through the analysis of vibrational behavior [1], study of flexibility of the cam and

the driving shaft [2,3], characterization of the vibration levels in the system [4], analysis

and synthesis of cam contours [5] and development of follower systems [1,6] Recently,

with the development of learning control theory by Longman and Phan [7~9], the

elimination of vibration in cam-follower system through this control theory was

developed by Chew, luang and Phan [10~12]. However, learning control theory is

confined to systems operating in the same environment with zero initial conditions at

every repetition. It is not suitable for a system performing continuous tasks with varying

initial condition due to vibrations that spill over from the previous repetition. To handle

the varying initial condition, this thesis extends the basic theory of learning control
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through the implementation of an adaptive control scheme [13~16] to control the

high-speed cam-follower system that operates continuously for repetitive tasks.

Learning control theory is developed for the systems like cams and robots

operating repetitive tasks. These systems will actually result in undesirable output

motions if a standard controller is used. The difference between the actual motion and the

desired motion is called tracking error. If the same conditions are given to the system for

every repetition, a precisely similar pattern of the tracking error will be generated. Such

characteristics of a repetitively operated system makes learning control an effective

candidate for eliminating the tracking error. Learning control makes extensive use of the

knowledge from the history of previous repetitions by measuring the outputs from inputs

in discrete time steps. However, since learning control considers only the relationship of

the outputs to the inputs, tracking error caused by changes in initial conditions cannot be

treated with learning control approach. This implies that the controller must wait until the

system return to the same initial condition after a task of a repetition.

In line with such control theory, this thesis utilizes a variation of learning control

called repetitive control by introducing the concept of repetition domain [13]. Repetitive

control has an advantage over learning control in regards to the application of initial

conditions for the system at each repetitions. Repetitive control, which can be applied to

any repetitively operated system, is independent of the changes of the initial conditions

because it takes the error in initial conditions into consideration. This enables the system

to operate repetitively without the wait, unlike learning control. The comparison of

repetitive control to learning control is summarized in Table 1.1.

3



Repetitive Control Learning Control

Time Domain Discrete Discrete

Repetition to Continuous One repetition process and stop,
Repetition start another

Initial Condition Varying Zero initial condition for all
of a Repetition repetitions

Control Gain Varying, obtained from system Constant, initially given
Matrix estimation

Stability Guaranteed for linear and Same as repetitive control, but
slightly nonlinear system more stable

Convergence Marginally converging, slower Marginally converging, faster

Table 1.1 Comparison of Repetitive Control to Learning Control

Repetitive control procedures are composed of three steps. First, the inputs and

the corresponding outputs are measured. Then, relationship between the inputs and the

outputs are formulated. This is called identification of the system. The final step is called

controller design, with information obtained through identification. Since a suitable

controller can only be developed from exact identification, it is necessary to supply

various inputs and measurements from corresponding outputs to help the controllers

identify the system. Generally, at least 3~5 repetitions are required for the controller to

identify the system correctly.

The model considered m this thesis is a single degree-of-freedom, lumped

parameter system with an constant sampling time interval, and consists of a motor, a cam,

and a follower. As the speed of a cam increases toward the natural frequency of the

follower-output system, the intermediate elements between the cam and output behave as

a flexible body, inducing residual vibrations even after the input command has stopped.

4



The role of repetitive control is to analyze the tracking errors, predict the error of the next

repetition and correct the input command for the next repetition to reduce the tracking

error. Such a procedure is conducted in real-time during the period of actuation of the

high-speed cam-follower system. The objective of this paper is to determine the motor

input command such that the motion of the output mass trajectory can be controlled

exactly as desired.

The basic outline of this thesis is as follows: Chapter 2 describes the

mathematical model of a high-speed cam-follower system. The profile of the cam and the

desired output path is presented as two different polynomials. In Chapter 3, a state space

expression of cam-follower system in discrete time in the repetition domain. An adaptive

control algorithm is introduced in Chapter 4 as the method for the identification of the

system. Also, the repetitive control scheme is presented and its simulations of the control

with and without disturbances are also presented. Nonlinearity occurs due to the

geometry of the cam in the relationship between cam rotation and its follower. Repetitive

control methods can not be directly applied to the entire cam-follower system owing to

this kinematic nonlinearity. In order to apply repetitive control method to handle such a

nonlinearity, the system is analyzed piecewise and repetitive control is applied to each of

the segments. This method, called piecewise repetitive control, is discussed in Chapter 5.
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Chapter 2

Modeling of Cam-Follower System

Mathematical modeling of the cam lift and desired output motion in the form of

polynomials are presented in this chapter along with the analysis of dynamic motions of

the follower system and the entire system. The motion of the follower system is expressed

as a linear differential equation, and that of the entire system as a nonlinear differential

equation.

Most cam-follower system models are made up of three basic components: the

driver (for this study, a direct current(DC) motor with proportional-derivative(PD)

controller is used as a driver), acam, and a follower as shown in Fig.2.1. The DC motor

(1), including a gear box, connects to a cam (3) through the cam shaft (2). The cam

contacts with a follower (4), which is connected to the output mass (6) through the

flexible link (5). We assume there is no friction between cam and follower. The output

mass is connected to the ground through a spring (8) and a damper (7). The modeling of

cam-follower-system is made under the following assumptions:

Assumption 1. The system is a single degree-of-freedom system with a single-input

and a single-output. Input is given as the angular displacement of motor

command to drive in entire system. Output is the displacement of the output

mass.

Assumption 2. The flexible link connected output mass is assumed flexible with

6
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Figure 2.1 Diagram of the Cam-Follower Nonlinear System
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Figure 2.2 Diagram of the Follower-Output Linear Subsystem
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No.1 Motor with Gear
motor torque constant
motor back emf
amateur resistance
amateur & gear inertia
cam inertia
gear ratio
amateur impedance
proportional controller gain
derivative controller gain

0.023 N-m/amp
0.0318 V-s/rad
3.7 Ohm
4.0 xl 0-6 N-ms2

1.0 x10-6 N-ms2

0.1
10 mh (neglected)
1.0x105

10.0

No.2 Cam Shaft ( regarded as rigid)
* 8c angular displacement

No.3 Cam
He maximum lift

*Ye lift of the cam
No.4 Follower

~ : follower mass
No.5 Flexible Link

Kr : shaft stiffness
No.6 Output Mass

M mass of output mass
*Y output mass displacement

No.7 Damper
c damping constant

No.8 Return Spring
K.., : return spring stiffness

No.9 Control Input
* 8 : angular input command

* indicates the system variable

rad

0.01 m
m

0.025 Kg

300 N/m

0.1 Kg
m

0.5 Kg/s

15N/m

rad

Table 2.1 Cam-Follower System Parameters & Variables
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stiffness K! Other elements, such as a cam shaft and a power source system are

assumed sufficiently stiff enough to be regarded as rigid. Thus any deviation of

output motion from ideal will be due to the flexibility of the flexible link.

Assumption 3. The effect of components weight on cam vibration is neglected, and

static preload of the return spring Sp is constant.

Assumption 4. Open track cam with flat follower surface shown in Fig.2.3 is used.

The net lift of the cam (ye = D -Rmin) is a function of angular displacement of

the cam ec and modeled as a 3rd degree polynomial

(2.1 )

where He is the maXimum net lift of the cam, D is horizontal distance from

cam axis to the follower and Rmm is the minimum radius of the cam.

Assumption 5. The desired output trajectory y* is function of ec and is selected as a

5th degree polynomial,

Y*/H = b + b e + b e2 + b e3 + b e4 + b e5
ole 2c 3c 4e 5e

where H is the maximum displacement of output mass.

(2.2)

• 4lr 9



Cam

D

Cam Lift Yc = D - Rmin

Follower

Flexible
Link

Yc

Distance from the Cam Center to the Force Action Line

dy
W=_c

de
C

Figure 2.3 Diagram of the Cam and Its Follower
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2.1 Trajectories of Cam and Desired Output

Both cam and desired trajectories are composed of four segments, such as Rise,

Dwell-I, Return and Dwell-2. shown as Fig.2A. The rise segment begins from 0° marked

'a' and finishes at 90° (point 'b') of cam angle 8e• Then the dwell-l segment starts from 'b'

and continues for 36°. The return segment starts at 126°(point 'c') and ends at 216° (point

'd'). Dwell-2 segment starts from the point 'd' and ends at 360°.

