
Lehigh University
Lehigh Preserve

Theses and Dissertations

2003

A comparison of constraint programming and
integer programming for an industrial planning
problem
Shelley M. Heist
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Heist, Shelley M., "A comparison of constraint programming and integer programming for an industrial planning problem" (2003).
Theses and Dissertations. Paper 780.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228643704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/780?utm_source=preserve.lehigh.edu%2Fetd%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Heist, ShelleyM. ·

A Comparison of
Constraint
Programming and
Integer
Programming for
anindustrial ...

,May 2003 ..
..

\
A Comparison of Constraint Programming and Integer

Programming for an Industrial Planning Problem

by

Shelley M. Heist

A Thesis

Presented to the Graduate and Research Committee

ofLehigh University

in Candidacy for the Degree of

Master of Science

In

Industrial and Systems Engineering

Lehigh University

May 2003

Acknowledgements

I am sincerely grateful to Air Products and Chemicals for the internship that led to

this research..Dr. Ted Ralphs, Tom Brinker, Andy Bringhurst, Jim Hutton, and Eve

Pellecchia provided valuable feedback and ideas during the development and revision of

this thesis. I especially want to thank my parents, fiance, family, and friends for their

moral support during my time at Lehigh and always.

111

Table of Contents

List ofT'ables vi

L· fF' ..1st 0 19ures Vll

Abstract. 1

1 Introduction 2

2 Tree Search Overview 5

3 Constraint Programming Overview 8

3.1 Literature Search 8 "'---

3.2 Fonnulation Techniques ; 9

3.3 Node Processing 11

1Jj
3.4 Branching 12

3.5 Pruning 13

3.6 Search Procedure ; 13

3.7 Overall Algorithm 14

4 Integer Programming Background 15

4.1 Historical Review 15

4.2 Fonnulation Techniques 15

4.3 Node Processing 17

4.4 Branching 18

4.5 Pruning 18

4.6 Search Procedure 18

4.7 Overall Algorithm 19

5 Problem Description ; 20

IV

'-

6 Constraint Programming Approach 26

6.1 Formulation 26

6.2 Search Tree Example 32

7 Integer Programming Approach 36

7.1 Formulation 36

7.2 Search Tree Example 37

8 Computational Testing and Results .40

9 Conclusions 46

Bibliography 48

Vita · : 50,

v

List of Tables

1. Table 1: Search Tree Size Per Case .41

2. Table 2: Solution Times for Best-First Search 44

VI

List of Figures

1. Figure 1: Graphical Representation ofTree Search 6

2. Figure 2: Types ofMovements 21

3. Figure 3: OPL Representation of the Constraint Program Parameters 28

4. Figure 4: OPL Representation of the Constraint Program 29

5. Figure 5: Data for the CP Search Tree Example ,32

6. Figure 6: CP Search Tree Example 33

7. Figure 7: OPL Representation of the Binary Integer Program 36

8. Figure 8: BIP Search Tree Example , ,38 .

9. Figure 9: So~ution Times for the CP and BIP Models ~~;/40

10. Figure 10: Size of Tree Vs. Solution Time for the CP ModeL .41

11. Figure 11: Solution Times Per Case for the Depth First Search .43

12. Figure 12: Solution Times Per Case for the Best First Search 44

Vll

Abstract

In this paper, we explore modeling alternatives and solution approaches for a

production and distribution planning problem at Air Products and Chemicals, Inc. The

problem is currently modeled as a linear program and solved using a custom built

application based on an interior point algorithm. Using ILOG's OPL Studio as a

modeling and solution framework, we present both a constraint programming formulation

and an integer programming formulation of the planning V~oblem. We compare solution

techniques for these two formulations and identify strengths and weaknesses of the

alternatives.

1

1. Introduction

Air Products and Chemicals, Inc. (APCI) is a multinational producer andsupplier of

atmospheric gases, process and specialty gases, performance materials, and chemical

intermediates for customers in the technology, energy, and healthcare markets. The firm

uses operations research (OR) techniques to model and solve problems in several

business areas. This thesis deals with the formulation and solution of a production and

distribution planning problem for one of those business areas.

The problem is to determine a minimum cost production and distribution plan for a

product subject to resource constraints on the plants, delivery fleets, and drivers. The

problem is not easily categorized since it combines elements of several different

traditional operations research models, including the lot sizing and transportation

problems, a network flow problem, and a supply chain optimization problem with one

tier.

Problems such as those listed above can be modeled and solved using a variety of

operations research techniques. Researchers in the mathematical programming

community usually take a two-step approach by first formulating a mathematical

programming model of the system and then solving the model using one of a variety of

techniques. The model defines the problem, variables, and constraints but does not

dictate how to find a solution. While the mathematical programming community has had

much success in separating problem formulation from solution method, there is another

school of thought that encourages the two steps to be combined as one. ConstraiI~t

programming (CP) is a methodology that encourages the model and the desired solution

technique to be declared in a single "formulation."

2

The production and distribution planning problem at APCI is currently modeled as a

linear program (LP), following the tniditional mathematical programming paradigm, and

solved using an interior point algorithm. While the existing methodology has worked

well, there is an interest in discovering how either constraint programming or integer

programming (IP) might be used to solve this planning problem. Much of this interest is

motivated by APCI's implementation of the enterprise resource planning tool known as

Systems, Applications & Products in Data Processing (SAP). SAP is an information

technology based software system that provides companies with a comprehensive

solution for managing data and solutions related to fipancials, human resources,

operations, and corporate services. SAP touts the ability of its software to formulate and

solve various planning and decision models using the Advanced Planning and

Optimization module, which relies on a constraint programming engine called ILOG

Scheduler. With the widespread use of SAP in a variety of companies, it is useful to

investigate the effectiveness of constraint programming for industrial applications as

compared to more traditional mathematical programming techniques. With this in mind,

we model and solve APCI's production planning and distribution problem using both a

constraint programming approach and an integer programming approach. We will show

the formulation ofthe model as a constraint program, evaluate the success of domain

reduction and constraint propagation for the model, and discuss constraint programming

as a solution method for other industrial applications. For comparison, we also

formulate an integer programming model of the same problem and solve it using

traditional techniques such as branch and bomid.

3

To be precise, we introduce some terminology that we will use throughout the paper.

The term problem refers the process of determining the des'ired operating state of a

system under a given set of conditions. A mathematical model is a simplified

representation of the problem that captures the essential mathematical relationships

between various components of the system. We will use the terms formulation and

model interchangeably to refer to a mathematical model. A model is made up of

.variables and constraints; the variables indicate the state of the system, and they can

assume values from a specified set called the domain. A constraint consists of afunction

expressing the relationship between some variables. When evaluated for a specific set of

variables, the function's values must be in a specified domain. A set ofvalues for the

model values that satisfies the relationship established is said to satisfy the constraint.
----0

Finally, afeasible solution is a set ofvalues for the model variables that satisfies all the

constraints. A mathematical model has an objective function involving some or all of

variables, which is either maximized or minimized over the set of all feasible solutions.

4

2. Tree Search Overview

Since tree search is a basic solution technique employed in both constraint and integer

programming, we begin with a generic overview of tree search as a technique for finding

feasible solutions to mathematical models. The essence of tree search is a "divide and

conquer" strategy that is applied when the full mathematical model is too complex to

analyze explicitly. We "divide" the original feasible set into manageable subproblems

and "conquer" by attempting to find feasible solutions to the subproblems and then

putting the results together to obtain a feasible solution to the full model.

The strategy that we describe here is termed tree search because its graphical

representation resembles an upside-down tree (see Figure 1). The search tree consists of

nodes arranged in a hierarchical structure, as in the familiar structure of a "family tree."

