
Lehigh University
Lehigh Preserve

Theses and Dissertations

1992

The Coatings Database : a design and development
summary
Mitchel Frank Ludwig
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Ludwig, Mitchel Frank, "The Coatings Database : a design and development summary" (1992). Theses and Dissertations. Paper 97.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/97?utm_source=preserve.lehigh.edu%2Fetd%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Ar" U···.•. T"?." H·:.. ;nD::...'.... RD~ El
:j~\!:., ... c t r'! 'Y":.[J

ludwig, lie I Fe

T~T E:
The Coatln s Data a e~

Desi n ad D VI ~ m nt

umm r

T : ct ber11,1992

The Coatings Database

A Design and Development Summary

by

Mitchel Frank Ludwig

A Dissertation
Presented to the Graduate Committee

of Lehigh University
in Candidacy for the Degree of

Master of Science
In

Computer Science

Lehigh University
1992

Contents

Introduction .4

Data Acquisition 5

Data Storage 9

Search and Analysis 9

Deciding on a Database 11

Selecting the Database 12

Designing the Database 15

Hierarchical Database Design 15

Relational Database Design 17

Selection of a Database Type for the Coatings Database Application 18

Development of the Application 19

Database Design 19

Initial Database Design 21

Multiple Database Design 23

Addition of Range Data 28

Implementation of the Database using the C Language 31

Development of the Table Defmitions File .36

Development of Database Read/Write Functions .39

Development of Database Open/Close Function .41

Development of Database Search Functions .42

Development of the Graphical Users Interface 44

2

Table of Figures

Coatings Database Data Input/Output Paths 6

Hierarchical One-to-One Tree Model 16

Hierarchical Many to Many Tree Model - 17

Relational Model 17

'''\ Package Type Counts 23

Package Type Counts by Company Name 24

Multiple Database Field Descriptions 26

Multiple Database Flow Path 27

Sample Table Defmitions File 39

Coatings Database Main Menu 45

Coatings Database Search Menu 46

3

Chapter 1

Introduction

The Coatings Database was designed as a tool to aid in the detennination of specific packaging

polymers and passivation coatings for IC chips. The package was to provide users with a simple to

operate graphical interface from which they could select from a list of various limiting conditions, and be

provided with a selection of IC packages that met those conditions. In its final stage, the application was

to provide users with data relating to the properties of the coatings to be used, as well as providing test

methods for detennining these properties.

The requirements of the system posed a long series of problems which needed to be solved

before the application could be developed. The system was initially designed to run in the MSDOS

environment on an IBM PC compatible computer. The user interface would be designed under the

Microsoft Windows environment, which would allow for a simple point and click user interface. Due to

the size and nature of the data for the application, a relational database package would also be required.

The system as it was envisioned would need to create data that was portable across system platfonns, and

4

thus the database decided on would either have to be one supported on multiple platforms, or must

provide utilities for converting database files to a format readable by such a package.

To provide users with the flexibility needed to meet their demands, the Coatings Database was

divided into three distinct groups; Data Acquisition, Data Storage, and Search and Analysis. Together,

the three would form a single application which would provide an easy way to determine the proper Ie

coating type for a specific application, as well as allowing for the addition of new data and test conditions

as they became available.

1.1 Data Acquisition

The data and test requirements to be acquired by the Coatings Database package was to come

from a variety of different sources. Each of the different manufacturers who would eventually use the

software had their own test fonnats, as well as their own lists of existing data. As new data became

available, there needed to be a simple method for addition of this new data into the system. It also had to

be possible to import data from existing database files into the system, and to be able to enter data

manually from the computer keyboard (see figure 1.1).

5

Manufacturers
Testing
Format

Data Input Paths

Manufacturers
List of

Existing Data

Addition of
New Data as it

Becomes
Available

____________ 1; _

Coatings
Database

Application

-------1-----
I I
I Search on Search on Search on I
I Absense of Single/Mul tiple Range of I Generate

Values in a Reports
I Data Fields Field I

\...

I
I Search Functions
L---- ------- -----

Data Output Paths

Figure 1.1 :Coatings Database Data Input/Output Paths

As package coating data was made available, it became obvious that sections of data that were

included in one package type might or might not appear in others. Whether this was due to the

unavailability of the data, or just to its omission was unimportant. In either case, a facility needed to be

6

made available so that this "void" data could be easily located and reported to the user. This was

necessary because, in many cases, the "voids" in particular data fields would make the database

incomplete. Additionally, the way in which the "voids" in coating packages were handled needed to be

determined. If a particular coating package met all the requirements provided by a user, except for the

existence of the "voids" in certain fields, should these coatings be displayed for the users as possible

matches; and if so, should the user be informed of the existence of the voids?

The manufacturers of the various coatings needed to be contacted to determine why the "voids"

existed. They responded with three explanations for the "void" data.

1. The non-existence of certain data fields was due to their being unimportant as far as the

package in question was concerned.

2. The omissions were due to the unavailability of the data at the time it was obtained.

3. The data available was far to ambiguous to be of any use, so "void" data was used in its

place.

Independent of the explanation of the "void" fields, methods needed to be developed to properly

handle their existence within a database;

Often, in the place of a static entry to the database, manufacturers would provide us with ranges

for values for a specific field. In many cases, these range values provided an alternative to specifying

"void" entries for a field where single values for that field were unknown. We were often faced with

7

situations where the values provided produced ambiguous results due to the uncertainty introduced by the

ranges. In order to detennine an accurate response to user queries, the data provided to us by the

manufacturer needed to be better dermed.

The eventual users of the system needed to be contacted in order to provide us with an accurate

range of test methods for the various coating packages. Different test plans needed to be developed in

order to accommodate the varying requirements of each individual manufacturer. The handling of the

"void" and range data fields in individual coating types needed to be handled for each of the test plans.

