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Abstract

A model was developed to characterize the behavior of a packed-bed reactor

designed for the steam heating and decomposition of municipal solid waste (MSW).

The process described uses direct steam injection to heat newsprint under high

pressure. The resulting product is solid carbon in slurry, which is used as a feedstock

for a commercial gasifier. The model detailed in this work can be used to examine

gas flows in the bed, as well as liquid water movement, vapor-liquid equilibrium, and

carbon production from MSW decomposition.

The governing equations were solved using the numerical method of lines

approach. The results presented are pressure, temperature, and composition histories

of the bed. The spatial distributions of these respective quantities are also presented,

at specific points in time. Results are shown for one- and three-dimensional

axisymmetric systems.

The results shown indicate that the solution of the equations by this method

was successful in simulating the behavior of a packed-bed reactor. Successful

simulation .required proper numerical treatment, including the use of upwind

differences for convected quantities. Numerical accuracy is increased with finer grid

definition, although this must be balanced against severe computational demands for

three-dimensional problems.

- 1 - -;,····":'n~".·
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Chapter 1

Introduction

1.1 Background

Useful work on the nature of thermal dispersion and gas movement in finite

packed-bed reactors remains largely empirical in nature. Useful correlations have

been introduced in the work of Wakao and Kaguei [1]. Intensive numerical

treatment of packed-bed systems behavior waS investigated in a general sense by

Thorsness and Kang, in· the context of underground coal gasification [2], [3]. The

conservation equations were solved for gas and solid species; as well as energy. In

these works, it is noteworthy that Thorsness and Kang chose to model gas velocity

using an expression in pressure, derived from the ideal gas law, as opposed to using

bed gas distribution.

The first substantial numerical work on the system of concern was undertaken by

Thorsness, using ASPEN to model the process dynamically as a lumped unit [4]. This

model solved the material and energy balances, without details of the internal spatial

variations in the bed. Thorsness later went on to apply a general packed-bed

simulator to the problem, resulting in refined projections, including detail on the

internal behavior of the system [5]. Again, equations describing conservation of solid

. -_ ..-----_.-. "--_.. -.---- - .--- - _._~- --.-- --_ _•..... -- ~ --- -----~- -- -- ----

'.-,i.
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and gaseous species and of energy were solved for axisymmetric three-dimensional

reactors of various sizes. In this case, gas flows were modeled using bed gas

distribution rather than the ideal-gas pressure relationship. Importantly, this work

assumed an immobile liquid phase, described as a tractable and useful limiting case.

Thotsness approximated-vapor-liquid.equilibrium'using rapid mass-transfer between

the phases, which was driven by relative concentration differences.

Based on these works, Johnson and Hindmarsh began development of a more

specialized code [6] that added detail by allowing for the mobility of the liquid phase,

including the filling of external and internal porosities. This model attempted to use

a temperature advection term to account for convection energy transport. Finally, the

code used an algebraic constraint to account for vapor-liquid equilibrium, as

Thorsness did previously. This feature necessitated the use of a differential-algebraic

equation solver (DASSL).

1.2 Motivation

This project was undertaken to provide a code specifically developed for the

MSW process. Its goals, beyond solving the basic conservation equations, were

characterization of the vapor-liquid phase change to include heat effects, proper

characterization' of steam injection and extraction, and the ability to predict liquid

-3-



phase flows. To meet these ends, a fast and robust code was developed that will serve

as a good platform for future detailed development.

With refined treatments of the thermodynamics involved in the liquid-vapor

system and the inclusion of a "headspace" description, tllis.modeL will 'Serve as the

basis for a thorough understanding of the process. The result is the ability to

optimize, control, and scale up the system.

1.3 Outline ofThesis

This thesis is divided into three parts: the analytical development of the model,

the description of the thermodynamics involved and relationships used, and the

method ofnumerical formulation and solution.

Chapter 2 describes the development of the governing partial and ordinary

differential equations that comprise the basis for the model. These equations are

basic conservation equations similar to those found in previous work. This chapter

also includes the development of an "enthalpy advection" term, similar to the

temperature advection description often found in convective heat transfer analysis.

Chapter 3 describes the thermodynamic properties used in the code, including the

underlying assumptions of the materials' thermophysical properties. The heat rates

associated with the reaction are described, and the model for vapor-liquid heat and

mass transfer is detailed.

-4-



Chapter 4 describes the method of discretization of the governing equations,

including suitable treatment of the convected tenns and the boundary conditions.

Finally, chapter 5 discusses the results ofthis work, including relevant conclusions, as

well as proposals for future work.

- 5 -



Chapter 2

Development of Governing PDE's

2.1 Solid Species Conversion

The desired process is the conversion of solids, S, the raw material composed of

newsprint, to carbon, C, the slurried solid-carbon product. The conversion is modeled

as a single irreversible reaction whose chemistry is mown. The dynamic behavior of

the decomposition is modeled as first-order decay using an Arrhenius constant. The

reaction proceeds as follows:

(2.1)

where <x'j are the stoichiometric coefficients of the reaction,.listed in appendix A. The

symbol NG represents the noncondensible gases involved in the process, described

and handled in section 2.2. The source rates ofthe species, Sj, are then:

(2.2)

i

where the Arrhenius rate rA is expressed as

...,.



-T.

rA = Ps ·A·e T (2.3)

In these equations, A is the Arrhenius rate constant, and Ta is the activation

temperature. The rate is also dependent on the bed· density of the solid (Ps),

expressed in kilograms of solid per cubic meter ofbed space.

The solid phases, S and C, are assumed immobile. Therefore, the generation

expressions make up ordinary differential equations (ODE's) for these species, which

are solved directly. Those generation terms for the gas and liquid species are inserted

as source terms into the respective partial differential equations (PDE's).

