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ABSTRACT

The conventional pseudodynamic method is an experimental technique to simulate

the seismic response of structural models. It is a displacement-control approach, which

utilizes feedback signals from a test structure and a numerical integration algorithm to

sequently solve the equations of motion to determine the target displacement to be

imposed 'on the structure for selected time interval. Since the strain rate effect can be

neglected for most steel structures, a conventional pseudodynamic test performed quasi

statically at a reasonable rate is able to simulate the earthquake response reasonably well.

With the introduction of the use of velocity-dependent devices (e.g., viscoelastic

dampers, friction dampers, rubber bearings) to mitigate earthquake hazards in structures,

there currently exists the need to perform large-scale real:.time testing to evaluate the

performance of these types of structures. Conventional pseudodynamic testing would not

properly account for load-rate effects. In this case, the test structure has to be loaded

dynamically in real time.

The objective of this study is to evaluate selected conventional and real-time

pseudodynamic testing algorithms. The effect of using different algorithms in testing

structures with rate dependent components is evaluated through numerical simulations.

Error propagation characteristics of three different algorithms are investigated In a

consistent manner for both conventional and real-time pseudodynamic testing.

A new algorithm based on Newmark Explicit method that enables real-time testing is

also presented. In this method the Newmark Explicit algorithm is modified, whereby two

independent integrations are separately performed for even and odd time steps with a
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filtering technique employed to remove the artificially introduced higher frequencies that

create instability in rate dependent test simulations.

Based on the numerical analyses performed, recommendations for attaining reliable

conventional and real-time pseudodynamic test results are discussed.
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Chapter 1 Introduction

1.1 General

Since its first application in the 1970's, the conventional pseudodynamic method has

been effectively used in several seismic simulations. Extensive analytical and

experimental studies have been published to establish the baseline of the procedure

(Shing and Mahin, 1984; Shing and Mahin, 1985).

Early tests conducted with this method in Japan, the United States and Europe were

carried out with an explicit time integration scheme, such as the Newmark Explicit or

Central Difference method.

The major source of inaccuracies for the pseudodynamic (PSD) method was found to

be the propagation of experimental errors. This issue was extensively investigated for the

conventional PSD method of testing, and conclusions were drawn related with the

detrimental effects of different types of experimental errors (Shing and Mahin, 1983;

Nakashima and Kato, 1987; Shing and Mahin, 1987).

Implicit integration schemes based on the Alpha Method (Hilber et aI., 1977) have

been developed which have superior energy dissipation and stability properties. The

implicit Alpha Method for PSD testing was first proposed by Thewalt and Mahin (1987).

Nakashima proposed another unconditionally stable algorithm, the Operator-Splitting

Method (Nakashima et aI., 1990). This method enables PSD testing with substructuring

to be conveniently performed. Several additional studies on the properties of implicit

schemes have been published (Shing and Manivannan, 1990; Shing and Vannan, 1991;

Bursi and Shing, 1996).
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Recently, mainly for earthquake hazard mitigation purposes, various new structural

components and devices such as viscous dampers, friction dampers and rubber bearings

have been introduced. Because of their velocity dependency characteristics, the

conventional pseudodynarnic testing based on quasi-static loading is no longer able to

capture the seismic response of structures having load rate-dependent devices. The use of

a shake table would not be a viable option, since it prohibits large-scale test to be

performed due to specimen weight limitations. Through the advances in computer

hardware and controllers, there have been some studies involving fast pseudodynamic

testing, with numerical integration algorithms for conventional PSD testing modified

appropriately (Nakashima and Kato, 1992; Nakashima and Masaoka, 1999; Shing et aI.,

2002). The purpose of these studies has been to develop a means ofperforming real-time

testing of large-scale structures.

Conventional PSD tests are performed slowly where the dynamic effects (Le. velocity

related and inertia forces) are accounted for in the solution ofthe equations ofmotion. As

noted previously, in some applications it is necessary to perform the PSD test at, or near

real-time.

To ensure continuous loading in real-time, the numerical integration algorithm used

in the testing must be able to have the next step target displacement ready, before the

current step loading is completed. Using the conventional PSD algorithms and

performing the test quickly cannot achieve this. Various attempts have been made in

modifying some of the existing explicit and implicit algorithms to satisfy this

requirement. A number of problems encountered with these efforts have already been
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documented in the literature (Nakashima and Kato, 1992, Nakashima and Masaoka,

1999).

1.2 Objectives and Scope

The purpose of this study is to evaluate selected integration algorithms for both

conventional and real-time PSD testing of structural systems subjected to earthquake

loading. Through numerical simulations, certain characteristics of the selected integration

schemes are evaluated; related observations, conclusions and remarks are provided.

Information from previous research results is also given, enabling this study to be used as

a general reference.

To evaluate the performance of selected real-time PSD algorithms, numerical

simulations of real-time PSD tests of structural systems including a visco-elastic (VE)

damped frame were carried out. The VE dampers are load-rate dependent devices.

Many studies have shown that the PSD method is sensitive to experimental error.

This source and effect of experimental error has been explored analytically and

numerically in great detail for conventional PSD method (Shing and Mahin, 1983;

Nakashima and Kato, 1987; Shing and Mahin, 1987; Shing and Manivannan, 1990;

Thewalt and Roman, 1994; Bursi and Shing, 1996). However, no such systematic study

exists for real-time PSD testing methods. In this report, error propagation characteristics

of three different algorithms are numerically investigated in a consistent manner for both

conventional and real-time pseudodynamic testing.

A new algorithm based on the Newmark Explicit method that enables real time

testing is also developed. In this method, the conventional Newmark Explicit algorithm is
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modified such that two independent integrations are separately performed for even and

odd time steps, and a filter is employed to remove the artificially introduced higher

!equencies that create instability in the load rate-dependent test simulations. The use of

the filter maintains the "smoothness" between the motions in the even and odd time steps.

An error propagation analy~is is also performed for this new method.

Based on the numerical analyses conducted, the effect of using different PSD

algorithms in testing structures with load-rate dependent components is evaluated, and

recommendations for attaining reliable test results are presented in this report.

1.3 Organization of the Thesis

This thesis focuses on the integration algorithms for conventional and real-time PSD

tests.

Background information and summaries of previous studies in both conventional and. .

real-time PSD method are presented in Chapter 2. Basic experimental schemes and

problems encountered, along with the applied solutions are also explained.

After an overall introduction to direct step-by-step integration algorithms, the

theoretical background for three selected algorithms, including the details related to the

newly developed staggered Newmark Explicit scheme with Alpha-Beta Tracker filter is

given in Chapter 3.

In Chapter 4, a 4-story moment resisting frame (MRF) and aVE-damped MRF,

which are used in the numerical simulations of conventional and real-time PSD tests, are

introduced. The structural idealizations and the design procedure for sizing the VE

dampers are explained.
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The results of PSD testing simulations for conventional and real-time PSD method

using three different algorithms are presented in Chapter 5. Both linear and nonlinear

structural response cases are considered.

In Chapter 6, velocity characteristics of the algorithms are examined and the rate

dependent restoring force effect on simulation results is evaluated.

Chapter 7 describes the experimental error sources. The error types that have been

introduced in the numerical simulations in this study are discussed in this chapter. A

review of the previous studies on this subject is also given.

Systematic error analyses were performed for both conventional and real-time PSD

test simulations. The behavior of each algorithm in the case of several possible

experimental error scenarios was investigated. The results of error propagation

simulations are illustrated in Chapter 8.

Finally, Chapter 9 summarizes the study. A summary and general conclusions are

given; observations and areas requiring further research are identified.
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Chapter 2 Pseudodynamic Testing Background

2.0 General

This chapter contains background information about conventional and real-time

pseudodynamic (PSD) methods of testing. While summarizing previous research done on

this subject, the general experimental schemes and problems encountered, along with the

applied solutions are also explained.

2.1 Conventional Methods of Seismic Testing

There are three experimental laboratory techniques that are typically used to evaluate

the seismic behavior of structures: quasi-static testing, shaking table testing and the

conventional PSD method oftesting.

In quasi-static testing the structure or its component is subjected to a predetermined

cyclic displacement history and the behavior of the elements is observed. The

deformation history imposed may be arbitrary or it may be computed using a dynamic

analysis before the testing. Quasi-static testing permits a careful measurement and

observation of the behavior of the test structure. It is commonly used and economical,

however, it is limited because the deformation history does not necessarily correspond to

the true earthquake response of the specimen since the dynamic analysis performed

beforehand may not accurately predict the true seismic behavior of the structure.

Perhaps the most realistic method for evaluating the dynamic response of a given

structure is to place it on a shaking table and subject it to properly scaled ground motion

time histories. However, these tests are expensive and must be performed on small-scale

test structures. To account for scaling effects, the time scale of the acceleration record
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must be compressed; consequently there is very little time to observe the behavior of the

specimen during the seismic simulation. As a result, while the response may represent

actual seismic behavior, the combined effects of small-scale specimens, short duration

testing and cost limit the use of shaking table tests.

The conventional PSD method is an experimental technique to simulate the seismic

response of large-scale structural models. It is a displacement-control approach, which

utilizes feedback signals from the structure and a numerical integration algorithm to

determine the target displacement to be imposed on the structure at each time step.

In a conventional PSD test, the test structure is first idealized as discrete parameter

system such that the governing equations of motion can be represented by a system of

second order ordinary differential equations in time. This procedure is called a

semidiscretization. The inertial and viscous damping characteristics are analytically

prescribed and the excitation history is numerically specified. During the test the

equations of motion are solved by direct step-by-step numerical integration to obtain

target displacements for each time step. The target displacements computed in each time

step are quasi-statically imposed on the test structure by hydraulic actuators. The

restoring forces developed by the structural deformations are measured by the load

transducers at the end of the time step and subsequently used to compute the target

displacements to be imposed in the next time step. This process is repeated (as illustrated

in Figure 2.1) until the whole response history ofthe test specimen is obtained.
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The use of experimentally measured restoring forces from the deformed specimen

eliminates the uncertainties associated with nonlinear stiffness or resisting force

characteristics of the structure.

As explained earlier, in order to perform a conventional PSD test, the test structure is

first idealized as discrete parameter system having mass concentrated at a limited number

of degrees of freedom. In order to represent the vibration characteristics accurately it is

wise to select the dynamic degrees of freedom at locations where the structural mass is

actually concentrated, such as the story levels of multi-story buildings with heavy floor

systems.

The damping characteristics of the test structure are often modeled by a viscous

damping mechanism. Appropriate viscous damping coefficients can be determined from

a vibration test. During a conventional PSD test, other types of damping mechanisms,

such as Coulomb damping due to friction or hysteretic damping due to inelastic

deformations, are accounted for through the measured resisting forces. Also, as hysteretic

damping is the dominant energy dissipation mechanism in a structure deformed beyond

elastic limits, failure to assign the exact viscous damping properties does not have a

significant effect on response when considerable inelastic deformations occur (Shing and

Mahin, 1984).

Since the strain rate effect can be neglected for most steel structures, the conventional

PSD method of testing performed quasi-statically at a slow rate is able to realistically

simulate the earthquake response.
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Conventional PSD method of testing overcomes the limitations of size and mass of

the specimen that are present in shaking table test, while using the same equipment

necessary for performing quasi-static testing. However, structures with significant

distributed mass or having material properties or components that are load-rate sensitive

may not be able to have their response to seismic loading accurately captured by the

conventional PSD method of testing.

Since its first application in the 1970's (Takanashi et al., 1975) the conventional PSD

method of testing has been effectively used in several seismic simulations. The method

however has three major sources of inaccuracies. The first is the idealization of the test

structure as discrete parameter system, the second is the computational error inherent in

the numerical solution of the equations of motion, and the third is the experimental

feedback error introduced during a test. The third source of inaccuracies, namely

propagation of experimental errors, appears to be the main source of inaccuracies in

conventional PSD testing.

Of the conventional methods of seismic testing, only shake table testing can account

for load-rate effects.

2.2 Real-time Methods of Seismic Testing

Recently, mainly for earthquake hazard mitigation purposes, various new structural

components and devices such as viscous dampers, friction dampers and rubber bearings

have been introduced in structures. Because of the velocity dependent vibration

characteristics of these devices, the conventional pseudodynamic testing method based on

quasi-static loading is no longer appropriate to determine the seismic response of
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structures equipped with these devices. In this case, the test structure has to be loaded

dynamically in real time.

The steps explained for conventional PSD testing is also valid for real-time PSD

testing. The major difference between the two is the use of dynamic actuators in the

latter. Furthermore, in order to impose the calculated displacements in a fast and precise

manner, and with an accurate velocity control, sophisticated control technologies and an

efficient computation scheme are required.

To load the structure dynamically in real time, the displacements have to be computed

in such a manner to enable continuous actuator motion. In the numerical integration

algorithms used for the conventional method of PSD testing, target displacements for the

next time step are computed from the restoring forces developed due to deformations

.imposed by the current time step displacements. As a result, the next time step target

displacements are not available at the instant when the loading for the current step

displacements is completed. Although this is not a problem for conventional PSD testing,

for real-time PSD testing the numerical algorithm needs to have the target displacements

ready prior to the completion of the current time step.

As the purpose of real-time testing is to simulate earthquake response of structures

with velocity dependent components and devices, the velocity characteristics of the

numerical algorithms becomes more important. A test structure equipped with rate

dependent components can only be tested realistically when a displacement history that

closely resembles the earthquake response is imposed at the same rate as the structure

would experience during the actual earthquake. Otherwise the test structure will not

12



develop the actual resisting forces, and consequently will not exhibit the actual seismic

behavior.

One other point that one has to be careful about with real-time PSD method of testing

is the effect of inertial forces. When the actuators impose a high level of acceleration to a

test structure having heavy mass, the forces measured by the load cells include a

considerable amount of inertial force. This effect cannot be neglected in real-time testing.

Another method of real-time seismic testing, called the Effective Force Testing (EFT)

method, employs a force control algorithm that enables real-time earthquake simulation

studies of large-scale structures. Unlike the PSD method of testing, there is no

computational time required to determine the required force signal in the EFT method.

Once the structural mass and ground acceleration record to be simulated are known, the

complete force history to be applied to the structure is calculated before the test.

Although the testing scheme is conceptually simple, its implementation has been

considered to be problematic. An experimental investigation of the EFT method using an

SDOF system was conducted at the University of Minnesota, and a drrect application of

the method was found to be ineffective because the actuator was unable to apply force at

the natural frequency of the structure due to actuator control-structure interaction (Dimig

et aI., 1999).

2.3 Previous Studies in Conventional PSD Method of Testing

The method in its current form was first reported by Takanashi et ai. in 1975

(Takanashi et al., 1975). Early tests conducted with this method in Japan, the United

13



States, and Europe were carried out with an explicit time integration scheme, such as the

Newmark Explicit or Central Difference method.

