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Abstract

Over the past few decades, multi-sensor data fusion has been applied to a broad range of

problems in many different areas including object detection and recognition, target tracking,

remote sensing, medical diagnosis, robotics, and autonomous vehicles. Researchers have

recognized that the synergistic combination of data from multiple sensors can provide a more

robust and complete view of the object of interest than can be achieved by a single-sensor

system. Further advances require a better understanding of the science behind different multi-

sensor data fusion systems. This dissertation presents our research on several selected issues

concerning multi-sensor data fusion systems that have recently received significant attention.

In particular, we focus on the novel signal processing design and performance evaluation

techniques for three popular systems: the multi-sensor image fusion system, the multi-input

and multi-output (MIMO) radar system and the distributed sensor network.

Quantitatively measuring the performance of a multi-sensor image fusion system is a

complicated but important task. We focus on the theoretical analysis of three correlation-

based fused image quality measures (FIQMs) when they are used to judge the performance

of weighted averaging image fusion algorithms. Our analysis shows that when we change the

power of the desired signal or the noise in the source images, these correlation-based FIQMs

exhibit some undesired behaviors. In addition, we develop a novel statistic to score the

effectiveness of FIQMs for the detection task in light of practical measurements from human

perception experiments. The performance of the proposed monotonic test is demonstrated via

Monte Carlo simulations. We also show the application of the proposed method to evaluate

potential FIQMs in a specific target detection experiment.

The second part of this dissertation considers the joint location and velocity estimation

1



problem in a multi-target non-coherent MIMO radar system. The Cramer-Rao bound (CRB)

is a useful tool for evaluating the performance of radar systems, as it provides the mean

square error lower bound for any unbiased estimation. In this dissertation, we focus on a

multi-target case, in which a non-coherent MIMO radar system is considered. This case has

not yet been studied by others. We investigate the joint location and velocity estimation of

multiple targets, and the Cramer-Rao bound for a two-target case is derived and evaluated.

This bound gives us theoretically achievable joint estimation performance for a sufficient

number of antennas.

The third part of the dissertation considers the design of change detection methods using

observations from distributed sensor networks, where each node has access to local observa-

tions and is only allowed to communicate with its neighbors. Results apply to monitoring

large systems like the electrical grid but they also apply generally to cases where sensors mon-

itor changes in a random field. Using our algorithms, all the nodes will reach a consensus on

the test in the end. First, we study the distributed change detection problem for distributions

that can be represented as Gaussian graphical models. We propose two distributed tests. The

first distributed test is a natural approach which simply applies the generalized likelihood

ratio test (GLRT) to smaller size local clusters in the graph. The second method employs

the pseudo-likelihood as a surrogate function for the global likelihood. Next, we consider

the fault detection problem for measurements following the errors-in-variables (EIV) model.

The standard approach to parameter estimation in such problems is known as total least

squares (TLS). Recently, a competing approach known as total maximum likelihood (TML)

was proposed and was shown to provide promising performance gains in various estimation

problems. Following these works, we derive the TLS based GLRT and the TML based GLRT,

which are specifically tailored for the smart grid structure.

2



Chapter 1

Introduction

1.1 Background

Over the past two decades, there has been growing interest in multi-sensor data fusion,

an emerging technology that originated from the requirements of military applications, which

was soon applied to a wide variety of nonmilitary uses. Multi-sensor data fusion, as defined

in [1], is the process of combining sensor data from multiple sources, to provide a robust and

complete description of an object of interest. There are two main reasons for the emerging

interest in multi-sensor data fusion. First, the development of advanced computing and

sensing techniques enables real-time processing of data from multiple sensors. Second and

more importantly, researchers have recognized that the synergistic combination of data from

multiple sensors can be used to overcome the limitations of a single-sensor system, i.e., it

can provide more accurate or complete information than can be achieved by using one sensor

alone.

Strictly speaking, a multi-sensor data fusion system does not necessarily have to use

3



1.2. MULTI-SENSOR IMAGE FUSION

multiple sensor modalities. The observations that have to be combined may come from a

group of sensors of the same or different types. They may also be produced by only one

sensor but at different time instants. The main advantage of multi-sensor data fusion comes

from the redundant information and the complementary information derived from multiple

sources. The fusion of redundant information can serve to reduce the uncertainty of the

sensor system and increase its reliability. The estimation error can be reduced if we have more

independent observations and combine them in an optimal way. Complementary information

may be obtained by various types of sensors or by the same type of sensors placed at different

locations. Because of the ways these sensors work or their relative placement, each of such

sensors could only provide a part of the information one wants to perceive (e.g., the image

of some object). Therefore the integration of those data allows a more complete view of the

object of interest.

Multi-sensor data fusion has been applied to a broad range of problems in many different

areas including object detection and recognition, target tracking, remote sensing, medical di-

agnosis, robotics, and autonomous vehicles. In this dissertation, our research focuses on three

multi-sensor data fusion systems that have recently received significant attention: the multi-

sensor image fusion system, the MIMO radar system and the distributed sensor networks.

The following subsections provide a brief introduction to these systems and a summary of

our work.

1.2 Multi-Sensor Image Fusion

Multi-Sensor Image fusion refers to generating a combined image in which each pixel is

determined from a set of pixels in each of the source images [2]. The fused image should

4



1.2. MULTI-SENSOR IMAGE FUSION

(a) visual image (b) MMW image

(c) fused image

Figure 1.1: Example of image fusion for a concealed weapon detection (CWD) application.

provide an easier view for a human to interpret the scene than any of the source images does,

thus improving the performance of the human in accomplishing his/her task. Image fusion

has been widely used in many applications such as concealed weapon detection (CWD) [3],

remote sensing [4], intelligent robots [5], medical diagnosis [6], and surveillance [7], etc. The

interested reader is referred to Chapter 1 of [2] for a survey of various image fusion algorithms

developed in past years.

Fig.1.1 gives an example to illustrate the usage of image fusion in a CWD application

5



1.2. MULTI-SENSOR IMAGE FUSION

[8, 9]. Fig.1.1(a) and Fig.1.1(b) show the visual image and the 94 GHz millimeter-wave

(MMW) image of the same scene respectively. The visual image provides the outline and

the appearance of the people in the scene while the MMW image shows the existence of a

concealed object (possibly a gun). The visual sensor can provide a good view of the people,

but not of the concealed object. The MMW sensor can provide a good view of the object,

but not of the people. Therefore, one would like to produce one single image combining

all important information from the two source images, so that it will be easy to identify

the people carrying weapons. Fig.1.1(c) provides an example of such a fused image, which

presents considerable evidence to suspect that the person on the right has a concealed gun

beneath his clothes.

Measuring the performance of image fusion algorithms is an extremely important task,

which has received past study [10–25]. The performance of image fusion algorithms is primar-

ily assessed by perceptual evaluation in the form of subjective human tests [16]. Typically

in these tests, human observers are asked to view a series of fused images and rate them.

Because images are fused for better human interpretation, it is important to judge fusion

methods by how well humans are able to perform interpretation tasks. Examples of human

interpretation studies for image fusion evaluations appear in [20, 25]. Regardless of the goal

of the human perception test, these tests are inconvenient, expensive and time consuming.

It is clearly highly desirable to identify an objective performance measure that can accu-

rately predict human perception by determining the quality of the fused image. The objective

measure should be a feature that is obtained via an automatic computation employing the

fused image and can serve as a surrogate for human perception results. We refer to such a fea-

ture as the fused image quality measure (FIQM). If a good FIQM can be devised, then one can

compare image fusion algorithms without expensive perception experiments. Furthermore,

6



1.2. MULTI-SENSOR IMAGE FUSION

the measure can be used as a design criteria for an “optimal” image fusion algorithm.

In this dissertation, first we extend the study in [11] by performing theoretical analysis

for three recently introduced FIQMs. These FIQMs are based on computing the correlation

between the images input into the fusion algorithm and the image produced by the fusion

algorithm, and therefore we call them correlation-based FIQMs. Since the FIQM is used to

reveal how well a human can interpret a given fused image, we expect a good FIQM to be

consistent with the human perception results. For example, if noise is added to the source

images, we expect the FIQM for the fused image to decrease. We study the closed-form

expressions for these FIQMs by employing the image formation model described in [26], and

analyze quality changes with respect to changes in the noise power of the source images.

Our interesting finding is that these correlation-based FIQMs sometimes behave opposite to

what is expected. Sufficient conditions for the unexpected behavior along with an intuitive

explanation are provided in the dissertation.

Next, we are also interested in which FIQM better describes the performance of the

human interpreting the fused imagery. Our previous work indicates that we can judge a FIQM

by how well it is consistent with actual human performance. We believe that the best FIQM

should be task specific. Thus we focus on the case of a target detection application. In this

case, performance is measured by the probability that a human observer can correctly detect

certain objects in the fused image. The human perception experiments measure the number of

observers that are able to correctly detect ground truthed targets as the human performance.

This performance metric can be reasonably modeled by a binomial distribution. We develop

a novel statistic to quantify how well a monotonic function explains the relation between the

values of a FIQM and human performance over a series of fused imagery representing the

same scene. The monotonic statistic is general and can be applied to other applications when

7



1.3. MIMO RADARS

one may need to test for a monotonic relationship.

1.3 MIMO Radars

Multiple-input multiple-output (MIMO) radar systems have received a lot of study in

recent years. A MIMO radar is broadly defined as a radar system that employs multiple

transmitters/receivers and jointly processes the received signals [27]. Unlike the standard

phased-array radar, which transmits the same waveforms with relatively different phases, a

MIMO radar can choose the waveform for each of its transmit antennas more freely.

There are two types of MIMO radar systems: MIMO radar with co-located antennas

and MIMO radar with widely separated antennas. For the former configuration, the target

is modeled as a single point, i.e., the reflection coefficients of a target are the same for all

transmit-receive paths. Because of the direct applicability of adaptive arrays techniques and

the enhanced flexibility of transmit waveform design [28], there have been many waveform

optimization methods proposed for the MIMO radar system with co-located antennas [28,29].

The approach enables this system to get superior capabilities over the standard phased-array

radar system. The MIMO radar with widely separated antennas is able to view the target

from several different directions and take advantage of the spatial properties of the target.

Therefore, it has the ability of avoiding large attenuated target returns over all transmit-

receiver paths, overcoming bandwidth limitations, and performing high resolution target

detection and parameter estimation [27]. The MIMO radar system with widely separated

antennas is considered in this dissertation.

