
Lehigh University
Lehigh Preserve

Theses and Dissertations

1991

A diagnostic expert system for recipe book
generating system
Shahida Mahmood Parvez
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Parvez, Shahida Mahmood, "A diagnostic expert system for recipe book generating system" (1991). Theses and Dissertations. Paper 10.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228643747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/10?utm_source=preserve.lehigh.edu%2Fetd%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Parvez~ Shahida Me

1f········~····1r·····l· E···· A> D'··'· C t··· Cj: i Lt:,:\ DlsgpnHOStJC

Expert System For

cip k
~ t la

S··· t~ n r '. In9 ':; ;

D T : J nu ry 1 2

A DIAGNOSTIC EXPERT SYSTEM

FOR RECIPE BOOK GENERATING SYSTEM

by

Shahida Mahmood Parvez

'\

\

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

In

Computer Science

Lehigh University

1991

ABSTRACT

CONTENTS

. 1

2. INTRODUCTION 3

2.1 KEY TERMS: 3

2.2 EXPERT SYSTEM OVERVIEW: 4

3 . LANGUAGE OVERVIEW: 5

3.1 DATA OBJECTS: 5

3.2 FACT: 7

3.3

3.4

GOAL:

RULE:

.

at"'. • • • • • • • • • • • •

8

9

3.5 TURBO PROLOG@ : · 10

4. PROBLEM DESCRIPTION: · 15

4.1 PROBLEM TYPES: . · 16

5 . PROGRAM DESCRIPTION: · 18

5.1

5.2

PURPOSE:

INPUT: ..

.

.

111

.

.

18

18

5.3

5.4

OUTPUT: . .

LANGUAGE:

.

.

19

19

5.5

5.6

MACHINE IMPLEMENTATION: .

KNOWLEDGE REPRESENTATION:

.

.

19

19

5.7 INFERENCE ENGINE: 22

5.8 SUMMARY: 28

5.9 MANAGEMENT OF UNCERTAINTY: 29

5.10 SAMPLE SESSION: 29

CONCLUSION

REFERENCES .

VITA

·

·

·

IV

33

34

35

ABSTRACT

In a manufacturing plant, recipe books accompany the product through the

manufacturing process. These books contain step by step instructions on how to

manufacture the product and are used by manufacturing shop operators to perform

operations on the product. The recipe books provided to the shop operators have to

be up-to-date and accurate to manufacture a quality and reliable product.

Otherwise, scrap will be generated instead of a quality product.

In order to insure the accuracy of recipe books provided to the operators, a software

package was developed to generate these books from an online system at a

semiconductor manufacturing plant. The online system which consists of many

pieces of hardware and software, contains up-to-date engineering instructions for

each product manufactured at that plant. This software package along with some

other hardware and software components is the recipe book generating system that

is used to generate recipe books for products that are in their raw state and are

ready to be run through the processing cycle. Whenever this system does not

function properly, either no product is produced or scrap is generated. Therefore it

is very important that problems be resolved immediately so that up-to-date and

accurate recipe books can be generated.

The purpose of this project was to develop an eXlJert system that would diagnose the

problem when recipe book generating software did not function properly and

provide recommendations to resolve the problem. The system questions the user for

1

symptoms of the problem being experienced and determines cause of the problem

by evaluating the user responses to these questions. The final output is an

explanation of what is causing the problem and corrective measures that need to be

taken to resolve it.

2. INTRODUCTION

The objective of this project was to design and implement an expert system that

would diagnose problems associated with the malfunctioning of the recipe book

generating system. This goal was accomplished by embedding the knowledge of the

developer of the software package, which is the major component of this system,

into an expert system.

Discussed below are key terms that are referenced frequently in this document and

an overview of expert systems.

2.1 KEYTERMS:

The following terms are referenced in this document several times and are defined

to help the reader understand this paper thoroughly.

• Front End Processor:

This term is used for any computer that is connected to another computer which

contains a database. When users login to the front end processor, it seems to

them that database resides on that computer.

• Database machine:

Any computer that contains a database. In the context of this paper, Database

machine refers to a computer designed and used for database management only.

