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Abstract

In this thesis. we investigate the impact of transaction costs on portfolio management,
with a focus on active management. index-tracking and mixed strategies where we al-
ternate between active and passive portfolio optimization. We measure the quality of
tracking using the concepts of Mean Absolute Deviation (MAD) and Mean Absolute
Downside Deviation (MADD) and compare our results with active portfolio manage-
ment. We first consider a simple static model with one stock and one bond. then extend
the analvsis to multi-period problems. Finally. we present extensive numerical results

illustrating the promise of the approach.




Chapter 1

Introduction

1.1 Background

The field of modern financial theory was pioneered in 1959 by Markowitz (14]. who pro-
posed the mean-variance model to balance expected return with portfolio risk measured
by its standard deviation. Nowadays, portfolio management strategies can be broadly

classified in two categories:

1. In active portfolio management. the investor sceks to outperform the market. ie..
the benchmark index. by actively picking stocks based on his own estimates of

future stock returns.

2. In passive portfolio management, the investor seeks to obtain the same returns as

the benchmark index.
In [2]. Beasley describes the strengths and weaknesses of both strategies as follows:

o Active management entails high fixed costs (associated with pavments to the man-
agement team) and high transaction costs (due to the frequent trading involved in

stock picking). The hope is that these costs will be offset by the returns obtained.

e Passive management has lower fixed costs and lower transaction costs. but presents
the disadvantage that if the stock market falters, co inevitably will the return of

the index fund. while a few individual stocks might still perform strongly.




As Clarke et. al. point out [6]. the naive approach consisting in replicating the index
by purchasing stocks in the exact same proportions, called full replication, is impractical
due to the number of stocks involved and the need to repeatedly re-balance the portfolio
to maintain the correct proportions, which would lead to enormous transaction costs.
Hence. the investor choosing a passive management approach will attempt to track the
performance of the index as well as possible with a much smaller number of stocks.

Several measures of tracking error between the returns on the benchmark and
index-tracking portfolio have been investigated. For example, Clarke et. al. [6] consider
the absolute deviation tracking error. Consiglio and Zenios |7} and Worzel, Vassiadou-
Zeniou and Zenios [18] study the tracking of fixed-income securities problem. Fang and
Wang [9] analyze a fuzzy model using a mean absolute downside deviation tracking
error. Konno and Yamazaki [11] also use the mean absolute deviation tracking error,
while Roll [16] focuses on the sum of the squared deviation tracking error and Wolter

and Zimmerman (17} use linear deviation tracking error, to name just a few.

1.2 Thesis overview and contributions

The purpose of this thesis is to investigate a mixed strategy where the investor attempts
to gain “the best of both worlds™ by alternating between active and passive manage-
ment. depending on which one is performing better. The presence of transaction costs
introduces friction in the management model, i.e., the investor stays with a strategy
longer than he would like because the gains from switching must at least cover the cost
of the transaction. In this work. we seek to evaluate the potential of such an upside
tracking approach.

The thesis is structured as follows. In Chapter 2, we describe the basic models of both
active and passive management, derive closed-form solutions and derive a lower bound
on the objective function when the distribution of the stock return is not known precisely.
In Chapter 3 we first review wavs to simulate the underlving stock returns through
binomial lattice and scenario tree models, before extending the models of Chapter 2
to multi-period settings.  Chapter 4 investigates the index-tracking model using the

mean absolute deviation (MAD) and the mean absolute downside deviation (MADD)




measures of tracking error. Chapter 5 summarizes our results and discusses future work.




Chapter 2
The Basic Models

In this chapter we introduce two basic models of portfolio optimization, which corre-

spond to active and passive management strategies.

2.1 Active portfolio management

In this section, we present our results for active portfolio management over two time
periods when t}lere are one underlying risky asset and one riskless asset. Transaction
costs were first studied by Davis and Norman [8], who proved optimality conditions on
selling and buying times in a continuous-time infinite-horizon problem when the risky
asset obeys a lognormal distribution. The purpose of our analysis is to give more insights
in the structure of the optimal strategy. We will use the following notations:

Notations:
o Wy the wealth at the beginning of time period 0.
o W§* the wealth after a transaction cost incurred during time period 0.
o W, the wealth at tﬁe end of time period 1.

e Xo the number of shares of the underlying stock in the portfolio during period 0.

X1 (decision variable) the number of shares in the portfolio during periogl,'l, de'—:

termined at the end of period 0.



v

W, Wo Wy

Figure 2-1: Sequence of decisions in active portfolio management.

e By the amount of cash (bond value) in the portfolio before a transaction cost is

mneurred during period 0.
o By the amount of cash after the transaction cost is paid during period 0.
o B the amount of cash in the portfolio during period 1.
e py the known unit price of the underlying stock during period 0.
o 1) the risky return of the underlying stock during period 1.
e 71 the mean return of the underlying stock during period 1.
o 1 the risk-less return of the bond, i.e.. interest rate of cash.

o a the transaction cost factor. i.c.. the percentage of the transaction amount that

1s paid.

We assume that short-gelling is not allowed. i.e.. the financial institutions (banks.
brokerage firms) do not allow the investors to borrow their stocks to buy other securities.
In mathematical terms. this means that the number of shares. the investor’s wealth
and the dollar amount in cash cannot be negative numbers. Our other assumption
concerns transaction costs. We assume that we payv a transaction cost proportional
to the change. in absolute value, in the amount of money held in stock. The investor
is obligated to pay this cost immediately after it incurred. Furthermore. we assume
that we have been able to estimate the mean return for the underlving stock from the

historical data. TFor simplicity. we do not constrain the number of stock shares to be
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an integer. Consequently, the problem can be reformulated as a linear programming

problem. instead of a mixed-integer programming problem.

Lemma 2.1.1 We have the following relations between the mathematical quantities

considered:

H/() = [)()‘X(] + B6
W =Wy — apo| X1 = X
= poX1 + By

Wy =p1 X1 + B

(2.1)
= (l + r1)1)0X1 + (l + Tf)B()

= (1 +7)poX1 4+ (1 +15)(Wo — poX1 = apo| X1 — Xol)

= (1 +r)Wo+ (r —rp)poXys — a(l +rg)pol Xy — Xol

E. (W) =0+ r)Wo+ (F1 = rp)poX1 — a(l +rf)pol X1 — Xol

The portfolio model is then formulated as follows:
max E; [}

1[ 1] ) (2.2)

st 0< Xy < X+ (]—;l—n‘) [%}Q - .\’n]

where we have used that By > 0 with By = Wa—apa | X — Xo| —po Xy and pg Xog < W

(Bf, > 0 by assumption) to obtain the upper bound on Xj.