Questions posed concerning the handling of theses types of data included:

1. Should items that passed all of the test requirements, except for the presence of "void"

fields, be included or excluded from the list of acceptable coating types?

2. Should items that, due to the presence of a range value, passed all the test requirements,

be marked differently than items that passed the tests without the need for range values?

3. When testing a set of range values, how precise should the comparison be?

The ability to update; both by the addition of new coating data as it became available, and also

by the correction of incorrect or outdated data on existing coating types, needed to be supported. An

interface that was both informative and simple to operate needed to be designed to facilitate easy entry

and re-entry of data into the database.

1.2 Data Storage

8

The question of data storage needed to be addressed. It was found that there were approximately

twenty different data fields that could appear in a particular coating type. This was further compounded

by the fact that many of the data fields were not static entries, but were ranges of values. An efficient

and easy to manage method for the storage of data needed to be developed for the Coatings Database.

The storage method had to provide simple methods for both the storage of new data in the system, as well

as the extraction of old data under a varying set of circumstances. The method for the storage of range

values also needed to be considered; would they be stored in two separate fields, or would some method

for their storage in a single field be developed?

1.3 Search and Analysis

The methods to be used for the searching on, and analysis of, the data contained within the fields

of the database needed to be decided on. Four distinct types of searches needed to be supported (see

figure \ref{ iopaths}).

* Search on single field. The application needed to provide a method for searching the

individual fields of the database for specific values. (e.g. Search for the entries

manufactured by company XYZZY).

* Search on multiple fields. The application needed to provide a method for searching

multiple fields of the database for specific values. (e.g. Search for the entries

manufactured by company xyzzy with coating type ABCDEF).

9

* Search on absence of data. The application needed to provide a method for searching

for the absence of requested data in specific fields. (e.g. Search for the entries that

have no coating type).

* Search on a range of values in a field. The application needed to provide a method

for searching for a range of values that might exist in a single field. (e.g. Search for

the entries that have a dielectric constant between XYZ and ABC).

In addition to the four search methods described above, the ability to combine search types

together was a fifth consideration. (e.g. Search for entries manufactured by company xyzzy that have a

void in the coating type field.)

The interface to the above searching methods was to be designed under the Microsoft Windows

operating system. The application needed to provide a seamless interface to whatever database tool was

used to store and manipulate the data. Additionally, the user application had to provide an easy to use

interface for search and analysis of the data contained in the various databases.

10

Chapter 2

.Deciding on a Database

A decision needed to be made as to the database we would use in the development of the

Coatings Database application. The database selected needed to provide us with a large amount of

flexibility, while still providing enough power to comply with the demands the application would place

upon it. Many different database tools were available to us which would function in the MSDOS

environment. They varied in their power, flexibility, and cost. A database needed to be located that

would meet the following specifications.

* Interfacing with the C programming language; The Coatings Database application was

to be written in the C programming language, and would be run under the Microsoft

Windows environment. The database tool decided on would need to provide us with

some means of interfacing it with our application.

11 .

/

* Ability to use multiple databases in a single application: Due to the large number of

data fields that were required for the Coatings Database, and the ways in which they

were to interact, it was thought that a multiple database file approach might be taken.

If this were the case, the database tool would need to be able to link between databases

to retrieve necessary information. The selected database tool needed to provide us with

the ability to perform searches using information that might lie in separate files.

* Database functionality: The database tool selected would need to provide us with the

functions necessary to satisfy the requirements of the application. The search and

analysis functions that would need to be supported included Search on single/multiple

fields; Search on absence of data; and Search on ranges of values in a single field.

* Portability to other machine platforms: Although initially designed and written for the

MSDOS environment, plans were made to eventually port the Coatings Database to

other platforms. The database tool selected would need to provide a simple, if not

transparent, method for porting existing database information, and if possible the actual

Coatings Database source code itself, to another platform.

2.1 Selecting the Database

Taking the requirements for our database into consideration, the Paradox®l relational database

package was selected for our application. Included in the Paradox package:

1 . Paradox® is a registered trademark of Borland International

12

2

3

* The Paradox Personal Programmer™ --- "The Paradox Personal Programmer™ is a

powerful application generator that enabled you to develop custom single-user database

applications without programming."2

The Paradox Personal Progranuner™ would allow our application to call user generated

"scripts" to be used for designing the test methods for the Coatings Database.

* The Paradox Application Language™ --- The "structured programming language" for

Paradox.

The Paradox Application Language™ would allow the application to make SQL calls to

the Paradox database to complete user dermed queries.

* The Paradox Engine --- "A comprehensive library of C functions and Pascal

procedures and functions that can be called from programs within C or Pascal. These

functions let you manipulate Paradox tables in both single-user and multiuser

environments."3

The Paradox Engine would provide the link between the applications Microsoft

Windows based user interface and the database engine that would store the data for the

Coatings Database.

Paradox 3.5 book page 2.

- Paradox 3.5 book page 2

13

The Paradox Engine would fonn the backbone of the interface between the Coatings Database

and the Paradox Database environment. By including the Paradox Engine in the application, a powerful

and easy to operate user interface could be designed under the Microsoft Windows environment. The

combination of the C language, Microsoft Windows, and the Paradox Engine offered us :

* "A high level of control.

* Access to hardware and the operating system.

* Open-ended functionality. (limited only by your own code or the availability of third

party libraries)

* Open-ended user interface.

* Size and efficiency."4

Using the Paradox Application Language\trademark along with the Paradox Engine, we would

be able to design and execute the test scripts from within the Coatings Database application. As new test

methods became available, instead of rewriting the application, new scripts could be written in the

Application Language to be included within the program.

The Paradox relational database package provided our group with the tools necessary to comply

with the requirements set out for the project. The use of the Paradox Engine, along with the Paradox

4 P.E User page 11

14

Application Language\trademark, would provide the Coatings Database with the database 'power

necessary to complete the tasks required of it.