Associated with each node is a subproblem, defined as a subset of the original feasible

set. Each node N in the tree is connected by branches to a unique parent, whose

associated subproblem contains that ofNand (optionally) to one or more children, whose

subproblems are further divisions of that ofN. The children of a node are said to descend

from the parent. The root node is at the top of the hierarchy and is the sole node without

a parent. The subproblem associated with the root node is the original feasible set. A

node from which no others descend is called a leaf. Figure 1 on the next page shows a

graphical representation of a tree.

./
5

Root node

Leaf

~n
r\~ranch

o
Figure 1: Graphical Representation of Tree Search

r-
Every tree search algorithm is defined by four elements: a node- processing

procedure, pruning rules, branching rules, and search strategy. The processing step is

applied at every node of the search tree beginning with the root node, and usually

involves some attempt to further reduce the feasible set associated with the node by

applying logical rules. The pruning rules provide conditions that establish when no

further division of Si is necessary, e.g., when Si can be shown to be empty. The

branching rule is used to decide how a given subproblem S should be broken down into

further subproblems Si such that U;=l Si = S. Branching is typically accomplished by

partitioning a variable's domain. The variable whose domain gets divided is chosen

according to a selection strategy, which is specific to the application. Finally, the search

strategy dictates the order in which we processing the subproblems. Two common

examples of search strategy include depth-first search and best-first search. Depth-first.

search proceeds down a branch of the search tree, always selecting a child of the current

subproblem to process Until the current node can be pruned. If an infeasible node is

found during pruning, the algorithm backtracks to most recent node that has been created

6

but not explored. Best-first search chooses to process the node with the most "potential"

according to some criteria, for example, the node with the best value of the objective

function.

Overall a tree search algorithm works as follows. A list ofnodes that are candidates to

be processed is maintained throughout the algorithm. This list initially contains only the

root node. At each step in the algorithm, a node is chosen and processed. If the

processing results in pruning of the node by one of the pruning rules, then the node is

discarded. Otherwise, the node is further divided, resulting in two or more children,

which are then added to the list of candidates. This procedure is iterated until no nodes

remain on the candidate list. Note that a strong pruning rule is essential to reducing the

size of the search tree, since without a pruning rule, exploration of the search tree would

amount to complete enumeration ofall feasible solutions.

7

3. Constraint Programming Overview

3.1 Literature Search

Constraint programming, a relatively new technique for solving optimization

problems, has its roots in artificial intelligence and computer science. Lustig and Puget

[9] trace the history of CP from initial work on constraint satisfaction problems in the

1970s. Research on arc-consistency techniques formed the foundation of CP literature

and the development of computer languages specifically for combinatorial problems

followed. In the 1980s, this led to the addition of constraint satisfaction algorithms to the

Prolog language and then the addition of constraint programming features to general

purpose programming languages in the 1990s. Si~ its inception, constraint

programming has seen success in solving optimization problems of a combinatorial

nature, most notably in sequencing and scheduling applications. Other applications of

constraint programming include the solution of cutting-stock problems [5], crew

assignment [3], and network flow problems [2].

The creation of the Optimization Programming Language (OPL) by Van Hentenryck

[17] was a major step toward integrating constraint programming with traditional

mathematical programming techniques. Since the late 1990s, the idea of integrating

constraint programming and mathematical programming has taken off, resulting in a

number of research papers comparing constraint programming with traditional

mathematical programming. Smith, et al [15] compares CP and IP methods to solve a

boat-scheduling problem called the progressive party problem. Their results showed that

CP was able to quickly solve several instances that could not be solved using IP

8

techniques. In [4], the authors use CP and IP to model an allocation of tasks to machines

in a manufacturing problem.

Other researchers went one step further and developed hybrid methods that integrate

both CP and IP solution methodologies into a single framework. For example, [13]

proposes just such a framework for unifying CP and IP models and solution techniques.

Using this technique, Kim and Hooker [8] model a fixed-charge network flow problem

using logical constraints and 0-1 variables. In the search tree, the logical constraints

trigger domain propagation and a projection is used to solve a relaxed problem and obtain

a bound on the objective. In another example, Timpe [16] solves a planning and

scheduling problem in, the chemical industry using a mixed integer program as a master

process that solves a small constraint program every few nodes. The result is an efficient

solution technique that can prune infeasible subproblems early in the search process.

For additional background material, refer to Hooker [6,7], or [11] and [19] for a

comprehensive treatment of constraint programming. In addition, Bartak [1] provides an

excellent review of the algorithms that drive constraint programming systems.

3.2 Formulation Techniques

We next discuss some of the underlying concepts of the constraint programming

approach, first concentrating on modeling and then solution techniques. To begin, we

poiIit out that the word "programming" in the constraint programming literature has a

different meaning than the word "programming" as used by the mathematical

programming community. In mathematical programming, the word "programming"

came about as a term used to define operations and activities "planning" in the U.S.

military. In contrast, since CP evolved in the discipline of computer science, the word

9

"programming" refers to a procedural problem declaration and specification of solution

method, as in "computer programming." As such, the constraint program is made up of

two pieces: the constraints that comprise the formulation and a search strategy for solving

the problem. This is 'in contrast to a mathematical program, which describes a model but

does not specify how to solve it.

Traditionally, a constraint programming formulation consists only of a list of decision

variables, domains, a set of constraints to be satisfied, and a search procedure. This

traditional definition refers to a constraint satisfaction problem (CSP), since a solution is

any assignment ofvalues to variables such that all constraints are satisfied. Over time,

the CSP has been extended to include an objective function, creating the CP optimization

model that we refer to from here forward. Optimization is easily incorporated into

constraint programming by adding a constraint to reflect that each successive solution

must be better than the last.

In theory, a CP formulation's decision variable domains can consist of integer values,

real values, set elements, or even subsets of sets. In practice, however, constraint

programming solvers typically require the variables to have discrete domains, meaning

that they are finite, because of the solution algorithms involved. For example, ILOG's

OPL Studio [17] requires the use of constraints that are constructed from discrete data

and discrete variables. Lastly, constraint programming formulations achieve significant

gains in modeling flexibility due to the fact that variable domains can be non-convex. In

other words, where traditional mathematical programming restricts variable domains to

discrete or continuous intervals, constraint programming allows the domains to be the

union of several intervals, i.e., to have "holes."

10

Within a CP, the constraints can take many forms and are not required to be linear. A
t

common theme in constraint programming is the use ofglobal constraints to represent

relationships between variables. Global constraints are constraints used to enforce

complex relationships among a number of variables. For example, the most well known

global constraint, all-different, requires that a set ofvariables all take different values.

The cumulative global constraint is used to ensure that a series ofjobs are scheduled so

that they do not overlap. Global constraints such as these are analogous to function calls

within a computer program; the global constraint expresses the relationship between

variables and specifies that a specific domain reduction technique should be used in the

search strategy applied to that constraint. Modern high-level constraint programming

software incorporates keywords that represent the global constraints and invoke

specialized solution algorithms when they are detected.

Another useful CP technique, called variable subscripting, allows expressions of the

form cost[s, producer[sll where the variable producer[s] is used to index the matrix of
. .

costs. Other common CP constructs include logical constraints constructed using·

statements such as ifthen or logical, relational, or binary operatives. Lastly, meta

constraints, or constraints involving other constraints, can also be used in constraint

programmmg. One example of a meta constraint is L(x j = i), which is used to count
j

the number ofx variables equal to i.