2.1.1 Optimal solution for the active portfolio model

We analyze the optimal solution by considering three possible cases for the parameters
of the svstem. The derivations are straightforward: hence, the results are stated without

proof.

Theorem 2.1.2 Optimal allocation 1 stocks and optimal wealth arc given by the fol-

lowing relations.




Case (1): 7} < (1 —a)ry —a

=0
Wi = (14 7r7)(Wo = poXo — apoXo) + (1 + r7)poXo (2.3)

= (1+77)(By — apoXo) + (1 + r5)poXo
Case (ii): 1 —a)ry —a <F < (l+a)ry+a
X =X

WP = (14 r7)(Wo — poXo) + (1 +71)poXo (2.4)

= (1 + Tf)B(,] + (1 + FI)I)OJ\’()

Case (1): (1 +a)ry+a <7

1 W
X=X — - X
1 0+(1 +n)[p0 0)
" L+7 Wy , _ . .
Wi = N— = poXo] + (1 +71)poXo (2.5)
l4+a ™ po
1+7 }
= (—2)B}+ (1 +71)poXo

1+a
2.1.2 Sensitivity to the transaction cost

Here we investigate the relation between the transaction cost factor. and the optimal
number of shares in the underlving stock that should be held in the next period. We

first consider the term:
1 W

Xo+ (H——n)[ -

~ X (2.6)

which is the upper bound on .

Of course, if a is relativelylarge. then (1}“)[%\? — Xg| becomes very small. so that
X7 = X Intuitively, we are more likely not to change the portfolio allocation when
the transaction cost is high. Moreover. we can see that the range(= 2a(1 + ry)) from
value (1 —a)ry —a to (1 +a)ry +a (case (i) where X7 = Xj) is farther spread when

the transaction cost increases.

Most brokerage firms charge their clients with a transaction cost up to 0.60%(0.006).

i




Therefore, in our research we adopt a transaction cost of 0.30% (0.003). The change
In a transaction cost factor will directly affect a limit number of shares in underlving
stock as in Eq.(2.6). However. this effect is not too significant as long as the factor is

still close to 0.30% as shown in Table 2.1.

Table 2.1: The sensitivity between a transaction cost factor and a limit number of
underlving stock

Transaction Cost Factor # Limit Stock

O Increasing(%)  Decreasing(%)
0.003 0 0.000
1.0045 50 0.149
0.006 100 0.298
0.009 200 0.595
0.012 300 0.889
0.015 100 1.182

2.2 Passive portfolio management

In this section. we outline the approach associated with passive portfolio management.
We consider a basic portfolio model in presence of transaction cost with a benchmark.
For the simplicity. we construct this model based on one underlying risky asset. say.
stock: one risk-less asset. say, bond or cash: one benchmark index. say. S&P500 index:
for two consecutive periods. We use the same notations as in Section (2.1). and add one
more notation for a benchmark index.

Notations:
o Iy the benchmark value i period 1.

Using Lemma (2.1.1), we can formulate this model as follows:

min Ez, max(0. Ky — 117)

st 0< X} < X+ 1

This objective function is based on aversion to regret. Indeed. the investor feels regret

when it turns out that the benchmark beats his portfolio. Hence. we minimize the




—_— SP500

—-———- Portfolio

Figure 2-2: The passive portfolio management

deviation between the benchmark. and our portfolio only when our portfolio lies under
the benchmark as shown in areas L. Il in Fig.(2-2). Note that max(0. K — W) is equal
to the smallest number z that satisfies = > (K, — W) and z > 0. For this reason.

the optimization problem under consideration is equivalent to the linear programming

problem:
min Er [Z]
s.t. Z>0
(2.8)
Z> K, -W
. 1 W
0<X; <X —)— - X
<X < 0+(1+0)[P0 o]

2.2.1 A specific case

We first make the asssumption that the return of the underlyving stock and the benchmark

can take two values each as follows:

71+ prob= ~ ,
= B ln] =71 Vin)= o}
Ty —ay prob=

bl

LT

K* prob=
Ky = NUESY (S (0
KN~ prob=

rol—

3]

10




N

Figure 2-3: The breaking points of max(0, . ) function

The portfolio selection can be formulated as the following model:

1 . . _ . . .
min -lmax(().I\f = (L+rp)Wo = (F1 + 01 = m5)poX1 + a(l +1g)pol Xy = Xol)

1
-+-—1 max(0. K, - (1 + ri)Wo — (71 — a1 = rf)poX1 + a(l +74)po

X1 - Xol)

1 e . ,
+3 max(0. Ky — (14 r.)Wo = (F1 + 01 = rp)pe X1 + a(l +14)po

Xy - X))

+§ max(0. Ay — (14 79)Wo = (F1 — 01 — 77)poX1 + a(l + rf)po| X1 — Xol)
(2.10)
st 0 < X1 € Xo+ (5[50 - X
We now analvze the objective function. and in particular study the breaking points
and the slope of the linear picces involved. For example. all values after breaking points
for picces (1).(2) are greater than zero. and a slopes of function are positive. On the
other hand. all values before breaking points (3).(1) are greater than zero. and slopes
of function are negative as illustrated in Fig.(2-3). Our objective function has four
max(0). -) pieces: therefore. we have four breaking points as described above.
To analvze these breaking points. we cousider the following two cases:

(Yo <Xy < Xo+ (l}n)[%\? - Xo)

(2)0< X, < X

11




Case I: X()§X1§X0+ %[—Q XU]

There are four breaking points that make a slope of objective function change.

