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Abstract

The development of the IOO-ksi grade steels is designed to contribute future high-

performance steels (HPS). High-performance steels are defined as steels having better

combination of characteristics than existing steels with respect to one or more of the

following: strength, yield-tensile ratio, fracture toughness, ductility~ weldability,'

uniformity, corrosion resistance and fatigue life. The purpose of this investigation is to
f

develop a chemical composition and thermo-mechanical controlled processing (TMCP)

for a lOO-ksi yield strength steel that can be welded without preheat and with the strength

and toughness of low carbon, low alloy IOO-ksi steels previously studied by the

Advanced Technology for Large Structural Systems (ATLSS) Center at Lehigh

University. Modified A710-grade-A class-I, low carbon, Cu-Ni-Cr-Mo-Cb, copper

precipitation hardened high-performance steels have been selected for study in this

research. A thorough examination of the hardenability of these HPS was conducted via

Jominy end-quench hardenability tests. Tempering studies were performed to evaluate

the effect of tempering on hardness for various treatments and TMCP practices. The

mechanical properties of these HPS were determined by tensile and Charpy V-Notch

impact tests. Metallographic techniques, such as, light optical microscopy (LOM),

scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were

employed to evaluate the microstructures, fractography and microanalysis of these high-

performance steels. These low-carbon Cu-Ni steels, relatively lean in other additions

offer combinations of yield strength and fracture toughness superior to present



commercial structural steels; with yield strengths exceeding lOO-ksi and high Charpy V­

Notch toughness down to -120F and lower.
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1. Introduction

1.1 Purpose of Present Investigation

The purpose of this investigation is to develop a chemical composition and

thenno-mechanical controlled processing (TMCP) for a 100-ksi yield strength steel that

can be welded without preheat and with the strength and toughness of low carbon, low

alloy 100-ksi steels previously studied by the Advanced Technology for Large Structural

Systems (ATLSS) Center at Lehigh University.

Dynamic infrastructure applications such as buildings and bridges are fabricated

from ASTM A36 (36-ksi minimum yield-strength), and ASTM A572 and A588 (50-ksi

minimum yield-strength) steels. Today, there is a necessity to upgrade the quality of the

infrastructure in the United StatesY-7] At ATLSS, prior research and development of

high-perfonnance steels (HPS) propose that substantial weight-savings and cost

advantages could ensue if 70 to 100 ksi minimum yield-strength were employed.[9-13]
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The significant factor in cost saving through use of HPS steel in construction is the

reduction or elimination of preheat for welding, by significantly reducing the carbon

content[l2] Thenno-mechanical controlled processing (TMCP) studies showed the

resulting loss in strength due to the reduction of carbon content could be off-set by

controlled-rolling and direct quenching (CRDQ). It was also detennined that controlled­

rolling, air-cooling, and off-line heat treatment (CRAQ) also augmented toughness,

however strength-gains were not as notable as those obtained by the CRDQ processing

technique. [13]

The high strength steels currently accessible commercially are limited in

usefulness due to the following conditions:[2,3]

1. the fatigue strength does not scale-up with the yield strength.

2. most of the steels average about 0.15% carbon, have high coarse-grain heat­

affected-zone (HAZ) hardness when welded, and therefore require preheat to avoid

hydrogen-assisted HAZ cracking.

3. many of the steels do not have sufficient notch toughness to meet the

specifications for fracture-critical members.

4. the steels often have unacceptably high yield-strength and tensile-strength

ratios.

5. the higher-strength thinner-section steels must exhibit improved corrosion to

provide acceptable life cycles.
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Various investigators[9-22] have addressed the foregoing limitations. At the

Lehigh University Center for Advanced Technology for Large Structural Systems

(ATLSS), a solution to the fatigue problem is being studied through improved design.

Limitations 2, 3, 4 and 5 are being addressed through the development of new high­

performance steels (HPS). This approach involves studies of chemical composition and

thermo-mechanical processing (TMCP). [9-13]

Previous ATLSS investigations of chemical composition have included a broad

range of carbon contents, alloying elements, and atomic strengthening mechanisms.

These have indicated that the carbon content should be less than 0.09% to minimize

susceptibility to heat-affected zone (HAZ) cracking and to optimize fracture toughness. [9]

The ultimate objective is to develop suitable low cost, low alloy 100-ksi steels which

could be utilized as High-Performance Steels and would meet the American Association

of State Highway Transportation (AASHTO) and the AST:M' requirements (Tables I and

11). So far, the Cu-Ni precipitation-hardening type steels have shown the greatest promise

for good strength and toughness in heavy sections. Table III demonstrates the

metallurgical development of high-performance steels and their various applications. [12]

1.2 Background

Many bridges fabricated in the 1960's and early 1970's from A514/A517 steel

have suffered from hydrogen cracks which occured during fabrication. Cracking has also
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been observed in A572 and A588 steel structures. The frequent occurrence of hydrogen

cracking in high-strength steel has inhibited application. [8] Hydrogen cracking is most

effectively avoided by using steel and weld metal with microstructures that are not

susceptible. Susceptibility to hydrogen cracking increases significantly as the carbon

content exceeds 0.1 %P] The susceptible microstructures are typically martensite.[I7] A

number of low-carbon steels have been developed that are not susceptible to hydrogen

cracking.

In the 1970's, microalloyed steels with low carbon content, high manganese

levels and rnicroalloy carbide and nitride formers were developed as construction

materials with high-,strength, good weldability[24-26], and good low-temperature

toughness. Over the past decade, steels similar to ASTM A710 (low-carbon, age­

hardenable steels) have gained increasing usage in shipbuilding, heavy-vehicle

manufacturing, and offshore structure construction because of their excellent weldability

and fracture toughness. These steels have become known as high-strength low alloy

steels although their total alloy content is generally around 4%.[2]

Another method of increasing strength without increasing carbon and alloy

content is controlled rolling, combined with on-line accelerated cooling, i.e.,

thermomechanical controlled processing (TMCP). The equipment required to make

TMCP steels runs into a substantial capital investments, and so far the U.S. steelmakers

have not deemed the potential market to be large enough to justify this investmentp,13]
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However, TMCP steels in the 50-ksi (350 MPa) to 80-ksi (600 MPa) yield

strength range are widely produced in Japan and Europe and have found markets

through- out the world. In fact, some of these steelmakers will supply TMCP plate and

rolled shapes to fill orders that require only conventional structural steels, since it is no

longer cost effective to produce both types of steel. Thus, if a large enough market can

be developed, this high-performance steel can be produced at a cost which is equal or

lower than the traditional steel of comparable strength.[2,1O,13]

1.3 Thermo-Mechanical Controlled Processes (TMCP) at

ATLSS

Thermo-mechanical controlled processing (TMCP) is defined as any combination

of mechanical and thermal production processes intended to obtain preferred properties

within a material. This is accomplished by controlling plastic deformation of a material

within the hot-working temperature range. The ultimate goal is to improve mechanical

properties beyond those normally achievable by conventional means. [II]

The three TMCP treatments investigated were as follows:

1. HRAQ - Conventional Hot-Rolled and Air-Cooled, then off-line Quenched.

2. CRDQ - Control-Rolled using 2Tpractice to 160(fF and Direct Quenched.

3. CRAQ - Control-Rolled using 2T practice to 160(fF, Air-Cooled and Off-line

7



Quenched.

