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Abstract

In this thesis. we investigate the impact of transaction costs on portfolio management,

with a focus on activc management. index-tracking and mixed ~trategie~ where wc al-

temate betweeu active and passive portfolio optimization. We me~ure the quality of

tracking using the concepts of t\1ean Absolute Deviation (t\1AD) and t\1ean Absolute

Down~ide Deviation (t\lADD) and compare our re~\llts with activc portfolio manage-

ment. We first consider a simplc static model wit h onc stock and onc bond. then extcnd

the analysis to multi-period problcms. Finally. we prcsent extensive numerical results

illustrating the promise of the approach.



Chapter 1

Introduction

1.1 Background

The field of modern financial theor~' wa.s pioneered in 1959 by ~larkowitz [14]. who pro­

posed the mean-variance model to balance expected return with portfolio risk mea.,-;med

by ib standard de\'iation. ~owada~'s. portfolio management strategies cun be broadly

da:;sified in two categories:

1. In active portfolio management. the investor seeks to outperform the market. i.e,.

t he benchmark index. by act iYel~' picking stocks based on his own estimates of

futme stock returns.

2. In passil'c portfolio management. the i1l\'estor seeks to obtain the same returns as

the benchmark index.

In [2]. Be:l."le~' describes the st rengt hs and ,w'akne:;ses of bot h st rategies as follows:

• Act iw management ent ai Is high fixed cost s (associated ,,'it h pa~'nl('nt s tot he man­

agement team) and high transaction costs (due to the frequent trading inyolwd in

st ock picking). The hop(' is tha t t111,"1' cost s will 1)(' offset !J,' t Ill' ret ums obt ailll'd .

• Pa::-siw managcment has lower fixed costs and lower transact ion costs. but prc$cnt s

tlw disady:mtag(' that if th(' stock mark('t falters. so ineyitahl~' will the r('turn of

the inoex funo. whil(' a few individual stocks might still prrform strongl~·.



As Clarke et. al. point out [6], the naive approach consisting in replicating the index

by purcha'iing stocks in the exact same proportions, called full replication, is impractical

due to the number of stocks involved and the need to repeatedly re-balance the portfolio

to maintain the correct proportions, which would lead to enormous transaction costs.

Hence. the investor choosing a pa5sive management approach will attempt to track the

performance of the index a5 well a5 possible with a much smaller number of stocks.

Several mea'iures of tracking error between the returns on the benchmark and

index-tracking portfolio have been investigated. For example, Clarke et. al. [6] consider

the absolute deviation tracking error. Consiglio and Zenios [7] and Worzel, Va'isiadou­

Zeniou and Zcnios [18] stud~' the tracking of fi.xed-incoII1P securities problem. Fang and

Wang [9] analyze a fuzzy model using a mean absolute downside deviation tracking

error. Konno and Yamazaki [11] also use the mean absolute deviation tracking error.

while Roll [16] focuses on the sum of the squared deviation tracking error and Wolter

and Zimmerman [17] use linear deviation tracking error, to name just a few.

1.2 Thesis overview and contributions

The purpose of this thesis is to in\'Cstigate a mixed strategy where the investor attempts

to gain "the best of both worlds" by alternating between active and pa'isive manage­

ment. depending on which one is performing better. The presence of transaction costs

introduces friction in the management model. i.e .. the investor st ays wit h a strategy

longer than he would like because the gains from switching lllUst at lea'it cover the cost

of the transaction. In this work. \\'e seek to evaluate the potential of such an upside

tracking approach.

The t he.-.;is is st mct ured as follows. In Chapter 2. we describe the basic models of bot h

actiw and passiw management. dcriw' closed-form solutions and deriw a lower hound

on t he object iw funct ion when the dist ribut ion of the st ock ret urn is not kno\\'n prccisel~·.

In Chapter :~ we first review wa~'s to simulate the underl~'ing stock returns thrnugh

binomial btt ice and scenario t rec models. before extending tht' modrls of Chapter :2

to mult i-period settings. ChaptN ,I inwstigates the index-tracking model using the

l11e,1I1 ahsolute de\'iation (~I:\D) and the n1l'nn nbsolute dO\\'nsidt' dc\'iation (~I:\DD)



measures of tracking error. Chapter 5 summarizes our results and discusses future work.

I



Chapter 2

The Basic Models

In this chapter we introduce two basic models of portfolio optimization, which corre­

spond to active and passive management strategies.

2.1 Active portfolio management

In this section, we present our results for active portfolio management over two time

periods when there are one underlying risky asset and one riskless asset. Transaction
\

costs were first studied by Davis and Norman J8], who proved optimality conditions on

selling and buying times in a continuous-time infinite-horizon problem when the risky

asset obeys a lognormal distribution. The purpose of our analysis is to give more insights

in the structure of the optimal strategy. We will use the following notations:

Notations:

• Wo the wealth at the beginning of time period O.

• Wothe wealth after a transaction cost incurred during time period O.

• WI the wealth at the end of time period 1.

• Xo the number of shares of the underlying stock in the portfolio during period O.

• Xl (decision variable) the number of shares in the portfolio during period 1, de­

termined at the end of period O.

5
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Figure 2-1: Sequence of decisions in active portfolio management.

• Br) the aTTlOll1lt of cash (bond value) in the portfolio before a transaction cost is

inCI1T/ed during period O.

• Bo the (111l01l1lt of cash after the transaction cost is paid during period O.

• B; the amount of cash in the par·tfolio during period 1.

• Po the known unit price of the underlying stock during period O.

• rl thc risky return of the underlying stock during period 1.

• 1'1 the mean retUnl of the underlying stock during period 1.

• rf the risk-less rdur1J of the llOnd, i.c., interc$( mtc of cash.

• (} the tmnsaction cost factor. i.e .. the percentage of the transaction amOU1Jt that

is paid.

WI' a."~mnf' that ~hort-~d1ing i~ not allm\TrI. i.f' .. thf' financial in~titlltion~ (banks.

hrok('rag(' firm~) do not allow th(' in"('."tors to borrow th('ir ~tock~ to IHI~' oth('r s('curitif'.".

In math('matieal terms. thi~ mean~ that tllP Illlmher of shares. the inw.'itor·s wealth

and the dollar amount in cash cannot be negatiw numbers. Our other assumption

concern~ transact ion costs. \\'(' a$~lIm(' that \W' pa~' a transartion cost proport ional

to th(' change. in ahsol\lte "allle. in tIl!' amollnt of money held in stock. The in"cstor

is ohligatl'd to pa~' t his cost imml'diatel~' aftf'f it incurred. Fllrt hermore. we assume

that \W h:1\"e been abk to c."timate the mcan retllrn for the lIndl'rl~'ing stock from the

historiral data. For simplirity. Wt' do not Cllnstrain tIll' IHlmlwr of stoek shaTcs to be



an integer. Consequently, the problem can be reformulated as a linear programming

problem. instead of a mixed-integer programming problem.

Lemma 2.1.1 We have the following relations between the mathematical quantities

considered:

Wo = poXo + Bb

= poX\ + Bo

= (1 + rdpoX\ + (1 + rf)Bo

= (1 + r!lpoX\ + (1 + Tf)(WO - POX\ - opOIX\ - Xol)

= (1 + Tf)WO + (r\ - Tf)POX\ - n (1 + rf)poIX\ - X o!

