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ABSTRACT

Digital systems are most conveniently designed as synchronous systems in whicb a clock provides for

the timing of the individual components. In sucb systems, bowever, there is no way to prevent

asynchronous inputs from cbanging near the active edge of the system clock, leading to errors in

interpreting the sense of the input value.

Synchronizers, in the form of latcbes, bave been used to provide the synchronous system with

conditioned inputs baving the proper setup and bold times. These synchronizers bave, bowever, been

known to fail througb a pbenomenon known as metastability.

After introducing the metastability problem, this thesis provides a theory for latcb behavior during

metastable operation. The theory is then applied to aD-type latcb used as a synchronizer in low

frequency applications. The example is then followed by a discussion of improvements in circuit

design tecbniques that have been attempted in the past, followed by an in-depth look at four newer latcb

designs. Tbe functionality of eacb design is presented, as well as their metastability recovery

characteristics, their susceptibility to critical input timing, and their Mean Time Between Failures.

The preferred implementation is aD-type latcb followed by a series of inverters, known as a Gabara

Latcb. It's mean time to failure can be several orders of magnitude greater than the simple D-Iatcb.
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1. INTRODUCTION

It is well known that synchronous systems, that is, systems which maneuver data using a single clock

signal, are the most convenient to design. Any violation of the synchronous design style could greatly

complicate design, increase the required analysis, negate the use of some powerful design aids, make

useless several testability schemes, and in general, increase design time and the risk of system failure.

In a synchronous system [15,33], circuit operation is guaranteed provided it is physically correct and

setup and hold restrictions are met at all flip-flops. Also, the designer need not be concerned about

combinatorial logic transients (glitches) unless they become an input to a flip- flop near its active clock

edge. Propagation delay through the combinatorial logic circuit is, however, a crucial design criterion.

The state of the system depends entirely on the state of the clocked elements (flip-flops). This simplifies

the design, maintenance, and testing of the system. The outputs are predictable, given steady-state

inputs, hence simplifying circuit troubleshdoting. Finally, there exist computer algorithms which

accurately analyze the behavior of synchronous systems, thus facilitating larger designs.

A synchronous system, however, imposes the requirement that its primary inputs must not change near

the active edge of the mainclock, since this would cause glitches and generally unpredictable system

outputs.

Guaranteeing that asynchronous inputs do not change near an active clock edge is usually impossible

considering that the the sending system is controlled by a clock which is out of phase and at a different

frequency than the receiving system (figure l.la), or the sending system may be combinatorial, thus not

be controlled by a clock (flgllre I.Ib), or there may be a large delay in the transmission line between the

sending and receiving systems causing de-synchronization of the inputs to the receiving system (even

though the two systems may have the same clock) (figure l.lc). A practical instance of the above

- 2-
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scenarios is a microprocessor, in itself a synchronous system, which inevitably must interface with a

keyboard, printer, or modem. Each of the latter sub-systems operates in a different time frame than that

of the microprocessor.

The exchange of information across this interface presents serious design challenges and is typically
,

handled by the use of a circuit called a "synchronizer", since it is intended to produce an output signal

that is in synchrony with the master clock.

Synchronizers in the form of D-latches (flip-flops) have been used to strobe asynchronous inputs of the

synchronous system and provideJuvith conditioned signals having the proper setUp and hold times,

hence incorporating the inputs into the receiving system's time frame. This has been accomplished, but

not without problems.

Consider a system sending a digital signal (for example, a human finger), and a system receiving the

signal and processing it (for example, the keyboard of a personal computer). The sending and the

receiving systems have different "clocks". The receiving system must realign the digital signal supplied

by the sending system to its own clock before further processing the signal. Digital data realignment is

carried out by "capturing" the asynchronous input data into a D-latch timed by the clock signal of the

receiving system.

When a transition of the data input occurs well away from the active edge of the clock, the circuit

functions normally. However, since the sending and the receiving clocks can be different in frequency

and in phase, the data transition can occur within a narrow window around the active edge of the clock.

. VVll~I1.J.ll!§..!t_~p'ynsJ.l1.e latC,h:sinternal circuitry maY not acquire enough information from the input-at

the time when the D-latch input is closed. This causes the flip-flop or latch output voltages at Qand its

inverse, QN, to approach and linger at an unstable equilibrium value of about VDDI2, referred to as the

metastable state [1-31].

-4-



The metastable state can be the cause of system malfunctions in the form of synchronization failures. A

synchronization failure due to metastability is said to occur when an undecided flip-flop with logically

undefined outputs is sampled by other digital circuitry, thus propagating non- binary signals through

binary systems. The non-binary state is clearly illegal since the synchronous system is only expecting

binary states.

The synchronization failure of a flip-flop due to metastability occurs under critical input timing

conditions, when narrow pulses (also referred to as runt pulses) dccur on the clock input, or when inputs

change simultaneously. These critical timing situations cannot be avoided, as explained above. On the

other hand, synchronization failures due to metastability must be eliminated or at least kept to a

minimum.

It is then clear that a solution which effectively deals with metastable operation is needed. The key is

the design of a synchronizer which can resolve the metastable state and make the system more resistant

to metastable operation.

In order to design such a synchronizer, an understanding of latch behavior before, during, and after

metastable operation is required.

- 5 -



2. THEORY

Binary information implies elementary memory elements of a bistable nature -- one state denoting a

logic "0", the other a logic" I".

A bistable element [44] is a regenerative circuit which can exist indefinitely in either of two stable states

and can be caused to make an abrupt transition from one state to the other.

2.1 Stable States of a Bistable Element

A bistable element may be produced by interconnecting two inverters as shown figure 2.1. The output

of each inverter is connected to the input of the other. If output Q of inverter II is a logic" 1", then the

input to inverter 12 is also a "1". As a result, the output of 12 is a logic "0" (QN=O). If QN=O, a "0" is

present at the input of 11; the output of 11, therefore, is a logic" 1", With no external signals, the circuit

remains in its stable state with Q=1 and QN=O. The flip-flop can be forced to change its state by

shorting the Q terminal to ground or by supplying a suitable trigger to the input of 11. If the trigger to

11 is a "high", the input to 12 will automatically become a "low", resulting in QN=1. Mter the trigger is

removed, the output of the flip-flop remains at Q=O and QN= 1. This state prevails until another trigger

signal forces a change of state. It may be concluded that Q equals a logic 0 or I when QN equals a logic

I or 0 respectively.