2.2 Designing the Database

Once the Paradox\registered database was decided upon, it was necessary to choose the method

in which the data would be stored within the database files. The two available methods of database

design were the hierarchical and relational database models. Before deciding on the better approach, it

was necessary to understand their differences.

2.2.1 Hierarchical Database Design

"A hierarchical database organizes its contents in a hierarchical model resembling a tree. The

hierarchical "tree" not only identifies the data elements in the database but also defines the relationship

among these data elements."\footnote{DBASE p 5} The hierarchical model of database design offers us

two main approaches to the definition of the database. They are the "one-to-one" and the "many-to-

many" approaches.

In the "one-to-one" approach, the bottom up view of the database tree is a "one-to-one"

relationship (see figure 2.1). Each leaf of the tree is connected to one branch above it, and that brancp is

connected to only one higher branch, until the main branches connect to the one and only root This

,
method of database design is designed for small applications where little or no data is duplicated in

/

different branches of the tree. As a database designed in this way gets larger, the chance of repetit,ion of

J

5 DBASEp.5

15

/

data grows, and the redundancy in the database grows as well. This results in reduced efficiency in both

the storage and access time of the database.

Root of
Tree

Figure 2.1 : Hierarchical "One-to-One" Tree Model

In the "many-to-many" approach, both the top down and bottom up views of the database show

the same "many-to-many" relationship between leaves and branches. In this approach, a single data

record is created for each unique addition to the database, and additional links to that entry are made

when duplicity is called for (see figure 2.2). This results in databases smaller in size, but with greater

complexity.

16

Root of
Tree

Figure 2.2: Hierarchical "Many-to-Many" Tree Model

2.2.2 Relational Database Design

Column 1 Column 2 Column 3 Column 4
Row 1 Data Field Data Field Data Field ...
Row 2 Data Field Data Field
Row 3 Data Field
Row 4
Row5

RowM I Data Record

I t~~~ I I I I I
Figure 2.3 : Relational Model

"A relational database organizes its data elements in a two-dimensional table consisting of rows

and columns. Each row contains information belonging to one entry in the database. Data within a row

17

is divided into several items, each occupying one column in the table."6 In a relational database, the data

is set up in a series of two-by-two matrixes, allowing for easy access to individual data items on a row

column basis. In order for a relational database to be effective, the data to be stored must be compatible

with this row-column approach to storage and analysis.

"A relational database file consists of two main parts. One part defmes the structure of the data

records, and the other part contains the data itself."7 "Data records" hold the data items for single

entries, forming the "row" groupings for the relational database. "Data fields" are storage units for

individual data items within a data record, and form the "column" items within each row grouping (see

figure 2.3).

2.2.3 Selection of a Database type for the Coatings Database Application

It was theorized that a relational database could be designed to handle multiple groupings of the

row-column format by making the data fields of the top level database into data records for lower level

database tables. This resulted in a database design where the hierarchical approach was used to order

data by importance, and the relational approach was used to store the individual data items. The use of

both database design methods allowed us far more flexibility than either of the two would have had on

their own. As a result, it was decided that the merging of the two approaches would best serve the needs

of the Coatings Database.

6

7

Dbase book p 7

Dbase book p 7

18

Chapter 3

Development of the Application

Before development of the Coatings Database was begun, the project was divided into three

different sections; development of the Paradox databases, design and implementation of the C language

to Paradox interface, and development of the user interface in the Microsoft Windows environment. In

order to insure the three sections would operate correctly when merged, the specifications for the three

individual parts needed to include information describing the methods in which the interaction between

the parts would be managed.

3.1 Database Design

During the development of the Coatings Database application, the increasing amount of data the

system was to handle forced us to modify the design many times. The methods used for the storage of

coatings data was changed three times over the course of the system's development.

19

1. Initial database design: A single large database was designed to handle all the data for

the application.

2. Multiple database design: The multiple database design was implemented to allow for

grouping of data by commonality.

3. Addition of range data: Support for range values is added using links to additional

storage databases.

The fields that needed to be managed by the database(s) were:

* Product Name

* Package Type

* Company Name

* Dielectric Strength

* Dielectric Constant

* Dissipation Factor

* Volume Resistivity

* Tensile Strength

* Elongation

* Shore Hardness

* Moisture

* Glass Transition Temperature

* LinearCTE

20

* Thennal Conductivity

3.1.1 .Initial Database Design

In the initial design of the database for the Coatings Database application, a single database was

used to store all the data collected. In order to support the availability of search functions on each of the

different fields, it was necessary to establish numerous keys for the database. A "key is a unique

identifier for the table--that is, a column (or combination of columns) with the property that, at any given

time, no two rows of the table contain the same value in that column (or combination of columns)."g A

single primary key consisting of the Product Name, Package Type, and Company Name was coded into

the database, and was used in combination with each of the other fields to form a set of eleven distinct

"keys" that could be used for searches on the databases.

Searches on single values were accomplished by executing the search using the "key" associated

I

with the field to be searched on. In situations where the specified field search did not result in a single

result, the user· was gi~en two choices. The first choice available was to further limit the search

parameters. By entering values for one or more of the parameters which made up the primary key, a

more restricted search could be run until a single result was determined. The second choice available

was to display the entire set of database records which satisfied the specified search parameters.

. Many of the search methods used involved the use of multiple fields to derme the parameters for

the search. In these cases, the "key" choice which offered the greatest degree of uniqueness was chosen

as the search "key". After the search parameters had been entered into the system, and the initial search

g Dbase SYS 234

21

executed, the fields not included in the chosen "key" were applied as restricting parameters to the set of

database records which had passed the initial search. In the multiple field search, as with the single field

search, results involving multiple records could be resolved by either further restricting the search

parameters or by displaying the entire set of records. which satisfied the search parameters specified.

Addition and modification to the database were accomplished using the primary key. Once the primary

key had been entered, the database was searched to determine if the record being entered was a new

record, or already existed in the database.