The database machine is transparent to the users because they logon to the front

end processor which interacts with the database machine to manipulate data

requests.

• Recipe book

These are books containing step by step instruction for manufacturing a given

product in a factory or manufacturing plant.

• Shop Operator:

A person designated to perform operations on the product as indicated by the

recipe book in the manufacturing plant.

2.2 EXPERT SYSTEM OVERVIEW:

An expert systems is a computer system that uses highly specialized knowledge to

solve problems at the level of a human expert. In other words, it is a computer

system that emulates the decision making ability of an human expert. An expert

system basically is composed of the following two parts:

2.2.1 KNOWLEDGE BASE: The Knowledge Base contains facts and knowledge

about a specific domain extracted from a human expert. The knowledge can be

represented in the knowledge base in several ways such as: frames, network, rules

and logical predicates. However, in most of the Expert Systems developed today,

knowledge is represented in the knowledge base in the form of rules.

2.2.2 INFERENCE ENGINE: The inference engine manipulates the knowledge

contained in the knowledge base to resolve problems posed by the user. It uses the

facts and rules embedded in the knowledge base to draw conclusions.

3. LANGUAGE OVERVIEW:

This section gives a brief overview of the Prolog language and Turbo Prolog, the

language used to implement this project. It also highlights the commands and

features of Turbo Prolog used to implement some of the most important aspects of

this project.

Prolog comes from the term Programming in Logic. It is a programming language

that uses pattern matching, tree-based data structuring and automatic backtracking

for problem solving that involves objects and relations between them.

3.1 DATA OBJECTS:

The Prolog Language supports three types of data objects which are discussed

below.

1. Constants:

Constants can be of two different types; 1) Atoms and 2) Numbers. The

Atoms can be constructed in variety of ways which are described below:

• Any string consisting of letters, digits, and underscore characters that

begins with a lower case letter. For example baby, bill, a21,my car, etc.

• Strings composed of special characters. For example < =-->, .. :... :, etc.

One has to be careful while using these type of characters because some

special character strings are reserved for Prolog and have a predefined

meaning. For example ":-" is used as an "if' in Prolog rules.

5

/

• Strings of characters enclosed in quotes such as 'Train', 'Water'.

Integers are used to represent numbers so that arithmetic operations can be

carried out. Integers are whole numbers consisting of digits only with ilO

decimal points. For example:

o 3 78 231 679329

Real numbers in Prolog can be expressed by using a combination of digits,

decimal point and sign. An'e' is used to indicate an exponent. Listed below

are some example of Real numbers.

17

-92

9.82

24 e -14

2. Variables:

Variables are strings

begin with a capital

Output, _LINE, etc.

3. Stmctures:

of letters, digits, and underscore characters that must

letter or an underscore sign "_". For example: Book,

A structure is composed of several components. It contains a functor and one

or more arguments. The arguments can also be structures. All Structures can

be represented as trees. The root of the tree is the functor, and the offsprings

of the tree are the components. Following are some examples of structures.

6

male(name)

father(name,name)

book(title,author)

In the above example, male, fathe~d book are functors while name, title,

and author are arguments.

Now that we have discussed the basic data objects in Prolog, the next section will

describe how Prolog uses these data objects to describe objects and relationships

between them.

3.2 FACT:

In Prolog a fact describes objects and the relationship between these objects. In

other words, facts in Prolog allow one to express arbitrary relationships between

objects. Consider the following fact (structure).

likes(bill,nancy).

This fact has two objects, bill and nancy and a relationship called likes. This fact

simply states that object "bill" likes the object "nancy". A simple Prolog program

could contain one or more such facts. In each fact, the object outside the parenthesis

is called predicate and the objects inside the parenthesis are called arguments. A

collection of facts is referred to as a database in Prolog.

7

3.3 GOAL:

Once facts are present, questions regarding these facts can be asked. Questions are

referred to as goals in Prolog. A goal in Prolog looks like a fact, except a special

symbol is put in front of it. When a goal is presented to Prolog, it will search through

the database to satisfy this goal. It tries to match the fact in the goal to the facts

present in the database.