3.3 Node Processing

Given a CP formulation as described above, constraint programming systems use a

search tree to find optimal solutions. The CP system iteratively applies the node

11

processing techniques known as constraint propagation and domain reduction to attempt

to reduce the feasible set that defines the subproblem as much as possible. Constraint}

propagation and domain reduction work together to reduce the variable domains as much, -

as possible. First, some constraint is selected from the formulation and a consistency

technique associated with the constraint is applied to the relevant variables and their

domains. The consistency technique operates on a constraint graph where the nodes

correspond to variables and the edges are labeled by constraints. Which particular

consistency technique is used depends on the type of constraint being examined. For

example, if the constraint is all-different, an edge-finder algorithm is used in domain

reduction; flow algorithms are used to reduce the domains ofwhen variable subscripting

is used. The algorithm operates on the graph to identify values that cannot occur in any

partial solution and removes them from the variable dowains. See [1] for a more

thorough explanation of consistency techniques and algorithms. The smaller domains are

passed to other constraints where they are further reduced, thus implementing a form of

constraint propagation. Note thateach node represents a partial solution over some

subset of the model variables. For an example ofhow node processing works, see

Section 6.2.

3.4 Branching

In CP terminology, the branching rule is called a search strategy. Thus, the search

strategy constructs the search tree by specifying an ordering ofvariables to branch on and

an associated ordering of the values to try. For example, if we have the variables x andy

and their associated domains Dx and Dy , a generic search strategy might specify "assign

values to the x variable first, and try the values ofDx in increasing order." Most

12

constraint programming systems provide a default search strategy that can be used in the

absence of a search tailored to the particular problem. One common strategy is to

identify the variable with the smallest domain as a starting point and branch by

partitioning that variable's domain into two or more pieces. This "first-fail" principle

operates on the idea that it is best to begin with the variable that is the most restricted and

find infeasibilities early to limit the size of the search tree. As an example of CP

branching, consider a variable x whose domain has been reduced to Dx = {1,2,3,4} .

Subproblems are created by setting Dx ={1,2,} in one child and Dx ={3,4} in another

child.

3.5 Pruning

A node can be pruned at any point ofthe search tree if one of the following situations

is encountered. First, a node can be pruned if the domains of all the variables are reduced

to a singleton, at which point a full solution is found. Secon'd, if any variable's domain is

reduced to the empty sel, then an infeasible Partia'ution has been identified and the

node can be pruned. Third, a node can be pruned if domain reduction has implied that

the optimal objective function value ofthe associated subproblem is no better than the

best objective value found so far.

3.6 Search Procedure

The constraint programming search tree is explored using a search procedure, which

details the order in which nodes should be considered for processing (see Section 6.2 for

an example). Depth-first search is commonly used as the default search procedure in

constraint programming systems. .

13

3.7 Overall Algorithm

The techniques ofnode processing, branching (search strategy), pruning, and search

procedure all work together in an iterative algorithm to limit the size of the search tree

and find solutions in an efficient manner (see Section 2). The algorithm begins with the

root node and can be summarized as follows:

1. Apply constraint propagation and domain reduction to the current node to

eliminate as many values from the variable domains as possible.

2. Evaluate the node according to the pruning rules. If the node is feasible, proceed

------- to step 3. If the node is infeasible proceed to step 4.

3. Use the search strategy to choose a variable and branch by splitting the variable's

domain.

4. Choose a node for processing according to the search procedure and return to

step 1.

Many constraint programming systems describe the search tree in terms of choice

points,jailures, and solutions. Choice points correspond to non-terminal nodes of the

tree from which some branching occurs. Failures are leaves of the. tree that represent

infeasible partial solutions, and solutions occur at leaves of the tree where every

variable's domain has been reduced to a single vaiue.

\

14

4. Integer Programming Background

4.1 Historical Review

Mathematical programming originated with the seminal work in linear programming

by George Dantzig for the United States Department of Defense in 1947. Since then,

mathematical programming and optimization techniques have come to guide decision

making in nearly every industry and every large company worldwide. In an attempt to

model and solve more complex problems, operations researchers have added nonlinear,

dynamic, integer, convex, and semi-definite programming, among others, to the

repertoire ofmathematical programming models with well-developed solution

techniques. One particularly well-developed solution technique, called branch and

bound, was introduced by Land and Doig [10]. Branch and bound is frequently used to

find solutions to integer programming problems; it is a tree search procedure in which a

bound on the optimal value to each subproblem is obtainedby solving a relaxation. In

this thesis we assume the use of a linear programming relaxation in the branch and bound

tree.

Since we will be comparing CP techniques to integer programming modeling and

solution techniques, we provide a briefreview of the most fundamental concepts in IP.

For a complete treatment, we refer the reader to t4e text ofNemhauser and Wolsey [12].

4.2 Formulation Techniques

A pure integer program consists of a linear objective function, cERn, subject to

linear constraints, [A, b] E Rmxn
+! , as follows:

15

mm ex

S.t. Ax ~ b

X EZn

The pure IP is a special case of the Mixed Integer Program (MIP), which can contain

both integer- and real-valued variables. Yet another variation is the Binary Integer

Program (BIP),-frl which integer variables are restricted to the values of {O,l}.

At first glance, integer programs seem to place more restrictions on the model than do

constraint programs. Despite the apparent restrictions on the form that constraints and

variables can take, we emphasize that there is a rich potential for modeling real world

problems using IP, which we illustrate with a few examples. Suppose we want to include

a variable in our model whose actual domain is a set of cities, such as {Allentown,

Bethlehem, Easton}. An IP model could accommodate this using a mapping of integers

to represent the set, Le. {I, 2, 3} where 1 =Allentown, 2 =Bethlehem, and 3 =Easton.

As a second example ofthe flexibility ofIP, consider how the global all-different

constraint used in constraint programming can be integrated into an integer program

using the binary variable Yij E {O,l}, which takes the value 1 if Xi = j and°otherwise.

While it is not as succinct as the CP version, an IP example of all-different(xj, X2, X3) is

modeled on the following page.

16

3

Xi=LJYij ViE1..3
j=l

3

LYij = 1
i=l

3

LYij = 1
j=l

v J E L3

ViE 1..3

Xi E {I, 2, 3}, Yij E {O,l}

Even if-then constraints can be modeled with the addition of 0-1 variables to an IP model.

However, the number of extra variables that must be added to achieve this flexibility can

make the IP become difficult or nearly impossible to solve.

4.3 Node Processing

The bounding phase ofbranch and bound is a node processing procedure that occurs

at every node beginning with the root. We obtain a bound on the objective value by

solving some relaxation of the integer program. Usually, this is a linear programming

relaxation that is created by simply dropping the integrality constraints on the variables

and solving the relaxation using an LP algorithm. Solving the linear relaxation gives a

full solution over all the variables and objective value ZLP, which is retained as a lower

bound on the optimal integer objective value if we are minimizing, or an upper bouno if

we are maximizing. This bound is used both in the pruning procedure and in guiding the

search procedure.

4.4 Branching

Branching occurs in the branch and bound tree by examining the sQlution to the LP

relaxation at the current node. If the solution to the LP relaxation contains all integer-

17

valued variables, a feasible solution is found. Otherwise, we choose a variable with a

fractional value to branch on according to a given selection criteria and branch by

rounding the variable up in one branch and rounding it down in the other. For example,

if the relaxation produces a solution containing Xi =2.5, we create two new subproblems

by adding the constraint Xi ~ 2 to the new node in the left branch, and Xi ~ 3to the node

in the right branch. Generally speaking, branching occurs by imposing additional linear

constraints that serve to partition the feasible region of a subproblem into smaller pieces.

4.5 Pruning

Nodes can be pruned in the branch and bound tree if one of three situations occurs.

First, we can prune a node if it's objective function value is worse than the best

incumbent integer solution retained so far, because we know that the objective function

will only become worse as we proceed down a branch of the tree. Second, a node can be

pruned if it solves to an integer solution during node processing. Lastly, a node can be

pruned if i~ is determined to be infeasible during the node-processing step.
. .

4.6 Search Procedure

The last piece of a branch and bound algorithm is a search strategy specifying the

order in which to explore nodes of the tree. Depth-first search can be used to save

memory in a branch and bound tree, since we must only remember the difference in

solution between two successive nodes of the search tree. The advantage of depth-first

search is that it tends to produce feasible solutions early in the search process.