Erl [H'd = (1 + Tf)Wo + (1'\ - Tf)POX\ - 0 (1 + Tf)poIX\ - Xo!

The portfolio model is then formulated as follows:

max E r1 fWd

s.t. 0 ~ X\ ~ Xo + (1 ~ ()) [~ - Xo]

(2.1 )

(2.2)

where we haw used that Bn 20 with Bo = Wo - 0 Po \X\ - Xol- Po X\ and Po Xo ~ Wo

(B~ 2 () by a:-isumpt ion) to obt ain the upper bound on X\.

2.1.1 Optimal solution for the active portfolio model

\\'e analyze the optimal i'olution by considering three possible ca.."es for the parameters

of t he s~·stcm. The deri\'at ions an' st raight forward: hence. the re."lIlts arC' i'tated wit hout

proof.

Theorem 2.1.2 Opt117HJI allamtion 11l storb; and optimal wraith orr gil'en /Iy the fol-

10l1'1ll.0 1lIation,".

-,



Cas(' (i): 1'1 < (1 - u)1'f - 0

Xi = 0

W; = (1 + 1"f)(\\'O - poXo - upoXo) + (1 + 1"f)PoXo

= (1 + 1"f )(Bb - upoXo) + (1 + 1"f )PoXo

Casc (ii): 1 - o)1"f - 0 :::; 1'"1 < (l + O)1"f + 0

Xi = Xo

w; = (1 + 1'f)(H'o - PoXo) + (1 + rIlPoxo

= (1 + 1'f)B() + (1 + l'ilPoXo

Casc (iii): (1 + o)rf + (l :::; 1'"1

\". \" ( 1 )[IFo \"]'\1 = ,,\0 + -- -- - ·\0
1 + 0 Po

'. 1+ 1'"1 IFo • _"
H] = (--)[- - Po.'\o] + (1 + 1"1 )po.X o

1 + 0 Po
1 + 1'"1, _ "= (--)Bo+ (1 + 1"1 )poXo
1+0

2.1.2 Sensitivity to the transaction cost

(2.3)

(2.4)

(2.5)

Here \w investigate the relation between the transaction cost factor. and the optimal

number of shares in t he underl~'ing stock t hat should be held in t he next period. We

first considN t he «Till:
1 I\"Xo + (__ )[_0 - X o]

1 + 0 Po
(2.6)

which is the upper bound on XI.

Of course. if 0 is r('latiwly,large, then (~)[~ - Xo] becomcs wr~' small. so that

XI ::::: X o· Intuitiwl~'. \\'e an' more likel~' not to change the portfolio allocation when

th(' transaction cost is higl!. :'Ior('o\"('[. \n' can se(' that tIll' range(= 20(1 + Tf)) from

\"ahw (1 - o)Tf - 0 to (1 + o)Tf + n (ca."t' (ii) wher(' Xi = Xo) is farther spreao wJ1f'n

t h(' transact ion cost increase.".

\Io,.;t brokerage firm,.; chargl' their clients \\'ith a transaction cost IIp to ().(;()\~H().()()(ll.



Therefore, in our research we adopt a transaction cost of 0.30o/c (0.003). The change

in a transaction cost factor will directly affect a limit number of shares in underlying

stock as in Eq.(2.fi). However. this drect is not too sip;nificant as long as til(' factor is

still close to 0.30% ab shown in Table 2.1.

Table 2.1: The sensitivity between a transaction cost factor and Ii limit number of

underlying stock

Transaction Cost Factor # Limit Stock

() Increabing(% ) Decreabing(%)

0.003 0 0.000
O.00:l5 50 0.149
0.006 100 0.298
0.009 200 0.595
0.012 300 0.889
0.015 ·100 1.182

2.2 Passive portfolio managelnent

In this section. we outline the approach a.ssociated with pa.ssive portfolio management.

We consider a basic portfolio model in presence of transaction cost with a benchmark.

For the simplicity. we construct this model based on one underlying risk~' asset. sa~·.

stock: onC' risk-less asset. say. bond or ca.sh: one benchmark index. say. S&P500 index:

for two consecutiw Jwriods. \\'e use the same notations a.'i in Section (2.1). and add one

more notation for a benchmark index.

Notations:

• /\'1 the benchmark !'a/lIe 17l period 1.

l'sin~ Lpmma (2.1.1). \W cnn formulatp this modpi as follo\\'s:

mill

s. t.

Thi.-- nbjectiw function is hn.--eo on nwrsion tn rq~rl't. Indeed. the inH'stor f('Pls re~n't

when it turns out thnt the lwnchmark lwnts his portfolio. H('nCl'. \W minimiw the



SP500

Portfoho

II
- --------

Figure 2-2: The pilssi\'e portfolio management

T

deviatioll betweell the benchmark. alld our portfolio only whell our portfolio lies under

the bellchmark as shown in areas 1. II in Fig.(2-2). :"JotI' that m<l.x(O'](1 - WI) is equal

to thl' smallest number z that satisfies z ~ (](I - WI) and z ~ O. For this reason.

the optimization problem under consideration is equivalent to the linear programming

problem:

min

S.t.
(2.8)

z ~ 1\1 - WI

0::; XI ::; Xo + (_1_)[ Wo - '\0]
1 + () Po

2.2.1 A specific case

\Y(, first make the a~Sl1mpt iOIl that tIl(' r<'t um of t Ill' l11Hkrl~'illg st ock alld the l)('lIdllllark

,all take two \'allJ('s each as follows:

{

- }_ I

-

1"1 + ITI pro)- 2'

}
_ I

1"1 - ITI pro)- 2'

{

!\' . proh= ~.

!\' - prnh= ~.

10

(::?!1)



"1 2

\
3 4

Figure 2-3: The breaking points of IIJILX(O.. ) [unction

The portfolio selection can be formulated as the following model:

!lllll

s.t. 0< X < X + (_I_)[!.!.:ll - X ]
- I - 0 1+0 Po 0

We now anal~'ze the objective function. and in particular stud~' the breaking points

and the slope of the linear pieces im'olved. For example. all mlues after breaking points

for pieces (1 ).(2) are greater than zero. and a slopes of function are positive. On tlw

other ham!. all \'alm's before breaking points (3).(-1) are greater than zero. and slopes

of function are negatiw as illustrated in Fig.(2-3). Our objectiw function has four

max(O.·) pieces: therefore. we haw four breaking points as described abo\'('.

To analyze these breaking point s. \\'e consider the following t\\'O cases:

(1) Xo S XI S Xo + (t+o HW - Xol

(2) 0 S XI S Xo.

11



Case I: X o ::; XI ::; X o + (110)[~ - Xo]

There are four breaking points that make a slope of objective function change.