X! = (1+7'f)(u/o+0p()X())‘ 2: -1 +Tf)("V0+Op0X0)
! ( —(I4+a)ry—a+a1)po ! ( -(I+a)ry—a-o01)p (2.11)
y3 (1+Tf)(u'/0+0])0/\’0). x4 = I\'l_ (1 +T'f)(u()+0p0)\0)
! (F -(1+a)ry—a+o)py ! (F1=(1+a)ry—a~-o01)po
Case II: 0 < Xy < X,
There are four breaking points that make a slope of objective function change.
Yl = (1+Tf)(”/'0—()])0/\’0) v 1\1 (1+rf)(“/0—OPQXO)
! ( -(I+a)rj+a+o)po’ ! (F1 = (1+a)ry+a—01)po (2.12)
‘\,3 _ ]\1 (1 + rf)(u"o — O])()Xo) ‘\,4 _ 1\1 (1 + Tf)(“’() - Op()/\’())
! (74 (1+o)rf+0+01)p0' ! (1 = (1 +a)ry +a—01)po

All numerators are nonnegative since K| > (1 + r¢)(Wy + apyXo): hence. the
worst-case regret is incurred when the lowest value of the benchmark is still greater
than a total wealth from investing a predecessor wealth plus the highest transaction
cost in risk-less asset. Figure(2-1) shows the various regions, which are allotted by the
values of known mean of risky return in both cases. Therefore. we now have the
optimal solutions for the situations that all slopes in objective function are greater or
less than zero.However. there are some situations in both cases. when some slopes are

greater than zero. and some are less than zero as illustrated in ambiguous area A. and

B.

The optimal solutions:

L. mi<(+a)ry-a-o

WP = -max(0.K) - (1+ i)W 4 a(l +rp)paXo) (2.13)

-max(0. Ky = (1 +r))Wa +a(l +r.)paXo)

2. l+alrf—a-—m<H<l+ars+a+o
! 187 S

First. consider two main sub-conditions(A.B). then we provide the optimal

12




X, =zX, All slopes <0
— 1 W,
X1 =X°+ [‘—U—Xo}
All slopes > 0 A A+ )| p,
=X —
X, 0 I .7
| 1
A+ay, +ta-oq A+or, +a+g
X, =X, All slopes <0
t Xy =X,
All slopes = 0 ‘ B
X, =0 | —
| T
i |
Q+ay, —a- o l+@)7, ~a+o
All slopes <0
All slopes > 0 L 1 A
———————————————— X, = X, + Do x
#=0 rototoToizizooozoy o C <1+¢>[Po i
i — .o
- v !
[oIIooIIIiIiiis j
qQ+ay, - a- g (1+a:)rj+a+q

Figure 2-4: The optimal solution’s regions
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solutions for the grey area in Fig.(2-4):

(a) Xo < X1 < Xo+ (125152 — Xo), and
(1+a)rj+a—-015T) <(l+a)ry+ta+o;

The optimal solutions:

1. T —(l+(1)7‘f—()<0
‘/71’:‘X’O
i 0<T—(l+a)ry—ac< %3

Xo if de < ‘\'().

r®

Po
Wo ’ 1 Wy v -3
i Xo + (79)l58 — Yol < X7

. %1 <T - (1+a)ry—a

Xy if ‘\'11 < Xo.

X7 =4 X) i Xo < X< Xo+ (7)[52 - Xol.

Po

W : - 1 W - -1
’—)OQ if Xo+ (m) ;—(fl - ‘\0] < ‘\1.

M) 0< X; < XNo.and (1+a)rf—a—-01 <7 < (1+a)rg—a+n

The optimal solutions:

L F-(1+a)ry+a<0
Xy =0
i 0<F - (1+akry+a< %1

XY if 0 < XY < X,
X =
Xa if Xo < \'11

14

X7 =qXx} if Xo < X3 < Xo + (7522 - Xol.

(2.15)

,~
ro
—
g
g




. B <T - (l+ajrypta

. X0 < X| < Xo.
Xy =
Xo if Xo < X{.

(2.19)

Then.we can exploit the optimal solutions from the conditions above to be

analyzed in the following condition.

e (l1+a)rj—a+o;>(1+a)ry+a-o
~(l+a)rg—a-a <t <(l+ajrp+a-0
Optimal sol™ = compare Xg.and 2(b).
- (l+a)rg+a-0 <T < (1+a)ry—a+a
Optimal sol™ = compare 2(a)and 2(b).
- (l+a)ry-—a+o0 <7 < (1+a)ry+a+o;
Optimal sol™ = compare Xg,and 2(a).
e (1+a)ry+a-a>(l+a)ry-a+to
~(l+ayrf-a-a<n<(l+ajry-a+a
Optimal sol" = compare Xg.and 2(b).
- (l+a)rg—a+0 <7 < (1+a)ry+a-o0
Optimal sol™ is at Xo.
- (I+a)rg+a-0 <7 < (I+a)ry+a+o

Optimal sol™ =compare Xg.and 2(a).
(l+a)rg+a+0, <7y

1 Wa

X7 =Xo+ — -X
1 0 (1 +O)[ ™ 0]
L1 .. Fil+o+1 . .
ey = Emnx(O.I\I - (—11—:“——)(‘10 + apoXg))
1 . Fi—o+1
+-max(0. k| - (71——(—7———
1 1+a
1 ) . —7—'1 4o +1
+—max(0. K| —(
4 l14+a
1 . T-o+1_ ... .
=2 max(0. KT - (B I (W + apaXo))
1 1+a

15
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2.2.2 General case

In this section. we formulate the model more generally. We use a closed-form solution

to form a distribution-free objective function based on the approach proposed in

((4],(12]).

) %[p—k+\/02+(/1—k)9] ifk}_L—szp"2

max E[max(0. X — k)] = o (2.21)
N~(p.o?)t 2 ) ; .
o) =k k() if k< £

The solution gives the optimal upper bound on the price of a European call
option with strike k. on a stock whose price at maturity has a known mean p and
variance ¢, However, our formulation is a minimizing problem: moreover, this
closed-form will provide a lower bound on optimal solution.In order to formulate our

formulation, we need new definitions for a known mean and variance as follows:

Definition 2.2.1

W] = (1 + Tf)“() + (7:1 b l‘f)])().r\’] - (1(1 + Tf)])()'.\yl - ‘\’()‘
VW] = g Xivin] (2.22)

2
= 0y

Then. we can exploit from a closed-form above to use in our formulation.

min E[max(0. K} — W)]
0< XNy <Xo4 () )[%3—.\'0]

140

= [Ky - W, + Emax(0. 17 - k)]

— — ——.ZJ
N B Y T S A S I § S e
=Ky -+ 2 _
Wl -y + I\-l(:‘_f](:l%—) if Ky < “—I:?U*‘L
1} 1‘(?”1 2“1

The optimal solutions:
This objective function. established by a closed-form solution. is a convex

differentiable function as seen in Fig.(2-5). Therefore. we differentiate the objective

16




and set the slope to zero to find the global minimum of this function. We distinguish

1800
1600
1400
1200
10Mm
800
600
400
200
0 .
1 51 101 151 201

X1

REGRET

Figure 2-5: A characteristic of an objective function using a closed-form solution

between the cases where X is greater than or smaller than Xy, respectively.