Both coherent and non-coherent processing approaches can be used on the receiver side of

MIMO radar systems. If the MIMO radar only uses the amplitude information of the received

8



1.4. FAULT DETECTION USING DISTRIBUTED SENSOR NETWORKS

signals while processing the data, the processing approach is non-coherent. Otherwise it is

coherent. Coherent processing requires that the oscillators at each transmit and receive

antenna be aligned in phase, which is usually not very easy to achieve.

The Cramer-Rao bound (CRB) is a useful tool for evaluating the performance of radar

systems, as it provides the mean square error lower bound for any unbiased estimation.

Recently, there have been various Cramer-Rao bound studies for the performance of MIMO

radar systems in the literature [30–35]. In this dissertation, we focus on a multi-target case, in

which a non-coherent MIMO radar system is considered. This case has not yet been studied

by others. We investigate the joint location and velocity estimation of multiple targets, and

the Cramer-Rao bound for a two-target case is derived and evaluated. This bound gives us

theoretically achievable joint estimation performance. Numerical results show that the spatial

advantage observed previously for single-target cases can also be observed in two-target cases.

1.4 Fault Detection Using Distributed Sensor Networks

We refer to an interconnected sensor network as a system consisting of multiple sensors

that work together to perform a specific task. The deployment of large scale systems taking

place today is accompanied with growing vulnerability and security concerns, which makes it

desirable to recognize abrupt system failures and intrusions rapidly. We are interested in the

design of methods to rapidly detect a change in the observation model of such systems. The

change could be due to a fault event that occurs in the system [36–38], system parameter

errors [39] or even malicious cyber-intrusions [40,41]. Change detection finds its application in

a wide variety of areas such as remote monitoring, quality control, speech signal segmentation,

system fault detection and seismic data processing. Many different algorithms have been

9
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proposed to solve specific fault detection problems. Solutions often result to detecting a

change in the parameters of a static or dynamic stochastic system model. A comprehensive

survey on change detection techniques was provided in [42].

The traditional way to apply the change detection techniques using sensor networks is

to utilize a fusion center that gathers all sensor observations and performs all computations.

This problem has been well-studied and reported in the literature [36–38,43,44]. However, this

centralized architecture is being replaced by the new distributed approaches, wherein each

individual node has the ability to process data and cooperates with other sensors. There are

several reasons why a distributed approach is preferred in many cases. Distributed processing

does not need a central processing node, which makes the whole system more reliable to node

failures. Distributed algorithms are usually more scalable than the centralized algorithms

when the size of the sensor network increases rapidly. Furthermore, with proper design, each

node in the distributed sensor network requires less communication and processing resources.

This is very important, especially for the energy-constrained wireless sensor network where

a large portion of the battery power is consumed by the communication and computing.

Our work focuses on failure detection in the large scale systems, with an emphasis on

distributed and scalable methods. For this purpose, we have relied on probabilistic graphical

models and error in variables models.

First, we studied the distributed change detection problem for distributions that can

be represented as Gaussian graphical models (GGMs). A graphical model characterizes

conditional dependencies within a multivariate distribution using undirected graphs [45,46].

When the graph is sparse and the variables are jointly Gaussian, the graphical model imposes

sparsity on the inverse covariance, also called the information, concentration or precision

matrix. Graphical models are attractive in two complementary manners. First, they allow

10
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the modeling of a large system using a smaller number of parameters. Second, inference

methods can be performed as local decentralized computations with message passing between

neighbors of the graph. For this purpose, it is common to assume that the topology of the

statistical models matches the topology of the internode communications. Based on this

framework, GGMs have been successfully applied to different statistical problems such as

inference [47], parameter estimation [48,49], and dimensionality reduction [50]. Applications

range from wireless sensor networks [51,52], internet backbone networks [50] and recently the

smart power grid [53].

The time-tested approach to change detection is via composite hypothesis testing, and

in particular the generalized likelihood ratio test (GLRT) [54]. This method has been suc-

cessfully applied to change detection in the Gaussian multivariate distribution, and is known

as the Bartlett’s test [55, 56]. Classical centralized results on testing in GGM are available

in [45]. In contrast, our focus is on distributed solutions for change detection. We begin by de-

riving the global centralized GLRT, and then propose two distributed approximations based

on aggregating multiple tests performed at each of the nodes in the graph. The aggregation

can then be efficiently implemented using consensus methods [57]. The first distributed test

is a natural approach which simply applies the Bartlett’s test to smaller size local clusters in

the graph. The second method employs the pseudo-likelihood [58] as a surrogate function for

the global likelihood. The advantages of our proposed tests are demonstrated using numerical

experiments, including one in the context of failure detection in smart power grids [53].

Next, we considered the change detection problem for measurements following the errors-

in-variables (EIV) model. From a statistical perspective, the noisy measurements of voltages

and currents in a smart grid system can be considered as a special case of linear EIV models

[59]. The standard approach to parameter estimation in such problems is known as total
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least squares (TLS), and generalizes classical least squares by allowing noise in both sides of

the linear model. Hypothesis testing in EIV models has also been addressed. The GLRTs

have been derived in the context of process monitoring [36] as well as array processing [44].

Following these works, we derive the TLS-GLRT which is specifically tailored for the smart

grid structure and examine its detection performance.

Parameter estimation in EIV models is known to be difficult. TLS and its extensions

are often unstable and may be improved. Recently, a competing approach known as total

maximum likelihood (TML) was proposed in [60–62] and was shown to provide promising

performance gains in various estimation problems. In particular, it was shown that TML can

be interpreted as a regularized version of TLS with improved properties. As a continuation

of the work of [60–62], we consider hypothesis testing within the TML framework and derive

the TML-GLRT for detecting changes in such models. First, we express a smart grid fault

detection problem as a hypothesis testing problem employing a linear EIV model. Then we

derive the corresponding TLS-GLRT. Second, we propose a novel approach for testing in EIV

models based on the TML methodology. Specifically, we consider this approach in the context

of the smart grid, but the technique may be applied to other EIV models. Numerical results

show the promising detection advantages TML-GLRT has with no increase in computational

complexity.

1.5 Outline of the Dissertation

The rest of this dissertation is organized as follows.

Chapter 2 focuses on theoretical analysis of three correlation-based FIQMs when they are

used to judge the performance of weighted averaging image fusion algorithms. Our analysis
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shows that when we change the power of the desired signal or the noise in the source images,

these correlation-based FIQMs exhibit some undesired behaviors. The sufficient conditions

for when the undesired behaviors occur and the intuitive explanation for our observations are

given in this chapter.

Chapter 3 develops a novel statistic to score the effectiveness of FIQMs for the detection

task in light of practical measurements from human perception experiments. The performance

of the proposed monotonic test is demonstrated via Monte Carlo simulations. We also show

the application of the proposed method to evaluate potential FIQMs in a specific target

detection experiment.

Chapter 4 considers the joint location and velocity estimation problem in a multi-target

non-coherent MIMO radar system. The Cramer-Rao bound for a two-target case is derived

and evaluated. This bound gives us theoretically achievable joint estimation performance for

a sufficient number of antennas. Numerical results show that the spatial advantage observed

previously for single-target cases can also be observed in two-target cases.

Chapter 5 studies the distributed change detection problem for distributions that can

be represented as GGMs. We formulate the hypothesis testing problem and propose a global

and centralized solution using the GLRT. We then provide two distributed approximations

to this global test based on aggregation of multiple local or conditional tests. We compare

the performance of these tests in the context of failure detection in smart grids.

Chapter 6 considers fault detection through apparent changes in the bus susceptance

parameters of modern power grids. We formulate the problem using a linear EIV model

and derive its corresponding GLRT based on the TLS methodology. Next, we propose a

competing detection technique based on the recently proposed TML framework. We derive

the so called TML-GLRT, and show that it can be interpreted as a regularized TLS-GLRT.

13
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We also discussed the distributed implementation of TLS-GLRT.

The following notation is used in this dissertation. Boldface uppercase letters denote

matrices. Boldface lowercase letters denote column vectors. Standard letters denote scalars.

The superscript (·)T denotes the transpose of a vector or a matrix, and (·)−1 denotes the

matrix inverse. |X| is the determinant of matrix X and Tr {X} represents its trace. X � 0

means X is positive definite. The union of sets a and b is denoted by a∪ b, and a\ b is the set

of elements in a which are not in b. We use indices in the subscript [x]a or [X]a,b to denote

sub-vectors or sub-matrices, respectively. Where possible, we omit the brackets and use xa

or Xa,b instead. || · ||F is the Frobenius norm of a matrix. I represents the identity matrix.
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Chapter 2

Theoretical Analysis of

Correlation-Based FIQMs

2.1 Introduction

(a) image 1: IR image (b) image 2: II image

Figure 2.1: Infrared and low light visual test images for a night vision application.
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Figure 2.2: QUIQI and QE with increasing σ2
1 for night vision image fusion (Fig.2.1).

To make the purpose of this chapter very clear, we start with an example of the phe-

nomenon we study. Consider the quality measures introduced in [12,15] and the source

images shown in Fig.2.1. Fig.2.2 shows these quality measures, calculated exactly as spec-

ified in [12,15], when we add noise with power σ2
1 to the first source image and noise with

power σ2
2 to the second source image. Note that for both quality measures1, the quality

measure increases, indicating higher quality, as we increase σ2
1. Clearly, increasing the noise

power in a source image will not really increase the quality of the fused image. Thus we are

observing bad behavior in the quality measure. In particular we are able to recreate this

behavior using a reasonable mathematical model which is not subject to any experimental

inaccuracies or to any imperfections introduced through the capture of real images. Using

the model we prove rigorously that these quality measures exhibit this bad behavior and we

provide intuitive explanations for the behavior.

Measuring the performance of image fusion algorithms is an extremely important task

1The same things happens for the quality measure in [14]. See [11] for more detail.
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which has received past study [12,13,15,63–67]. The vast majority of investigations have

been focused on developing approaches suitable for experimental evaluation of fused images.