2.1.1 Polynomial of Cam Lift Trajectory

Modeling of the cam lift can be achieved by assigning appropriate values to the

unknown coefficients in Eq.(2.l) for each segments. Four unknowns ao ... a3 are found

from the following boundary conditions specified at both ends of each of the segments

at 8e = 0°(360°): ye=O, dye/d8e= 0 (2.2a)

at 8 = 90° Ye= He '. dye/d8e= 0 (2.2b)e

at 8 = 126° Ye= He' dye/d8e= 0 (2.2c)e

at 8 = 216° Ye= 0, dyJd8e= 0 (2.2d)e

where He is the maximum lift of the cam. With the first two conditions, the four

unknown coefficients in Eq.(2.l) can be determined for the 'rise' segments as ao = aj=O,

az= -0.5160 and a3=1.2158.

11



Repeating this procedure for the other segments, the polynomials for the cam lift

trajectory is determined. The plot of this trajectory is shown in Fig.2.4. The result of the

third degree polynomial for the cam lift trajectory is as follows:

Rise yc=He (-0.5160 8/+ 1.21588e
3

) (2.3a)

Dwell-1 Yc= He (2.3b)

Return Yc= He (-10.3680+ 12.83428e - 4.62028e
2 + 0.51608e

3
) (2.3c)

Dwell-2 Yc= 0 (2.3d)

2.1.2 Polynomial of Desired Output Trajectory

The polynomial of desired output motion is chosen such that the output mass

tracks a smoother path than that specified by the cam surface. This polynomial is

extended up to the 5th order given in Eq.(2.2). The boundary conditions for each ends of

the segments are :

at 8e = 0°(360°) : y*= 0 dy */d8 = 0 d2y*/d8/ = 0 (2.4a), e'

at 8 = 90° y*= H dy*/d8 = 0 d2y*/d8e
2 = 0 (2.4b)e , e'

at 8 = 126° y*= H dy*/d8 = 0 d2y* /d8 e
2 = 0 (2.4c)c , c'

at 8 = 216° y*= 0 dy*/d8 = 0 d2y*/d8c
2 = 0 (2.4d)c , c'

where H is the maximum static displacement of the output mass obtained from the

relationship between the stiffness of the follower shaft and that of return spring, as

12
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(2.5)

where Kfand K.\. represent the stiffness of the flexible link and return spring, respectively

and He is the maximum net lift of the cam.

Using the first six conditions for both ends of "rise" segment, six unknown

coefficients are obtained as bo = bl = b2 = 0, b3 =2.5801, b4 = 2.4648 and bs = 0.6274.

Using proper conditions for boundaries of each segment, the polynomials for the desired

output path are found. The results of 5th degree polynomial for the output displacement

in each segments are as follows.

Rise (2.6a)

Dwell-I: y* = H

Return : y* = H (118.3335 - 215.61568c +155.24048/ - 54.59548c
3

+ 9.36258c
4 -O.62748c

s )

Dwell-2: y* = 0

The plot ofthis polynomial is shown in Fig.2.5.

2.2 Dynamics of Cam-Follower System

(2.6b)

(2.6c)

(2.6d)

Two models from the cam-follower system are analyzed in this chapter. First, the

equation of motion of the follower system composed of a flexible link and an output

mass including a returning spring and a damper is presented. Next, dynamic equations of

the entire cam-follower system will be derived. The nonlinearity problem arises when

14



expressing the net cam lift Yc in terms of cam angular displacement 8e• This kinematic

nonlinearity causes the entire dynamic system to become highly nonlinear.

2.2.1 Dynamic Equation of Linear Follower-Output Subsystem

First, consider the follower system composed of the follower, the flexible link and

the output mass with a springs and a damper as shown in Fig.2.2. Cam lift Yc is regarded

as the system input and displacement y of output mass is the system output. According to

Newton's second law [17], dynamics of the linear follower-output subsystem can be

expressed as

(2.7)

where M is output mass, c is return spring damper, K.," is return spring constant and Kf is

cam shaft stiffness. Eq.(2.7) can be expressed in state space equation [18] as

x(t) =Aex(t) + Beu(t)

y(t) = C x(t)

(2.8)

where the state variables x(t) =[y(t) y(t)]T , the system input u =[Yc(t)] , and the matrix

C = [1 0] is the observation matrix. Since the system is assumed to be single degree of

freedom, the input u and the output y are scalar and state variable x is a column vector of

dimension (2x1). The system parameter matrices are



(2.9)

where the subscript 'c' of the parameter matrices Ae, Be means that these matrices

represent the parameters for the system in a continuous state space formulation.

2.2.2 Dynamic Equation of Cam-Follower System

The analysis of motion of the entire system shown in Fig.2.1 includes the

relationship of cam lift to cam angle and analysis of the DC-motor. The DC-motor is

equipped with a PD feedback controller with a proportional gain Kp and a derivative gain·"

Kif A gear box with gear ratio Ng is connected to the motor to reduce the system driving

speed. A total of four equations is required to describe this dynamic system. In this

system, the lift of the cam Yc is a function of a state variable 8e. The system input is the

motor command input 8 and output is the displacement of output follower y. We begin

the analysis with a mathematical modeling of the DC motor. The voltage drop across the

motor is

(2.1 0)

where 8 and 8m are the motor input command and the motor output angular displacement

respectively. Kp and Kd are the proportional and derivative gains respectively of the

DC-motor controller. Rm is resistance of the motor. Values of these parameters are given

16



in Table2.2. There is a gear box connecting the motor shaft to the cam shaft to increase

the torque to the cam. The relationship of the angular displacement of the cam to that of

the motor output shaft is given by

(2.11)

where em is angular displacement of the motor output shaft and ecis that of the cam

shaft. The amateur impedance L is small and can be neglected. Torque output from the

DC-motor to the system is given by

(2.12)

where Km is the motor constant. Jm and Jc are the inertias of amateur and the cam

respectively. The offset distance W from the rotational axis of the cam to the line of

action of the cam-follower contact force vector is dYe Idee as illustrated in Fig.2.2. Te is

the net torque that drives the linear system, and is given by

(2.13)

where Mr is the mass of the follower and Sp is the preload on the cam. Assume a new

operator representing the derivatives about ec

17



1= df II = d
2
f

d8 c ' d8~
(2.14)

According to the chain role, the second derivative ofYc about time can be expressed as the

derivatives about 8c as

.. _ d
2
yc _ .!!...(dYC d8 c ) _ 1/r:? Ie

Yc- dt2 - dt d8 c dt -Yc c+Yc c

So the Eq.(2.13) can be written as

(2.15)

(2.16)

where Yc is function of only 8c given by Eq.(2.3). Relationship between follower and

output mass is given in Eq.(2.8) as

(2.17)

Equations from Eq.(2.14) through Eq.(2.17) governs the dynamic motions of the motor

driven cam-follower system and will be used in the simulation for the piecewise repetitive

controls in Chapter 5. These equations are combined and expressed in nonlinear state

space form

where

x=Fc(x, u)

. . T . T
X = [ 8c 8eYe Yc] and u = [8 8 ]

18
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The system function is

where

fl =Sc
f2 = {Kp(Ng8 - 8c)+ KiNgS ~ Sc) - KbSc - RoTc }/Jo
f3 =y
f4 = {KjYc - cy - (Ks +Kf)y}IM

(2.20)

subscript "c" in Fe means above state space equations are described in continuous time.

Conversion of these continuous linear and nonlinear systems to the corresponding

discrete time format will be treated in the next chapter.

19



Chapter 3

System Equation in the Discrete Time Domain
and Estimation Parameters in the Repetition Domain

The repetitive control formulation will be cast in a discrete-time periodic system

model, where inputs and outputs are applied and measured at equally spaced sampling

times. To understand this characteristics of a discrete system model, the concept of

discrete time domain is introduced where the state of all the system variables are sampled

at the sampling time steps spaced with constant intervals.

The concept of repetition domain [13] is also introduced to help the design of the

repetitive controller. In the repetition domain, inputs and outputs of all steps in a

repetition are packed into a corresponding single column matrix, yielding a system

equation for a given repetition. With this system equation expressed in the repetition

domain, estimation of the system parameters and design of the controller can be achieved.