2.2 Gaseous Species Conservation

Gas species motion is important to the model, in that it serves as the primary

mode of heat transfer in the vessel. The Navier-Stokes equation from Bird, Stewart,

and Lightfoot [7] is applied after Thorsness [5]:

a~i) =-v .(V¢Ci)+Si +Qi +V . (CD .VYi)

where

(2.4)



Ci = Concentration ofgas species i (mol/m3 ofgas space)
C = Total gas concentration
~ = Bed porosity (m3 gas/ m3 bed)
D = Diffusivity
Yi = Mole fraction of gas species (i) in gaseous mixture
v = Interstitial gas velocity (m/s)
Si = Source rate of species (i)
Qi = Rate of introduction ofspecies (i) into the bed

It should be noted that the species introduction term, Qj,. is omitted in the code.

Rather, species injection and extraction are handled in the boundary conditions.

Excepting the source terms, the right-hand side of this equation is simply the

divergence ofthe species flux:

(2.5)

and the form of the substantial derivative is recognized. Interstitial velocity is

described using Darcy's law [2],

where

r =Bed permeability
fl =Gas dynamic viscosity

- 8 -
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P=Pressure

which can be substituted into the conservation expression. This leaves (i) equations

for (i) species plus one unknown, pressure. Rather than using an additional equation

for total gas conservation, matters are simplified by using an equation of state

(chapter 3) to relate pressure to the existing dependent variables: total concentration,

C, and temperature, T.

Two gas species are considered in this code. The first is steam, 8T, which is

modeled as an ideal gas (with properties as described in chapter 4). Besides steam,

the remaining part of the gas phase in the physical system is composed of several

noncondensible gases, in the initial air in the bed and the gases released from the

decomposition reaction. The constituent noncondensible gases include nitrogen,

oxygen, and carbon dioxide [4]. For the purpose of simplicity, these components are

lumped together as "noncondensiblegas", NG. Following the work of Johnson and

Hindmarsh, noncondensible gas is represented adequately using the properties of

gaseous nitrogen alone.

An important feature is that steam is not generated directly from solid

decomposition. Instead, the reaction produces liquid water, which vaporizes as

appropriate. Note that vaporization acts as both a source and a sink (condensation)

term for steam.

~'- .._~._-_ .. , -~ .. - -~------ -
·:·-·-~~~·~;;-,:;~~~~~<~~~::.:;-~~;.~?;;~~:::-~-:':~'.~z~I~~\·~f./r.~'~_':i~s.>l~_.-:i~!J~~~::;'~~::;:~·::;;;:-'<;~::'-;:~T;·.:,·:,:;::;:cl(::;l-:·'>.;~'- .
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For reasons discussed in Section (4.2), it is desirable that these equations be

solved for concentration, in tenns of moles of species i per unit volume of vapor

space. This is as opposed to ~cj, which is the concentration in tenns of moles per

total volume ofthe bed. This necessitates rewriting the PDE's. Substituting equation

(2.5) into equation (2.4), the left-hand side is expanded, which yields...

ae. a¢ -
"'-'+e.-=-\1·j.+s.
'rat 'at "

rearranging tenns,

(2.7)

(2.8)

It becomes necessary to specify an expression for the rate of change of bed

porosity. In this context, the bed porosity, ~, is defined as the fractional volume of

the bed not filled with solids or liquids (though in the next section, this is modified

slightly). Thus, taking the time derivative ofthe free volume:

(2.9)

where the solid production rates have been specified. The liquid concentration rate is

described in section 2.3.
-....._--_._.~_ .._--'_.-
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2.3 Liquid Species Conservation

The convection model for liquid species is of similar form to that of the gaseous

species in section 2.2. The single species described is liquid water, a mobile phase

with source terms closely related to those for steam. The Navier-Stokes equation is

retained from Johnson and Hindmarsh [6]:

(2.10)

(2.11)

where those transport coefficients denoted with (lw) are dependent on liquid

saturation in the bed (see chapter 4). It will be recognized that liquid fl~w occurs

only after the local interior porosity of the bed is completely filled; that is, water that

is held inside the porosity ofthe paper is not mobile. The source term, S\w, is the sum

of the water production rate (via the decomposition reaction) minus the evaporation

rate. Movement of the liquid inside the bed is governed by convection only. The

driving pressure gradient is different from that in the gas convection expression as

static head and capillary pressure are taken into account.

-11-



2.4 Conservation of Energy

The final element of the governing model is the equation for conservation of

energy. Applying the substantial derivative ofthe total enthalpy [5]:

where

hi = Gas specific enthalpy (J/mol)
hk· = Solid/Liquid specific enthalpy (J/kg)
k = Bed thermal conductivity (JVlm2

)

W = Local heat source

(2.12)

The flux, j, is described by equation (2.5). The thermal conductivity is described in

section (3.1).

The source term, W, arises from the heat of reaction of the decomposition

process as well as from the enthalpy ofvaporization, thus:

-12 -
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where

Sw = Local vaporization rate
hf/ = Latent heat of formation at bed temperature (Chapter 4)

Included in the summation is the sink term for the raw material (S), which has a

negative value for Sj.

There are two modes of heat transport described here: heat conduction and

heat convection. The numerical treatment of these are necessarily different, as

explained in section 4.3.2.

2.4.1 Enthalpy Advection

Having found (as described in chapter 4) that the convective terms in the energy

equation require different treatment numerically, it was det~rmined that an expression

similar to that described as "advection" by Silebi and Schiesser [8] would be

desirable. Starting with the basic conservation equation (repeated here for

convenience),

a[l6~(CihJ+ ~(P.h:)] [_]
I = -\1. "" (j.h.) +W + \1. (k\1T)at ~ I I

I

(2.12)

-------------- ~-._----_._..-
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the left hand side of the equation is expanded giving

a[¢L(CjhJ+L(Pk
h
;)] ( . *J ( ) (

j . k = "" k. ahj + ahk +" h. a¢Cj +" h* aPk)
at ~ 'fA', at Pk at ~'at ~ k at, "

(2.15)

The first summation represents the rate of change of specific enthalpy of the

system. The remaining terms can be referred to as compositional heat changes.