If the primary key was found to already exist, it was assumed that a modification of the record

was to be done. In this case, the record was displayed, and through keyboard input, could be altered and

saved. During the saving of the record, the primary key was again checked. If it had been altered during

the editing session, a new record was created using the new primary key and support fields. If the

primary key was unchanged, the record was updated to reflect the new values. When the primary key

was not found, the record was assumed to be a new entry into the database. Upon completion of the new

record entry, the primary key was used to place the new record in the correct location in the database.

The use of a single database provided a useful short term solution to the design of the database

for the Coatings Database application. As the data to be stored and processed by the system grew, the

use of the single database became a hindrance, rather than a help. Queries of any sort, whether to locate

specific entries in the database, or to add or modify the database, took longer and longer as the database

grew. Thus, it was necessary to convert the Coatings Database application to a multiple database design.

22

3.1.2 Multiple Database Design

Once a single database design was proven to be inadequate for the Coatings Database

application, we began considering the different paths available by using multiple databases. In order to

develop an efficient multiple database application, we needed to know the ways in which the data for the

Coatings Database was distributed. Once this was known, the database fields could be separated over a

group of databases in such a way that each of the individual databases would provide a link back to a

main database, while providing enough information to be useful on its own.

Package Type Number of References

Polymide 15

Urethane 6

Acrylic 4

Epoxy 28

Poly-Silox 4

Elastom 24

Rubber 4

Gel 8

Figure 3.1 : Package Type Counts

Using the data provided to us by the initial group of manufacturers involved (see figures 3.1 and

3.2), we were able to determine a method for breaking up the data within the database into more

manageable sections. Analysis of the data showed that there were two different ways in which we could

23

break up the available data that would allow us to better handle the data as it was processed, while still

providing us with a coherent set of data files.

Company Name Package Tvue Number of References

Dupont Polvrnide 7

Chase Urethane 6

Acrylic 4

Epoxy 1

Ciba Geigy Epoxy 1

A.I. Technology Epoxy 1

OxySIM Poly-Silox 1

Emerson & Cummings Epoxy 3

Amoco Polvrnide 5

General Electric Elastom 23

Rubber 4

Gel 8

IPN Indestries Epoxy 1

Ablestik Polvmide 2

Poly-Silox 3

HB Fuller Epoxy 1

Master Bond Inc. Epoxy 1

Epoxy Technology Polymide 1

Epoxy 17

Dexter Epoxy 2

Castall Elastom 1

Figure 3.2: Package Type Counts by Company Name

24

1. The data could be broken up according to the company which produced the product.

By breaking the data up by company name, the addition of new data would be

simplified. Each manufacturer would need only to provide us with a new and updated

version of the data file for their company, which could then be integrated into the main

database.

2. The data could be broken up according to the package type of the product. The division

of data accoring to the package type would simplify the data in the area of "void" field

determination. It had already been proven that the importance of a "void" data fields

was dependant upon the package type the void appeared in. By separating the data by

package types, we were able to make the testing of the "void" fields better tailored to

the individual package types.

It soon became obvious that separating the data by either of these methods provided only minor

relief from the every growing database. By implementing both of the methods we would be able to

provide a database system which would both remain small enough to be easily managed, and powerful

enough to complete the required queries in a short amount of time. The division of data along these lines

would also give the databases a degree of simplicity that neither of the design strategies could provide on

their own. It was therefore decided that the original single database would be divided into three groups

of databases (see figures 3.3 and 3.4).

25

Company Name Database File

Coating TVDe Database File

Main Database

Coating Type File Location Database

1 2 3 4 5 6 7 8 9 10 11 12 13

Company Data Database

Field Descriptions:

1. Product Name
2. Dialectric Strength
3. Dialectric Constant
4. Dissipation Factor
5. Volume Resistivity

6. Tensile Strength
7. Elongation
8. Shore Hardness
9. Moisture

10. Glass Transition Temperature
11. Linear CTE
12. Thermal Conductivity
13. Comment Field

Figure 3.3 : Multiple Database Field Descriptions

26

Company
Name

Database

One entry for each
company in the
database.

One database for each company.
One entry in a database for each
coating type.

Package
Information
Database

Coatings
Type

Database

Package
Information
Database

Coatings
Type

Database

Package
Information
Database

Coatings
Type

Database

Package
Information
Database

One database for each package
type. One entry in a database for
each package.

Figure 3.4 : Multiple Database Flow Path

* A main "Company" database would be generated with fields containing the Company

Name and a link to a file containing infonnation pertaining to packages produced by

that company.

* A "Coatings Type" database containing fields for the different coating types

manufactured by a company, and a link to a file containing infonnation pertaining to

the packages specific to each coating type. Each company that has an entry in the

"Company" database will have a separate "Coatings Type" database.

* A "Package Infonnation" database containing fields for the different parameters which

make up an individual coatings package. For each coating type that has an entry in the

"Coatings Type" database, a separate file will be generated. Additionally, companies

27

which produce packages with the same coating type will have separate files. Fields in

the "Package Information" database will include: Product Name, Dialectric Strength,

Dialectric Constant, Dissipation Factor, Volume Resistivity, Tensile Strength,

Elongation, Moisture, Glass Transition Temperature, Linear CTE, and Thermal

Conductivity.

The conversion of the database structure for the Coatings Database from a single to a multiple

design allowed us to better manage the amount of data generated for the system. The multiple database

design was a better defIned format for the storage of the information, and retrieval and queries based on

the new format were completed at a much higher rate than had been the case while using the single

database design.

3.1.3 Addition of Range Data

The conversion of the Coatings Database to a multiple database allowed us to process far more

data than had been possible when the system was used with a single database. With the introduction of

the new data, it became obvious that range data, data fIelds that consisted of a range of values instead of

a single static value, needed to be accounted for by the system.