3.1 State Space Equations in Discrete-Time Domain

Discrete time domain is one where the time variable t is defined only when it is a

multiple of a sampling time interval t3.t. The time variable is expressed by integer steps

instead of continuous time in this domain. On the other hand, -in the continuous time

domain, time variable t is expressed as a real number and the state variables are available

at any instant of time t. Comparison of continuous time domain and discrete time domain

is given in Table 3.1.
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Since the repetitive control theory was developed for a discrete-time system, it is

necessary to convert the continuous-time state space equation, Eq.(2.8) and Eq.(2.20), to

the corresponding discrete-time equations in discrete time domain. Before carrying out

this conversion, the following assumptions need to be made:

Assumption 1. Sampling time interval I1t is constant.

Assumption 2. Input applications and output measurements are made only after each

sampling time.

Assumption 3. Period T of the Rise-Dwell-1-Retum-Dwell-2 motion of the

cam-follower system, is divided into p (integer) steps where p is chosen

sufficiently large enough so that the discrete system equation represent

output motion close to that of continuous equation.

Assumption 4. In discrete time domain, state variable xU) is expressed as x(k) where

t = kl1t (k=O, 1,2, ... ) (3.1 )

Assumption 5. A system equation in the discrete time domain is expressed as

x(k+1) = Adx(k)+Bdu(k)

x(k+1) = Fix(k), u(k))

linear system

nonlinear system

(3.2a)

(3.2b)

Assumption 6. The time rate change of input (du/dt)(=kt,( is zero between the

sampling time kl1t and (k+ 1)l1t, and the input command u(k) is constant over

the sampling interval.
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Discrete-Time Domain Continuous-Time Domain

Time Variables k(steps) (k=0, 1,2, ...) t(second) (t>0, real number)

State Variables x(k) x(t)

Period p (steps) (p integer) T(second) (7)0, real number)

State Space Eq.s x(k+1) = Fix(k),u(k)) x(t) = Fe(x(t),u(t))

Table 3.1 Continuous Time Domain and Discrete Time Domain

The conversion of a continuous linear system equation to a discrete-time system

[19,20] will now be made using the assumptions above. Consider the continuous-time

state space equation of the follower-output subsystem as

x(t) = Aex(t) + Be u(t) (3.3)

y(t) = Cx(t)

where A, ~ l-K:Kj _~ l B, ~ l~ Jand C = [1 0]. A" B, are system parameter

matrices, and C is the system observation matrix. To obtain the discrete-time system

equation, integrate Eq.(3.3) with respect to time t from kM to (k+ 1)~t as

11/

x((k+ 1)~t) = eAct1t x(kM)+ J eAcTBcu('r)dr
.=0

(3.4)

In the integration of Eq.(3.4), uCr) remains constant during the integration, in accordance

to the assumption 6. Thus, Eq.(3.4) can be written as
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/11

x((k+1)L\t) = eAcD.tx(kL\t) + f eAc'tBcdru(kL\t)
T=O

(3.5)

Eq.(3.5) yields a discrete-time state space equation of the follower-output system in the

discrete time domain as

x(k+1) = Ad x(k) +Bd u(k)

y(k+l) = Cx(k+l)

/11

where A
d
= eAcD.t, B

d
= f eActBcdr and C = [1 0].

T=O

(3.6)

(3.7)

Next, consider the conversion of the nonlinear continuous-time system given by

Eq.(2.18) through Eq.(2.20) to discrete-time system. Due to the nonlinear relationship

between the cam lift and the angular displacement of the cam, there is no analytic

approach to convert it from continuous-time to the discrete-time. Integrate Eq.(2.18) with

respect to time t from kL\t to (k+1)t, assuming that the time rate change of the input

(du/dt)t=k/1'=O and uC-r) is constant over the integration range (Assumption 6). The

integration gives the discrete-time solution to the nonlinear system equation expressed as

x(k+l) = Fd (x(k),u(k))

y(k+l) = Cx(k+l)

23
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Since the integration of the nonlinear equation is extremely difficult to carry out

analytically, the numerical integration was made by Runge-Kutta 4th and 5th order

method.

Note that these linear and nonlinear system equations Eq.(3.6) and Eq.(3.7) will

be used only for the measure the output as a response of given input command, not for

design of controller.

3.2 Estimated System Parameter Equations in Repetition Domain

Since the repetitive controller is obtained from the estimated linear system

matrices in the repetition domain, not from the actual parameters, the formulation of the

system parameter matrices to be estimated are provided. Consider an arbitrary

discrete-time state space equation with constant sampling time intervall1t, given as

x(i+l) = Ax(i)+Bu(i)

y(i) = Cx(i)

(3.9)

where xER", YERq, uERm
, and this system are assumed periodic with a period consisting

of p time steps. The parameters A, B, C are to be estimated in the next chapter and

assumed unknown at this point. For i = O,.I,.2, .. .p-l, the solution to Eq.(3.9) is

y(i+1) = CNx(O) + L CA'-' Bu('r)
,=0
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Introducing a repetition variable j and a new time step variable k and i = jp+k, the general

solution to Eq.(3.9) at thejth repetition can be expressed as

'-jP
y(i+l) = CA'-Jpx(jp) + I CA'-T-jP Bu('"C+jp) (k= 0,1, ... ,p-l) (3.11)

T=O

For i=jp+k; j=O, 1,2, ... ; k= 0,1, ... ,p-l; all the state variables at anytime step i in thejth

repetition can be written as

x(jp+k) = x/k), u(jp+k) = u/k) and y(jp+k) = y/k) (3.12)

By making all the changes of variables from i to j and k, we obtain the following

description of the repetitive process in the repetition domain

y. = Ax(O) +BU.
.=.j --j } -j -j (3.13)

where

. .. . ..
CAP-I B CAP-2 B ... CB

B=
-j

A, = [(CA)T (CA/)T ... (CA!)T]T

CB ° °
CAB CB °

and
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Eq.(3.13) can be rewritten in a simpler form by defining an augmented parameter and

input variation matrices, namely

!h) = [A)B)]

SQ.) = [x/(O) u/(O) u/O) '" u/cp-1)]T

Thus the system equation in repetition domain becomes

Y; = !h) SQ.) (3.14)

where !h) is a system parameter matrix to be estimated from the identification and SQ.) is an

input column vector in the repetition domain.
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Chapter 4

Repetitive Control of a Linear System

Repetitive control scheme is readily applicable to the follower-output system

which is a linear dynamic system. This system does not includes the cam and DC-motor.

Without disturbances, this subsystem has a perfect linear relationship between the input

and output since the static displacement of the input is always proportional to that of the

corresponding output. If the relationship is approximately proportional, it can be said that

the system is slightly nonlinear. The periodic disturbances presented to the linear system

result in the slight nonlinearity of the system..

When repetitive control is involved with a linear, or slightly nonlinear system,

stability of the control process is guaranteed despite the estimated system parameters are

different from actual system parameters [13]. Also, optimal control [8,21] is employed to

ensure stability and to avoid excessively large input commands to the system. A general

procedure of repetitive control is given as follows :

Step 1. Initialize estimation parameters and desired output variables gIven III

Eq.(2.4) in matrix format in the repetition domain.

Step 2. Apply an input command step-by-step in discrete time domain and measure

the corresponding output during a given period using the linear system

equation given by Eq.(3.6)
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Step 3. Estimate the system parameter matrices from the measurements for a

repetition using the adaptive control method explained in Section 4.1

Step 4. Design a controller with estimated matrices from Step 3, using the optimized

control gain matrix.

Step 5. Update new input command for the next repetition. The control procedure

starts from Step 2 to Step 5. Repeat until the vibration in the system is reduced

acceptably.

System estimation is carried out through adaptive control theory based on a

least-squares algorithm. Note that the controller is designed from the estimated parameter

matrix !hj which is obtained only from the measurement between the input and the output

in the repetition domain. No information about the actual system is included in the design

of the controller. The mathematical modeling of the system in Section 2.2 is presented

only to simulate the system and to obtain the output response from the given input

command, not to design the controller.

4.1 Adaptive Control Scheme for Parameter Estimation

For a system equation in the jth repetition, assume that one knows the values in

the input vector U;, the initial condition xiO) and corresponding output vector Y; from the

measurements during thejth repetition. From Eq.(3.13), we have
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y. = Ax(O) + BU.
~ ~J -)-)

(4.1 )

where Y, = [y/(1) y/(2) ... y/CP)]T, ~ = [u/(O) u/(1) ... U/CP-l)]T and parameter

matrices A,/, B, are unknown. Through an adaptive control scheme, these unknown

parameters will be estimated.