Xl = Kt - (1 + rf )(Wo + opoXo) X 2 = /{t - (1 + rf)(WO + 0poXo)

1 (1'l-(I+o)rf- o + adPo' 1 (1'l-(l+o)rf-o-aJlpo

xf = /{i - (1 + rf)(Wo + opoXo). xt = /{i- (1 + rf)(Wo + 0poXo)
(rl - (1 + o)rf - 0 + aJlpo . (1'1 - (l + o)rf - 0 - aJlpo

Case II: 0 ::; Xl::; Xo

There are four breaking points that make a slope of objective function change.

vi _ /{I' - (1 + rf )(lFo - 0poXO) ,2 ]{; - (1 + rf )(WO - 0poXO)
.'\ I - X I = ---''--------''--------

(1'1 - (1 + o)rf + 0 + al)po ' (1'1 - (1 + o)rf + 0 - aJlpo

xil = ]{I- - (1 + rf)(lFo - OpoXO). xt = /{i- (1 + rf)(Wo - opoXo)

(1'1 - (1 + o)rf + 0 + adpo (1'1 - (1 + o)rf + 0 - aJlpo

(2.11)

(2.12)

All numerators are nonnegative since /{1- ? (1 + rf )(Wo + opoXo); hence. the

worst-case regret is incurred when the lowest \'alue of the benchmark is still greater

t han a total wealth from investing a predecessor wealth plus the highest transaction

cost in risk-less asset. Figure(2-·1) shows the various regions. which are allotted by the

values of known mean of risk~' return in both cases. Therefore. we now have tIl('

optimal solutions for the situations that all slopes in objective function are greater or

less than zero. However. there are some situations in both Cfllies. when some slopes arc

~reater than zero. and some are less than zero as illustrated in ambiguous area A. and

B.

The optimal solutions:

X; = 0

W; = ~ ma;.;:(O. [\'; - (1 + rj)Wo + n(1 + rf)pn.\o)

+~ ma;.;:(O. [\'1- - (1 + rj)Wo + n(1 + rj)Pn.\o)

(2,13)

Fir~t. considN t\WI main ~\lh-conditinn~(:\.B)' tl1l'n we pro\'ide the nptin1:11

1:2



All 5 lopes <: 0

1 [Wo ]X =X +-- --X
1 0 (1 + a:-) Po 0All slopes> Cl

Xl"" X o----------+----------4-------.....

I
(l+lC}rj +a-Oi

A.ll 5 lopes <: 0

Xl = X o
All slopes> I)

XI=O
--------+----------t----------.

A.ll 5 lopes <: 0

1 [Wo ]X =X +-- --X
J 0 (1 + a::) Po 0

L jL _
L _
I------+-1====== == == === ==='--------_. r 1

C================J
~===:============~

All slopes> I)

XI=O

(l + a)rf - (Z- OJ

Figure 2-4: The optillltll ~ollltion 's regions
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solutions for the grey area in Fig.(2-4):

(a) Xo ~ XI ~ X o + (I~Q)[~ - X o], and

(l + o)rf + 0 - a] ~ 1'] ~ (1 + o)rf + a + a]

The> optimal solutions:

i. 1'1 - (1 + (} )rf - n < 0

X; = Xo

Xo if Xf < X o.

(2.14 )

v' _
,'I.I - :\3 .f X < :\:J < :\ + ( ] )[ll.'u :\ 1'] ] ,0_'1 ,'0 ~ PO -,'0·

(2.15)

ll.'u
Po

.f 'I.' ( _1_ ) [ll.'u _ " ] < v:JI ,'1.0 + ]to PO ,''1.0 - ,'1.1'

iii. '1- < 1'] - (1 + (j)rf - (j

Xo if xi < Xo.

,-I
-'I.I

llil
po

.f v \-] v (]) [ll.'u 'I.']
] • 'I. 0 ~ - ] < .'I. 0 + f+(1 1'0 -.'1. 0 •

'f ,- (] )[ll.'u V] \-1
I .'1. 0 + fj(i Po -. 'I. 0 ~ - ]'

(2.16)

Thl' optimal :-;0] 11 t ions:

x; = 0

11. () ~ 1'] - (1 + n )r., + n ~ 9

(2.17)

{\~
\

_. _ '1
. ] -

.\p

'fO . \-J \'I :::::. i < . o·

'f \' \-,I . p S . I'

11

(2.1~)



111. !!f < 1'1 - (l + 0 h + (1

{

XI
Xi:= -']

Xo

if a ::; xi < XO•

ifXo::;xi·

(2.19)

Then.we can exploit the optimal solutions from the conditions above to be

analyzed in the following condition .

• (l+o)"/-O+OI >(1+0)"/+0-0]

- (1+0)"/-0-01::;1'1<(1+0)"/+0-0]

Optimal so/" =? compare Xo,and 2(b).

- (1 + 0)"/ + 0 - 01 ::; 1'1 < (1 + 0)"/ - 0 + 01

Optimal sofT! =? compare 2(a),and 2(b).

- (1 + 0)"/ - 0 + OJ ::; 1'1 < (1 + 0)"/ + 0 + 01

Optimal so/" =? compare Xo,and 2(a) .

• (1+0)"/+0-01 >(I+o)"/-O+Oj

- (1 + 0)"/ - 0 - 01::; 1'1 < (1 + 0)"/ - 0 + 01

Optimal sol"~ =? compare Xo.and 2(b).

- (1 + 0)7'/ - 0 + 0"1::; 1'1 < (1 + 0)"/ + 0 - 0"1

Optimal so/T! is at So.

- (l + 0)7'/ + 0 - 0"1::; 1'1 < (1 + 0)"/ + 0 + 0"1

Optimal sofT! =?compare So.and 2(a).

,_. _ ,_ ...j... (_1_)[11"0 _ "]
."1.1 - ,"1.0 ' ·"1.0

1 + 0 Jlo

.• 1 [" 1'1+0"+1),\\. -\\1 = -l11ax(O. \1 -( ( o+oJlo,\o))
.1 1 + 0

1 ., 1'1-(1+1. -
-I--max(0.1\1 - ( )(\\0 + OJlO.\O))

1 1+0
1 . ._ 1'1 + IT + 1 . . .

+-l11ax(O.I\1 -( h\\o + 0]\1.\0))
.~ 1+ 0

1 . ._ 1'1 - (1 + 1 , . _
~- nwx(O. 1"1. 1 - ( I( It 0 + 0]\1.\0I)

1 1+ (1

IS



2.2.2 General case

In thi~ ~ection. we formulate the model more generally. We u~e a closed-form ~olution

to form a di~tribution-free objective function b~ed on the approach propo~ed in

([4],[12]).

max
X ~1II.a2)' {

~ [J1 - k + J(J2 + (J1 - k )2]
E[max(O. X - k)] = •

2

11 - k + k( a )
~

2 2
ifk>~

- 21'

2 2
ifk<~

21'

(2.21)

The solution give~ the optimal upper bound on the price of a European call

option with ~trike k. on a stock who~e price at maturity has a known mean J1 and

variance (J'2. However. our formulation is a minimizing problem: moreover, this

closed-form will provide a lower bound on optimal solution.ln order to formulate our

formulation, we need new definitions for a known mean and variance as follows:

Definition 2.2.1

\f1 = (1 + rf)Wo + (fl ~ rf)pOX1 - 0(1 + rf)polX1 - Xol

V[WJ] = P6X?V[rJ]

TheIl. we can exploit from a closed-form above to use in our formulation.

(2.22)

nl1n
O<cX1<-:XC ' (_1_)[~ -Xc]

- - l.!d 1"\1

The optimal solutions:

(2.23)

This ohjcctiw function. (',.;tahlislll'd by a closed-form solution. is a conwx

dilfercntiablc function as s('cn in Fig.(2-;")). Thereforc. \w differentiatc th(' ohjcctiw



ano set the slope to zero to find the global minimum of this function. \\'e distinguish

Figure 2-5: A. clwrilcteristic of an objecti"e function using <I closed-form solution

IJPtwcen the cases where XI is ~reater than or smaller than Xo. respectively.