Two facts will match if their predicates are the same and they both have the same

arguments. If Prolog finds a fact that matches the goal, it will respond with a "yes",

otherwise it responds with a "no". Consider the following database.

likes(bill,oranges)

likes(bill,nancy)

likes(nancy,movie)

likes(bill,movie)

Now if we ask Prolog

?- likes(bill,nancy)

It will respond with a "yes" because there is a matching fact in the database. If the

following goal is presented to Prolog

?-likes(bill,cake)

It will respond with a "no" which implies that it could not find a matching fact in the

database. In order to find out what objects a given object likes. we will have to use

8

variables. For example in order to find out what bill likes, the goal would be

presented in the following format.

?-likes(bill,X)

To satisfy the above rule, Prolog would search the database for a fact in

which matches "likes" and whose first argument is "bill". Then it uses

X to represent all things that bill likes. So the response would be

X=oranges

X=nancy

X=movie

3.4 RULE:

In order to make a simple Prolog program sophisticated, rules can be added to the

database. A rule is a general statement about objects and their relationships. In

other words, a rule is a type of a fact that depends on a group of facts. It is true

whenever a particular condition is satisfied. An example of a rule is given below.

likesUohn,X):-likes(X,movies).

The above rule states that john likes anybody who likes movies. The rule has t\yo

parts: the condition to be satisfied on the right-hand side, and the conclusion on the

left-hand side. A rule can have more than one condition on the right-hand side. If....

these conditions are separated by commas, then all of them \vill have to be satisfied

at the same time in order for the left-hand side to be true. But if these conditions

are separated by semicolons, then satisfying anyone of them would make the

9

conclusion true. Consider the following example.

likesGohn,X):-

likes(X,movies),

likes(X,books),

male(X).

The above rule states that john likes anybody who likes movies and books and is

male. Since the conditions on the right-hand side are separated by commas, a person

would have to satisfy all three in order for john to like them. Now consider the

following rule.

big(Y):- huge(Y);

tall(Y),

large(Y);

In this rule Y is big if any of the three conditions on the right hand side is satisfied.

All three condition do not have to be satisfied at the same time.

3.5 TURBO PROLOG@:

Turbo Prolog is an implementation of Prolog that can be used for expert system

development. It provides a full screen editor, along with multiple window facilities

and interactive debugging. Turbo Prolog is a compiled language, therefore it is

faster than other implementations of Prolog which are interpreted. In the following

section the program format required by Turbo Prolog will be discussed along with

the commands and features used in the development of this project.

O. 1lJRBO PROLOG is a Repstercd Trademark of Borland International.

10

A Turbo Prolog program consists of five sections which are the domain section, the

database section, the predicates section, the goal section, and the clauses section.

Each section is briefly discussed below.

o The domain section is the first section of a Turbo Prolog program and begins

with the keyword "domain". It contains the declaration of domain, which

describes the different classes of objects used in the program. For example:

person = symbol

country = symbol

conditions = category *

category = symbol

ruleno,condno,fileno = integer

• The database section contains the predicates used in the dynamic database. A

program that doesn't need a database would not contain this section. Below is

an example of a predicate that would be in the database.

rule(ruleno,category,category,conditions)

• The predicate section contains all definitions of all the predicates used in the

program. For example:

member(category,conditions)

border(country.country)

11

female(person)

parents(person,person)

• The goal section states the goal that the program has to satisfy. There are two

types of goal; internal and external. A program with an external goal is

interactive and missing the entire goal section. Following are some example of

goals presented to a program.

female(Y)

border(ISpain",X)

parents(IBill",X)

• The clauses section contains all the facts and rules in the program. For example:

female(INancy").

border(ISpain l ,"Italy").

parents(IBill l ,IMary").

mother(X,Y):

parent(X,Y),

female(X).

The following section contains a brief description of Turbo Prolog commands

used in this project.