Previous ATLSS investigations of thenno-mechanical controlled processing indicated the

following: [9]

1. controlled rolling followed by direct quenching (CRDQ) increased the yield

strength by 10 to 20 ksi, resulted in significant anisotropy, reduced the toughn,ess in the

transverse direction, and increased the yield-tensile ratio.

2. for certain compositions, controlled rolling followed by air cooling and off­

line quenching and tempering (CRAQ) was observed to improve the strength-toughness

relationship compared with conventional hot rolling followed by air-cooling and off-line

quenching and tempering (HRAQ).

To evaluate these TMCP variables, the optimization study included HRAQ vs

CRAQ vs CRDQ processing. Figure 1 schematically represents various examples of

TMCP treatments.
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2. Experimental Procedures

2.1 Melting and Rolling of Steels

Two different 500-lb heats of steel were vacuum-melted by the United States

Steel Technology Center-with the following compositions (Table IV):

V-Steel (1" Plate Gauge)

C Mn P S Si Cu Ni Cr Mo V Cb AI

0.075 1.50 0.012 0.0046 0.25 0.96 0.75 0.50 0.50 0.058 0.025 0.034

V-Steel (2" Plate Gauge)

C Mn P S Si Cu Ni Cr Mo V Cb AI

0.073 1.49 0.015 0.0050 0.23 0.95 0.75 0.50 0.50 0.059 0.022 0.035

The rolling of the steels was as follows:

1. l-inch-thick plate: The steel ingot was rolled straight-away to a 3.5-inch

slab, cut into three equal lengths and cross-rolled into a I-inch plates

using respectively HRAQ, CRDQ and CRAQ practices described above.
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2. 2-incJz-tlzick plate: The steel ingot was rolled straight-away to a 4.0-inch

slab, cut into three equal lengths and cross-rolled to 2-inch plate using

the aforementioned TMCP conditions.

2.1.1. Thermo-Mechanical Controlled Processing

Hot-Rolled Practice:

U-Steel - The 7-inch-thick ingot was rolled to a 3.5-inch-thick slab (l2"wide

x 39" long), cut into three 13-inch long pieces, and cross-rolled to I-inch-thick plate as

follows:

1. Cut A - Heat slab to 2275F, roll in 6 passes and finish at I900F, and air-cool

(HRA).

2. Cut B - Heat slab to 2I50F, roll in 3 passes to 2 inches, hold to 1750F,

control-roll in 4 passes to I-inch at I600F, and direct-quench at 50F/sec (CRDQ).

3. Cut C - Heat slab to 2I50F, roll in 3 passes to 2 inches, hold to 1750F,

control-roll in 4 passes to I-inch at I600F, and air cool (CRAQ).

V-Steel The 7-inch-thick ingot was rolled to a 5-inch-thick slab (12"wide x

30" long), cut into three 1O.inch long pieces, and cross-rolled to 2-inch-thick plate as

follows:
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I. Cut A - Heat slab to 2275F, roll in 4 passes and finish at 1900F, and air-cool

(HRA).

2. Cut B - Heat slab to 2150F, roll in 2 passes to 4 inches, hold to 1750F,

control-roll in 4 passes to 2-inch at 1600F, and direct-quench at 50F/sec (CRDQ).

3. Cut C - Heat slab to 2150F, roll in 2 passes to 4 inches, hold to 1750F,

control-roll in 4 passes to 2-inch at 1600F, and air cool (CRAQ).

Figure 2 and 3 illustrate the respective rolling schedules involved in the processing of the

high-performance steel.

2.2 Heat Treatment

Austenitizing - The hot-rolled plates were cut into convenient test sections and

heat-treated as outlined in Table VII for steels U and V. The cooling rates were chosen to

simulate those that would be expected in production as illustrated in Figure 4. The

curves shown are the best current information for production facilities. Additional

information is desired because of the limited number of such facilities in the United

States. The cooling rates reported in Table vrn are based on the rate between 1472F and

932F (8ODC and SOOC).
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The IQ Water practice involved immersion quenching into mildly agitated water

at 60F. The average typical cooling curves for immersion-quenched 1/2-, 1-, and 2-inch­

thick plates are shown in Figure 8. The corresponding cooling rates are tabulated for

plates cooled from 800C to 500C (1479F to 932F). For practical purposes, these rates are

the same as the rates at 1300F (cooling from 1500F to llOOF), which are the rates

published for the Jominy test. These rates are shown in Figure 4 for comparison with

typical spray-quench production practices and in Figure 9 to illustrate their location with

respect to distance from the quenched end of the Jominy test. As shown in Figure 4, this

laboratory quenching practice agrees extremely well with that shown for typical

production. Therefore, the cooling rates for 3- and 4-inch-thick plates are tabulated on

Figure 9 and are identified by plate thickness on subsequent Jominy curves.

Spray Q involved spray quenching using four solid cone nozzles, 5.5 inches apart

vertically and horizontally, and eight inches from the mid-thickness of a vertically

suspended plate, using 60F water at 95 psi pressure. The rates were varied by using

different flow-rate nozzle sets shown in Table V.

All plates were treated in the thickness indicated except for the simulation of

production quenching of 4-inch plate, which was done at three different cooling rates ­

air-cooling a 112-inch plate (2F/sec.) and spray quenching a I-inch plate using different

nozzle sets to produce cooling rates of SF/sec. and 9F/sec. The different rates represent

different opinions on the best simulation for production quenching of a 4-inch plate.

12



At the U.S. Steel Technical Center facility, the "USS Spray" involved direct

cooling from the rolling mill into a spray-quench runout table. All plates were cooled

continuously to room temperature using the same cooling medium, except for the

"CR+lAC" interrupted-accelerated-cooling practice which involved quenching from

1600F to 1050F followed by air-cooling to ambient temperature.

