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Abstract

In this thesis I examine quantitatively the effect of heterogeneous boundary nucle

ation on transformation kinetics. This is accomplished by using computer simulation

and concurrent theoretical analyses to model the temporal evolution of microstruc

tures resulting from catalyzed nucleation in an idealized two-dimensional system.

Several quantities are calculated in order to probe the dynamics of phase forma

tion. The spatial correlations among transforming regions are described by non

equilibrium correlation functions which summarize, for example, the area fraction

of the system transformed at a given time and the size of small islands of untrans

formed material at late times. In addition, we undertake a detailed geometrical

analysis of the terminal microstructures, analyzing the probability distribution of

normalized grain areas and average perimeter, in order to identify the relevant length

scales in the system. In general, a quantitative .analysis of area fraction transformed

and product microstructure reveals the existence of two length scales, one related to

the internuclear separation and one related to the underlying cell size, whose ratio

determines various regimes in the evolution process and dictates the morphology

of the final microstructure. The benefit of this study is that it also provides an

intuitive understanding of how important transformation parameters, such as the

nucleation density and the underlying cell diameter, determine the course of the
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transformation and its end result.
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Overview

The necessity for understanding the kinetics of phase formation and its impact on

microstructure is well known. In first-order phase transformations, for example, en

ergetic considerations often dictate that nucleation occurs preferentially on crystal

defects, such as grain boundaries, rather than homogeneously throughout the bulk

material with the result that the microstructure of the evolving phase is spatially

and temporally correlated, to some extent, with the distribution of these defects. In

order to explore these important correlations in more detail we have undertaken here

an investigation of the the effects of boundary nucleation on transformation kinetics

and microstructure. This investigation consists of two complementary studies, the

first involving the description of the spatial and temporal evolution of microstruc

ture, and the second a detailed characterization of the geometry of the resulting

"final" structure prior to grain growth. In both components of this work computer

simulation is employed in order to model phase formation and growth, and this ap

proach is then coupled with analytical calculations in order to more fully describe

the features of the evolving phase.

In particular, the first study embodies an examination of the temporal evolution

of a phase through simulation and analytical calculation of relevant n-point correla

tion functions. As the name implies, these functions can describe, for example, the
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fraction of material transformed at a given time (the one-point function) and the

approximate size of small domains of untransformed material at late times (higher

n-point functions ). The object of this work is to understand quantitatively how the

spatial distribution of catalytic sites affects the character of the evolving phase. As

will be seen below, it is possible to identify various temporal regimes during a given

transformation, the length of each regime depending critically on the distribution

of nucleation sites. One benefit of this analysis is that it also provides a n intuitive

understanding of the relation between the geometry of the catalytic sites and that

of the product grains.

Building on this intuitive understanding, the second study focuses on the cor

relation between nucleation site geometry and resultant product grain structure

through analysis of the probability distributions of normalized product grain area

and perimeter. As expected, the character of the area and perimeter distributions

can be attributed to the relative values of two length scales in the system: the av

erage internuclear spacing and the average cell length. The purpose of this work is

to understand the relation between the important transformation parameters and

the final microstructure. As will be seen, it is possible to identify three behavior

regimes of the probability distributions resulting from different kinetic parameters,

characterized by the length scale ratios. As a result of this analysis, a quantitative

description of the role that nucleation site geometry plays on resultant microstruc

ture has been developed.

The intuitive understanding between nucleation site position and resultant phase

formation developed in this thesis introduces potential research that would be dif

ficult without such knowledge. For example, this work exclusively examines nu

cleation occurring as a burst, when it is conceivable that nucleation could occur

4



constantly with time, or even as a more complex function of time. One would ex

pect considerably different results than those from this work, since time-dependent

nucleation embodies distinctly different nucleation conditions. Another interesting

topic of study would be the addition of mechanisms, such as grain boundary coars

ening, that would allow a more realistic structure to be simulated. Other avenues of

research could include investigation of higher n-point correlation functions to further

elucidate the role that catalytic nucleation has on resultant microstructure.
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Chapter 1

Impact of Heterogeneous

Boundary Nucleation On

Transformation Kinetics and

Microstructure

1.1 Introduction

The necessity for understanding the kinetics of phase formation and its impact on

microstructure has provided the impetus for a number of experimental and theoreti

cal studies in various fields. For example, the correlation of microstructural features

with mechanical properties, such as ductility and yield strength, is well established

in bulk eutectoid steels below the austenitic transformation temperature. Further,

in the case of thin films, reactive phase formation of silicides [1] is used to obtain

the desired electrical contact properties in microelectronic devices. More generally,
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1.1. INTRODUCTION

theoretical investigations of the decay of metastable states via nucleation and subse

quent growth in a number of idealized model systems, including spin and phase-field

models, have been instrumental in testing theories of homogeneous nucleation and

have provided substantial insight into the mechanisms of late-time coarsening (i.e.,

Lifshitz-Slyozov) kinetics. [2, 3]

One general and rather useful description of the temporal evolution of a phase

transformation, given by Kolmogorov [4] and later by Johnson, Mehl and Avrami

[5] (hereafter referred to as JMA), involves the calculation of the fraction of re

actant phase transformed in terms of the nucleation rate, possible grain growth

mechanisms and effective spatial dimensionality. The inference of such rates and

mechanisms from experimentally measured transformation fractions is somewhat

problematic, however, as the parameters in the JMA equation do not uniquely de

fine the kinetics of the system. A complete description of the time evolution of a

phase transformation in some system would require a knowledge of the probability

distribution of an appropriately defined phase field at all space-time points. As this

distribution is generally not known, except in some very special cases, one tries to

investigate spatial correlations in a transforming system by calculating a small num

ber of nonequilibrium, equal-time, n-point correlation functions. Indeed, Sekimoto

[6] has derived general expressions for these functions for idealized models of phase

nucleation and growth. The JMA equation, for example, embodies the one-point

correlation function and so does not yield any information on the size of the product

phase as a function of time. More recently, Yu and Lai [7] have adopted a similar

formalism and revisited a number of cases previously addressed by Cahn. [8]

The goal of the present paper is to describe the evolution of phase formation in a

two-dimensional system in which nucleation is spatially biased to occur on the sites of
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1.1. INTRODUCTION

a network representing an underlying grain structure. The motivation for this work

is to obtain a better understanding of the kinetics of reactive phase formation in thin

films and, in particular, to elucidate the role of site-biased nucleation on subsequent

growth and product phase morphology. There has been a great deal of experimental

work in the general area of thin film reactions[9, 10, 11, 12, 13, 14, 15, 16, 17] given

the technological implications, but the complexity of such reactions has dramati

cally slowed parallel theoretical efforts. In particular, little work has been done to

establish an integrated theory of nucleation and growth in these systems and, in

addition, the importance of heterogeneity in nucleation has not been considered. It

should be pointed out here, however, that the foundation for the present study was

established some years ago in pioneering work by Cahn [8] on the kinetics of grain

boundary nucleated reactions and its application, in a simplified form, to thin film

reactions by Coffey et al. [14] Now, in this work, computer simulation is combined

with the analytical calculation of non-equilibrium correlation functions in order to

describe the temporal evolution of a two-dimensional transformation which is gov

erned essentially by interface kinetics. By contrast with previous work in this area,

we consider in explicit detail the effect of a complex underlying structure, which

catalyzes heterogeneous nucleation, on product phase microstructure and the trans

formation kinetics with particular attention to non-trivial, late-time impingement

effects. Further, we relate our findings to experimental calorimetric investigations

of phase formation in thin films [18, 19,20] and to recent models of this phenomena

which are based on rate equations.