Alternatively, best-first search, e.g., always choosing to process the node with the best

bound, can be used when there exists a good bound on the optimal objective ful).ction

18

value. This approach tends to minimize the size of the search tree. In practice, a

combination of depth-first and best-first search is implemented by diving down the search

tree to find a feasible solution and then choosing to process the node with the best bound.

4.7 Overall Algorithm

As detailed in the previous sections, branch and bound relies on a divide and conquer

strategy to explore the finite space of feasible integer solutions. At every node in the

branch and bound tree, beginning with the root node, we perform the following steps:

1. Perform node processing by solving a relaxation of the current problem.

2. Evaluate the node according to the pruning rules. If the node is feasible, proceed

to step 3. If the node is infeasible proceed to step 4.

3. Choose a fractional variable to branch on.

4. Choose a node for processing according to the search procedure and return to

step 1

The basic branch and bound algorithm described above can be augmented to specify

more unique search strategies. One idea is to create more complex branching rules by

branching on sets ofvariables. Another idea, implemented in branch and cut algorithms,

is the addition of valid inequalities or cuttingplanes to each node of the search tree. The

cutting planes tighten the relaxation by eliminating fractional solutions, leading to a

closer approximation to the convex hull of integer solutions.

J9

, ..

5. Problem Description

The production and distribution planning problem at Air Products and Chemicals,

Inc. (APCI) is to determine a minimum cost production plan and distribution framework

for a product subject to resource constraints on the plants, delivery fleets, and drivers.

The production and distribution network under consideration is composed ofproduction

plants, fleets ofvehicles, driver pools, and customer zones. There is an existing set of

plants across the United States and Canada that can be used for production, and.APCI

also has its own fleet ofdelivery vehicles, some ofwhich are located at product~on plant

sites. Each fleet is co-located with a pool of drivers that can be used in the delivery

process. The customer demand is grouped into a few large geographical regions, and

within a region the demand is grouped into clusters called customer zones. The model
~

does not accommodate individual customer demands because it would simply be too

cumbersome and is only marginally beneficial.

Finally, the travel links that traverse the production and distribution network are

based on a pre-specified set of "movements" that dictate allowable combinations ofplant,

fleet, and customer zone. Movements are generated only for customer zones that incur

demand in a particular period. They are useful in eliminating undesirable pickup and

delivery combinations.. There are three different types ofmovements that can occur, and

they are illustrated in Figure 2.

20

Two-leg

Four-leg

Figure 2: Types ofMovements

Three-leg

I A two-leg movement can only occur when a delivery uses a co-located plant and fleet

to satisfy demand in a customer zone. The fleet picks up product at its base, travels to the

-
customer, and then retums"to where it started. Three-leg movements occur when a plant

and fleet are not co-located. The fleet begins at its base, travels to a plant to pick up

product, and then delivers to the customer zone before returning home. Finally, four-leg

movements work as follows: co-located plant and fleet are used to satisfy a customer

zone, but before returning to its base the same fleet picks up at a different plant and

delivers to a second customer zone.

APeI uses a hierarchy ofthree different planning models to determine the production,

fleet assignment, and driver utilization for liquid and bulk product. The hierarchy

consists of a long term model, with a time horizon of several years to guide the

company's strategic plan; a mid-term planning model solved over a period of months for

budgeting; and an operational planning model solved on a monthly basis to guide the

21

actual production and distribution. In this paper we are concerned with operational

planning and therefore our model deals with a planning horizon of one month.

Currently, APCI models the problem described above as a linear program, and solves

the linear programming relaxation using a custom built application called Linear

Programming System (liPS). liPS interfaces with SQL databases to filter and obtain

data, thus creating a case or a specific data set. Once the case is created, liPS sends the

data to Dash Optimization's XPRESS-MP software, which creates the model code, solves

the problem using a barrier method, and sends the solution back to liPS for reporting.

The solution is examined and the variables relevant to number of trucks, number of

drivers, etc. are rounded to be integer. The actual mathematical model used in the process

is proprietary, but we provide a simplified conceptual model to help characterize the

problem. The conceptual model does not include all of the decision variables and

constraints that are addressed in the full implementation at Air Products.

To sum up, each month the firm has several production decisions to make, namely:

which plants to use, how much product to produce at each plant, and how much product

to purchase from competitors. On the distribution side, we must determine the volume of

prodl~ct to ship between plants and customer zones, as well as which fleets to use for each

delivery. Note that the model determines the customer zone demand that a particular

fleet and driver pool will satisfy, but not the routing sequence that will take place for the

fleet over the course of the planning period. The detailed distribution scheduling

decisions are carried out by a scheduler using a separate modeling system.

The next few tables describe the notation used in the linear program. First, we define

the sets used throughout the problem:

22

<

S = The set of all plants.
F = The set of all fleets.
D = The set of all driver pools.
C = The set of customer zones.

The decision variables used are as follows:

Production
~ = Volume ofproduct to produce at plant I
Yi = Binary operating variable for plant I

Variables C = Volume ofproduct to purchase from competitors for plant i
Ziejf= Volume delivered from plant i to customer zone C returning to
plant} using fleet{

Distribution Wiir=- Empty return trip from plantj to plant i using fleet.!
Variables Mr= Total distance traveled by fleetf

Hr= Total delivery time for fleet{
Ld = Total loading and unloading time by driver pool d

The'costs associatedwith the decision variables are:

Production
Costs

Distribution
. Costs

Finally, we have some additional problem parameters:

Ii = minimum desired production for plant i
Ui = maximum production capacity for plant i
de = demand at customer zone c
Cr = capacity ofvehicles in fleet{
td= driver hours available in driver pool d (driver hrs/day *# of drivers * # of days)
tr= fleet hours available in fleet {(vehicle hrs/day * # ofvehicles * # of days)
~ii = one way distance between locations i andj
tii = one way driving time between locations i andj
lJr=average loading time for fleet {

23

Using the notation described on the previous page, we arrive at the following mixed

integer program.

minLP;X; +q;Y; +o;C; + L L(md +vf)Mf +(21d+ef)Ld
;eS deD feF

X; +C; - LLLZ;ej(~ 0
eeG jeS feF

LLLZ;ej(-de ~ 0
;eS jeS feF

ViES

ViES

ViES

VCEC

(1)

(2)

(3)
~

(4)

M f =LLL (8;e +8je XZ;ej(IC f)+8ifWijf
;eS eeG jeS

LL LZ;ej/ + Wijf - Zjeif - Wjif =0
eeG jeS feF

Y; E 0.. 1

24

VfEF
(5)

VfEF
(6)

VfEF
(7)

V d ED,f=d
(8)

V fEF,d=f (9)

ViES (10)

(11)

ViES

ViES

V i,jES, V CEC, V fEF

VfEF

VdED

The objective of the problem is to minimize fixed and variable production costs,

outsourcing costs, mileage costs, loading and unloading costs. Constraint I prevents

production from occurring at a plant that is not operating and ensures that production at

plant i does not exceed capacity. Similarly, constraint 2 ensures that some minimum

level ofproduction is met if plant i is in operation. The third constraint enforces that the

amount ofproduct shipped to customer zones must be less than or equal to the total

product produced or purchased at a plant. Constraint 4 provides that enough product is

shipped into a zone to meet the customer zone demand. Constraints 5 and 6 calculate the

total miles and driving hours that a fleet is used, respectively, and constraint 7 calculates

the tot~lloading and unloading time for fleet! Constraint 8 states that the total driving

time and loading/unloading time cannot exceed the driver hours available in" driver pool

d. Similarly, constraint 9 ensures that driving, loading, and unloading time does not

exceed the total time available for fleetf Constraint 10 is a flow balance constraint for

three-leg movements. Finally, constraints 11 are the non-negativity and binary

constraints on the decision variables.