2.3 Quenching Practice

Steel plates processed via HRA and CRA processes were off-line austenitized at

.
I6500P and water quenched. The quenching of these plates were perfonned by means of

total immersion or spray quenching on a spray quench facility (Figures 5 and 6), designed

to simulate the cooling rates associated with commercial direct quench facilities. In the

ATLSS spray quench facility, the cooling rate of the steel plates are controlled by varying

nozzle size, spray pressure, nozzle to plate distance and nozzle quantity demonstrated in

Table V.

13



2.4 Cooling Rate Studies

Cooling rates were measured on the 100-ksi yield strength steel plate of the

targeted chemical composition. The steel plate specimens consisted of an 8 x 10 inch

plate with varying thickness'; 0.5, 1.0 and 2.0-inch, respectively. The plate specimen

was austenitized at 1650F, removed from the furnace, transported and placed in a vertical

position within the spray quench apparatus and spray quenched (Figure 7). By imbedding

a thermo-couple inside the center of each plate, cooling rate curves were traced and

generated by an electronic x-y plotter connected to the thenno-couple. The cooling rate

was calculated in the temperature range of 932F to 1472F.

2.5 Mechanical Property Tests

2.5.1 Tempering and Hardness Surveys.

A tempering survey was conducted on the test steels in each TMCP condition.

This study served as a guide for determining the tempering temperature that would

produced the optimum combination of mechanical properties. A series of small

metallographic blocks were taken from the quenched plates and tempered between 1GOOF

14



and 1350F. Hardness measurements were gathered from the small steel blocks and

correlated to yield/tensile strength. The Wilson Series 500 Rockwell Hardness Tester

was employed to measure all hardness values, via Rockwell C (HRc). HRc employs a

brale diamond "C" indenter loaded by a minor load of 10 kg and a major load of 150 kg.

The resulting tempering curves are shown in Figure 10 and 11 for the U and V steel

treatments. The tempering curves were used to select appropriate tempering

temperatures. Calculated Ae3 and Ael transformation temperatures for steels U and V are

tabulated in Tables VI and VII, respectively. The details of the heat treatment for Steels

U and V are summarized in Table VITI.

2.5.2 Tensile Tests

Standards taken from the ASTM E8-91 and A370 specifications were observed

for all tensile experiments. Two standard steel tensile coupons were machined from each

plate and tested in an ambient environment. For 1/2-inch thick test plates, standard

0.252-inch diameter tensile coupons were machined; and for 1 and f-inch thick test

plates, standard 0.505-inch diameter tensiles were machined. From each test, a plot of

load versus displacement was generated and from these plots, the yield and ultimate

strength per test was calculated. The percent elongation, percent reduction in the cross­

sectional area, fracture stress and the yield-to-tensile strength ratio was also obtained.

15



2.5.3 Charpy V-Notch Impact Tests

For each steel condition, sixteen standard transverse Charpy V-Notch specimens

were machined according to the ASTM E23-92 and A370 testing specifications and

notched in the through thickness direction. For 2-inch-thick plate, specimens were

machined from the pla~e and identified as top, top-middle, bottom-middle, and bottom

specimens. The CVN specimens were tested between a temperature range -140F and

+1OOF chosen to analyze the ductile to brittle transition-temperature behavior. In order to

generate temperatures below room temperature (70OP) , a liquid-nitrogen cooled ethanol

bath was used. A hot water bath was used for temperatures above ambient conditions.

For each specimen, the absorbed energy, lateral expansion and fracture appearance data

was recorded.

2.5.4 Jominy End-Quench Hardenability Tests

In determining the hardenability of the special 100-ksi yield strength steel, three

l-inch-diameter by 3-inch-Iong cylinders Jominy end-quench specimens (per steel) were

machined and tested according to ASTM A255-89. The Jominy bar specimens were

austenitized in a furnace at 1650°F and held for one hour. The specimen was then water-

16



quenched individually in a standard Jominy end-quench apparatus. After the bar was

completely cooled, two opposing sides of the Jominy bar was ground to a flat surface.

On the flat surfaces, hardness measurements were taken at 1/16 inch intervals for the first

inch and in 1/8 inch intervals thereafter for the remaining length of the specimen.

Hardenability curves were generated from the collected data as hardness vs. distance

from quenched end of the Jominy bar. The specimens were then tempered at 1050F,

1150F, or 1250F and again hardness-tested.

2.7 Metallographic Evaluation

jominy End-Quench Hardenability Test - One hardness-test flat on the end­

quenched specimen for each steel was polished and etched and the microstructure at

sixteenth-inch intervals for the first inch from the quenched end and at eighth-inch

intervals for the second inch was photographed at a magnification of 1000X. Selected

scanning-electron micrographs were also obtained.

Tempering Studies - The microstructure at 1000X of selected tempered

specImens was obtained to illustrate the change m microstructure with tempering

temperature.
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Mechanical Tests - For each mechanical-test series, the microstructure at 1000X

was obtained to characterize that test condition.

Transmission Electron Microscopy - Several selected specimens were thinned to

permit internal examination of the steel for the presence of copper precipitates and

dislocation effects.

All samples examined via light optical microscopy were well-polished and etched

with a 50/50 mixed solution of 2% nital and 4% picral and observed at 1000x

magnification.

2.8 Fractographic Evaluation

Typical fracture surfaces of selected tensile, and CVN specimens were observed

via Amray 1810 Scanning Electron Microscope (SEM). This technique aided in

detecting microvoid coalescence (ductile) and cleavage (brittle) characteristics present on

fractured surfaces. The photographs were taken at various magnifications, approximately

20 mm working distance and 20 keV accelerating potential.

18



3. Results and Discussion

3.1 Jominy End-Quench Hardenability Results

Standard-Test Results - The results of the Jominy tests are shown in Figure 12.

The microstructure and hardness at the various distances from the quenched end of the

bar correspond to continuous-cooling rates (measured at 1300F) of about 500F/second at

1/16 inch for the quenched-end to 3.5 F/second at two inches from the quenched-end.

These cooling rates encompass all the rates that occur at the midthickness of plates of any

thickness through 4 inches when quenched in production facilities. Consequently, the

curves are useful in estimating the microstructure and hardness and therefore the tensile

strength to be expected. The cooling rates at 1300F at the center of 1-, 2-, 3-, and 4-inch

thick plates quenched at an approximate severity of H = 1.5 (Figures 4 and 8) are shown

along the abscissa of the Jominy plots. These are the approximate cooling rates to be

expected when plates are quenched in standard roller or platen production facilities,

which are also the same for the Laboratory "IQ Water" quench employed in the present
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study. The plateau hardness of 25 HRc for the Steels U and V suggests that 4-inch-thick

and thicker plate can attain a tensile strength of about l23-ksi and therefore a yield

strength above 100-ksi. The calculated ideal critical diameter CD) ) was 3.04.