12

1. makewindow - is used for windowing operations. It enables the user to create

new windows by specifying the number, size, height, length and color of the

window. The number assigned to each window is referenced by other Turbo

Prolog predicates such as gotowindow. The makewindow predicate was used in

this project to create the user interface which consists of a full screen window

that is used to present and receive information from the user.

2. cleanvindow - is used to clear any text or graphic displays from the current

window. This predicate was used to clear the screen before a new session was

started with the Expert System.

3. existfile - is used to verify if the given DOS files exist. This command in

conjunction with the consult predicate was used to verify the existence of the

database file.

4. consult - is a database predicate that is used to load the specified database file

into memory. This predicate fails if the database file doesn't exist or if not

enough memory is available or if predicates in the database file do not agree

with database predicate declarations in the program.

5. str_int - is used for converting string representation of integer numbers to

variables of type integer. This predicate converted the condition numbers

specified in the rule from string to numeric.

6. upper}ower- is used to convert text to lower or upper case. This predicate

was used to convert all user response to upper case to limit the amount of

error checking that needed to be done.

7. assert - is used to insert facts into the database. This predicate was used to

store the user responses in the database.
13

8. retract - is used for removing a specified clause from the dynamic database. A

dynamic database only consists of facts. This command was used to remove

all previously stored user responses from the database before a new session

was started with the Expert System.

9. readln - is used to read character string input from the current input device.

10. frontchar- Splits a character string by separating the first character from the

rest of the string. It puts the new values into the specified variables. The

original string stays intact. This predicate was used to separate the condition

number from the expected user response for that condition as applicable to

the rule that contained it.

14

4. PROBLEM DESCRIPTION:

This section describes the function and design of the recipe book generating system.

This system consists of recipe book generating software, a computer which is used as

a front end processor, a database that contains up-to-date manufacturing

instructions for a given line of product, process control software that download

recipes to the database and the printers that actually print the recipe books and the

network which connects all hardware components together.

The recipe book generating software package resides on a front end processor that

is connected to a database machine via a network. The database machine contains

multiple databases, each of which contain recipes for a given line of product. The

printers ate directly connected to the front end processor. This front end processor

also contains the process control software.

The users (shop operator) access the system (front end processor) via terminals

located in various areas of the manufacturing plant. When user invokes the recipe

book generating soft\vare, it prompts for several things such as the product name,

the exact recipe name, name of the first operation in the recipe, name of the last

operation in the recipe, number of recipe books to be generated, type of recipe

books (whole or partial).

This soft\vare package performs extensive error checking before accepting the input

from the user. It validates all input data against the database and reports any

inconsistencies to the user and requires the data to be corrected.

15

After validating the information received from the user, it retrieves the data from

the designated database and formats the recipe books. After formatting the recipe

books, it queues them for printing.

This process of generating recipe books using this system seems very easy and

straight forward until incorrect or incomplete books are generated by the system.

Since the user is not familiar with this recipe book generating system beyond the

point of requesting books, he/she has no idea what has gone wrong. Depending on

the problem being experienced, there are many variables that could influence this

process and all such variables are unknown to the user. The following section

discusses the types of problems experienced by the users while generating recipe

books.

4.1 PROBLEM TYPES:

Problems that can occur while generating recipe books can be categorized into four

different categories based on the symptoms experienced by the user. The categories

are 1) No Books 2) Incomplete Books 3) Incorrect Books and 4) Printer jamming

while printing the recipe books. These categories are discussed in detail in this

section.

4.1.1 NO BOOKS:

This category applies when user does not receive any recipe books in a specified

time frame after submitting a request. Some reasons for recipe books not being

printed could be that the database is locked, the network is down, the front end

processor runs out of disk space, the line spooler for printing is not functional, the

16

physical connections between the printers and front end being loose, etc.

4.1.2 INCOMPLETE BOOKS:

This category is applicable when the user is getting incomplete recipe books. In

other words, the recipe books generated do not contain complete instructions to

manufacture the product. Some of the reasons for incomplete recipe books are

missing critical links between data item, corrupted data, the user choosing the wrong

option from the menu.

4.1.3 INCORRECT BOOKS:

This category refers to incorrect books that might be generated due to a variety of

reasons such as; user entering data out of sequence, corrupted data links, etc.