Synchronization has been accomplished using such a bistable device (a latch or flip-flop), The most

popular synchronizing element is the CMOS D-type latch.

- 6-
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Figure 2.1. Bistable Element obtained by
cross-coupling two inverters
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2.2 CMOS D-Iatch operation

A CMOS D-latch (level sense), shown in figure 2.2, is used to store I bit of data. When CK is high and

CKN is low, data D drives the latch, and node Q assumes the logic level of D, and QN the complement.

Data D comes from other logic and must make a transition and settle before CK and CKN make down

and up transitions, respectively. After the clock transition, input D is unable to further influence the

state of the latch, and the latch is closed. The transition of the data must occur sometime before the

clock transitions. The minimum time required to store the data is called the setup time. If the data

transition occurs before the setup time, the value after the transition is stored in the latch. If the

transition occurs after the setup time, the value before the transition is stored The latter case results in a

logic error.· The setup time may be different (or up and for down data transitions. Figure 2.3

summarizes the positive level-sense D-lateh operation. "

2.3 Metastable State

Every bistable device must necessarily have a region of metastability. A flip-flop, like any other

bistable system, can be described (figure 2.4) by some energy function, P(x), with two local energetic

minima which represent the stable states of the system, and an energy barrier between the two stable

states. The energy barrier must be overcome in order to switch the flip-flop from one state to the other.

Consider the mechanical system of an inverted pendulum (figure 2.5). The energy function, P(x), can

be compared to the potential energy of the mechanical system which has two local minima, right and

left, and its maximum in the center. The force of gravity holds the pendulum at a stable state in either

the rightmost or the leftmost position. Switching from one state to the other can be accomplished by

pushing the weight up to its maximum position and letting it fall onto the opposite stop.

- 8 -
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Figure 2.4. Energy function describing a flip-flap
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Figure 2.5. Mechanical system analog of a latch
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If the pendulum is left in one of its stable states, given by the minima in figure 2.4, it will stay there

indefinitely until enough energy is provided to surmount the potential maximum and to allow the

system to re-equilibrate in the other potential minimum.

If the "right" amount of energy is supplied to the pendulum at one of its potential minima. there is a

finite probability that it will rise to its potential maximum and linger there for an indeterminate amount

of time before resolving to fall to either of its potential minima. During this event, the flip-flop is in

neither of its stable minima. but half-way in between. Hence the term "meta" stable. The duration of

this event is unpredictable. One can however compute the probability of entering the metastable state.

2.4 CMOS D-Iatch metastability and MTBF

As previously explained, the latch behavior of a flip-flop, can be described by a pair of static gates

(inverters) tied back to back (figure 2.6),· representing the non-linearity of the flip-flop, and a linear

dynamic network (R, C) describing its dynamic behavior. This is an equivalent circuit for the latch

which applies as long as it continues to operate linearly [11].

The possible states of such a latch are depicted in figure 2.7. If both inverters are identical, the latch is

in the metastable state when VI = V2.

The situation in which both inverters are operating as amplifiers and in which both output voltages are

the same, is one of unstable equilibrium. To show the behavior of the flip flop near this unstable

equilibrium or metastable region, the small signal model is invoked.

In figure 2.6, the gain A is the nominal gain of the amplifier, neglecting all capacitive loading. The

resistance R is the output impedance of a stage. The capacitance C is the parallel combination of the

capacitance seen looking into the input and any other parasitic capacitance.

- 13 -



Figure 2.6. Equivalent latch circuit during
linear operation.
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If V I and V2 are, respectively, the voltages on the two capacitors with the polarities as in figure 2.6,

Kirchhoff s current law yields

AV2 - VI dV I
---- - C- =0

R dt

and

AVI - V2 dV2
----- C- =0

R dt

Equation 2.4.1 can be rewritten in the form

and equation 2.4.2 can be rewritten in the form:

Subtracting 2.4.4 from 2.4.3

and letting

2.4.1

2.4.2

2.4.3

2.4.4

2.4.5

then 'it 12 represents the displacement of the node voltages of equal amounts and in opposite direction,

which causes the regenerative action to take place and returns the flip-flop to one of the stable

equilibrium states.

- 16 -



Replacing the expression for V12, we get

and rewriting this equation in a more familiar form we have

dV 12 A + 1
-- + --V12 = 0

dt RC

The solution to this type of linear differential equation

: +By=O

takes the form

y(x) = Ke- Bx

therefore the'general solution is

where

B=~
RC

Ifwe let

RC't =-.._..._.. -
A + 1

2.4.6

2.4.7

2.4.8

2.4.9

2.4.10

2.4.11

2.4.12

then t represents the rapidity of the regenerative action, that is, how fast the flip-flop can snap out of

metastability. The smaller the value of't, the faster the latch will exit the metastable state.

- 17 -



The initial condition is found by considering t =0 the time at which the finite difference in voltage

between Viand V2 is such that metastability is produced at the outputs of the latch.

Replacing t =0 into equation 2.4.10 we get:

The particular solution is then

V12 (O)=K 2.4.13

2.4.14

This shows that the voltage difference between the two sides will grow exponentially with time as the

flip flop comes out of the metastable region.

A latch should be designed in a way that establishes the exponential growth very quickly. In order for

this to happen, the quantity ,

RC
't=--

A+l

must be minimized. This is achieved by maximizing the denominator, and minimizing the numerator.

By taking a closer look at the components of't, one can see that A, the nominal gain of the amplifier, is

basically its transfer function and is calculated as follows:

2.4.15

wheregm is the transconductance oCthe driving inverter, Ro is the output impedance of the driving

inverter, R is the output impedance R0, and C is the total capacitance at the node being driven.

- 18 -



The total capacitance includes parasitic routing, fanout gate capacitance, and overlap capacitance

between gate and source/drain regions. It is calculated using

2.4.16

where CL is the fanout loading capacitance. CR is the routing parasitic capacitance, and CM takes into

account the overlap capacitance.