2(f}-(1 t o)r/-o)((l+r/)(\\'o t 01'0.\0)-/\1)

(Vh] j (rl-( 1+ o)r/ -0)2)1'0

.\j=

2(f} - (I-tl)ri+tl)(( I-t-r / )(\\'o -U/'O.\O) -/\1)
- (Vh +(rl-(I-o)rrtn)2)po

(2.2·1)

Then we compare these two solutions with .:\0 to preserw the bounds. For example.

both are less than .\0. then the optimallo\\'er bound is at an extremit~· of the intef\ll.l.

The results aboY<' in Table 2.2 arc computed when we assume \\'cekl~' \'alues of

Thble 2.2: A.n optiIllilllOlI"{'r bound 011 il regret objccti\'e function ilt .\0 = 100

Benchmark 1st Sol. 2nd Sol. Regret LO\\'er Bound on X I

2001 -15.97 28.61 1.00 28.61
2003 -7.99 57.19 2.00 57.19
2005 -0.01 85.76 I 3.00 85.76
2035 119.6~ 51~.33 29.40 119.64
20~5 159.53 657.19 39.20 159.53 I
2055 199.41 I l"00.0~ I ~9.00 199.41

1'1 = O.OW1.(TI = (lOOi'. 1'f = O.OOl.n = 0.003 . :--!or('owr. an initial wealth W(1 hegins

with 820m) wlH're \n' haw an initiall1nderl~;ngstock X(1 = 100 with price I'll = SIll

Ii'



Chapter 3

The Multi-Period Models

In this chapter we first review methods to simulate the price of the underlying stock.

Then we extend the formulation developed in Chapter 2 to the case of several time

Jleriuds. and inVl'stigate how efficiently uur fonuulatiull can track a benchmark ill a

passive portfolio management setting.

3.1 Simulating the stock prices

3.1.1 The Binomial lattice model

In this section \W' review the binomial lattice model as a way to simulate stock prices

ron\'enientl~' and realisticall~·. If the price is known at the beginning of a period. the

price at t he bC!~inning of the next period can only take two possible \'alues. Usually.

the$(' two possibilit ie$ arc defined a..'i multiples of the price at the pre\'ious period. i.e ..

Illult iplied by II for an up\mrd direct ion. and b~' d for a downward direct ion. Bot h II

and d arc posit iw wit h 11 > 1. and d < 1. Hence. if the price at t he beginning of

period is S. it will lw cit her liS or liS at the next period. The probabilit ics of the$('

outcomes are pr and I-pr. respectively. for some given probabilit~· pro 0 < pr < 1. For

example. if the current price is S. there is n probabilit~· pr thnt the price at the next

time period willI1\' liS. and a probnbilit~· I-pr thnt it will he dS.

TIll' gl'neral form of such [I lat t icc is shown in Fig.l3-1). The stock price c[ln lw

\'isllalizl'd [IS Illo\'ing from node to node in [I right\\'nrd direction. At each time period.

IS



the probability of an upward. resp. downward, movement froIll any node is pr, resp.

I-pr. The set of the possible trajectories of the stock price has a lattice form since an

IIp II1m'eIllPnt followpr! by a down lllo\'('mpllt. ~'iP]ds the samp final valup for the stock

price as a down followed by an up: both produce ud times the price.

The binomial Illodel Illay appear overly simple because it allows only two possible

values at the next period. But if the period length i" small, many values are possible

after several short steps.

s

Figure 3-1: The binomillllllttice stock model

To specif~' the model complet ely. we must now select numerical \'alues for 1/ and d

and the probabilit~, pro \Ve note that the price can neYer become negative (the value

at tl1(' next time period 1wing 1/5 or dS. with 1/ > O. d > 0). It is therefore possible to

l"\lIIsider the logarit hIlI of the st ock price. Consequent l~'. we define II as the expected

inten'al growth rate a.s follows:

wlH'rp So is t hc init ial l1nr!prl~'ing stock price. and ST is the price at t hr pnd of a

Sjwciflc int Nval.

Silllilarl~·. \'11' dcflnc IT as tIll' intervnl standnrd dc\'iation ns follo\\'s:

1!1



If a period length of ~ t is chosen, which is small enough compared to the entire

interval, it is well known that the parameters of the binomial lattice can be selected as

follows:

(3.1 )

I -(1~( = f?

With this choice. the binomial model will closely match the value of v and 0:

therefore. the expected growth rate of In S in the binomial lattice will be nearly v. and

the variance of that rate will be nearly 0 2 , TIl(' doselj('ss of til(' lIlal eh illlPfOVl'S if ~ t

is made smaller(~t-; 0). For further details. see [1],[13].

3.1.2 The scenario tree model

In decision-making under uncertaint~·. we cannot completel~' observe the uncertainty

(stock returns) when we make om decisions (an amount of stock in each period XI):

we Clln only observe the ret urns that have alread~' taken place. Stochast ic

programming incorporates the fact that our decisions arc non-anticipative of future

outcomes. According to two possible mlues of the risky returns of stock (generated b~'

the prices from binomial model). we a..'isume t ha t. over the N decision periods. 2'\'

possible scenarios may occur. These scenarios arc represented b~' a symmetric tree. To

build a tree of scenarios that allows the decision-maker to lIse past outcomes. i.e .. for

which there is only one wa~' to reach an~' node. \\'e transform the binomial IattiC('

model into a scenario tree as shown in Figure 3-2. The a(h'antage of t he scenario tree

owr the binomial lattice model is that each scenario in scenarios tree corresponds to a

traceable sample p[lth (se(' Figure 3-3).

Figure 3-3 [liso [llIows us to illustrate non-anticip[lti\'it~·, For instance. if we

consider bot h :\ [lnd B in Fig.3-3. \\'(' not e that t he~' use the S:111W P:1t h between nodl'

nand nodl' 1. Consequent I~'. all p:1ranwters :111<1 decision variahle." m:1de for those

nodes in time periods n :111<1 1 must he id£'ntic:11. Similarl~'. if we assunl<' three decision

pNiods as shown in Fig.(3-3). th£' decision \'ari:1hlcs at tinl<' Iwriods nand 1 willlw

id£'ntical for til(' fnur s('('n:1rios in the lIppl'r part of th£' tn'e.
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Figure 3-2: The transformElt iOIl bet \I"een binomial la t t ice model and trec of scenarios

for three periods

Figure 3-3: The tmccalll£' s;lmpl£' patlls

"21



3.2 Multi-Period Formulations

We no\\' extend the formulations developed in Chapter 2 to the multi-period setting.

We will consider models with one underlying risky asset (stock). one risk-less asset

(bond or cash). one benchmark index (e.g.,S&P500 index). We do not allow short

sales. \\'e use the following notations:

Notations:

• Wi' the wealth at the beginning of period I. in scenario s.

• H'r' the wealth after a transaction cost incurred dUling period t in scenario s.

• \F!'f 1 the wealth at the end of period 1.+1 In scenal/o s.

• Wo the initial wealth.

• Xi' the nUlIIl)er of shares af stock invested during period I. in scenaria .~.

• X;'t 1 the number of shares of underlying stock Invested during period t+1. and

decided at the end of period t in scenario s.

• X o the initial af shares af underlying stack.

• Br the amount af ('ash or bond befare a transartion ('ost in('urred during period t

111 scenano s.

• Bi' the a11l01J7Jt of cash ar bond after a transadion cast paid during period t in

,,(enana s.