Several sources of inaccuracies, such as structural idealization effects, strain-rate

effects, uncertainties associated with assigning energy dissipation properties, and

propagation of experimental error were closely studied (Shing and Mahin, 1984). Certain

systematic experimental errors were found to be detrimental to pseudodynamic testing,

particularly in multi-degree-of-freedom tests (Shing and Mahin, 1983; Shing and Mahin,

1985; Nakashima and Kato, 1987).

Various efforts have been made to find ways to modify the algorithms to suppress

the error growth. Modifying the measured reactional force by using the initially

estimated stiffness of the analyzed system and the displacement error detected in each

step of loading, and using this modified reactional force in solving the equations of

motion was proposed by Nakashima and Kato in order to reduce the experimental error

effects (Nakashima and Kato, 1987). As an extension of this method they also proposed

another algorithm, where instead of using the initial stiffness of the structure, the

instantaneous stiffness is used to modify the reactional force (Nakashima and Kato,

1987).

Shing and Mahin recommended the use of a modified Newmark explicit algorithm

with numerical energy dissipation in order to suppress the spurious growth of the high

frequency modes of a multi-degree of freedom (MDOF) system (Shing and Mahin,

1983).
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Explicit numerical integration schemes are conditionally stable whereas implicit

integration schemes are generally unconditionally stable. Conditional stability of explicit

methods is not a weakness when dealing with problems where using a small time step is

required by accuracy considerations (Le., structural impact problems). Also explicit

schemes are computationally economical compared to implicit algorithms.

The solution of nonlinear differential equations by an implicit method usually

requires iterative corrections, which are highly undesirable for testing nonlinear systems

because the restoring forces developed depend on the displacement history of the

structure. The internal displacement cycles performed during iterative corrections may

result in an erroneous convergence. In order to circumvent this problem, explicit

integration methods were initially recommended for conventional PSD testing in the

early studies (Shing and Mahin, 1984; Mahin and Shing, 1985; Nakashima and Kato,

1987).

To avoid fabrication and testing of the entire specimen, the substructure PSD method

of testing (referred to also as hybrid testing) was developed. This method is a practical

and an economical alternative, where only a portion of the structure is experimentally

tested and its degrees of freedom are coupled to an analytical model of the remaining part

of the structure, as shown in Figure 2.2.

Although hybrid PSD testing had been suggested when the PSD test was first devised,

its implementation remained limited due to the large number of degrees of freedom

involved. In hybrid testing, the number of DOF is the sum of the DOFs of the analytical

15



and experimental models. There is a tendency to use many DOFs in the analytical models

to achieve better accuracy.

When many DOFs have to be considered, such as in the case of hybrid testing or

more complex specimens which have many experimental degrees of freedom, because of

the conditionally stable nature of explicit algorithms the integration time interval required

is unavoidably very small. As the number of time steps in a test is increased, problems

with error propagation also increase. It would be advantageous to. decide on the time

interval to ensure accuracy in the responding modes, rather than as a stability constraint.

To achieve an unconditional numerical stability condition, the integration operator

must be implicit.The fIrst successful implicit scheme for PSD testing of inelastic MDOF

systems was developed by Thewalt and Mahin (Thewalt and Mahin 1987, Thewalt and

Mahin 1995). The main concern with an implicit algorithm, as explained above, is the

requirement of an iterative procedure to evaluate the response of a nonlinear system. This

is not only computationally inefficient, but it may also induce undesirable loading and

unloading hystereses, creating problems for structures whose response is highly sensitive

to history of imposed deformations. Although implicit, the scheme developed by Thewalt

and Mahin did not involve numerical iteration. This was accomplished by using an

analogue electronic device in the displacement control loop to correct the predictor

displacements, which were based on the uninterrupted feedback of the instantaneous

structural resisting forces developed. They used the Alpha Method developed by Hilber

(Hilber et aI., 1977) as the integration algorithm; however, other implicit algorithms can

also be used. Although it is reported to be more reliable and far superior than the existing
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implicit schemes, it is more difficult to implement because of the additional hardware

required.

Another scheme that has been developed is the adaptation by Nakashima (Nakashima

et aI, 1990) of the Operator-Splitting method developed by Hughes and Liu (1978) to

hybrid testing involving experimental models (i.e., test subassemblies) which have high

frequency components introduced by the interface degrees of freedom. The Operator-

Splitting Method is an unconditionally stable algorithm, which is based on a predictor-

corrector approach. It requires neither numerical iteration nor an electronic device to

obtain an accurate solution.

Shing et al. (1991) developed a third scheme to overcome the difficulties of using the

implicit method developed by Thewalt and Mahin. Instead of using an analogue

electronic device to correct the predictor displacement, the scheme Shing et al (1991)

uses a numerical iteration that is based on the initial stiffness of the structure. To reduce

the risk of overshooting the displacements, and to have a more or less uniform

convergence rate for all DOFs, a displacement reduction factor was introduced. The

displacement reduction factor prevents the undesired loading and unloading hystereses

during iterations due to overshooting the target displacement.

,
2.4 Previous Studies in Real-Time PSD Method of Testing

The fIrst real-time PSD test was performed by Nakashima et al. (1992) using a single-

degree of freedom (SDOF) system with a single actuator. A slightly modifIed central

difference algorithm was used, where a staggered integration scheme was used to

separately compute target displacements for the even and odd time steps, as illustrated in
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Figure 2.3. For example, the displacement at time step (2n+1) was computed using the

displacements from steps (2n-l) and (2n-3) and the restoring force from time step (2n-l).

Likewise, displacement at time step (2n+2) was computed using the displacements from

steps (2n) and (2n-2) along with the restoring force from step (2n). As a result, while the

actuator is leading the test structure to the target displacement during time step (2n+1),

the target displacement for time step (2n+2) can be computed. Repeating this procedure

enabled continuous real-time loading.

The Central Difference method is a conditionally stable integration scheme. For a

staggered integration the stability criterion is even more severe. The scheme was devised

with the electronic technologies of late 1980's. Due to the relatively slow operating

speeds of the computers at the time, the integration time interval had to be_ relatively

large. As a result, only an SDOF system with primary frequency of at most 1 Hz could be

tested.

In the 1990's Horiuchi et al. (1996) developed a special computing and controlling

mechanism to perform real-time PSD testing. To ensure real time loading, parallel

computing techniques along with a special computer programming language developed

by Horiuchi et al. were used. The requirement of a special device and inflexible nature of

the programming language hindered the wide acceptance and use of this system.

In 1999 Nakashima and Masaoka presented a method for conducting real-time PSD

tests of multi-degree of freedom structures (Nakashima and Masaoka, 1999). They again

used the Central Difference algorithm as the direct integration scheme. In an attempt to

overcome the problem of having the target displacement available for the next time step
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when the target displacement of the current time step is reached, they proposed to

extrapolate the target displacement beyond the current time step. As a result the actuators

kept moving as the target displacement for the next time step was being calculated. When

it then became available, an interpolation scheme was used to ensure that the calculated

target displacement at the end of this next time step was reached. The method is shown

schematically in Figure 2.4.

The problem with this method was that a significant velocity change occurs in the .

interval where the algorithm switches from extrapolation to interpolation. Since the main

reason for real-time testing is to simulate the response of structures with rate dependent

characteristics, accurate velocity control is very important and such a velocity change is

undesirable.

2.5 Current Studies in Real-Time PSD

Several studies are currently being carried out on real-time substructure PSD testing

in Europe, through the European Union-funded networks such as CASACADE and

ECOLEADER, and in USA. The latter is a part of the NSF-funded NEES initiative for

tele-networking of earthquake engineering test laboratories across the United States

(bttp://www-civil.eng.ox.ac.uk/people/msw/rts.html).

Under the current NEES program (http://www.nsf.gov), the University of Colorado at

Boulder is in the process of developing a Fast Hybrid Test (PHT) system (Shing et al.,

2002). The integration scheme that is proposed for the FHT system is an implicit

algorithm. This method, referred to as the "Alpha Method with a Fixed Number of

Iterations", is one of the algorithms that are going to be evaluated in this report.
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Chapter 3 Theoretical Background

3.0 General

This chapter presents background information about numerical integration algorithms

for PSD testing. After a brief introduction to the numerical integration algorithms, linear

and nonlinear stability aspects are presented. Derivations and detailed explanations are

provided for three numerical integration algorithms that are investigated in this study.

Information about a filter employed in a newly proposed real-time testing algorithm is

also presented.

3.1 Numerical Integration Methods

In most numerical solutions of transient continuum mechanics or structural problems,

the governing partial differential equations are first discretized in space. This procedure is

called semidiscretization, and it reduces the problem to a system of ordinary differential

equations (ODE) in time, which in turn must be integrated to complete the solution

process.

The most popular methods for integrating the resulting ODE's are direct integration

methods. In a direct integration method the time duration of interest is divided into steps

and the solution is sequentially computed at each time step. Direct in,tegration methods

are a viable means to solve nonlinear problems where modal analysis procedures are not

applicable.
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Direct integration methods can be classified into two basic categories, namely:

explicit and implicit methods. The explicit methods allow the displacements for the next

time step to be determined from the accelerations, velocities and displacements at the

current time step. Since only simple vector operations are required, the computational

effort needed at each time step is small, and as a result their implementation into a

computer program is relatively easy. Explicit algorithms are however only conditionally

stable. The time step size is restricted by numerical stability requirements, which may

result in a time increment much smaller than that needed for accuracy, thus increasing the

cost of the explicit method.

In implicit methods, the displacements at the next time step for multi degree of

freedom systems are determined by solving a system of equations. For nonlinear

structures these equations are nonlinear and require, in many cases, iterative solutions of

linear equation systems (equilibrium iterations) within each time step. As a result,

implicit algorithms require a much greater computational effort at each time step and are

more difficult to implement and to use than explicit algorithms. However, they can be

made unconditionally stable so that in many cases the time step is restricted in size only

by accuracy requirements, and therefore relatively large time steps can be used.

, In the PSD test method, the equations of motion for an idealized structure can be

solved using either explicit or implicit direct step-by-step integration methods. Equation

(3.1) expresses the equations ofmotion:

Mii(~+Cum +r(~ = P(~
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where, M, C are the mass and damping matrices, pet) is the external load vector, ret) is

the restoring force vector, and li(t) , ii(t) are the nodal velocity and acceleration vectors,

respectively. The restoring force ret) is measured at a specified target displacement

corresponding to the applied load pet) and state of the structure. In the PSD test method

M andC are analytically defmed, unless the test is performed in real-time when there

are inertia and damping forces that become part of the measured restoring force.

3.1.1 Stability Analysis

Stability of an integration method implies that the initial conditions for the equations

of motions must not be artificially amplified over a large number of time steps. Stability

also implies that any errors in the displacements, velocities, or accelerations at time t due

to round off in the computer do not grow in the integration (Bathe and Wilson, 1976).

Bathe and Wilson (1976) state that an integration method is unconditionally stable if

the solution for any initial conditions does not grow without any bound for any time step

I1t , in particular when I1t is large, where Tn is the natural period of the structure. The
Tn

method is only conditionally stable if the above only holds provided that I1t is smaller
Tn

than a certain value, usually called the stability limit.

The procedure to determine the stability of an integration scheme can be summarized

as follows:

(1) Establish a recursive relationship, (since the behavior of the numerical solution

for arbitrary initial conditions is examined, no load is specified) where,
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" "Xl+nlU ,XI : vectors of solution quantities (e.g., displacements, velocities)

An : integration approximation matrix

(2) Perform spectral decomposition ofthe integration matrix An.

An =PJnp-1

P : matrix of eigenvectors of An.

In : Jordan form of Anwith eigenvalues Ai of An on its diagonal.

(3) Evaluate the spectral radius of An as:

(3.2)

(3.3)

p(An)=maxIA;I; i = 1,2... (3.4)

The stability criterion is based on the values of p(An). In is bounded for

n~ 00 ,therefore the integration scheme is stable, ifand only ifwhen p(An) ~ 1.

3.1.2 Nonlinear Stability Analysis

Analytical techniques for evaluating the stability and accuracy of numerical

integration methods in solving linear differential equations have been well established as

explained above.

The stability and accuracy properties of numerical integration methods in solXiJ;lg

nonlinear differential equations are not very well understood due to the lack of an
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analytical evaluation technique (Shing and Mahin, 1984). These properties were usually

evaluated via numerical experiments, which sometimes leads to contradictory results.

As explained by Shing and Mahin (1984), it is possible that unconditionally stable

implicit methods can become unstable when applied to nonlinear problems with large

integration time intervals. The explanation is twofold: first, solving a nonlinear equation

by means of an implicit integration method requires an approximate solution procedure,

such as iterative correction. The additional errors introduced by an approximate solution

procedure will affect the stability and accuracy of the solution. Secondly, a nonlinear

solution can be unstable because of the spurious energy growth, which may occur in

numerical solutions ofnonlinear equations.

Since explicit integration methods can provide a direct solution for a nonlinear

equation, with no iterations involved, there are no problems associated with an

approximate solution procedure.

Disregarding the energy effects, the stability and accuracy characteristics of the

explicit methods for linear systems are locally valid for nonlinear systems by the fact that

a nonlinear system can be considered as a piecewise linear system, in which the tangent

stiffness will dictate the numerical characteristics. This implies that the size of the time

step At selected for a linear system will remain conservative if the system becomes

nonlinear and the nonlinearity is the softening type. The opposite will be true for a

hardening system.
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3.2 PSD Testing Algorithm: Newmark Explicit Method

In 1959, N.M. Newmark developed a family of direct integration methods based on

the following equations:

(3.5)

(3.6)

The parameters f3 andr define the variation of acceleration over a time step and

determine the stability and accuracy characteristics of the method. Typically a value of

~ is used for r, with f3 ranging from ~ to ~. When r =~ and f3 =~ the

method is an implicit integration method with the acceleration constant over the

integration step (this method is often referred to as constant average acceleration). For

r = >i and f3 =~ the method is again an implicit one but the acceleration varies

linearly over the time step, and for r=>i and f3 =0 the method becomes an explicit

method.

Newmark's method is stable when

M <_1_* 1
Tn -;r-fi ~r-2f3

(3.7)

For r=>i and f3 =~ this condition becomes At S; 00; which indicates that the
Tn

constant average acceleration method is an unconditionally stable algorithm. For
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r= li and p=~ this condition becomes !1t :::;; 0.551; which indicates that the linear
Tn

acceleration algorithm stable if !1t :::;; 0.551. Finally, for r=li and p=0 this condition
T"

becomes !1t :::;; l. Therefore, the Newmark Explicit method is stable only if /).t :::;; l or
Tn 1r Tn 1r

())n */).t :::;; 2, where ())n is the highest natural frequency.