As stated before, the model presented in this paper is a simplified version of the

actual model. We have chosen to OJ;nit several realities that would make the

mathematical model more complicated, for example: start-up costs for dormant

production sites, the trade-offbetween inexpensive and expensive production resources,

and outsourcing drivers at an additional cost. We do not consider the option of

purchasing new vehicles or hiring new drivers. Finally, inventory was not considered

because the product in question is usually only produced to satisfy contractual demand

and is not stored over time.

25

6. Constraint Programming Approach

6.1 Formulation

The constraint programming formulation presented in this paper was created using

expert knowledge ofAPCI's planning problem to deduce patterns ofproblem solution

and implementation. The biggest observation guiding the structure of the formulation is

that, with few exceptions, solutions to the existing linear programming problem involve

each customer zone being sourced by one single production facility. Past solutions show
'1

that only those customer zones with particularly high demand were supplied by more

than one production facility, and all other cus~omer zones had their full demand supplied

by a single production facility. This solution structure brings to mind the generalized

assignment problem, which has historically been solved effectively using the tools of

constraint programming. To leverage this, we created a constraint programming

formulation that assigns one plant as a supplier and one fleet as a shipper to each

customer zone so that no demand splitting occurs.

Based on historical data, we also notice that the set ofopen production facilities is

very stable, meaning that the set ofplants that are open for production does not change

much over time and decisions to open and close production sites are made infrequently.

With this in mind and since the focus of this paper is on operational planning, we have

eliminated the binary ~ variables from the constraint program.

A third observation gathered from the data is that the fleets and driver pools are

geographically co-located. Thus, we can do away with the set D of drivers, and interpret

each fleet in F as having both vehicles and drivers, each with their own resource.

constraints. This eliminates one set of subscripts and makes for a more readable

26

program. When a fleet is assigned to distribute product to a customer zone, use ofboth

the vehicles and the drivers is implied.

Having described some of the modeling considerations, we now cover the notation

used in the constraint program. The 'sets are defined as follows:

P = The set of all plants.
F = The set of all fleets and driver pools.
C =The set of customer zones.

As mentioned before, several variables presented in this formulation ta.ke on values

by assignment. We use variables oftheform

Supplier[c} = p and Shipper[c} = /

in which one plant p is assigned to supply the full demand of customer zone c, and one

fleet/is assigned to deliver the full demand of customer zone c. Each variable has a

specific domain from which it is assigned a value. The variables and their domains are:

Variable Domain
Supplierc = plant assigned to supply customer zone c demand P
Shipperc = fleet assigned to ship customer zone c demand F
Milesf= total miles traveled by fleet! Integers in

O..maxMiles
DriveMinutesf = total driving minutes for fleet! Integers in

O..maxMinutes
LoadMinutesf = total loading/unloading minutes for fleet/ Integers in

.O..maxLoadMinutes

In the domains'above, the upper bounds maxMiles, maxMinutes, and maxLoadMinutes

are determined heuristically using the problem data.

The cost notation and other parameters are the same as presented in the last

section and will not be repeated here. The only additional parameter we need is trips[c},

which is the number of trips needed to satisfy the demand at customer zone c. This

27

parameter is calculated by dividing the demand of customer zone c by the vehicle

capacity and rounding up to the nearest integer.

Following Lustig [9] and others, we present the constraint program as it would be

written in OPL, Optimization Programming Language. The constraints are numbered for

ease of discussion, but these numbers do not appear in the actual program.
\~

enurn plants = ;
enurn fleets = ;
enurn custzones =...;
int+ pVariableCost[plants] =...;
int+ prodrnin[plants] = ;
int+ prodrnax[plants] = ;
int+ NariableCost[f1eets] =...;
int+ fCapacity = ;
int+ fMinutes = ;
int+ vehicles[f1eets] =...;
~dVariableCost[fleets] =...;

int+ dLoadCost[fleets] =...;
int+ drivers[f1eets] =...;
int+ dMinutes = ;
int+ loadTirne = ;
int+ dernand[custzones] =...;
int+ pfdistance[plants, fleets] =...;
int+ fcdistance[f1eets, custzones] = ;
int+ pcdistance[plants, custzones] = ;
int+ pfdrivingTirne[plants, fleets] =...;
int+ fcdrivingTirne[fleets, custzones] = ;
int+ pcdrivingTirne[plants, custzones] = ;
int+ trips[custzones] =...;
int days =...;

Figure 3: OPL Representation of the Constraint Program Parameters

28

var plants Supplier[custzones];
var fleets Shipper[custzones];
var int+ ProdArray[plants,custzones] in 0..1;
var int+ ShipArray[f1eets,custzones] in 0..1;
var int+ VarProdCost[plants] in O..maxProdCost;
var int+ VarFleetCost[f1eets] in 0.. maxFleetCost;
var int+ VarDriverCost[f1eets] in 0.. maxDriverCost;
var int+ LoadUnloadCost[f1eets] in 0.. maxLoadCost;

minimize sum(p in plants) VarProdCost[p] + sum(f in fleets) VarFleetCost[f] +
VarDriverCost[f] + LoadUnloadCost[f]

subject to{
1. forall(p in plants)

VarProdCost[p] = sum(c in custZones) VariableCost[p]*ProdArray[p,c]*demand[c];

2. forall(f in fleets)
VarFleetCost[f] = ~um(c in custzones) ShipArray[f,c] * (pfdistance[Supplier[c],f] +
pcdistance[Supplier[c],c] + fcdistance[f,c]) * NariableCost[f] ~ trips[c];

3. forall(f in fleets)
VarDriverCost[f] = sum(c in custzones) ShipArray[f,c] * (pfdistance[Supplier[c],f] +
pcdistance[Supplier[c],c] + fcdistance[f,c]) * dVariableCost[f] * trips[c];

4. forall(f in fleets)
LoadUnloadCost[f] = sum(c in custzones) ShipArray[f,c] * trips[c] * loadTime * 2 *
dLoadCost[f];

5. forall(p in plants, c in custzones) (Supplier[c]=p) => (ProdArray[p,c]=1);

6. forall(f in fleets, c in custzones) (Shipper[c]=f) => (ShipArray[f,c]=1);

7. forall(p in plants) sum(c in custzones) ProdArray[p,c]*demand[c] <= prodmax[p]*days;

8. forall(p in plants) sum(c in custzones) ProdArray[p,c] >= prodmin[p]*days;

9. forall(f in fleets)
sum(c in custzones) ShipArray[f,c]*trips[c]*(pfdrivingTime[Supplier[c],f] +
pcdrivingTime[Supplier[c],c] +fcdrivingTime[f,c]+loadTime*2)<= drivers[f]*dMinutes;

10. forall(f in fleets)
sum(c in custzones) ShipArray[f,c]*trips[c]*(pfdrivingTime[Supplier[c],f] +
pcdrivingTime[Supplier[c],c] + fcdrivingTime[f,c] + loadTime*2) <=
vehicles[f]*fMinutes*days;

};

search{ generate(Shipper); generate(Supplier); };

Figure 4: OPL Representation of the Constraint Program

29

Constraint 1 calculates the production cost at each plantp. Constraints 2 and 3

calculate the per-mile cost for each fleetfand for each driver in fleet}; respectively.

These last two constraints use a CP technique known as variable subscripting, described

in Section 4.2. Constraint 4, also a calculation, computes the total time spent loading and

unloading by a fleet! Note that the structure imposed by constraints 3 and 4 allows for

the modeling of two and three-leg movements but not four-leg movements. Constraints 5

and 6, two more nonlinear constraints,. use logical if-then modeling to enforce

relationships between variables. Constraint 5 states that "ifplant p is the supplier of

customer zone c, then assign a 1 to row p, column C ofthe variable ProdArray."