• l3;', 1 the amount of ('(1sh or bond In the portfolio during penod t+1 In s('enano s.

• p; the unit pnee of underlying stod- dU1'1ng period t In s('enano .~.

• p; j 1 thr unit pn('e of lInderlying stock durln.q pcriod t+ 1 17) s('cnarlo s.

• 7-;', 1 thc rdulIl of the underlying .-Iork dll7-Ing ]lrrlod I in .~('(7Jl1rlo s.

• rf Ihr 7'I.-klc.-.- 1,lurn of bond (11' Inla·(.-I ralc of ro.-h.

• <l Ihr Imil.-odlnn ro.-I forlo,.



• 1\, the benchmark during period t.

• Zt the decision variable modeling regret during period t in scenario s.

• n·' the probability of scenario s

Lemma 3.2.1 We have the following relations:

11··'n·· . 'I ., = Wi' - op; X;" 1 - X;'I

. \;It. s (3.2)

= (1 + r;'t 1 )p;'X;', 1 + (1 + rf)B;'

= (1 + 1';"1 )P;X;"1 + (1 + rf)(W;' - P;X;"1 - np;\X;'t 1 - X;'I)

= (1 + rf)ll",-' + (r;', 1 - rf)p,'X;"1 - 0(1 + rf )p;'IX;', 1 - X;'I

TIl(' planning horizon has T time periods. which giws IlS S = 2'1' possible scenarios.

Scenarios and nodes on the graph are defined in decreasing order on the graph. Hence.

if s = S. then a sample path leading to this scenario obserws only downward

mO\'emcnts in t he stock price. \Vith t he scenarios defined here. we assign probabilities

to each scenario as follows:

(3.3)

where we define pr. resp. I-pr. as the up, resp. down. probabilit~·. N is the number of

downward mo\'en1('nt s on t he sample pat h.

Due to the non-anticipat i\'it~· of decisions. Xi' will be ident ical for all scenarios s

that cannot he dist ingllished from each ot her (a.-- t he~' haw t he same historical

realizations) at tinl(' t. For example, "'ith T = 3.5 = 2:1 = 8:

t=O

t = 1

t = :,

(3.1 )



For more details how to formulate a stochastic model. see [5].

3.2.1 The multi-period active management model

TlJe active portfolio lllauagemeut problem maximizes hual expected wealth. It is

straightforward to formulate this problem as:

max

s.t.

T S

.!.- ,'" q"I\'"
T~L" t

t=I.,=1

Wi' - p; X;\] - (lp;IX/,,] - X/,I 2 O. t = O.... T - L \is

Wi" 1 = (1 + r f) Wi' + (r~, 1 - r f )p; X;" 1 - Q (1 + rf )p;\.X;', 1 - Xn t = O.... T - 1. \is

t = 0 >-----+ W(: = \\'5 = .. = .. = W(T-1 = \F6" = Wo

t = 0 >-----+ X(\ = X(~ = ., = .. = X~-I = xg = X o

t = 1 \'] - \' ~. \" ~ j 1 - - \' S,--. • \ ] - .\] •• \ 1 - ., - A 1

t = T - 1 \
'1 \,'J \,.'1-1 \,S

. T-I =. '1'-1:":' T-I = '\'/'-1

(3.5)

\lote that Problcm (3.5) can be rewritten as a linear programming problem by

transforming the ronst raint:

'\., '\" 'I \', \"1I i-pi· ;, 1 2 (\ pi "'\;, 1 - • ;

for all t and s into a set of two ('quat ions:

and

(3.6)

(3.7)

(3.8)



3.2.2 The multi-period passive management model

The goal here is to minimize the average final regret. The passive management model

can be formally formulated (l.'; follows:

mlIl

s.t.

1 ,,1' "S n,z,
T L...t=! L...s=! H t

T 1 vI,·') vS-! vSt = - t-----+., T - 1 = /1. T- I : .. : .. 'I. T _! = ..'I. T - !

Xl' ~ O. Vt.s

Zt ~ O. Vt ? 1. Vs

Zt ~ ]\'t - Wi'- Vt ~ 1. 'is

(3.9)

Again. Problem (3.9) can hc re\\Titten as a linear programming problem.

3.3 The nUl11erical experhllents

In section 3.2. \\"(' haw shown how to extend thc models on'r sc\'eral periods. To

examine the results of our formulations in practical situations. th('11. we turn to

computational examples. where we use historical stock d<lta publicly ll\'aibble at

http://ftlJ (JIJCC. !I(J/100. rom and http://lI'WllI.i71di(c.~.st(J71d(Jrd(J71dpoor8.C071l. This dat a set

consists of \w,pkl~' stock pricc OhSCf\'<ltions O\'Cf a pf'riod of ahout two ~'('ars of a nwjnr

stock illlh'x. sa\'. the Ss':P.'iO[) and its top fiw ('olllpOlH'nb. Therl'fo[('. wc ('olket

historicnl data of tl1(\"c stocks from .lamwry. 2001 to Deccmber. 200.5. In terms of

\\'('ckl~' ohser\'ations. thp dat<l sct co\'Crs 10;) ppriods. TIl(' details of the top fi\'('

SkP50lrs cnmponents are pro\'idcd in Tnble 3,1. "'it h this dat a in hand. \W' can

nm\' inn'."t igat c t Ill' p('rformanc('~ of hot h proposed act in' and passin' models. \\'e

cnnsidcr tIw following 11\1l11erical \'alue~: init inl wenlt h H 'n = 20000. anmwl risk-le,".s



Table 3.1: Tlw top five ("OlIJ]JoIlelJts of S&P[j(j(j iIldex

Company Index Weight Initial Price($)
Exxon :Mobil Corp. 3.32 38

General Electric 3.1 29
Citigroup Inc. 2.12 34

Bank of America Corp. 1.96 36
r-.1icrosoft Corp. 1.73 24

retum 1'f = 0.06. and a transaction cost factor (} = 0.003. Each stock ha.'i a distinct

probability distribution. We compute for each the two-year expected return or

expected growth rate and standard deviation corresponding to this data set.

respectively, by using the binomial lattice model as shown in Table 3,2.

Table 3.2: T1JC probllbilistic data of stocks

We thell

Stock Data 2 Years Expected Return(%) 2 Years Std Dev(o/t)
S&.:P500 23.46 7.17
Ex..'wn 36.79 27.95

GE 16.90 18.54
Citi 39.65 31.75

Bank of America 23.55 17.86
i\licrosoft 7.51 23.70

!!,eneratc a scenario tree for each set of five underlying stock data over eight periods

(weeks). We include S&:P500 later for the experiments about pfi.'isive portfolio

management. This procedure ~'ields 28 = 256 scenarios in t he tree. Se\'Cral numerical

experiment s arc performed fi.'i described in the following pages.