If r and p set equal to 0.5 and 0, respectively, Equations (3.5) and (3.6) become for

an MDOF system:

(3.8)

(3.9)

From Equation (3.9) the displacements d i+1 at the time t i+1 are related to the

displacements (di), velocities (Vi) and accelerations (a;) from the current time step tp

while the velocities V i+1 from Equation (3.8) are related to Vi and ai at the time tias

well as accelerations a i+1 at the time t i+1 •

Considering the equation ofmotion at time t i+1 ,

Mai+1 +Cv i+1 +ri+1 = Pi+1 (3.10)

and upon substituting for V i+1 from Equation (3.8) the equations ofmotion become:

(3.11)

Solving for the accelerations a i+l :
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a;+1 = (M + 0.5~tCrl (P;+1 - r;+1 - CV; - 0.5~tCa;) (3.12)

Equations (3.8), (3.9) and (3.12) are used to formulate the PSD test method based on

the Newmark Explicit Algorithm.

The test method is summarized in Figure 3.1 and described below:

(1) The target displacements d ;+1 for the next time step are calculated from

Equation (3.9).

(2) These target displacements are imposed to the test structure and the restoring

forces r;+1 are measured.

(3) The accelerations a;+1 and velocities V;+1 for this new time step are computed

from Equations (3.12) and (3.8), respectively.

(4) The process is repeated (Le., steps (1) through (3)) for each subsequent time.

step.

3.3 PSD Testing Algorithm: Alpha Method with Fixed Number of Iterations

This method was developed based on the Hilber a-method (Hilber et aI., 1977),

where:

Ma;+1 +(1+a)Cv;+I-aCv;+(1+a)r;+I-ar; =(1+a)P;+I- aP;
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a, fJ and yare integration constants. To attain unconditional stability and a favorable

energy-dissipation property, it is recommended (Hilber et aI., 1977) to use

fJ=(1-a)2/4 and y=l/2-a,with -l/3:::;a:::;O.

If V;+1 from Equation (3.14) is substituted into the equilibrium equation (Equation

(3.15)) the accelerations a;+1 at time t;+1 (Le., at the end of current time step) are

obtained, where:

(3.16)

Defining M = (M + (1 + a )]C) Equation (3.16) becomes:

--1
a;+1 =M [(1+a)P;+1 -aP; -Cv; -(1+a)(1-y)C.1ta; -(1+a)r;+1 +ar;] (3.17)

The displacements d;+1 from Equation (3.13) are therefore equal to:

2 --1
(.1t) fJM [(1 +a)P;+1 -aP; -Cv; -(1 +a)(1-y)C.1ta; -(1 +a)r;+1 +ar;] (3.18)

To calculate the displacements at the next time step (i +1), the current time step

information (d;, v;,a;,PJ and next time step information (r;+pP;+I) need to be known.

Externally applied loads (P) are user-defined and therefore are known at all times.

However, r;+1 depends on d;+I. The displacement responses have to be calculated

iteratively if the exact stiffness of the analyzed structure is not explicitly known.
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"Predictor displacements d i+1 can be defined by only using the explicit terms in

Equation (3.18):

--I
(~t)2 fJM [(l+a)Pi+1-aPi -Cvi -(l+a)(l-r)C~tai +ari ] (3.19)

The next time step displacements can now be written in terms of the predictor

displacements and the remaining implicit terms:

" 2 --1
di+1 =di+1 -(M) 13M (l+a)ri+1

When both sides of Equation (3.20) are multiplied by M:

(3.20)

(3.21)

Since Equation (3.20) is implicit, iterations will need to be performed in each time

step. In the kth iteration performed during time step (i+1), Equation (3.21) becomes:

Md (k) Md" ()2 13(1 ) (k) - R(k)i+l = i+l - ~t +a ri+1 +Me i+1

where e~\k) is the vector of convergence error, and is defmed later.

(3.22)

Subtracting Equation (3.21) from Equation (3.22) leads to a relationship between the

displacement increment ~d~:? and the restoring force increment ~ri~1 and error e~\k) for

iteration k .

~d~k) = _(~t)2 13(1 +a)~r~k) - Me~(k)
1+1 1+1 1+1
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If the secant stiffness K sec for the displacement increment is known, then a

relationship between the restoring force and displacement increments can be established:

A (k) _ K Ad(k)
Llr;+1 - secLl ;+1 (3.24)

Since the secant stiffness is not known in a PSD test, the initial stiffness K is used

as K sec , and Equation (3.24) becomes:

A (k) _ v Ad(k)
Llr;+1 - ~ i+1

Substituting this relationship into Equation (3.23):

DefIning K· =M+(M)2 PO +a)K Equation (3.26) becomes:

(3.25)

(3.26)

(3.27)

Using the equations derived above, Shing et al. (2002) developed an integration

scheme for real-time PSD testing by introducing an iterative solution method that does

not require slowing down or stopping the actuators at the end of a time step. The method

is illustrated in Figure 3.2, where fIrst the predictor displacement d;+1 for the next target

displacement is computed from Equation (3.19). The algorithm proceeds with iteration

steps. Using Equation (3.20) (Eq.! in Figure 3.2) the next step displacement d;+1 is

computed. For the fIrst iteration, in Eq. 1 the cOH$ted restoring force (See Eq. 4 in

Figure 3.2) during the last iteration of the current time step is used as r i+1• r;:1 in Figure

3.2 is the measured restoring force.
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A conventional Newton iteration method to eliminate the convergence error would

lead to decreasing incremental corrections as the solution converges to the exact values.

This is not desirable for real-time testing, because either the actuators have to slow down

or signals have to be sent to the actuators controllers at an increasing speed. To have a

more or less uniform incremental correction in each iteration step, Shing at al. (2002)

developed a scheme involving a fixed number of iterations, where computed target

displacement d~~:+I) for iteration k is:

(3.28)

In Equation (3.28) (Eq.2 in Figure 3.2) n is the total number of iterations, k is the

iteration index, mdesignates a measured quantity and c is for calculated target command

quantities.

In the second term ofEquation (3.28), (n - k) is in the denominator, where n is fixed

and k increases as the iteration proceeds. That leads to a more or less uniform

incremental correction for the command disphicements d~~:+I). The second term of

Equation (3.28) has the measured displacements d;~~k) in the numerator; thereby this

equation is capable of correcting for any time lag in the actuator response by

overshooting the command displacement for the next correction.

By rearranging Equation (3.22), the convergence errors after the (n-l)th iteration can

be calculated as follows:

" --I
e~(1I-2) = d~1(1I-2) - d. +(At)2 P(l +a)M r.",(1I-2)

1+1 1+1 1+1 1+1
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Using the displacement increments corresponding to these convergence errors

(Equation (3.27)), the displacements are updated:

d - dm(n-2) _ K *-1 M R(n-2)
;+1 - ;+1 e;+1 (3.30)

Equation (3.30) appears as Eq. 3 in Figure 3.2. Establishing the relationship between

the displacement and restoring force increments using the initial stiffness as explained

above (Equation (3.25)), the restoring forces are updated; where:

- m(n-2) KK*-I M R(n-2)
r;+1 - r;+1 +_ e;+1 (3.31)

By means of these equilibrium corrections performed to eliminate the convergence

errors the displacement and restoring force values are made available for the calculation

of the predictor displacement for the next time step while the actuators are imposing the

displacement during the last iteration substep n. As a result, the structure continues to be

loaded in real time without any pause. In the Alpha Method with a Fixed Number of

Iterations, the computational effort for each iteration is rather small. As a result, the

actuators can receive uninterrupted commands at fixed time intervals and a continuous

actuator motion with a more or less constant speed is provided.

The Alpha Method is an unconditionally stable implicit scheme, which is an

advantage when a large number of DOFs exist in the test. The correction scheme

provided at the end of the time step is proven to be effective in eliminating spurious

higher-mode response that could otherwise be introduced by experimental errors (Shing

et al., 1991).
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3.4 PSD Testing Algorithm: Newmark Explicit Real-Time

As ex~ed in Chapter 2, the first real-time PSD test was performed by Nakashima

et aL (19922/~sing a modified central difference algorithm with staggered integration

involving the even and odd time steps. Since the test system used by Nakashima et aL

was devised with the electronic technologies of late 1980's, the integration time interval

had to be relatively large. As a result, only an SDOF system with the fundamental

frequency at most about 1 Hz could be tested.

In this study, the staggered integration idea was applied to the Newmark Explicit

integration scheme for real-time PSD testing. No stability problem was observed in

numerical simulations of the method applied towards PSD-testing of frames without VE

dampers. However the method was not stable for rate-dependent real-time PSD test

simulations. This stability problem was solved by employing Alpha-Beta Tracker filter

(Grewal and Andrews, 1993; Cunningham, 1992). In Chapter 3 the steps of the algorithm

and the filter will be presented. The reason for the instability and the contribution of the

filter to the solution will be explained in detail in Chapter 6, where rate-dependent

restoring force effects will be presented.

In the staggered integration scheme the displacements, velocities and accelerations of

the first three time steps (i=0,1,2) are numerically calculated using the standard Newmark

Explicit algorithm. These results then become the initial conditions for the staggered

integration.

Equations (3.8), (3.9) and (3.12) of the standard Newmark Explicit algorithm are

modified resulting in the following staggered integration algorithm procedure:
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For i =3...N

(1) Determine target displacements for the next time step i :

d; = d;_2 + IiTv;_2 +0.5(IiT)2 a;_2 (3.32)

(2) Impose next step displacements and measure the resisting forces r;

(3) Determine the accelerations for the next time step i :

(4) Determine velocities for the next time step i :

v; = V;_2 +O.5/iTa;_2 +O.5IiTa;

(5) Set i = i +1 (Go to Step (1))

(3.33)

(3.34)

Here i is the time step counter, N is the total number of time steps and liT = 21it-,

where lit is the time step size.

As stated above, the solutions associated with time steps i=O, 1 and 2 are used as

initial conditions. From Equation (3.32) the displacements at time steps i=3 and 4 can be

calculated right away. Once the actuators impose the displacement at time step 3 and

measure the restoring force, the acceleration and velocity at time step 3 are computed

and, with this information the displacement at time step 5 can be determined. Note that

while these operations are taking place, the actuators are not waiting but leading the

structure to the already known displacement for time step 4. By repeating this procedure

the structureis loaded without any pause between time steps.
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No systematic stability analysis was perfonned for the proposed scheme, however

since the time step is twice as large for integration process, (j)nM::; 1 is expected to be

valid for cases involving rate-independent materials.

For the rate-dependent simulations, where the apparent velocity, (obtained as the ratio

of displacement increment over time step size) is used to calculate the restoring force

developed in the VE dampers, the above staggered integration scheme was observed to be

numerically unstable.

This problem has been overcome by employing an "Alpha -Beta Tracker Filter" to

filter out artificially-induced high frequencies. The method is described next, with

simulation results given in Chapter 5.

3.4.1 The Alpha-Beta Tracker (position and Rate Estimation)

The Alpha-Beta tracker is an observer, which estimates the range x and the range

rates of a target on the basis of a sequence YP i = 1,2... , of measurements. It has been

used in the radar industry. The observer has a filter structure similar to that of a Kalman

filter. Below is a description of the Alpha-Beta Tracker fonnulation:

c
x=-M2 e

(3.35)

where c is the velocity of light, and I1te is the actual time for the signal to reach the

target and return back to the radar. Suppose I1tis the measured value of Me' Denoting

the measured value of range by y.
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c c
Y =-M =-(l1tc + j::) =x+v

2 2· '='
(3.36)

In Equation (336) Y is the measured signal, x is the original signal and vis the noise

in the signal.

Suppose that xk is the current range (at time k), and Sk is the current range rate (at

time k). Using the following defInitions:

X
k

(+> - estimate of Xk based on all measurements up to and including Yk

Sk(+) - estimate of Sk based on all measurements up to and including Yk

X
k

(-> - estimate of xk based on all measurements up to and including Yk-l

And designating XkH as a predicted or apriori estimate of Xk , and \(+> as an updated

or a posteriori estimate of Xk , with a priori and a posteriori estimate related by:

In Equation (337) T is the interval between the pulses.

(337)

The residual between the measured signal and priori estimate at time k , (Yk - x
k

(-» is

the basis for which a correction is to be made:

(338)

where a is the gain for the correction. The residual for the range rate S is given by

Equation (339)
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(3.39)

Further the estimate for Sk (Le., a posteriori estimate of Sk) is obtained from:

(3.40)

where f3 is the gain for velocity correction. Typically f3 is chosen in the interval of 0.2 to

0.4 and a = 2#- f3. Further information can be found in references (Grewal and

Andrews, 1993; Cunningham, 1992).

3.4.2 Implementation of the Alpha-Beta Tracker Filter

The filter is used to remove the noise from the calculated displacement signals of the

Newmark Explicit Real-Time PSD test method with staggered integration. The calculated

displacements of the first three steps are considered to be corrected values since they are

used as initial conditions.

The algorithm is shown schematically in Figure 3.3. The details are given below.

For i=3 ...N

• Assign initial slope estimates Si-I

(1) Calculate the next time step displacements usmg the corrected

displacements from previous time steps:

(3.41)
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(2) Calculate the predicted displacements:

(3) Calculate the corrected next time step displacements:

dcorrected _i = d predicted_i + a(dnoise_i - dpredicted_i)

(4) Update the slope estimates:

(5) Impose the corrected next time step displacements

and measure the resisting forces ri .

(6) Calculate next time step accelerations:

(7) Calculate next step velocities:

Vi = V i-2 +[O.5~T]ai_2 +[O.5~T]ai

(8) Set i = i + 1 (Go to Step (1»

Si-l in the above algorithm when i = 3, (Le., S2 ) is a vector of zeros.
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(3.43)

(3.44)

(3.45)
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c specify external loads P1+1

c compute next step displacements

I i=i+ 1 I dl+1=d,+A1v,+[O.5(At)2]aj

• impose d,+1 to the structure
• measure restoring forces rl+1

l

~
N

~ I

calculate the accelerations and velocities: I
I

• al+l=(M+O,5AtCt[PI+l-rl+l-CvrO,5AtCaJ I
• VI+1=VI+O.5At(al+QI+l) I

I I I

Figure 3.1 PSD Algorithm Based on Newmark Explicit Method
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k=O to n-1
1""10) -1+1-r[
dmlOJ =d -specify external load P1+11+1 1
K* M+L),t2~(1 +u)K .... -compute predictor displacementf--

M=M+(l +u)yL),tC d
A

1+1=f(dl,vI'C1,P1,P1+,)I i=i+ 11

k=O !
A f (1 )M-1 m 1k) [Eq,1]d =dm[n-2) _K*-'MeR(n-2). [Eq,3] dl+1=d I+'-L), ~ +u 1+11+1 1+1 1+1 dC[k+1J =dC[k) +(d _dm[k), ) ~- m(n-21 -KK*-' MeR(n-2J [Eq.4] 1+1 1+1 1+1 1+1 [Eq.2] I .4rl+1- 1+1 1+1

n -k
I

1 !
I -impose dC(k+'\+,to the structure I

II R(n-2) =dm1n-2) _d A +L),fp(l +u)M-1m 1n-
2
) I Ik k+-']e 1+' 1+1 1+1 1+1 .............._............................_-_..........._...._...............!........__.__._----_.._._....._.....................