2Fy - (1ta)ry—a){{1+4rs)(WotapoXo)-K))
(V[r]+ Fi—(1+a)ry—a))po

X;

(2.24)

2(F, -(l~n)rf+d)((lﬁfr])(H'o—upo,\'o)—l\'l)
(V[r]+(F1—(1-a)ry+a)?)po

Then we compare these two solutions with X to preserve the bounds. For example.
both are less than Xq. then the optimal lower bound is at an extremity of the interval.

The results above in Table 2.2 are computed when we assume weekly values of

Table 2.2: An optimal lower bound on a regret objective function at Xy = 100

Benchmark | 1st Sol. | 2nd Sol. || Regret || Lower Bound on .X,;
2001 -15.97 | 28.61 1.00 28.61
2003 -7.99 57.19 2.00 57.19
2005 -0.01 85.76 3.00 85.76
2035 119.64 | 51433 || 29.40 119.64
2045 159.53 | 657.19 || 39.20 159.53
2005 199.41 | S00.04 49.00 199.41

71 = 0L005. a1 = 0.007.7¢ = 0.001.a = 0.003 . Moreover. an initial wealth Wy begins

with S2000 where we have an initial underlving stock Xp = 100 with price pa = S1Q.




Chapter 3

The Multi-Period Models

In this chapter we first review methods to simulate the price of the underlying stock.
Then we extend the formulation developed in Chapter 2 to the case of several time
periods. and investigate how clficiently our formulation can track a benchmark in a

passive portfolioc management setting.

3.1 Simulating the stock prices

3.1.1 The Binomial lattice model

In this section we review the binomial lattice model as a way to simulate stock prices
conveniently and realistically. If the price is known at the beginning of a period. the
price at the beginning of the next period can only take two possible values. Usually,
these two possibilities are defined as multiples of the price at the previous period. i.c..
multiplied by u for an upward direction. and by d for a downward direction. Both u
and d are positive with v > 1. and d < 1. Hence. if the price at the beginning of
period is S. it will be either uS or dS at the next period. The probabilities of these
outcomes are pr and 1-pr. respectively, for some given probability pr. 0 < pr < 1. For
example, if the current price is S. there is a probability pr that the price at the next
time period will be 4§, and a probability 1-pr that it will be dS.

The general form of such a lattice is shown in Fig.(3-1). The stock price can be

visunalized as moving from node to node in a rightward direction. At each time period.
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the probability of an upward, resp. downward, movement from: any node is pr, resp.
1-pr. The set of the possible trajectories of the stock price has a lattice form since an
up movement followed by a down movement vields the same final value for the stock
price as a down followed by an up: both produce ud times the price.

The binomial model may appear overly simnple because it allows only two possible
values at the next period. But if the period length is small, many values are possible

after several short steps.

Su?
2
Su /
Su
Su’d
du
S S
Sud?
Sd
Sd? \\
S’

Figure 3-1: The binomial lattice stock model

To specify the model completely. we must now select numerical values for v and d
and the probability pr. We note that the price can never become negative (the value
at the next time period being uS or dS. with u > 0. d > 0). It is therefore possible to
consider the logarithin of the stock price. Consequently, we define 12 as the expected

interval growth rate as follows:
F -
v=E[ln()]

where Sy is the initial underlying stock price. and St is the price at the end of a
specific interval,

Similarly. we define o as the interval standard deviation as follows:

a? = VAR[In()]
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If & period length of Atis chosen, which is small enough compared to the entire
interval, it is well known that the parameters of the binomial lattice can be selected as

follows:

d=c¢

With this choice. the binomial model will closely match the value of v and o:
therefore, the expected growth rate of In S in the binomial lattice will be nearly v. and
9

the variance of that rate will be nearly o< . The closeness of the mateh inproves if At

is made smaller(At — 0). For further details. see [1],[13].

3.1.2 The scenario tree model

In decision-making under uncertainty, we cannot completely observe the uncertainty
{stock returns) when we make our decisions (an amount of stock in each period Xy):
we can only observe the returns that have already taken place. Stochastic
programming incorporates the fact that our decisions are non-anticipative of future
outcomes. According to two possible values of the risky returns of stock (generated by
the prices from binomial model). we assume that. over the N decision periods, 2%
possible scenarios may occur. These scenarios are represented by a symmetric tree. To
build a tree of scenarios that allows the decision-maker to use past outcomes. i.e.. for
which there is only one wav to reach any node. we transform the binomial lattice
model into a scenario tree as shown in Figure 3-2. The advantage of the scenario tree
over the binomial lattice model is that each scenario in scenarios tree corresponds to a
traceable sample path (see Figure 3-3).

Figure 3-3 also allows us to illustrate non-anticipativity. For instance. if we
consider both A and B in Fig.3-3. we note that they use the same path between node
0 and node 1. Consequently, all parameters and decision variables made for those
nodes in time periods 0 and 1 must be identical. Similarly. if we assume three decision
periods as shown in Fig.(3-3). the decision variables at time periods 0 and 1 will be

identical for the four scenarios in the upper part of the tree.
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Figure 3-3: The traccable sample paths

2: The transformation between binomial lattice model and tree of scenarios



3.2 Multi-Period Formulations

We now extend the formulations developed in Chapter 2 to the multi-period setting.
We will consider models with one underlying risky asset (stock). one risk-less asset
(bond or cash). one benchmark index (e.g.,S&P500 index). We do not allow short
sales. We use the following notations:

Notations:
o W the wealth at the beginning of period t in scenario s.
o WO the wealth after a transaction cost incurred during period t in scenario s.
o W7, the wealth at the end of period t+1 in scenario s.
o 11y the initial wealth.
o X{ the number of shares of stock invested during period t in scenario s.

o X[, the number of shares of underlying stock muvested during period t+1. and

decided at the end of period t in scenario s.
o X the initial of shares of underlying stock.

e B;" the amount of cash or bond before a transaction cost incurred during period t

m scenario s.

e 37 the amount of cash or bond after a transaction cost paid during period t in
t [

scenario s.