Tempered-Jominy-Test Results - Tempering the Jominy specImens permits

analysis of the effect of reheating on the full range of microstructures that result from

end-quenching. In the case of these Cu-Ni steels, tempering results in competition

between softening due to carbide agglomeration and strengthening due to copper-particle

precipitation. The effect of tempering the Jominy-test specimens for Steels U and V is

shown in Figure 12. At 1050F, the previous plateau value of 25 HRc increases to 28/29

HRc as a result of copper precipitation strengthening. At l150F and l250F, the original

plateau hardness is retained as a result of a lesser but significant copper precipitation

strengthening and'some vanadium strengthening above 115OF.

3.2 Mechanical-Property Testing

The mechanical-property tests were conducted to characterize these steels with

respect to tensile and impact-toughness behavior. Of particular interest was the ability of

the steels to meet a minimum yield-strength of 100-ksi in a minimum plate thickness of 2

inches with an aim of 4 inches. The determination of yield strength in the present tests
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was done in accordance with Section 7.5.1 Offset Method of ASTM E8 using the usual

offset of 0.2%.

Tension- and Impact-Test Results - The results of tension and Charpy V impact

test are listed in Tables IX and X, for Steels U and V, respectively. The strength and

toughness properties are depicted in Figures 14, and 15, respectively. As illustrated in

Figure 14, I-inch-thick Steel U readily meets the 100-ksi minimum yield strength for all

rolling practices after appropriate tempering. For conventionally rolled and air-cooled

(HRA) and off-line austenitized specimens, tempering at l250F produced the best

combination of strength and toughness. This was also the case when the steel was

control-rolled to l600F, air-cooled (CRA), and off-line austenitized and then tempered at

l250F. When the plate was control-rolled to l600F and immediately direct-quenched,

the yield strength and tensile strength were increased by more than lO-ksi compared with

the other two practices. However this treatment resulted in extraordinarily high yield-to­

tensile-strength ratios approaching 1.0.

As also shown in Figure 14, the toughness of Steel U is extraordinary, and is

characterized by very high energy absorptions in the fully ductile condition and by

extremely low transition temperatures. It readily meets the AASHTO fracture-critical

energy absorption of 30 ft-lb at -120F. This Cu-Ni type steel exhibits a better

combination of strength and toughness than any existing structural steel.
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As illustrated in Figure 15, the strength and toughness of the 2-inch-thick Steel V

was similar to that of the l-inch-thick steel, except that the toughness was not quite as

good as that for the l-inch-thick plate. As discussed in detail later, the 2-inch-thick plate

cooled at a mid-thickness rate of about 20F/second compared with 50F/second for the l­

inch-thick plate, typical for production quenching facilities (Figure 4). Consequently, the

2-inch-thick plate transfonned to lesser amounts of low-temperature transfonnation

products. Nevertheless, the combination of strength and toughness is far better than that

of any existing IOO-ksi yield-strength structural steel .

.,'\.,

Figure 16 illustrates the strength and toughness for Steel U when 1/2- and l-inch-

thick plates were cooled at rates similar to those at the mid-thickness of production­

quenched 4-inch-thick plates. As shown in Figure 4, 9F/second is more typical for

production quenching of 4-inch-thick plate than 5F/second or 2F/second, which resulted

from air cooling a 112-inch plate, is ultraconservative and corresponds to plate much

thicker than 4 inches. At a cooling rate of 2F/second, the yield strength averaged 98-ksi

and the energy absorbed was 55 ft-Ib at -40F. At SF/second, the corresponding values

were 114-ksi and 55 ft-Ib, and at 9F/second were 1081112 ksi and 65/48 ft-Ib at -40F

when tempered at 1175F. The strength and toughness were quite good but depended on

the actual cooling rate (2, 5, or 9F/second). These results confinn the Jominy data for the

high hardenability steels, which indicated that they should be suitable for the most

stringent bridge requirements in 4-inch-thick plate. It should be noted that as the

thickness increased from 1- to 2- to 4-inch-thick plate, the yield-tensile ratio decreased
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significantly as a result of the decrease in low-temperature transfonnation products with

decreased cooling rates. However, it should also be noted that the properties of the 4­

inch were simulated using 1/2- or 1- inch plate, and therefore, the effect of thickness

reduction during hot-rolling is not incorporated in the results.

Figure 16 also illustrates simulated interrupted accelerated cooling (lAC) of l­

inch-thick Steel U. The results suggest that lAC may be appropriate for producing an 80­

ksi yield-strength steel after appropriate tempering. However, its use as-quenched is not

recommended because its yielding characteristics were so erratic that reproducible yield­

strength values could not be obtained. These results clearly demonstrate that a

hardenability DI value of 3.0 will ensure a minimum yield strength of 100-ksi and

excellent toughness through 2 inches and possibly through 4-inches. It is therefore

recommended that a minimum DI of 3.0 be established for Cu-Ni steels of the}ype under

study to ensure excellent toughness in plates throiIgh 4 inches thick when conventionally

rolled and heat-treated. This level of hardenability is also estimated to be necessary for

interrupted-accelerated-cooling to a minimum yield strength of 80-ksi and good

toughness in plates through 4-inches thick.

Strength - Toughness Relationships - Of particular interest are the combinations

of yield strength and Charpy notch toughness that can be obtained in these heats of Cu-Ni

steel as a function of composition, section thickness, and thennomechanical treatment.

Since the steels were selected as candidates for bridge constuction among numerous
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potential applications, it is appropriate to examme their performance at -40F, a

temperature conservatively below the -30F AASHTO test temperature specified for 100­

ksi yield-strength steels in Zone 3, the most severe environment. The rationale for the

alloy design of the Cu-Ni HPS can be shown by referring to the Granville diagram

(Figure 17) [17]. This diagram shows the susceptibility of a steel composition to heat

affected zone (HAZ) cracking as a function of carbon content and carbon equivalent.

Figures 18 and 19 present the range of strength-toughness combinations in Steels U and

V.