To accommodate the addition of ranges to the application, modifIcations needed to be made to

the database structures. Analysis showed that the range values took one of three forms.

1. The range values involved were open ended ranges such as (x> lOA) or (y<3.0).

28

2. The range values involved were closed ranges such as (0.0<x<4.l).

3. The range values involved were multiple static values such as (x = 4.0, x = lOA, or x =

9.6).

In addition to a single representative of one of the above, the combination of the individual

range types needed to be supported.

On its own, the Paradox® Database had no support for the types of range value fields we needed

to add to the Coatings Database. It was therefore necessary to design and implement our own functions

to handle these types of data fields. Three different designs were initially discussed that would allow us,

with a minimum amount of change to our existing database structures, to support the range values that

might or might not be introduced as data for the various fields of the database.

1. The individual data fields could be modified, when warranted, to support a link to

another set of databases which would contain the range values. Using this design, if a

data field was to contain a static value, that value would be entered into the data field.

If, on the other hand, a range of values was entered, an identifier would be placed into

the data field in question pointing to another database which would hold the set of range

data.

The "range data" database would contain two fields. The first field would be an

identifier representing the type of range data to be represented by the data record. The

supported identifiers were GTHAN, LTHAN, and EQTO, representing whether the range

29

of acceptable values was greater than, less than, or equal to the value in the second

field. The combination of the data records in this database would fonn the range of

acceptable values for the field.

2.. If a limited support of range values was acceptable, each of the single data fields in the

"Product Infonnation" database could be expanded into two fields. The first data field

would represent the minimum value, the second, the maximum. An identifier for

infinity would be added, allowing for ranges such as (x > 10) to be supported. Identity

operations such as (x = 10) were supported by setting the minimum and maximum

fields to the same value. Range data generation was limited using this method to one of

the thee range data fonnats per record. Combinations of range data fonnats in a single

record were not supported.

3. The "data type" for the individual fields could be changed from a numeric to a

character field. This would allow the generation of a string which could represent the

range of acceptable values. In this design, the range of values (x =10,20 < x < 25, x =

60) would be represented by the string "x =10, 20 < x < 25, x =60." Support of this

type would necessitate the design of a parser for the resulting data fields, as well as a

processor for converting the numeric data back to the string fonnat.

The conversion of the numeric data fields to character fields was chosen as the method we

would use to implement range data for the Coatings Database. This method involved only minor

changes to the database code for the application, and offered us the greatest deal of flexibility out of the

three choices. The addition of the range values would not cause the database size to grow as quickly as it

30

would have using the database design involving the separation of the range values into separate fields.

Additionally, unlike the linked database design, the addition of the range values in this design did not

require the design and creation of a new set of databases to maintain the data. Using the field conversion,

the only new code that had to be generated were functions to parse character strings in order to determine

the scope of ranges for a particular field, and functions to convert ranges of values to their appropriate

string equivalent for storage.

3.2 Implementation of the Database using the C Language

With the decision as to the type and format that the database(s) for the Coatings Database would

take made, the next step was to decide how the software would be designed. The Paradox Engine

provided us with a set of C callable functions that allowed us to execute Paradox database commands

from within a C program. Using the Paradox Engine, we were able to design our application in a

powerful programming language, while still retaining absolute control over the functionality of our

database.

Due to the nature of many of the database requirements for the Coatings Database, in many

cases the functions provided in the Paradox Engine were not flexible enough to allow us to perform the

tasks required of us. In these cases, it was necessary to design functions which called series of Paradox

Engine functions to perfonn a specific task. Functions to be designed included:

* A function to read and write the individual databases needed to be designed. Although

the Paradox Engine functions supported the reading and writing of individual fields of a

31

*

*

*

database, functions which would allow access to entire records of a database at once

needed to be implemented.

A function to open a database needed to be provided. The Paradox Engine functions for

deleting, creating, opening, and setting up the key fields existed as individual functions.

For the Coatings Database, it was necessary that these individual functions be

combined into a single routine.

A simple method for handling the existence of the varied database table types needed to

be designed. To support future work, the functions designed needed to be flexible

enough that the introduction of a change in a database type would not require large

amounts of re-coding. In order to provide this feature, C records needed to be designed

to hold the size, format, and primary key information of the individual database fields.

Functions for searching on a database needed to be designed. The field search and key

search functions provided in the Paradox Engine needed to be combined in a single

routine which would allow, based on passed parameters, the required types of searches.

In order to provide the Coatings Database with the required functionality, it was necessary to

first understand the abilities and limitations of the functions that were available to us. The Paradox

Engine functions that we needed in order to provide the above functionality were:

32

* PXTblOpen(char *tbIName, TABLEHANDLE tblHandle, RECORDNUMBER
*nRecsPtr)

"PXTbiOpen will open the table (or index) specified by the base name tblName. If
PXTblOpen is successful, a table handle is returned via tblHandle and the function
returns PX_SUCCESS."9

* PXTbIClose(TABLEHANDLE tblHandle)

"PXTbiClose closes a table previously opened with PXTbiOpen. PXTblClose takes
one argwnent, the table handle obtained when the table was opened."l0

*

*

*

PXTblCreate(char *tblName, int nFields, char *fields, char *types)

"PXTblCreate tries to create a new (empty) table with the path and name given by
tblName and with a record structure detennined by the four standard field argwnents."11

PXTblDelete(char *tblName)

"PXTblDelete deletes the table named in the string tblName, together with any
associated family objects that might exist."12

PXGetAlpha(RECORDHANDLE recHandle, FIELDHANDLE fldHandle, int
bufSize, char *dest)

"PXGetAipha tries to retrieve the alphanwneric string stored in the field specified by
fldHandle (where the first field starts at 1) in the record transfer buffer referenced by
recHandle. If successful, the string is returned in the char array dest."13

* PXGetDate(RECORDHANDLE recHandle, FIELDHANDLE fldHandle, DATE
*datePtr)