. Moving these to the right hand side ofthe equation:

,,( ah. ah; J ,,( arjJc.) ,,( * aPk) [" -] ()LJ rjJcj-'+Pk- =-LJ hj-' - LJ hk- -v· LJ(jjhJ +W+V· kVT
j at at j at j at j

(2.16)

Focusing on the first and third terms of the right-hand side, and using substitution of

the following expression from equation (2.4),

a(¢cJ = -V.]' +s.
at "

these terms simplify to

-14 -
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I [(hjV .];}-v· (hJ;)]+ Ihjs j
j j

Finally, the first summation of(2.18) may be manipulated to yield the form

(2.18)

(2.19)

This defines "enthalpy advection". It is significant that this term encompasses all of

the convective and diffusive constituents appearing on both sides of the original

energy equation. This is advantageous in that the first-order hyperbolic term has been

completely isolated from the parabolic conduction term in the energy equation. As

will be discussed in chapter 4, hyperbolic terms require different numerical treatment

from parabolic terms.

The remainder of the right-hand side of equation (2.12) is composed of the

heat conduction term and the sum ofthe source terms, represented here:

I

(2.20)

-- - - - ----;::-:_._._-

Recognition that the energy source term, W, is dependent on the same generation

rates as the first two terms in this expression leads to one further simplification:

---~~---- - - - -
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(2.21)

Finally, combining these terms leads to the temperature equation in its simplest form:

where s\ is the generalized source rate of component t. The source heat effects may

now be considered as rate ofheat change due to composition.

2.5 Boundary Conditions

In the gas and liquid conservation PDE's, boundary conditions are set in the same

fashion as Thorsness [5]. Boundary conditions are different for walls and

injection/extraction areas. Where injection or extraction is present, the flux is

specified as a function of injection rate and area. Otherwise, the flux is set to zero.

This is the case for the vertical walls of the vessel, as well as some areas of the top

and bottom.

The conservation of energy equation requires separate boundary conditions for the

various modes of transport. For the conduction mode, a free-convection boundary

equation is set [9]:

- 16-



aT =h T-Tw

By w k

where

hw =Wall free convection heat transfer coefficient
Tw = Wall temperature
y = Direction normal to local boundary

(2.23)

Boundary conditions for convective heat transfer are needed only where

injection/extraction does not take place (otherwise, j=O and the wall boundary

conditions are in place). Again from Thorsness [5], we find:

wherefi is the specified injection or extraction flux.

(2.24)

The boundary represented by the centerline IS accounted for by the

axisymmetric nature of the system; that is, symmetry enforces a zero normal-flux

boundary condition along the centerline for each equation. The numerical

implications of this are handled in chapter 4.

The solid species governing equations are ODE's and require no boundary

conditions.

- 17 -



Chapter 3

Thermodynamic and Physical Relationships

3.1 Thermal Properties

In section (2.2), it was stated that an omission of the conservation of total gas

equation leaves an additional unknown, pressure, in the species equations.

Consequently, it has become necessary to compute the pressure field by means of an

equation of state. For the purposes of simplicity and ease of computation, the ideal

gas law was chosen [10]. Therefore, the pressure relationship becomes

PV=nRT

or

P=CRT

(3.1)

(3.2)

where R is the universal gas constant, and all other terms on the right-hand side are

known or can be calculated. Therefore, the gaseous species conservation equations

are based only on temperature and concentration. Note that the concentration term

appears as C (total moles of gas per gas-filled volume), not as ¢C(moles of gas per

- 18-



bed volume). This is because gas pressure depends only on the gas-filled specific

volume, not including the solid- and liquid-filled portions ofthe bed.

By assuming constant heat capacities, the specific enthalpies of the gas species

can be simply expressed as [10],

hi = h~ +Cp,i(T - 298)

where

~i = Molar heat capacity ofgas species (i) (J/mol-K)
11 I = Specific enthalpy at reference state (298K)

(3.3)

and the enthalpies of formation are similarly expressed. The advantage of the

equations in this form is that deriving the final temperature equation is.simplified. In

addition, this means that the gas species specific enthalpies are of the same form as

those ofthe liquid and solid species, which is convenient for coding.

The bed conductivity dependence on gas flux [1] is omitted. This property is

calculated at every point in the bed, as the volume average of the thermal

conductivities ofthe local constituents.

. --~- .....•.•. , ....-- ~ .'" .'-.-1'nH.~.;, -"·....-~n~~.-...:l;"'''''~._ ..~:'".
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3.2 Gas Transport Properties

Gas is transported in the bed by two means: convection and diffusion. Diffusion

is the simpler of the two, and the sole property to be established is the molecular

diffusivity, D. For the purposes of this work, D is assumed constant, and scalar-

valued.

Convection m the bed requires the expreSSIon of gas viscosity and bed

permeability. In the scope of this problem, viscosity is constant-valued, at an

intermediate temperature. Permeability is considered scalar-valued and dependent on

the degree ofbed saturation [6].

(3.4)

where

[0 = Dry bed permeability
satw = Fraction ofexternal void filled with liquid

Thus, when the bed is fully saturated, the gas permeability goes to zero, as one would

expect. The degree ofbed saturation is expressed in terms ofthe internal and external

bed porositY, [6]:



o 0

V =Pc + Ps (3.5)s
Pc Ps

rP rP° vs (3.6)
int = s 1- rP~

rPe;,;t =1- vs - rPin! (3.7)

_ rPin! (3.8)sat -v --
w lw rP

e;,;t

where

Vs = Fractional volume ofbed occupied by solids
lk = Intrinsic density ofsolid species (k)
~0

s = Internal porosity per particle volume fraction

3.3 Liquid Transport Properties

Liquid convection coefficients are similar to those of gas convection.