4.1.4 PRiNTER JAMMING:

The last category consists of problems associated with printing the recipe books.

Problems belonging to this category are relatively easier to debug because there are

limited variables that can effect(his phase of recipe book generation. we already

know that a book was generated because the printer is trying to print it. In other

words, the problem is either the printer or the data it is trying to print.

17

5. PROGRAM DESCRIPTION:

This section will describe in detail the actual Expert System that was developed to

trouble shoot recipe book generating software used in a manufacturing plant.

5.1 PURPOSE:

This Expert System encompasses the relevant knowledge of the developer of recipe

book generating software. It's main purpose is to diagnose problems based on user

input and suggest corrective action.

5.2 INPUT:

This diagnostic expert system requires the following input from the user to trouble

shoot the system.

5.2.1 PROBLEM DEPENDENT INPUT:

This type of input depends on the type and nature of the problem. The Expert

System asks the user different questions depending upon the problem he/she is

experiencing. Users has to answer these questions either by selecting from a menu

displayed by the Expert System or by responding with a yes/no.

5.2.2 PROBLEM INDEPENDENT INPUT:

This type of input is required regardless of the problem. In other words, users has to

answer the following questions no matter what the problem is.

• The system/database being used for generating recipe books when the problem

IS

occurred.

o The type of problem occurring with the recipe book generating software.

5.3 OUTPUT:

The output explains the cause of the problem and suggests corrective action.

5.4 LANGUAGE:

This Expert System was developed in TURBO PROLOG. The reasons for choosing

Turbo Prolog are following.

o Requires much less code to solve the problem than other languages that I know.

o Its power of searching, pattern matching and backward chaining.

o The ability to manipulate internal data as well as external data (from a file) in

the same manner. Does not require special code to read & write to and from a

file.

5.5 MACHINE IMPLEMENTATION:

This Expert System will reside on IBM compatible personal computer running MS

DOS and Turbo Prolog.

~6KNOWLEDGEREPRESENTATIOM

The knowledge base is a collection of production rules that are linked together by

the inference engine. All information is embedded in these rules. The format of the

rules is as follows:

rule(nurnber,description,action,conditions)

19

cond(cond_number,question)

howecond_number,instruction)

why(cond_number,explanation)

errfiles(error_type,error_number,error_text)

action(error_type,error_number,correctiveyrocedure)

Examples:

rule(l,"action","start the line spooler on your system",["yl","n2"])

rule(2,"action","bring up the network",["nl","y3","n4"])

cond(l,"Do you see any print request on the printer queue")

cond(2,"Is the line spooler running")

cond(3,"Do you see the create book program running")

cond(4,"can you access the database machine")

how(l,"execute the command lpstat -0")

why(1,"If there are requests on the print queue, then the problem

is between the front end processor and the printers. The books

have been created and are waiting to be printed").

errfiles("LOG".l."Cannot open datafile in Itmp directory.")

20

action("LOG",1,"Check permissions on the Itmp directory and

change them to a 777")

Explanation:

rule:

first field: rule number

second field: descriptive field

third field: corrective action to be taken if all the conditions are met.

fourth field: list of conditions that have to be satisfied in order to

fire this rule.

cond:

first field: condition number

second field: question that user has to answer

why:

first field: number of the condition to which this rule applies.

second field: explanation as to why the user is being asked

that question.

how

21

first field: the condition number to which this instruction applies.

second field: instruction to perform the action.

errfiles:

first field: type of error message. This indicates which log

file error message appeared in.

second field: specifies the error number

third field: displays the actual text of the error message.

action:

first field: type of error message. (same as in errfiles)

second field: specifies the error number (same as in errfiles)

third field: corrective action to be taken

5.7 INFERENCE ENGINE:

The inference engine consists of operating rules and principles. It uses knowledge

base rules to make decisions. Following are the steps that are followed to produce

the final output. Examples are given to specify how inference engine reaches a

certain conclusion.

a. The E\-pert System starts off by searching the knowledge base for

system/database names that use the recipe book generating system. This list

of system/database is presented to the user who selects the system/database

that he/she is experiencing the problems with. The knowledge base contains

such information as how many different databases reside on a system, number

of printers setup on the system as well as the printer configuration. This

information is used in situations where recipe books are being created on a

system and queued for printing but the user does not see them being printed.