-measure the displacement dm(k+1\+1
-measure the restoring force m

lk+1\+,

Figure 3.2 Real-Time PSD Algorithm Based on Alpha Method with a Fixed Number of Iterations



!d""",u+4=f(dCorrectedJ+2'vl+2,aI+2) I

t

I;··=··_·······_··J·
froseJ+2- f(dcooected_"V"a,j1 .

impose dconec1edJ+2
and measure rl+2

1
a'+2 =f(r'+2'P'+2'v"a,)
V,+2=f(v

"
a"a'+2)

d CooectBd.'+3

1-_ _-- _ - .

impose dconected.'+3
and measure r'+3

1
lal+3=f(rl+3'PI+3'VI+1,al+1)
VI+3=f(v1+1,a'+1,a'+3)

_..__._ _.._ _._ _]

[
impose d cooectedJ+4
and measure rl+4.-.-_ - _---..- _._.__..__ .

a l+4=f(r,+4,PI+4'V'+2'a l+2)
\V,+4=f(V,+2,a,+2,a,+4)

l~J~J
1

la,+S=f(r,+S,p,+S.V'+3,a,+3)
IVI+s= f(v'+3,aI+3,a,+S)

Figure 3.3 Real-Time PSD Algorithm based on Newmark Explicit Real Time Method



Chapter 4 Idealized MDOF Structure for PSD Test Simulations

4.0 General

This chapter presents the details of the moment resisting frames (MRFs), both with

and without VE dampers, which have been used in the numerical simulations of real-time

and conventional PSD tests, respectively. Information about the design of the frame and

VE dampers is presented. The numerical integration scheme used to calculate the VE

damper restoring forces in the simulations is explained.

4.1 Prototype and Scaled MRFs

PSD test simulations were performed on a scaled model of a prototype 4-story MRF.

The prototype MRF consisted of wide flange beams with concrete filled steel tubular

(CFT) columns (Herrera et aI., 2003).

The prototype building was designed according to the International Building Code

(rnC) 2000 provisions. It is intended for office use, and assumed to be located in Los

Angeles, in soil type D. The equivalent static lateral load procedure outlined in rnc 2000

was used to design the building, where drift was found to control the design. The frame

had 4 bays and 4 stories. The design and modeling details, with pushover and time

history analyses results can be found in Herrera et al. (2003).

The results of these analyses showed that MRF's with CFT columns designed in

accordance with current U.S. seismic provisions are likely to perform adequately during

an earthquake. To refine the design criteria and to calibrate the analytical models that
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were developed, experiments were found to be necessary. For this purpose, an

experimental study for construction and testing of a three-fifths scale model of the

prototype frame was planned. Figure 4.1 shows the 2-bay, 4-story scaled test structure.

Analyses were performed by Herrera (Herrera et al., 2003) to ensure that this test frame

simulates the response of the prototype frame during the test. The MRF model used in the

PSD test simulations was based on the scaled model shown in Figure 4.1.

4.2 Idealized Moment Resisting Frame

As explained in Chapter 2, in a PSD test the structure is first idealized as a discrete

parameter system such that the governing equations of motion can be represented by a

family of ordinary second order differential equations in time. The idealized structure can

be seen in Figure 4.2.

For the PSD test simulations performed during this study, the dynamic degrees of

freedom were selected at the story levels where the structural masses were actually

concentrated in order to represent the vibration characteristics accurately.

Thus, the inertial force characteristics were represented by lumped mass at each floor

level. Rayleigh proportional damping was assumed, with 2% viscous damping assigned

in the first and fourth modes.,

During the simulations the restoring shear in the frame forces at each floor level were

based on the story shear forces developed in the bilinear springs used to model the story

shear-drift behaviour. The spring parameters such as the stiffnesses, yield strengths and

hardening ratios were obtained from the static pushover analysis performed on the scaled

46



test frame. This was done by plotting the response for each story (see Figure 4.3). The

above-mentioned spring parameters were then approximated through a linear regression

analysis (see Figure 4.4).

The numerical values of all these parameters are given in Table 4.1. The modal

properties for natural frequency, natural period and viscous damping are given in Table

4.2.

4.3 Idealized MRF with Viscoelastic Dampers

VE dampers have been used in multistory frame structures for the past over 25 years

to control wind-induced vibrations. Recently, they have been applied in earthquake

resistant design of new buildings, and seismic retrofit of existing buildings, to mitigate

seismic hazards.

The force-displacement behavior of VE dampers depends on the frequency of

excitation and temperature. Therefore, to evaluate the earthquake response of a structure

equipped with VE dampers, or any other rate-dependent components, the experimental

simulations should be performed in, or near real time.

The numerical simulations of rate-dependent real-time PSD tests included structural

"test specimens" with rate dependent materials, namely VE dampers. The idealized MRF

structure with VE dampers shown in Figure 4.5 was used as the "test specimen". The

dampers were designed to provide a linear elffstic response under the DBE (Design Basis

Earthquake), and the resisting forces developed by the dampers were calculated using the
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Generalized Maxwell Model. The restoring force calculations for the Generalized

Maxwell Model and the design procedure for sizing the dampers are explained below.

4.3.1 Generalized Maxwell Model

The behavior of a viscoelastic material lies between the behavior of elastic materials

and viscous materials. Therefore, a viscoelastic material can be represented by a

combination of elastic elements (springs) and viscous elements (dash pots). The simplest

models are the Kelvin-Voigt element (Figure 4.6(b)), which consists of a spring and a

dash pot connected in parallel and a Maxwell element, which consists of a spring and a

dash pot connected in series (Figure 4.6(a)). The Generalized Maxwell Model Figure

4.6(c)) is composed of one Kelvin-Voigt element and n Maxwell elements connected in

parallel (Fan, 1998).

Fan (1998) solved the equation of motion for the Generalized Maxwell model by

using the Newmark numerical integration algorithm. Using static condensation, Fan

developed a two-node VE damper finite element; compared its response (where the

Generalized Maxwell model had n = 4) with that of the 4-parameter fractional derivative

model (Kasai et al., 1993) and found good agreement between the two.

4.3.2 State Determination for the Generalized Maxwell Model

The equation ofmotion for the Generalized Maxwell model can be expressed as:

Ku+Cu=P
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The DOFs for the model are identified in Figure 4.7, where Uois the displacement at

the external degree of freedom, and uj through u4 are the displacements at the internal

DOFs. Only stiffness and damping terms appear in Equation (4.1), since no mass is

associated with the DOFs.

Hence, for a Generalized Maxwell Model with n Maxwell elements:

K j 0 0 -Kj

0 K 2 0 -K2

K= 6

0 0 ...0 Kn -Kn
n

-Kj -K2 -K Ko+IKmn
m=j

and

Cj 0 0 0

0 C2 0 0

c= 0

0 0 ...0 en 0

0 0 0 Co

(4.2)

(4.3)

No extemalload is applied to the internal DOFs, hence the load vector Pis:

~ 0

P2 0

P= = (4.4)

P" 0

Po Po
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and displacements u and velocities it are:

U1 U1

Uz Uz

u= it=

un Un

Uo Uo

(4.5)

as:

The parameters for the springs Kmand dash pots em where m= O...n, are calculated

for m=O...n (4.6)

(4.7)

(4.8)

where ~e is the shear area, and tve is the thickness of the layer. Both are determined as

part of the design procedure. Eo through En' PO,re! ,and 'CI,re! through 'Cn,re! are material

properties whose values are established from test data of the damper material, and will be

discussed later. aT is a shifting function that is used to account for temperature

effects. PO,e! and Tm,re! are the reference values with respect to temperature.

The velocities that generate the VE damper forces are based on the velocities of the

DOFs (Le., actuators). Because the integration time step used in the simulations is small
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(0.005 sec.), the velocity with which the actuators are moving can be estimated by

dividing the displacement increment by the time-step size. .

This velocity is herein referred to as the "apparent velocity" (uapp ).,where:

. !1u
u =

app M

In Equation (4.9) !1u and !1t are the displacement increment and time step size.

(4.9)

The restoring forces in the VE dampers, were obtained by integrating the equation of

motion of the Generalized Maxwell Model using the relationship given by Equation (4.9)

for the velocity U.

The equation of motion for the Generalized Maxwell Model Equation (4.1) for the

i1h time step is

From Equation (4.9)u;can be written as:

. !1u;
u.=

I M

(4.10)

(4.11)

The displacement at the i1h time step can be expressed in terms of the displacement at

the previous time step and the displacement increment, where

Upon substituting u; and u;into Equation (4.10), and rearranging:
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[K+~]~U. =P. -Ku. 1M I I 1-
(4.13)

For the Generalized Maxwell model with one Kelvin-Voigt element and four

Maxwell elements (Le., n = 4 ), Equation (4.13) becomes:

K C\ 0 0 0 -K\+-\ M

0 K C2 0 0 -K2
liull ~I A+-

2 M liu21 P21 B

0 0 K C3 0 -K3 liU31 = ~I - C·+- (4.14)3 M

K C4
liu41 P41 D

0 0 0 +- -K44 M duOI POI E
4 C

-Kt -K2 -K3 -K4 K+LK+_o - - -o m lit " "\ ~u. Pi1-
"K

where

E=K u. -A-B-C'-Do 0,-1

and ~; = P2; = P3i = P4; = 0 since no load is applied to internal DOFs.
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Partitioning the matrices of Equation (4.14) in order statically condense out the

internal DOFs

KQa Kab

0 0 Auinti Pupperi

0 K C2 0 0 -K2+-2 M
0 0 K C3 0 (4.15)3+-

results in:

KGaAuinti +KabAUexti = Pupperi

" "
KbaAuinti +KbbAUexti =l10weri

From Equation (4.16)

(4.16)

(4.17)

(4.18)

Substituting AU inti into Equation (4.17) results in the equilibrium equations being

expressed in terms of the external DOF, where

(1{ff-KbaKaa-~Uexti ~-KbaKaaQ

K:e ~:i

(4.19)

In Equation (4.19) K:e and P
V
: i are the damper effective stiffness and load

respectively.
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Only the damper element is considered in Equation (4.19) (see Figure 4.7). VE

dampers are usually incorporated into a frame through braces. However, the damper and

brace are connected in series, enabling their combined behavior to be modeled as such

(see Figure 4.8).

The force developed in the damper, Po; is found from Equation (4.19), where

. " "Po; = Kve/).uexl ; +E +KbaKaaPupper;

The force developed in the brace is equal to

(4.20)

(4.21)

Where Kbr is the axial stiffness ofthe brace and /).uexl 10101. is the displacement increment
- I

at the end of the brace (right hand side in Figure 4.9) and the quantity

[/).Uexl 10101. - /).Uexl;] is the deformation increment across the brace.
- I

Equating Po; to ~r; (since the damper and brace are connected in series) the external

displacement acting on the damper is found:

(4.22)

With the external damper displacement determined from Equation (4.22) the restoring

force developed Po; in the damper brace system can be calculated from either the damper
....

or the brace:

. " "
Po; = Kve/).uexl; +E +KbaKaaPupper; = ~r; = Kbr [/).Uexl_lolal; - /).U exl; ]
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The state determination procedure, gIven the external displacement increment

l!J.uexl lola!. applied to the damper brace system, for the current time step iis summarized
- I

below.

(1) Calculate A,B,C*,D,E,«,Kba,Kaa,Kbb,Pupper;

(2) Calculate l!J.uexl ; from Equation (4.22)

(3) Calculate Po; from Equation (4.23)

(4) Calculate the displacement increment at all DOFs from: l!J.u; = «+p

(5) Update the displacements:

-(UI ); = (uI )i-1 +(l!J.uI );

-(u2 ); = (U2 );-I +(l!J.u2 );

-(u3); = (U3);-I +(l!J.u3);

-(u4 ); = (u4 )i-1 +(l!J.u4 );

-(uo); = (UO);-I +(l!J.uexl );

Note that «andK:e would normally have to be calculated at each state determination,

since the dashpot coefficients Cothrough C4 are temperature sensitive (i.e., one may want

to consider the temperature rise in the damper that occurs over the course of the

simulation). Kbr , on the other hand is constant and its value can be predefined and stored.

4.3.3 Design of MRF with VE Dampers

The design of the diagonal-braced VE-damped frame used the approach proposed by

Fan (1998), where lSD-II 0 material was assumed for the dampers. There are two stages
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in the design of frames with dampers. First, the frame is designed without dampers. The

second stage involves the design of the dampers and braces. In this study the 4-story

structure described previously is used as the frame without dampers.

A VE damper system consists of two parts: a VE damper and the attached braces,

which are connected in series. For a diagonal-braced VE-damped frame, with braces

inclined at an angle lfI, the brace (Kbr ) and damper (Kve ) stiffness in global coordinates

are equal to:

(4.24)

(4.25)

KO denotes the interstory stiffness of the frame without VE dampers (see Figure

4.9).In the design of the VE dampers and braces, two parameters are important: (1) the

value ak , which is the ratio of the stiffness of the brace to the stiffness of the undamped

frame at floor level k, (i.e., ak = Kbr
_k { ) and (2) the value 13k' which is the ratio ofIKo_k

the global stiffness of the VE damper to the story stiffness of the undamped frame at floor

The preliminary design involves the determination of ak and 13k for each story

(k =l ... number offloors). The displacements and the internal forces in the members are

then checked to ensure that the frame performs adequately under seismic loading. To
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simplify the design, ak and 13k are constant over the building height, with ak= a and

13k = 13 at all floors.

The design approach proposed by Fan (1998) can be summarized as follows:

(1) Select an appropriate a and a range of 13 values.

Selecting an appropriate value of a simplifies the analysis. Since the brace and the

VE damper are connected in series, when a stiff brace is used, more deformation is

directed to the VE damper and the damper becomes more efficient. A range of a from 25

to 40 is appropriate. Steps (2) through (7) below are repeated for each combination of a

and 13. In the design a value of a=30 and values off3=O.1, 0.2, 0.3 ...2,2.2,2.4...3,4,

5,6, 10, 15,20 were used.

(2) Estimate the first mode deflected shape using static analysis.

A triangular pattern of static lateral forces is applied over the height of the VE-

damped structure. The fust mode shape is approximated by the lateral displacements at

the floor levels, which are obtained from linear elastic analysis under the given loading.

(3) Estimate the fundamental natural period 1; of the fust mode using Rayleigh's

Method.

(4.26)

where in Equation (4.26)

<PI is the displacement vector corresponding to the first mode.
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K is the stiffness matrix of the VE-damped frame.

M is the mass matrix of the VE-damped frame.

(4) Estimate the equivalent viscous damping ratio ~s by the Lateral Force Energy

(LFE) Method using Equation (4.27).

(4.27)

Equation (4.27) is based on the proportion of the strain energy in the dampers relative

to the total system for a MDOF structure.