Thus, given a set of source images and a few fusion algorithms, the goal is to determine which

fusion algorithm is more suitable for a given application. Such experimental procedures can

be very useful and in fact we have done some research in this area [63,68]. However, there

are some inherent limitations to experimental tests. For example, experimental tests are only

valid for the particular set of source images considered. Trying to argue that these results

apply for a larger set of cases than the exact set considered (with the exact source images

and any imperfections in them) is not possible in a rigorous way. Experimental studies can

be considered only for a finite number of specific cases with a very specific set of conditions in

each case. Thus trying to prove that a fusion approach is generally good is not possible using

experimental tests. Further, whenever real data is taken there are always some unknown

imperfections that enter into this data and these imperfections can influence the results. Of

course one tries to minimize these imperfections, but typically they can not be completely

eliminated. It is very easy to study a whole set of cases all at once using analysis and to vary

any or all parameters in any way desired. Most importantly, using mathematical analysis one

can prove that certain performance measures have some bad behavior, as we do in this chapter,

without concern that imperfections in the experimental tests or the images used are causing

this bad behavior. This can not be accomplished using the existing experimental approaches.

Thus while experimental investigations can be useful, analytical investigations can be very

helpful in filling in the gaps that such studies can never address. We are hoping this chapter

will encourage further analytical image fusion research. We hope that our research will show

that there is value in analytical image fusion studies. We acknowledge that we have only just

started to study this topic and that many unanswered questions remain. We also acknowledge
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that we consider a highly simplified model. Analysis with more comprehensive models is a

great topic for future research.

Recently, several FIQMs have been introduced [12,14,15] which are all based on a similar

philosophy. The philosophy involves considering correlations between the images input into

the fusion algorithm and the image produced by the fusion algorithm, possibly after some

preprocessing. The correlation is intended to provide a measure of the amount of information

transferred from the source images to the fused image. Higher correlation implies more

information transfer and thus is considered to result in better fused images. Here we shall

refer to the methods from [12, 14, 15] as correlation-based FIQMs. The correlation-based

FIQMs have received a lot of attention in the past few years because they don’t require a

ground-truth reference image which is usually difficult to obtain in most applications. Here

we focus on three correlation metrics which are the mutual information [14] [11], the universal

image quality index (UIQI) [12] and the edge-based correlation metric [13] [15].

In [11], the authors employed a statistical model [26] which approximates the observed

sensor images as an additive sum of the scene of interest plus the random distortion part,

which we call noise for simplicity. The authors of [11] studied the mutual information-based

FIQM from [14]. In particular they studied how this FIQM reacted to increases in the noise

power of the source images for weighted averaging image fusion algorithms. They made

an interesting observation. In some cases the FIQM indicated higher quality for increased

input noise power. In this chapter, we extend the study in [11] by performing theoretical

analysis for three different correlation-based FIQMs applied to the weighted averaging fusion

algorithm. We study the closed-form expressions for these FIQMs by employing the image

formation model described in [26] and analyze quality changes with respect to changes in

noise power. Our analysis shows that all of these three correlation-based FIQMs sometimes
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behave opposite to what is expected. Sufficient conditions for the unexpected behavior along

with an intuitive explanation are provided in this chapter.

The rest of this chapter is organized as follows. Section 2.2 presents the statistical model

for the observed sensor images. Our main findings are stated in Section 2.3. In Section 2.4

we describe three correlation-based FIQMs and derive their closed-form expressions. An

intuitive explanation for our findings is provided in Section 2.5.

2.2 Image Formation Model

To perform analytical studies, it is typically necessary to develop a model for the process

under consideration. Here we employ a very simple model which was first proposed in [26].

We hope that other researchers will build on these ideas and propose more comprehensive

models and perform more comprehensive studies based on these models.

Assume that we observe two registered sensor images. Let z1 and z2 represent two

corresponding pixels from two registered sensor images to be fused. Assume these pixels can

be modeled as

zk = βks+ nk, k = 1, 2, (2.1)

where s describes the underlying scene, βk denotes the sensor selectivity factor of image k (its

ability to “view” the underlying scene), and nk represents all unwanted degradation which

includes random distortion and noise. For brevity we call nk noise in the sequel. This model

assumes that certain objects may or may not be seen by certain sensors, as determined by

the size of βk which takes on real values.

The quantities s, n1 and n2 are modeled as independent Gaussian random variables such
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that

s ∼ N(μs, σ
2
s), (2.2)

nk ∼ N(0, σ2
k), k = 1, 2 (2.3)

where N(μ, σ2) denotes a Gaussian random variable with mean μ and variance σ2. As linear

transforms of Gaussian random variables result in Gaussian random variables, this model

also applies after any linear transforms, including wavelet and other multiscale transforms.

We focus on the weighted averaging fusion method because it is the most basic algorithm

and is well-studied. The fused image using the weighted averaging fusion method is

f = w1z1 + w2z2 = (w1β1 + w2β2)s + w1n1 + w2n2, (2.4)

where w1 and w2 are the weights for the two different source images. We note that equations

(2.1)-(2.4) apply at each pixel and the values of zk, s, nk, βk and wk for k = 1, 2 can be

different for each pixel.

Increasing the power of the noise added into either source image should lead to a loss of

quality. Thus a good FIQM should satisfy the following desired behavior.

Desired Behavior 1. A FIQM for the fused image should decrease if σ2
1 or σ2

2 , the

power of the noise added to the source images, is increased.

Increasing the power of the signal of interest should lead to an increase in quality. Thus

a good FIQM should satisfy the following desired behavior.

Desired Behavior 2. A FIQM for the fused image should increase if σ2
s , the power of

the signal of interest, is increased.
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2.3 Correlation-Based FIQMs

Recently, several FIQMs have been introduced [12, 14, 15] which are all based on com-

puting the correlation between the images input into the fusion algorithm and the image

produced by the fusion algorithm. We call these correlation-based FIQMs. The general form

of these FIQMs can be expressed as

Q = F (f, z1) + F (f, z2), (2.5)

where F (x, y) is the metric used to measure the correlation between the source images and

the fused image.

These correlation-based FIQMs exhibit some bad behavior as described by the following

Theorems.

Theorem 1 Under the model in (2.1), the correlation-based FIQMs in [12, 14, 15] violate

Desired Behavior 1 under some conditions.

Theorem 2 Under the model in (2.1), the correlation-based FIQMs in [12, 14, 15] violate

Desired Behavior 2 under some conditions.

The proofs of Theorem 1 and Theorem 2 are omitted due to space limits.

We can also describe conditions when other correlation-based FIQMs, that are described

by (2.5), exhibit bad behavior. The following Theorem addresses this issue.

Theorem 3 If F (f, z1) and F (f, z2) can be written as functions of σ2
1, σ

2
2 and σ2

s , then when

F (f, z1) and F (f, z2) satisfy

∂F (f, z1)

∂(σ2
1)

+
∂F (f, z2)

∂(σ2
1)

� 0, (2.6)
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the correlation-based FIQM violates Desired Behavior 1. When F (f, z1) and F (f, z2) satisfy

∂F (f, z1)

∂(σ2
s)

+
∂F (f, z2)

∂(σ2
s )

� 0, (2.7)

the correlation-based FIQM violates Desired Behavior 2.

The proof of Theorem 3 is straightforward because equation (2.6) implies the correlation-

based FIQM Q increases with increasing noise power and equation (2.7) means Q decreases

with increasing signal power.

2.4 Description of Three Different Correlation-Based FIQMs

Here we provide more details on the three popular correlation-based FIQMs. Closed-

form expressions for their quality estimates are also derived by employing the model described

in (2.1).

2.4.1 Mutual information based FIQM

Mutual information is a quantity in information theory which is used to measure the

amount of information that one random variable contains about another random variable [69].

The mutual information of two continuous random variables x and y is defined as:

FMI(x, y) =

∫
y

∫
x
p(x, y)log2

p(x, y)

p1(x)p2(y)
dxdy, (2.8)

where p(x, y) is the joint probability density function of x and y, and p1(x) and p2(y) are

the marginal probability density functions of x and y respectively. Assuming that x, y are
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Gaussian random variables, FMI(x, y) can be further expressed as:

FMI(x, y) =
1

2
log2

⎛
⎜⎝ 1

1−
(

σx,y

σxσy

)2
⎞
⎟⎠ , (2.9)

where
σx,y

σxσy
is the correlation coefficient between x and y.

Substituting FMI(x, y) for F in (2.5), FMI(x, y) was employed as the correlation metric

in [14] to evaluate the amount of information transferred from the source images to the fused

image. From equations (2.1) and (2.4) we can easily tell that f , z1 and z2 are Gaussian

random variables. Using the model in (2.1) we can calculate (2.5) using results from [69] as

shown in [11]. After this we substitute equation (2.8) into equation (2.5) and we can calculate

the mutual information based FIQM as [11]

QMI =
1

2
log2

⎛
⎜⎝
(
(w1β1 + w2β2)

2 σ2
s + w2

1σ
2
1 + w2

2σ
2
2

)2
w2
1w

2
2

(
β2
1σ

2
sσ

2
2 + β2

2σ
2
sσ

2
1 + σ2

1σ
2
2

)2
⎞
⎟⎠

+
1

2
log2
(
β2
1σ

2
s + σ2

1

)
+

1

2
log2
(
β2
2σ

2
s + σ2

2

)
. (2.10)

2.4.2 UIQI based FIQM

The Universal Image Quality Index (UIQI) was proposed by Wang and Bovik in [70] to

evaluate the similarity of two images. This metric outperforms the traditional mean squared

error (MSE) based image quality metric because it considers the structural distortions of

source images including loss of correlation, luminance distortion and contrast distortion [70].

To calculate the UIQI, we use

FUIQI(x, y) =
4σx,yx̄ȳ

(σ2
x + σ2

y)(x̄
2 + ȳ2)

(2.11)
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to replace F in (2.5), where x̄, σ2
x, ȳ, σ

2
y denote the mean values and variances of x and y

respectively and σx,y means the covariance between x and y.

In [12] and [15] the authors use the UIQI to assess the performance of image fusion

algorithms. Using the model in (2.1) to calculate the quantities in (2.11) and then substituting

equation (2.11) into equation (2.5), we can obtain the closed-form expression of UIQI based

image fusion FIQM

QUIQI =

(
(w1β1 + w2β2) β1σ

2
s + w1σ

2
1

)
(w1β1 + w2β2) β1(

(w1β1 + w2β2)
2 σ2

s + w2
1σ

2
1 + w2

2σ
2
2 + β2

1σ
2
s + σ2

1

)(
(w1β1 + w2β2)

2 + β2
1

)
+

(
(w1β1 + w2β2)β2σ

2
s + w2σ

2
2

)
(w1β1 + w2β2) β2(

(w1β1 + w2β2)
2 σ2

s + w2
1σ

2
1 +w2

2σ
2
2 + β2

2σ
2
s + σ2

2

)(
(w1β1 + w2β2)

2 + β2
2

) . (2.12)

2.4.3 Edge based FIQM

Considering the fact that the human visual system (HVS) is quite sensitive to the edge

information in an image, in [15] the authors suggested replacing F in (2.5) with

FUIQI(x
′, y′), (2.13)

where x′ and y′ denote the edge images corresponding to x and y, respectively. The “edge

image” is defined as the Euclidean norm of the horizontal and vertical gradient edge informa-

tion which can be achieved by applying a horizontal gradient convolution mask and a vertical

gradient convolution mask to the original image respectively.