From Figure l8a it is evident that Steel U exceeded the 30 ft-Ib AASHTO

requirement for all conditions studied. Water quenching from 1650F readily produced

yield strengths above 100-ksi. Treatment simulating the quenching and tempering of 4­

inch thick plate met yield-strengths of 90 to 98 ksi. The general decrease in the yield­

strength-toughness levels was related to the respective decreases in cooling rate and low­

temperature transformation product. However, the microstructure produced at the

reduced cooling rates is suprisingly strong and tough. Figure 18b shows that the same

composition in 2-inch thickness, Steel V, likewise exceeds 30 ft-lb at -40F in all

treatments utilizing water quenching and appropriate tempering. As to be expected, tests

in the longitudinal direction to rolling were somewhat tougher than those in the

transverse direction, even though the plates were cross-rolled.
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The extraordinary notch toughness of the U and V heats of the Cu-Ni steels is

further illustated in Figure 19. The water-quench and temper treatments can generate 35

ft-lb transition temperatures below -120F and as low as -200F in the 1-inch-thick plate.

3.5 Metallographic Evaluation

3.5.1 Tempered Microstructures

Figures 20a through d and 21 a through d, show selected microstructures from

various tempering studies performed on Steels U and V, each. The selected

micrqstructures represent the "As-Quenched" condition as well as thoses tempered at

1200F, 1250F, 1275F 1300F and 1350F, respectively. Figure 20a through c show

various microstructures of the aforementioned tempering conditions performed on HRA,

CRDQ, and CRA thermo-mechanical processes of Steel U. The "as-quenched" condition

of each Steel U TMCP is shown in Figure 20d. The same heat treatments performed on

Steel U specimens were conducted on Steel V specimens (Figure 21 a through c). The as-
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quenched microstructures of Steel V (HRA, CRDQ and CRA) are represented in Figure

21 d. The appropriation of metallographic specimens is illustrated in Figure 22.

3.5.2 Jominy End-Quench Hardenability Microstructures

An evaluation of the microstructural changes occurring along the length of the

Jominy specimens, beginning at the quenched-end, is illustrated in Figures 24a through d

and selected SEM micrographs are shown in Figures 25a through c for Steel-V. Figures

26a through d, illustrates the microstructural changes occurring along the length of the

Jominy specimens, beginning at quenched-end for Steel-V. Figure 26 (Steel-V) depicts

the best representation of microstructural changes of the two steels of like-compositions.

At 1/16-inch, the microstructure is fully martensitic. At 2/16-inch, a very small amount

of granular bainite is present with the martensiteP9] From 3/16-inch, the amount of

granular bainite increases until it reaches 100 percent at 6/16-inch. Granular bainite is

described as packets of ferrite laths with inter-lath second phase particles of primarily

martensite with some small amounts of retained austenite that has been significantly

enriched in carbon content by the prior transformation products. From 7/16-inch on, the

acicularity of the transformation products decreases very gradually with decreased

cooling rate until the second-phase tends to break-down into smaller discrete particles in

26

o
i



a ferrite matrix. [14.29) The second-phase particles also increase in size with decreased

cooling rate, so that by 18/16-inch they are large enough to reflect light and begin to

appear light in color. Except for some increase in size and decrease in number of the

second-p~!iSe particles, the microstructures remains generally similar from 12/16­

through 32/16-inch. This behavior is consistent with the relatively constant hardness

over this Jominy distance range. These are very desirable types of microconstituents,

. which after tempering have an excellent combination of strength and toughness. Thus,

the plateau of 28 to 25 HRc is desirable for a relatively high-hardenable steel.

3.5.3 Test Specimen Microstructures

For every specimen that was solution heat-treated and tested for mechanical

properties, a representative microstructure is shown in Figures 26a through h for Steels U

and V. Microstructures representing the various heat treatments performed on Steel U

(I-inch thick plate) with respect to the BRA, CRDQ and CRA thermo-mechanical

processes can be observed in Figures 26a through e. Figures 26f, g and h show the

microstructures of Steel V (2-inch thick plate) for various heat treatments and BRA,

CRDQ and CRA thermo-mechanical processes, respectively.
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3.5.4 Transmission Electron Microscopy

Figures 27a through f, show various (thin foil) TEM microstructures depicting

observations of copper precipitation formation within grain-boundaries and dislocation

pinning within the grains. [30) Many different patterns of dislocation bands are present, in

each micrograph. In Figure 27g, the diffraction pattern illustrates the spots belonging to

the face-centered cubic copper precipitates lying within the grainboundaries and iron

matrix. [14,28,30)

3.5.5 Scanning Electron Microscopy

An evaluation of the fracture morphology studied on each of the steel conditions

HRAQ, CRDQ and CRAQ was performed using scanning electron microscopy. SEM

micrographs were taken to show the different modes fracture; dimple rupture and

cleavage. [27) Figure 28 represents the fracture surface morphology of typical tensile

failures. Figures 28a arid b show the fracture surface of a typical HRAQ specimen.

Figures 28c and d and Figure 28e and f illustrate the fracture surfaces of typical CRAQ

and CRDQ specimens, respectively. Each of these conditions showed splitting

phenomena in their fractured surfaces especially in CRDQ specimens.
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Figure 29 is representative of the Charpy V-Notch (CVN) impact fractography.

In Figures 29a and b, the typical CVN fracture surface at +70F is shown. Figure 29a

shows the overall view of the fracture surface, whereas Figure 29b illustrates a mode of

ductile fracture at 1000x magnification. In Figure 29c and d, the typical CVN fracture

surface at -40F show a more brittle (cleavage) type mode of fracture. Due to the high

level of mixed-mode phenomena (mixed shear/cleavage morphology), it was therefore

difficult to assess the percentage of fiberous fracture present on the fracture surface of

these Cu-Ni steels. The typical shear/cleavage mixture in the midthickness of the CVN

specimen in these low-carbon high perfonnance steels are shown in Figures 2ge and f.

The scanning electron microscope can be easily converted into an instrument

capable of chemically microanalyzing specimens. A representative chemical

microanalysis of these 0.07C, Cu-Ni high-perfonnance steels is shown in Figure 30.
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4. Conclusions

4.1 Merits and Limitations of Optimized HPS

The main objective of this study was to develop a chemical composition and

thenno-mechanical controlled processing (TMCP) that would produce an improved 100­

ksi yield strength steel for high-perfonnance steels (HPS) application. The following

conclusions are drawn as the product of this investigation:

1. Low-carbon Cu-Ni steels relatively lean in other alloy additions offer

combinations of yield strength and fracture toughness superior to present

commercial structural steels.

2. Yield strengths exceeding 100-ksi with high Charpy V-Notch toughness down to

-120F and lower are readily obtained by control of the carbon level and alloy

additions for adequate hardenability when conventionally rolled and off-line

quenched and tempered.