In Equation (4.27), Fve is the vector of forces in the dampers; uve is the vector of

corresponding VE damper deformations; F is the vector of applied static lateral forces at

the floor levels; and u is the vector of corresponding floor lateral displacement. TJve is the

loss factor, which is dependent on response frequency OJ, shear strain r amplitude, and

the ambient temperature T. The loss factor is defined as the loss modulus

E"(OJ,T)(complex part of the material stiffness) to the storage modulus E'(OJ,T)(real

part of the material stiffness):

E"(OJ,T)
TJve = E'(OJ,T)

The storage and loss moduli are determined from Equations (4.29) and (4.30):
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(4.30)

In Equations (4.29) and (4.30), Po,ref and Tm,ref are the values of the parameters Po

and Tm at the reference temperature Tref' These reference material parameters are used in

Equations (4.7) and (4.8) to establish the dash pot coefficients for the Generalized

Maxwell Model.

To accounts for temperature changes, by a shifting function aT is used, where:

(4.31)

In Equation (4.31),Tis temperature, and Tref andpare the parameters of the shifting

function. The values for the lSD-II0 VE material proposed by Fan (1998) were used for

ambient temperature of Tref of24 °C was assumed.

(S) Estimate the earthquake response from a smooth spectrum.

The spectral acceleration is determined from a design spectrum, which is modified to

account for the level of equivalent viscous damping present in the structure. For this, an

equivalent viscous damping-based procedure similar to that in FEMA 273 is used to

adjust the ordinates of the response spectrum that is based on S% viscous damping.
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(6) Compute the equivalent lateral forces.

The design base shear (V) is calculated using the design seismic response coefficient

(Cs) and weight of the structure (W), where V =CsW .

Since the structure likely remains elastic during the Design Basis Earthquake (DBE),

equivalent lateral forces are based on a triangular distribution ofthe total base shear.

(7) Perform static analysis under the equivalent lateral forces.

To estimate the displacements, internal forces, and deformations of the structure a

static analysis is performed using the equivalent lateral forces obtained in Step (6). The

stiffness contribution from only the springs in the Generalized Maxwell Model (Le., Ko

through K 4 ) are used in the static analysis in combination with the brace stiffuess Kbr

and frame stiffness Ko•

The design performance objectives require the frame to be in operation (damage free)

during and after the DBE, and between the Immediate Occupancy and Life Safety levels

for the Maximum Considered Earthquake (MCE). To satisfy these requirements, the

design criteria considers:

all the members remain elastic under the DBE.

the allowable story drift is limited to 1% under DBE.

By repeating the design steps (2) to (7) for the a and p combinations given in step

(1) and considering the above-mentioned criteria, the largest value of p was determined

to be 1.3 (see Figure4.l0). The relationship betweenp and fundamental period, and
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p and the equivalent damping ratio are plotted In Figure 4.11 and Figure 4.12,

respectively.

Figure 4.11 and 4.12 indicate that for p = 1.3, the fundamental period and equivalent

viscous damping ratio are equal to 0.763 sec and 35.3, respectively. The value of 0.763

sec is based on Equation (4.26).

Once the value for p is determined, the shear area Ave of each damper can be

calculated:

(4.32)

In Equation (4.32) KOk is the interstory lateral stiffness of the k 1h story of the frame

without the dampers, tVek is the thickness of the layer, (a I-inch thickness was used for all

the dampers), If/k is the angle of inclination between the brace at story k and the global

horizontal direction (see Figure 4.9), and E' is the storage modulus given by Equation

(4.29).

A summary of the damper design is given in Table 4.4, where values for the brace

axial stiffness (Kbr ), VE-damper stiffness (Kve )' equivalent stiffness of the combined

brace and VE-damper (Keq ), and the damper shear area (~e) at each floor level k

appear. The modal properties of the idealized MRF with VE-dampers are given in Table
I

4.5. Comparing the results in Table 4.5 with those of the MRF without VE-dampers

(Table 4.2), it is apparent that the addition of the VE-dampers not only increased the
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damping in the structure, but also shortens the natural frequencies, because the VE

dampers and braces add stiffness to the structure.

The elastic stiffness matrix K of the MRF with VE-dampers is given in Figure 4.13. It

is based on the static stiffness ofthe dampers (i.e., Co through C4 are taken as zero).
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Table 4.1 Structural Properties ofldealized MRF

Floor-k Mass-mk Stiffness-kk Yield Strength Strain Hardening Ratio
[Kips-sec2/in] [Kips/in] FsV,k [Kips] [KpilKpi]

1 0.831 177.9 370.1 0.0185
2 0.831 212.9 327.8 0.0197
3 0.831 172.2 250.6 0.0165
4 0.604 108.9 127.3 0.0165

Table 4.2 Modal Properties of the Idealized MRF

Mode-i Natural Frequency COn i Natural Period Tni Viscous Damping Ratio
[rad/sec] [sec] ~ni

1 5.48 1.15 0.02
2 14.02 0.45 0.015
3 21.09 0.29 0.017
4 27.95 0.23 0.02

Table 4.3 Properties for ISD-110 VE Material

Material Parameter Value
Eo 27.7 psi
E) 393.6 psi
E2 196.7 psi
E3 1598.1 psi
E4 59.4 psi
~oref 0.1226 sec
'tt ref 0.0401 sec
t2 ref 0.1356 sec
't3 ref 0.0062 sec

t4ref 1.2395 sec
Tref 24°C
p -4.449

63



Table 4.4 Damper Design Characteristics

Floor-k Kbrk Kvek Keqk AVek

[Kips/in] [Kips/in] [Kips/in] [in2
]

1 6670 289 222 2441
2 7498 325 265 2744
3 6061 263 215 2218
4 3835 166 36 1403

Table 4.5 Modal Properties of Idealized MRF with VE Dampers

Mode-i Natural Frequency COn i Natural Period Tni

[rad/sec] [sec]
1 8.21 0.77
2 21.01 0.29
3 31.59 0.19
4 41.89 0.15
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Chapter 5 Pseudodynamic Test Simulations

5.0 General

This chapter presents the results of the numerical PSD test simulations using different

step-by-step integration algorithms. Both linear and nonlinear cases are considered for the

frames with and without VE dampers.

5'.1 Numerical Simulations

The three numerical integration algorithms presented in Chapter 3 were used to

perform numerical simulations of the PSD test method. The three algorithms included:

(1) Newmark Explicit Method, (2)Alpha Method with a Fixed Number of Iterations, and

(3) Newmark Explicit Real-Time Method. The test structure consisted of the MRF, with

and without VE dampers, presented in Chapter 4.

The algorithms were programmed in Mathcad (Mathcad 2000 Professional, Mathsoft

Inc.), and the analyses were carried out using the 1994 Northridge Earthquake (Canoga

Park Station) scaled to the DBE level. The DBE (Design Basis Earthquake) level is the

earthquake level that the design lateral forces, used by codes such as the International

Building Code (mC) 2000 [ICC 2000], are based upon. It has an intensity of two thirds

of the MCE (Maximum Considered Earthquake). The DBE has a return period of

approximately 500 years while the MCE 2500 years.

Four cases were considered in the simulations, and they are identified in Table 5.1.
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Case 1 consisted of a linear elastic MRF without VE dampers. The restoring forces

were calculated using linear elastic springs with stiffnesses equal to the story stiffnesses

(initial stiffnesses of each story obtained from static pushover, see Chapter 4).

Case 2 consisted of an inelastic MRF without VE dampers. The restoring forces were

calculated using the story shear-drift relationships for the idealized MRF model presented

in Chapter 4.

Case 3 consisted of a linear elastic MRF with VE dampers. The forces developed in

the dampers were calculated from the Generalized Maxwell Model. The integration

scheme used to integrate the governing equations of motion of the Generalized Maxwell

model is explained in Chapter 4. The resisting forces due to the lateral stiffness of the

structural members were calculated using the initial linear elastic properties of the MRF.

To find the total element forces, at each story level the horizontal component of the

damper force was added to the resisting force due to the lateral stiffness ofeach story.

Case 4 consisted of an inelastic MRF with VE dampers. The forces developed in the

dampers were again calculated using the Generalized Maxwell Model. The resisting

forces from the MRF were obtained from the story shear-drift relationships of the

idealized MRF.

The ground acceleration data for the Canoga Park record was originally provided with

a time interval of 0.02 sec. A convergence study was performed to determine the time

step size for the Newmark Explicit Method to give an accurate response. Since it assumes

a linear variation of acceleration, the response found by using Newmark's method with

linear acceleration was accepted as "true response". Convergence of the solution was

76



achieved using a time step of 0.005 sec. At this time step it was also found that the

Newmark Explicit and Newmark's method with linear acceleration gave the same

solutions (see Figure 5.1, where the linear acceleration method is identified as "N-beta")

Therefore, throughout this study the time step size was selected as 0.005 sec. for

simulations using either the Newmark Explicit or Newmark Explicit Real-Time methods.

5.2 Case 1 Results: Linear MRF without VE Dampers

As explained above, numerical simulations of PSD tests for a linear structure, using

three different integration algorithms were carried out. Figures 5.2, 5.3,5.4 and 5.5 show

. the displacement response history for the first, second, third and fourth story,

respectively.

The first plot in each figure (e.g., Figure 5.2(a)) is the response obtained using the

Newmark Explicit method. Since a time step of 0.005 sec was used, it is considered as

the "true solution". The Alpha Method with a Fixed Number ofIterations was used as the

integration scheme for the response in the second plot of each figure (e.g., Figure 5.2 (b)).

Ten iterations within a time step of 0.02 sec. were found to be adequate to have an

accurate response. The third plot in each figure (e.g., Figure 5.2(c)) is the response

obtained using Newmark Explicit Real-Time algorithm with a time step of 0.005.

The last plot of these figures (e.g., Figure 5.2(d)) compares the response from all the

three methods together. As can be seen, there is almost no difference between the results

and a good agreement exists with the true solution. Therefore, it can be concluded that for

PSD test of a rate independent linear structure that all three of the three algorithms give

accurate solutions.

77



5.3 Case 2 Results: Inelastic MRF without VE Dampers

Figures 5.6, 5.7, 5.8 and 5.9 show the numerical simulation results of the PSD test

simulation for the inelastic MRF.

The first three plots of each figure show the results using each algorithm, with the last

plot showing a comparison of the results. These figures illustrate that the three methods

give the same results, and that they are in good agreement with the true solution.

5.4 Case 3 Results: Linear MRF with VE Dampers

Figures 5.10, 5.11~ 5.12 and 5.13 show the numerical simulation results of the PSD

test for the linear MRF with VE dampers. Again, the first three plots of each figure show

the results for each method, with the last plot showing a comparison.

In this case the response from Newmark Explicit and Newmark Explicit Real-Time

methods are almost the same, however the structure develops more lateral displacement

in the response determined using the Alpha Method with a Fixed Number ofIterations.

The discrepancy in the response can be explained by the difference in the apparent

velocity (defined in Chapter 4) characteristics of the algorithms. In the Alpha Method, the

uniform incremental corrections provided for the displacements cause more or less

constant velocities within each time sub step. The dampers therefore cannot develop as

much resisting force as they would under the real earthquake and, as a result the structure

drifts more. Chapter 6 will present a comprehensive explanation together, with apparent

velocity demonstrations ofeach algorithm.
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5.5 Case 4 Results: Inelastic MRF with VE Dampers

Figures 5.14, 5.15, 5.16 and 5.17 show the numerical simulation results of the PSD

test for the inelastic MRF with VE dampers. The first three plots of each figure show the

results using each algorithm, with the last plot showing a comparison of the results.

The response from the Newmark Explicit and Newmark Explicit Real-Time methods

are in close agreement with eachother, with some permanent drift. On the other hand,

there are considerably large permanent drifts in the response based on the Alpha Method

with a Fixed Number of Iterations, as well as a significant difference with the Newmark

Explicit (i.e., 'true solution') and the Newmark Explicit Real-Time methods. This is due

to the fact that the apparent velocity is constant within each substep in the Alpha-Method,

resulting in smaller damper forces and therefore larger structural displacements. The

apparent velocity phenomenon will be discussed in detail in Chapter 6.

The design procedure followed while designing the VE dampers (Section 4.3.3)

requires that the VE-damped structure remain elastic under the DBE. However, in the

simulations demonstrated, even for Newmark Explicit method (which is considered as the

'true solution', see Chapter 6), there is a slight permanent drift due to some mild inelastic

response under the Canoga Park earthquake scaled to the DBE level. For the 'true

solution' the maximum drift occurs at the first story with a ductility demand (the ratio of

the maximum drift to the yield drift) of 1.06.

Figure 5.18 shows that Canoga Park earthquake has a noticeably large pulse around

time t = 17.5 sec. During the time history analysis performed under Canoga Park

earthquake, the structure yielded and drifted from its initial position due to this pulse and

79



then oscillated about the new deformed position. Figure 5.19 shows the frame shear-drift

response, where it can be observed that only a single episode of yielding took place in the

frame. The corresponding results for the total shear force-drift responses at each floor are

shown in Figure 5.20. The dampers are shown to dissipate energy. The results in Figure

5.19 and 5.20 were obtained from the numerical simulations using the Newmark Explicit

method.

5.6 Summary

For the PSD test simulations involving rate-independent materials (i.e., no VE

dampers) all the three integration methods gave accurate response for both the linear

elastic and inelastic cases (Cases 1 and 2), provided that a small enough time step is

chosen for the explicit schemes and a sufficient number of iterations is performed for the

implicit scheme (i.e., Alpha Method).

For the PSD test simulations with a rate-dependent (i.e., an MRF with VE dampers),

for both linear elastic and inelastic cases (Cases 3 and 4) the Newmark Explicit and

Newmark Explicit Real-Time methods gave accurate responses, whereas the Alpha

Method with a Fixed Number of Iterations resulted in larger displacements and

permanent drift. Although conditionally stable, the Newmark Explicit Real Time

algorithm enables real-time testing and agrees well with the 'true solution' for the one

earthquake record considered.
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Table 5.1 Pseudodynamic Test Simulation Analysis Matrix

Case Description
1 Linear Elastic MRF
2 Inelastic MRF
3 Linear Elastic MRF with VB Dampers
4 Inelastic MRF with VE Dampers
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Chapter 6 Rate-Dependent Force Effect

6.0 General

This chapter presents the apparent velocity characteristics of the selected three

integration algorithms in order to clarify their rate-dependent restoring force features, and

explain the reason for the differences in the response observed in the numerical

simulations of the rate-dependent PSD tests.

6.1 Apparent Velocity Characteristics of the Algorithms

As noted previously, when a structure is equipped with rate-dependent deviCes such

as VE dampers or rubber bearings, conventional PSD testing based on quasi-static

loading is no longer capable of simulating the true earthquake response. For such a case

the test should be conducted in, or near real-time. This cannot be achieved by using

conventional PSD testing algorithms and performing the test quickly.

To ensure continuous loading in real time, the numerical integration algorithm used

should be able to have the next time step target displacement ready, prior to when the

current time step loading is completed. Various attempts have been made in modifying

some of the existing explicit and implicit algorithms to satisfy this requirement (see

Chapter 2).