This paper is organized as follows. In Sec. II the theoretical formalism is dis

cussed and applied to both homogeneous and heterogeneous nucleation. In Sec. III

the computer simulation methodology is outlined. In Sec. IV the results of our
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1.2. THEORETICAL FORMALISM

computer simulations are compared with the theoretical predictions made in Sec.

II. Section V contains an interpretation of the results and some conclusions.

1.2 Theoretical Formalism

1.2.1 Basic Equations and Homogeneous Nucleation

Consider a two-dimensional system consisting of given phase(s) in which droplets of

a new phase can nucleate and grow. As a specific example of this, one can envision

an interface between two homogeneous phases at which a reaction occurs and a new

product phase is formed. Such reactions are known to occur in Nb j Ai thin films and

have been studied extensively using differential scanning calorimetry. [14] In this

case the focus will be on growth in the interface plane neglecting, for the moment,

transverse growth. For concreteness, we will assume that nucleation occurs in a

burst at some initial time and that this results in a collection of grains, each taken

to be circular, that grow in a regime dominated by interface kinetics. The radial

growth rate of these grain is G. These simplifying assumptions are inferred from

observations of nucleation and growth made in the aforementioned NbjAi thin films

[14]. Thus, this hypothetical system will serve as a model of nucleation and growth

in reactive phase formation.

Given this description and following the work of Sekimoto [6], it is advantageous

to define a phase field, u(T), where ris a two-dimensional position vector, such that

u(T) =0(1) if the region at r is transformed (untransformed). With this definition

one can then know the detailed time evolution of the system by determining the

probability distribution, P[u(T), t], for the phase field. Now since it is difficult, if not

impossible, to obtain this distribution analytically, it is advisable to determine its

9



1.2. THEORETICAL FORMALISM

important properties by the calculation of equal time, n-point correlation functions

defined by the functional integral

(1.1)

where the angle brackets denote an average over an ensemble of nucleation events.

This correlation function is the probability that none of the points TI, T2, ... ,~ is

included in the product phase at time t.

Sekimoto has shown that this correlation function for our system can be ex

pressed as

where I(T', T) is the nucleation rate per unit area at position T' and time T and where

D(Tij ti : T'j T) = 0(1) ifthe point at Tis transformed (untransformed). Further, since

the system is translationally invariant, it is expected that D will only depend on

space as T - T' and will be determined by the circular droplet shape. Given this

expression it should be noted that the total area fraction transformed of a system

with area A as a function of time, t, is given by

(1.3)

a result which embodies the JMA equation. Thus, CI(T, t) can be interpreted as

the probability that the element of material at Tis untransformed at time t. The

interpretation of the higher-order correlation functions can be given in an analogous

manner.

As an ill.ustration of the formalism outlined above,consider a burst just after

the origin of time that creates nuclei at spatially random locations in the aforemen

tioned two-dimensional system. The nucleation rate corresponding to this burst and

10



1.2. THEORETICAL FORMALISM

resulting in a planar density, n, of nucleation sites can be written as

(1.4)

where T+ is some time just after the origin of time. Upon inserting the nucle~tion

rate in Eq. (1.2) one finds that

(1.5)

which is independent of position (as expected). This is the JMA equation for the

two-dimensional case considered here. The calculation of the corresponding two-

point correlation function is summarized in the Appendix. We note here that the

extent of spatial correlations in the transforming system can be obtained by evalu

ating the normalized correlation

where

,(s) = ~ [sin- 1Jl- S2 - s~] 8(1 - s),

s = !il - is\/2Gt (1. 7)

and where 8 is the Heaviside step function.

As a corollary to the last result, one can also infer the size of domains of both

reacted and unreacted material as a function of time and thereby estimate the time

dependence of reacted grain size. For example, if one defines a characteristic time

tc =1/y'nG, then by examining the time dependence of the ratio of the two

point function and the one-point function, G2(!il - T21, t)/G1, one finds that the

characteristic unreacted domain size l(t) rv (t/tct 1 at late times (i.e., (t/tc) » 1).

11



1.2. THEORETICAL FORMALISM

1.2.2 Heterogeneous Nucleation: Line

Having investigated homogeneous nucleation, we next consider heterogeneous nucle-

ation on an infinite line. This line will serve as a "building block" for more complex

grain structures to be assembled below. In this case it is supposed that nucleation

occurs in a burst just after the origin of time and is restricted to an infinite line, co

inciding with the y-axis, which exists in a two-dimension.al system. For this scenario

the nucleation rate can be written as

1(T', 7) = n8(x')8(7+), (1.8)

where ii is the linear density of nucleation sites and 7+ is, again, a time just after

the origin of time. Upon substituting Eq. (1.8) into Eq. (1.2) it is found that the

one-point function can be written as

(1.9)

the translational invariance of the system in the y-direction yielding a result which

only depends on the distance (x) from the nucleation line. The incorporation of

the Heaviside step function, 0(Gt -Ixl), in the previous equation expresses the fact

that, beyond a distance Gt from the line, no material is transformed. It should be

noted here that a similar result was derived by Oahn for the case of nucleation on a

line with a constant nucleation rate [8].

Finally, it is of interest to determine the area fraction transformed in a finite-size

system with dimensions Lx 1. This can be accomplished by noting that the fraction

of material untransformed after time t is given (approximately) by

[
2Gt] 1 jGt

1 - L - L -Gt dxexp [-2nJG2t2
- x2

] ,

12
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1.2. THEORETICAL FORMALISM

where the terms in the first square brackets represent material at a distance greater

that Gt from the line and the integral represents material within a distance Gt from

the line which is still untransformed. Upon making the convenient substitution

x = Gtcos( 'Ij;) and inserting the resulting expression into Eq. (1.3) one obtains

where

2Gt [1 ]
~A(t) = L 1 - 2f (0, 7f)

f( a, b) =l b

d'lj;sin( 'Ij; )exp [-2nGtsin( 'Ij;)] .