However, the Euclidean norm operation makes it difficult to analytically calculate the

statistical characteristics (mean values, variances and covariance) of x′ and y′. To derive the

closed-form expression of QE, we focus on a simplified case in which only the horizontal gra-

dient edge information is used to calculate the edge image. This approximation is reasonable

if we consider the situation where the edge in the horizontal direction is much more obvious
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than that in the vertical direction. In this case QE can be expressed as

QE =

(
(w1β1 + w2β2)β1σ

′2
s + w1σ

′2
1

)
(w1β1 + w2β2) β1(

(w1β1 + w2β2)
2 σ′2

s + w2
1σ

′2
1 + w2

2σ
′2
2 + β2

1σ
′2
s + σ′2

1

)(
(w1β1 + w2β2)

2 + β2
1

)
+

(
(w1β1 + w2β2)β2σ

′2
s + w2σ

′2
2

)
(w1β1 + w2β2) β2(

(w1β1 + w2β2)
2 σ′2

s + w2
1σ

′2
1 + w2

2σ
′2
2 + β2

2σ
′2
s + σ′2

2

)(
(w1β1 + w2β2)

2 + β2
2

) (2.14)

by taking the steps explained to calculate QUIQI .

Notice that the expression for QE is almost the same as that in equation (2.12), except

that σ2
s , σ

2
1 and σ2

2 are replaced by σ′2
s , σ

′2
1 and σ′2

2 which denotes the variances of the signal

and the noise components of the pixels in the edge images. Detailed definitions of σ′2
s , σ

′2
1

and σ′2
2 and the derivation of equation (2.14) are omitted due to space limits.

Here we should note that all these three FIQMs are direct functions of the correlation

coefficient. According to equations (2.9) and (2.11), QMI and QUIQI can be expressed as

functions of the correlation coefficient. After we obtain the edge information, we calculate QE

using exactly the same approach used to calculate QUIQI. Thus QE is also correlation-based.

It just simply operates on images preprocessed by an edge filter. This is why we call these

three the correlation-based FIQMs in this chapter.

2.5 Intuitive Explanations

In this section we explain intuitively the poor behavior of the aforementioned three

correlation-based image fusion quality measures. Let us start with the mutual information

based quality measure QMI .
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According to equation (2.9), FMI(f, zk) (k = 1, 2) can be calculated as:

FMI(f, zk) =
1

2
log2

⎛
⎜⎝ 1

1−
(

σf,zk
σfσzk

)2
⎞
⎟⎠ , (2.15)

where
σf,zk
σfσzk

is the correlation coefficient between f and zk. Apparently
∣∣∣ σf,zk
σfσzk

∣∣∣ ∈ (0, 1), so

we have that FMI(f, zk) is monotonically increasing with
∣∣∣ σf,zk
σfσzk

∣∣∣ which can be written as:

∣∣∣∣ σf,zkσfσzk

∣∣∣∣ =
|βk(w1β1 + w2β2)σ

2
s + wkσ

2
k|√

β2
kσ

2
s + σ2

k

√
(w1β1 + w2β2)2σ2

s + w2
1σ

2
1 + w2

2σ
2
2

, k = 1, 2. (2.16)

Since FMI(f, z1), the first term of QMI in (2.5), depends on
∣∣∣ σf,z1
σfσz1

∣∣∣ and FMI(f, z2), the

second term of QMI in (2.5), is determined by
∣∣∣ σf,z2
σfσz2

∣∣∣, we can discuss how QMI changes with

σ2
1 and σ2

s by just analyzing
∣∣∣ σf,z1
σfσz1

∣∣∣ and ∣∣∣ σf,z2
σfσz2

∣∣∣.
2.5.1 The change in QMI with increasing σ2
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Figure 2.3:
∣∣∣ σf,z1
σfσz1

∣∣∣ increases with increasing σ2
1 and decreases with increasing σ2

s .

When σ2
1 increases,

∣∣∣ σf,z2
σfσz2

∣∣∣ always decreases because its numerator doesn’t change and
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its denominator keeps increasing. On the other hand, from equation (2.16) we can see that

the numerator and denominator of
∣∣∣ σf,z1
σfσz1

∣∣∣ both increase when σ2
1 increases. If the numerator

part dominates, then
∣∣∣ σf,z1
σfσz1

∣∣∣ increases with increasing σ2
1 which is shown in Fig.2.3(a). Now

when the first term in (2.5), FMI(f, z1), increases faster than the second term, FMI(f, z2),

decreases, then we can conclude that QMI increases with increasing noise power σ2
1 . Some

sufficient conditions are omitted due to space limits. Intuitively, if a larger amount of noise

is added to a source image, then this same noise ends up in the fused image when weighted

averaging image fusion is employed (see (2.4)). This can increase the correlation between the

source and fused image, one of the terms in (2.5), as we have just explained, which can thus

increase (2.5).

2.5.2 The change in QMI with increasing σ2
s

When σ2
s increases, the numerator and denominator of

∣∣∣ σf,zk
σfσzk

∣∣∣ both increase. If the

denominator part increases faster, then
∣∣∣ σf,zk
σfσzk

∣∣∣ decreases as shown in Fig.2.3(b). When

a decreasing term in (2.5) dominates, QMI decreases with increasing σ2
s . Some sufficient

conditions are omitted due to space limits.

For the UIQI based FIQM, equation (2.11) can be expanded as:

FUIQI(f, zk) =
4σf,zk

σ2
f + σ2

zk

(w1β1 + w2β2)βk
(w1β1 + w2β2)2 + β2

k

, k = 1, 2. (2.17)

Notice that FUIQI(f, zk) is monotonically increasing with a similar quantity
βkσf,zk

σ2
f+σ2

zk

which

increases with the noise power and decreases with the power of the signal of interest in some

cases. Therefore the poor behavior of the UIQI based FIQM can be explained similarly. The

same explanation also applies to the edge based FIQM because QE and QUIQI have almost

the same closed-form expression.
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2.6 Experimental Results Using Real Images

(a) image 1: focus on the left (b) image 2: focus on the right

Figure 2.4: Test clock images for a multifocus image fusion application.

Finally, we demonstrate the utility of our theoretical analysis by observing the behavior

of the correlation-based quality measures for real images with respect to Desired Behavior

1 and Desired Behavior 2. The proofs of Theorem 1 and Theorem 2 in the Appendix

predict that if the noise power in one input image is large enough, then the correlation-based

quality measure increases when more noise is added to that input image. Here we show that

such undesired behavior can be observed in real tests by adding Gaussian noise to each input

image and evaluating the correlation-based quality measure.

We consider three different image fusion applications, which include CWD [8,9], night

vision [71] and multi-focus image fusion [2]. The three sets of images shown in Fig.1.1, Fig.2.1

and Fig.2.4 are used as the input images. For each input image set, we add Gaussian noise

with variance σ2
1 and σ2

2 to image 1 and image 2 respectively. The fused image is obtained by

using the weighted averaging approach in (2.4). For simplicity, we apply weight w1 on every
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pixel of image 1 and weight w2 = 1− w1 on every pixel of image 2.

Since the effects of noise on the mutual information based quality measureQMI is already

well studied in [11], here we only provide experimental results for the UIQI based quality

measure QUIQI and the edge based quality measure QE. We calculate the quality measures

using the exact procedures recommended by their inventors. QUIQI is evaluated using the

procedure proposed in [15]. A sliding window is run over the whole image pixel by pixel.

For each area within the sliding window, the mean values of the subimage and the other

statistical parameters in equation (2.11) are estimated to calculate a local quality measure.

Then the overall quality measure QUIQI is computed by averaging all local quality measures.

The window size is 10 by 10 in our examples. For the edge based quality measure, we first

use a Sobel edge detector to obtain the edge images for the input and fused images. Then

the same procedure used for QUIQI is applied to the edge images.

Fig.2.5 shows the undesired behavior of QUIQI and QE for the CWD application when

more noise is added to the first input image (Fig.1.1 (a)). As shown in Fig.2.5 (a), the noise

power of the second input image σ2
2 is fixed at 0.09227, and the noise power of the first input

image σ2
1 varies from 0.1 to 1. We choose different weights w1 = 0.1, 0.3, 0.5, but QUIQI

always indicates better image fusion quality when σ2
1 is larger which corresponds to higher

noise power. We can see from Fig.2.5 (b) that QE also increases if σ2
1 increases from 0.1 to

1 when σ2
2 is fixed at 0.03322. Fig.2.6 shows that for the multifocus application, QUIQI and

QE increase with σ2
1 when σ2

2 is fixed at 0.05341 and 0.02972 respectively. Fig.2.2 shows the

same trend of QUIQI and QE for the night vision application when we set σ2
2 to be 0.07059

and 0.08652. These experimental results match our theoretical analysis very well.
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Figure 2.5: QUIQI and QE with increasing σ2
1 for concealed weapon detection (Fig.1.1).

2.7 Summary

This chapter generalizes the work in [11] which shows bad behavior for an information-

based quality measure when the input images are more distorted. The generalization holds

for a class of correlation-based quality measures. We focus on the properties of three popular

correlation-based quality measures when used to judge the quality of weighted averaging

image fusion algorithms. By employing a model for the input images, closed-form expressions

for these quality measure are derived. Further, these quality measures are shown to indicate

higher quality in some cases where lower quality is evident. Sufficient conditions for these

cases are provided, along with intuitive explanations on why this bad behavior occurs. Quality

calculations with real images, using the procedures recommended by their inventors, also

document the predicted bad behavior of the correlation-based image fusion quality measures,

which demonstrates the utility of our theoretical analysis.
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Figure 2.6: QUIQI and QE with increasing σ2
1 for multifocus image fusion (Fig.2.4).