The latter. however. is in essence a Miller capacitance since it couples the output of an amplifier to its

input. The application of the Miller Theorem (figure 2.8) results in the multiplication of the factor

I-A

to the overlap capacitance value, where A is the small signal voltage gain of the amplifier from equation

2.4.15. Figure 2.9 shows that the overlap capacitance of each inverter of the cross-coupled pair. CF1

and CF2. is combined in parallel to obtain a lumped overlap capacitance, CF. The Miller capacitance is

therefore calculated by:

2.4.17

where CF is lumped overlap capacitance calculated by summing the parallel capacitors CFl and CF2 in

figure 2.9:

By replacing the terms in the exponential part of equation 2.4.14 it can be rewritten as:

. t

Ro[CL +CR+CF(1 + gmRO)]

gmRO+ I

t--------------
RC

A+ I

- 19 -
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C1 =Cf{1 • A)

=C2

C2 =Cf{1 .1/A)

Figure 2.8. Application of the Miller Theorem.
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Figure 2.9. Effect of overlap capacitance
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t::-----------
RO(CL+CR+CF+CFgmRO)

gmRo

t=------------
RO(C L +CR+CF)+ROCFgmRo

gmRo

2.4.18

Replacing the above expression into equation 2.4.14 we get a form which more closely resembles the

physical parameters of the circuit

2.4.19

Equation 2.4.19 describes the behavior of the cross-coupled inverter pair during the process of

metastable decay, and shows that the exponential increase of the difference in V I and V2 is dependent

on gm' Increasing the transconductance of the cross-connected inverter pair will increase the rate with

which the flip-flop exits the metastable state. Decreasing the total capacitance at nodes 1 and 2 also

helps the exponential increase of the difference in VI and V2• V l2 (0) is the difference in voltage

between nodes 1 and 2 at the beginning of the metastable state (at t = 0, the time when the clock has

closed the input data path). Figure 2.10 shows the generation of the metastable state when the input

data changes within a critical time window.

From figure 2.10 we can see that the decision time t D (the time it takes to attain solid "digital voltage

levels at the latch outputs) can be expressed as the sum of the propagation delay of the flip flop (t PD)

and the time to resolve the metastable state.(recovery time tR):

- 22-
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2.4.20

The measurement points for t R are here defined as the point where the latch outputs first reach the

metastable voltage VM (t =0 in figure 2.10), to the time point where the slope of the output voltage

curve is at its greatest (t=tR in figure 2.10). The corresponding voltage axis points are VM, which can

be calculated using the DC saturation current equations of MOSFET's, and (VDD + VM )12.

The parameter tR is related to the latch during the metastable state. We can then substitute it into

equ~tion 2.4.19 to find V 12 (0), the difference in voltage between nodes I and 2 at the beginning of the

metastable state:

2.4.21

from which V 12 (0) is derived as

2.4.22

However, since t R= tD - t PD we get

2.4.23

From equation 2.4.23 we can derive the decision time t D

2.4.24

This relationship shows that as V12 (0) decreases, the time it takes the latch to resolve the metastable

state increases. That is, the closer the voltages at nodes I and 2 are, the longer it takes a latch to recover

- 24-



from the metastable state.

The decision time, t D' can be specified as a system requirement, thus enabling the calculation of

V 12 (0). Then, if the nodal voltage difference is less than V 12 (0) it will take longer than t D to resolve

the metastable state. V12 (0) can therefore be considered a metastable voltage window 0v.

A small difference in voltage between nodes I and 2 resulting in the metastable state implies that the

input data voltage was within the metastable voltage window at the time the clock closed the input data

path (sample time). We can then relate the metastable voltage window to the time axis. Figure 2.11

shows this relationship. If we define the input data slew rate as

V DD
.input data slew rate =-

tFAIL

then the following relationship is valid:

VDD Ov
tFAIL =8;

and therefore the metastable time window is

s: _ s: t FAIL
ur-uv-

VDD

2.4.25

2.4.26

2.4.27

An asynchronous data transition has no correlation to the phase of the input clock; therefore, its

probability density function is unity for one clock period (figure 2.12). The metastable time window is

a slice of the clock period TCWCK and the probability that a data transition will occur within the critical

window or is

- 25-
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Figure 2.11. Relationship between dT and dv
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Figure 2.12. Probability density function of data
transition
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OT
P=--

TCWCK
2.4.28

The number of probable occurrences of the metastable state depends on the frequency of the input data,

and is represented by

N=2 PfDATA = 2oTfcwCKfDATA 2.4.29

the factor 2 is included since each transition of the data signal passes through the metastable voltage

window, and there are 2 transitions per period.

•
The Mean Time Between Failures is defined as

MTBF=..l
N

MTBF= I
2oTfcWGKfDATA

which is a measure ~f the reliability of a synchronizer.
I

- 28 -
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3. EXAMPLE

The theory presented in the previous section will now be applied to a practical example: a positive

level-sense D latch designed in the AT&T I.75Jlm CMOS technology.

This standard cell has been used as a synchronizer for low frequency applications, and it serves well as

an application vehicle for the above theory.

In this section, we will be calculating the reliability of the positive level-sense D latch as a synchronizer.

Therefore we will conclude with an actual number for the Mean Time Between Failures (MTBF) which

was presented at the end of the last section as the measure of synchronizer reliability.

Metastability is established when the internal nodes of the regenerative latch circuit are at the same

voltage level. Referring to figure 2.2, these nodes are II, QN, and Q. Therefore the metastable state

occurs when

where VM is the metastable voltage.

3.1.1

The metastable voltage can be calculated using DC equations for the MOS devices of the inverters in

the feedback loop. Let's assume that the metastable voltage is in the range V00/2, and that the

threshold voltages for each transistor is VTP =Iv and VTN =1v. Referring to figure 3.1, we see the

following

Vosp=2.5v
VGsp=2.5v

VTP = 1v
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therefore the saturation condition for the P-transistor

VoSP >VGSP - VTP

is satisfied and the P-transistor in is saturation. The same is true for the N-transistor

VosN =2.5v
VGSN =2.5v

VIN = 1v

VOSN > VGSN - VIN.