3. Cross-rolled plates containing 0.07C, 1.0Cu, 0.75Ni, and sufficient Mn, Cr, and

Mo to ensure a critical-bar-diameter (D!) hardenability of 3.0 can be expected to
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exhibit the following properties when conventionally rolled and off-line quenched

and tempered:

a. A minimum yield strength of IOO-ksi through 2 inches and a

minimum Charpy V-Notch energy at -40F of 100 ft-Ib and 60 ft-Ib

for 1- and 2-inch-thick plate, respectively.

b. A minimum yield strength of 90 ksi at 4 inches and a Charpy V­

Notch energy at -40F of 90 ft-Ib.

4. When the foregoing steel is subjected to in-line interrupted accelerated cooling, a

minimum yield strength of 90-ksi and a Charpy V-Notch energy at -40F of

90 ft-Ib in I-inch plate.

5. These high-perfomance steels at their respective carbon-levels (0.07) and carbon

equivalents (0.68) should be weldable and safe under all conditions in the zone

one region using the Graville diagram.
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Table I - AASHTO Charpy Requirements for A514 Steel

- Zone Gharpy Requirements *
1 35 ft-Ib at'6F

(OF &above)
2 35 ft-Ib at OF

(-1 F to -30F)
3 35 ft-Ib at -30F

(-1 F to -60F)

*Up to 4" thick mechanically fastened
or up to 2.5" thick welded

Table II - ASTM Charpy Requirements for A710-A-1 Steel

Orientation Charov Reauirements *

Lonaitudinal 20 ft-Ib at -50F

Transverse 15 ft-Ib at -50F

* In accordance with Test Frequency H of
Specification A 673/A 673M (for average
minimum values)
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Table III: High-Perfo~mance Steels
Metal1urgical Development

Material Properlies"

Current HPS

Appllcalion Typical Yield Yield Fracture Formability Weld~bllity
Corrosion

Component Strength Strength, Toughness Resistance
ksl ksl

Navy Surface Carrier Flight Deck 100 100 1 3 1 4
Ships Double Hulls 50/80 50/80 2 3 1 3

Military Vehicles Personnel Carriers 50/80 80/100 1 3 1 3

Commercial Double Hulls ._ 36/50 50/80 2 3 1 2

Ships Deck 36/50 50/80 2 3 1 2
Offshore, Welded Tubes 36/50 70/80 2 2 1 3

Structures Bulll·Up Seclions 36/50 70/80 2 3 1 3

Pipelines Welded Line Pipe .50/70 70/100 1 2 1 3

Tanks and L1ght·Gage Shells 36/60 70 2 2 2 3

Pressure Heavy·Gage Shells 36/50 70/100 1 2 1 3
Vessels . Heads 36/50 70/100 2 1 2 3

Transportation Railroad Cars 36/60 80/100 1/2 2 1 3

Equipment Trucks 36/50 80/100 1/2 2 1 3

BUildings Bullt·Up Sections 36/50 50/100 2 3 2 3

Welded Tubes 36/50 50/100 2 1 1 3

Bridges Bullt·Up Seclions 36/50 70/100 1 2 1 1

Critical Members 36/50 70/100 1 2 1 1

Construction Decks 36/50 70/80 3 3 2 1

Equipment Crane Booms 80/100 80/100 1 2 1 3

Buckels Blades 100 100+ 1 3 1 4
93·8054·2

"1 • Critically Important 2 • Important 3 • Desirable 4 . Not Applicable



Table IV - Compositions of A514-F, A71 O-A and A71 0 Type Steels

Steels
Elements A514-F A710-A U V

C 0.10-0.20 0.07* 0.075 0.073

Mn 0.60-1.00 0.40-0.70 1.50 1.49

P 0.035* 0.025* 0.012 0.015

S 0.035* 0.025* 0.0046 0.005

Si 0.15-0.35 0.40* 0.25 0.23

Cu 0.15-0.50 1.00-1.30 0.96 0.95

Ni 0.70-1.00 0.70-1.00 0.75 0.75

Cr 0.40-0.65 0.60-0.90 0.50 0.50

Mo 0.40-0.60 0.15-0.25 0.50 0.50

V 0.03-0.08 - 0.058 ' 0.059

AI NA - 0.034 0.035

Cb . - 0.02min 0.025 0.022

B 0.0005-0.006 NA NA NA

CE"'* 0.615 0.552 0.688 0.685

.. Maximum Content

.... Carbon Equivalent based on IIW formula,
NA =Not Added

CE =C + Si/6 + Mn/6 + (Cu+NiY15 + (Cr+Mo)/5 + VI5
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Table V - Compilation of Spray Quench Nozzle Characteristics

Nozzle 1.0. Spray Angle Water Pressure Gal.lmin. Nozzle Quantity
(deaJ (psig)

Del 805 60 40 0.9 4
60 70 1.1 4

Del 8010 60 40 1.8 4
60 2.4 4

Del 8018 60 40 3.3 4
60 70 4.1 4

Del 8029 60 40 5 4
60 70 6.3 4

Seinen 10.0 90 0.93 4
Haqo 1900 90 0.31 4

Del CE 2-70deq 70 90 0.55 8

Del. 10.0 80 90 0.16 8
Monarch F-80 80 90 8
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Table VI - Ae3 transformation temperatures for the re-heat treating study

Steel U V

*Ae3 (F) 1524 1523

*Ae3 =1600 - (375x%C) - [(25x%Mn)-4.5] - (32x%Ni) + [(80x%Si)-10] - (3x%Cr) + %Mo

Table VII - Ae1 transformation temperatures for the Ae1 tempering study

Steel U V

*Ae1 (F) 1292 1291

*Ae1 =1333 - (25x%Mn) - (26x%Ni) + (40x%Si) + (42x%Cr) + (20x%Mo)
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Table VIII Plate Heat Treatment of Steels U and V

Designation Thickness Rolling Simulation Austenltlzlng Cooling Cooling Tempering

Inch Practice Temp(F} Medium Rate (F/s) Temp (F)

U·Steel (1-inch-thlck cross rolled)