3.3.1 The numerical results from the active management model

First series of experiments

111 t he first set of eXlwriment s. we compare t he results of t he act iw port folio opt imized

o\'Cr ~ \web (256 scenflrios) using Formulation (3.5). Initiall~·. tIl(' portfolio starts

wit h fill port folio weight ill under1~'ing stock. \Ye provide t he following results: (1) tIll'

nptinl:l1 final wealth (\\'s) (2) the optimal stock \\'eight (3) eXlwcted gro\\·th mte OYl'r 8

\H'eb as shown in Table 3.:3. These problems are sohTd b~' using the XPress software

and [xcd ~)n a PC. It appears that we \\'ould ma.:ximiZl' our expected return o\'Cr eight



Table 3.3: The re:omIts of the multi-period active model

Stock Data Wealth($) Risky Security \Veight(%) Expected Growth Rate(%)
Exxon 21375 54.26 6.65

GE 20833 52.92 4.08
Citi 21573 54.03 7.57

Bank of America 20834 54.26 4.08
Microsoft 21033 50.99 5.04

weeks by investing into Ci tib'TOUP Inc. However, to protect against risk, we should not

invest solely' in that company's stock: instead, our results indicate our portfolio should

hold about tifty percent of risky asset.

Second series of experiments

In the second series of experiments we investigate how efficiently' those results can be

exploited on the real data (Jan, 2004 to Dec. 2005). \\'e make our investment

according to the optimal weight and keep it constant over 105 periods (2 years) using

tIll' relations in Lemma (3.2.1). For example. we use the add-in Saker in Excel to

adjust t he weight of stock investment in our portfolio to be const ant each week. \Ve

now sec the drawback of using the ideal optimal active management strategy with a

!ix('d allocat iOIl ruk when the (Iat a COIl1(\-; to be realized. The illit ial port folio st art s

with weight according to the optimal strategy. Each weekl~' risky' return is realized on

this real weekly' data. We provide the follO\\"ing results: (1) two ~'ears expected growth

rate (2) two year standard deviation.

Table 3.4: The results of optimal strategy based OIl the rral datil

Stock Data Expected Growth Ratc(1r) Std Dev(l7r)
Exxon 24.36 15.17

GE 14.11 9.83
Citi 25.55 17.13

Bank of Amcrica 17.82 9.70
~[icrosoft 8.93 12.02

Third series of experiments

In IIH' t hird ~l'Til'S of cxperimcllts wc Il)ok al Ihe dkcts 011 t hc opt illlal we'llt hand

c:qwct I'd ~rowt h ratl' of \";1rying tIll' P:1[:111Wt rr~. Tlll\~. Wl' \'ar~' (1) a \n'ight or j1Nccnt



of risky security invested in the initial portfolio wealth Wo (2) a transaction cost

factor (3) a risk-less return. We only vary one parameter at a time. These procedures

are performed with the binomial lattice and scenarios tree over eight weeks as in the

first series of experiments. The effects of changing the initial stock weight are shown in

Table 3.5: The effects of varying the initial stock weight

Initial Stock Weight in portfolio(%) Wealth($) Expected Growth Rate(%)
(Exxon)

0 21356 6.56
25 21362 6.59
50 21366 6.61
75 21370 6.63
100 21375 6.65

(GE)
0 20819 .,1.01
25 20822 .,1.03
50 20825 4.0.,1
75 20829 .,1.06
100 20831 .,1.07

(Citi)
0 2155.,1 7..,18

25 21558 7.50
50 21563 7.52
75 21567 7.5.,1
100 21572 7.57

(Bank of America)
0 20817 .,1.00
')- 20822 .,1.03_:J

50 20826 .,1.05
75 20831 .,1.07
100 20835 .,1.09

(I\ licrosoft )
0 21027 5.01

.)- 21029 .).02_:)

50 21030 5.02
/.) 21031 5.03

100 21032 5.03

Tabll' ~.5. \Yl' notl' that change~ in both the optimal wealth and expected growth are

nnt ~igllificallt. \\"e note from Table 3.t1 that the optimal wcnlth and t1w expected

P",]\\"t h rat (' tend to dc([eat'l' ~igllificantI~" \\'hen the t ran~nct ilm co~t fact ,lr v,Hies. but.



Table 3.6: The effects of a change ill tIl(' t.raw,actioll ('(1st fa('(or

Transaction Cost Factor(o) \Vealth($) Expected Growth Rate(%)
(Exxon)

0.0000 21510 7.28
0.0030 21375 6.65
0.0045 21309 6.34
0.0060 21242 6.03
0.0075 21176 5.71
(GE)
0.0000 20966 4.72
0.0030 20831 4.07
0.0045 20764 3.75
0.0060 20698 3.43
0.0075 20631 3.11
(Citi)
0.0000 21709 8.20
0.0030 21572 7.57
0.0045 21505 7.25
0.0060 21437 6.94
0.0075 21369 6.62

(Bank of America)
0.0000 20966 4.72
0.0030 20835 4.09
0.0045 20770 3.78
0.0060 20706 3.47
0.0075 20641 3.16

(t\1icrosoft)
0.0000 21174 5.70
0.0030 21032 5.03
0.0045 20962 4.70
0.0060 20892 4.36
0.0075 20823 4.03

as indicat cd in TahlC' 3. i. t he opt imal stock "'eight docs not changC' much.

finall~·. Table 3.8 shO\\·s t hC' impact of a change in t hC' risk-IC'ss rC't urn. ThC'

optimal wC'alth and eXjwctC'd growth ratC' slightly change in thC' same direction a.s the

risk-kss rC'turn. HowC'\"C'r. the range of changC' is narrow: thC'reforc. the e!Teets arc quite

small.



Table 3.7: Tile optimal stock(Exxon) weight in portfolio when a transaction cost factor
changing

Transaction cost factor( Q)
(Ex.xon)Optimal Stock \Veight( ()

Table 3.8: The effects of changing the risk-less return

Annual risk-less return(rf) Wealth($) Expected Growth Rate(%)
(Exxon)

0.01 21335 6A6
0.06 21375 6.65
0.09 21400 6.76

(GE)
0.01 20790 3.88
0.06 20831 4.07
0.09 20856 4.19

(Citi)
0.01 21531 7.28
0.06 21572 7.57
0.09 21597 7.68

(Bank of America)
0.01 20797 3.90
0.06 20835 4.09
0.09 20859 4.20

(1\ licrosoft)
0.01 20988 4.82
0.06 21032 5.03
0.09 21059 5.16

3.3.2 The numerical results from the passive management model

First series of experiments

In this scct ion. \w usc the nmlt i-pcriod pa:-;siw management model to compute the

nllnl(~rical results a:-; follows. \Yc usc thc SS-:P500 index as bcnchmark. First of all. \\'('

generat e the SkP500's returns for cight w('('ks using its probabilist ic dat a a.."i shO\\"l1 in

Table 3.2. Fnrt hermorc. we ll."iSllmc t hat we in\"C.st a II port folio in t his index for eight

w('f'ks a.s ShO\\"I1 in Table 3.9. linfortllnately. wc cannot hold all of th(' stocks that

makc up the S,\- P500 index and so perfect I~' reproduce it (filII replicat ion). For this

reason. the t (1P flw st ocks in S,\- P500 are c!wsen to t rack a benchmark To int roducr

the numerical experiments. we first a.ssul11e the initial wealth n-(1 = 20000. annual

30



Table 3.9: The S&P500 index portfolio for 8 weeks(Wo = 820000)

Week Wealth($) Return
1 20121 0.0060
2 20286 0.0082
3 20337 0.0025
4 20393 0.0028
5 20162 -0.0113
6 20161 0.0000
7 20448 0.0142
8 20473 0.0012

risk-less return rf = (L06. and a transaction cost factor 0 = 0.003.