3.1.2

3.1.3

With the two devices in saturation, we know that their drain currents are equivalent; therefore, by using

the saturation equations for drain current

1 W
10 = "2f..lT Cox(VGS- VT)

and equating them

we get an expression for the metastable voltage

--!k;V00 ---!k;1 VTP I+{k;VIN
VM =------------

{k;+--!k;

where

W EoEox w
k[NPj=f..lCox-=f..l---

L tox L

3.1.4

3.1.5

3.1.6

3.1.7

The previous equations can be evaluated by using the AT&T 1.75f..lm CMOS parameters as an example
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Parameter Symbol Value Unit

width of P-transistor WP 18 J.UIl

length of P-transistor LP 2.25 J.UIl

width on N-transistor WN 18 J.UIl

length of N-transistor LN 2.25 J.UIl

P-channel mobility llP 223

N-channel mobility JlN 542.1

oxide thickness tax 2.5e-6 J.UIl

and using the values

Value Symbol Value Unit

power supply voltage VDD 5 volts

relative permittivity of Si02 eox 3.9

permittivity of vacuum eo 8.854e-14 Fcm- 1

in equation 3.1.6 to calculate the metastable voltage

The manual calculation serves as a first order approximation of the metastable voltage. A circuit

simulator can give us a more precise calculation of VM. by simply performing a DC analysis of the latch

circuit of figure 2.2. AT&T's ADVICE simulator yields a metastable voltage value of VM =1.96943 v.

Once the metastable voltage is calculated, we can initialize the latch circuitry at VM and use ADVICE to
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calculate the voltage gain A and the output impedance Ro.

The ADVICE transfer function analysis provides the following values at the input voltage VM:

A =-38.56
Ro= 3.481 X 104 ohms

The total nodal capacitance can be manually calculated using equation 2.4.16. The components of this

equation are shown in figure 3.2. CDN. CDP. and CR can be manually calculated from models extracted

directly from the mask geometries. CG. the gate capacitance, and Cov. the overlap capacitance, must

be calculated using the transistor dimensions and processing model parameters. From the manual

calculation

Cr =0.9l4pF.

We now have the components necessary to calculate the regeneration factor't using equation 2.4:12:

RC RoCr
't=-- =--= 8.0454x 10-10 seconds

A+l A+l

or 't=0.805 nanoseconds.

The calculation of the metastable voltage window necessitates some basic system requirements.

Suppose we're concerned with synchronizing keyboard input with the CPU of a high powered personal

computer running at 25Mbz. then the clock frequency is

!cWCK=25xl06 Hz

and the period is
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Figure 3.2. Total nodal capacitance components
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I
TCWCK =---=40ns

fCWCK

The decision time required by the system should take into account circuit dependencies. To illustrate

this point, figure 3.3a shows an example of a circuit which employs a synchronizer at the front end

followed by some combinatorial logic and another latch. Figure 3.3b shows the possible timing of this

circuit

The synchronizer (FFl) must resolve the metastable state before it is sampled at FF2 on the next clock

cycle thereby constituting a synchronization failure. The timing components which delay this

resolution are the synchronizer propagation delay (t PD), the metastable state resolution time (t R), the

delay through the combinatorial logic (t CMB), and the setup time of FF2 (tsu).

Considering all these factors, a decision time allowance of half the clock period is enough to provide us

good margin:

I
t D="2 TCLOCK =20ns

From the circuit simulation of the latch, the propagation delay is tPD = 2ns.

The voltage level used for the measurement of the end of the metastable resolution time, V 12 (t R), is the

point following the metastable state where the slope of the latch output curve is the largest. This level is

given by

VDD =5v
VM= I.96943 v
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Figure 3.3. Example of synchronizer
implementation and resulting waverforms
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We can now find the metastable voltage window using equation 2.4.23:

and thus, 8v=6.694xlO- lO volts.

This value means that if the voltage difference between the internal nodes of FFI is less than 8v' it will

take longer than t D to resolve the metastable state.

The metastable time window can be calculated using equation 2.4.27:

The aiynchronous input data fall time is assumed to be 10 nanoseconds thus, 8T =1.3388XlO- 18

seconds.

The calculation of the MTBF requires the input data frequency. Recall that the input data comes from

the keyboard. Assuming an average typist typing 30 words per minute, and an average of 5 characters

per word:

30 w~s x5 chars x Imin =2.5 characters
mIll wd 60sec second

This indicates that the keyboard is struck an average of 2.5 time each second or a input data frequency

Of/DATA =2.5Hz.

Then, using equation 2.4.30
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MTBF= I
. 25TfcLOCKfDATA

we can calculate the Mean Time Between Failures

MTBF=5.9755xI09 seconds

or, MTBF= I89.48years.

Based on this failure rate, the synchronizer may seem acceptable until we consider a higher input data

frequency, fDATA =12x 106 Hz, which happens to be the frequency of operation of the MIDI (Musical

Instrument Digital Interface) board which is connected directly to system bus on a personal computer.

Using equation 2.4.30, the Mean Time Between Failures now becomes

MTBF =I.2449x 103 seconds

and the synchronizer will probably fail every 21 minutes!
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4. IMPROVEMl:NT TECHNIQUES

4.1 Discussion

An number of papers have been published, concentrating on device-level techniques [20,21,23,27,29]

and gate-level techniques [5,25,27,28] to improve the performance of a synchronizer under

metastability conditions, hence increase its reliability.

The device-level techniques concentrate on improving the Gain-Bandwidth product of the cross-coupled

inverters forming the regenerative feedback loop of the basic latch. This is primarily accomplished

through appropriate sizing of the N and P transistors of the inverters in the feedback loop with

additional attention to minimizing the parasitic layout capacitances. The work of Flannagan [20] is

valuable in the sense that it gave a comprehensive view of the device optimization strategy. The MOS

capacitances in this work, however, are too simplified. The work of Sakurai [27] is based on that of

Flannagan but takes into account the complexity of parasitic capacitances and concludes with a more

accurate recommendation for optimal device size. Furthermore, Sakurai also shows that adding

inverters in the feedback loop for the sake of increasing the loop gain does not improve the metastability

problem.