For example if the user is not getting books on printer C from system A and

recipe books are being created and queued for printing, the problem might be

that printer C is not configured on system A and the user doesn't know this

fact.

b. Then a list of possible types of problems that could be experienced with recipe

book generating system is displayed to the user who selects the particular

problem he/she is experiencing.

c. After user specifies the problem he/she is experiencing, the Expert System

searches the knowledge base and tries to find all applicable rules for that

particular problem by pattern matching. It starts with the first applicable rule

and if this rule fails, it goes to next rule and keeps on trying until a rule is

successful or it runs out of rules to apply.

d. By matching the rule, the Expert System determines what questions to ask the

user. It takes the conditions associated with that rule and presents them to the

user as questions. If all the conditions associated with that rule are met, then

that rule is fired and the user is presented with diagnoses of the problem along

with the recommended solution. Following is an example that \voi.Ild illustrate

how the E:\.-pert System will determine if a condition has been met.

Example:

Let's assume that following is the first applicable rule in the

knowledge base.

rule(l,"NO_BOOKS","The create_book program is waiting for space

to become available on the front end processor. Make sure

the space in /usr is above 5000 blocks.", ["nl","y3","y6"])

cond(l,"Do you see any print requests on the print queue")

cond(3,"Do you see the create book program running")

cond(5,"Is the create_book program gaining time")

cond(6,"Do you see any error messages in the log file")

In the above example if user is not getting any recipe books at all, the Expert

System chooses rule 1 that is applicable to NO BOOKS category and starts

processing the conditions associated with this rule. It takes "n I" and breaks it

into two parts "n" and "I fl. "1" represents the condition or question that the user

has to answer and "n" represents the answer that is expected for this condition

to be satisfied for this particular rule. Another method to represent the above

rule is as follows.

If problem(NO_BOOKS) and

no books are queued up for printing and

create_book program is running and

2-l

create_book is not gaining time and

error messages appear in the log file

THEN tell the user

create_book program waiting for space on the front end

processor and to make sure space is above 5000 blocks in

/usr file system.

e. If the user specifies that an error message is being written to the log file, a list

of error messages that would support the current rule and could appear in the

log file is displayed. If an error message is from the displayed list of errors,

then the rule is fired otherwise another rule is invoked.

f. There are several rules for a given category such as NO_BOOKS and each

rule has some conditions associated with it that have to be satisfied before the

rule could be fired. All rules have the same conditions associated with them

but these conditions appear in different combinations and are satisfied by

different responses. Consider the following example.

rule(l,"NO_BOOKSI,"Bring up the networkl,[ln11,ly31,ln5"])

rule(2,"NO_BOOKSI,"Clean up the space in /usrl,[ln1,ly31,ly51,ly6"])

rule(3,"NO BOOKSI,"Make sure the printer is onlinel,[ly11,ly2"D

In the above example all three rules use conditions 1-6 in different

combinations. Rule 1 and 2 both use conditions 1, 3 and 5 but in rule 1,

condition 5 will be satisfied if user responds with a "no" while in case of rule 2,

condition 5 is satisfied if user responds with a "yes". If the user response to

condition 5 was a ''yes'', the Expert System would not only abandon rule 1 but

any rule that requires condition 5 to be false. It would proceed to process rule

2. The Expert System goes through all NO_BOOK category rules one at a

time until all conditions for a particular rule are satisfied and a conclusion can

be drawn or all rules for that problem are exhausted.

g. All user responses are stored in the database in the following form:

yes(l)

no(l)

where 1 is the condition presented to the user and "yes/no"

are user responses.

The Expert System uses the stored user response to determine which rules to

eliminate from the list of applicable rules. For example, if user responded with

a "no" for condition 1, then no(l) would be stored in the database and when

the Expert System is going through the applicable rules, it will search the

database for yes(l) and no(1). Once it finds noel), it will eliminate all rules

that require condition I to be true.