(1.11 )

(1.12)

Now, while it is possible to carry out the integration in Eq. (1.12) and express

the result in terms of a Bessel series, it is perhaps best at this point to consider two

limiting cases. First, in the limit of short times (nGt« 1) ~A(t) ---t n7f(Gt)2/L,

consistent with the expectation that, prior to impingement, transforming regions

grow as independent circles which originate from nuclei having an effective area

density of n/L. By contrast, at late times, it is expected that the transforming

region propagates essentially as two linear fronts. This can be seen by noting that

the integrand in Eq. (1.12) is a sharply peaked function of 'Ij; at late times and so a

saddle-point integration yields

2Gt [ e-
1 (if 1 ]

~A(t) ---t L 1- TV"2 (nGt)2 ,(nGt» 1),

consistent with the motion of two (nearly) linear fronts.

1.2.3 Heterogeneous Nucleation: Effect of Grain Size

(1.13)

Since nucleation often occurs on some underlying structure, we now examine quanti-

tatively the role of the grain size of this structure in determining the evolution path

for phase formation. It is advantageous to consider first a relatively simple structure

13



1.2. THEORETICAL FORMALISM

consisting of a periodic array of N rectangular cells, each of width l = L/N, which

tile a L x L system. With a given cell one can associate two parallel lines of semi

circular grains growing inward towards the grain center. For the regime 2Gt / l < 1

these lines are effectively independent and so the area fraction transformed can be

obtained from a superposition of the results for a single line to yield

(1.14)

where a = NGt/ L and the function f(O, 71") is defined in Eq. (1.12).

In the late time regime where 0.5 < a < 1 the bookkeeping for impingement

effects becomes more complex as the two parallel cell lines can now transform some

material in the same region. In effect, the two nearly planar fronts originating from

cell lines begin to interpenetrate near the center of a cell. Upon accounting for this

interpenetration one finds that

where

cPA(t) = [1- 2af(Vh, 71"/2) - (a - 0.5)] X

[1'11' d1/; sin1/; exp[-2iiL9+/N] exp[-2iiL9_/N]] x

8(2a - 1)8(2 - 2a),

9±(1/;) = j(a)2 - [(a - 0.5)cos(1/;) ± 0.5]2

(1.15)

(1.16)

and where 1/;1 = cos-1(1/a - 1). In practice this correction to cPA due to inter

penetration is only significant at relatively low linear nucleation densities as low

densities lead to increased corrugation in the propagating fronts and, hence, less

material transformed in a given time. Further implications of this equation will be

discussed in the next section where a direct comparison is made with the results of

computer simulation.
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1.3. SIMULATION METHODOLOGY

The impact of a more complex underlying structure on phase formation can

be assessed by considering, for example, an array consisting of square cells, each of

dimension L /N xL /N. As in the case of the one-dimensional cell structure discussed

above, the transformation of square cells can be viewed in terms of the motion of

fronts emanating from boundaries. An additional complication exists here, however,

as fronts originating from orthogonal sides partially interpenetrate at early times.

Nevertheless, it is also possible to calculate ¢A(t), incorporating this new feature,

with the result that

In the regime 2a > 1 it is necessary to amend Eq. (1.17) to account for further

impingement effects. In practice this is not an important correction, except at

small, linear nucleation site densities, and hence we will ignore this small effect for

the moment.

1.3 Simulation Methodology

In this Section we briefly describe the methodology employed to simulate phase

formation in a two-dimensional system of area A subjected to periodic boundary

conditions. As the details of this approach have been related elsewhere [21] and

employed in other investigations [22] only a brief outline containing the essential

ingredients will be given below.

In order to efficiently simulate phase formation it is useful at the outset to super

impose a discrete square grid oyer the two-dimensional system under consideration.

As will be seen below, this construct greatly simplifies the bookkeeping operations
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1.3. SIMULATION METHODOLOGY

that must be performed to track the motion of the evolving phase at the price of lim

iting, to some extent, the spatial resolution that may be achieved. As will be evident

from the results, this introduction of a short-wavelength cutoff is not particularly

problematic.

The simulation begins with the nucleation of a given number of sites, all of which

are introduced as a burst at one time, with a predetermined spatial distribution. In

the case of homogeneous nucleation this distribution is spatially uniform, on aver

age, and so there are no preferred sites. By contrast, in the case of heterogeneous

nucleation, a particular underlying substructure is identified, and each site on the

substructure acts as a potential nucleation site of the same strength. For simplic

ity, in this latter case it is assumed that all sites not on the given substructure

are unavailable for nucleation. In this way the substructure, in effect, catalyzes

nucleation.

After the determination of the nucleation site distribution, product grains origi

nating from these nuclei are assumed to grow at a constant radial growth rate G. In

particular, each element of a grain perimeter grows in this manner until it impinges

on another grain. The transformation proceeds until all untransformed material

has been exhausted. Thus, a space-time summary of the transformation involves

cataloging, at each time, which positions have been transformed and noting the

associated transforming grains. This is accomplished by first subdividing the grid

into large squares and compiling a list of grains which are potentially responsible

for transforming a particular square. This operation has the benefit of reducing the

number of growing grains which must be monitored for a given region of the grid.

Having obtained this list for each square, each gridpoint within a given square can be

examined to determine which grain from the appropriate list first intercepts it and
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the associated transformation time. The result of repeating this operation for each

grid point is a table which summarizes the space-time history of the transformation,

facilitating the calculation of the desired n-point correlation functions.

As it is essential to obtain good statistics for the computation of these cor

relation functions, the final results presented below represent averages over many

realizations of the distribution of nucleation sites on a given substructure. Various

substructures have been employed including: a one-dimensional lattice, a monodis

perse square lattice, a polydisperse square lattice and a substructure generated from

an independent nucleation and growth transformation. In the simulations we have

systematically varied the site density and, in some cases, the system size in order to

examine the impact of different length scales on our results. As we are particularly

interested in correlating microstructure with kinetics, we also produce snapshots of

the lattice which visually document the evolving transformation.

1.4 Results

In this Section the results of computer simulations are used to validate the theo

retical description of phase formation that has been discussed previously and that

will be augmented below. In particular, the kinetics of spatially random nucleation

will be compared and contrasted with the kinetics associated with heterogeneous

nucleation which is biased on the sites of an underlying network. For simplicity

and in order to illustrate the basic features of the latter process, we consider "sim

ple" geometric networks that permit a concurrent, tractable analytical study. In

effect, we seek to understand the roles of two relevant length scales, the first set

by the initial internuclear separation (1/vn) and the second set by the network
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grain size (denoted by I). Finally, we explain how our results can be generalized to

describe heterogeneous nucleation on more complex and, hence, more realistic grain

structures.