Eq.(4.1) is rewritten with a newly defined input vector and a parameter matrix as

shown in Eq.(3.14)

where

(4.2)

(4.2a)

(4.2c)

Once the initial estimation of the first system parameter matrix .!I!o is provided, the

parameter estimation of !l1.j at the jth repetition can be updated according to the following

rule, Ref. [6]

( Y_J.. .) TR
-) ~i-l ~ !Q)-,-)

!l1.) = !l1.),} + Q) --l-+-en-T-R-.-en-.-­
~) ....;) ~)

(j=1,2, ... ) (4.3)

where Q) is adaptation factor taken to be Q) >0, and the projection matrix R
j

is updated

according to the rule

R T R
-'-)-1 !Q) ~ -'-)-1

R= R 1 ------
=J =J- 1 + en TRenT

~) =J.l~)
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where Eo = al(qxq)' q =p+n , a >0. As the repetition progresses, the estimated parameter

matrix converges to a constant matrix as long as the measured system is linear. The 1 in

the denominator in Eq.(4.3) and Eq.(4.4) is intended to prevent division by zero. In

practice, any positive number may be used.

4.2 Repetitive Controller

Assume that the desired system output response is given by the output history y*

for p steps over the course of a repetition. As repetition increases, estimated values in

matrices A~, B, marginally converge to constant values as long as the system itself is

linear and desired output is feasible, i.e. control input vector U~* exists which produces

the desired output motion Y*. If there is the same number of sensors as actuators (the

estimated system parameter B~ is square) then the output desired vector y* is feasible and

is independent of the initial condition xiO), the control input U,* that produces y* is

unique. The proof is given in [7]. Compare the two system equations of two consecutive

repetitions as

Y,+I = A~+l xj+I(O) +B,+, U,+I

~ = ~xiO) + B~ 14

(4.5)

Assuming that the output vector of the (j+ 1)th system equation has the desired

ideal values, ~+1 = y* and that the estimated system parameters have converged so that

A,+I ';::!~ and B,+, ';::!~, subtraction of both equation yields the repetitive control law as
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(4.6)

provided the inverse of ~-exists. To avoid a possible singularity problem in this

inversion and the resulting excessive control effort of input vector U
1

and also to ensure

stability in the process of repetitive control, optimal control theory is introduced despite

the cost to the convergence speed, [8]. The control input vector can be computed by

minimizing a quadratic cost function instead

J= -21 ETQ E + -21OUT 8 oD
-j -j -j -j--j

(4.7)

weighting matrices Q and ~ are taken to be symmetric and positive definite. By taking the

partial derivative of J
j

about OU
1

equal to zero, the minimized cost function produces the

repetitive control law as

where~ is a gain matrix defined as

G. = rBTQ B+ 8\-1 BTQ
~~ -j~-j

(4.8)

(4.9)

For a more detail procedure of the minimization of the cost function, see Appendix A.
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4.3 Simulation of Repetitive Control with a Linear System

Simulations of repetitive control with linear follower-output subsystem without

DC-motor and cam, were processed to test its control capability in the following cases:

Case 1. No disturbance is presented

Case 2. A periodic disturbance which has a vibration mode that has the same phase

at the beginning step of every repetition is applied to the input. The period of

the system motion is integer times that of the disturbance. This disturbance

does not effect the deviation at initial conditions of every repetition.

Case 3. Periodic disturbance which has a phase shift at the beginning step of every

repetition is applied to the input command. This type of disturbance increases

the deviation at initial condition immensely and therefore very seriously

disturbs the condition.

4.3.1 Simulation Based on Case 1

For the simulation of the follower-output system in Case 1, the following control

parameters and initial guess of estimated system parameters are given by :

p: number of steps in a repetition (50)

T: Period of the output motion 1(second)

a
J

: Adaptation factor 1 (regardless of})

Q,~: weighting matrix Q.= 1(pxp) , ~ = O.OlI(pxp)

It; Projection matrix of the first repetition R - 4°1~ - e (pxp)
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1= p+m, m =2 (dimension of state variable x(k))

Ao: Estimation parameter of the first repetition Ao = zer0(pxm)

!!o: Estimation parameter of the first repetition !!o = I(pxp)

Other parameters used for the equations of a follower-output subsystem are given in

Table 2.1. The initial condition for the first repetition is given by x(O)=[O Or The

original input, the exactly same trajectory of the cam lit, is applied to the follower-output

system without control. The plots of actual output motion to the response of the original

input vs. the desired output motion are shown in FigA.1. At the first repetition, repetitive

control is not applied, only estimation of the system parameters are proceeded. In FigA.2,

we can see the trend of vibration elimination where the repetitive control is applied from

the second repetition. FigA.3 gives the result of repetitive control after 40 repetition. The

corrected input command that produces the desired output is plotted in FigAA together

with the original input. As shown in FigA.2, the repetitive control algorithm guarantees

the perfect elimination of vibration in linear follower-output subsystem provided no

disturbance is presented.

4.3.2 Simulation Based on Case 2

The second simulation with the control of the follower-output system takes place

with the following disturbance:

w,Ck) = [~~ sin(201tk/p) O]T

33
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This disturbance has the same phase when k=0 and k=p so that

The state space equation in discrete time domain is therefore given by

xik+1) = Axik) + Buik) + w(k)

Yik+1) = Cxik+l)

(4.11)

The same control parameters and estimation parameters in the first simulation are

again used in the Case 2. Also, the same initial conditions are applied to the system at the

beginning of the first repetition. Fig.4.5 shows the vibrational disturbance applied to the

system with the same input command as in case 1, resulting in the vibration motion of the

output shown in Fig.4.6. In Fig.4.7, vibration is drastically increased for the first 10

repetition cycles. This temporary vibration is generated due to the unfinished system

identification. After correct identification is achieved, the vibration is eliminated. Fig.4.8

shows the result of the repetitive control after 50 repetition cycles. Fig.4.9 presents the

corrected input command for desired output vs. original input. This simulation

demonstrates that even though a constant phase disturbance is presented to the control of

a linear system, repetitive control algorithm is still applicable.
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4.3.3 Simulation Based on Case 3

The third simulation addresses a disturbance with phase changes at the first step

of every repetition, such as :

w/k) = [~~ sin(l1.Ink/p) O]T (4.12)

This disturbance is applied to the discrete equation Eq.(4.11). However, this disturbance

shown in FigA.1 0 which drives the actual vibrational output motion shown in FigA.I1

has the feature:

_ { =0 for}=1 }
w/p) - wj +1(0):t wiO) :t 0 for} > 1 (4.13)

wherein the amplitude of the disturbance at the beginning of every repetition is not

constant but varies. Control and estimation parameters have been used as in previous

simulations. Also the same original input is applied with the phase-shifting disturbance.

The response of the output motion without control is plotted in FigA.II. In this case,

repetitive control is applied up to 100 repetition cycles. However, the small pulse of the

output motion at the beginning of every repetition has not been eliminated, as in

FigA.I2a,b. Actual output motion vs. desired motion is plotted in FigA.I3 where both

plots do not coincide at both ends of every repetition. The original input compared to the

modified input is given in FigA.14.
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4.4 Summary of the Results

Through the simulations, repetitive control of the linear follower-output

subsystem has shown to guarantee convergence and stability. It is also shown that the

estimated parameters in the repetition domain does not always coincide with those of the

actual system as long as the estimation provides results in a stable controller. In the case

with the constant phase disturbance, the controller recognizes it as a deviation from the

linear system. Thus the estimated parameter shows same slight changes even after

convergence. The simulation with Case 2 shows that this slightly changing estimation can

handle the change in the initial condition at the beginning of a repetition caused only by

system vibration.

The simulation with phase shifted disturbances to the system, showed that the

drastic fluctuation of the initial condition can not be perfectly controlled with the

changing system estimation.
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Chapter 5

Piecewise Repetitive Control

The capability of repetitive control algorithm for the linear portion of the

cam-follower system is verified in the prevIOUS chapter. This chapter presents a

modification to repetitive control, namely piecewise repetitive control theory to be

applied to the nonlinear problem in the control of entire cam-follower system that

includes the DC-motor and the cam shown in Fig.2.1.

In piecewise repetitive control, a repetition is divided into several segments

wherein the nonlinearity of the system is reduced sufficiently for stability. Repetitive

control is applied only to the segments where the nonlinearity problem is minimized.