III the first set of l'xperiments, we compare the results of tl1(' passive portfolio

opt imized over 8 wceks(256 scenarios) using our forrnulation(3.9). The initial portfolio

st arts with all portfolio weight in risk-less security. These result s are given (1) the

optimal regrl't (2) the optimal stock weight as shown in Table 3.10. These optimizcd

problems arc solved by using X-press softwarc and Excel on a PC.

Table 3.10: The results of multi-period passive model

In the

Stock Data Regret(S) Risky Security Weight(%)
Ex.xon 12.49 9.48

GE 18.62 15.88
Citi 12.84 8.04

Bank of America 17.31 16.49
1\1icrosoft 18.51 11.74

conclusions. thc regret is sml111 for each stock models compared to the total

"'calt h(0.06<;\ - 0.09<':~ of the \\'ealt h). TIll' ill\'cstor should hold t lw undcrlying stock

a bOl1t 1O<':;-2()lj( of his port folio weight. As in the nmlti-period acti\'(' model. the

invcstor shol1ld hold thc l1nderlying stock for abol1t 50S~· of his port folio weight. Figure

(3-1) shows t he tat al wcalt h of halding undC'rlying st ock (Ex..'Xon) wit h a benchmark

indcx(S,\:-P500). Our passin' portfolio cm\'(' try to kccp the line abo\'(' its bcnchmark.

Therdarc. the regrct will be minimizcd. The regret-awrs(' inn'stor nw~' l1se this t~'pe

of model.

Second series of experiments

In the st'Cond scric$ of ('xpcrimt'nb. wc h[lvC extend('r1 the rcsl1lts to anc-hl1ndn'd and
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Figure 3-4: The total \\'ealtlJ of Ex..xon "S S&P500 benchmark over 8 \\'eeks

five weeks using t he real dat a, As in the act iw model experiment. we keep the

constant opt imal stock weight in our port folio. In this experiment. we choose the

Exxon stock a..'; an underl~'ing stock. since its optimal regret is the lo\\'est of all stocks.

The initial portfolio starts with weight according to the optimal strategy. Each weekly

risky return is realized on this real weekly data.

The optimal regret = 8·17.61

:--';umber of wceks that pEllisive portfolio under S&P500 curve = 16 weeks

:'-i umber of ,\"('eks t hat passive port folio above S&P500 cUfl'e = S9 weeks

The pcrccnt age of time periods that pa.<;si,·e portfolio under SkP500 cur\"e = 1.5,2·11/(

The \wrc('ntage of time periods that passi,'(' portfolio abO\·c SkP500 curve = S·1.7Gj~

TIll' r('sults h;1\'e explicitly shown that our n11llti-period passive model can trnck(or

replicat (') till' bcnchmark ('flkientl~·. ~lorcover. t h(' modd try to adjust its cur\"(' to be

aho\'(' the benchmark. and can t rack a t rend line of the benchmark as well.
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Chapter 4

The index-tracking models

In t his chapter we consider the problem of constructing the index-t racking portfolio

out of a large universe of stocks. This universe can be an index such a~ S&P500. In

order to choose a portfolio that closel~' tracks the return on a benchmark. we must

first decide how to measure the performance of a tracking portfolio. This is a kind of

pa~si\'e portfolio management. \\'e formulate the mathematical model. and then turn

our att ention to analyze the numerical results.

4.1 The tracking error 1110dels

We first quantify the degree of which the return 011 the index-tracking portfolio differs

from t IH' ret urn on a benchmark. i.e .. a measure of tracking error. Tracking error is

mea.sured using historical data. because the future return paths of the index-tracking

port folio and its benchmark are unknown. Some common measures of t racking error

are gi\'Cn in ([2].[7].[9].[10].[15]. [17].[18]).

TIll' in\'Cst or allocat es his Iher wealt h among 11 underlying risk~' securitif'S which

are component s of the IWllchmark index. This allocat ion is done at the l)('ginning of

in\'(~stn1£'nt. and the prnport ion of the \\'ealt h in\'C,'ited in each stock is const ant

throughout a II t Ill' periods. ~loreO\w. there is no short-selling allowed. \\'(' consider

t,,'o mathematical fornmlations of tracking ('[ror: (1) tIlt' mean ahsolute deviations (2)

the mean absnll1te dC\\nlSide deviations as in ([7].[9].[11].[17].[18]). \\'e introduCt, the
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notations as follows:

Notations:

• It the observed rctUr1l of the benchmark at period t.

• r~ the observed retUr1l of underlying stock i at period t.

• x, the proportion of the wealth invested In stock i.

The tracking error based on the mean absolute deviation can be expressed as:

1 T 11

TE.\fAD = TI: II: 1';,[, - It!.
1=1 1=1

The t racking error ba.sed on t he mean absolute downside deviations can be expressed

a.'i:
1 T 11

TE.\f..\[)[) = TI: Imin(O. I: r;.T, - It)l·
t=1 ,=1

(.1.2 )

In t he first approach (~lAD model). we consider t Ill' deviations bet ween the tot al

return of underlying stock portfolio and t he return on the benchmark. On the at her

hand. in the second approach (i\lADD model). we consider the deviations bet\w'en the

total return of underlying stock portfolio and the return on the benchmark when the~'

mow in till' downside direction (the benchmark return is greater than the total

return).

As mentioned in Chapter 1. a portfolio that tracks the benchmark perfectly can

be obtained b~' the strateg~' of full replication. Trading a tracking portfolio with such

a large number of different positions leads to high trans<lction costs. As <l result. it IS

de.'iirable to form a good t racking port folio wit h a.'i few stocks as possible.

4.1.1 The mean absolute deviations model

To fornmlate the mode!' suppose that we ,,'ant to track the index with k out of 71

stoch. Therefore. \\'t.' can formulate this problem of minimizing tracking error while

H',"tricting til(' I11lmber of a.""ets. The mean absolute deviations modd can lw forl11all~'



formulated <L'i follows:

1 T 11

nun T L IL r;x, - It!
1=1 1=1

11

.';. t .

where

L l1J(x,l = k .
1=1

11

LI, = l.
1=1

J:, 2 °

{
o

11J(.r,)= 1

,Vi

if J', = 0

otherwise

(4.3)

This ('all 1)(' rl'forllllllat('d a.'i a mixed-ill!eger modd usiu).!, binary \'ariabks for the 111

funct ion.

4.1.2 The mean absolute downside deviations model

Similarl~', the mean absolute downside de\'iations model can be formulated a.s follows:

min

·~.t .

11

L 11' (.r, l = k.
1=1

"

,=1

(\..1)

.r, 2: n \-J'
• \ 1

if .r, = ()



[9] nutes that this problem can be reformulated by using the relation:

Imin(O. a)1 = ~ lal - ~a (4.5)

for any real number a. Hence. we can introduce the additional constraints to Eq.(4A)

b~' using the auxiliary variables b/. b;. The new model can be formulated as follows:

\\' here

{

o
~/(.r,) = 1

2.:;'=1 I, = 1.
"\"""Tl 1 I

I t -b- = L...,-lr,I,- , \-It
)1 t :1' v

b; . bt ~ O. Vt

.1', ~ O. Vi.

if .1', = 0

otherwise

(·1.6)

4.2 The current Inethods

Suppose that wc want to construct an indcx-tracking portfolio using ·10 stocks out of

500 componcnt stocks of S&P500. Onc nla~' take Ihe ,10 largest stocks in this indcx

and minimize 1he t racking error using these stocks. Howeyer. t his is not nccessaril~'

the best (optimal) solution. Another approach would be to sol\'(, this problem b~'

choosing ·Hl stocks CHit of .')00 stocks to minimize the tracking error. It is \'Cr~' difficult

to solw this problem. I3emuse of the time inyol\'Cd. enumcrate all the possibilities to

flnd the combinat ion of st ocks that minimiz('s the tracking ('rror is not achi('\'abl('

whcn \\'{' haw to choos(' some stocks out of a large \lni\'(~rse. Tlw ClHII1lCration-based

approach is onl.\' pract ical for \'er~' small or wry largt' k or for wry small n. since t11('

11111nlwr of \\'a~'s to choose k stocks out of 11 stocks is:

(
11) 11!
f.; = f.;!(11 - f.;)!