. B,"A1 the amount of cash or bond in the portfolio during period t+1 in scenario s.
o p; the unit price of underlying stock during period t in scenario s.

o p;.y the unit price of underlying stock during period t+1 in scenario s.

e 7}y the rcturn of the underlying stock during period tin scenario s

o 7¢ the riskless return of bond or intercst rate of cash.

o o the transaction cost factor.

[
to




o K, the benchmark during period t.
o Z; the decision variable modeling regret during period t in scenario s.
o (O° the probability of scenario s

Lemma 3.2.1 We have the following relations:

Wy =piX; + By
W =W —apf|X7,, — X7
= P;XfH + Bts

Wi =pia Xo + Bl Vios (3.2)

il

(L7 )P X + (L 1) BY

= (1 +r, Op X o+ (L) (W = pi X7 = apf| X — X7))

|

= (L+r WP+ —rpp X — o+ )| X7 = X7

The planning horizon has T time periods. which gives us S = 27 possible scenarios.
Scenarios and nodes on the graph are defined in decreasing order on the graph. Hence.
if s = 5. then a sample path leading to this scenario observes only downward
movements in the stock price. With the scenarios defined here. we assign probabilities
to each scenario as follows:

QO = (1 -pr)¥pr! =V (3.3)

where we define pr. resp. 1-pr. as the up. resp. down. probability. N is the number of
downward movements on the sample path.

Due to the non-anticipativity of decisions. X7 will be identical for all scenarios s
that cannot be distinguished from ecach other (as they have the same historical

realizations) at time . For example, with T =3.5 = 23 = &

(3.9
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For more details how to formulate a stochastic model. see [5].

3.2.1 The multi-period active management model

The active portfolio management problem maximizes final expected wealth, It is

straightforward to formulate this problem as:

T S

max % Z Z o'Wy

t=1 s=1

st WP =i X0 —appl X - X120t =0, T —1.Vs

W, =00+ rp)We + (ri: — repiNE — a(l+ro)pil X7 — X

; 2 S- -
t=0 Wl =Wg=.=..=W5' =15 =Wy
- 2 F5-1 _ y S
t=20 — ‘\(l) :‘\0 :":":‘XO =] Oq:"
-] Gyt - S
t=1 Xl=.=X1X! =.=X

— -1 _ov2 L yvS-_vsS
{=T-1 — X\, =Xi .aXi=X]

N> 0.V

§
t

L t=0...T -1.Vs

Note that Problem (3.5) can be rewritten as a linear programming problem by

transforming the constraint:

Wy = pr NS 2 apflXT - XY

for all # and s into a set of two equations:

WY - piAy L,

v

apy (N7 = Xiuy)

and

WY = pi XL 2 apf(X = X7

[\




3.2.2 The multi-period passive management model
The goal here is to minimize the average final regret. The passive management model

can be formally formulated as follows:

: 1 T 5 s7s
min gy 2 V7

st WP —pi X — apf

Xs, - X >0, Vs
W =Q+r)We+ (- rppf X —all +rg)pf | X7 — XPI vt s

t=0— Wi =Wi=.=.=W""=05 =W,
t=0—Xl=X3=.=.=X"=X =X,
t=leo X! = = X7 X2 = = X§

t=T-1— XL = X%_l:..:,\’;:} = X;j_l
X;>0. Vs
Z{ >0, ¥Vt > 1.¥s

Zi > Ky — Wi Yt > 1.9s

Again. Problem (3.9) can be rewritten as a linear programming problem.

3.3 The numerical experiments

In section 3.2, we have shown how to extend the models over several periods. To
examine the results of our formulations in practical situations. then, we turn to
computational examples. where we use historical stock data publicly available at
http://finance.yahoo.com and http://www.indices.standardandpoors.com. This data set
consists of weekly stock price observations over a period of about two vears of a major
stock index. sav. the S&P500 and its top five components. Therefore. we collect
historical data of these stocks from January. 2004 to December. 2005. In terms of
weekly abservations. the data set covers 105 periods. The details of the top five
S&PH00°s components are provided in Table 3.1. With this data in hand. we can
now investigate the performances of both proposed active and passive models. We

consider the following numerical values: initial wealth 117 = 20000. annual risk-less

B3]



Table 3.1: The top five components of S&P500 index

Company Index Weight | Initial Price($)
Exxon Mobil Corp. 3.32 38
General Electric 3.1 29
Citigroup Inc. 2.12 34
Bank of America Corp. 1.96 36
Microsoft Corp. 1.73 24

return 1y = 0.06, and a transaction cost factor a = 0.003. Each stock has a distinct
probability distribution. We compute for each the two-year expected return or
expected growth rate and standard deviation corresponding to this data set.

respectively, by using the binomial lattice model as shown in Table 3.2. We then

Table 3.2: The probabilistic data of stocks

Stock Data 2 Years Expected Return(%) | 2 Years Std Dev(%)
S&P500 23.46 7.17
Exxon 36.79 27.95
GE 16.90 18.54
Citi 39.65 31.75
Bank of America 23.55 17.86
Microsoft 7.51 23.70

generate a scenario tree for cach set of five underlying stock data over eight periods
(weeks). We include S&P500 later for the experiments about passive portfolio
management. This procedure vields 2% = 256 scenarios in the tree. Several numerical

experiments are performed as described in the following pages.

3.3.1 The numerical results from the active management model

First series of experiments

In the first set of experiments. we compare the results of the active portfolio optimized
over 8 weeks (256 scenarios) using Formulation (3.5). Initially. the portfolio starts
with all portfolio weight in underlyving stock. We provide the following results: (1) the
optimal final wealth (W) (2) the optimal stock weight (3) expected growth rate over 8
weeks as shown in Table 3.3. These problems are solved by using the NPress software

and Excel on a PC. Tt appears that we would maximize our expected return over eight




Table 3.3: The results of the multi-period active model

Stock Data Wealth($) || Risky Security Weight(%) [[ Expected Growth Rate(%)
Exxon 21375 54.26 6.65
GE 20833 52.92 4.08
Citi 21573 94.03 7.57
Bank of America 20834 54.26 4.08
Microsoft 21033 50.99 5.04

weeks by investing into Citigroup Inc. However, to protect against risk, we should not
invest solely in that company’s stock: instead, our results indicate our portfolio should

hold about fifty percent of risky asset.