In order to apply repetitive control to a nonlinear system segment by segment, it is

necessary to define each segment in discrete time domain, since repetitive control has

been developed for discrete systems. The following features are assumed for the

segments:

Assumption J. Four segments (rise, dwell-I, return, dwell-2) are defined by the cam

angle 8c as in Fig.2.2. For convenience, these segments are expressed as a,

b,c, d in subscript of parameters and variables. 8a ' ••• , 8d is starting angle of

each segment, and ka• ... , kd is starting steps of each segment.
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Assumption 2. Time spent in the process of each segment is constant regardless

of repetition number.

Assumption 3. The mean angular velocity of cam m for a repetition is assumed to be

always constant.

Assumption 4. kaJ ••• , kd are chosen in such a way that the steps within each of the

controllable segments are maximized.

Assumption 5. Repetitive control is applied only to the rise and the return segments.

5.1 Formulation of Piecewise Control

From the Assumptions 2 and 3, the starting steps of each segment are determined

from the following relation:

( 11= a, b, c, d ) (5.1 )

where T is the period of system, M is sampling time interval, and a, b, c,d represent rise,

dwell-I, return and dwell-2 segments respectively. If the value of kl] is not an integer, it is

necessary to convert it to an integer by rounding down or rounding up. This decision is

made based on the Assumption 4.

According to Assumption 5, it is necessary to design two repetitive controllers,

one each for the rise and the return segments. Estimation of the parameter matrix is also

made for both these segments. Consider the system equations in jth repetition for both

segments as
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Rise segment

Return segment

(5.2a)

(5.2b)

where XI) = [y/(ka+1) y/(ka+2) '" y/(~)]T

!La) = [u/(ka ) u/(ka+1) ... u/(~-l)]T

Xc) = [y/(kc +1) y/(kc +2) ... y/(k)]T

!lc)=[u/(kJ u/(kc+1) ... u/(kd -1)]T

and the dimensi'on of unknown parameter matrices are

Rise segment

Return segment

Aaj((kb ·ka )XIII)' !!a) ((kb ·ka )x(kb -ka))

Acj ((kd ·kc )XIII)' BCJ ((kd ·kc )x(kd -kc ))

(5.3a)

(5.3b)

Rewriting these system equations in a new augmented matrix as in Chapter 4, we have

Y tV = ~l1i!Q1]/ (j= 0,1,2, ... , 11 = a, c) (5.4)

(fl .=[xT(k) U T]T
~1]/ } 11 -1]/

Once the initial guesses of ~110 ( 11 =a, c) are given, estimation of the system

parameter matrix ~1]/ for the jth repetition are updated by an adaptive control scheme
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based on least-squares method. the updating formula is the same as Eq.(4.3) but rewritten

for both the rise and the return segments.

The design of a piecewise controller using Eq.(5.4) follows along the same

procedure presented in Chapter 4. Two repetitive controllers are developed for the control

for each for the rise and the return segments. In dwell-I, dwell-2 segments, no control is

applied because any control action during the dwell-I,2 portion, will not change the

vibrational state of the output.

Introducing the desired output vector L* and Xc* for rise and return segments

respectively and assuming some weighting matrices Qa' §.a for the rise segment, ~, ~ for

the return segment, the piecewise repetitive control law for the controllable segments is

obtained as

Rise

Dwell-I

Return

Dwell-2

Uaj+1 =!Laj + Gaj (Ya*-Yaj -AiXj+l(ka)-x/ka))

U bj+1 = Ubj

!Iej+1 =!Iej +!!cj CL*-Xcj -Ag(xj+/kc)-x/kc))

!Lj+1 =!Lj

(5.5a)

(5.5b)

(5.5c)

(5.5d)

where the control gain matrices !!aj' !!cj are given by

G .= fB T () B + S ),1 B T ()
~j ~aj ~_'!I __ ~j ~

G .= fB T () B + S ),1 B T ()
.-.cj ~j ~ "--g ""-(: ~ ~

(5.6a)

(5.6b)

For more details about the design of these controller, see Chapter 4.3 and Appendix A.
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5.2 Simulation of Piecewise Repetitive Control

In the simulation of piecewise repetitive control, the entire motor driven

cam-follower nonlinear system model is used. The following control parameters and the

initial guesses are given for the simulation.

p: number of steps in a repetition

ka : the starting step of rise segment

~: the starting step of dwell-l segment

kc : the starting step of return segment

kd : the starting step of dwell-2 segment

T: Period of system motion

50

o
13

16

31

1 second

A
ll0

, B
ll0

(11 = a,c) : Initial estimation of system parameter

in rise and return segments

Aao = zero«kb_ka)xm)' !!ao = I«kb-ka)x(kb-ka))

Aco,= zero«kd-kc)xm)' !!co = l«kd-kc)X(kd-kC))

Q,11 '§.11 (11 = a,c): Weighting matrices for optimal control

in rise and return segment

~ = I«kb-ka)x(kb-ka)' ~= 0.5/«kb-ka)x(kb-ka))

~ = ]«kd-kc)x(kd-kc)' ~ = 0.05/«kd_kc)x(kd_kc))

R ll0 (11 = a,c) : Initial projection matrix in adaptive control

in rise and return segment

R - 301
-...,;aO - e «kb-ka+m)x(kb-ka+m))

R =e20
]""""'Co «kd-kc +m)x(kd-kc +m))

Other system parameters are gIven III Table 2.1. The initial condition of the first

repetition is xo(O)=[O 0 0 ot Original input command for the motor has a constant

velocity w =2/T and starts at zero degree. This original input causes the vibration in the
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output motion shown in Fig.5.1 when no control is applied. Piecewise repetitive control is

applied from the second repetition onwards. Fig.5.2 shows the trend of vibration

elimination as a function of repetition. The plot of actual output vs. desired output is

illustrated in the Fig.5.3 which is free of vibration after the control for 50 repetition

cycles. The corrected input command of motor driving the desired output motion is

plotted in Fig.5A.

5.3 Summary of the Simulation

Due to the kinematic nonlinearity of the cam, the repetitive control used in

Chapter 4, failed in the control of the cam-follower nonlinear system. In this system, the

relationship between the displacement input and that of output shows totally different

trends in each segment: it is approximately proportional in the rise segment, it is

proportional in a negative sense, in the return segment. In the dwell-l,2 segments, there is

no response of the output from the change of input command. Taking theses

characteristics of each segments into consideration, repetitive control is applied segment

by segment. In the dwell-I,2 segments, no control is applied since the geometry of the

cam in these segments does not permit any type of controls. Repetitive control is applied

only to the rise and the return segments. The desired output motion is obtained after less

than 50 repetitions of piecewise control.
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Chapter 6

Conclusion

This thesis uses two main approaches in control of a high-speed cam-follower

system: an analysis of the dynamic motions in the system and a designing of a repetitive

controller. A large part of this research is devoted to the formulation of a proper gain

matrix to ensure stability and convergence of the repetitive control procedure. Repetitive

control algorithm has been shown to be an integrated tool in the handling of a motor

driven cam-follower system for high-speed applications. It has also shown that repetitive

control handles nonlinearity and disturbance problems which occur in all real

mechanisms and machiniaries.

The repetitive controller introduced in this thesis is developed for a discrete

single-input single-output system with single degree of freedom. Input command and

output measurements are related only to the angular or linear displacement of actuator

and sensors. All system models are converted to the discrete-time system.

From the view point of inverse dynamics, the control gain matrix can be said to be

the inverse of the system parameter matrix which can be determined by analysis and

linearization of the system. However, due to the instability and lack of robustness, an

adaptive control technique has been used instead. The adaptive controller assumes the

system parameters and updates the characteristics of the controller from the relationship

between the inputs and outputs.
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Repetitive control can handle the changes in the initial condition at the beginning

of each repetition. It permits the system to proceed towards repeating the operation

without stopping even if the system completes a repetition with error, so that the system

operation starts from a different initial condition in the next repetition. This is the main

advantage of repetitive control theory over the learning control.