Specifically, liquid viscosity is evaluated at an intermediate temperature and assumed

constant. Bed permeability to liquid movement is expressed as

which bears direct relation to the gas permeability, equation (3.4).

\

- 21 -

(3.9)



3.4 Vapor-Liquid Equilibrium

In order to approximate vapor-liquid equilibrium (VLE) for water, an

evaporation/condensation rate has been employed that drives the system toward

equilibrium. The possibility exists of the use of VLE as an algebraic constraint [6].

This option was not pursued, as it does not allow for the expression of the heat rate of

vaporization. The condition for vapor-liquid equilibrium [11]:

fi=fv (3.10)

where fi and fv are the liquid and vapor fugacities, respectively. As such, a fugacity

difference can be considered as a driving potential [12] for the evaporation rate.

Thus:

(3.11)

Hence, when the liquid fugacity is greater than the vapor fugacity, vaporization

occurs, and Sw is positive. When the vapor phase fugacity exceeds the liquid,

condensation results, with a corresponding negative value of sw. In this way,

equilibrium is achieved. Krnt is a somewhat artificial mass transfer constant, set high

enough that equilibrium is achieved rapidly, without computational problems. The

- 22-



term K is applied to ensure that no more steam or liquid water can be condensed or

vaporized than exists locally:

(3.12)

As it is clear that the numerical values for the driving potential can be high

(the value of pressure is on the order of 10\ it is clear that the numerical values for

Krnt should be low.

As the vapor phase, or steam, has been modeled as an ideal gas, the vapor

fugacity is expressed as the local partial pressure of steam. Since the liquid phase is

single~component (water), the liquid phase fugacity can be represented by the

saturation pressure, Pw, a function oftemperature [6], [11]:

-a.
P =P .e T

w e (3.13)

where Pe and ae are constant within distinct temperature regions (see appendix A).
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Chapter 4

Method of Solution

4.1 Method of Lines

This chapter describes the numerical solution of the governing equations and

boundary conditions specified in chapter 2, with the embedded relationships in

chapter 3. Because this model is made up of PDE's, the solution procedure is the

numerical method of lines (NMOL) [13]. The NMOL approach involves the spatial

discretization of the PDE's using a method such as finite differences. The result is a .

large set of ODE's, which are integrated using a numerical integrator. An advantage

of this method is the broad availability of robust integrators, which can handle large,

stiff systems of ODE's accurately.

4.2 Dependent Variables

The dependent variables for the code are. chosen in order to make model

computations as straightforward as possible.-For example, in the gas conservation

equations, the concentration value Ci is solved for since it will be needed directly for

the computation of pressure and mole fraction. Similarly, the energy conservation

- 24 - .



equation is reworked as a temperature equation (chapter 2), as temperature is

necessary for the computation of gas pressure, saturation pressure, solid decay rates,

and local specific enthalpies.

4.3 Discretization of Spatial Derivatives

Because the geometry is simple, finite differences can be chosen to approximate

the spatial derivatives. A cylindrical coordinate system is defined, with the z-axis

leading from the top to the bottom ofthe tank (figure 4.1)..

4.3.1 Central Differences

A form ofthe divergence appears repeatedly in the conservation equations:

div=V.(AVB)

In cylindrical coordinates, this is expressed as [14]

div = aA a
2

B+.!.~(rA aBJ
az az 2 r ar ar

(4.1)

(4.2)

where A represents a diffusion property value: diffusivity times concentration, DoC,

conductivity, k, or permeability divided by viscosity, f/J,l, in the respective
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diffusion, conduction, an convection tenns. Similarly, B represents driving potential:

mole fraction, Yh temperature, T, or pressure, P, in the same tenns. This is

convenient, as it allows a single routine to be re-used to compute most of the spatial

derivative values.

A convenient centered difference fonn for the diffusive initial condition

problem is found in [15]:

where

Aj =A(y.J, Bj = B(y.J

(4.3)

(4.4) (4.5)

and y is the generalized spatial coordinate. It is recognized that for the computation

of the radial component of the divergence tenn, the tenn (A) in the above equation

must be replaced by (rA), and the whole tenn multiplied by (r-l
).

4.3.2 Use of Upwind Differences in Advection

The convective tenns in the energy equation may be considered as having the

characteristics ofa first-order hyperbolic PDE, according to Schiesser and Silebi [16].
I
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First-order hyperbolic PDE's are not amenable to the central-difference

approximations used in parabolic PDE's, as using central-differences leads to

numerical instability. This instability was clearly observed when use of central

differences was attempted. Figure (4.2) illustrates the values at a point on the

injection plane and at the first grid point interior to that. The unstable, oscillatory

behavior demonstrated here is a direct result of the type of discretization used (as

described by Patankar [17]) and is not representative of physical reality. This

instability is severe enough that it prevents the code from working, and a new

approach is required.

One recommended solution to this problem, suggested by Patankar [17], is the use

of upwind differencing of the convected quantities. In this solution, while the

convective "potential" (the pressure gradient) is computed using a three-point center

difference as before, the spatial derivative of the convected quantity is computed

using a two-pornt biased difference. The definition of advection is repeated from

chapter 2:

Advection =-LVi .Vh i )

- 28-
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For the purpose of illustration, the expression will be simplified, so that a single-

species gas convection case can be examined. This is done without loss of generality,

because the diffusive component receives the same treatment as the convective

transport, and summing the species is a linear operation. The enthalpy advection by

convection for a single species is

Advection ~ r vp. Vh
J.l

For the general y-direction, the finite difference form becomes

(4.6)

(Advectiony)j = (4.7)

Note that advection in the r- and z- directions are both computed with this equation.