During a real-time PSD test, the actuators' task in each step is to apply the target

displacement over the time step duration. If the integration time step used is small, the

velocities with which the actuators are moving can be calculated by dividing the
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displacement increment by the time step size. This "apparent velocity" is the velocity

that the structure actually experiences during the test.

As mentioned in Chapter 5, the integration algorithm used is very important for a

real-time PSD test to simulate the true seismic response of a structure with rate-

dependent components. If the algorithm can provide displacement increments in such a

way that the apparent velocities (the velocities experienced by the test structure) match

the velocities that would occur during the real earthquake (calculated velocities), the test

specimen will develop as much resisting force as it would under the real seismic event

and therefore the simulation is realistic. Otherwise, when the apparent velocities deviate

from the calculated ones, the displacements and restoring forces developed in the

dampers and the overall response obtained from the test are not correct.

In 1992 Nakashima et al. tested (1992) an SDOF system with velocity dependent. .

characteristics using a staggered central difference algorithm, as explained in Section 2.4.

To check the accuracy of the velocity control, they compared the computed velocity with

the velocity achieved during the test and found a good agreement. The achieved velocity

was estimated by differentiating the displacement measured by the LVDT which

monitored the structural displacement, which is the same way that the 'apparent velocity'

is defmed in Section 4.3.2 provided that a small enough time step is used.

In this chapter, the apparent velocity characteristics of the selected three integration

algorithms used in the PSD test simulations are examined in order to evaluate their rate

dependent force features. The results from the numerical simulations of PSD tests of the

inelastic MRF without the VE dampers are presented. This case (identified as Case 2 in
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Chapter 5) has the largest velocity developed at the DOFs, and for that reason was

selected to study the apparent velocity characteristics of the different algorithms. Only

time history plots related to the first story response are given. The 'calculated velocity'

quantities are those computed by the integration algorithm. The 'apparent velocity'

quantities are calculated by dividing the displacement increment by time step size, or in

the case ofthe Alpha Method, the time substep size (i.e., the time between iterations).

6.1.1 Newmark Explicit Method

Figure 6.1(a) shows the comparison of the apparent and calculated velocities for the

complete time history, where it can be seen they are almost identical. The time step size

used in the simulations was 0.005 sec. This good agreement can also be observed in

Figure 6. 1(b) where the response over a 0.5 sec duration is shown.

6.1.2 Alpha Method with Fixed Number of Iterations

The velocity calculated by the algorithm and the apparent velocity do not show a very

good agreement when the Alpha Method is used.

As explained in Chapter 3, the Alpha Method is an implicit algorithm, which requires

iterative corrections for nonlinear systems. Conventional Newton iteration leads to

decreasing incremental corrections in successive iterations as the solution converges

towards the exact solution. This is undesirable for a real-time PSD test, because either the

actuators have to slow down or the signals have to be sent to the actuator controllers at an

increasing speed during the iterations. To avoid this problem, an alternative approach was
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adopted where a more or less uniform incremental correction is provided in each time

step (Shing et aI., 2002).

During the simulations with the Alpha Method, ten iterations were performed in

every time step. Since the time step size was At = 0.02 sec., the sub step size for each

iteration become t5t = 0.002 sec. The effect of this uniform incremental correction

approach on the apparent velocity characteristics can be observed from the magnified

. plots shown in Figure 6.2 (b and c). The apparent velocity, the velocity with which the

actuators are actually leading the structure during the test, remains almost constant within

the time step. At the end of each time step a sudden change in velocity occurs, generating

additional accelerations hence inertial forces.

These phenomena would lead to unrealistic results if a PSD real-time test were

performed in a structure with !ate-dependent elements.

6.1.3 Newmark Explicit Real-Time Method without Alpha-Beta Tracker Filter

In the Newmark Explicit Real-Time Method, the basic idea is to perform independent

integrations for the even and odd time steps (staggered integration) in order that the

scheme provides the next time step target displacement prior to the completion of the

current time step loading.

Figure 6.3 compares the calculated and apparent velocity from the PSD test

simulations for a rate-independent structure performed using the Newmark Explicit Real

Time method with staggered integration. In the simulations, a time step size of AT = 0.01
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seconds between odd and even time steps respectively with 0.005 sec.!J.t = 0.005 sec.

between an odd and even successive time step.

It is evident in Figure 6.3 that there is an oscillation of high frequency that exist in the

apparent velocity. This apparent velocity oscillation is due to the fact that the even and

odd time step displacements are calculated only from the previous even time step and odd

time step information, respectively, leading to local maxima and minima in the

displacement response history when the actuators apply the even and odd time step

displacements one after the other (see Figure 6.4).

6.1.4 Newmark Explicit Real-Time Method with Alpha-Beta Tracker Filter

The above mentioned apparent velocity problem can only be solved if the information

is shared between the even and odd time steps. The Alpha-Beta Tracker filter removes

the high frequency in the apparent velocity, by correcting the calculated displacement in

each time step using the corrected displacement and slope estimate quantities from the

previous time step (see Section 3.4.2).

With the sudden changes in the slope of the displacement history removed, there are

no high frequencies artificially introduced into the apparent velocity. Figure 6.5 shows

that the apparent and calculated velocities have good agreement when the Alpha-Beta

Tracker filter is incorporated into the staggered Newmark Explicit Real-Time Method.

This simulation had a similar time step size as that in the simulations using the Newmark

Explicit Real-Time Method without the Alpha-Beta Tracker filter.
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6.1.5 Rate Dependent Real Time PSD Simulations

The comparison of the restoring forces in the dampers from the numerical simulations

of PSD test of the elastic MRF with VE dampers are shown in Figure 6.6. As noted

previously, the VE damper forces were calculated based on the apparent velocities, where

only the forces from the fIrst story are shown. The simulations involved using the two

real-time PSD algorithms: (1) Alpha Method with a Fixed Number of Iterations and, (2)

Newmark Explicit Real-Time Method. The results from these simulations are compared

to the 'true solution' obtained from Newmark Explicit algorithm which also uses the

apparent velocity in damping force calculations and has a time step size of/).t = 0.005 sec.

For the linear MRF with the VE dampers, as can be seen from Figure 6.6, the

restoring force from Newmark Explicit Real-Time algorithm agrees well with the 'true

solution'. The Alpha Method with a Fixed Number of Iterations, on the other hand,

cannot develop as much resisting force in the dampers and does not agree well with the

'true solution'.

6.2 Summary

The numerical simulations of the rate dependent PSD tests were performed for an

MRF with VE dampers. The restoring forces from the dampers were calculated using the

Generalized Maxwell Model. Since the 'apparent velocity' is the velocity that the test

specimen will experience during real-time PSD test, the governing equations ofmotion of

the Generalized Maxwell Model were integrated using this 'apparent velocity'

relationship between displacement increment and velocity (see Chapter 4). This ensured
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that the restoring forces that would develop in the dampers during the real-time PSD test

would be calculated accurately in the numerical simulations.

Although it is not capable of performing real-time PSD testing, the response using the

Newmark Explicit algorithm is accepted as the 'true solution' for both rate-dependent and

rate-independent PSD test simulations. This is based on selecting a small enough time

step, from a convergence study (see Chapter 5) to ensure the accuracy of the solution.

Because the apparent and calculated velocities are almost the same for the Newmark

Explicit algorithm, the dampers subjected to these apparent velocities in real-time testing

will develop realistic resisting forces, simulating what would occur under the real

earthquake.

In the rate-dependent PSD test simulations it was observed that the Alpha Method

with a Fixed Number of Iterations gave larger displacements and permanent drifts than

the 'true solution'. This is due to the fact that the apparent velocity is more or less

constant in each time step, resulting in the dampers not developing as large a restoring

force. Therefore, it can be concluded that, the use of the Alpha Method with a Fixed

Number of Iterations could lead to incorrect results in a PSD real-time test of a structure

with rate-dependent elements.

Prior to the introduction of the Alpha-Beta Tracker filter to the Newmark Explicit

Real-Time Method having staggered integration, there existed a stability problem for the

rate-dependent simulations. This was due to the calculated restoring forces becoming

very large (more than 10307 kips) due to the apparent velocity characteristics explained in

Section 6.1.3. The filter improved the apparent velocity features (Section 6.1.4), and the
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Newmark Explicit Real-Time Method became stable and displayed good agreement with

the 'true response'.
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Chapter 7 Error Propagation Analysis Background

7.0 General

This chapter gives the background infonnation related to the error propagation

analysis that was conducted on the three PSD testing algorithms. After classifying the

experimental errors, previous studies on this subject are presented. The error types and

the considered combination cases of these errors for which the numerical simulations

were perfonned are also explained.

7.1 Error classifications

Errors are inevitable during a PSD test, due to reasons such as electrical noise, loss of

significant figures in analog to digital conversion, as well as the resolution and accuracy

limitations of measurement and control instruments. In order for the experimental results

to be acceptable, the errors introduced should be reasonably small. Although these errors

cannot be completely eliminated, one can reduce their magnitudes considerably with a

careful setup and good instrumentation.

In the pseudodynamic test method, the restoring forces of the system are not modeled,

rather they are directly measured from the tested structure. This experimental feedback is

used in the step-by-step numerical integration. For instance, in a PSD test that uses the

Newmark Explicit algorithm for numerical integration, the target displacement for the

next step (i +1) is calculated using the measured displacement, velocity and acceleration

values of the current time step (i). This calculated displacement is imposed to the
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structure, resisting forces developed in the structure are measured and used to determine

the acceleration and velocity of the new step (i +1). Then the target displacement for the

next time step (i.e., (i + 2) ) are determined.

Errors introduced in any time step will be carried over to subsequent time steps.

Although the magnitudes of the error within each individual step are small, the error can

accumulate over the large number of computation steps involved in the test, and

consequently the result may diverge significantly from the correct results as the

experiment proceeds. The rate of error propagation depends on the numerical scheme

used and the nature of these errors.

Shing and Mahin (1983) defined control and measurement errors as the two

components of the total feedback error introduced in each time step. The displacement

computed in a time step may not be accurately imposed to the structure due to

displacement control errors. Moreover, the actually imposed displacement and the

restoring force developed by the structure may be incorrectly measured and returned to

the computer (measurement errors).

Shing and Mahin (1983) listed the causes ofcontrol errors as:

• inaccurate calibration of displacement transducers used in the closed-loop

feedback system, which controls the hydraulic actuators.

• resolution limit imposed by the analog to digital (AID) conversion of control

signals transferred by the microprocessors.

• movement or deformation of the test specimen's support.
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• response time of the actuators to control signal (Le., latency between time of

command issue and actual actuator movement)

Similarly the measurement errors can be caused by:

• inaccurate measurement transducers.

• the AID conversion ofthe data transferred.

• electrical noises.

• frictional forces in actuator system connections.

These control and measurement errors may consist of systematic and random parts.

Systematic errors are those for which a regular pattern of occurrence can be identified.

They are usually caused by persistent inaccuracy in instrumentation and experimental

setup, and can have a significant influence on the experimental results. Fortunately, these

errors can often be avoided or reduced to insignificant levels with careful instrumentation

and test design.

The causes of systematic errors can be summarized as follows:

• transducer calibration errors.

• actuator displacement errors.

• friction.

• AID conversion of electrical signals.

• support movement.
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• inconsistent actuator motion.

Random errors, on the other hand, don't have a regular pattern of occurrence and are

more difficult to predict and control.

They result from many causes including:

• random electrical noise in wires and the electrical system.

• random rounding off or truncation in the AID conversion of electrical signals.

• inconsistent actuator motion.

• transducer readings contaminated by some external mechanical disturbances.

Random errors can be so irregular that no specific physical effects can be anticipated.

Nakashima and Kato (1987) examined the stages in which the experimental error

could be generated during testing. The conclusions are summarized in a flow chart in

Figures 7.1 and 7.2.

As can be seen from above, there are several source of error in the closed loop of the

control mechanism. All of these errors accumulate during each time step, and are fmally

combined into one reactional force error quantity.

7.2 Previous Studies on PSD Testing Error Analysis

Propagation of experimental error appears to be the major source of inaccuracies in a

PSD test. This drawback led several researchers to focus on error analysis. The

cumulative nature of experimental errors in pseudodynamic tests using explicit numerical

integration algorithms was studied by Shing and Mahin (1983,1987). Nakashima and
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Kato (1987) performed PSD tests on a 2-DOF and a 6-DOF specimen to examine the

effects of the experimental error on the response. Thewalt and Roman (1994) investigated

several parameters such as position error, cumulative over/undershooting, energy error

and input energy for identifying errors and quantifying their magnitude and effect in PSD

testing.

These studies concluded that systematic undershooting (Le., achieved displacements

are less than the target displacements) numerically adds energy to the system while

overshooting errors dissipate energy in the system. It has been suggested to use Fast

Fourier Transforms (FFTs) of the displacement error history to identify the existence of

systematic errors, where displacement error is defined as the difference between the

measured and calculated displacement values. The presence of peaks at discrete

frequencies in the FFT of the error shows that the error is systematic in nature, and for

random errors the FFT will contain a large bandwidth of frequencies.

In these studies, the systematic over and undershoot errors introduced in the

numerical simulations were either a constant value, or obtained by truncating the

calculated displacement. For example, Mahin and Shing (1983,1987) used both

truncation error and constant over and under shooting of 0.02 mm or 1.75 mm (Shing and

Mahin, 1987; Shing and Vannan 1990, 1992). More recently Chang et al. (Chang et al.,

1998; Chang, 2002) introduced a constant undershooting error of 0.1 mm and 0.02 mm

in their numerical simulations.

The reason for the problems due to systematic undershoot error was explained by

Nakashima (1987). Unless the distribution of the undershoot error in a PSD test coincides
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with the first mode, the higher modes will be excited and the response will be

overshadowed by the higher modes of vibration that normally would not participate in the

response. Several improvement methods to suppress the spurious growth of the high

frequency modes in an MDOF system have been suggested, such as numerical damping

(Shing and Mahin, 1983), I Modification (Nakashima and Kato, 1987), T Modification

(Nakashima and Kato, 1987), or using an integral form of the Newmark explicit

algorithm (Chang et al., 1998).

Most pseudodynamic test systems are capable of recording the history of position

errors for each actuator. Therefore, after the experimental setup is ready, preliminary

pseudodynamic testing within the linear elastic range of the test specimen is always

recommended before any destructive test. By computing the FFT results for the

monitored error signals, the nature of the errors can be identified. Also, linear elastic

pseudodynamic test results should closely match analytical results obtained with

available appropriate structural models. The degree of discrepancy between the two will

give an idea about the magnitude of the errors introduced.

Special attention should be given towards using appropriate instrumentation with

proper calibration, reliable test apparatus, and good experimental techniques in order that

the PSD test simulates the real seismic behavior.
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7.3 Error Types Considered in Error Propagation Analyses

7.3.1 Displacement errors

Two types of displacement errors were introduced into the algorithms, which were

used to perform the PSD test simulations presented in Chapter 5 and 6. These included:

systematic displacement error and random displacement error. The objective was to

calculate the performance of these algorithms when experimental error was presented.