This research illustrates the control possibility of nonlinear systems, but does not

guarantee it. A nonlinear system which has a periodic output path that has an acceptable

deviation from that of a linear system can be controlled without modifying the repetitive

control algorithm. A heavy nonlinear system which has a periodic output path showing a

totally different trend from linear system can be controlled by dividing the output path

into several segments so that the characteristics of the output path in relation to input

command become closer to that of a linear system.
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Appendix A : Derivation of the Optimized Control Gain

Consider a linear system equations in the repetition domain,

Y'= B U
-J --J (AI)

where Y~ and U
1

is the output and input column vector respectively, which have same

dimension, and B
1

is the system matrix. Y'* is assumed to be the desired output. The

objective of the optimal control is to find out Vj which produces the desired output Y'* at

jth repetition from the history of (j-l )th repetition. Consider the quardradic cost function

given by

J= .1 E
T QE +.1 8U T S 8U

- 2-J -J 2 -J--J

where §.j = y '* - Y~, 8U~ = U~- U~_l . The error §.j can be written as

E = (Y'* - Y' ) - (Y' - Y' ) = E - 8Y'
-J - -J-! -J -J'! -J-J -J

The differenced output 8Y~ is obtained from the diffemeced input 8U
1
as

8Y'=B 8U
-J - -J

Eq.(A2) can be written as
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(AS)

Take a partial derivative about 8U,j to minimize the J as

Setting the result to zero and solving for 8U;

(A6)

(A7)

Expanding the differenced input and error, and introducing a gain matrix G, Eq.(A7)

yields the optimized repetitive control law as

U =U + G ( Y'* - Y'. .)-) -)-1 - - -)-1

where the gain is G = ( BT QB + §)-1 BT Q.
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Appendix B : MatLab Codes

The Basic Functions of the Cam Lift
y23p.m
function y=ycam(theta)

% The dispacement of yc in function of angular
%displacement 'theta'
% 2-3 Polynomial

global Hc
temp=rem(theta,2*pi);
zeta=temp./(pi/2);

for iter= I: I:Iength(theta)
if zeta(l ,iter)<90*2/1 80 % Rise
y( I,iter)=Hc*(3*zeta( I,iter)1\2-2*zeta(1 ,iter)"3);

elseif zeta(l ,iter)<126*2/180 % Dwell
y( I,iter)=Hc;

elseif zeta(l ,iter)<216*2/1 80 % Return
y(l ,iter)=Hc*(-I 0.368+20.16*zeta(l ,iter)-II.4*zeta
(I ,iter)"2+2*zeta(l ,iter)"3);
else % Dwell

y( l,iter)=O;
end

end

yd23p.m
% First Derivative of yc
function y=ydcam_f(theta)
Hc=O.OI ;
temp=rem(theta,2*pi);
zeta=temp./(pi/2);
for iter= I: I:Iength(theta)
if zeta( I,iter)<90*2/180

y( I,iter)=Hc*(6*zeta( I,iter)-6*zeta( I,iter)1\2)/90;
elseif zeta(l ,iter)<126*2/1 80
y(l,iter)=O;

elseif zeta(1 ,iter)<216*2/180
y(l ,iter)=Hc*(20.16-11.4*2*zeta( I,iter)+6*zeta(l ,it
er)1\2)/90;
else
y(l,iter)=O;

end
end

ydd23p.m
function y=yddcam_f(theta)
% Second serivative ofyc
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Hc=O.OI;
temp=rem(theta,2*pi);
zeta=temp./(pi/2);
for iter=l: I:length(theta)
if zeta(l ,iter)<90*2/1 80
y( I,iter)=Hc*(6-12*zeta( I,iter))/901\2;

elseif zeta(l ,iter)<126*2/1 80
y(l ,iter)=0;

elseif zeta(l ,iter)<216*2/180
y(l ,iter)=Hc*(-11.4*2+ 12*zeta(l ,iter»/901\2;

else
y(l ,iter)=0;

end
end

The Desired Output Function,
y345p.m
functIon y=yout(theta)
global H
temp=rem(theta,2*pi);
zeta=temp./(pi/2);
for iter=l: 1:Iength(theta)

if zeta(l ,iter)<90*2/180
y( I,iter)=H*(l O*zeta(l ,iter)"3-15*zeta( 1,iter)"4+6*
zeta(1,iter)"5);
elseif zeta(1,iter)<126*2/180
y( I,iter)=H;

elseif zeta(1 ,iter)<216*2/180
temp=118.333-338.6879*zeta( I,iter)+383.0399*zet
a( I,iter)"2-211.5999*zeta( I,iter)"3;
y( I,iter)=H*(temp+57*zeta( I,iter).1\4-6*zeta( I,iter).
1\5);

else
y(l,iter)=O;

end
end

Simulations of the Linear System
fig41_44.m (Case 1)
% Repettitive Cntrl of Linear Sys
% Adaptive Control with
% Least Square Method
clear
global H Hc
Kf=315;Ks=15;M=0.1 ;c=O.5;
Hc=O.O I;H=Kf/(Ks+Kf)*Hc;
Ac=[O I;-(Kf+Ks)/M -c/M];Bc=[O Kf/M]';
C=[I 0];
[ai,aj]=size(Ac);[bi,bj]=size(Bc);
[ci,cj]=size(C);
%% Control-Parameters %%
w=2*pi;prd=2*pi/w;



p=50;
gain=O.4;
alpha=I;
mxrpt=40;
mxitr=I;
intvl=IO;
Agss=zeros(ci*p,aj);
Bgss=eye(ci*p,bj*p).*5;
sz=aj+ei*p;
R=eye(sz,sz).* Ie40;
Q=eye(p).*1;
S=eye(p).*O.OI;
%%%%%%%%

dt=prd/p;
[A,B]=c2d(Ae,Bc,dt);
fork=I:p

ystr(k, 1)=y345p(w*dt*k);
ustr(k, 1)=y23p(w*dt*(k-I ));
dstb(k, 1)=H/20*sin(20*pi*k/p);

end
qI=0;q2=0;
u=ustr;
x=[O 0]';

for jj=I:mxrpt
jj
if remGj,intvl)==1

qI=qI+I;
q2=0;

end
q2=q2+I;
xo=x;
for k=I:p

x=A*x+B.*u(k);
y(k, 1)=C*x;
tm((q2-I )*p+k,q1)=(Gj-I )*p+k)/p*prd;
yy((q2-I )*p+k,q1)=y(k, 1);

end
for itr=I :mxitr

kI=I:aj;
k2=1 :ci*p;
PP(:,kI )=Agss(:,kI);
PP(:,k2+aj)=Bgss(:,k2);
UU( I,k1)=xo(k1)';
UU(1,k2+aj)=u(k2)';
err=y-PP*UU';
dnm=aIpha+UU*R*UO';
PP=PP+err*(UU*R)./dnm;
R=R-(R*UO'*UU*R)./dnm;
Agss(:,kI )=PP(:,kI);
Bgss(:,k2)=PP(:,k2+aj);

end
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du=(Bgss'*Q*Bgss+S)\Bgss'*Q*(ystr-y-Agss*(x-xo)
);
% du=Bgss\(ystr-y-Agss*(x-xo));

u=u+gain.*du;
yold=y;
ifjj==1

figure( 1)
plot(y.*100)
hold on

plot(ystr.*100,'.')
text(30,0.6,'Desired Output')
text(30,0.75,'AetuaIOutput')
plot([30 32 34],[0.8 0.8 0.8])
plot([30 32 34],[0.65 0.65 0.65],'.')
ylabel('Nomalized Displacement (y/He)')
xlabel('Sampling Time Step (k)')
hold off

end
end
hold off
figure(2)
plot(y.*I00)
hold on
plot(ystr.*I00,'.')
text(30,0.6,'Desired Output')
text(30,0.75,'AetuaIOutput')
plot([30 32 34],[0.8 0.8 0.8])
plot([30 3234],[0:650.650.65],'.')
ylabel('Nomalized Output Displacement (y/He)')
xlabel('Sampling Time Step (k)')
hold off
pgl=4;
figure(3)
[zI,z2]=size(tm);
for q=I :pgl

subplot(pg I, I,q)
axis([tm(l,q)-dttm(zl,q) -0.151])
hold on
plot(tm(:,q),yy(:,q).*100)

end
xlabel('Actual Time(second)')
hold off
figure(4)
plot(u.*100,'+')
hold on
plot(ustr.*100,'.')
text(30,0.6,'Reference Input')
text(30,0.75,'Modified Intput')
plot([30 32 34],[0.8 0.8 0.8],'+')
plot([30 32 34],[0.65 0.65 0.65],'.')
ylabel('Nomalized Input Displacement (ye/Hen
xlabel('Sampling Time~!~p Jk),)
hold off