The time evolution of a transformation, corresponding to one realization of spa

tially random nucleation and subsequent growth on a 240 x 240 square lattice, is

summarized pictorially in Fig. 1.1. It is assumed that grains grow as circular disks

prior to impingement, and that the growth kinetics is interface-controlled. Clearly,

there is an initial time regime, set essentially by 1/ViiG, in which the disks grow

independently followed by a regime in which impingements alter the evolving struc

ture. It is worth noting here that these computer generated microstructure do

indeed bear a close resemblance to what is actually seen in, for example, in situ

transmission electron microscope images of crystallization of amorphous CoSi2 . [23]

Figure 1.2 shows the area fraction transformed, <PA, as a function of n l / 2Gt, for a

series of transformations, each having a different initial nucleation site density, as

determined from simulation.

As is evident from the figure, this series of transformations can be described by

a universal curve, as expected from Eq. (1.5). As a further check on the consistency

of the simulation results, the product phase growth rate, G and the areal nucleation

site density, n, have been extracted for each case and shown to be in excellent

agreement with the corresponding input values. Further, we have calculated the

logarithm of the normalized two-point correlation from simulation and compared it

with the expected result (Eq. (1.6)) in Fig. 1.3, thereby confirming the form of the

universal function ,(ITl - T21/2Gt) which describes the spatial decay of correlations

among transformed regions at Tl and T2.

Having characterized phase formation following homogeneous nucleation, we now
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Figure 1.1: The time evolut~on of a transformation on a 240 x 240 square lattice
(with periodic boundary conditions) which begins with a burst of nuclei at spatially
random positions and is followed by the growth of circular droplets. For this case
the areal nucleation density n = 9.89 x 10-4, in units of a-2 (where a is the unit
lattice parameter), and the snapshots correspond to reduced times n 1/ 2Gt = a.)
0.22, b.) 0.41, c.) 0.63 , d.) 0.69, e.) 0.94 and f.) 1.13.
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Figure 1.2: The area fraction transformed, ¢A, as a function of n1/ 2Gt, for a series of
transformations, each having a different initial nucleation site density, as determined
from simulation. It should be noted that the data collapse onto a universal curve,
as expected. These results represent averages over approximately 60 independent
initial configurations for each density.
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Figure 1.3: The logarithm of the normalized two-point correlation, as determined
from simulation, compared with that predicted by Eq. (1.6) for two different areal
nucleation densities n. The simulation results were obtained for a 240 x 240 square
lattice. This confirms the form of the universal function ,(IiI - T;\/2Gt) which
describes the spatial decay of correlations among transformed regions. These results
represent over 100 averages over initial configurations.
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review simulations in which nucleation occurs preferentially on an underlying

structure. Paralleling the theoretical development in the previous section, we first

consider a pseudo-one-dimensional structure consisting of an array of _parallel lines.

For concreteness, it is assumed that a 240 x 240 square lattice is divided into rect

angular cells with dimensions 120 x 240. Nucleation is taken to occur only on cell

boundaries, and the probability of nucleation on any boundary is independent of

position. Thus, an additional length scale, namely the cell size, has been intro

duced into the problem. It is expected, then, that fronts emanating from the cell

boundaries will meet at the center of a cell, though some material will remain un

transformed owing to the corrugation of these boundaries. This effect is shown

convincingly in Fig. 1.4 and is, in fact, embodied in Eq. (1.13).
/"

The results of a number of simulations with different linear nucleation densities

are given in Fig. 1.5 which shows ¢A as a function of the reduced time, NGtj L.

Also shown in the figure are the analytical predictions for these curves, as ob

tained from Eq. 's (1.14) and (1.15). The agreement between the analytical predic

tions and simulation data is seen to be excellent, thereby validating the approach

taken in the previous section.

Generalizing this cell model, we next consider a structure consisting of square

grains of dimensions 100 X 100 which tile a 300 x 300 lattice, and nucleation is

again taken to occur only on cell boundaries. As discussed earlier, in this case im

pingement effects are, not surprisingly, somewhat more complex than in the simpler,

one-dimensional structure. Nevertheless, the analytical prediction of ¢A given in Eq.

(1.17) faithfully describes the fraction transformed in the simulation, as shown in

Fig. 1.6.

The influence of the under lying cell structure on product phase nucleation and
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Figure 1.4: The meeting of two corrugated fronts emanating from cell boundaries
at the center of the cell at NGt/ L = 1/2. The corrugation evident in this figure
results in some material remaining untransformed at this time.
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Figure 1.5: The area fraction transformed, cPA, as a function of the reduced time,
GilL for a pseudo-one-dimensional structure consisting of rectangular cells with di
mensions 1/2 x 1 which partition a 1 x 1 square lattice. In this case 1 = 240. Also
shown in the figure are the analytical predictions for these curves, as obtained from
Eq.'s (14) and (15). The agreement between the analytical predictions and simu
lation data is seen to be excellent. The results were averaged over 90 independent
initial conditions.
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Figure 1.6: The area fraction transformed, <PA, as a function of the reduced time,
Gt/ L, for a structure consisting of square grains of dimensions L/3 x L/3 which tile
a L x L lattice. In this case L = 300. Again the simulation results are compared
with the analytical prediction, Eq. (1.17), and the agreement is excellent. The
results were averaged over 90 independent initial conditions.
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growth can be seen by examining Fig. 1.7 which shows a time sequence of the

transformation.

As is evident from the figure the underlying cell structure leads to elongated

product grains with nearly parallel boundaries which mimic the symmetry of the

underlying structure. Further, it is expected from stereology that along the bound

ary the product grain width is set by the internuclear spacing while, normal to the

boundary, the product grain height is set by the underlying cell size.

As a further generalization of these results, we next consider a bimodal distri

bution of cell sizes, as modeled by two sets of squares having dimensions II x h (75

x 75) and l2 X l2 (150 x 150), respectively. The number of small (large) squares

is M1 (M2 ). For relatively large linear nucleation site densities it is reasonable to

approximate the area fraction transformed by a rule of mixtures wherein the large

and the small squares transform independently. Clearly this approximation breaks

down when product grains originating in one set of squares impinge on another set.

This will most likely occur for low linear site densities and for large disparities in

cell size. In order to test this hypothesis we simulated the aforementioned system

and compared the results with those expected by an analytical rule of mixtures.