Similarly, constraint 6 ties together the shipper assigned to customer zone c and the

variable ShipArray. The purpose of these two constraints is to create a record in memory

of the customer zones serviced by each plant and fleet, to be used with capacity

constraints later on. The problem can be modeled without these extra ProdArray and

ShipArray variables using logical constraints, but their presence aids constraint

propagation and increases solution speed. Constraint 7 ensures that plant p can satisfy

the demand assigned to it based on its capacity over the planning period, and constraint 8

is a minimum production requirement for each plant. Constraints 9 and 10 are more

nonlinear constraints that use the variable subscripting technique. They constrain the

variable assignments according to the number of driver hours and fleet hours that can be

used in the planning period.

We have made use of several constraint programming modeling constructs in the

constraint program presented here, including the use ofvariable subscripting and the

modeling of logical conditions. In addition, we purposely created several cost variables

30

instead of calculating the total cost in the objective function. Separating out the costs

allows for better constraint propagation throughout the program.

The search procedure for the constraint program uses OPL's generate function.

The generate(variable) statement instiucts the solver to create the search tree according

to the first-fail principle we described in Section 3.4. The solver chooses the variable

with the smallest domain size and assigns to that variable the smallest value in its

domain, since this is a minimization problem. In the computational results section, we

experimented with other search procedures for this problem, including the use of a "fir~t

feasible" .search procedure and a maximal regret heuristic.

31

6.2 Search Tree Example

We use an example problem with 3 plants, 2 fleets, and 3 customers to illustrate .

the construction and exploration of the CP search tree. Suppose we hilVe data for the

problem as shown in Figure 5.

plants = {PlantA, PlantB, PlantS};
fleets = {FleetM, FleetC};
custZones = {NewMexico,Texas, Alabama};

pVariableCost = [39, 43, 10];
prodmin = [2, 2, 3];
prodmax = [3, 3, 3];

NariableCost =[7,7];
fCapacity = 3;
fMinutes = 9;
vehicles = [5, 7];

dVariableCost = [49,47];
dLoadCost = [32, 31];
drivers = [6, 10];
dMinutes = 78;
10adTime = 1;

demand = [20, 30,24];

..

pfdistance = [[14, 7], [14, 7], [5, 6]];
fcdistance = [[21, 17, 11], [11, 6, 5]];
pcdistance = [[12, 5,4], [12, 5,4], [16, 12, 8]];

pfdrivingTime = [[16, 8], [16, 8], [5, 7]];
fcdrivingTime = [[46, 37, 24], [23, 14, 13]];
pcdrivingTime = [[27, 12,9], [27, 12,9], [36,27, 18]];

trips = [7, 10, 8];

days = 31;

Figure 5: Data for the CP Search Tree Example

32

The search tree produced in ILOG's Solver is shown in Figure 6, below. The nodes are

numbered to reflect the order in which they are explored. Black nodes indicate choice

points, light grey nodes are feasible solutions to the problem, and dark grey nodes

indicate failures. Note that the failures represent both infeasible solutions and nodes that

have been pruned due to sub-optimality.

Figure 6: CP Search Tree Example

The effects of constraint propagation and domain reduction can be seen in the root

node of the search tree. Constraint 9 of the CP,the constraint on driver hours, is·used to

eliminate Fleet M from the domain of Shipper[Texas], since the minimum total delivery

time over all possible suppliers is 10 * (16 +12 +37 + 1 * 2) = 670, but Fleet Mis

constrained to 468 driver hours per period. Usirig this information, the domain of

Shipper[Texas] is reduced to Fleet C, and the propagation of this information leads to the

assignment ShipArray[Fleet C, Texas]=1. The partial assignment is used to re-calculate

the fleet cost lower bounds using logical implication. The new delivery cost domains are:

Fleet VarFleetCost VarDriverCost LoadUnloadCost
M [0..4795] [0:.33565] [0..960]
C r1050..6489] [7050..43569] [620..1550]

33

From the root node, the search procedure branches on the domains of Shipper[New

Mexico] and Shipper[Alabama] as dictated by the search strategy generate, since the

Shipper variables have the smallest domains. Due to the branching, in node 1 we have

Shipper[New Mexico] = Fleet M and Shipper[Alabama] = Fleet C; these assignments

were made according to the generate strategy since they are most likely to fail. The

reduced domains are communicated to the constraints and the partial assignment is found

to be infeasible, since Fleet C only has 110 driver minutes left per period and the

/

assignment ofFleet C to Alabama will require at least 240 minutes. The search tree next

explores node 2, where branching has dictated that Shipper[NewMexico] =Fleet C and

Shipper [Alabama] = Fleet M. Consequently, as a result of constraint propagation and

domain reduction, the ShipArray variables have all been fixed at 0 or 1, corresponding to

the Shipper assignments. The assignments are propagated to the constraints that contain

.Shipper and ShipArray variables, and the information is used to calculate the new

delivery costs below.

Fleet VarFleetCost VarDriverCost LoadUnloadCost
M [1120..2296] [7840..16072] 512
C [2030..4529] [13630..304091 1054

All the Shipper and ShipArray variables have been assigned, and so we branch on

Supplier domains from node 2 as specified by the search strategy. In node 3 the domain

Supplier[New Mexico] has been reduced to {Plant A} and the domain Supplier[Texas]

has been reduced to {Plant A, Plant B}. Node 4 is created by further branching on the

domain of Supplier[Texas], which is reduced to {Plant A}, and at node 5 the branching

has fixed Supplier[Alabama] = Plant A. At this point all of the variable domains have

34

been reduced to singletons, and we have the first full solution with an objective value of

ZCP = 38504. This objective value is retained as an incumbent solution and is used as an

upper bound to prune search nodes. For example, node 6 is pruned because its ·objective

value Zcp = 47560 is greater than the incumbent solution. Branching, domain reduction,

and constraint propagation continue as described above. To summarize, node 8 produces

the second feasible solution with the new objective bound Zcp = 35568. The rest of the

search tree is explored and nodes are pruned due to sub-optimality. The search has

exhausted all of the options and the last best feasible solution, from node 8, is the optimal

solution to the problem.

35

7. Integer Programming Approach

7.1 Formulation

For comparison purposes, we present a binary integer program of the production

planning and distribution problem. The input data and parameters are identical to those

presented in Figure 2 of Section 6. For ease of comparison with the CP model, the BIP is

presented in the OPL language below.

subject to{

1. forall(c in custzones)
sum(p in plants, f in fleets) Delivery[p,f,c] =1;

2. forall(p in plants)
sum(f in fleets, c in custZones) Delivery[p,f,c] * demand[c] <= prodmax[p] * days;

3. forall(f in fleets)
sum(p in plants, c in custzones)

((2 * 10adTime + pfdrivingTime[p,f] + pcdrivingTime[p,c] + fcdrivingTime[f,c]) *
Delivery[p,f,c] * trips[c]) <= drivers[f] * dMinutes;

4. forall(f in fleets)
sum(p in plants, c in custzones)

((2 * 10adTime + pfdrivingTime[p,f] + pcdrivingTime[p.c] + fcdrivingTime[f,c]) *
Delivery[p,f,c] * trips[c]) <= vehicles[f] * fMinutes * days;

Figure 7: OPL representation of the Binary Integer Program

The decision variable Delivery[plants,fleets,custZones] is assigned the value 1 if

the full demand of customer zone c is supplied by plantp using fleet}; and 0 otherwise.

36

The objective is to minimize total production, fleet, and driver costs subject to several

c?nstraints. Constraint I enforces t~e "no demand splitting rule," by allowing only one

combination ofplant and fleet to equal! for each customer in the Delivery[p,f,c] matrix.

Constraint 2 is a maximum production capacity constraint for each plant. Constraint 3 is

a restriction on the total loading, unloading, and driving time per driver pool. Similarly,

constraint 4 restricts the total loading, unloading, and driving time per fleet.