fig45_49.m (Case 2)
% Repettitive CntrI of Linear Sys
% Adaptive Control with
% Least Square Method
% Priodic Disturbance presented
clear
global H Hc
Kf=315;Ks·=I5;M=0.I;c=0.5;
Hc=O.O I;H=Kf/(Ks+Kt)*Hc;
Ac=[O I;-(Kf+Ks)/M -c/M];Bc=[O Kf/M]';
C=[I 0];
[ai,aj]=size(Ac);[bi,bj]=size(Bc);
[ci,cj]=size(C);
%% Control Parameters %%
w=2*pi;prd=2*pi/w;
p=50;
gain=O.4;
alpha=I;
mxrpt=50;
mxitr=l;
intvl=IO;
Agss=zeros(ci*p,aj);
Bgss=eye(ci*p,bj*p).*5;
sz=aj+ci*p;
R=eye(sz,sz). *Ie40;
Q=eye(p).*I;
S=eye(p).*0.99;
%%%%%%%%%%%%

dt=prd/p;
[A,B]=c2d(Ac,Bc,dt);
for k=I:p

ystr(k, I)=y345p(w*dt*k);
ustr(k, I)=y23p(w*dt*(k-I));
dstb(k, I)=Hl20*sin(20*pi*k/p);

end
figure(l)
hold on
plot(dstb( I:p).IHc)
hold off
qI=0;q2=0;
u=ustr;
x=[OO]';
for jj=I :mxrpt

jj
if remUj,intvI)==I

qI=qI+I;
q2=0;

end
q2=q2+I;
xo=x;
for k=I:p

x=A*x+B.*u(k);
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y(k, I)=C*x+dstb(k, I);
tm«q2- I)*p+k,q I)=(Uj- I)*p+k)/p*prd;
yy«q2- I)*p+k,q I)=y(k, I);

end
for itr= I:mxitr

kl=l:aj;
k2=1 :ci*p;
PP(:,kl)=Agss(:,kl );
PP(:,k2+aj)=Bgss(:,k2);
UU( I,k I)=xo(kI)';
UU( I,k2+aj)=u(k2)';
err=y-PP*UO';
dnm=alpha+UU*R*UO';
PP=PP+err*(UU*R).Idnm;
R=R-(R*UO'*UU*R).Idnm;
Agss(:,kl )=PP(:,kl);
Bgss(:,k2)=PP(:,k2+aj);

end
du=(Bgss'*Q*Bgss+S)\Bgss'*Q*(ystr-y-Agss*(x-xo)
);
% du=Bgss\(ystr-y-Agss*(x-xo));

u=u+gain.*du;
yold=y;

ifjj==1
figure(2)
plot(y.*100)
hold on

plot(ystr.*I00,'.')
text(30,0.6,'Desired Output')
text(30,0.75,'ActuaIOutput')
plot([30 32 34],[0.8 0:8 0.8])
plot([30 32 34],[0.65 0.65 0.65],'.')
ylabel('Nomalized Displacement (y/Hc)')
xlabel('Sampling Time Step (k)')
hold off

end
end
hold off
pgl=5;
figure(3)
[zl,z2]=size(tm);
for q=1 :pgl

subplot(pgI, I,q)
axis([tm(l ,q)-dt tm(zl ,q) -0.15 1])
hold on
plot(tm(:,q),yy(:,q).*100)

end
xlabel('Actual Time(second)')
hold off
figure(4)

.plot(y.*100)
hold on



plot(ystr.*100,'.')
text(30,0.6,'Desired Output')
text(30,0.75,'ActuaIOutput')
plot([30 32 34],[0.8 0.80.8])
plot([30 32 34],[0.65 0.65 0.65],'.')
ylabelCNomalized Output Displacement (y/Hc)')
xlabelCSampling Time Step (k)')
hold off
figure(5)
plot(u.*I00,'+')
hold on
plot(ustr. *100,'.')
text(30,0.6,'Reference Input')
text(30,0.75,'Modified Intput')
plot([30 32 34],[0.8 0.8 0.8],'+')
plot([30 32 34],[0.65 0.65 0.65],'.')
ylabelCNomalized Input Displacement (yc/Hc)')
xlabelCSampling Time Step (k)')
hold off

fig49_12.m (Case 3)
% Repettitive Cntrl of Linear Sys
% Adaptive Control with
% Least Square Method
% Non-repeating Disturbance presented
clear
global H Hc
Kf=315;Ks=15;M=0.1 ;c=0.5;
Hc=O.Ol ;H=Kf/(Ks+Kt)*Hc;
Ac=[O I;-(Kf+Ks)/M -c/M];Bc=[O Kf/M]';
C=[l 0];
[ai,aj]=size(Ac);[bi,bj]=size(Bc);
[ci,cj]=size(C);

%% Control Parameters %%
w=2*pi;prd=2*pi/w;
p=50;
gain=O.4;
alpha=l;
mxrpt=lOO;
mxitr=l;
intvl=lO;
Agss=zeros(ci*p,aj);
Bgss=eye(ci*p,bj*p).*5;
sz=aj+ci*p;
R=eye(sz,sz).*le40;
Q=eye(p).*I;
S=eye(p).*3.50;
%%%%%%%%%%%%

dt=prd/p;
[A,B]=c2d(Ac,Bc,dt);
for k=l:p
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ystr(k, 1)=y345p(w*dt*k);
ustr(k, 1)=y23p(w*dt*(k-l ));
dstb(k, 1)=H/15*cos(8.75*pi*klp);

end
figure(1)
plot(dstb/Hc)
xlabelCSampling Time Step (k)')
ylabelCMagnitude of Disturbance')
ql=0;q2=0;
u=ustr;
x=[O 0]';
for jj=1:mxrpt

jj
if remGj,intvl)==1

ql=q1+ 1;
q2=0;

end
q2=q2+1;
xo=x;
for k=l:p

x=A*x+B.*u(k);
y(k, 1)=C*x+dstb(k, 1);
tm((q2-1 )*p+k,q1)=(Gj-l )*p+k)/p*prd;
yy((q2-1 )*p+k,q1)=y(k, 1);

end

for itr=1:mxitr
kl=l:aj;
k2=l:ci*p;
PP(:,kl )=Agss(:,kl);
PP(:,k2+aj)=Bgss(:,k2);
UU( l,k1)=xo(k1)';
UU(1,k2+aj)=u(k2)';
err=y-PP*UU';
dnm=alpha+UU*R*UU';
PP=PP+err*(UU*R)./dnm;
R=R-(R*UU'*UU*R).Idnm;
Agss(:,kl )=PP(:,kl);
Bgss(:,k2)=PP(:,k2+aj);

end
du=(Bgss'*Q*Bgss+S)\Bgss'*Q*(ystr-y-Agss*(x-xo)
);
% du=Bgss\(ystr-y-Agss*(x-xo));

u=u+gain.*du;
yold=y;
ifjj==l

figure(2)
plot(y. *100)
hold on

plot(ystr.*100,'.')
text(30,0.6,'Desired Output')
text(30,0;75;'ActuaIOutput')
plot([30 32 34],[0.8 0.8 0.8])



plot([30 32 34],[0.65 0.65 0.65],'.')
ylabel('Nomalized Displacement (y/Hc)')
xlabel('Sampling Time Step (k)')
hold off

end
end'
hold off
pgl=5;
figure(3)
[zl,z2]=size(tm);
for q=1 :pgl

subplot(pg1,1 ,q)
axis([tm(l ,q)-dt tm(z1,q) -0.15 I])
hold on
plot(tm(:,q),yy(:,q).*100)

end
xlabel('Actual Time (second)')
hold off
figure(4)
[zl,z2]=size(tm);
for q=pgl +l:q1

subplot(q I-pgl, I,q-pgl)
axis([tm(l ,q)-dt tm(zl ,q) -0.15 I])
hold on
plot(tm(:,q),yy(:,q).*100)

end
xlabel('Actual Time (second)')
hold off
figure(5)
plot(y.*100)
hold on
plot(ystr.*100,'.')
text(30,0.6,'Desired Output')
text(30,0.75,'Actual Output')
plot([30 32 34],[0.8 0.8 0.8])
plot([30 32 34],[0.65 0.65 0.65],'.')
ylabel('Nomalized Output Displacement (y/Hc)')
xlabel('Sampling Time Step (k)')
hold off
figure(6)
plot(u.*100,'+')
hold on
plot(ustr.*100,'.')
text(30,0.6,'Reference Input')
text(30,0.75,'Modified Intput')
plot([30 32 34],[0.8 0.8 0.8],'+')
plot([30 32 34],[0.65 0.65 0.65],'.')
ylabel('Nomalized Input Displacement (yc/Hc)')
xlabel('Sampling Time Step (k)')
hold off
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Simulation of the nonlinear system
mcfsysl.m
clear all
global al a2 a3 a4 a5 a6 ad bI b2 b3
global too H He