This form is acceptable, so long as the grid is evenly spaced. However, a

slight modification of this is needed when the model uses an unevenly spaced mesh.

Then, the discretization becomes
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~j-1/2 ~ ~j+1/2 ~

aiD ~ j+1I2 +~ j-1I2
T _ j+1/2 j-1/2

=
By j ~j+1/2+~j-1/2

where

M. 1/2 =X. "-X. 1J- J J-

(4.8)

(4.9)

(4.10)

The first derivative is now expressed in a more appropriate form, called divided

difference. Using divided differences will become essential as additional solution

points are grouped unevenly near the boundaries.

4.4 Expression of Boundary Conditions

Boundary conditions were described for this model analytically in section 2.5.

This section discusses the proper numerical treatment for these boundary conditions.

In order to impose the zero-normal-flux boundary condition at the walls

(where injection or extraction is not taking place), the normal gradient of the driving

potential is set to zero. Using this, the numerical divergence at the outermost grid

point n becomes
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o_(A) Bn - Bn-l
n-1/2

Divergence
n

= Y;...;n:.:....----=-Y~n-~l

Yn+l - Yn-l

where, as in section 4.3.1, (y) represents the general spatial coordinate.

4.4.1 Derivation of InjectionlExtraction Boundary Conditions

(4.11)

The original scheme [6] for handling injection and extraction by using source

and sink terms was consIdered unsuitable since it neglected important features of the

flux across a boundary. Consequently, discretization of time-variant boundary

conditions was desired to model the injection and extraction.

The injection flow rate, Qj, is specified in moles/second. With this, and

equation (2.17), the development proceeds as follows:

8k . _
'1"-'1 n'--=-Y·j.+s.at I I

(2.17)

Isolating the flux term on the right-hand side, figure (4.3) shows a control volume

drawn above the injection plane. A similar corttrol volume is drawn below the

extraction plane. From this:
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v .J, '" (J, l;.: f, +(V .J,), (4.12)

where fi is the injection/extraction flux of species i, from the specified source rate Qi:

(4.13)

The right hand side of equation (4.12) can be separated as:

(4.14)

Recognizing that the second term on the right hand side approximates the zero-flux

boundary condition, the original equation (2.17) can be rewritten for the wall as

(4.15)

Therefore, the injection flux at the wall can be included as an artificial source term

and added to the rate calculated for zero-gas flux boundaries. Given that the flux

must be defined on a discrete number of grid points, the full value of the source term

is added only for those points that lie completely within the injection area. For those

points that define areas partially outside the injection area, a proportionally lower

source rate is defined.

- - - -----~----~--
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4.4.2 Extraction Algorithm

The extraction flow rate is set to control the maximum pressure at the outlet plane

[4]. The result is an extraction function that uses the pressure minus the desired

maximum as the driving potential:

and the resulting species equations are

a¢Cj ( V -;) Qext
= - 'h 0 +Sj +Yj-"""--at wall ,ext Ajnj&

(4.16)

(4.17)

where the gas mole fraction is included to ensure that the proper proportions of each

gas species ~emoved near the boundary.

The boundary conditions for the enthalpy advection are more straightforward.

The flux term is specified, and the enthalpy gradient is computed in a straightforward

manner. Where injection occurs
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(4.18)

where the injected gas enthalpy, hinj, is determined from the temperature of the

injected gas. Where there is extraction, the enthalpy gradient is set to zero.

4.4.3 Free Convection Heat Transfer

This boundary condition is necessary only for the heat conduction part of the

model and is implemented where there is no injection or extraction at the surface. As

before, the normal component of the temperature gradient is set to zero at the

centerline, in order to preserve the axisymmetric assumption. The numerical

implementation of equation (2.23) is similar to that of the zero-flux boundary

condition. The difference. is that instead of setting the wall derivative to zero, it is set·

to a value corresponding to the natural convective coefficient at the wall times the

temperature difference between the wall and the bed. Using this method, the

conduction term at the outermost radial grid point is

(4.19)
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where, as before, (nr) denotes the outermost radial grid point. It is noted that setting

hWall to zero imposes an adiabatic boundary condition.

4.4.4 Centerline Boundary

A complication arises at the centerline, in that the value of radius is zero, so that

the expression

,;J .__ : ..

. 1 B( BE)dzvergencer=-- rA-
r Br Br

is undefined. In order to eliminate this difficulty, the term is first expanded,

recognizing that the first normal derivative ofB is set to zero

(4.20)

(4.21)

(4.22)



taking the Taylor expansion ofthe brackets:

.!.~(rA aBJ =Aa
2

~ +A[~ +ra'~I +r'0(3)]
rar ar r=O ar r &l r=O ar r=O

(4.23)

The first tenn of the Taylor expansion evaluates to zero, and the third and higher

order tenns necessarily evaluate to zero at FO. The remainder is

.!.~(rA aBJ =2A a
2

B
rar ar r=O 81'2

which is approximated easily with a three-point centered difference [15].

4.5 Initial Conditions

(4.24)

It is desirable for the initial conditions to be specified in a consistent manner. The

volume ofthe vessel is set, and the amount of solid reactant and water are specified at

desired levels. So, too, are the initial pressure and temperature specified. To ensure

that the integration is properly started at steady-state, the amounts of noncondensible

gas and steam must be established using vapor-liquid equilibrium. Typical startup

values for a pilot-scale reactor 1meter in height and 1.3 meters in diameter are
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Quantity Symbol Initial Value
Pressure P 10" Pa
Temperature T 300K
Solids Mass Ms 189 kg
Water Mass Mw 90 kg

These are all the parameters that are needed to specify the initial state of the system.