"PXGetDate tries to get the long int date value of the date field (internal Paradox
format) specified by fldHandle (where the first field starts at 1) from the record transfer
buffer referenced by recHandle. The value is returned via datePtr."14

* PXGetDoub(RECORDHANDLE recHandle, FIELDHANDLE fldHandle, double
*doubptr)

"PXGetDoub tries to get the double value of the nwneric field specified by fldHandle
(where the first field starts at 1) from the record transfer buffer referenced by
recHandle. The value is returned via doubPtr. 15

9paradox Engine Book, p 215.
lolbid, p. 199.
lllbid, p. 203.
121bid, p. 206.
131bid, p. 122.
141bid, p. 121
151bid, p. 126

33

* PXGetLong(RECORDHANDLE recHandle, FIELDHANDLE fldHandle, long
*longPtr)

"PXGetLong tries to get the long value of the numeric field specified by jldHandle
(where the first field starts at 1) from the record transfer buffer referenced by
recHandle. The value is returned via longPtr."16

* PXGetShort(RECORDHANDLE recHandle, FIELDHANDLE fldHandle, short
*shortPtr)

"PXGetShort tries to get the short int value of the numeric field specified by
jldHandle (where the first field starts at 1) from the record transfer buffer referenced by
recHandle. The value is returned via shortPtr."17

* PXKeyAdd(char *tblName, int nFields, FIELDHANDLE *fldHandles, int mode)

"PXKeyAdd tries to create an index on a table with the base name given in the ASCII
string tblName."18

* PXKeyDrop(char *tbIName, int indexID)

"PXKeyDrop tries to delete the index specified by indexlD for the table named
tblName."19

* PXPutAlpha(RECORDHANDLE recHandle, FIELDHANDLE fldHandle, char
*str)

"PXPutAlpha tries to assign the string str to the field specified by jldHandle (where
the first field starts at 1) in the open record transfer buffer referenced by recHandle."2o

* PXPutDate(RECORDHANDLE recHandle, FIELDHANDLE fldHandle, DATE
val)

"PXPutDate tries to assign the long date value val to the field specified by jldHandle
(where the first field starts at 1) in the open record transfer buffer referenced by
recHandle."21

* PXPutDoub(RECORDHANDLE recHandle, FIELDHANDLE fldHandle, double
Dval)

"PXPutDoub tries to assign the double value Dval to the field specified by jldHandle
(where the first field starts at 1) in the open record transfer buffer referenced by
recHandle."22

161bid, p. 127.
171bid, p. 129.
181bid, p. 132.
191bid, p. 134.
2olbid, p. 159.
21lbid, p. 162.
22lbid, p. 163.

34

* PXPutLong(RECORDHANDLE recHandle, FIELDHANDLE fldHandle, long val)

"PXPutLong tries to assign the long integer value val to the field specified by
jldHandle (where the fIrst fIeld starts at 1) in the record buffer referenced by
recHandle."23

* PXPutShort(RECORDHANDLE recHandle, FIELDHANDLE fldHandle, short i)

"PXPutShort tries to assign the short integer value i to the field specified by
jldHandle (where the fIrst fIeld starts at 1) in the record buffer referenced by
recHandle."24

*

*

*

*

*

*

23Ibid, p. 164.
24Ibid, p. 166.
25Ibid, p. 167.
26Ibid, p. 174.
2?Ibid, p. 175.
28Ibid, p. 176.
29Ibid, p. 178.

PXRecAppend(TABLEHANDLE tblHandle, RECORDHANDLE recHandle)

"PXRecAppend tries to append the contents of the record transfer buffer specified by
recHandle into the open table specified by tblHandle."25

PXRecDelete(TABLEHANDLE tblHandle)

"PXRecDelete tries to delete the current record from the table referenced by
tblHandle."26

PXRecFirst(TABLEHANDLE tblHandle)

"PXRecFirst tries to change the current record handle of the target table specified by
tblHandle. If successful, the new current record for the table will be the first record of
the table."2?

PXRecGet(TABLEHANDLE tblHandle, RECORDHANDLE recHandle)

"PXRecGet tries to transfer the data in the current record associated with the open
table referenced by tblHandle to the open record transfer buffer referenced by
recHandle."28

PXRecGoto(TABLEHANDLE tblHandle, RECORDNUMBER recNum)

"PXRecGoto tries to change the current record handle of the target table specified by
tblHandle. If successful, the new current record will be that given by recNum."29

PXRecInsert(TABLEHANDLE tblHandle, RECORDHANDLE recHandle)

"PXRecInsert tries to insert the contents of the record transfer buffer specified by
recHandle into the open table specified by tblHandle."30

35

* PXRecLast(TABLEHANDLE tbIHandle)

"PXRecLast tries to change the current record handle of the target table specified by
tblHandle. If successful, the new current record will be the last record of the table."31

* PXRecNext(TABLEHANDLE tbIHandle)

"PXRecNext tries to change the current record handle of the target table specified by
tblHandle. If successful, the new current record will be the next record following the
current record of the table."32

* PXRecPrev(TABLEHANDLE tbIHandle)

"PXRecPrev tries to change the current record handle of the open table specified by
tblHandle. If successful, the new current record becomes the record before the previous
current record."33

* PXRecUpdate(TABLEHANDLE tbIHandle, RECORDHANDLE recHandle)

"PXRecUpdate tries to update the current record of the open table tblHandle. If
successful, the contents of the record transfer buffer specified by recHandle are posted
(transferred) to the current record associated with the specified table handle."34

3.2.1 Development of the Table Definitions File

The table definitions file was developed in order to allow for the easy modification of the tables

withing the Coatings Database application. The file consisted of arrays of structures that contained the

various fields necessary to build a database file. The three arrays contained in the file were the Table

Information Array, the Field Name Array, and the Field Type Array. The use of a single file to hold all

the information necessary to design the database files made the modification of a database an easy task.