7.2 Search Tree Example

We use an example problem with 3 plants, 3 fleets, and 6 customers to illustrate

the construction and exploration ofthe BIP search tree. CPLEX is able to solve this

problem in the root node of the search tree, so we turned off the node presolve for this

example. This essentially prevented CPLEX from using its own domain reduction

techniques at each node.

Suppose we have a set of data and parameters relevant,to the following

enumerated sets:

plants = {Plant A, Plant P, Plant S}

fleets = {Fleet D, Fleet G, Fleet N}

custZones = {Florida, Pennsylvania, Ohio, Alabama, New York, Texas}

The search tree that would be generated to solve the BIP is shown in Figure 8 on the next

page. The nodes are numbered to reflect the order in which they are explored.

37

Figure 8: BIP Search Tree Example

As in Section 6.2, we will describe a few steps of the search tree and then

.summarize the rest. At the root node, an LP relaxation of the BIP is solved to obtain the

objective value ZLP = 583.2. There are two variables in the root node that have fractional

values: Delivery[Plant S, Fleet D, Florida] = 0.77 and Delivery[Plant S, Fleet G, Florida]

= 0.23. In this problem, fixing a variable to 1 causes eight other variables to be fixed at

0, so we continually select branching variables that are closest to 1 and set them to 1.

Therefore, from the root node, we choose to branch by setting Delivery[Plant S, Fleet D,

Florida] = 1 in node 1, and Delivery[Plant S, Fleet D, Florida] = 0 in node 2. With the

added constraint, the LP relaxation at node 1proves to be infeasible, so node 1 is pruned

and we move on to node 2. Solving the LP relaxation at node 2 gives the fractional

values Delivery[Plant S, Fleet D, Ohio] = 0,41 and Delivery[Plant S, Fleet G, Ohio] =

0.59. We branch on the fractional solution by creating node 3 and adding the constraint

Delivery[Plant S, Fleet G, Ohio] = 1. The search proceeds in this same manner, i.e.

solving the LP relaxation and branching on fractional variables for nodes 4, 6, and 7, until

a feasible integer solution is found at node 9. Before reaching node 9,-fiodes 5 and 8

38

were pruned by infeasibility. The objective value at node 9, ZIP = 611, is now used as an

upper bound to prune nodes that are suboptimal. At node 10, another feasible integer

solution is found and the bound is updated to ZIP = 590. The bound is updated to ZIP =

588 at node 11 since another feasible integer solution has been found. Bounding and

branching occur at nodes 12 through 15 and node 16 is pruned due to infeasibility. Node

17 is pruned by suboptimality since its objective value, ZLP = 599.8, is greater than the

current best objective. At node 18 the bound is updated to ZIP = 587, and then node 19 is

pruned because its objective value, ZLP =588.7 is greater than ZIP. Finally, at node 20,

the feasible integer solution ZIP = 586 is found, and this is the optimal solution since there

are no more nodes to explore.

39

8. Computational Testing and Results

Ten test cases were created using actual data from Air Products and Chemicals. Each

test case represents a 12-facility network, consisting of3 plants, 3 fleets, and 6 customer

zones. The constraint programs were solved using ILOG Solver and the binary integer

programs were solved using CPLEX MIP. We use the test cases to compare the solution

times and search tree size for the constraint program and the binary integer program.

Solution Times Per Case

I-:-cp I
-SIP

Figure 9: Solution Times for the CP and BIP-Models

Figure 9 graphs the solution times per case for both the CP and BIP models. 'The CP

solution times ranged from 0.43 seconds to 2.77 seconds, while the BIP consistently

solved in 0.01 or 0.02 seconds for every case. We compare the size of the search trees in

Table 1 on the next page.

40

"
Table 1: Search Tree Size Per Cas9
CP Model . SIP Model

Case Choice Feasible
Number Points Failures Solutions Total Nodes Nodes Iterations

1 1514 1489 26 3029 0 6
2 549 515 35 1099 0 0
3 980 943 38 1961 0 0
4 6942 6930 13 13885 0 0
5 591 505 87 1183 0 0
6 352 346 7 705 0 0
7 1019 996 24 2039 0 0
8 359 339 21 719 0 0
9 374 326 49 749 0 0
10 1675 1659 17 3351 0 0

The size of the CP search tree varies widely over the ten cases, while CPLEX solved the

BIP in the root node of the search tree for every instance. Figure 10 shows that the size

of the CP search tree and the solution time are directly related.

Size of Tree VS. Solution Time

• CP

- Linear (CP)

15000100005000

0.5

OF'::':':":::::'::"::"'--l::.:..422:::.:..l~':":':"':":'i.;22£.:.::L£~~

o

(l)
E 1.5
i=
c 1
o
;;
~

'0en

~ 3 TI~~~~~~~~~~~~~~~

~ 2-

Nodes in Search Tree

Figure 10: Size ofTree Vs. Solution Time for the CP Model
if .

41

We examined the data sets that incurred large search trees and high solution times and

determined that those cases were loosely constrained in terms of resources. Since the

amount of customer demand was low compared to the production, driver, and fleet

capacities, there were many possible combinations to explore in the search tree.

More extensive testing was conducted using various branching rules and search

procedures on the 10 test cases. For the constraint program, we explored two additional

search procedures in addition to the "first-fail" procedure outlined in Secti0116.1. The

first additional search procedure, which we call "first-feasible," appears in OPL as

follows:

search{
forall(c in custZones ordered by decreasing demand[c])

tryall(f in fleets ordered by decreasing drivers[fj)
Shipper[c] =f;

};

The "first feasible" search identifies the customer zone c with the highest demand,

and attempts to assign fleet/with the most drivers to Shipper[c]. The idea behind this

procedure is that since customer zones with the highest demand will take up the most

resources, incur the most trips and possibly the most cost, they should be taken care of

first. By ordering the fleets in decreasing order of the number of drivers, we have the

best chance offinding a feasible assignment of fleet to customer zone.

The second search procedure is based on a maximal regret heuristic as follows:

search {
forall(f in fleets ordered by decreasing regretdmin(VarFleetCost[fj))

tryall(c in custZones ordered by increasing fcdrivingTime[f,c])
Shipper[c] = f;

};

42

The maximal regret heuristic identifies the fleet with the maximal regret, meaning
I

the fleet with the largest difference between the two lowest values of its VarFleetCost

domain. Once this fleet is identified we rank the customers in order of the nearest driving

time to the longest driving time with respect to the fleet, and pair up the fleet and

customer zone that are closest. In essence, we attempt to find the least cost solutions

more quickly by pinpointing the fleet with the most to lose if it doesn't get its cheapest

assignment, and pairing up fleets and customers that will incur low cost because they are

nearby.

In addition to the two new search procedures, we tried a best-first search strategy

for exploring the constraint programming search tree. The following figures show the

results ofusing depth first search and best first search for all three search procedures.

Solution Times for Depth-First Search

--+- First Fail

- First Feasible
Max Regret

1 2 3 4 5 6 7 8 9 10

Case Number

Figure 11: Solution Times Per Case for the Depth First Search

43

Solution Times for Best-First Search

-+- First Fail

-II- First Feasible

Max Regret

1 2 3 4 5 6 7 8 9 10

Case Number

Figure 12: Solution Times Per Case for the Best First Search

Figures 11 and 12 clearly show that depth-first search is the better search strategy for the

constraint program. It is not surprising that the best-first search performed poorly, since a

good upper bound may not be available at the nodes ofthe search tree.

Since depth-first proved to be the better strategy, we display the solution times for

each case and each search procedure in Table 2 below. The fastest solution time for each

case is displayed in bold print.