From the vessel volume and initial masses,

C =Mw
. W

Vbed

(4.25) (4.26)

(4.27)

The saturation pressure can be calculated from the initial system temperature using

equation (3.12). To ensure phase equilibrium,

pw
C =­

st RT

then:

p
cng = RT -Cst

(4.28)

(4.29) (4.30)

.. -,
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4.6 Solution of Governing Equations

The integration of the governing equations was accomplished using DASSL

(Differenthil/Algebraic System Solver) [18]. Though the i~tial VLE model, which

resulted in a differential/algebraic equation (DAB) set no longer exists, DASSL was

retained as the solver. This is so because DASSL is able to integrate the equations

reliably and gives the code increased flexibility for future development.

The code integrates the equations for a specified length. of time (typically six

hours). Results are presented in terms, of pressure, temperature, vapor phase

composition, liquid water volume, injection, extraction, and bed densities of solid and

carbon. Output is in the form of continuously reported vessel volllDJe averaged data,

as well as discrete instances of full spatial data.
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ChapterS

Results and Discussion

5.1 Simulations

In order to illustrate the capabilities ofthe code developed from the model

described in this work, the results from three simulations are presented. Results were

obtained using a Pentium computer with 233 MHz processor speed. Studies were run

for

• Uniform flux (one-dimensional case)

• Core injection/extraction (three-dimensional axisymmetric)

• Core injection/extraction with refined mesh

The first results shown are for the simplest case ofuniform injection and extraction.

The second study illustrates the model's ability to handle two-dimensional spatial

variations. Finally, the second study was re-run with a denser grid spacing to

investigate the model's mesh sensitivity.

The initial conditions and vessel dimensions were the same for all studies. A list

of the physical parameters used in the model is found in appendix A, and are

primarily published data [9], [10]. In each simulation, the same injection rate

(moles/second) and steam temperature are used on the process to provide a consistent
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basis for comparison. The steam injection strategy can be found in figure (5.1). This

is essentially the same strategy used for the pilot scale reactor described by Thorsness

[5], but with lower maximum value,s.

The simulated time in each case was six hours. The first two simulations were

performed using eight vertical and six radial locations, for a total of forty-eight grid

points. Comparative computational performance indicators for these cases are listed

in appendix B.

5.1.1 Uniform Boundary Flux (one-dimensional Results):

This simplest simulation was the first completed and was used to determine

whether the model behaves in a physically realistic manner. Figure (5.1) displays the

injection and extraction over the first four hours of simulation. Note from section

4.4.2 that the extraction algorithm was chosen to maintain a maximum pressure (6 x

105 Pascals) at the top ofthe vessel. The resulting extraction,afteran initial transient,

tracks the injection level. It does so at a much higher rate initially, reflecting the fact

that liquid is being evaporated even as the steam is injected. As the bed substantially

. dries out, the extraction follows the injection more closely.

The pressure history, in figure (5.2), shows the same initial excess gas from

vaporization. The mean bed pressure is highest during the initial stage of injection
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and drying. While injection is taking place, the average pressure in the vessel is.

expectedly higher than the controlled pressure at the top. After 11160 seconds, the

pressure is maintained at the same level until reaction-related cooling ofthe bed

causes a pressure decline.

The temperature history during initial start-up, in figure (5.3), exhibits a knee at

the point where extraction begins. It is at that point that cooler gases that have

collected at the top of the bed are drawn off, and the bed temperature reaches

equilibrium near the injection temperature more quickly. The long-term temperature

history, illustrated in figure (5.4), demonstrates behavior similar to the pressure

history. It is clear that temperature drops off right after the second injection phase is

completed. At this point, extraction continues, and pressure gradients still exist,

which explains the fact that temperature drops earlier than pressure in these results.

The bed gas composition is modeled using the steam mole fraction. A similar

behavior to the initial temperature profile is seen in the transient steam mole fraction

in figure (5.5). At the extraction beginning point, the noncondensibles at the top are

evacuated, leading to a faster steam saturation ofthe bed. The longer-term gas

composition history, in figure (5.6), demonstrates noncondensible production as well

as some condensation after injection has stopped and the bed cools.

Figure (5.7) represents the focus ofthe process -- the conversion of solids to

carbon. It is evident that in this case, the amount ofcarbon product has exceeded the

solid reactant and that as temperatures decline, so does the rate ofconversion.
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5.1.2 Core Boundary Flux (Three-dimensional Axisymmetric Results):

Figure (5.8) shows extraction behavior similar to that ofthe one-dimensional

system, except that the initial extraction rate is not as high. This is not surprising

when figure (5.11) is examined, and it is seen that the temperature does not increase

as quickly or to as large a magnitude (this will be apparent when the bed property

contours are explored). The pressure history, in figure (5.9), follows the injection

profile in a similar fashion to the one-dimensional case, though bed pressure after

injection drops offmore quickly.

The temperature and steam mole fraction transients, figures (5.10) and (5.12),

exhibit a knee at the extraction start as before, if less pronouncedly. In fact, it is only

a few seconds after the extraction start that the temperature increase seems to

continue at a lower rate. As the mean temperatures in the bed are, on the whole,

lower than in the uniform flux scenario, it is no surprise that the rate ofconversion of

solid to carbon is much lower. In fact, as illustrated in figure (5.14), the level of

carbon product does not reach that ofreactant by the end of six hours. It should be

kept in mind that the injection rates involved in this work are only half those

described by Thorsness [5].

----~---_._. __._..__.__ .._------_._------_..~-
--_ .._---_._---_.. ----_.• -._---_._------_.._-~._------~, .
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The differences between the two cases may be explained by examination of

the contour plots ofthe internal bed behavior. Figures (5'.15), (5.16), (5.17), and

(5.18), respectively, illustrate the state ofthe reactor at 300 seconds (during the initial

transient), 1200 seconds (first extraction), 9000 seconds (at the end of full injection),

and 12000 seconds (end of extraction).