% System parameters of Motor-Cam %
Km=0.023;Kp=0.2*500000;Kd=IO;Kb=0.0318;Kf=
300;Ks=15;
Ng=O.1 ;Rm=3.7;Jm=4e-6;Jc=1 e-6;Mf=0.025;M=0.
I',
Sp=1 0;c=0.5;Hc=0.0 I;H=Kf/(Kf+Ks)*Hc;
Jo=Rm*(Jm+Jc*NgA2)/Km;
Ro=Rm*Ngt\2/Km;
% System parametr of Cam Fllwr %
too=l;
%%% System Coefficients
aI=Kp/Jo; a2=Kb/Jo; a3=Ro/Jo;
a4=Mf; a5=Kf; a6=Sp;
ad=Kd/Jo;
bl=c/M;
b2=(Kf+Ks)/M;
b3=Kf/M/Hc;

mcfsys2.m
function xdot=mcfsys2b(t,x)
% Dynamic system equation %
global al a2 a3 a4 a5 a6 ad bl b2 b3
global H He tl t2 ul u2 Tc;
xdot=zeros(4, I);

dt=t2-tl;
ud=(u2-u I)/dt;
u=ud*(t-tl )+u I;
ycd=yd23p(x(l ));
Tc= a4*ycd*ydd23p(x(l ))*x(2)A2;
Tc=Tc+a5*ycd*(y23p(x( I))-Hc*x(3 ));
Tc=Tc+a6*ycd;
xdot( I)=x(2);

xdot(2)=a1,*(u-rem(x(1),2*pi))+ad*(ud-x(2))-a2*x(
2)-a3*Tc;
xdot(3)=x(4);
xdot(4)=(-b1)*x(4)-b2*x(3 )+b3 *y23p(x( 1));

fig.51_54.m
%%% Piecewise Repetitive Control %%%
%% ofNol1~LinearSystem %%
% Motor-Cam-Follower %



% I /----\
% I / I 1\
% I / 1 I \

% II 1 I \

%1/11\ /
0/0 1------------------------
% xii xl2 xl3 xl4 x21 ...

mcfsysl
global too tl t2 ul u2

%%% Progarm Control Parameters
p=50;
mxrpt=IO;
gain=0.99999;
dmrny=l;
%%% State Space Matrix

C=[O 0 I 0];
prd= I; prd=prd/too;
dt=prd/p;
w=2*pi/prd;

%%% Desired output & reference input %%%
for k=l:p

tm(k, I)=dt*(k);
ystr(k, I)=y345p(w*dt*k)/Hc;
ustr(k, I)=(w*dt*(k-l »;
uc(k, I)=y23p(ustr(k, 1»;

end
time=trn*too;

%%% IdentifYing the Regions %%%
to(l)=O;
to(2)=90/180*pi/w;
to(3)= 126/180*pilw;
toe4)=216/180*pi/w;
no(l)=O;
for k=l:p

if abs(trn(k)-to(2»<dt
no(2)=k;

elseif abs(tm(k)-to(3 »<dt
no(3)=k-2;

elseif abs(tm(k)-to(4»<dt
no(4)=k;

end
end

%%% Initial Guesses
ia=no(2)-no( I);
ic=no(4)-no(3);
AI=zeros(ia,4); BI=eye(ia,ia);
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A3=zeros(ic,4); B3=eye(ic,ic);
Q1=eye(ia);S 1=eye(ia).*0.05;
Q3=eye(ic);S3=eye(ic).*0.05;
RI =eye(ia+4,ia+4).*1e30;
R3=eye(ic+4,ic+4).*1e30;

%%% Cnotrol, Measure & Id.
x=[O 0 0 0]';
x2(:, I)=x;
u=ustr;
for rpt=1 :mxrpt

%%% Rise & Dwell %%%
iI=[no( 1)+I:no(2)]';
ifrpt>1

BB=(B I'*QI *B I+SI)\B I'*QI;
du I=BB*(ystr(i I)-y(i I)-A I*(x2(:, I)-x I(:, I»);
u(i I)=u(i I)+gain.*du I;

else
u(i I)=ustr(i I);

end

for i2=no(2)+I:no(3);
u(i2)=u(i2-1 )+w*dt;

end
xI(:, I)=x2(:, I);
for k=no( 1)+I:no(3)

t I=tm(k)-dt;t2=tm(k);
uI=u(k);u2=u(k);
[tt,xx]=ode23('mcfsys2',tl,t2,x);
[c1,rw]=size(tt);
x=xx(c1,:)';
y(k, I)=C*x;
uc(k,I)=[1 00 O]*x;
proc=[rpt k u(k) uc(k) y(k) ystr(k)]

end
x2(:,3)=x;
phil=[x2(:,I)' u(il)']';
thetaI=[A I BI];
err=y(i I)-thetal *phi1;
dnml =1+phil'*RI *phil;
theta I=theta I+err*phi 1'*RI/dnmI;
RI=RI-RI *phil *phi I'*RI/dnm I;
AI=theta I(:, I:4); B1=theta I(:,i I+4);

%%% Return & Dwell %%%

i3=no(3)+ I:no(4);
ifrpt>2

BB3=(B3'*Q3*B3+S3)\B3'*Q3;
du3=BB3 *(ystr(i3)-y(i3 )-A3 *(x2(:,3)-x1(:,3 »);
u(i3)=u(i3)+gain.*du3;

else
for k=no(3)+ I:no(4)



u(k)=u(k-I )+w*dt;
end

end
for i4=no(4)+1:p

u(i4)=u(i4-1 )+w*dt;
end
xl (:,3)=x2(:,3);
for k=no(3)+ I:p

t1=trn(k)-dt;t2=tm(k);
ifk==p

u1=u(p);u2=u(p)+w*dt*0;
else

uI=u(k);u2=u(k);
end
[tt,xx]=ode23('mcfsys2',t1,t2,x);
[cl,rw]=size(tt);
x=xx(cl,:)';
y(k, 1)=C*x;
uc(k,I)=[1 00 O]*x;
proc=[rpt k u(k) uc(k) y(k) ystr(k)]

end
x2(:,I)=x;
ifrpt> 1

phi3=[x2(:,3)' u(i3)']';
theta3=[A3 B3];
err=y(i3 )-theta3*phi3;
dnm3=1 +phi3'*R3*phi3;
theta3=theta3+err*phi3'*R3/dnm3 ;
R3=R3-R3*phi3*phi3'*R3/dnm3;
A3=theta3(:,1 :4); B3=theta3(:,i3-no(3)+4);

end

%%% Plotting 'y' %%%
figure(l)
if rpt== 1

plot(y)
hold on
plot(y,'+')
hold off

end
yy(:,dmmy)=y;
dmmy=dmmy+ 1;

end
figure(2)
row=mxrptll0;
clm=10;
for i=l:row

for j=1 :clm
k=(i-I )*clm+j;
subplot(row,l,i)
axis([time(I,(i-l)*clm+l) time(p,i*clm) -0.12

I])
hold on
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plot(time(:,k),yy(:,k»;
end
hold off

end
xlabel('Actual time (second)')
figure(3)
plot(y)
hold on
plot(y)
plot(ystr,'.')
text(30,0.6,'Desired Output')
text(30,0.75,'ActuaIOutput')
plot([30 31 32 33],[0.8 0.8 0.8 0.8])
plot([30 31 32 33],[0.65 0.65 0.65 0.65],'.')
ylabel('Nomalized Displacement (y/Hc)')
xlabel('Sampling Time Step (k)')
figure(4)
plot(u./pi.*180,'.')
hold on
plot(ustr./pi. *180,':')
plot([30 33],[100 100])
plot([30 31 3233],[60606060],'.')
text(30,85,'Original Input')
text(30,45,'Corrected Input')
xlabel('Discrete Time Step (k)')
ylabel('Angular Input of Motor (degree)')
hold off
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