2.8 Appendix

Proof of Theorem 1 and Theorem 2 Proof: To prove that the three correlation-

based quality measures violate the desire behavior, we just need to show that they increase

with increasing noise power σ2
1 and decrease with increasing σ2

s in some cases.

2.8.1 Analytical results for QMI

In [11], the authors have already proven that QMI increases with increasing σ2
1 in some

cases. As for the second desired behavior, taking the partial derivative of QMI with respect

to σ2
s , we obtain

∂QMI

∂(σ2
s)

=
Aσ6

s +Bσ4
s + Cσ2

s +D

2 ln (2)E
, (2.18)
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where

A = 2β2
2β

2
1 (w1β1 + w2β2)

2 (σ2
1β

2
2 + β2

1σ
2
2

)
B =

(
6β2

1σ
2
2σ

2
1β

2
2 + σ4

1β
4
2 + β4

1σ
4
2

)
(w1β1 + w2β2)

2

C = w1β
3
1w2β2σ

2
1σ

4
2 + 6w1β1w2β

3
2σ

4
1σ

2
2 + 2β4

1σ
4
2w

2
1σ

2
1 + 3w2

1σ
4
1β

2
2β

2
1σ

2
2

+2β4
2σ

4
1w

2
2σ

2
2 + 3w2

2σ
4
2β

2
1σ

2
1β

2
2 − w2

2σ
6
2β

4
1

D = σ2
1σ

2
2

(
(σ2w2σ1β2 + σ2w1σ1β1)

2 − (σ2
2w2β1 − w1σ

2
1β2
)2)

E =
(
β2
1σ

2
sσ

2
2 + β2

2σ
2
sσ

2
1 + σ2

1σ
2
2

) (
(w1β1σs + w2β2σs)

2

+w2
1σ

2
1 + w2

2σ
2
2

) (
β2
1σ

2
s + σ2

1

) (
β2
2σ

2
s + σ2

2

)
.

It can be easily seen that E > 0. So the sign of ∂QMI

∂(σ2
s )

depends on the sign of the numerator

part of equation (2.18). As A > 0 and σ2
s > 0, Aσ6

s +Bσ4
s +Cσ2

s +D must be positive if σ2
s

is large enough.

However, according to equation (2.19), when

(σ2w2σ1β2 + σ2w1σ1β1)
2 − (σ2

2w2β1 − w1σ
2
1β2
)2

< 0 (2.19)

we have D < 0. Thus, there must exist very small positive σ2
s which makes Aσ6

s +Bσ4
s +Cσ2

s

approach zero. Thus ∂QMI

∂(σ2
s )

is negative and QMI decreases with increasing σ2
s in such cases.

2.8.2 Analytical results for QUIQI

Equation (2.12) can be rewritten as:

QUIQI =
A1σ

2
s +B1

C1σ2
s +D1

+
A2σ

2
s +B2

C2σ2
s +D2

, (2.20)
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where

A1 = (w1β1 + w2β2)
2 β2

1

A2 = (w1β1 + w2β2)
2 β2

2

B1 = w1σ
2
1β1 (w1β1 + w2β2)

B2 = w2σ
2
2β2 (w1β1 + w2β2)

C1 =
(
(w1β1 + w2β2)

2 + β2
1

)2
C2 =

(
(w1β1 + w2β2)

2 + β2
2

)2
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(
w2
1σ

2
1 + w2

2σ
2
2 + σ2
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) (
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(
w2
1σ
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1 + w2

2σ
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2 + σ2
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(w1β1 + w2β2)
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)
.

Take the partial derivative of QUIQI with respect to σ2
s to obtain

∂QUIQI

∂(σ2
s)

=
Eσ4

s + Fσ2
s +G

(C1σ2
s +D1)

2 (C2σ2
s +D2)

2 , (2.21)

where

E = A1D1C
2
2 − C2B2C

2
1 +A2C

2
1D2 − C1B1C

2
2

F = 2A2C1D1D2 − 2C1B1C2D2 + 2A1D1C2D2 − 2C2B2C1D1

G = A2D
2
1D2 − C1B1D

2
2 +A1D1D

2
2 − C2B2D

2
1.

Obviously, the denominator of equation (2.21) is positive. Thus the sign of
∂QUIQI

∂(σ2
s )

depends

on the numerator part of equation (2.21). When E < 0,
∂QUIQI

∂(σ2
s )

is negative for sufficiently

large σ2
s .

33



2.8. APPENDIX

Equation (2.12) can be rewritten as

QUIQI =
A′

1σ
2
1 +B′

1

C ′
1σ

2
1 +D′

1

+
B′

2

C ′
2σ

2
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2

, (2.22)

where
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2 + β2
2
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w2
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)
σ2
2 .

Take the partial derivative of QUIQI with respect to σ2
1 to obtain

∂QUIQI

∂(σ2
1)

=
E′σ4

1 + F ′σ2
1 +G′(

C ′
1σ

2
1 +D′

1

)2 (
C ′
2σ

2
1 +D′

2

)2 , (2.23)

where

E′ = A′
1D

′
1C

′2
2 −B′

2C
′
2C

′2
1 − C ′

1B
′
1C

′2
2

F ′ = 2A′
1D

′
1C

′
2D

′
2 − 2C ′

1B
′
1C

′
2D

′
2 − 2B′

2C
′
2C

′
1D
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G′ = C ′
1B

′
1D

′2
2 +A′

1D
′
1D

′2
2 − C ′

2B
′
2D

′2
1 .

Similarly, the sign of
∂QUIQI

∂(σ2
1)

depends on the numerator part of equation (2.23). When E′ < 0,

∂QUIQI

∂(σ2
1)

is negative for sufficiently large σ2
1. When E′ > 0,

∂QUIQI

∂(σ2
1)

is positive for sufficiently

large σ2
1 .
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2.8.3 Analytical results for QE

The “edge image” is defined as the Euclidean norm of the horizontal and vertical gradient

edge information. The edge information can be obtained by applying a horizontal gradient

2-D convolution mask and a vertical gradient 2-D convolution mask to the original image

respectively. The resulting edge image is described by

i′(m,n) =

√√√√√
⎛
⎝ L∑

p=−L

L∑
q=−L

hx(p, q)i(m − p, n− q)

⎞
⎠

2

+

⎛
⎝ L∑

p=−L

L∑
q=−L

hy(p, q)i(m − p, n− q)

⎞
⎠

2

(2.24)

where i′(m,n) denotes the pixel at location (m,n) of the edge image, i(m,n) denotes the

corresponding quantity for the original image, and the (2L+ 1)× (2L+ 1) matrices hx(p, q)

and hy(p, q) implement the horizontal and vertical gradient operations respectively.

Substituting i(m,n) in equation (2.24) with either an observed source image from equa-

tion (2.1) or the fused image from (2.4), we can write the edge information of the sensor

images and the fused image as

z′k(m,n)2 =

⎛
⎝ L∑

p=−L

L∑
q=−L

hx(p, q)
(
βks(m− p, n− q) + nk(m− p, n− q)

)⎞⎠
2

+

⎛
⎝ L∑

p=−L

L∑
q=−L

hy(p, q)
(
βks(m− p, n− q) + nk(m− p, n− q)

)⎞⎠
2

, k = 1, 2(2.25)

f ′(m,n)2 =
( L∑

p=−L

L∑
q=−L

hx(p, q)
(
(w1β1 +w2β2)s(m− p, n− q) + w1n1(m− p, n− q)

+w2n2(m− p, n− q)
))2

+
( L∑

p=−L

L∑
q=−L

hy(p, q)
(
(w1β1 + w2β2)s(m− p, n− q)

+w1n1(m− p, n− q) + w2n2(m− p, n− q)
))2

(2.26)

Here we assume βk, wk, μs, σ2
s and σ2

k (k = 1, 2) are constant within the small region
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surrounding location (m,n).

To obtain FUIQI(z
′
k, f

′) (k = 1, 2), we need to calculate some statistical characteristics

of z′k and f ′, such as their mean values, variances and covariance. We first simplify equations

(2.25) and (2.26) by using only the horizontal gradient edge value to replace the magnitude

of the horizontal and vertical gradient edge information. This approximation is reasonable if

we consider the case in which the edge along the horizonal direction is much more obvious

than the edge in the vertical direction. We will derive and analyze the closed-form expression

of QE for this simplified case. Numerical results which show the undesired behavior of the

general QE will also be provided next.

Under the stated assumption, z′k and f ′ can be written as linear combinations of Gaussian

random variables as

z′k(m,n) = βks
′(m,n) + n′

k(m,n), (2.27)

f ′(m,n) = (w1β1 + w2β2)s
′(m,n) + w1n

′
1(m,n) + w2n

′
2(m,n), (2.28)

where

s′(m,n) =

L∑
p=−L

L∑
q=−L

hx(p, q)s(m− p, n− q),

n′
k(m,n) =

L∑
p=−L

L∑
q=−L

hx(p, q)nk(m− p, n− q), k = 1, 2.

According to the distributions of s(m− p, n − q) and nk(m − p, n − q) (−L � p � L,−L �

q � L), we have

s′(m,n) ∼ N(μ′
s, σ

′2
s ), (2.29)

n′
k(m,n) ∼ N(0, σ′2

k ), k = 1, 2. (2.30)
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where

μ′
s = μs

L∑
p=−L

L∑
q=−L

hx(p, q),

σ′2
s = σ2

s

L∑
p=−L

L∑
q=−L

hx(p, q)
2, (2.31)

σ′2
k = σ2

k

L∑
p=−L

L∑
q=−L

hx(p, q)
2, k = 1, 2. (2.32)

Equations (2.27), (2.28), (2.29) and (2.30) have the same forms as equations (2.1)-(2.4).

Thus QE has the same closed-form expression as QUIQI (equation (2.12)) except that σs, σ1

and σ2 in equation (2.12) are replaced by σ′
s, σ

′
1 and σ′

2.
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Figure 2.7: Numerical results for the undesired behavior of the general QE .

We can see that although the images are filtered by an edge detection operator, the

noise still occurs in the edge information of the input and fused images inevitably. According

to equations (2.31) and (2.32), increasing σ2
s or σ2

k will directly increase σ′2
s or σ′2

k . We can

conclude that the edge based quality measure QE have the same problem as QUIQI when the

power of the desired signal or noise varies.
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For the general QE which uses the Euclidean norm of the horizontal and vertical gradient

edge information, although the closed-form expression is hard to get, here we can provide

some numerical results to show that it also violates the desired behavior 1 and 2.