The gate-level techniques present several ways of improving the reliability of synchronizers by

attempting to detect or correct metastability externally to the synchronizing latch. Kleeman and Cantoni

[25] have masterfully presented the problem and several ways to improve reliability, including a

pausable clock by metastable detection (figure 4.1), extending the allowed settling time by Cascading

flip-flops (figure 4.2), including a Schmitt Trigger between cascaded flip-flops (figure 4.3), and using a

majority-vote or redundant scheme (figure 4.4). The work by Horstman et al. [28] investigates cascaded
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Figure 4.3. Schmitt Trigger synchronizer
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D-type flip-flops with a delay element on the clock path to the second flip-flop (figure 4.5). These

techniques have been shown to improve the metastability problem to various degrees with the extended

decision time being the best at lowering the probability of synchronization failure. However, all of the

latter techniques require additional circuitry for each asynchronous input and multiple or extended clock

cycles. The pausable clock technique in particular requires control over the main system clock, a rare

commodity when dealing with system components such as VLSI chips (synchronous systems within

themselves).

4.2 Improving the Basic D-type Latch

The following section deals with alleviating the metastability problem of the basic D-type latch. The

circuit is commonly used as a synchronizer, and is used here as a building block for gate-level

metastability improvement techniques. A latch which has increased MTBF due to metastability will

further improve other methods which make use of this latch.

In order to make a meaningful comparison between the latch designs which will be presented, the same

application of the is chosen: the synchronizer is used as in figure 4.6, with a clock frequency of 25

Mhz, and a data frequency of 2.5 Hz.

4.3 FDISIA Positive Level Sense D-Iatch

The basic D-latch latch was introduced earlier in this paper, and provided a vehicle with which the

Mean Time Between Failures (MTBF) was derived and calculated. It has been shown that for low

frequency applications, the MTBF may be acceptable. The FDlSlA is an implementation of the basic

latch design from the AT&T Standard Cell library, and is a possible solution for low frequency

applications.
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Figure 4.6. Example of application of the
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Functionality

Figure 4.7 shows a page from the AT&T 1.75um CMOS standard cell library catalog which defines the

functionality of the FD1S1A and provides its schematic diagram. Figure 4.8 summarizes the operation

of the latch by plotting the input and output waveforms as a result of a circuit simulation. Figure 4.9

shows the same simulation results and includes the internal nodes of the latch.

Recovery From Metastability

To demonstrate the characteristics of the latch around the metastable state, a transient analysis of the

circuit can be performed. The input timing must be precisely controlled to trigger the occurrence of the

metastable state, that is, the input data must be at the "correct" level during the metastability window.

In practice, this is a lengthy trial-and-error procedure.

However, a fairly easy way to simulate the ability of the latch to deal with the metastable state can be

obtained by assuming the latch to be initially at the metastable point Figure 4.10 shows the result of a

simulation of the metastable decay of the FD1S1A, that is, its recovery characteristics from the

metastable state. This transient analysis was performed by biasing the internal nodes of the latch at the

metastable voltage poin't: VM' which was calculated in chapter 3. The figure shows the rapidity with

which the latch exits the metastable state. The voltage levels at Q and QN begin to diverge due to

thermal noise [32,48], as modeled by the simulator, and also noise due to simulation error margin [48].

Once divergence is reached, formula 2.4.21 describes the behavior of the circuit.

Based on the waveforms shown in figure 4.10, the metastable state has a duration of several

nanoseconds, therefore, the FD1S1A is prone to failures due to metastability.
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Simulation Under Critical Input Timing

A simulation using critical input timing can now show the behavior of the latch before, during, and after

the metastable state.

Figure 4.11 shows the latch operation due to data switching within the metastability window. An actual

metastable state is produced lasting several nanoseconds. Figure 4.12 shows the latch outputs and the

relationship between the latch inputs. In this case, the critical relationship between the input data VD

and the input clock VCK is established when the data leads the clock by exactly 3.5065 ns.

------------''Fhis time interval is the defined as a cntical relationship since it is the delay between the input data and

the input clock which causes a voltage level close to the metastable voltage VM to be latched at the

internal node II. Once the input data path is closed, the high gain feedback loop propagates the

metastable voltage very quickly around itself and the circuit behaves a depicted in figure 4.10 and its

behavior is described by equation 2.4.21.

Mean Time Between Failures .

The calculation of the MTBF for the FD IS IA has already been presented in section 3. It will be briefly

discussed here.

In chapter 3 we found that the metastable voltage window for the FDISIA depends upon the allowed

decision time and the propagation delay of the data path, and is calculated using equation 2.4.23. The

voltage window was found to be:

ov==6.694x 10- 10 volts

Assuming an input data fall time of 10 nanoseconds, the metastable time window is calculated from
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equation 2.4.27, and is

<>T= 1.3388xlO-18 seconds

The metastable time window is a component of equation 2.4.30 which yields the MTBF. The other

components of the equation are the clock frequency, fCWCK=25xI06 Hz, and the data frequency,

fDATA =2.5Hz.

Using these values, the MTBF for an FDISIA is

MTBF- 5 9755x lO2..set-'01ld~s----------------

or, MTBF= 189.48 years.

4.4 Gabara Latch Circuit

The FDISIA has reasonable MTBF as a synchronizer when used in low frequency applications, that is,

low input data frequencies. However, these implementations of low frequency synchronizers are

continually decreasing as the evolving VLSI technologies enable faster and faster circuits. A more

reliable circuit is needed at higher frequencies. The GabaraLatch [31], named after the the original

designer, is a level-sense D-type latch which has been incorporated in the design of an Application

Specific Integrated Circuit (ASIC) for broadband switching operating at 180Mhz. In that application,

the MTBF due to metastability was increased from 4 seconds to 1000 years.

Functionality

The level-sense latch with improved MTBF is depicted in figure 4.13 [31]. The feedback path

consisting of two inverters and a transmission gate (FINV1, FINV2, and TI) is separated from the
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feedforward path consisting of three inverters (INVI, INV2, and INV3). These two paths can be

designed independently. The feedback path can be sized to adjust the resolution of the metastability

window while the feedforward path retards the propagation of the metastable state to Q. Note that the

inverter INV1 can be sized small so that the parasitic load capacitance of its gate can be minimized at

node DB providing yet a higher resolution capability at this node. The gain of the feedforward path can

be readjusted by the size of INV2 and INV3 or additional inverters can be added in series depending on

the frequency of operation or on the value of the capacitive load of the next latch. In previous circuit

designs of latches, the feedback and feedforward paths share a common path through at least one

________lWinveFter,--prevenung-independentllesign-ofthese1wo-patbs.

Fi~ure 4.14 displays the waveforms as a result of a functional simulation of the latch. The input

waveforms are identical to those applied to the FDISIA. The output waveforms are expected to be

identical as well since the latch is to perform the same function. Visual comparison of figure 4.14 with

figure 4.8 confirms the functionality.