A systematic error in the simulation was represented by a factor (called "q"), which

has a constant value.

During the PSD test, the reaction wall, against which the actuators are placed to apply

the command displacement to the test specimen may not be infinitely rigid. Even though

the actuators may be either extended or retracted to the exact amount of the command

displacement, due to the elastic deformation of the reaction wall only a certain percentage

of the calculated displacement might be imposed to the structure. If, for example the

structure was displaced 99% of each computed displacement value, it is considered as an

'undershoot' case and incorporated into the simulation by using q=O.99 to adjust the

target displacement for a time step.

Because of miscalibration, it may be possible that the structure is consistently

displaced more than it was actually supposed to. This scenario was incorporated into the

PSD test simulations by considering values of q greater than one, resulting in

overshooting the target displacement.
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Nakashima and Kato (1987) conducted a series of on-line test using a two story steel

braced frame model. From those results they concluded that random displacement errors

are either uniformly distributed or Gaussian distributed.

At the beginning of the study, to represent random error, both normal and uniform

distributed errors were considered. Preliminary studies were conducted on how to best

represent the random error. Random variables with a Gaussian and uniform distribution

were separately considered. It was found that a random error having a Gaussian

distribution is more conservative. Therefore the error analysis study proceeded using a

random variable with a Gaussian distribution.

The random displacement error in the simulations was represented by a factor called

"rd", which is an array having as many number of elements as the number of time steps

in the analysis. The elements are normally distributed with a mean ofzero and a specified

standard deviation.

The normal probability function is a two-parameter function; one parameter, Jl , is the

mean of the outcomes, and the other parameter, a, is the standard deviation. The mean Jl

locates the peak of the curve and is the most likely value to occur. The width, or spread of

the curve is described by the parameter a. The probability density function p(x) of a

Gaussian random variable is given by the following equation:

( )

2
1 1 x-

p(x) = exp(-- --.1:!.. )
u.J2;r 2 u

(7.1)

The area under the probability density function curve gives the probability that a

range of outcomes will occur, where for example:
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)1+0'

p(p- a '5: x '5: P + a) = Jp(x)dx = 0.68268
)1-0'

)1+20'

. p(p- 2a '5: x '5: P + 2a) = Jp(x)dx = 0.954499
)1-20'

)1+30'

p(p- 3a '5: x '5: P + 3a) = Jp(x)dx = 0.9973
)1-30'

(7.2a)

(7.2b)

(7.2c)

Thus, if a variable is normally distributed, there is a 68 % chance that a randomly

selected sample will lie within one standard deviation of the mean, 95.5% chance that it

will lie within two standard deviations, and, a 99.7% chance that it will lie within three

standard deviations.

In the PSD test simulations, the magnitude of the random displacement error is

specified by its standard deviation. For example, for rd=0.02, from the above explanation

a selected random error (rdj) is expected to be within -0.02< (rdj) < 0.02 68 % of the

time (where the mean ofthe error is taken as zero).

For the PSD test simulations with error, the systematic and random error were

implemented into the algorithms where the target displacement is multiplied by (q+rd) to

find the actually "imposed displacement", which in turn is used in the calculation of the

resisting force. Thus,

imposed _ displacement = calculated_ displacement *(q + rd)
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7.3.2 Force error

As pointed out previously, all errors introduced during a given time step in a PSD test

are finally combined in the force error quantity as follows:

force _ error = f (displacement _error) + force _measurement _error (7.4)

where the first term is associated with the structure's restoring force due to the actual

displacement (which may contain error), the second term is associated with the force

measurement error.

The force measurement error is accepted as random, represented by a factor called

'rf. Like 'rd', it is an array having as many of elements as the number of time steps in

the analyses and its magnitude is specified by its standard deviation, such as rf = 0.002.

Since the error in a load cell is usually around loa~OOO' rf = 0.002 was used in all

the numerical simulations and implemented in the following way:

measured_restoring _ force = calculated_ restoring _ force *(1 +rf) (7.5)

where the calculated restoring force is based on the actual imposed displacements which

contains displacement errors.

7.4 Error Analysis Matrix

In addition to the case of no errors, ten different combinations of 'q', 'rd' and 'rf

were considered in the numerical simulations of PSD testing of rate-dependent and

independent structures using the three different integration algorithms. Thus, a total of 11

cases were considered. The cases are summarized in Table 7.1, and included:
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Case 1: This is the 'no error' case. The other cases, where different combinations of

error were introduced, are compared to Case 1.

For the remaining ten cases 'rf' was set equal to 0.002.

Case 2: This is the upper limit of random displacement error. 99% of the time, the

introduced random displacement error was less than 3%.

Case 3: In this case, 99% of the time the random displacement error is less than 1%.

Case 4: This case is to observe the combined effect of a 2% systematic 'overshoot'

error combined with random displacement error, that is less than 1%, 99% ofthe time.

Case 5: This case is to observe the combined effect of 2% systematic 'undershoot'

error combined with random displacement error, that is less than 1%, 99% ofthe time.

Case 6: Case 6 considers a random displacement error that is less than 2%, 99% of

the time, and without any systematic error.

Case 7: The combined effect of a 2% systematic 'overshoot' and random

displacement that is less than 2%,99% ofthe time was evaluated in Case 7.

Case 8: The combined effect of a 2% systematic 'undershoot' and random

displacement that is less than 2%, 99% ofthe time was evaluated.

Case 9: This case is to observe the effect of random force error that is less than 0.6%,

99% ofthe time.

Case 10: Case 10 is to see the effects of a 2% systematic 'overshoot' without any

random displacement error, and a random force error that is less than 0.6%, 99% of the

time.
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Case 11: In case 11 the effects of a 2% systematic 'undershoot', combined with a

random force error that is less than 0.6%,99% of the time was investigated.

The 'rd' and 'rf arrays have been generated by the random number generator in

Mathcad (Mathcad 2000 Professional, MathSoft Inc.) with a mean of zero and the

specified standard deviation. In the simulations, a separate random error array per floor

was used, since the error magnitude induced in the actual test will differ from one story to

the other.

The structure used in the numerical simulations was a 4 DOF system; hence for a

given standard deviation only four arrays were generated (one for each story). These

arrays were stored and used to compare the error propagation characteristics of the

different algorithms. Since the same random errors were used for the three different

integration schemes, the effect of introducing different random errors to each algorithm

was eliminated.

In the Alpha Method with a Fixed Number of Iterations, arrays of random numbers

had only as many elements as the number of time steps. The same random errors r/;

andrd; were introduced in each iteration (sub step), of a given time step.
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Table 7.1 Error Analysis Matrix

Case Displacement Error Force Error
Systematic (q) Random (rd) Random(rf)

1 1.0 0 0
2 1.0 0.01 0.002
3 1.0 0.0033 0.002
4 1.02 0.0033 0.002
5 0.98 0.0033 0.002
6 1.0 0.0067 . 0.002
7 1.02 0.0067 0.002
8 0.98 0.0067 0.002
9 1.0 0 0.002
10 1.02 0 0.002
11 0.98 0 0.002

128



co.lculo;tecl cOf'll'lo.nd o.chievE'd
dlsplo.ceMent displo.eeME'nt finite o.ccuro.cy of' CUSplo.ce'Meni:

resolution tlf'lit of' clisplo.cE'Ment
D/A converter sensors, Ul'llto.tlons

of servo-control
MechanisM

Figure 7.1 Errors associated with a displacement quantity

reo.ction
I'leo.sureclf'orce clue "to feeclbo.cl<

o.chleved reo.etlon
AID converter

r eo.c:i:ion
cllsplo.ceMeni: finite o.ccuro.cy of force force

loo.d !'leo.surlng resolution liMit
sensors

Figure 7.2 Errors associated with a force quantity

129



Chapter 8 Error Propagation Analysis Results

8.0 General

This chapter presents the error propagation simulations for PSD tests on structures

with and without load rate-dependent elements (Le., VE dampers) using the three

different integration algorithms. The results are summarized and the main observations

are provided.

8.1 Numerical Simulations ofPSD Tests Considering Experimental Error

Numerical simulations of the error combination cases explained in Chapter 7 (Table

7.1) were performed. The maximum and minimum drift ratios were selected as the

parameters to compare the response of various simulations with error due to errors of

different types and magnitudes introduced into the algorithms. The maximum drift ratio

is the ratio of the maximum value of drift for the error case to maximum value of drift for

the case without error (Le., Case 1). Similarly, the minimum drift ratio is the ratio of the

minimum value of drift for the error case to the minimum value of drift when there is no

error (Case 1).

The reason why drift ratio was selected as the quantity for comparison is because drift

is directly related to structural damage.

For each ofthe 11 error analysis cases, 6 PSD test simulations were performed:

(1) Newmark Explicit Algorithm, Inelastic MRF without VE dampers.

(2) Newmark Explicit Algorithm, Elastic MRF with VE dampers.
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(3) Alpha Method with a Fixed Number of Iterations, Inelastic MRF without VE

dampers.

(4) Alpha Method with a Fixed Number ofIterations, Elastic MRF with VE dampers.

(5) Newmark Explicit Real-Time Algorithm, Inelastic MRF without VE dampers.

(6) Newmark Explicit Real-Time Algorithm, Elastic MRF with VE dampers.

For the various test algorithms, the effects of having 1%, 2% and 3% random

displacement error (Le., rd=0.0033, 0.0067 and 0.01) alone (Le., q=l) are compared for

cases with a similar random displacement error combined with a 2% over, or

undershooting, displacement error (Le., q=1.02 or q=0.98) in Figures 8.1 through 8.6.

-8.1.1 Load Rate-Independent PSD Test Simulation with Newmark Explicit

Method

Figure 8.1 summarizes the drift ratios obtained for the ten different error scenarios

(Cases 2 through 11), using the Newmark Explicit integration scheme. The simulations

were carried out for the idealized MRF presented in Chapter 4.

For no systematic error with random displacement error (q=l,rd=O.OI) it is apparent

that the drift ratio is around 2.6 in the fourth floor (Le., the maximum deformation in the

fourth floor is 2.6 times larger than that of the solution without error). A random error of

rd=O.OI is therefore not acceptable. For rd=0.0033 the drift ratio in the fourth floor is

around 1.2, which is more acceptable.
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8.1.2 Load Rate-Dependent PSD Test Simulations with Newmark Explicit Method

Figure 8.2 summarizes the error analyses results using Newmark Explicit Method for

an MRF with VE dampers.

There are only slight changes between cases of q=O.98, q=l, q=l.02. This means that

the effect of random displacement errors are more severe compared to systematic errors

in the rate dependent simulations with the Newmark Explicit Algorithm.

8.1.3 Load Rate-Independent PSD Test Simulations with Alpha Method with

Fixed Number of Iterations

Figure 8.3 summarizes the results of the error analyses performed using the Alpha

Method with a Fixed Number ofIterations for the MRF without VE dampers.

From Figure 8.3 it can be observed that Alpha Method i.s more sensijive to systematic

undershoot error (q=O.98). For no systematic error and overshoot cases combined with

random displacement error the drift ratios obtained from the Alpha Method are

comparable to those from Newmark Explicit Algorithm (see Figures 8.1 and 8.3).

8.1.4 Load Rate-Dependent PSD Test Simulations with Alpha Method with Fixed

Number of Iterations

Figure 8.4 summarizes the error propagation characteristics of the Alpha Method for

the load-rate dependent PSD test simulations.

For this load rate-dependent case, when Figure 8.4 is compared to Figure 8.2, it can

be seen that the Alpha Method has a similar sensitivity to over/undershoot systematic

error as the Newmark Explicit scheme.
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8.1.5 Load Rate-Independent PSD Test Simulations with Newmark Explicit Real

Time Method

Figure 8.5 shows the results of the error propagation simulations using the Newmark

Explicit Real-time Method with Alpha-Beta Tracker Filter for load rate-independent PSD

tests.

Essentially, the Newmark Explicit Real-Time Method follows a trend very similar to

that of Newmark Explicit algorithm results (See Figure 8.1). There are only slight

changes in drift ratios for some cases at some floor levels.

8.1.6 Load Rate-Dependent PSD Test Simulations with Newmark Explicit Real

Time Method

Figure 8.6 shows the error propagation simulation results for aVE-damped MRF

using the Newmark Explicit Real Time Method with Alpha-Beta Tracker Filter.

Similar to the Newmark Explicit algorithm (Section 8.1.2), for the Newmark Explicit

Real-Time Method with a filter, the random displacement errors, rather than

over/undershooting systematic displacement errors have a greater effect in the result.

Since the ranges of drift ratios are slightly larger than the other two integration

schemes for load-rate dependent case it appears that the Newmark Explicit Real-Time

Method with a filter is more sensitive to experimental error propagation.
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8.1.7 General Observations

In every one of the error cases (both load rate dependent and independent

simulatons), for no systematic and random displacement error (i.e., q=l,rd=O), but with

random force error (rf=0.002), the maximum and minimum drift ratios are 1 at all floor

levels (see Figures 8.1 through 8.6). Therefore it can be concluded that the random force

error 'rf=0.002' does not affect the response. As explained in Section 7.3.2 the

measurement error in a load cell is around loa~OOO' therefore 0.002 is a conservative

value for rf.

The previous error propagation studies (see Section 7.2) concluded that, systematic

undershooting errors should especially be avoided, for they numerically add energy to the

system. In this study however, this problem with systematic undershoot error was not

observed, mainly because of the way the errors were introduced. Since the systematic

error was a percentage of the response, and since the response is mainly in the first mode,

higher modes were not excited and the energy effect was not detected.

When the error propagation characteristics of the same algorithm for load rate

dependent and independent simulations are compared to each other, it is noticed that the

load rate-independent simulations are much more sensitive to experimental error. This

can be explained by the fact that the displacement quantities, as well as the error

magnitudes introduced, are smaller in the simulations with VE dampers than those in the

load rate-independent simulations.