Transverse Tests

UAY 1 HRA Production Q&T-1' 1650 10 Water 50 1200

UAX 1 HRA Production 0&T-1' 1650 10 Water 50 1275

UAM 1 HRA Production Q&T-4' 1650 Spray 0 9 1250

UAK 1 HRA Production O&T-4' 1650 Spray 0 9 1175

Uay 1 CRDO CR+Direct Ouench-1' CR-1600 USS Spray 50 1200

uax 1 CRDO CR+Direct Ouench·1· CR-1600 USS Spray 50 1275

UCY 1 CRA CR+Prod. Q&T-1' 1650 10 Water 50 1200

UCX 1 CRA CR+Prod. 0&T·1· 1650 10 Water 50 1275

UCM 1 CRA Production 0&T-4' 1650 Spray 0 5 1225

UCIT 1 CRA CR + IAC-1' 1650 Spray-1050 15 None

UCIX 1 CRA CR+ IAC-1' 1650 Spray-1050 15 1250

Longitudinal Test

UAW 1 HRA Production Q&T·1· 1650 10 Water 50 1250

UAP 1 HRA Production 0&T-4' 1650 Spray 0 9 1250

UAN 1 HRA Production Q&T-4' 1650 Spray 0 9 1175

uaw 1 CRDO CR+Direct Quench-1' CR-1600 USSSpray 50 1250

UCW 1 'CRA CR+Prod. 0&T-1' 1650 10 Water 50 1250

UCP 0.5 CRA Production 0&T- 112" 1650 10 Water 115 1250

UCN 0.5 CRA Production O&T-4" 1650 Air Cooled 2 1175

UCIL 1 CRA CR+IAC-1" 1650 Spray-1050 15 None

UCIW 1 CRA CR+IAC-1" 1650 Spray-1050 15 1250

V STEEL (2-inch-thick cross-roiled)

Transverse Tests

VAZ 2 HRA Production Q&T-2" 1650 10 Water 20 1175

YAY 2 HRA Production 0&T-2" 1650 10 Water 20 1200

VAX 2 HRA Production Q&T·2" 1650 10 Water 20 1275

VCZ 2 CRA CR+Prod. Q&T-2' 1650 10 Water 20 1175

VCY 2 CRA CR+Prod. 0&T-2' 1650 10 Water 20 1200

vcx 2 CRA CR+Prod. Q&T-2' 1650 10 Water 20 1275

vaz 2 CRDQ CR+Direct Quench-2' CR-1600 USSSprav 20 1175

VaY 2 CRDO CR+Direct Ouench-2' CR-1600 USSSpray 20 1200

vax 2 CRDQ CR+Direct Quench-2" CR-1600 USSSprav 20 1275

Longitudinal Tests

YAW 2 HRA Production Q&T-2' 1650 10 Water 20 1250

VCW 2 CRA CR+Prod. 0&T-2' 1650 10 Water 20 1250

vaw 2 CRDO CR+Direct Ouench-2' 1600 USSSprav 20 1250
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Table IX - Mechanical Properties of Steel U (1" Plate Gauge)

V-STEEL Codes Tensile Properties Charpy V-Notch Charpy V-Notch Energy
Processing Condition Transition Tem erature dea. F
Temperature, deg. F Y.S. T.S. EL. R.A. Y.S. 20 35 60 15 70 F OF -40 F -80 F -120 F

ksi ksi % % T.S. ft-Ib ft-Ib ft-Ib mils
TRANSVERSE TESTS

HRA (1650\+10+T1275 UAX 99 106 25 71 0.93 <-200 -170 -120 -200 - 110 110 90 60
HRA (1650\+10+T1200 UAY 114 121 22 67 0.94 -160 -125 -55 -130 - 85 65 50 35
HRA-4' Simulation 1650F+SQ(9F/s)

Tempered at 1250F UAM 96 107 26 72.5 0.90 -130 -100 -80 -120 - 90 75 55 25
HRA-4" Simulation 1650F+SO(9F/s\

Tempered at 1175F UAK 112 123 24 64 0.90 -100 -70 0 -90 70 60 48 30 10

CRDQ+1275T UBX 127 130 20 60 0.98 -185 -120 -60 -1'60 - 70 68 50 35
CRDQ+1200T UBY 146 146 19 60 1.00 -100 -40 80 -80 - 50 35 25 15

CRA (1650)+IQ+T1275 UCX 99 108 24 70 0.92 <-200 -170 -120 -200 . 110 110· 90 75
CRA (1650\+IQ+T1200 UCY 122 127 22 66 0.96 -160 -125 -55 -130 - 85 65 50 35
CRA-4' Simulation 1650F+SO(5F/s\

Tempered al1225F UCM 104 118 22 64 0.88 -115 -75 -30 -100 80 70 55 40 10
CRA (1650 CR+IAC (SQ 1050F) (15F/s\ UCIT 120 140 17 61 0.84 -65 -40 - -60 50 40 35 8 -
CRA (1650\ CR+IAC (SO 1050F\ (15F/s)

Tempered at 1250F UCIX 89 110 24 62.5 0.81 -80 -65 -50 -75 - 90 90 20 10

LONGITUDINAL TESTS

HRA (1650\+10+T1250 (IQI UAW 105 112 26 71 0.94 -190 -180 -160 -200 - 135 140 110 70
HRA-4' Simulation 1650F+SOI9F/s)

Tempered at 1250F UAP 93 107 26 70 0.87 -170 -110 -100 -140 115 100 85 35
HRA-4" Simuiation 1650F+SO(9F/s)

Tempered at 1175F UAN 108 122 24 65 0.88 -120 -95 -50 -100 120 85 65 45 20

CRDQ+1250T UBW 129 131 23 68 0.98 -160 -140 -90 -140 - 90 85 60 55

CRA 1650 +10+T1250 UCW 110 116 26 73 0.95 <-200 <-200 -180 <-200 - 135 140 130 75
CRA 1650 +10+T1250 11/2'1 UCP 122 128 22 72 0.95 <-200 -200 -140 -200 130 120 115 100 75
CRA 1650 +ACI2F/s)+T1175 11/2') UCN 98 122 26 71 0.80 -90 -60 -30 -80 120 80 55 20 -
CRA 1650 CR+IAC ISQ 1050F) 115F/s\ UCIL 77 123 21 65 0.63 0 +5 +10 0 90 20 15 10 -
CRA 1650 CR+IAC (SQ 1050F) (15F/s)

Temoered al1250F UCIW 88 110 25 66 0.80 -85 -75 -70 -80 - 125 120 25 15
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Table X. Mechanical Properties of Steel V (2" Plate Gauge)

V-STEEL Codes Tensile Properties Charpy V-Notch Charpy V-Notch Energy
Processing Condition Transition Tem erature dea. F
Temperature, deg. F Y.S. T.S. El. R.A. Y.S. 20 35 60 15 70 F OF -40 F -80 F -120 F

ksi ksi % % T.S. ft-Ib ft-Ib ft-Ib mils
TRANSVERSE TESTS

HRA (1650)+10+T1275 VAX 91 101 26 70 0.9 -155 -150 -110 -150 - 110 108 80 45
HRA (1650)+10+T1200 VAY 100 110 25 70 0.9 -100 -80 -60 -85 - 100 80 35 10
HRA (1650)+10+T1175 VAZ 110 119 22 67 0.92 -90 -70 -40 -80 - 80 60 30 2