Second series of experiments

In the second series of experiments we investigate how efficiently those results can be
exploited on the real data (Jan, 2004 to Dec. 2005). We make our investment
according to the optimal weight and keep it constant over 105 periods (2 years) using
the relations in Lemma (3.2.1). For example. we use the add-in Solver in Excel to
adjust the weight of stock investment in our portfolio to be constant each weeck. We
now sce the drawback of using the ideal optimal active management strategy with a
fixed allocation rale when the data comes to be realized. The initial portfolio starts
with weight according to the optimal strategy. Each weekly risky return is realized on
this real weekly data. We provide the following results: (1) two years expected growth

rate (2) two year standard deviation.

Table 3.4: The results of optimal strategy based on the real data

Stock Data Expected Growth Rate(%) || Std Dev(%)
Exxon 24.36 15.17
GE 14.11 9.83
Cita 25.55 17.13
Bank of America 17.82 9.70
Microsoft .93 12.02

Third series of experiments
In the third series of experiments we look at the effects on the optimal wealth and

expected growth rate of varving the parameters. Thus, we vary (1) a weight or percent




of risky security invested in the initial portfolio wealth Wy (2) a transaction cost
factor (3) a risk-less return. We only vary one parameter at a time. These procedures
are performed with the binomial lattice and scenarios tree over eight weeks as in the

first series of experiments. The effects of changing the initial stock weight are shown in

Table 3.5: The effects of varying the initial stock weight

Initial Stock Weight in portfolio(%) || Wealth($) || Expected Growth Rate(%)
(Exxon )
0 21356 6.56
25 21362 6.59
50 21366 6.61
) 21370 6.63
100 21375 6.65
(GE)
0 20819 4.01
25 20822 4.03
50 20825 4.04
) 20829 4.06
100 20831 1.07
(Citi)
0 21554 7.48
25 21558 7.50
a0 21563 7.52
75 21567 7.54
100 21572 7.57
(Bank of America)
0 20817 4.00
25 20822 4.03
30 20826 4.05
Ib) 20831 4.07
100 20835 4.09
(Microsoft)

0 21027 5.01
25 21029 5.02
30 21030 5.02
) 21031 5.03
100 21032 5.03

Table 3.5. We note that changes in both the optimal wealth and expected growth are
not significant. We note from Table 3.6 that the optimal wealth and the expected

growth rate tend to decrease significantly when the transaction cost factar varies, but.



Table 3.6: The effects of a change in the transaction cost factor

Transaction Cost Factor(a) || Wealth($) || Expected Growth Rate(%)
(Exxon )

0.0000 21510 7.28
0.0030 21375 6.65
0.0045 21309 6.34
0.0060 21242 6.03
0.0075 21176 5.7
(GE)

0.0000 20966 4.72
0.0030 20831 4.07
0.0045 20764 3.75
0.0060 20698 3.43
0.0075 20631 3.11
(Citi)

0.0000 21709 8.20
0.0030 21572 7.97
0.0045 21505 7.25
0.0060 21437 6.94
0.0075 21369 6.62

(Bank of America)
0.0000 20966 4.72
0.0030 20835 4.09
0.0045 20770 3.78
0.0060 20706 3.47
0.0075 20641 3.16
(Microsoft)

0.0000 21174 5.70
(0.0030 21032 5.03
0.0045 20962 4.70
0.0060 20892 4.36
0.0075 20823 4.03

as indicated in Table 3.7, the optimal stock weight does not change much.

Finally. Table 3.8 shows the impact of a change in the risk-less return. The
optimal wealth and expected growth rate slightly change in the same direction as the
risk-less return. However. the range of change is narrow: therefore. the effects are quite

small.
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Table 3.7: The optimal stock(Exxon) weight in portfolio when a transaction cost factor
changing

Transaction cost factor(a) 0.0000 [ 0.0030 || 0.0045 || 0.0060 || 0.0075

(Exxon)Optimal Stock Weight(%) || 54.27 || 54.26 || 54.26 || 54.27 || 54.25

Table 3.8: The effects of changing the risk-less return

Annual risk-less return(ry) || Wealth(S) || Expected Growth Rate(%)
(Exxon )
0.01 21335 6.46
0.06 21375 6.65
0.09 21400 6.76
(GE)
0.01 20790 3.88
0.06 20831 4.07
0.09 20856 4.19
(Citi)
0.01 21531 7.28
0.06 21572 7.57
0.09 21597 7.68
(Bank of America)
0.01 20797 3.90
0.06 20835 4.09
0.09 20859 4.20
(Microsoft)

0.01 20988 4.82
0.06 21032 5.03

{ 0.09 21059 5.16

3.3.2 The numerical results from the passive management model

First series of experiments

In this section, we use the multi-period passive management model to compute the
numerical results as follows. We use the S&P500 index as benchmark. First of all. we
gencrate the S&P500's returns for eight weeks using its probabilistic data as shown in
Table 3.2. Furthermore, we assume that we invest all portfolio in this index for eight
weeks as shown in Table 3.9. Unfortunately, we cannot hold all of the stocks that
make up the SEP500 index and so perfeetly reproduce it (full replication). For this
reason. the top five stocks in S&PAH0 are chosen to track a benchmark. To introduce

the numerical experiments. we first assume the initial wealth 115 = 20000, annual
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Table 3.9: The S&P500 index portfolio for 8 weeks(Wy = $20000)
Week || Wealth($) || Return

1 20121 0.0060
20286 0.0082
20337 0.0025
20393 0.0028
20162 -0.0113
20161 0.0000
20448 0.0142
20473 0.0012

oo = S| O ] WO KO

risk-less return ry = 0.06. and a transaction cost factor a = 0.003.