Table 2: Solution Times for Best-First Search
Case Number First Fail First Feasible Maximal Regret

1 1.26 1.64 1.1
2 0.54 0.06 0.75
3 1.17 1.26 1.75
4 2.77 3.13 23
5 1.23 0.78 1.61
6 0.44 0.92 3.38
7 0.87 0.68 2.42
8 0.43 0.66 3.59
9 0.64 0.49 1.43
10 0.87 ·1.52 24.31

44

Table 2 shows that the first fail search strategy produced the fastest solutions in 5/10

cases, while the first feasible strategy was also successful by providing the fastest

solutions in 4/10 cases. The maximal regret heuristic does not appear to be a good search

strategy for the production and distribution planning problem.

We were unable to perform additional branching and search strategy

experimentation for the Binary Integer Program, since it solved all of the test cases in the

root node. If the problems had been more difficult to solve, one couldexperi'ment with

several strategies. For example there are several options for node selection, including

depth-first search and best-bound search. If depth-first search is used, the branching

direction can be specified as either "down branch first" indicating a preference for

processing the node corresponding to the rounded down fractional value or "up branch

first" to process the node with the fractional value rounded up. For this problem, we

would expect "up branch first" to produce faster solutions, because fixing a variable to" 1

implies that eight other variables are set to 0, while fixing a variable to °implies nothing.

However, we would in general expect the best-bound search to outperform depth-first

search for the BIP, since it is a "smarter" search procedure that makes use ofbounding to

determine which nodes are the best candidates.

45

9. Conclusions

Several conclusions were reached through this research. First, we conclude that the

binary integer program presented in this paper is a more promising and reliable

alternative than the constraint program for the production and distribution planning

problem at Air Products and Chemicals. While the constraint program allows .for a more
. ~

natural statement of the modee the binary integer program is more compact and has faster

solution times in every case. In addition, the BIP is a better option from a usability

perspective since we do not have to compute variable upper bounds. This contrasts with

the constraint program, where a heuristic bounding procedure must be run to determine

variable uppeibounds every time the data is changed or a new data set is introduced.

The binary integer program presented in this thesis performs well because its linear

relaxation aids the branch and bound tree in several aspects. First, the bounds guide the

search procedure, which leads to an earlier detection of feasible solutions. Second,

information obtained from the LP relaxation allows variable domains to be reduced. The

bounds also allow pruning to occur earlier in the search tree. Lastly, the LP relaxation

can lead to the discovery of feasible solutions without the domain being reduced to a

single point, as in CP.

We also arrive at some conclusions for comparing CP and IP in general. While best-

first search is known to be efficient for integer programming, it does not perform well on

constraint programming problems due to the lack of a bound at the search tree nodes.

Additionally, we find that it is possible to create tailor-made search strategies that are

competitive with the well-known "first-fail" strategy.

46

Future research on this problem should incorporate both constraint programming

techniques and integer programming techniques in a hybrid model. The model should

integrate the logical constructs of constraint programming as "switches" that enforce

constraints from the integer programming model. For example, using the notation from

Section 7.1, a constraint in the hybrid model would be:

(Delivery[p,f,c] = 1) => (Driver Resource Constraint[p,f,c])

Constraints of this form provide a natural representation of the relationships, but they also

can be relaxed and used in a search tree to obtain bounds, thus leveraging the strengths of

both constraint programming and integer programming.

47

Bibliography

[1] Bartak, R. (1999) Constraint programming: In pursuit of the holy grail. In
Proceedings of the Week of Doctoral Students (WDS), Prague, Czech Republic.

[2] Bockmayr, A., Pisaruk, N., and Aggoun, A (2001) Network flow problems in
constraint programming. Principles and Practice ofConstraint Programming - CP
2001, Springer LNCS 2239, 196 - 210.

[3] Christodoulou, G., Stamatopoulos, P. Crew Assignment by Constraint Logic
Programming. Proceedings of the 2nd Hellenic Conference on Artificial Intelligence
SETN-2002 (Companion Volume), pp. 117-127, Thessaloniki, 2002

[4] Darby-Dowman, K., Little, L., Mitra, G., and Zaffalon, M. (1997) Constraint Logic
Programming and Integer Programming Approaches and Their Collaboration in Solving
an Assignment Scheduling Problem. Constraints, 1(3),245-265..

[5] Dincbas, M., Simonis, H., and van Hentenryck, P. Solving a Cutting-Stock problem
in constraint logic programming. In R. Kowalski and K. Brown, editors, Logic
Programming, pages 42-58. 1988.

[6] Hooker, IN. (2000) Logic-Based Methodsfor Optimization: Combining Optimization
and Constraint Satisfaction. John Wiley & Sons, New York.

[7] Hooker, IN. (2001) Logic, Optimization, and Constraint Programming.

[8] Kim, H.-l and Hooker, J. N. (2002) Solving fixed-charge network flow problems
with a hybrid optimization and constraint programming approach. Annals ofOperations
Research, 115, 95-124.

[9] Lustig, I.l and Puget, IF. (2001) Program Does Not Equal Program: Constraint
Programming and Its Relationship to Mathematical Programming. Interfaces, 31(6),29
53.

[10] Land, A, Doig, A (1960) An automatic method for solving discrete programming
problems. Econometrica, 28(3),497-520.

[11] Marriot, K., Stuckey, PJ. (1998) Programming With Constraints. MIT Press.

[12] Nemhauser, G.I., Wolsey, L.A (1988) Integer and Combinatorial Optimization.
John Wiley & Sons, New York.

[13] Ottosson, G., Thorsteinsson, E.S., and Hooker, IN. (2002) Mixed Global'
Constraints and Inference in Hybrid CLP-IP Solvers. Annals ofMathematics and
Artificial Intelligence, 34.

48

t

[14] Puget, J.F. and Lustig, I.J. (2001). "Constraint programming and maths
programming," The Knowledge Engineering Review, 16(1),5-23.

[15] Smith, B.M., Brailsford, S.C., Hubbard, P.M., and Williams, H.P. (1996) 'the
Progressive Party Problem: Integer Linear Programming and Constraint Programming
Compared. Constraints, 1, 119-138.

[16] Timpe, C. (2002) Solving planning and scheduling problems with combined integer
and constraint programming. OR Spectrum, 24(4), 431-448.

[17] Van Hentenryck, P. (1999) The OPL Optimization Programming Language. MIT
Press, Cambridge, Massachusetts.

[18] Van Hentenryck, P., Perron, 1., and Puget 1.-F. (2000) Search and Strategies in
OPL. ACM Transactions on Computational,Logic, 1(2), 285-320.

[19] Wallace, M. (1998) Constraint Programming. In: Liebowitz, 1. (ed.), The Handbook
ofApplied Expert Systems, CRC Press, 1998.

49

Vita

Shelley Heist, daughter ofMargaret and John Heist, was born and raised in the

Lehigh Valley ofPennsylvania. She attended Northampton Area High School and went

on to the Pennsylvania State University, graduating in May 2000 with a Bachelor of

Science degree in Industrial Engineering. Shelley was then accepted at Lehigh

University to pursue graduate studies. She will use her Masters degree in Industrial and

Systems Engineering in her career as an Analyst for marketRx, Inc. of Bridgewater, NJ

beginning in June 2003. Shelley is engaged to marry Mark Sherman on August 9 ofthis

year.

50

END OF

TITLE

	Lehigh University
	Lehigh Preserve
	2003

	A comparison of constraint programming and integer programming for an industrial planning problem
	Shelley M. Heist
	Recommended Citation

	00503
	00504
	00506
	00507
	00508
	00509
	00510
	00511
	00512
	00513
	00514
	00515
	00516
	00517
	00518
	00519
	00520
	00521
	00522
	00523
	00524
	00525
	00526
	00527
	00528
	00529
	00530
	00531
	00532
	00533
	00534
	00535
	00536
	00537
	00538
	00539
	00540
	00541
	00542
	00543
	00544
	00545
	00546
	00547
	00548
	00549
	00550
	00551
	00552
	00553
	00554
	00555
	00556
	00557
	00558
	00559
	00560
	00561