Additionally, changes to the database that resulted in a need for the recompilation of key program

modules were easily centralized because of the use of a single file for all the database information.

30Ibid, p. 179.
31Ibid, p. 181.
32Ibid, p. 182.
33Ibid, p. 186.
34Ibid, p. 187.

36

The Table Information Array is an array of structures designed to maintain the infonnation

necessary to oversee the creation and management of the individual database files. The individual fields

of the array structure are :

*

*

*

Table Name - The name of the database. This name will be used during creation of the
database as the name for the database. Upon successful creation of the database, the
filename filename. db will appear in the root directory for the application.

Table Size - The number of individual fields in the database. This field is used to
detennine the size in fields of the database during creation.

Table Key Length - The number of key fields in the database. Starting at field one (1),
this variable is used to detennine the number of fields to be included in the primary key
for the database.

The Field Name Array is an array of character strings that are used during the creation of a

database. Each entry in a single row of the array is a character string representing the name of a database

field for a particular database. An entire row of field names fonn the name list for a specific database.

The number of field names included is equal to the value of the Table Size field in the Table Information

Array.

The Field Type Array is an array of character strings the are used during the creation and

management of a database. Each entry in a single row of the array is a character string representing the

data type for a particular field of a database. The specific database in question is detennined by the row

number, while the column number detennines the specific field in question. As with the Field Name

Array, the number of entries in each row of the Field Type Array is equal to the Table Size field in the

Table Information Array.

A sample of the table definition file for a specific database can be seen in figure 3.5.

37

fK sT bl S·T bl Na e ame a e lze 0 ev
Table Infonnation Arravf01 XYZZY 5 2
Table Infonnation Arravf 11
Table Infonnation Arravf21
Table Infonnation Arravf31

Field Name Arravf01 Name Address City State ZioCode
Field Name Arravfll
Field Name Arrayf21
Field Name Array[3]

Field Types ArravfOl A80 A80 A40 A2 AlO
Field Types Arravfl1
Field Types Arravf21
Field Types Arravf31

Figure 3.5 : Sample Table DefInitions File

3.2.2 Development of Database Read/Write Functions

In order to simplify the reading and writing of database files in the Coatings Database, it was

decided that some sort of generic GET and PUT data fimctions needed to be developed. Using the data

provided by the various arrays in the table definitions file, it was possible to create a set of generic

fimctions which would facilitate the reading and writing of the database files. Three fimctions were

necessary.

* inMoveData(int inTableName, char *chRecord, int inMode)

38

The inMoveData function is designed to move data back and forth between a specified

database and the record transfer buffer assigned to it. Created for the Coatings

Database application, the inMoveData function takes as variable input the integer

index of the database file to work with as inTableName , the work record to be

processed as chRecord, and the function to perform as inMode. The inMode

parameter can be set to either GET or PUT, allowing data to be both extracted from,

and saved to, the specified database. The inMoveData function performs all functions

on the current record of the database, and assumes that the database index passed refers

to a database file currently open.

* inGetData(int inTableName, int inFieldNumber, char *chData)

The inGetData function is designed to extract data from the specified field in the

record transfer buffer. The inGetData function takes as input the table to operate on in

inTableName, the field number to get data from in inFieldNumber, and the storage

location for the data in chData. The inGetData function is an intelligent general "Get"

function. When invoked, the field types array is read based on the current table and

field numbers. The resulting field type is parsed to determine the variable type and

length. Once determined, the appropriate data get function (PXGetAlpha, PXGetDate,

PXGetDoub, PXGetLong, PXGetShort) is called to retrieve the data in question. The

data is formatted using a call to the sprint! command, and the resulting field

information is returned in chData. The inGetData function works on the current record

transfer buffer. It assumes that a call to inMoveData has already been made to locate

the record to work with. In most cases, the inGetData function is only called from

within the inMoveData function.

39

* inPutData(int inTableName, int inFieldNumber, char *chData)

The inPutData is designed to dump specific fields onto the record transfer buffer

identified in inTableName. The inFieldNumber field is used to detennine which field

in the databse is to have new data "put" into it, and the chData variable holds the new

data for the record transfer buffer. By referencing the field types array, the correct type

for the database field is detennined. Using the appropriate ASCII to (integer/long/float)

function, the data is converted into a fonnat suitable for saving. Once this has been

perfonned, the appropriate data put function (PXPutAlpha, PXPutDate. PXPutDoub,

PXPutLong. PXPutShort) is called to record the data on the current record transfer

buffer. The inPutData function perfonns no work with the database file itself. Like

inGetData, a call to inMoveData is needed to perfonn the recording of the current

record transfer buffer to the correct record of the database file.

3.2.3 Development of Database Open/Close Function

There was a need in the Coatings Database for a single compact function which would handle

the opening and closing of individual database files. The function developed inDBFile(int

inTableName, int inMode) was passed the index to the database file in inTableName and the operation

to perfonn in inMode.

Valid operations included:

*

*

PXcOPEN - Open the specified database me.

PXcCLOSE - Close the specified database me.

40

*

*

*

*

PX=KEYADD - Add the primary key infonnation to the database fIle.

PX KEXDRP - Drop the primary key infonnation from the database file.

£X=CREATE - Create the specified database file if it does not already exist.

PX DELETE - Delete the specified database file from the disk.

The individual operations could be ored together to form combinations of functions to perform

specific operations. For example, to open a specific database file, and create it if it doesn't already exist,

the inMode parameter would be PX_CREATE 1\ PX_OPEN. The individual PX_???? mode commands,

once inside the inDBFile subroutine, call their respective Paradox Engine functions (PXTblOpen,

PXTbiClose, PXTbICreate, PXKeyAdd, PXKeyDrop, PXTblDelete).