At the 300-second mark, the bed behavior is as might be expected. There is a

gradual pressure gradient and well-defined temperature and steam fronts. It is already

quite clear that the zero-flux, adiabatic walls are inhibiting heat transfer to the

outermost annulus ofthe vessel. The 1200-second behavior clearly shows that this

has remained so. The pressure field at this time shows the effect ofextraction at the

core, where it is remembered that gas velocity runs perpendicular to lines ofconstant

pressure.

By 9000 seconds, the contents ofthe entire vessel have heated (in part due to

conduction), though the contents of the outer vessel are still significantly cooler than

the core. At this point, it should be remembered that the outer radius ofthe vessel

holds more ofthe volume, which explains why the average temperature is not closer

to the 500K found over much ofthe volume.

At 12000 seconds, the pressure gradients have dissipated, and gas moves by

diffusion. There is a higher core temperature still evident, one that will be dissipated

by conduction and the energy consumed in the decomposition reaction.
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5.2 Mesh Size Sensitivity

The core-injection simulation was repeated with the spacing halved in both the r- and

z-directions for four times as many nodes. That is, the new grid is sixteen vertical by

twelve radial positions, for a total of 192 node points.

It is expected that the central difference approximations are on the order of

(/).Yi, where /).y is the grid spacing. However, the co~vective upwind-difference term

is one-sided, and therefore has accuracy on the order of /).y (it is for this reason that

Schiesser and Silebi recommend using multi-point biased upwind differences). The

price of increased accuracy through mesh refinement is computational effort, which

as described in appendix B, is increased many fold.

The results ofthis simulation are given in the same order as fo~ the previous

two studies, in figures (5.19) through (5.25). In these figures, the results ofthe "fine"

mesh are superimposed on the results ofthe "coarse" mesh (section 5.1) for direct

companson.

The total computed gas extraction was 2.1% higher for the coarse mesh over the

fine, although peak values, in figure (5.19), were higher by 13.7%. The resulting
..

pressure profile, in figure (5.20) was relatively unchanged, as expected, as pressure is

a controlled variable.

The simulated temperature transient, figure (5.21), is different between the two

cases. The fine mesh case exhibits a slight temperature drop at the beginning
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ofextraction. Overall computed temperatures from the coarse mesh were higher by

11 Kelvins.

The most important result of this is the carbon production, which the coarse

mesh computation over-predicts by 28.6%.

The steam concentration histories barely differ between the two cases, although a

weaker knee event was exhibited in the transient behavior around extraction point for

the fine mesh (figure 5.23).

As in section 5.1.2, intermediate spatial contours are provided in figure (5.26) ­

(5.29). During"the initial transient, in figure (5.26), the fronts are expectedly

smoother. Unexpected; though, is the greater depth ofpenetration ofthe temperature

and steam fronts over the coarse case in figure (5.15). This certainly is in agreement

with the higher initial bulk temperatures shown in figure (5.21). Figure (5.27),

though, reveals less radial penetration after extraction has started. This is carried

through figures (5.28) and (5.29) as well. It is this lower radial penetration which

explains the overall temperature deficit in figure (5.22), and hence, the lower carbon

production in figure (5.25).

Closer comparison ofthe contour plots shows that the base ofthe 'plume' is

narrower over the injection plane in the fine-mesh simulation. This leads to an

approximately 6% decrease in the "effective" injection area (despite the precautions

described in section 4.4.1).
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Given the same flux source term, the result is 6% less simulated steam injection. This

may provide an explanation for some of the differences between the results. Further

significant refinement of the mesh for sensitivity study was not possible, as the

memory demands ofthe code become too great for a PC.

5.3 Conclusion

Satisfying the conservation equations results in simulated behavior consistent

with that ofa packed-bed reactor. These equations can be solved using the Numerical

Method of Lines. However, successful solution requires the use of upwind

differences of the convected quantities. The desired accuracy of the results must be

balanced with the computational demands ofthe code, which may be severe for three­

dimensional problems.

The resulting code is sufficient to determine the dynamic characteristics of the

system investigated. This will be the basis for a future extension to include a vapor

headspace feature, as well as other refinements.

5.4 Future Work

Before the model is used as a design tool, further refinements need to be made.

The thermodynamics of the liquid-vapor system need to be modeled with more rigor,

taking into account the nonidealities of steam [11], [19]. Further, other

thermophysical properties such as viscosity and noncondensible gas heat capacity
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should be modeled with proper temperature dependence [10]. Last, proper

description ofthe bed transport quantities (e.g., permeability, conductivity, binary gas

diffusivity) should be completely described using established empirical relationships.

The next stage ofrealism in the model will be proper characterization ofthe vapor

space that in the physical reactor exists above the bed. This feature may require

treatment ofa moving boundary.

Before any complexities are added to the model, however, the numerical

difficulties and tradeoffs between coarse and fine grid spacing must ultimately be

reduced by using either an adaptive mesh routine or higher-order derivative

approximations [16].
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Thermophysical Properties

Bed Characteristics and General Constants:

Pinf

Tinf

Tref

R
g
~o

D
Pcapo
[0

hWall

Kmt

1x10S

300
298
8.314
9.81
0.5
0.144xlO-4
l.Od5
5x10-12

o
1x10-6

Nominal Pressure, Pa
Nominal Temperature, K
Reference State Temperature, K
Universal Gas Constant, Pa m3/mol K
Gravitational Acceleration, m/s2

Internal Void Fraction ofSolid Particle
Effective Gas Dispersion, m2/s
Intrinsic Capillary Pressure, Pa
Intrinsic Bed Permeability m2

Interior Wall Convection, W/m2K
.VLE Mass Transfer Coeff., mol/(pa s m3

)

Solid Species Properties:

Pso
Cps
hf,so
kso1

A

1000
1x10+3
-42x103

0.5
6.3x104

1
1x104

1000
0.72
1xlO+3
-42x103

Intrinsic Solid Density, kglm3

Solid Specific Heat, J/kg K
Solid Enthalpy ofFormation at 298K, J/mol
Solid Thermal Conductivity, W/(m K)
Arrhenius Constant, 1/s
Solid Reactant Stoich. Coeff., kglkg
Activation Temperature, K

Intrinsic Carbon Density, kg/m3

Carbon Product Stoich. Coeff., kglkg
Carbon ThermalConductivity, W/m K
Carbon Heat ofFormation at 298K

Liquid Water Properties:

880
10.56
18x10-3

211Ox10.7

2.8583x10s

Intrinsic Density ofLiquid Water
Water Stoich. Coeff., mol/kg
Molecular Weight ofWater, kg/mol
Viscosity ofLiquid Water, Pa s I

Liq. Enthalpy ofFormation at 298K, J/mol
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Cpst
hfstO

hst
O

Pe

Pe

ae
ae

104.89
76
0.8

33.67
-2.418xlOs

9904
8.8888xl01O

2.9929xl010

5114.
4666.3

2.38
30.1
o
8.669xl03

12.9xl06

0.05

Liquid Enthalpy at 298K, J/mol
Liquid Specific Heat, J/mol K
Liquid Thermal Conductivity, W/m2

Steam Heat Capacity, J/(mol-K)
Steam Enthalpy ofFormation at 298K, J/mol
Steam Enthalpy at 298K, J/mol
Saturation Pressure Constant T<4lOK
Saturation Pressure Constant T>41OK
Saturation Temp. Constant T<410K
Saturation Temp. Constant T<41OK

Noncondensible Stoich. Coeff., mol/kg
Noncondensible Gas Specific Heat, J/(mol K)
Noncon. Gas Enthalpy ofFormation at 298K, J/mol
Noncondensible Gas Enthalpy at 298K, J/mol
Gas Viscosity, Pa-sec
Gas Thermal Conductivity watts/(m-K)
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Computational Performance Measures

Charts indicating the relative computational effort ofthe code for the three

simulations studied are included in this appendix. Figure (A.1) indicates the number

of steps taken by the integrator per unit time. Figure (A.2) charts the number ofright

hand side evaluations by the code, and Figure (A,3) shows the number ofJacobian

evaluations perfonned. In order to more clearly illustrate the computational effort

required by finer mesh definition, Figure (A.4) describes the total number ofright

hand side evaluations performed, times the number ofgrid points for which the

calculations are perfonned. This, in essence, is an indicator ofthe total number of

times the governing equations are evaluated by ·the code.

- 86-



6000 -,~--~---

7654321

o ._____-----,---------.----,-----------,------,-----,-------,-----
o

5000 I=--"-=

(l) 4000
Q..s
(/)...
~ 3000

Y
-+-1-d coarse

! 20001 • -2-d coarse
00 • -'-2-d fine-...l

"
::::::A"""

1000

Simulated Time - Hours

Figure B.1: Number of Integrator Steps vs. Simulated Time



14000

12000

10000
(/)
Co
! 8000(J)
....
0
r..
CD.c 6000
E

00 :::l
00 Z

" 4000

2000

0
0 1 2 3 4 5 6 7

Simulated Time - Hours

.Figure B.2: Number of RHS Evaluations vs. Simulated Time

~1-d coarse

-2-d coarse

-a\- 2-d fine



700

600

500
II)
Q.
G)

en 400
It-
o..
,g 300

00 E\0

''\ ~

z
200

100

0

0 1 2 3 4 5 6 7

Simulated Time· Hours

Figure B.3: Number of Jacobian Evaluations vs. Simulated Time

~1-d coarse

-2-d coarse

--.- 2-d fine



1.2E+06

2-d fine2-d coarse

O.OE+OO e-- --._-,----
1-d coarse

2.0E+05 +-- -~-~------._-----~----------

6.0E+05 t-!---

8.0E+05 -',--------------------------1

1.0E+06 -c--------.-------------------i

''-\
4.0E+05+---------~-------------·-----·--

\0
o

I

Figure 8.4: Total RHS Evaluations Times Number of Grid Points



Vita

Steven Quintavalla was born in New York, New York, in 1972. His parents, Paul and

Jeanne Quintavalla, are also natives of New York. He received a bachelor of science

degree in mechanical engineering from Rutgers University College ofEngineering in

1995, and is currently attending Lehigh University for graduate stUdies. He currently

holds a position as research engineer at the United States GolfAssociation Research

& Test Center. Mr. Quintavalla has one patent pending.

- 91 -



END
. OF
TITLE

, .. .. "'- .. "... ' .. . ·1


	Lehigh University
	Lehigh Preserve
	1998

	A numerical model for the direct steam-heating of municipal solid waste to form carbon slurry feedstock
	Steven Quintavalla
	Recommended Citation


	00222
	00223
	00225
	00226
	00227
	00228
	00229
	00230
	00231
	00232
	00233
	00234
	00235
	00236
	00237
	00238
	00239
	00240
	00241
	00242
	00243
	00244
	00245
	00246
	00247
	00248
	00249
	00250
	00251
	00252
	00253
	00254
	00255
	00256
	00257
	00258
	00259
	00260
	00261
	00262
	00263
	00264
	00265
	00266
	00267
	00268
	00269
	00270
	00271
	00272
	00273
	00274
	00275
	00276
	00277
	00278
	00279
	00280
	00281
	00282
	00283
	00284
	00285
	00286
	00287
	00288
	00289
	00290
	00291
	00292
	00293
	00294
	00295
	00296
	00297
	00298
	00299
	00300
	00301
	00302
	00303
	00304
	00305
	00306
	00307
	00308
	00309
	00310
	00311
	00312
	00313
	00314
	00315
	00316
	00317
	00318
	00319
	00320
	00321
	00322
	00323
	00324
	00325
	00326
	00327
	00328
	00329