Consider a gradient edge detector with horizontal gradient operator hx = [1,−1] and

vertical gradient operator hy = [1,−1]T . Given realizations of Gaussian random variables s,

n1 and n2, f
′, z′1 and z′2 in equations (2.25) and (2.26) can be calculated and their statistics

can be estimated using the Monte Carlo method. We calculate QE for different parameters

and obtain the two curves plotted in Fig.2.7. In Fig.2.7(a) QE decreases with increasing σ2
s .

In Fig.2.7(b) QE increases with increasing σ2
1 when σ2

1 is larger than 5. The values of other

parameters are shown in the caption part of these two figures.
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Chapter 3

A New Method for Evaluation of

FIQMs

3.1 Introduction

Measuring the performance of image fusion algorithms is an extremely important task,

which has received past study [10–25]. The performance of image fusion algorithms is primar-

ily assessed by perceptual evaluation in the form of subjective human tests [16]. Typically in

these tests, human observers are asked to view a series of fused images and rate them. Be-

cause images are fused for better human interpretation, it is more important to judge fusion

methods by how well humans are able to perform interpretation tasks. Examples of human

interpretation studies for image fusion evaluations appear in [20, 25]. No mater the goal of

the human perception test, these tests are inconvenient, expensive and time consuming.

It is clearly highly desirable to identify an objective performance measure that can accu-

rately predict human perception by determining the quality of the fused image. The objective
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measure should be a feature that is obtained via an automatic computation employing the

fused image and can serve as a surrogate for human perception results. We refer to such a fea-

ture as the fused image quality measure (FIQM). If a good FIQM can be devised, then one can

compare image fusion algorithms without expensive perception experiments. Furthermore,

the measure can be used as a design criteria for an “optimal” image fusion algorithm.

In the literature, three broad classes of FIQMs have been proposed. The first class

represents full-reference measures. They require a reference fused image (or the ground truth

image) that represents the “ideal” image of the scene. Once the ground truth image is given,

one can use existing quality metrics such as the mean square error, the peak signal to noise

ratio, or more sophisticated measures such as structure similarity [72] to compare the fused

images with the reference. In the image compression application, the uncompressed image

represents the ideal, and it has been demonstrated that the structure similarity is a meaningful

full-reference measure [72]. For the image fusion application, it is only possible to generate

a reference image for some special cases (for instance, the multi-focus image fusion [11]).

In most cases, one has to resort to other classes of FIQMs that do not require a reference

image. The second class of FIQMs represents source comparative measures that utilize partial

information about the scene, e.g., the source images that were collected and utilized as input

to the image fusion process. This class of FIQMs has recently received a great deal of

attention [12–15]. These measures quantify the amount of information transferred from the

source images to the fused image by considering the sum of correlations between each source

image and the fused image. An analysis of this class of FIQMs is provided in [17]. The

third class of FIQMs represents no-source comparative measures. These measures attempt

to extract the salient features, such as the structure, texture, contrast and edge information,

directly from the fused image without regard to the source images [20–24].
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Quantitatively evaluating the image fusion performance is a complicated issue because of

the lack of a complete understanding of the human visual system (HVS), and because of the

variety of image fusion applications [18]. We expect that the FIQM should be task specific,

and the best measure changes from task to task. Given an image fusion application and

many kinds of proposed FIQMs, we are interested in which quality measure better describes

the performance of the human interpreting the fused imagery.

Ideally, the FIQM for a given image would reveal how well a human can interpret the

image for a given task, i.e., it can predict human performance. One can achieve this aim

by inventing a measure that linearly fits the human perception performance. In [73], the

authors have shown an evidence of the approximately linear fitness between image quality (IQ)

measures and the subjective rating of image distortions. However, an image is a projection

of a particular scene, and the context in the scene, i.e., the relationship of the objects in

the scene, can affect the ability of human to perform a particular task (target detection for

example). Since the linearity is a stricter requirement than monotonicity for a FIQM and is

harder to achieve under various context, we believe that it will be more difficult to guarantee

linearity when the IQ is used to predict the ability of a human to interpret the image for a

given task. Thus, we focus on the monotonicity criterion in this chapter.

By monotonicity we mean that a realistic FIQM can determine the relative ranking of

human performance over a series of fused images derived from the same exact source images,

which we now refer to as a scene. For a given scene, as FIQM increases over a series of fused

images, human performance over these images should also increase. If the human performance

is consistently decreasing, the measure is still good as it can be trivially transformed into

a proper FIQM via a reciprocal operation. Thus, a potential FIQM should be judged by

how well a monotonic function (ascending or descending) explains the relation between the
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FIQM and human performance over a variety of fused imagery representing the same scene.

In addition, the nature of the monotonic relationship (ascending or descending) should be

consistent from scene to scene. Overall, a statistic that quantifies how well different FIQMs

are consistent with actual human performance is necessary.

This chapter focuses on scoring FIQMs for the case of the detection task. Performance

is measured by the probability that a human observer can correctly detect certain objects

in the fused image. The human perception experiments measure the number of observers

that are able to correctly detect ground truthed targets as the human performance. This

performance metric can be reasonably modeled by a binomial distribution. This chapter

introduces a new monotonic statistic for the object detection task that is applicable when

the underlying perception results are derived from a small number of human observers. To

handle a small number of observers, this statistic does not make Gaussian assumptions about

the performance measurements.

Previous work does exist to objectively score the effectiveness of FIQMs. In [19], Pearson

(or linear) correlation and root mean squared error (RMSE) are used to score potential

FIQMs. The Pearson correlation quantifies how well a straight line fits the mapping between

the input and output sequences. Unfortunately, when the relationship between the quality

measure and the human performance is nonlinear, the value of Pearson correlation can be

small despite the fact that the sequences are still monotonically related. In essence, a proper

statistic needs to determine if the ordering of a quality measure preserves the ordering of the

corresponding human performance measures.

The Spearman and Kendall correlations [74, 75] are common statistics to quantify how

well the output sequence is ordered. In fact, the Spearman correlation has been used to eval-

uate the quality measures for video streams [76]. Both quantities are invariant to monotonic
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transformations of both the input and output sequences because monotonic transformations

preserve the rank order of the sequences. For evaluation of the utility of FIQMs, a miss-

ordering of human performance values that are nearly identical should not lower the correla-

tion value too much. Because only ranks and not actual values are considered, the reduction

in correlation score due to these miss-orderings can be identical or even greater than that

of miss-orderings of widely varying human performance values. Clearly, measurement noise

can greatly impact the correlation scores. Therefore, these rank-order correlations are not

appropriate for seeking out good FIQMs.

In [72, 76], a nonlinear regression fit to a logistic function followed by linear correlation

is used to compare various FIQMs in order to accommodate the nonlinear, but monotonic,

relationships. Recently, the monotonic correlation (MC), which uses isotonic regression fol-

lowed by linear correlation has been proposed in [20]. As demonstrated in [20], the MC is

more flexible than linear correlation or the logistic analysis in [72,76]. Like linear and logistic

correlation, the MC assumes that the perception error is Gaussian, which is inappropriate

for the detection task when the number of observers is small.

To our knowledge, this chapter represents the first attempt to score the effectiveness

of FIQMs for the detection task in light of practical measurements from human perception

experiments. To this end, the chapter develops a novel statistic to test whether or not a

monotonic relationship exists between the proposed FIQM and the human performance. The

monotonic statistic is general and can be applied to other applications when one may need

to test for a monotonic relationship.

The chapter is organized as follows. Section 3.2 presents the perception model and

introduces the new monotonic statistic. Section 3.3 demonstrates the effectiveness of the new

statistic via Monte Carlo simulations. The statistic is used to score potential FIQMs against
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actual perception results for fused images in Section 3.4. Finally, Section 4.5 provides some

concluding remarks.

3.2 Statistical Monotonic Analysis

The chapter focuses on the detection task and measures the performance of image fusion

algorithms by the probability that a human observer can correctly detect certain objects in

the fused image. This section develops the test statistic that compares the hypothesis that

the relationship between human detection performance and FIQM values are monotonic to

the hypothesis that the relationship is random. The statistic is based on the model that each

image exhibits a ground truth quality score, which is the probability that any human can

detect the object in it. Section 3.2.1 derives the likelihoods for each hypothesis conditioned

on these ground truth quality scores. Then, Section 3.2.2 uses an uninformative prior for

the ground truth quality scores to define the likelihood ratio so that it is computationally

feasible as demonstrated in Section 3.2.3. Finally, Section 3.2.4 presents properties of the

test statistic.

3.2.1 Data Models

A scene is a realization of F source images, and we considerN different fusion algorithms.

The existence (or lack) of a monotonic relationship between measured human performance

and computed FIQMs can be inferred over S scenes. To this end, this subsection provides

the data models that enable this inference.

For a given scene, let the N × 1 vector p̃ = (p̃1, p̃2, . . . , p̃N )T denote the actual perfor-

mance for all fusion methods, where p̃i is the object detection probability, i.e., the ground
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truth quality score, associated with the image obtained from the i-th fusion algorithm.

Let a given FIQM evaluated over N fusion algorithms be denoted as a N × 1 vector x̃ =

(x̃1, x̃2, . . . , x̃N )T . The computed value x̃i is a deterministic function of the image obtained

from the i-th fusion algorithm and the F source images. The proposed monotonic hypothesis

test evaluates how well a FIQMmonotonically relates to human object detection performance.

Under the monotonic hypothesis, there is a monotonic function that maps the measure value

x̃i associated with the i-th fusion algorithm to the detection probability p̃i, i.e.,

p̃i = g(x̃i), (3.1)

where g(x) is a monotonic increasing or decreasing function of x. Let p and x denote a

reordering of p̃ and x̃ such that the measure values are in ascending order. i.e. x1 � x2 �

. . . � xN . Note that p = Pkp̃ and x = Pkx̃ where Pk is one of a possible N ! permutation

matrices. This chapter uses the convention that P1 is the identity matrix and PN ! reverses

the original ordering, i.e., the anti-diagonal matrix of ones. Now, we consider two alternative

H1 hypotheses: H↑ for ascending pi’s and H↓ for descending pi’s. On the other hand, the null

hypothesis is that over the ensemble of possible fused imagery, the x̃i’s are i.i.d. samples.