CRDO+T1275 VBX 113 118 22 67 0.96 '-120 -90 -60 -80 - 72 60 15 5
CRDO+T1200 VBY 124 128 21 62 0.96 -75 -60 -35 -65 - 70 55 17 7
CRDO+T1175 VBZ 134 137 20 61 0.97 -45 -20 - -40 - 45 25 15 5

CRA (1650)+10+T1275 VCX 89 101 26 71 0.88 -140 -100 -70 -120 - 118 82 30 20
CRA (1650)+10+T1200 VCY 102 111 24 67 0.92 -100 -80 -50 -80 - 90 70 35 15
CRA 11650\+10+T1175 vez 111 120 22 67 0.92 -80 -55 0 -60 . 60 45 20 5

LONGITUDINAL TESTS

HRA (1650)+10+T1250 VAW 114 122 24 69 0.94 -120 -115 -90 -110 - 85 80 60 20

CRDO+T1250 VBW 128 133 23 67 0.96 -60 -20 35 -40 - 35 25 10 5

CRA (1650)+10+T1250 VCW 112 120 23 67 0.94 -75 -60 -45 -70 - 80 60 15 5
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Figllre 5 - Plate being ill1111~sionqueI1~hed.

Figure 6 - Plate being spray quenched.
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Figure 5 - Plate being immersion quenched.

Figure 6 - Plate being spray quenched.
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Figure 7 - ATLSS Water Quenching and Heat Treating Facility.
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Figure [3 - ATLSS' Jominy End-Quench Hardenability Apparatus
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Figure 13 - ATLSS' Jominy End-Quench Hardenability Apparatus
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Figure 20b - Steel U Tempered Series Microstructures (CRDQ 1600)
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Figure 20c - Steel U Tempered Series Microstructures (CRAQ 1600)
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Figure 21a - Steel V Tempered Series Microstructures (HRAQ 1900)



NvM

Steel V

Ni I CcSSpMct; Nln I-' :::; :::;1 I\jU r MO v Cb AI N

0.073 1.49 0.015 0.005 0.23 0.95 0.75 I 0.50 0.50 0.059 0.022 0.034 0.0064

V-CRDa (As Q) V-CRDa+T1200F V-CRDa +T1250F

(J\
.p. V-CRDa +T1275F V-CRDa +T1300F V-CRDa +T1350F

95·0057·16

X1000 Nital-Picral

Figure 21 b - Steel V Tempered Series Microstructures (CRDQ 1600)



NAcvM
Steel V

N'cS'spMcli Mn p ::; ::;1 (l;U NI lir MO v liD AI N

0.073 1.49 0.015 0.005 0.23 0.95 0.75 0.50 0.50 0.059 0.022 0.034 0.0064

V-CRAQ (As Q)
"..._,""",__"...,...."._=,,=.mL

V-CRAQ+T1200F V-CRAQ+T1250F

0-.
Vo

V-CRAQ+T1275F V-CRAQ+T1300F V-CRAQ+T1350F

95·D057·17

X1000 Nital-Picral
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Figure 23a - Steel U Jominy End Quenched Hardenability Microstructures
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Figure 23b - Steel U Jominy End Quenched Hardenability Microstructures
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Figure 24a - Steel U Jominy Bar Hardenability SEM Microstructures
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Figure 24b - Steel U Jominy Bar Hardenability SEM Microstructures
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Figure 24c - Steel U Jominy Bar Hardenability SEM Microstructures
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Figure 25a - Steel V Jominy End Quenched Hardenability Microstructures
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Steel V

NAICbMcMCc..; Mn P S Si CU N! Cr IVIO v L;O AI N

0.073 1.49 0.015 0.005 0.23 0.95 0.75 0.50 0.50 0.059 0.022 0.034 0.0064

13/16" From Quenched-End 14/16" From Quenched-End 15/16" From Quenched-End

-.J
-.J 16/16" From Quenched-End 18/16" From Quenched-End.__ ....__._ ....._---_ ..._--- _. _._--

20/16" From Quenched-End

95·D057·3

X1000 Nital-Picral
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Figure 25d - Steel V Jominy End Quenched Hardenability Microstructures
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Figure 26a Microstructures of Steel U Mechanically Tested Specimens (HRA 1900)
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Figure 26c Microstructures of Steel U Mechanically Tested Specimens (eRA 1600)
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Figure 26e Microstructures of Steel U Mechanically Tested Specimens (Sim. lAC 165011050)
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Figure 26f Microstructures of Steel V Mechanically Tested Specimens (HRA 1900)95-D057-40



NAICbVM

Steel V

Ni I CcS'spMCv Mn p ~ ~I t,;U r MO v l;b AI N

0.073 1.49 0.015 0.005 0.23 0.95 0.75 I 0.50 0.50 0.059 0.022 0.034 0.0064

CRDQ+T1175 (Trans.) CRDO+T1200 (Trans.)

C/O
fJ\ CRDQ+T1275 (Trans.) CRDO+T1250 (Long.)

95-D057-41

X1000Nital-Picral

Figure 26g Microstructures of Steel V Mechanically Tested Specimens (CRDQ 1600)
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Figure 26h Microstructures of Steel V Mechanically Tested Specimens (eRA 1600)



a.

b.

Figure 27 a and b - Typical Cu-Ni HPS TEM Micrographs at (a) 46,OOOx and (b) 28,OOOx
with dislocation within the grains and Cu-precipitates present in grain boundary.
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c.

d.

Figure 27 c and d - Typical Cu-Ni HPS TEM Micrographs at (c) 46,OOOx and Cd) 36,OOOx
with dislocation present throughout the grains
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f.

Figure 27 e and f - Typical Cu-Ni HPS TEM Micrographs at (e) 17,OOOx and (f) 36',OOOx
with dislocation present throughout the grains with some eu-precipitates
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Figure 27 g - TEM Crystallographic representation of a typical Cu-precipitate
with an FCC lattice structure
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a.

b.

Figure 28 a and b - Typical HPS tensile fracture surfaces of HRAQ specimens
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c.

d.

Figure 28 c and d - Typical HPS tensile fracture surfaces of CRAQ specimens
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e.

f.

Figure 28 e and f - Typical HPS tensile fracture surfaces of CRDQ specimens
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a.

b.

Figure 29 a and b - Typical HPS CYN fracture surface at +70F
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c.

d.

Figure 29 c and d - Typical HPS CVN fracture surface at -40F
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e.

f.

Figure 29 e and f - Typical HPS CVN fracture surface with shear/cleavage
mixed mode in midthickness.
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