Specifically, the rule of mixtures from this distribution is given by

).. ( ) '" M1l~<PA1(t)8(ll/2 - Gt) +M1l~<PA1(t = h/2G)8(Gt - h/2) + M2l~<PA2(t)
'fA t r-.J M1li + M2l~ ,

(1.18)

where A1(A2) is h x h(l2 x l2) and <PA1(t)(<pA2(t)) is the fraction transformed in

the smaller (larger) squares. Figure 1.8 shows the area fraction transformed for this

distribution of squares as determined directly from simulation and as predicted by

Eq. (1.18) for a linear density n = 0.20.

The agreement between these two calculations is seen to be very good indeed.
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Figure 1. 7: The time evolution of a transformation in which nucleation has occurred
on the boundaries of square cells. In this series of pictures time increases from top
to bottom and left to right. It should be noted that the underlying structure leads
to elongated product grains with nearly parallel grain boundaries.
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Figure 1.8: The area fraction transformed, cPA, for a bimodal distribution of cell sizes,
as modeled by two sets of squares having dimensions II X h (75 x 75) and l2 X l2 (150
x 150), respectively. The linear nucleation density here is n = 0.20. The simulation
results are compared with an approximate rule of mixtures calculation, Eq.(1.18).
The results were averaged over from 60 to 100 independent configurations.
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Finally, it is of interest to examine nucleation on a more complex network of cells

and subsequent growth in order to identify the general features of the transforma

tion. With this in mind, an underlying structure was created from an independent

microstructure generated by spatially random nucleation and growth. The sites on

the boundaries of this structure served as preferential nucleation sites for the prod

uct phase. The resulting product phase distribution is shown in Fig. 1.9, clearly

underlining the impact of the underlying structure on the transformation, and the

time dependence of the associated area fraction transformed, ~A(t) is presented in

Fig. 1.10. The product phase microstructure shown in Fig. 1.9 demonstrates that

the underlying structure leads to a number of parallel boundaries and non-equiaxed

grains. The aspect ratio of these grains is still set, to a great extent, by the two

inherent length scales as embodied in the internuclear separation and the under

lying grain size. Now, an analytical description of of ~A would require a more

sophisticated rule of mixtures than employed above or, equivalently, an averaging

of individual transformation fractions over the cell-size distribution. This is the

subject of ongoing investigations.

1.5 Discussion and Conclusions

In this work we have used the theoretical formalism of Sekimoto [6] in parallel

with computer simulations to investigate phase transformations in a two-dimensional

system in which nucleation can be biased to occur on certain sites. The growth rate

has been assumed to be constant in time so that the growing regions are circular in

shape. The advantage of this formalism over that of the Johnson, Mehl and Avrami

(JMA) is that the n-point correlation functions of Sekimoto, for n > 1, give
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Figure 1.9: The time evolution of a transformation where nucleation occurs on
a complex, underlying structure on a 240 x 240 lattice and the linear density of
nucleation sites is ii = 0.035. In this series of pictures time increases from top to
bottom, and left to right. Clearly the underlying structure affects the microstructure
of the product phase.
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information about the size of the (un)transformed regions. The JMA formalism

embodies only the one-point correlation function and thus provides information only

on the fraction (un)transformed.

Having investigated homogeneous nucleation, we then considered increasingly

complex cases of site-biased nucleation. For a number of cases, we simulated an

underlying structure starting with a single, infinite line and progressed to a one

dimensional cellular array, a monosized square array and finally a polydisperse array.

These "simple" geometric networks were chosen because they permitted concurrent

analytical investigations. In all cases, detailed impingement effects were incorpo

rated in the analyses with the conclusion that the agreement between simulations

and corresponding analytical calculations was excellent. Further, we have noted

any limitations on the applicability of our method. Thus, we believe that the re

sults of the present study significantly enhance our understanding of the kinetics of

site-biased nucleation.

In addition, as mentioned in the Introduction, another motivation for the present

work was to obtain a better understanding of the kinetics of reactive phase formation

in thin films. A significant step towards this understanding was taken by Coffey

et al., who provided an explanation for the unusual calorimetric traces for NbAh

formation in NbjAl multilayers. [14] For this explanation Coffey et al. used Cahn's

approach to nucleation and growth on a planar boundary. It was assumed that

homogeneous product phase nucleation occurred in the NbjAl interface as a burst

and that the resultant grains grew at a constant rate and had circular traces in the

interface plane.

It is important to explore the implications of the assumptions inherent in this

~/ homogeneous nucleation model for the Avrami exponent. It is expected that the
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Avrami exponent in this case would be 2, independent of the multilayer periodicity.

However, in recent calorimetric studies of NijAl [18], TijAl [19] and NbjAl [20]

multilayers, the effective Avrami exponent for the formation of the product phase

has been found to vary as a function of multilayer periodicity, with values near 1

being frequently observed. These lower effective exponents manifest themselves as

isothermal differential scanning calorimetry traces (i.e., powe~ vs. time plots) that

are broader than those associated with an exponent of 2. Given that the reactant

phases in these multilayers are polycrystalline, we believe that our present work on

site-biased nucleation provides a possible explanation for the observed anomalies.

As evidence ofthis we show in Fig. 1.11 the time derivatives, dcPAjdt, obtained from

simulation which would effectively determine the shape of the calorimetry traces.

It can be seen from the figure that the shape of the peak depends on the degree of

heterogeneity of the nucleation process. Further work in this area currently focuses

on direct microscopic observations of the evolving microstructure.
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Figure 1.11: The time derivative of the area fraction transformed for cases of both
homogeneous and heterogeneous nucleation. Clearly the width of the peak depends
on the nature of the nucleation process.
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Chapter 2

Impact of Heterogeneous

Boundary Nucleation On Product

Grain Size Distribution

2.1 Introduction

An analysis of the product microstructure resulting from a phase transformation can

yield information on both the transformation kinetics and the distribution of any

catalytic sites. For example, the grain structure of a metal solidified in a mold is crit

ically dependent on the mold wall temperature and the presence of impurities which

promote heterogeneous nucleation. Further, in many systems it has been found

that the time dependence of the homogeneous nucleation rate correlates with rather

sharp, straight phase boundaries separating Voronoi polygons in the case of a burst

of nuclei at some initial time (the so-called cell model), while a more rounded phase

morphology is associated with a constant nucleation rate (the Johnson-Mehl model)
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[24]. More recently, a study of the kinetics and product microstructure resulting

from boundary nucleated reactions suggested that, under some conditions, product

grams are nonequiaxed due to the detailed shape of underlying grain boundaries

[25].