The inverters INVI and INV2 are identically sized to FINVI and FINV2. However, as we will see

later, it is interesting to note that the waveforms at nodes DF and FF are different when the latch is near

the metastable point. This occurs because the feedback path consists of a closed loop path (360degree

phase shift) with a short delay, while the feedforward path does not close on itself. The feedback path

resolves the voltage at DB, while the multi-stage inverter feedforward path decreases the possibility of

the propagation of the metastable state. Both paths have inverters with high gain to allow the latch to

have a higher MTBF. The number of inverters in the feedforward path is determined by the maximum

frequency of operation.
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Recovery From Metastability

A quick measure for the susceptibility of the latch to the metastable state can be obtained by forcing the

internal nodes of the feedback path to the metastable voltage value of 1.96943 volts, and performing a

transient analysis. The nodes of the feedforward path are initialized at genuine digital voltage levels

since that is their true state immediately after the input clock samples the input data within the

metastability window. Figure 4.15 shows the result of the simulation of the Gabara latch exiting the

metastable state. A visual comparison between figure 4.15 and figure 4.10 shows that the Gabara latch

obtains a dramatic improvement in decision time with respect to the FDIS1A. The main reson for this

is the decreased capacuance m the feedback loop, therefore a larger bandwidth. A standard latch, such

as the FDISIA, "sees" the load of the next stage and the load of the routing to that stage at its outputs

which are part of the feedback path. Reduced capacitance at the nodes of the feedback path reduces the
)1'1

time required for the regenerative action, 't, as calculated by equation 2.4.12. A linear reduction 't

translates into an exponential increase in the voltage difference between the nodes of the feedback path

as calculated in equation 2.4.22.

Simulation Under Critical Input Timing

It is worthwhile, at this point, to investigate the circuit's performance under critical input timing.

Figure 4.16 shows the waveform at the output node Q as a result of a simulation using critical input

timing. Each cycle of the waveform represents the response of the circuit to increased clock to data

skew. The input data is kept steady while the clock period is varied by 0.00001 ns at each cycle. The

result is that at the beginning of each period, the clock to data skew is increased by a very small amount.

Such fine resolution is required to see a metastable state of reasonable duration. This method has

greatly facilitated the search for the metastability window through simulation. Figure 4.16 shows the

equivalent of II simulations with varied clock to data skews.
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Figure 4.15. Gabara Latch recovery characteristics
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Figure 4.16. Gabara Latch output waveform under critical input timing
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There appears to be no metastable state at the output of the latch, VQ, in figure 4.16. Figure 4.17 is a

close-up of the first two clock cycles. At the beginning of the first cycle, data is apparently sampled to

be high, since the output is high. The second cycle reveals that the data was sampled to be low since the

output is low. The resolution of clock to data skew is exactly the same as that of the FDIS IA

simulation; therefore, we expect the occurrence of the metastable state at the output. The Gabara latch

does not exhibit metastability at the output Q.

It is interesting, however, to look at the behavior of the internal nodes of the latch. Figure 4.18 again

presents the close-up of the first two clock cycles but also shows the waveforms at the internal nodes.

Even though the output waveform VQ2 is not exhibiting the metastable state, the nodes of the feedback

path are. VFF and VFFN clearly loiter around the metastable voltage (1.96943 volts) following the

clock and data high to low transition. Figure 4.19 is a close-up of the first cycle including the internal

nodes. The duration of the metastable state is about 2.5 nanoseconds~, Figure 4.20 is a close-up of the

second cycle including internal nodes. The metastable state is clearly visible although its duration is

less than in the previous figure.

Mean Time Between Failures

In order to see a manifestation of a metastable state, even for a short duration, at the output Qof the

Gabara Latch, its duration at internal node DB must be greater than the propagation delay through the

three inverters INVI, INV2, and INV3. This is because each inverter will respond to an input voltage

VM after a propagation delay. Its allowed resolution time, that is, the time that it takes the internal node

DB to resolve the metastable state, can be increased by the sum of the propagation delays of the three

inverters.

From the relationship in equation 2.4.24 we know that a long lasting metastable state is a result of a
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Figure 4.17. Close-up of first two simulation cycles
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decrease in the metastable voltage window. The increase in allowed resolution time in the Gabara

Latch essentially decreases the metastable voltage window, decreasing the metastable time window,

hence increasing the Mean Time Between Failures.

The metastable voltage window of the Gabara Latch is found to be

and assuming an input slew rate of 10 nanoseconds, the metastable time window is

__~ -tarrT2L2~.77>x<11r seconds

so the Mean Time Between Failures of the Gabara Latch is:

MTBF=2.9xlO I2 seconds

or, MTBF = 93973years.

Comparing this result with the MTBF of the FDlS1A found to be 189 years, the Gabara Latch offers

greater reliability.

4.5 Modified Gabara Latch Circuit

Although the Gabara latch circuit has been shown to possess a large MTBF, it is still susceptible to

failure if the duration of the metastable state is longer than the propagation delay of the feedforward

path. This section presents an latch design which makes use of a Schmitt Trigger.

The addition of a Schmitt Trigger was suggested as a solution [5] to the metastability problem by using

it within the feedback loop. This implementation has its shortcomings [8]. The circuit in this section
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~',

uses the Schmitt Trigger as an additional protection against the occurrence of metastability at the latch

outputs by inserting it in the feedforward path. A brief discussion of the behavior of the Schmitt

Trigger is appropriate at this time.

Schmitt Trigger Buffer

A circuit implementation of the Schmitt Trigger buffer is depicted in figure 4.21 [35,36,37]. The

important design parameters for a Schmitt Trigger buffer are the reverse trigger voltage V-and the

forward trigger voltage V+. V-is the point at which the output will switch when the input voltage is

to VDD' Since V- is less than V+ the Schmitt Trigger exhibits hysteresis within these two values.