In the first set of experiments, we compare the results of the passive portfolio
optimized over 8 weeks(256 scenarios) using our formulation(3.9). The initial portfolio
starts with all portfolio weight in risk-less security. These results are given (1) the
optimal regret (2) the optimal stock weight as shown in Table 3.10. These optimized

problems are solved by using X-press software and Excel on a PC. In the

Table 3.10: The results of multi-period passive model

Stock Data Regret(3) || Risky Security Weight(%
Exxon 12.49 9.48
GE 18.62 15.88
Citi 12.84 8.04
Bank of America 17.31 16.49
Microsoft 18.51 11.74

conclusions, the regret is small for cach stock models compared to the total
wealth(0.06% — 0.09% of the wealth). The investor should hold the underlying stock
about 109-20% of his portfolio weight. As in the multi-period active model. the
investor should hold the underlying stock for about 50% of his portfolio weight. Figure
(3-1) shows the total wealth of holding underlving stock (Exxon) with a benchmark
index(S&PH00). Our passive portfolio curve try to keep the line above its benchmark.
Therefore. the regret will be minimized. The regret-averse investor may use this type
of model.

Second series of experiments

In the second series of experiments, we have extended the resuits to one-hundred and
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Figure 3-4: The total wealth of Exxon vs S&P500 benchmark over 8 weeks

five weeks using the real data. As in the active model experiment. we keep the
constant optimal stock weight in our portfolio. In this experiment, we choose the
Exxon stock as an underlving stock. since its optimal regret is the lowest of all stocks.
The initial portfolio starts with weight according to the optimal strategv. Each weckly
risky return is realized on this real weekly data.

The optimal regret = $17.61

Number of weeks that passive portfolio under S&P500 curve = 16 weeks

Number of weeks that passive portfolio above S&P500 curve = 89 weeks
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The percentage of time periods that passive portfolio under S&P500 curve

o
e
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The percentage of time periods that passive portfolio above S&P500 curve =
The results have explicitly shown that our multi-period passive model can track(or
replicate) the benchmark efficiently. Moreover. the model trv to adjust its curve to be

above the benchmark. and can track a trend line of the benchmark as well.
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Figure 3-5: The total wealth of Exxon vs S&P500 benchmark over 105 weeks
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Chapter 4

The index-tracking models

In this chapter we consider the problem of constructing the index-tracking portfolio
out of a large universe of stocks. This universe can be an index such as S&P500. In
order to choose a portfolio that closely tracks the return on a benchmark. we must
first decide how to measure the performance of a tracking portfolio. This is a kind of
passive portfolio management. We formulate the mathematical model. and then turn

our attention to analyze the numerical results.

4.1 The tracking error models

We first quantifv the degree of which the return on the index-tracking portfolio differs
from the return on a benchmark. i.e.. a measure of tracking error. Tracking error is
measured using historical data. because the future return paths of the index-tracking
portfolio and its benchmark are unknown. Some common measures of tracking error
are given in ([2].[7].[9].[10}.{15]. [17]).[18]).

The investor allocates his/her wealth among n underlving risky securities which
are components of the benchmark index. This allocation is done at the beginning of
investment, and the proportion of the wealth invested in each stock is constant
throughout all the periods. Morcover. there is no short-gelling allowed. We consider
two mathematical formulations of tracking error: (1) the mean absolute deviations (2)

the mean absolute downside deviations as in ([7].[9].[11].[17].[18]). We introduce the

3




notations as follows:

Notations:
o [; the observed return of the benchmark at period t.
o 11 the observed return of underlying stock 1 at period t.
e r, the proportion of the wealth invested in stock 1.

The tracking error based on the mean absolute deviation can be expressed as:

T n
i
TEyap = T ZIZT;L — Il (4.1)

t=1 1=1

The tracking error based on the mean absolute downside deviations can be expressed
as:
n

-
TExapp = % Z | min(0. Z rery = Iyl (1.2)

=1 1=1
In the first approach (MAD model). we consider the deviations between the total
return of underlving stock portfolio and the return on the benchmark. On the other
hand. in the second approach (MADD model). we consider the deviations between the
total return of underlving stock portfolio and the return on the benchmark when they
move in the downside direction (the benchmark return is greater than the total
return).

As mentioned in Chapter 1. a portfolio that tracks the benchmark perfectly can
be obtained by the strategy of full replication. Trading a tracking portfolio with such
a large number of different positions leads to high transaction costs. As a result. it is

desirable to form a good tracking portfolio with as few stocks as possible.

4.1.1 The mean absolute deviations model

To formulate the model. suppose that we want to track the index with & out of n
stocks. Therefore. we can formulate this problem of minimizing tracking error while

restricting the number of assets. The mean absolute deviations model can be formally
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formulated as follows:

T n
1
min TZ‘Zr;I' = Iy
t=1 1=1
.t S () =k
1=1 (1 3)
3o
1=1
L, 20 Vi
where
0 ifr,=0
v(r,) =

1 otherwise
This can be reformmlated as a mixed-integer mwodel using binary variables for the ¥

function.
4.1.2 The mean absolute downside deviations model

Similarly. the mean absolute downside deviations model can be formulated as follows:

n

T
1
min T Z [ min(0. Z rir, = 1))

t=1 1=1
n
st Y W) =k

=1 (1.1)
n
Z.r, = 1.
1=1
r, >0 ]

where
0 ifr,=0
yr(r,) =

1 otherwise
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[9] notes that this problem can be reformulated by using the relation:

Imin(0.a)| = %lal - %a (1.5)

for any real number a. Hence, we can introduce the additional constraints to Eq.(4.4)

by using the auxiliary variables b, .b; . The new model can be formulated as follows:

min 7, Z—’;J—
st S U(r) = ke
S =1

_ n t ’_1
by - by = Z=inh g

bl by, > 0.Vt
r, 2 0. Vi

where

0 ifx, =0
V(r,) =

1 otherwise

4.2 The current methods

Suppose that we want to construct an index-tracking portfolio using 40 stocks out of
500 component stocks of S&P500. One may take the 10 largest stocks in this index
and minimize the tracking error using these stocks. However, this is not necessarily
the best (optimal) solution. Another approach would be to solve this problem by
choosing 40 stocks out of 500 stocks to minimize the tracking error. It is very difficult
to solve this problem. Because of the time involved. enumerate all the possibilities to
find the combination of stocks that minimizes the tracking errvor is not achievable
when we have to choose some stocks out of a large universe. The enumeration-based
approach is only practical for very small or very large k or for very small n. since the

number of ways to choose k stocks out of n stacks is:

n n'

S UL

il

(1.7




For example, there are 10% ways to form a 40 stock subset out of a given 500 stocks.
Nowadayvs, we can take several steps to find the optimal solutions. Suppose that we
want to construct an index-tracking portfolio using 10 stocks out of 500 component
stocks of S&P500. First. we choose the 60 largest stocks out of S&P500 and minimize
the tracking error using these stocks. Second, choose 40 stocks out of 60 stocks that
give the minimal tracking error. and minimize the tracking error using these stocks.
Third. choose 30 stocks out of 40 stocks that give the minimal tracking error, and
minimize the tracking error using these stocks. Then, perform this procedure until we

achieve to the desired 10 stock portfolio.