While a number of metrics exist for the characterization of a given product mi

crostructure, an analytic expression for the probability distribution of grain areas

is generally not known, even for many idealized cases. In the aforementioned cell

model, for example, an exact analytical description of the distribution of areas of

generated Voronoi polyhedra is still lacking, although it has been possible to ob

tain the exact distribution variance [24] and an approximate functional form for the

distribution [26]. Given the difficulty of completely characterizing microstructures

resulting from homogeneous transformations, it is expected that a similar analysis

of microstructures resulting from heterogeneous boundary nucleation will be prob

lematic. Nevertheless, it is reasonable to assume that the locations of underlying

catalytic sites will effectively determine both the sizes and shapes of product grains

and that it should therefore be possible to extract some information about nucleation

and growth mechanisms from a detailed geometrical analysis of these grains.

With this in mind, our goal in the present paper is to relate the morphology of

a product phase created during a first-order transformation to the type and spatial

distribution of preferred nucleation sites. This will be accomplished by a computer

simulation study of phase formation in a model system. The motivation for this

work is to obtain a better understanding of the kinetics of phase formation in thin

films via a microstructural analysis. For concreteness and simplicity we consider a

two-dimensional system of one phase which contains a known density of nuclei at

some initial time. At subsequent times product grains of a second phase, originating
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from this burst of nuclei, grow isotropically at a constant rate until impingement

with other grains and, in so doing, consume the initial phase. It is further assumed

that the grain growth kinetics is interface controlled and that nucleation can occur,

in some cases, preferentially on a collection of sites to be specified. This simplified

model of nucleation and growth captures many of the essential features of the early

stages of reactive phase formation in metallic thin films and should provide some

insight into the kinetics of such systems.

This paper is organized as follows. In Sec. II we briefly review the simulation

methodology and describe the distributions of heterogeneous nucleation sites that

are employed. In Sec. III histograms of grain area frequencies are analyzed in order

to relate microstructural length scales to those of any underlying structure. This

involves the calculation of moments of the grain size distribution and a determi

nation of relevant control parameters. We also obtain finite-size corrections to our

results from scaling arguments. Section IV contains a short discussion and some

conclusions.

2.2 Simulation Methodology

In this section we briefly describe the methodology employed to simulate phase

formation in a two-dimensional system subjected to periodic boundary conditions.

While there are a number of useful schemes which can be used to describe phase

formation, we have adopted here an established algorithm in which a discrete square

grid is superimposed on the system of interest. The use of this grid greatly simplifies

necessary bookkeeping operations that must be performed to track the motion of

the evolving phases at the price of limiting, to some extent, the spatial resolution
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that may be achieved. As the details of this approach can be found elsewhere [21]

and have been employed in other investigations [25][22], only a concise outline will

be given here.

The procedure begins with the random selection of nucleation sites from a given

set of potential sites. For simplicity, these nuclei are introduced as a burst at one

(initial) time. The set of potential sites is determined by the nucleation conditions

that one wishes to describe. In the case of homogeneous nucleation the spatial

distribution of nuclei is, on average, uniform and so there are no preferred sites.

Thus, each lattice site is selected with the same probability. By contrast, in the case

of heterogeneous nucleation, a particular underlying structure is identified, and each

site on the substructure acts as a potential nucleation site of the same strength. In

this latter case, it is assumed that sites not on the substructure are unavailable for

nucleation, and so the substructure functions here as a catalyst. The underlying

substructures employed here consist of a collection of Voronoi cells which fill the

two-dimensional system. The average size of these underlying cells, denoted by l'll.'

is a tunable parameter which will determine, to some degree, the morphology of the

resulting product microstructure.

Once the nucleation sites have been chosen, product grains originating at these

nuclei are assumed to grow at a constant radial growth rate G, thereby simulat

ing interface-controlled kinetics . Each element of a grain perimeter grows in this

manner until it impinges on another grain, and the transformation proceeds un

til all untransformed material is exhausted. Upon completion of this process each

grid point has been transformed by the growth front emanating from the nearest

nucleation site. The grain ,area distribution of the final microstructure is simply de

termined by counting the number of lattice points that belong to each grain, taking
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each lattice point to be a unit area. As it is essential to obtain good statistics for

determining the grain size distribution, it is necessary to measure the grain areas

from a large number of equivalent simulations.

2.3 Histogram Analysis of Product Microstruc

tures

2.3.1 Spatially Homogeneous Nucleation

In order to analyze the impact of heterogeneous nucleation on microstructure, it is

first necessary to examine microstructures associated with homogeneous nucleation

in some detail. While product grain size and shape are set by the areal nucleation site

density and homogeneous nucleation rate in an infinite system, both small (lattice

parameter) and large (system size) length cutoffs are inherent in simulations of

nucleation and growth on a finite, periodic lattice and can affect the distribution of

grain sizes. Thus, it is advantageous to understand just how these cutoffs influence

microstructure in the absence of catalytic sites before proceeding to more complex

cases.

Consider first the growth of product grains originating from a burst of nuclei

which are distributed randomly throughout a two-dimensional system. The resulting

microstructure consists of a collection of Voronoi grains which tile the system. The

quantity of central importance in our microstructural analysis is the probability

distribution, P(A' ), of normalized grain areas, A' = AIA, where A is the average

area. [27] The histograms of the probability distributions for the condition of spatially

random nucleation are shown in Fig. 2.1a for four different area densities n. As is
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evident from the figure, these distributions can be described by a quasi-universal

curve for relatively large values of n, as might be expected for a series of nearly

self-similar structures. At somewhat smaller values of n, however, there is some

small deviation in the histogram from its high-density counterparts. This shift can

be understood in terms of the finite size of the system (in this case a 300 x 300

lattice) with the result that it is not possible to accurately sample large normalized

grain areas AI at sufficiently small n or, equivalently, large A.. This will be shown

explicitly below in a finite-size scaling analysis of the moments of P(A'). It should

be pointed out here that no exact analytical form for P(AI) is known for this system.

Gilbert, however, [24] has obtained the second moment of this distribution

A -2
112 = 0.280A , (2.1)

and a number of other approximate results also exist. In particular, Kiang [28] has

found that the gamma distribution fits the observed distribution of grain areas well,

and Weaire et al. [29] have justified this result by using stereological arguments

relevant to a Poisson point process in conjunction with some assumptions about

(average) grain shape. In this case the standard gamma distribution [30]

P'Y(A' ) = (3a~(a) (Alt-
1

exp (_AI), (2.2)

where a and (3 are parameters, can be simplified by noting that, since the expectation

value E(A') = 1, a = 1/{3 and consequently the variance Var(A') = {3. Indeed, Fig.