3.2.4 Development of Database Search Functions

In order to simplify the steps necessary to perform a search in the Coatings Database, the many

search functions provided in the Paradox Engine were combined into a single function inSearchDB, that

would perform both key and field searches on the databases in our application. As passed parameters,

inSearchDB took the index to the database file to work with in inTableName, the stream of data to work

with in chData, a numeric variable in illVar and a mode of operation in illMode.

The value represented by the illVar variable was dependant upon the type of data in the indexed

database. If the database was a keyed database, illVar represented the number of key fields to include in

the search being done. Thus, if illVar was equal to 2, fields 1 and 2 in the primary key would be used for

the search. If the database was not a keyed database, illVar represented the number of the database field

41

to be used in the search. Thus, if inVar was equal to 3, the search would be perfonned using field 3 as

the search path.

The inMode parameter allowed the user to specify the type of search to be perfonned. Valid

values for inMode were:

*

*

*

*

*

DB SEARCHFIRST - Search the database for the first occurrance of the specified

search match.

DB SEARCHNEXT - Search the database (starting at the current record) for the next

occurrance of the specified search match.

DB SEARCHALL - Search the database (starting at the first record) for all

occurrances of the specified search match.

DB USEKEY - Use the key fields of the database for the search.

DB USEFIELD - Use the numbered fields of the database for the search.

The parameters PX_USEKEY and PX_USEFIELD are modifiers to the search methods. They

are designed to override the default settings for the search mode for a specific database. Using these

modifiers, it is possible to perfonn a field specific search on a keyed database. It is not possible,

however, to perfonn a keyed search on a database that is not keyed.

3.3 Development of the Graphical Users Interface

42

The development of the graphical users interface (Gill) for the Coatings Database formed the

single most important development process of the entire application. If the Gill desgined was difficult to

use, or was unable to easily provide the users with the functionality they desired, the entire application

would suffer. Because of this, the Microsoft Windows™ was chosen as the platform to be used. The

familiarity most users have with the Windows environment, along with the standardization present

among the applications designed for Windows, allowed us to create a functional and simple to use

interface for the Coatings Database.

To simplify the operation of the Coatings Database, the system was designed to provide the user

with the quickest access to the functions they would require. The main menu of the system (see figure

3.6) constantly displays information for the current coating. The entire list of available fields is presented

for the user at this level. Simple viewing of the individual records in the database can be accomplished

using the <, «, », and > push buttons located in the bottom center of the display region. The < and >

buttons allow for the scrolling of the database one record in either direction (previous or next record).

The « and » pushbuttons will move the current database record location to the beginning or ending

record of the database.

43

Product 11122

Company IChim: Corporation

Coating Type IUrethane

DE Constant 13.6 IDi"ipation Factor INoVaJues

DE Strength !1.25E+06 IVoL Resistivity INo Values

% Moisture INoValues ITentile Strength INoVaJues

linear CTE INo Values I%Elongation INo Values

Glast Trant Temp

Shore Hardneu

Thermal Conductivity

!NoValues

INo Values

INoValuet

Dr.

Notes Thit tample was tetted at 10"3 kHz only

['."'"1« < > »

Figure 3.6 : Coatings Database Main Menu

Access to the Coatings Database's search functions is done using the main menu located across

the top of the viewing screen. Selection of the Search menu will overlap the Coatings Database main

menu with the search menu for the system (see figure 3.7). When activated, the search menu provides

the user with two sets of selectable fields.

* Djsplay Fjelds - The user can select the fields that are to be displayed once the search

through the database has been completed. The data records that match the current

search specifications will be displayed according to the fields designated in this menu.

* Search Criteria - The user can select the search criteria for the database search. The

selection of a search criteria is a two step process. By clicking (marking) the mouse

over a search criteria to be included in the current search of the Coatings Database, the

current search parameter is included in the search. The user will be prompted for the

44

contents of the field to search on. In cases where a numeric value is required, a dialog

box will pop up requesting the minimum and maximum ranges for the search field.

Once selection of the Search Criteria and Display Fields has been made, the search can

be performed by selection the OK button for the search. To cancel the search select the

CANCEL button.

[SearChI OK I Cancel I
Display Fields-----...,

IZI Product

IZI Company

IZI Coaling Type

rRl DE Conslanl

rRl DE Slrenglh

rRl :t Moislure

'rRllinear CTE

rRl Diuipalion Faclor

rRl VoL Re:islivily

rRl Tensile Slrenglh

rRl % Elongation

rRllilass Transilion Temp

rRl Shore Hardnen

IZI Thermal Conductivity

rRl Noles

Search Crileria------------------,

o Producl

D Company

D Coaling Type

D DE Constanl

o DE Slrenglh

D :t Moisture

D linear CTE

D Diuipation Factor

D VoL Resislivily

D Tensile Slrength

D % Elongation

D Glass Transition Temp

D Shore Hardnen

D Thermal Conductivily

Figure 3.7 : Coatings Database Search Menu

Once the search has been performed, the system will display a text window which will contain

all of the records in the database which match the search criteria specified. In many cases, the window is

both too wide and too long to be displayed all at once. In these cases, a horizontal and vertical scroll bar

will be displayed across the bottom and right edges of the screen. To move around the display window,

click on the arrows located on the two scroll bars. A highlighted block within the range of the scroll bars

is used to inform the user as to their current location in the display window.

45

46

	Lehigh University
	Lehigh Preserve
	1992

	The Coatings Database : a design and development summary
	Mitchel Frank Ludwig
	Recommended Citation

	00413
	00414
	00416
	00417
	00418
	00419
	00420
	00421
	00422
	00423
	00424
	00425
	00426
	00427
	00428
	00429
	00430
	00431
	00432
	00433
	00434
	00435
	00436
	00437
	00438
	00439
	00440
	00441
	00442
	00443
	00444
	00445
	00446
	00447
	00448
	00449
	00450
	00451
	00452
	00453
	00454
	00455
	00456
	00457
	00458
	00459
	00460
	00461