4.3 The numerical experiments

In this section. we perform two series of numerical experiments to illustrate our
index-tracking models using minimized tracking error approach. The main goal is to
track or replicate the benchmark index using a small desired portfolio. We make these
computations using the underlying stock price data made publicly available at
http://finance.yahoo.com and http://www.indices. standardandpoors.com as in Chapter

3. All computations are performed on a Window-PC using X-press solver and Excel.

First series of experiments

In the first series of experiments we formulate the mean absolute deviations and the
mean absolute downside deviations portfolios. We have to decide the fixed proportion
of our wealth on each stock that optimizes the tracking error. Thus. we choose the 60
largest stocks out of S&P5H00 index to be the stock universe of our problem. Then. we
relax the limit number of stocks in the portfolio constraint. and optimize the models
using these stock data over 50 weeks from January, 01 to November. 04. Hence. the
results have shown the optimal number of stocks held in portfolio. and the optimal
tracking error as in Table 1.1. We formulate the models repeatedly. and limit the
number of the stocks available as the 50.40.30.20.10.5.3.2.1 largest S&P00 stocks. In
MADD model. we can track S&PH00 index efficiently using the 50 weeks historical

return data of the 40 largest stocks in S&PA00. since the tracking error are nearly zero

[I+]
[0 2]




Table 4.1: The MAD and MADD index-tracking portfolios using the desired largest
stock universe over 50 weeks

. MAD MADD
#5tock Universe #Stock in Portfolio TE #Stock in Portfolio TE
60 40 0.000426 13 0.000000
50 33 0.000676 24 0.000000
40 27 0.000931 21 0.000000
30 22 0.001572 21 0.000203
20 18 0.002563 12 0.001754
10 10 0.003605 9 0.002375
5 5 0.006024 5 0.003663
3 3 0.008623 3 0.005773
2 2 0.009124 2 0.006245
L 1 1 0.013112 1 0.009768

and the optimal number of stocks held in portfolio is 21 stocks. In both MAD and

MADD model. if we reduce the size of the stock universe to be chosen to form our

index-tracking portfolio, the tracking error will increase.

Now. we achieve the optimal weight or proportion of our wealth on each stock,

which is optimized based on the fact that we have known all information about the

returns on stocks for 50 weeks. To extend these results to the future use., we assume

the future returns of S&P500 index and its components for 55 weeks using the data

from December. 04 to December. 05. Thus. we measure how efficiently the current
optimal stock weight can be used to form the new index-tracking model as in Table 1.2.
Figures (4-1) and (1-2) show the index-tracking portfolios using the 30 largest
stocks and their benchmark over 55 weeks. Comparing the characteristics of both
MAD and MADD models is explicitly shown that our MADD index-tracking model
has higher deviation errors from its benchmark when the index-tracking returns are
greater than the benchmark. However. this has lower deviation errors from its
benchmark in Fig.(:4-2) when the index-tracking returns are less than the benchmark.
Second series of experiments
In the second series of experiments we formulate the index-tracking model using the
mean absolute deviations as a tracking error. and adopt the current method in section

1.2 to solve the problem. The current procedure is to sort the stock weights in the

39



Table 4.2: The MAD and MADD index-tracking portfolios using the desired largest
stock universe over 55 weeks

#Stock Universe || MAD tracking error || MADD tracking error
60 0.003122 0.001268
50 0.002820 0.001268
40 0.004457 0.001337
30 0.004704 0.001807
20 0.004340 0.002167
10 0.005451 0.002186
5 0.006428 0.002887
3 0.009355 0.004288
2 0.008479 0.005693
1 0.022601 0.010285

Table 4.3: The MAD index-tracking portfolio using sorting approach over 50 weeks

o T #Stock in Portfolio Tracking Error
#Stock Universe | oy TAD(SORTEDY | MAD || MAD(SORTED)
60 10 10 0.000426 0.000426
50 33 10 0.000676 0.000426
10 o7 10 0.000031 0.000426
30 B 79 0.001572 0.000532
20 18 30 0.002563 0.000316
10 10 10 0.003605 0.002361
5 5 5 0.006024 0.004628
3 3 3 0.008623 0.006712
7 5 7 0.009121 0.009054
L T I T 0.013112 0.012142

portfolio in descending order. Afterwards. we choose a smaller stock universe that will
be available to construct the new index-tracking portfolio. and optimized the model to
find the next optimal stock weight. To achieve the desired portfolio size. we repeat the
procedure until the result is satisfied. but we reduce the stock universe in cach step.
The tracking errors in sorting approach are smaller than the former approach in
the first series of experiments as shown in Table 4.3. Furthermore. we analyze the
optimal stock weight results with the next 55 weeks as in Table -1.1 and Fig.{(1-3). In
conclusion. we obtain more efficient performance to track the benchmark using sorting

the stock weight approach.

10




Table 4.4: The MAD index-tracking portfolio using sorting approach over 55 weeks

#Stock Universe

Tracking Error

60 0.003122
50 0.003122
40 0.003122
30 0.003253
20 0.003589
10 0.005295
3 0.007232
3 0.008876
2 0.009914
1 0.016554
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Figure 4-1: The returns on SEP500 and MAD index-tacking portfolio using the 30

larcest stocks over 45 weeks
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Figure 4-2: The returns on S&P500 and MADD index-tacking portfolio using the 30
largest stocks over 55 wecks
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Figure 4-3: The returns on SEP300 and MAD index-tacking portfolio using the 30
sorted stocks over 55 weeks



Chapter 5

Conclusions

We have studied active. passive and mixed portfolio management models for two-stage
and multi-period models. using mean average deviation and mean average downside
deviation measures. Future work includes testing the models on larger problem sizes,

with more risky assets allowed in the portfolio.
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