Another purpose for storing the user response is to keep track of all questions

already posed to the user. Consider the following example.

rule(7,"INCOMPLETE_BOOKS",["y5","n6"D

rule(8,"INCOMPLETE_BOOKS",["y5","n7"D

26

In the above example, when rule 7 is being processed and the user responds

with a "yes" to condition 5. This response is stored in the database as yeseS).

Let's assume that the user responds with a "yes" for condition 6, rule 7 is

abandoned at this point because this rule requires this condition to be false.

Now lets assume that the Expert System will select rule 8 for processing. It will

check the database to see if the user was asked this question before. It finds

yeseS) in the database which implies that this question already has been asked

and condition 5 is true so it can keep processing this rule until it finds a

condition that is not satisfied by the user response.

h. The expert system provides two help facilities to the user. The first facility

allows the user to question why he/she is being asked a particular question by

typing in "why" when prompted for a response to a question. The Expert

system knowing the condition number searches the knowledge base for

predicate "why" that applies to the given condition number. On finding the

explanation it displays the explanation to the user otherwise it informs the

user that it cannot find any explanation in the knowledge base.

1. The second facility is the "how" facility that allows the user to ask the Expert

System how to perform a certain action. This facility is intended to be used

when the user cannot answer a certain question because he/she doesn't know

how to get that information. For example if Expert System asks the user if

there are any print requests on the print queue, the user might not know how

to check if there are any print requests queued for the printer. At this point if

"how" is entered at the prompt the Expert System will display the following

information to the user.

Type "lpstat -0" at the prompt and hit the enter key.

if the prompt comes back with no information then that implies

that there no requests queued up.

5.8 SUMMARY:

The Expert System greets a user with a menu that displays all the words in it's

vocabulary which are following:

1. yes

2. no

3. how

4. why

5. exit

Following are some of the features of this expert system:

• It converts all user input to capital letters so that it has to do less error checking.

• If the user responds by entering a word not in it's vocabulary, it generates an

error message and prompts the user again.

• It allows the user to ask for the reason for asking a certain question by typing

"why" at the prompt. If the Expert System cannot find the reason in the

knowledge base, it notifies the user.

• The user can also ask the EXlJert System how to perform a certain action. If it

cannot find the ans\ver in the database, it will notify the user.

• It allows the user to end the session any time by simply typing in exit.

• After a session is completed, it asks the user if he/she would like to initiate

another session. It starts another session if user responds with a "yes", otherwise

it terminates.

This expert system is application independent since it is logic based. The knowledge

base is totally separate from the inference engine and is loaded from an external

file. It can be used for any diagnostic application as long as the user conforms to the

data format of the rules. If conditions are such that no rule can be fired, it suggests

to the user to contact the local support. The system relies on the user input, it has no

way to verify if that condition actually exist or user has made a mistake. The user is

only allowed to respond with a yes/no to minimize the problem of uncertain and

incomplete data.

5.9 MANAGEMENT OF UNCERTAINTY:

The application implemented in this project did not require managing uncertain or

incomplete data because the user is expected to have enough information to be able

to respond to a question with a yes/no.

5.10 SAMPLE SESSION:

Following is an example of a session with the Expert System. In this example, the

user has submitted a request to the recipe book generating system and is receiving

incomplete books. He starts a session with the Ex-pert System to determine what is

causing the recipe book generating software to create incomplete recipe books.

'TI1e user starts up a session by typing DES (Diagnostic Expert System) at the

29

prompt. System responds in the following manner.

* *
* Welcome to the Diagnostic Expert System *
* *
* Please respond by ~utting 'yes' or 'no' *
* or selecting anum er from the menu. *
* You can also use 'why' or 'how'. *
* Type 'exit' to end the session at any time. *
* *

Loading the Knowledge Base. Please wait

DES: Following are the systems/databases in my knowledge base. Please

select the system/database where you are experiencing the problem.