2.1b shows the excellent fit between simulation data for a large value of nand p'Y

for the choice{3 = l/a = 0.274.

As discussed above, the finite size of the simulation cell constrains the distribu

tion of product grain sizes that can be sampled. At relatively high areal density

n this constraint is not too severe as A is relatively small. [31] This can be seen
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by examining the high-density histograms shown in Fig. 2.1a. If, however, n is

relatively small, then it is of interest to study this dependence on system size more

systematically. For this purpose it is convenient to examine the lower order mo

ments of the distribution, as they embody the most significant information, and to

employ a finite-size scaling analysis. The dependence of the second, fL2, and third,

fL3, moments of the distribution (about the mean) on the inverse areal density lin

is shown in Fig's. 2.2a and 2.2b, respectively, for several different site densities on a

300 X 300 lattice. From this analysis one finds via extrapolation that fL2(n ---t (0) =

0.278 ± 0.001, in good agreement with the exact result. This finite-size study will

be useful in the analysis of heterogeneous nucleation given below.

2.3.2 Spatially Heterogeneous Nucleation

Consider next the growth of product grains originating from nuclei which are located

on a network of preferred sites in the system. As we wish to model nucleation on

some underlying cell structure, the network is taken to be the set of available sites

which comprise the boundaries of this structure. For simplicity we imagine the the

underlying structure is also a collection of equiaxed Voronoi cells and that nucleation

is restricted to locations on cell boundaries. Thus, the average underlying cell size, lu,

becomes an important new parameter in the characterization of the microstructure

of product grains.

In the case of heterogeneous boundary nucleation it is expected that at least

two length scales are required to characterize the system, one associated with the

underlying grain size (lu) and the other associated with the internuclear separation.

41



2.3. HISTOGRAM ANALYSIS OF PRODUCT MICROSTRUCTURES

, .. " .. ,. n =2.21 x 10'3

- .. , - n =1.66 x 10.3

- n =1.10 X 10'3

--- n = 0.10 X 10.3

1

0.8

,..... 0.6

<
'-"
0..

0.4

0.2

0
0 2 3

A'

4

(a)

5 6

___ pf

n = 2.21 X 10.3

(b)

2 3

A'

4 5 6

Figure 2.1: a. ) The probability distributions P(A') versus reduced area, A' = A/A,
for homogeneous nucleation in a two-dimensional system. The results for several
different area densities, n, are shown. At relatively large values of n these histograms
fall on a quasi-universal curve. At smaller values of n there is some deviation from
this behavior. The histograms represent data for 7 X 104 to 1 X 106 grains. b.) The
histograms corresponding to relatively large n given in the previous figure are fit to
a gamma distribution (Eq. (2.2) with parameters f3 = 1/0. = 0.274. It should be
noted that the fit is excellent. The histogram represents data for 1 X 106 grains.
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1

For the underlying structure lu = n: 2 , where nu is the site density from which

the underlying grain structure is generated. The average internuclear distance can

be quantified in several ways. In this work we define the average separation along

the boundary lb = rib!' where rib is the linear density of nuclei along the boundary

network. That is, rib is the ratio of the number of nuclei to the number of available

boundary sites. This is an approximation to the linear density which depends on

lattice parameter. A more accurate estimate would naturally require a finer grid. It

is, of course, also possible to base lb on the areal nuclear density, though this is not

an independent measure as stereological arguments can be used to relate the average

underlying cell area to the average cell perimeter. For the subsequent discussion it

is useful to define a relative measure of these length scales by the ratio

(2.3)

Prior to the microstructural analysis, a number of intuitive conclusions can be

inferred from this model. In the limit r > lone would predict that the product

microstructure would be essentially equiaxed as the underlying structure should

have little effect on widely separated nuclei. Conversely, in the limit r < 1, grains

impinge first along the boundary and, in order to complete the transformation,

must continue their growth in the direction normal to the boundary, thus creating

elongated grains. The intermediate regime, corresponding to r rv 1, is transitional

in nature and will be investigated in some detail below.

These preliminary conclusions are borne out upon examining Fig. 's 2.3a-c which

show the resultant microstructures for log(r) = -0.781, -0.322 and 0.522 respectively.

It is clear that at large r the resultant microstructure becomes increasingly sim

ilar to that for homogeneous nucleation, namely a collection of nearly equiaxed
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a)

b)

c)

Figure 2.3: Several product grain microstructures for different values of the length
ratio log(r), namely -0.781(a), -0.322 (b) and 0.522(c). For relatively large r the
product microstructure resembles that for homogeneous nucleation as it contains
nearly equiaxed grains. At relatively small r many elongated grains are present.
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grams. On the other hand, at small T, elongated grains with long axes normal to

the boundary are dominant. The dependence of product grain area on T is sum-

marized in Fig. 2.4a which shows the normalized grain size distribution for three

different values of T.

It can be seen that with decreasing T the distribution shifts to the left, implying

that a greater number of both relatively small and large grains is created. Again,

there is a lower limit to the values of T which can be probed here due to the finite

size of the lattice parameter. It is interesting to note that the gamma distribution

describes P(A') here as well. This is illustrated in Fig. 2.4b for a relatively high line

density n. As in the case of homogeneous nucleation it is advantageous to examine

the dependence of the moments of these probability distributions on the relevant

length scales in the system.

Given that we wish to contrast heterogeneous with homogeneous nucleation, a

natural quantity to calculate is the ith normalized moment for the heterogeneous

system defined by

norm _ !1-i
!1-i = homo ( )'

Jli n

where Jl?omO(n) is the ith moment of the distribution for homogeneous nucleation

and its dependence on the areal density n, as shown in Fig.'s 2.2, is emphasized.

With this definition one can relate the variance, skewness, kurtosis, etc., of the

grain area distribution to the corresponding quantities for a Voronoi grain area

distribution that results from homogeneous nucleation and growth subsequent to a

burst of nuclei with area density n.

Figure 2.5a is a common log-log plot of Jl~orm versus T for a variety of underlying

site densities nu .