Figure 4.22 shows the voltage transfer characteristics of a Schmitt Trigger buffer using a W/L ratio of 9

for each device. V- is about 1.5 volts and V+ is about 3.0 volts. The width of the hysteresis zone is

then 1.5_vnlts. A transient-analysis-ean-be-performed to verify the AC operation of the circuit, as shown

~n figure 4.23. This figure shows the result of such a simulation using both slow rise and fall input

waveforms.

Changing the W/L ratio of critical devices MP3 and MN3 modifies V-and V+, and thereby the width_of

the hysteresis region. For example, by changing the ratios of MP3 and MN3 to 18, the hysteresis region

can be increased to 2.2 volts. Figure 4.24 shows the voltage transfer characteristics for the modified

circuit where V-is 1.3 volts and V+ is 3.5 volts. Figure 4.25 shows the results of the corresponding AC

analysis.

A wider hysteresis region, however, produces longer propagati0n delay through the Schmitt Trigger;,
therefore, a compromise between propagation delay and width of hysteresis region must be reached for

an actual implementation.
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Implementation of Schmitt Trigger

Figure 4.26 shows the Gabara latch circuit with the implementation of the Schmitt Trigger. The latter

has been substituted in place of inverter INV2. This appears to be the optimum position since its output

is buffered to provide additional drive capability, and its higher input capacitance is decoupled from the

feedback loop to maintain the recovery time.

Functionality

Figure 4.27 shows the result of the functional simulation of the latch and displa)§.lnputs, ontputs.-andO-------

internal nodes. Visual comparison to figure 4.14 reveals that the circuit operations of this circuit and the

original are identical.

Recovery From Metastability

The resolution characteristics, as shown in figure 4.28, verify that the feedback loop is unaffected since

they are the same as the original Gabara circuit

Simulation-Under Critical Input Conditions

The feedforward characteristics of the modified Gabara latch do, however, change. Figure 4.29 shows

the result of a transient analysis performed by incrementing the data-clock skew at each clock cycle.

This is the same type of simulation depicted in figure 4.16. A visual comparison of the two figures

points out that the original circuit shows a tendency for output switching prior to the beginning of

output toggling, whereas the modified circuit does not Figure 4.30 is a close-up of the portion of the

simulation shown in the previous figure immediately before output toggling occurs. The output node

VQ2 appears very stable although the internal nodes are in the metastable state. In contrast, figure 4.19
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Figure 4.29. Output wavefonn under critical input timing
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shows that the output VQ2 begins to switch but then remains in the same state due to the short duration

of the internal metastability. Figure 4.31 is a close-up of the very next cycle, where the output toggles.

It shows a very clean output waveform without "hesitation" or metastability.

From the comparison of figures 4.19 and 4.30, it is clear that a long-lasting metastable state will affect

the output of the Gabara latch, and although there is no apparent perturbation at the output of the

modified circuit, more decisive evidence is needed to fully appreciate the benefit of implementing a

Schmitt Trigger. A smaller test circuit, as shown in figure 4.32, can be constructed which emulates the

final stages of the feedforward path. The waveform at input A can be made to approximate the actual

input to the Schmitt Trigger before, during, and after metastability. The duration of the metastable state

can then be changed to observe the effect of long duration on the Schmitt Trigger. Figure 4.33 shows

the result of simulation using the latter circuit and setup for an input transition from VDD, to the

metastable voltage VM' to 0 volts. Figure 4.34 shows the simulation results for the opposite input

waveform. In both cases, the Schmitt Trigger output is not affected even with a metastable state lasting

over 100 nanoseconds. The figures also show the effect of the metastable input on the internal nodes of

the Schmitt Trigger Nl and PI. Referring to figure 4.21, Nl is the connection between MN,l, MN2, and

MN3; PI is the connection between MPl, MP2, and MP3. Figure 4.33 shows that internal node PI has

a value of about 2.5 vC5~ while-input A is at VM' and output Z is low. The output being low means that

MP3 is definitely on, thus connecting PI to ground. Node PI should then be 0 volts. Its value,

however, is 2.5 volts which means that MPI must be on. The MPI and MP3 path represents a voltage

divider between VDD and ground. This means that current is flowing, and power is being dissipated. A

display of the transient current can easily verify this. Figure 4.35 shows the waveform of the current

flowing from the VDD current source. While the input of the Schmitt Trigger is at VM, there is almA

current flowing. This means that there is a DC path from power to ground through MPI and MP3,

hence power is dissipated.
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Figure 4.31. Close-up of cycle when output toggles.
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The high power dissipation of the Schmitt Trigger is a known, important issue [37]. It is especially

aggravated by slow ramping inputs, and in this case an input which lingers around the metastable

voltage for a period of time.

Mean Time Between Failures

The failure mode of this latch due to metastability is somewhat different than the previous circuit. The

Schmitt Trigger responds to a metastable state at its input with a delayed rail voltage at its output. This

size of the delay depends on the duration of the metastable state. The metj1Stable state can be long

m uce a e y which causes the output of the synchronizer to be latched by following stages

at the end of the clock period while the output is at a metastable voltage level. This situation is unlikely

because the metastable state must last through the entire clock period, and, given the sharp transition of

the Schmitt Trigger, the metastable voltage window of the following stages is greatly reduced. The

Mean Time Between Failures of the Modified Gabara Latch is therefore greater than the original Gabara

Latch.

4.6 Offord Latch Circuit

The Offord Latch circuit [50], named after the original designer, is depicted in figure 4.36. It consists of

the basic FDISIA latch augmented with a series P and N transistor pair connected between input D and

internal node II.

Functionality

The logical functionality of the circuit can be verified by simulation. Figure 4.37 shows the result of the

simulation and displays the waveforms for input, output, and internal nodes of the circuit Visual
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comparison of the priniary inputs and outputs between figure 4.37 and figure 4.9 confirms that the

operation of this circuit is identical to that of the FD1S1A standard cell latch.

The principle behind the addition of the series N and P transistors is enjoyably simple. Assume a

metastable state at QN, that is, QN is at the metastable voltage VM (1.96943 volts). This voltage should

be enough to turn on both N and P transistors sufficiently to complete the path between input D and

internal node 11, thus taking the latch from the metastable state to the state of the input D. When QN

assumes a rail voltage level, the D-ll connection is severed because one of the transistors will not be

conducting, so that the normal operation of the latch is not affected.