1. System A/Product I

2. System A/Product_G

3. System B/Product_K

4. System B/Product_P

Enter your selection: 2

DES: Following are the problem categories in my knowledge base.

Please select the problem you are experiencing.

1. No books being printed.

2. Incomplete books.

3. Incorrect books.

4. Printer is jamming or garbling the books.
30

'.

Enter your selection: 2

DES: Does each incomplete book have a cover page? yes

DES: Are the cover pages correct? yes

DES: Are the cover pages complete? yes

DES: Are you getting incomplete books for all codes? yes

DES: Do all codes have any data items common? yes

DES: Do all incomplete books stop at the same data item? yes

DES: Does the data item where all incomplete books stop, exist in all codes? yes

DES: Was there a download of this item processed recently (2-3 days)? how

DES: Login to the download system, select the search option and enter the data

item name at the prompt. When data item is displayed, press the F9 key

and looked at the most recent date in the left most column of the screen.

DES: Was there a download of this item processed recently(2-3 days)? yes

DES: Have you received any complete recipe books for any code since the

download? no

DES: It seems that data item (at which all incomplete books stop at) is not

linked to the next data item of the recipe. Login to the download

system. go into the browse menu and enter the last data item (from the

incomplete books) at the prompt and check it's links. If any links are

31

missing, use the "estabJink" command to establish the missing link and

resubmit your request.

CONCLUSION

The Diagnostic Expert System for trouble shooting the recipe book generating

system was successfully implemented in Turbo Prolog. All known possible types of

problems that can occur while using the recipe book generating system were

embedded in the database along with their causes. The Knowledge base also

contained the conditions/steps that inference engine used to determined cause of

the problem. The "how" and "why'~ facilities which enable the user to ask the Expert

System for instructions to perform certain tasks as well as able to question it's

reasoning for posing a certain question make this Expert System very user friendly.

This Expert System will maximize the benefits of recipe book generating system by

enabling the users to resolve recipe book generating system problems efficiently and

effectively. It emulates the human expert by applying a structured approach to

problem solving by asking the user questions in a logical order. This logic is built in

the knowledge base rules which are setup such that more probable and important

causes are explored first.

The overall purpose of this project was to capture the expertise of the developer of

recipe book generating software which is the major component of the system into an

Expert System. As this document indicates, the objective of this project was

successfully accomplished and the EXlJert System developed can successfully assist

the users in resolving recipe book generating system problems efficiently as the

human expert.

33

REFERENCES

Bratko, Ivan, Prolog Programming for Artificial Intelligence,1986 Addison-Wesley

Publishers Limited.

Clocksin, F. W. and Mellish, S. C., Programming in Prolog. New York Tokyo

Springer-Verlag Berlin Heidlberg, 1984

Yin, Maung Khin and Solomon, David, Using Turbo Prolog. Indiana, Indianapolis:

Que Corporation, 1987.

VITA

• Name:

Shahida Mahmood Parvez

o Parents:

Raja M. Ashraf

Anar B. Ashraf

• Date of Birth:

April 14, 1963 Ihelum, Pakistan

o Education:

Bachelor ofArts in Computer Science, 1985

Hunter College, CUNY, New York

Master of Science in Computer Science, 1992

Lehigh University, Pennsylvania

• Honors:

Magna Cum Laude

• Professional Experience:

Computer Engineer 1985 - 1990

AT&T Microelectronics

Reading, Pennsylvania

Software Engineer (CulTent Employment)

AT&T Infomwtioll A1anagement Systems

Piscataway, New Jersey

35

	Lehigh University
	Lehigh Preserve
	1991

	A diagnostic expert system for recipe book generating system
	Shahida Mahmood Parvez
	Recommended Citation

	00598
	00599
	00601
	00602
	00603
	00604
	00605
	00606
	00607
	00608
	00609
	00610
	00611
	00612
	00613
	00614
	00615
	00616
	00617
	00618
	00619
	00620
	00621
	00622
	00623
	00624
	00625
	00626
	00627
	00628
	00629
	00630
	00631
	00632
	00633
	00634
	00635
	00636
	00637
	00638