Of the two real-time PSD test algorithms investigated via load rate-dependent PSD

test simulations, the Alpha Method with a Fixed Number of Iterations performs slightly
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better than the Newmark Explicit Real-Time Method with a filter as far as experimental

error propagation is concerned. However it should also be kept in mind that, the use of

Alpha Method could lead to incorrect results in a PSD real-time test of a structure with

rate dependent elements as explained in Chapter 6.
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Figure 8.3 Load Rate-Independent PSD Test Simulations,

Alpha Method with Fixed Number ofIterations (rf=O.002)

138



First Story First Story

~ ::; ~~~t~t~~~ !m~H~ mmm~n ~m m
; 0.8 :::::::: :::::::: ::::::::: ::: :::: :::

~ 0.6 ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~ ~~~ ~~~~ ~~~
:::::::: :::::::: ::::::::: ::: :::: :::

II! 0.4 :::::::: :::::::: ::::::::: ::: :::: :::

~ 0.2 :::::::: :::::::: ::::::::: ::: :::: :::
:::: :::::: :::::::: :::::::::: :::: :::: :::o -------- -------- --------- --- ---- ---

o 0.002 0.004 0.006 0.008

rd

Second Story Second Story

::::::::: :::::::: ::::::::: :::::::: :::::::::

0.002 0.004 0.006 0.008

rd

:: ::: :::: :::::::: :::: ::::: ::: ::::: ::: :::::
::::::::: :::::::: :::::::::: :::::::: ::::::::

1.4 T~""~~:-:-~:-:-~~""'~~r.:~=~~=~~=~~=~r-:~~"'~~"'~~,.,.~~:-=,~:-:-~::-:-:~=~~ ""'~~"'T~""'~~=~~=~~=~~
C 1.2
E 1
'0' 0.8

~ 0.6
~ 0.4
1I 0.2

o
o0.002 0.004 0.006 0.008 0.01

rd

:::::::: ::::::::: :::::::::: :::::::: ::::::::

:::::::: :::::::: ::::::::: :::::::: ::::::::

1.4 T~C:-~,,",~~=~~""'~~'T'~C:-~ ~:-:-~""'~~=~~""~"'~~c:-~~:-:-~""'~~""~""'~~c:-~~:-:-~=~~71~""'~~=~~""'~~,.,.~~=-=>
,("1.2

E 1
'0' 0.8

~ 0.6
II! 0.4
~ 0.2

o
o

Third Story Third Story

1.4 ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~ ~~~~~~~~ ~~~~~~~~!::! ,;~~;;~;: ~.~~~~;;; ;;;~;;;~-;~~~~~~ ~~~~~~~~
~ 0.6 ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~ ~~~~~~~~ ~~~~~~~~
~ 0.4 ~~~~~~~; ;~~~~~;; ;~;~~;~;; ~~~;;;;; ;;;;;;;;
~ 0.2 ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~ ~~~~~~~~ ~~~~~~~~

o ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~ ~~~~~~~~ ~~~~~~~~

o 0.002 0.004 0.006 0.008 0.01

rd

Fourth Story Fourth Story

:::::::: :::::::: ::::::::: :: :::::: ::::::::

~:1 ;~:~~o;::*;!;m~TImm
~ 0.6 ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~ ~~~~~~~~ ~~~~~~~~

~ 0.4 ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~ ~~~~~~~~ ~~~~~~~~
1I 0.2 :::::::: :::::::: ::::::::: :::::::: ::::::::o :::::::: :::::::: ::::::::: :::::::: ::::::::

o 0.002 0.004 0.006 0.008 0.01

rd

0.002 0.004 0.006 0.008 0.01

rd

1.4 T~""~""'~~=~~,.,.~~=~~=~~,.,.~~:-:-~""'~r.:~~,.,.~~:-:-~""'~~=~~T~:-:-~=~~""'~~,.,.~~=~~=~~""'~~=~=:>~i 1.2
E 1
'0' 0.8

~ 0.6
~ 0.4
1I 0.2

o
o

Figure 8.4 Load Rate-Dependent PSD Test Simulations,

Alpha Method with Fixed Number oflterations (rf=O.002)

139



First Story First Story

2.,----.---,---,-----,---, 2 ,_-_-_-__ -__,_-__-._-__-_'__-__-__-__'_-_-__-__-._'_-__-__-__---,__

0.010.0080.004 0.006

rd

0.002

-------- -------- --------- -------- --------O-!---+---!----!----I---I

o

c:§. 1.5

~ 1
l!
~ 0.5

"o -------- -------- --------- -----.-- --------
o 0.002 0.004 0.006 0.008 0.Q1

rd

~ l' ~~~~~~~~ ~~~~~~;; ;;~;;~;ii;~~~~~~ ~~~~~~~~
~ 0.5 :::::::: :::::::: ::::::::: :::::::: ::::::::" -------- -------- --------- -------- --------

Second Story Second Story

2 ,_-__-__-_-__,_-__-__-__-_,__-__-__-__,_-__:-_-__:-__ ""_c:-::__c:-::__-__--,__ 2 .,---,.---r---,------,-------,

0.010.0080.004 0.006

rd

0.002

-------- -------- .-._----- -------- --------o+---+---I----I----!----I

o

~ 1 ,~-~~~~~~~~~~~~;~; ~~~~~~~~~~.;':;;;;; ;;;;;;;;

~ 0.5 :::::::: :::::::: ::::::::: :::::::: ::::::::" -----.-- _._----- --------- -------- --------

0.010.0080.004 0.006

rd

0.002

-------- -------- --- - - ~. -- -------- --------o+----j---+---+---+---I

o

i.§. 1.5

~ 1
l!
~ 0.5

"

Third Story Third Story

2 ,_-__-__-_-__,_-__-__-__-_,__-__-__-__,_,_-__-__-__,_-__-__-__--.__ 2 ,_-__-__-_-__,_-__-__-__-_,__-__-__-__,_-__-_-__-__ ,_-_.-__:-__---,__

0.010.0080.004 0.006

rd

0.002

-------- -------- --------- -------- --------O-l---+---I---t---+----j

o

C :::::::: :::::::: ::::::::: :::::::: ::::::::
:§. 1.5 :::::::: :::::::: ::::::::: :::::::: ::::::::

~ 1 r ~.~~~~ ~~~.~~ ~~~~~~;;;-;.;~;;;;; ;;;;;;;;

~ 0.5 :::::::: :::::::: ::::::::: :::::::: ::::::::" -------- -------- --------- -------- --------

0.010.0080.004 0.006

rd

0.002

o -------- -------- --------- -------- --------

o

Fourth Story Fourth Story

0.010.0080.004 0.006

rd

0.002

-------- -------- --------- -------- --------o-t---+---I---t---+----j

o

2,.------..,.---,.---,.-------,------,

C :::::::: :::::::: ::::::::: ::::::::::::::::E 1.5 -------- ------.- --------

!.:~;, .~ ~!!" -------- -------- --------- -------- --------

0.010.0080.004 0.006

rd

0.002

-----_.- -.------ --------- -------- --------

:::::::: :::::::~~,,::;~;,~;;;~: ::::::::
.:.:: __ ~ ". _.w'_~' _,, • _

o -------- -------- .-------- -------- --------
o

2.,-----,---,---,.--------r-----.""
:::::::::::::::::::::::::::::::::1:::./
:::::::::::::::::::::::::::::::::~::::

o 1
~
~ 0.5

"

i.§. 1.5

Figure 8.5 Load Rate-Independent PSD Test Simulations,

Newmark Explicit Real Time Algorithm (rf=O.002)

140



First Story First Story

:::::: ::: :::::::: :::: ::: ::: ::::: :::: :::::::::

0.010.0080.004 0.006

rd

0.002

1.4 ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~ ~~~~~~~~ ~~~~~~~~
C 1.2 ":,,:,, """" :"""" ::::"" ::::""

E 1· j'IT~~'\'~ tl'11~;; ~~~;~~~~~ ~~;;;;; iii;;;;;i ~:: ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~ ~~~~~~~~ ~~~~~~~~
:::::::::::: :::::::: :: ::: ::::::. ::: ::::: :::::: ::::

~ 0.4 -------. -------- -----.--- -------- .-------

"G 0.2 ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~ ~~~~~~~~ ~~~~~~~~
::::::::: :::::::: :::::::::.: :::::.:::: ::::::::o 00-- •••• 00000000 0000--00 •• -000000 -.000000

o0.002 0.004 0.006 0.008 0.01

rd

:::::::: :::::::: ::::::::: :::::::: :::::::::

~+~~~;;;;+H~f ~~.~~;;;;;; ;;;;;;;;

:: ::::::: :::::::: :::::::: ::: ::::::::: ::::::::

::: ::::: :::: :::: :: ::::::::: :::: ::::: :::::::::
1.4 """.,",".:-:..":"":._,,"..:T:"":••""=,••,,"••,",".:-:."-••""••'"'".:-:._""='.."".:-:.":"":••,,",••,",".::7.":"":••""='_.,,",••,","."'.

'S' 1.2
E 1
';;' 0.8

! 0.6
~ 0.4
~ 0.2

o
o

Second Story Second Story

::::::::.: :::::::: :::::: :::: :::::::: ::::::::

::::::::: :::::::: ::::::::: :::: :::: ::::::::

0.010.0080.004 0.006

rd

0.002

1.4 0000. 000000._ • 00_00 0000·00. 00._0000

C 1.2 =::::::: :::::::: ::::::::: :::::::: ::::::::

E 1 #~'mm'i; ;~~.;~~~-;~ ;;;;;;;; ~;;;iiiii ~:: ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~ ~~~~~~~~ ~~~~~~~~
::::: ::: :::::::: ::::::::: :::::::: ::: :::::

~ 0.4 :::::::: :::::::: ::::::::: :::::::: ::::::::
"G 0.2 :::::::: :::::::: ::::::::: :::::::: ::::::::

o --.----- ----.-- .. -------..-.----- -.---00-

o

\
:_q:1_q:1.02
-b>>>>>,c;098

0.002 0.004 0.006 0.008 0.01

rd

1.4 T:~C::~~C::~~~~~:-:~r-~O':~~O':~~O':~~-=-=~r-:~~-=-=~~-=-=~~c::~~""~'"'"~~=-=-~.=-=-:~""~~::7~O':~~O':~~-=-=~~"=>~~'S' 1.2
E 1
';;' 0.8

! 0.6
~ 0.4
"G 0.2

o
o

Third Story Third Story

0.002 0.004 0.006 0.008 0.01

rd

:::::::: :::::::: ::::::::: :::::::: ::::::::
:::: :::: :::::::: ::::::::: :::::: ::: ::::: :::

:::::::: :::::::: ::::::::: :::::::: :::::::::::
1.4 """.,",,_.=-=-.=-=-._-=-=_.T-_-=-=__'""_.'""--=-=--:r:.0':._-=-=__-=-=__,",,__=__-=-=__-=-=__=-=_-'T.=-=-_""..-=-=--"=>--

C 1.2
E 1
';;' 0.8

~ 0.6
~ 0.4
-li 0.2

o
o0.002 0.004 0.006 0.008 0.01

rd

:::::::: :::::::: ::::::::: :::::::: ::::::::

1.4 """~=-=~=-=~~7.~~'""~:::7_":"":~~c:c~~'""~~:-:~=-=~"-~~'""~~:-:~"'~~""='~~'l'"::-::~":"":~~""'~~'"'"~:":""~~7.~~c:c~~'"'"~_""";

'S'1.2
E 1
';;' 0.8

! 0.6
~ 0.4
"G 0.2

o
o

Fourth Story Fourth Story

~M~M M __ M __ ~_M _M ~

:::::::: ::.--:;; : ~:::_-_:'-- _:':::::: ::::::::

0.002 0.004 0.006 0.008 0.01

rd

1.4 ",~~~~=-=-~~=-=-~~=-=-~r:~0':~~O':~~O':~~"'~-=-=~~-:-:~~-=-=~~::-:~~"'~=-=-~~=-=-~:=-=:~""~~Ot'~0'::~-=-=::-=-=::=::
C 1.2
E 1
';;' 0.8

! 0.6
~ 0.4
"G 0.2

o
o

1.4 __ 00 00 ._._._. 00 _

!::~ ,m1mH~ili llmml-li;li;;; ;;liiffi
! 0.6 ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~ ~~~~~~~~ ~~~~~~~~

~ 0.4 ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~ ~~~~~~~~ ~~~~~~~~

~ 0.2 ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~ ~~~~~~~~ ~~~~~~~~

o ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~ ~~~~~~~~ ~~~~~~~~

o 0.002 0.004 0.006 0.008 0.01

rd

Figure 8.6 Load Rate-Dependent PSD Test Simulations,

Newmark Explicit Real Time Algorithm (rf=O.002)
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Chapter 9 Summary and Recommended Future Research

9.1 Summary and Conclusions

This study evaluated a total of three numerical integration algorithms for load rate

dependent and independent PSD testing.

The necessary background about conventional and real-time PSD testing, together

with detailed information about the numerical integration schemes and the structures with

and without load rate-dependent devices that were used in the numerical simulations were

provided. The error propagation characteristics of the algorithms were systematically

examined using ten different error scenarios. Previous research results were included

wherever necessary.

A new integration scheme based on the Newmark Explicit method, which IS

appropriate for real-time PSD testing was presented and evaluated.

For the numerical simulations of load rate-independent linear and nonlinear PSD tests

it was observed that all three algorithms gave an accurate response. However, load rate

dependent linear and nonlinear PSD test simulations showed that the Alpha Method with

a Fixed Number of Iterations resulted in larger deformations and permanent drift,

whereas although conditionally stable, the newly proposed algorithm (Newmark Explicit

Real-Time Method with an Alpha-Beta Tracker filter) enabled real-time testing and

agreed well with the 'true solution'.

It was found that the 'apparent velocity' characteristics of the algorithms were very

important for a real-time PSD test in order to simulate the true seismic response of a
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structure with load rate-dependent components. The apparent velocity features of the

three algorithms were investigated and the rate-dependent force effect, which was

responsible for the discrepancy in the response when different algorithms were used in

load rate-dependent PSD test simulations, was also explained.

The error propagation analyses were methodically carried out for both load-rate

dependent and independent simulations. The results of all the analyses were summarized

by selecting the drift ratio as the quantity of comparison. The observations for the load

rate-independent case in the error propagation analyses were compared to those of the

previous studies on the same subject.

This report provides the first systematic error analysis for load rate-dependent PSD

testing where it was observed that load rate-dependent simulations were not as sensitive

to experimental error as the load rate-independent ones.

Of the two real-time PSD test algorithms investigated via load rate-dependent PSD

test simulations, the Alpha Method with a Fixed Number of Iterations performed slightly

better than Newmark Explicit Real-Time Method with a filter as far as experimental error

propagation was concerned. However, as noted earlier, the Alpha Method was found to

lead to incorrect results in a real-time PSD test of a structure with load rate-dependent

elements.

9.2 Recommended Future Work

Time delay (Le., latency), which occurs due to several reasons such as the time taken

in online data acquisition, filtering and processing and transmission of the control signal,
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and time taken between the command issue and actual actuator movement, has not been

considered in the numerical simulations in this study.

Because of the time delay, unsynchronized control forces may be applied to the

structure, which may cause degradation in the efficiency of control or may even render

the structure unstable (Agrawal et aI, 1993). Therefore, for a more realistic simulation of

real-time PSD testing, actuator dynamics together with time delay effects should be

included in the numerical simulations.

In order to examine the error propagation characteristics of the algorithms, the error

signals obtained during preliminary pseudodynamic testing from the real experiment

setup should be introduced in the numerical simulations. Also, numerical simulations for

the error propagation characteristics should be performed using inelastic MRF with VE

dampers.

For the verification of the explanation about the rate-dependent force effect, load rate

dependent PSD test numerical simulation responses should be compared to that from a

shake table test.
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