Thus, the pi’s are in random order where the probability of any permutation of the order is

equal. In other words, Pk is the permutation matrix that orders the pi’s for theH1 hypotheses,

and Pk is randomly chosen via a uniform distribution over the N ! possible permutation

matrices under the null (H0) hypothesis. Namely, the conditional probability mass functions

(pmfs) of the permutations conditioned on p̃ and the hypotheses for k = 1, . . . , N ! are

fπ(Pk|p̃,H↑) =

⎧⎪⎨
⎪⎩

1 if Pkp̃ ∈ P↑,

0 otherwise,

fπ(Pk|p̃,H↓) =

⎧⎪⎨
⎪⎩

1 if Pkp̃ ∈ P↓,

0 otherwise,

(3.2)

fπ(Pk|p̃,H0) =
1
N ! ,
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where

P↑ = {p : 0 � p1 � . . . � pN � 1}, P↓ = {p : 1 � p1 � . . . � pN � 0}. (3.3)

For this discusion, it is also convenient to define P0 as the set of all possibe p’s, i.e.,

P0 = {p : 0 � p1, . . . , pN � 1}. (3.4)

If p = Pkp̃ is observed, then the likelihoods of the hypotheses, i.e., l(Hi|p) = f(Pk|p̃,Hi)

for i ∈ {↑, ↓, 0} demonstrate that if p is not in ascending (or descending) order, then the

ascending (or descending) likelihood (and likelihood ratio) is zero, and the H↑ (or H↓) hy-

pothesis must be incorrect. Also, if p happens to be in ascending (or descending) order, then

either the H↑ (or H↓) hypothesis is true or the ordering of p is due to random luck under the

null hypothesis, which occurs with a probability of 1/N !. Thus, for p ∈ P↑ (or p ∈ P↓), the

likelihood ratio is not infinite, i.e., a sure monotonic relationship. Rather, it is N ! due to the

fact that the random x can order p by chance.

Unfortunately, the value of p̃ (or p) is unobservable. It can only be inferred via per-

ception experiments that measure y = (y1, y2, . . . , yN )T where yi is the number of observers

that correctly detect the targets in the image obtained from the i-th fusion algorithm.1 We

use oi to represent the number of observers that participate in the detection experiment for

the image formed by the i-th fusion image. Under the assumption that all human are equally

capable, it is reasonable to model y as a random vector whose elements are statistically in-

dependent where yi is drawn from a binomial distribution with parameters oi and pi so that

the pmf of y conditioned on o and p is

y ∼ fy(y|o,p) =
N∏
i=1

(
oi
yi

)
pyii (1− pi)

oi−yi . (3.5)

1For variables that do not use the tilde, the indices for the images is such that xi’s are in ascending order.
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Here we represent the oi’s in an N × 1 vector o for notational convenience. Since p = Pkp̃,

one can define fy(y|o, Pk , p̃) = fy(y|o,p).

The joint pmf of the observations y and the permutations Pk can be written as

fyπ(y, Pk|o, p̃,Hi) = f(y|Pk,o, p̃,Hi)f(Pk|o, p̃,Hi). (3.6)

Because y conditioned on o and p̃ is independent of Hi, f(y|Pk,o, p̃,Hi) = fy(y|Pk,o, p̃)

for all Hi’s. Furthermore, f(Pk|o, p̃,Hi) = fπ(Pk|p̃,Hi) because Pk does not depend on o.

Thus, fyπ(y, Pk |o, p̃,Hi) is obtained by the multiplication of (3.2) and (3.5) so that

fyπ(y, Pk |o, p̃,H↑) =

⎧⎪⎨
⎪⎩

fy(y|o, Pk , p̃) if Pkp̃ ∈ P↑,

0 otherwise,

fyπ(y, Pk |o, p̃,H↓) =

⎧⎪⎨
⎪⎩

fy(y|o, Pk , p̃) if Pkp̃ ∈ P↓,

0 otherwise,

fyπ(y, Pk |o, p̃,H0) = 1
N !fy(y|o, Pk , p̃).

(3.7)

Then, a hypothesis test to distinguish H↑ or H↓ from H0 using the observed values can be

derived from the likelihoods l(Hi|y,o, Pk , p̃) = fyπ(y, Pk|o, p̃,Hi). Because p = Pkp̃ is not

observed, the hypothesis test is a composite test. It is unclear whether a uniformly most

powerful (UMP) test exists. A common test to apply is the generalized likelihood ratio test

(GLRT). This requires one to compute the maximum likelihood (ML) estimates p̂↑, p̂↓, p̂0 for

the H↑, H↓, and H0 hypotheses, respectively. For the two H1 hypotheses, the ML estimates

can be obtained by the O(N) pool adjacent violators algorithm [20, 77, 78]. For the null

hypothesis, p̂i = yi
oi
. The GLRT has the property that for any ascending (or descending)

y, the ascending (or descending) generalized likelihood ratio (GLR) is N !. However, if the

yi’s are close in values, the ordering is more likely to be due to luck than when the yi’s are

47



3.2. STATISTICAL MONOTONIC ANALYSIS

well spread. However, the GLRT is unable to make this distinction between different ordered

y’s. A different approach that accounts for the relative spread of the observations values is

needed.

3.2.2 Diffuse Prior Monotonic Likelihood Ratio Test

A given scene is a realization from the ensemble of possible source images. Therefore, it

is reasonable to model the detection probabilities as being drawn from a random distribution,

i.e., p̃ ∼ fp̃(p̃). The diffuse prior monotonic likelihood ratio test (DPMLRT) assumes that

for a given scene, p̃ is a realization of an uninformative (or diffuse) prior distribution, i.e., the

elements p̃i are i.i.d. uniform [0, 1) so that fp̃(p̃) = 1. The uniform distribution models the

fact that the imagery are collected in various conditions where the ability to detect the objects

can be easy, hard, or somewhere in between. The independence between fusion methods is

a simplifying assumption that leads to a computationally feasible test. Because the prior on

p̃ is independent of the hypothesis Hi and o, we have f(p̃|o,Hi) = fp̃(p̃) = 1. Then, p̃ is

marginalized so that the expected likelihood for the i-th hypothesis is

l̃(Hi|y,o, Pk) =

∫
P0

fyπ(y, Pk|o, p̃,Hi)f(p̃|o,Hi)dp̃ =

∫
P0

fyπ(y, Pk|o, p̃,Hi)dp̃. (3.8)

Now the expected likelihoods do not depend on any unobservable parameters. The integral

in (3.8) can be simplified by noting that the integrand is given by (3.7) and using the change

of variable p̃ �→ P−1
k p. Then, it is easy to see that

l̃(H↑|y,o, Pk) =
∫
P↑

fy(y|o,p)dp, l̃(H↓|y,o, Pk) =
∫
P↓

fy(y|o,p)dp, (3.9)

l̃(H0|y,o, Pk) =
1
N !

∫
P0

fy(y|o,p)dp.

Now, the tests to distinguish the H1 hypotheses from the null hypothesis are simple

48



3.2. STATISTICAL MONOTONIC ANALYSIS

hypothesis tests, and the likelihood ratio test (LRT) is the most powerful test. Namely, given

that for each scene p̃ is drawn from the uninformative prior, then the following LRTs are

optimal in the Neyman-Pearson sense [79] for distinguishing the monotonically ascending or

descending hypothesis from the null hypothesis,2

λ↑
N (y,o) =

N !
∫
P↑

f(y|o,p)dp∫
P0

f(y|o,p)dp , λ↓
N (y,o) =

N !
∫
P↓

f(y|o,p)dp∫
P0

f(y|o,p)dp . (3.10)

We refer to λ↑
N and λ↓

N as the ascending and descending diffuse prior monotonic likelihood

ratio (DPMLR), respectively.

For multiple scenes, the nature of the monotonicity (ascending or descending) should be

consistent from scene to scene. Therefore, one must consider the cumulative likelihoods for

the ascending, descending, and null hypotheses. Since we assume that the y’s and p’s are

statistically independent from scene to scene, the likelihoods for each hypothesis accumulate

via the product operation. The cumulative likelihood ratios are then proportional to the

geometric mean of the likelihood ratios for each scene. The geometric mean provides a

convenient way to normalize the score against the number of scenes. The overall likelihood

ratio for the monotonic relationship over S scenes is formally defined as

ΛN =

(
max

{
S∏

s=1

λ↑
N (ys,os),

S∏
s=1

λ↓
N (ys,os)

})1/S

, (3.11)

where ys and os are the number of correct detections and observers for the s-th scene,

respectively. Note that ΛN is agnostic to the nature of the monotonicity. Unless it is required,

the scene index is implicit for the sake of notational brevity. We refer to ΛN as the composite

DPMLR. When ΛN > 1 the evidence in support of the monotonic hypothesis is greater

than that of the null hypothesis where the FIQM behaves as noise with respect to human

2For notational convenience, the dependency of λ to the ordering Pk is left implicit since λ is actually
invariant to Pk except in how it orders y.
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performance. As ΛN increases, so does the evidence that the FIQM under test is actually a

good measure. The DPMLRT is simply accepting the monotonic hypothesis if the DPMLR

exceeds a given threshold value. Usually, the threshold is greater than one.

3.2.3 Recursive Computation

To our knowledge, a closed form expression for (3.10) does not exist, and numerical inte-

gration quickly becomes infeasible as N increases. Fortunately, it is possible to calculate the

diffuse likelihood ratios numerically. However, due to the multi-variable integration involved

in the expression, the calculation requires large computational cost, especially when N and

the oi’s are large. This subsection provides a recursion to calculate these diffuse likelihood

ratios.

The diffuse likelihood for H0 can be simply expressed as:

l̃(H0|y,o) =
N∏
i=1

(
oi
yi

)
β(yi + 1, oi − yi + 1) (3.12)

where

β(a, b) =

∫ 1

0
za−1(1− z)b−1 dz (3.13)

is the Beta function.

Substituting equations (3.5), (3.8) and (3.12) into (3.10), the ascending diffuse likelihood

ratio can be expressed as:

λ↑
N (y,o) =

N !
∫
P↑

h(pN ; yN , oN ) . . . h(p1; y1, o1)dp∏N
i=1 β(yi + 1, oi − yi + 1)

, (3.14)

where

h(p; y, o) = py(1− p)o−y. (3.15)
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By considering the power series expansion of the regularized incomplete Beta function, the

calculation of λ↑
N (y,o) can be simplified in a recursive way. Specifically, the regularized

incomplete Beta function is defined as

I(y; a, b) =

∫ y
0 za−1(1− z)b−1 dz

β(a, b)
, (3.16)

and the power series expansion for I(y; a, b) is

I(y; a, b) =
1

a+ b

a+b−1∑
j=a

1

β(j + 1, a+ b− j)
yj(1− y)a+b−1−j . (3.17)

Then, (3.14) can be written as:

N !
∫ 1
0 . . .