The operation is verified by the functional simulation shown in figure 4.37. However, verification of the

metastability correction characteristics requires a closer look.

Recovery From Metastability

By~etting the internal nodes of the latch to the metastable voltage of 1.96943 volts, and performing a

transient analysis, we can see how the additional transis.tors affect the recovery characteristics of the

Offord latch. Figure 4.38 shows the results of the simulation. It is apparent from a comparison of

figure 4.38 with figure 4.10 that the recovery characteristics of the Offord latch are slightly worse than

the FD IS 1A. In principle, the circuit has much better recovery characteristics, but in simulation the

opposite is found. Simulation of the circuit under critical input timing is not necessary since we know

that its metastable characteristics are worse than those of the FDIS lAo However, a first-order analysis

of the reason why the circuit has not produced the desired results is in order.
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Offord Latch First-Order Analysis

The body effect on both the N and P transistors which are series connected between input D and internal

node II, and their gate-source voltage during the metastable state must be taken into account Figure

439 shows the portion of the Offord latch which should contribute to a faster recovery from the

metastable state.

Consider the structure in figure 439a, with a voltage at D of Ov. The body effect must be considered

since the voltage between the source and the body of the N-transistor is non- zero. The same is true for

_______-wth~F_;__A_ssuming_{}_volts--at-B,and-2-volts-attl.

N-transistor

VSB = Vll - Vss = 2volts

P-transistor

VSB = V D - VDD =-5volts

A calculation of the threshold voltage including the body effect due to a non-zero VSB component is in

order. The threshold voltage including the body effect is defin-ed as:

where VTO is the threshold voltage at zero bias (VSB =0), GDC is the body effect coefficient, <l> S is the

surface electrostatic potential, and VSB is the source-to-body voltage.

From the AT&T 1.75~m CMOS process parameters we can extract the following:
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Parameter N-transistor

VTO 0.8389

GDC 0.6

2$s -0.75

P-transistor

-1.368

0.6

0.71

Unit

v

v

v

Using the above parameters, Vm = 1. 32volts, and from figure 4.39a we see that VGSN = ovolts, then

___-----thtf!'ereforetlreN-lIansisror is off.

Similarly

VfP =- 2. 236 volts

VSGP =2volts

VSGP>VfP

and P-transistor is also off when the input D is at Ov. When the D input is at 5 volts, the P-transistor is

on, but the N-transistor is still off, and the path is still not closed. Figure 4.40 shows a simulation of the

Offord Latch with the D input set at 5 volts.

The configuration of figure 439b suffers from similar anomalies. With VS8 = - 3volts, the threshold

voltage of the P-transistor increases, and since VGS =Ovolts, the P-transistor remains non-conducting.

With input D at 0 volts, the N-transistor, on the other hand, is on since:
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VsB=Ovolts

VTN = VroN=O.83volts

VGSN =2volts

VGSN > VTN

but if the input D is at 5 volts the N-transistor if off as well.

Based on the previous analysis, the series N and P transistors added to the basic latch do not improve its

characteristics of recovery from the metastable state, therefore, the Offord Latch is prone to failures due

to metastability with a Mean Time Between Failures essentially equivalent to the ED1S1A.
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5. CONCLUSION

This thesis has discussed metastability in CMOS latches - a phenomenon which causes intermittent

failures in systems requiring synchronization. These failures arise from the attempt to synchronize

asynchronous inputs to a synchronous system by the use of a latch known as a synchronizer. The

asynchronous input of the synchronizer are sampled at regular intervals by a system clock. Since the

arrival of an asynchronous input is impossible to predict, there is a finite probability that it will violate

the setup and hold time of the synchronizer. When this happens the operation of the synchronizer

---------udl-'<i'l'i;;f\Fgrges-ffem-t:he-nermaJ--digitahnode and its intelllai circuiuy operates ill tile high-gam linear mode

where small-signal models best describe its behavior.

Along these lines, the theory behind the linear operation has been presented. This bas enabled the

formulation of an equation which predicts the exponential recovery from the metastable state. The
~ .

equation is then used to define a metastable voltage window and the related metastable time window.

An expression was then derived for the Mean Time Between Failures (MTBF) whose components are

the metastable time window, the clock frequency, and the data frequency. The MTBF is a measure of

the reliability of a synchronizer, and is used as a figure of merit.

The FDISIA, a D-type latch designed in the AT&T 1.75Jlrn CMOS technology, was then used as an

example to apply the theory, and to calculate the MTBF. From this calculation, it is clear that the

FDISIA is reliable enough to use in low frequency applications. The examples used in the calculation

are for a system in which a keyboard is interfaced to a CPU. The CPU operated at a frequency of

25Mbz, while the keyboard provides the asynchronous input at a frequency of 205Hz.

The FDISIA, however, turns out to be very unreliable in high frequency applications. Instead, the

Gabara Latch can be employed as a synchronizer with improved Mean Time Between Failures. Its
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characteristics of recovery from the metastable state appear to be much better that those of the FDISIA

as a result of ADVICE simulations. Further simulations show that in order to see a metastable voltage

at the latch outputs, the duration of the metastable state has to be quite long. This contributes to the

decrease in the width of the metastable voltage and time window and in turn a dramatic increase in the

Mean Time Between Failures. The addition of a Schmitt Trigger in the feedforward stage of the Oabara

Latch seems to increase the MTBF even further. The drawbacks of this addition are increased power

dissipation, and the small potential for causing metastability at the next clocked stage. The latter is due

to the Schmitt Trigger's response to a metastable voltage at its input with a corresponding delay at its

output

Although the Offord latch operates under the self-correcting principle using the metastable voltage

itself, simulations show that its recovery characteristics are no better, if not worse, than those of the

FDISIA. The Mean Time Between Failures for this latch is then the same, or slightly higher, than the

FDISIA.

The original Gabara Latch appears to be the preferred choice for reliable synchronization. Although the

Modified Gabara Latch has higher MTBF, the high power consumption makes it an unreasonable choice

as a synchronizer.
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