(I. 7)



For example, there are 1059 ways to form a 40 stock subset out of a given 500 stocks.

:\owadays. we can take several steps to find the optimal solutions. Suppose that we

want to construct an index-tracking portfolio using 10 stocks out of 500 component

stocks of S&P500. First. we choose the 60 largest stocks out of S&P500 and minimize

the tracking error using these stocks. Second, choose 40 stocks out of 60 stocks that

give the minimal tracking error. and minimize the tracking error using these stocks.

Third. choose 30 stocks out of 40 stocks that give the minimal tracking error, and

minimize the tracking error using these stocks. Then, perform this procedure until we

achieve to the desired 10 stock portfolio.

4.3 The numerical experiments

In this section. we perform two series of numerical experiments to illustrate our

index-tracking models using minimized tracking error approach. The main goal is to

t rack or replicate the benchmark index using a small desired portfolio. We make these

computations using the underlying stock price data made publicly .wailable at

hIIp://fin once. ,!/ahoo. com and http://lI'lI'lL'. indices. standanlandpoors. com ru; in Chapter

:3. All computations arc performed on a \Vindow-PC using X-press solver and Excel.

First series of experiments

In the first series of experiments we formulate the mean absolute deviations and the

mf'an absolute downside deviations portfolios. \Ve have to decide the fixed proportion

of our wealth on each stock that optimizes the tracking error. Thus. we choose til(' 60

largest stocks out of SkP500 index to be the stock uni\'('rse of our problem. Theil. \\'e

rcln.'x the limit number of stocks in the portfolio constraint. and optimize the models

using these stock data O\'er 50 weeks from .1anuar~·. 01 to :\O\·ember. 01. Hence. the

rf'sults haw shown til(' optimal I1llml)f'r of stocks held in portfolio. and the optimal

tracking error as in Table .1.1. \Ye fornmlatt' the models repeatedly. and limit the

IHlmbcr of t he stocks ll\-ailable as t hc 50,.10.30.:!0.1 0.5.3.2.1 largest S& P500 stocks. In

:-1 ADD model. we can track S& PSOO indf'x cflicif'nt I~' using the ;')0 \\'ceks hist orical

return data of theW la.rgc,..;t stocks in S,\,P500. since the tracking error arc 11f'arl~' zero
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Table 4.1: The MAD and l\1ADD index-tracking portfolios using the desired largest
stock universe o\'er 50 weeks

#Stock Universe l\IAD MADD
#Stock in Portfolio TE #Stock in Portfolio TE

60 40 0.000426 13 0.000000
50 33 0.000676 24 0.000000
40 27 0.000931 21 0.000000
30 22 0.001572 21 0.000203
20 18 0.002563 12 0.001754
10 10 0.003605 9 0.002375
5 C) 0.006024 5 0.003663
3 3 0.008623 3 0.005773
2 2 0.009124 2 0.006245
1 1 0.013112 1 0.009768

and the optimal ml1l1lwr of stocks held in portfolio is 21 stocks. In both l\lAD and

MADD model. if we reduce the size of the stock universe to be chosen to form our

index-tracking portfolio. the tracking error will increase.

~ow. we achieve the optimal weight or proportion of our wealth on each stock.

which is optimized based on the fact that we have known all information about the

returns on stocks for 50 weeks. To extend these results to the future use. we assume

the future ret urns of S&:P500 index and its components for 55 weeks using the data

from December. 0·1 to December. 05. Thus. we measure how efficientl~' the current

optimal stock weight can be used to form t he new index-tracking model as in Table ·1.2.

Figures (·1-1) and (-1-2) show til(' index-tracking portfolios using till' 30 largest

stocks and their benchmark over 55 weeks. Comparing the characteristics of both

l\IAD and l\IADD models is explicitl~' shown that our l\IADD index-tracking model

has higher deviat ion errors from it s benchmark "'hen t he index-tracking ret urns are

greater than t he benchmark. However. this has lower deviat ion errors from its

benchmark in Fig. (-1-2) when the index-t racking ret urns are less than the benchmark.

Second series of experiment.s

In the s('cond sNies of experinll'nts \w formulat e till' index-t racking model using the

mean absolute de\'iations as a t racking error. and adopt the current met hod in sect ion

1.:2 to soln' the problem. The current procednre is to sort til(' stock weights in the



Table 4.2: The MAD and MADD index-tracking portfolios using the desired largest
stock universe over 55 weeks

#Stock Universe t\lAD tracking error MADD tracking error
60 0.003122 0.001268
50 0.002820 0.001268
40 0.004457 0.001337
30 0.004704 0.001807
20 0.004340 0.002167
10 0.005451 0.002186
5 0.006428 0.002887
3 0.009355 0.004288
2 0.008479 0.005693
1 0.022601 0.010285

Table 4.3: The MAD index-trilcking portJolio using sorting approach O\'eT 50 weeks

#Stock Universe #Stock in Portfolio Tracking Error
MAD MAD(SORTED) MAD f\lAD(SORTED)

60 40 40 0.000426 0.000426
50 33 40 0.000676 0.000426
40 27 40 0.000931 0.000426
30 22 29 0.001572 0.000532
20 18 20 0.002563 0.000816
10 10 10 0.003605 0.002361
:) 5 5 0.006024 0.004628
3 3 3 0.008623 0.006712
2 2 2 0.009124 0.009054
1 1 1 0.013112 0.012142

portfolio in desccnding order. After\\"ards. \\"c choose a smaller stock universe that \\"ill

be amilable to canst met the new indcx-tracking portfolio. and optimizcd t hc model to

find the ncxt opt imal 5t ock wcight. To achicvc t he desired port folio size. we repeat the

procedure unt il the result is sat isfied. but we reduce t he stock uniwrse in cach st ep.

The tracking errors in sorting approach arc smaller than t he former approach in

t he first seric.~ of cqwrimcnts a.~ shown in Table -1.:~. Furt her111ore. we anal~'ze the

optimal stock \n'ight results \\'ith the next 55 \\"eeks as in Table .1..\ and Fig.(·\-31. In

conclusion. we obtain more efficient performance to track the benchmark using sorting

the stock \wight approach.



Table 4.4: The MAD index-tracking portfolio using sorting approac1J over 55 weeks

#Stock Universe Tracking Error
60 0.003122
50 0.003122
40 0.003122
30 0.003253
20 0.003589
10 0.005295
5 0.007232
3 0.008876
2 0.009914
1 0.016554
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Chapter 5

Conclusions

We have st ullied act ive. passive and mixed portfolio management models for two-stage

and multi-period models. using mean average deviation and mean average downside

deviat ion measures. Fut life work includes testing the models on larger problem sizes.

with more risk~' assets allowed in the portfolio.
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