This normalized moment has been calculated using the same total number of
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final grains in the system area for the two different nucleation conditions (hetero

geneous vs. homogeneous) in order to mitigate the effects of system size on these

moments. As is apparent from the figure, there exists three broad regimes of behav

ior. In regime I, where log(r) > 0, the moments approach those for homogeneous

nucleation and the associated microstructure is essentially equiaxed, as expected

from the arguments above. In regime II, where -1 < log(r) < 0, the spatial ar

rangement of neighbors about a given nucleus becomes somewhat anisotropic, and

there is a concomitant change in the distribution of grain areas. It is tempting

to describe this regime in terms of a power law, and this will be done for higher

moments as well. In regime III, where log(r) < -1, the moment ratio becomes

much less sensitive to r for a given underlying structure. This can be understood

by making the approximation that in this regime P(A') ~ Ph(h')Pw(w'), where Ph

and Pw are probability densities for the normalized height and width, respectively,

of the grains. That is, the distributions of grain heights and widths are taken to

be nearly independent. Now, if it is further assumed that the distribution of nuclei

along a cell boundary is describable as a Poisson process, then the grain widths

should follow an exponential distribution with an average width given by iib
1

. So,

one finds that !1-2 :::::: Var(h'), independent of the nb. The behavior of the skewness of

the distribution, as characterized by the normalized third moment jL3, is shown in

Fig. 2.5b for the important transitional regime, -1 < log(r) < 0. Again, the data

is well described by a power law in this regime.

Finally, it is possible to quantify the product grain elongation that attends high

linear nucleation density, n, in the case of heterogeneous nucleation and growth.

For the cell model of homogeneous nucleation and growth, it has been shown that

the normalized perimeter, P/4VA = 1 [32]. In this work we found that P/4VA =
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1.012 for a relatively small sample of 1000 grams. It is therefore expected that

deviations from this result in the case of growth from a burst of nuclei located

on a substructure will reveal associated deviations from equiaxedness. This can

be seen by examining Fig. 2.6 which shows P/4VA versus the parameter r for

several different microstructures. occurred The increase in the normalized perimeter

with decreasing r correlates with the prevalence of elongated grains seen in the

microstructures (Fig. 's 2.3). For reference, at the high linear density given by log(r)

= -1.03 one finds that P/4VA ~ 1.17, which corresponds to (average) grain aspect

ratios of between 3 and 4.

50



2.3. HISTOGRAM ANALYSIS OF PRODUCT MICROSTRUCTURES

1.25 I I I I I I

1.20 I- a -

.......--
C"l.....-
~ 1.15 ~ a -
..q-

~
1.10 I- -

a
a

a a
. 1.05 f- a -

I- a

1.00 I I I I I I

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

Lag(r)
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2.4 Discussion and Conclusions

In this work computer simulation has been employed in order to contrast the prod

uct grains size distributions resulting from spQ.tially random and spatially biased

nucleation. In both instances it was assumed that p.ucleation as a burst and subse

quent grain growth proceeded at a constant radial growth rate until impingement.

In the case of spatially biased nucleation, the nuclei were located on the boundaries

between cells which define some underlying structure. For simplicity the underlying

structure was modeled as a collection of Voronoi cells.

The influence of this underlying structure on the product microstructure was

found to be well characterized, over a broad range of length scales, by the length

ratio, T, (Eq. (2.3)) which relates the size of the underlying structure to the sepa

ration of product nuclei along boundaries. The area distributions associated with

relatively large T di,splayed characteristics similar to those resulting from random

nucleation, as seen from the behavior of their lower order moments. For the range

-1 < T < 0, the moments obeyed an approximate power law relation and, in the

corresponding microstructures, elongated grains were prevalent. The presence of

non-equiaxed grains was quantified by calculating grain perimeter ratios for several

microstructures and examining the dependence of this ratio on T.

One distinct advantage of simulation in studying the impact of nucleation con

ditions on product microstructure is that it permits a systematic variation of these

conditions (i.e., underlying cell size, nucleation rate, etc.) in a "clean" system.

The experimental reality is, of course, somewhat different, and the goal is to infer

these nucleation conditions from an often limited amount of information. Indeed,

the investigation of reactive phase formation in thin films, for example, utilizing a
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variety of experimental techniques including differential scanning calorimetry and

electron microscopy has shed some light on the nucleation and growth process in

these systems and has been an active research area [14] [33]. Nevertheless, it has

proven difficult to uniquely deduce such important parameters as the number and

distribution of catalytic sites from experiments. In this regard, a more detailed

microstructural analysis may be helpful. As shown in this paper, the moments of

grain area distributions contain valuable information on relevant length scales in

the system and therefore reflect the presence of preferential nucleation sites. By

combining this analysis with measurements of area fraction transformed and the

dynamic structure factor [25], it should be possible to get a better handle on the

role of catalytic sites in a phase transformation. Further, detailed simulation stud

ies are useful guides for experimentalists as they identify relevant parameters in the

problem.
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Appendix A

Correlation Functions

In this Appendix the calculation of nonequilibrium, two-point functions is briefly

summarized. Consider first the case of spatially random nucleation which occurs as

a burst near the origin of time. From Eq. (1.2) one can construct the equal-time,

two-point funct ion

corresponding to the nucleation rate given in Eq. (1.4) and interface-controlled

growth kinetics. This equation can be rewritten upon inserting the appropriate

expressions for the D functions as

and then transformed by a change of variable to

where 8 =T1 - r;.
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Now, the integral in the exponential can be performed by noting its geometrical

interpretation, as shown in Fig. A.1. As the grains are circular theorientation of b

is immaterial. The value of the integral is given by the area of overlap in the figure.

One method to calculate this area is to fill the shaded region with a series of strips

of infinitesimal width and then integrate over the width. By using this approach

one obtains (Eq. (1.7))

(A.4)

where

(A.5)
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Figure A.I: A geometrical picture of the integration to be performed in Eq. (A3).
The required integral is the area of overlap of the two circles shown here.

59



Vita

William Scott Tong was born to Wyman and Bonita Tong on November 2, 1971 in

Honolulu, Hawaii. After realizing his preference to math and science while attending

Punahou Schools, he traveled to Lehigh University to study engineering, where he

graduated with a B.S. in Materials Science and Engineering.

In his spare time, he enjoys reading, playing basketball, and comunicating with

friends. In the future he expects to continue his education, although the specific

institution is not known at this time.

60



END
OF

TITLE


	Lehigh University
	Lehigh Preserve
	1996

	The effect of heterogeneous nucleation on two dimensional phase transformation kinetics
	William Scott Tong
	Recommended Citation


	00276
	00277
	00279
	00280
	00281
	00282
	00283
	00284
	00285
	00286
	00287
	00288
	00289
	00290
	00291
	00292
	00293
	00294
	00295
	00296
	00297
	00298
	00299
	00300
	00301
	00302
	00303
	00304
	00305
	00306
	00307
	00308
	00309
	00310
	00311
	00312
	00313
	00314
	00315
	00316
	00317
	00318
	00319
	00320
	00321
	00322
	00323
	00324
	00325
	00326
	00327
	00328
	00329
	00330
	00331
	00332
	00333
	00334
	00335
	00336
	00337
	00338
	00339
	00340
	00341
	00342
	00343
	00344
	00345
	00346
	00347