∫ p3
0 h(pN ; yN , oN ) . . . h(p2; y2, o2)

(∫ p2
0 h(p1; y1, o1)dp1

)
dp2 . . . dpN

β(y1 + 1, o1 − y1 + 1)
∏N

i=2 β(yi + 1, oi − yi + 1)

=
N !
∫ 1
0 . . .

∫ p3
0 h(pN ; yN , oN ) . . . h(p2; y2, o2)I(p2; y1 + 1, o1 − y1 + 1)dp2 . . . dpN∏N

i=2 β(yi + 1, oi − yi + 1)
(3.18)

Now substituting (3.17) into (3.18), we obtain:

λ↑
N (y,o) =

N !

o1 + 2

o1+1∑
j=y1+1

β(j + y2 + 1, o1 + o2 + 2− y2 − j)

β(j + 1, o1 + 2− j)β(y2 + 1, o2 − y2 + 1)
·

∫ 1
0 . . .

∫ p3
0 h(pN ; yN , oN ) . . . h(p2; j + y2, o1 + o2 + 1) dp2 . . . dpN∏N

i=3 β(yi + 1, oi − yi + 1)β(j + y2 + 1, o1 + o2 + 2− y2 − j)

=
N !

o1 + 2

o1+1∑
j=y1+1

β(j + y2 + 1, o1 + o2 + 2− y2 − j)

β(j + 1, o1 + 2− j)β(y2 + 1, o2 − y2 + 1)
·

λ↑
N−1

(
[j + y2, y3, . . . , yN ]′, [o1 + o2 + 1, o3, . . . , oN ]′

)
. (3.19)

Also from (3.3), one can see that P↑ and P0 are the same when N = 1. Therefore by

definition, we have

λ↑
1(y1, o1) = 1, (3.20)

and the ascending diffuse likelihood ratio can be computed numerically via the recursion
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defined in (3.19) and (3.20). A similar recursion can compute the descending diffuse likeli-

hood ratio. Alternatively, one can use the symmetry property (see Property 2 in the next

subsection) to derive λ↓
N from the computation of λ↑

N .

3.2.4 Properties

The diffuse likelihood ratios demonstrate a number of interesting properties than can

easily be proven. Some of these properties are for the general case where the number of

observers can vary over the different fused images. Other properties are for the case that the

number of observers is constant, i.e., oi = o. This more specific case that o = o1 is common

for perception experiments where one would expect the evaluation of the fused imagery over

the same number of observers. In addition to these provable properties, we have discovered

other interesting attributes for the DPMLR by exhaustively computing the DPMLRs for all

(o + 1)N values of y for manageable, i.e., small, values of o and N . These attributes make

sense based upon the intuition of how the DPMLRT should behave; we speculate that these

attributes are preserved for larger values of o and N ; and we are willing to go out on a limb by

disseminating them as conjectures in this subsection. We hope that proofs will be discovered

in the future so that the conjectures can become properties.

This section first presents the properties that are valid for general values of o.

Property 1 λ↑
N (y,o), λ↓

N (y,o),ΛN ∈ (0, N !).

The proof of this property can be found in Appendix 3.6.1. The property bounds the

possible values of the diffuse likelihood ratios. As the number of objects N to consider

increases, the upper bound for the likelihood ratios grows fast. For a given value of N and o,

the bounds of zero and N ! are loose since the set of all possible values of y is finite. However,
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as demonstrated later in this subsection, as the number of observers increases, one can find

a y that corresponds to a likelihood ratio value that is arbitrarily close to either bound. In

other words, as the number of observers increases and the yi’s have sufficient spread, the

likelihood ratio becomes as if p is observable (see Section 3.2.1).

Property 2 λ↓
N (y,o) = λ↑

N (PN !y, PN !o) = λ↑
N (o− y,o).

Proof: The first equality is the result of a simple change of variables p �→ PN !p in

(3.14). Likewise, the second equality is the result of the change of variables pi �→ 1 − pi for

i = 1, . . . , N in (3.14) followed by a reversal of the order of integration.

This property demonstrates a symmetry between λ↑
N and λ↓

N . The symmetry provides a

convenient way to derive the descending likelihood ratio via the computation of the ascending

likelihood ratio and vice versa.

The first two properties are valid for a variable amount of observers per a fused image.

The final set of properties are specific for the case that a constant number of observers o are

utilized for the N fused images, i.e., o = o1.

Property 3 If y1 = y2 = . . . = yN , then λ↓
N (y, o1) = λ↑

N (y, o1) = 1.

The proof of this property is given in Appendix 3.6.2. The property states that when all

observations are equal, one cannot distinguish between the ascending, descending, and null

hypotheses because all orderings of the observations are indistinguishable. Clearly, when all

observations are the same, it is an ill-posed problem to determine whether or not the FIQMs

are ordering the fused imagery in any special manner.

Property 4 If the yi’s are in ascending order and they are not constant then λ↑
N (PN !y, PN !o) <

λ↑
N (Pky, Pko) < λ↑

N (y,o) for 1 < k < N !. Likewise, if the yi’s are in descending order and
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they are not constant then λ↓
N (PN !y, PN !o) < λ↓

N (Pky, Pko) < λ↓
N (y,o) for 1 < k < N !.

Property 5 If the yi’s are in ascending order and they are not constant, then λ↑
N (y,o) > 1

and λ↓
N (y,o) < 1. Likewise, if the yi’s are in descending order and they are not constant,

then λ↓
N (y,o) > 1 and λ↑

N (y,o) < 1.

The proof of these two properties is provided in Appendix 3.6.3. Property 4 states

that if the observations demonstrate a perfect monotonic ascending relationship with the

FIQM, then the ascending likelihood ratio is larger than that for any other ordering of the

observations. Furthermore, the descending order of observations demonstrates the lowest

ascending likelihood ratio of all possible orderings. Since it can be shown that the average

likelihood ratio over all possible orderings of the observations is one, Property 5 is a corollary

of Property 4. The property states that as long as the human performance y is increasing in

concert with x, the diffuse likelihood ratio will always favor the ascending H↑ and disfavor

the descending H↓ hypotheses over the null hypothesis H0. Similarly, as long as the human

performance y is decreasing in concert with x, the diffuse likelihood ratio will always favor

the descending H↓ and disfavor the ascending H↑ hypotheses over the null hypothesis H0.

Clearly, these two properties are both intuitively appealing.

Conjecture 1 The product λ↑
N (y, o1) · λ↓

N (y, o1) � 1 where equality occurs if and only if

λ↑
N (y, o1) = λ↓

N (y, o1) = 1.

As stated earlier, this conjecture is the result of searching through an exhaustive list of

(o+1)N monotonic likelihood ratio values for manageable values of o and N . This conjecture

states that the ascending and descending hypotheses can never both be favored over the null

hypothesis. In other words, λ↑
N > 1 implies λ↓

N < 1, and λ↓
N > 1 implies λ↑

N < 1. However,
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the converse is not true. It is possible that for a given y both λ↑
N and λ↓

N can be less than

one. As a simple example, consider y = [ 0 2 0 ] for o = 2. Because of the symmetry

property, λ↑
N = λ↓

N . At best, a symmetric y can have a monotonic likelihood ratio of one

when all the yi’s are constant. Otherwise, the symmetric y is neither ascending or descending

and should not provide evidence to support H↑ or H↓ over H0. For this case, the ascending,

descending, and composite DPMLRs are all 0.2286.

Conjecture 2 λ↑
N (y, o1) = 1 (or λ↓

N (y, o1) = 1) if and only if the yi’s are constant.

This conjecture states that the only way for the ascending (or descending) hypothesis

to be indistinguishable from the null hypothesis is for all the observations yi to be the same.

Furthermore, if the ascending hypothesis cannot be distinguished from the null hypothesis

then the same is true for the descending hypothesis.

Conjecture 3 For a given N , the bounds in Property 1 are tight in the sense that one can

identify a value of o and corresponding y whose monotonic likelihood ratio is arbitrarily close

to either the lower bound of zero or the upper bound of N !.

Inspection of the exhaustive list of monotonic likelihood ratios of possible y’s for small

values of N and o has revealed that

yi =

⌊
i− 1

N − 1
o

⌋
and y

i
=

⎧⎪⎨
⎪⎩

o i < N/2

0 i � N/2

(3.21)

achieve close to the maximum and minimum values of λ↑
N , respectively, for a given value of

N and o. A different rounding function in (3.21) may lead to a higher λ↑
N . Intuitively, as

the values of the yi’s spread apart, the discriminability between the hypotheses improves. If

the observations use the entire dynamic range of o and they increase linearly with respect
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o
N 5 10 20 40 80

λ↑
N (y, o1)

3 5.27 5.93 6.00 6.00 6.00
5 33.88 71.59 104.38 117.30 119.87

λ↑
N (y, o1)

3 1.62e-004 1.55e-008 1.09e-016 3.93e-033 3.71e-066
5 1.16e-007 7.69e-015 2.58e-029 2.12e-058 1.04e-116

ΛN (y̆, o1)

3 6.17e-003 8.47e-006 1.11e-011 1.41e-023 1.64e-047
5 4.39e-005 9.14e-011 1.71e-022 2.91e-046 4.08e-094

Table 3.1: λ↑
N and ΛN can approach their bounds of zero and N ! as the number of observers

o increases.

to the rank order, then it makes sense that λ↑
N is as large as possible. Since maximizing λ↑

N

also maximizes ΛN due to (3.11) and the symmetry property, y also achieves close to the

maximum of ΛN . For a small λ↑
N , the yi’s should be decreasing and y has the maximum

drop possible. While y leads to a small λ↑
N , its corresponding ΛN value is greater than one

because it is monotonically descending (see (3.11)). The observation sequence

y̆i = (1− (−1)i)o/2 (3.22)

achieves close to the minimum value of ΛN for a given value of N and o. It is neither

increasing nor decreasing and utilizes the dynamic range of o. Table 3.1 demonstrates how

these sequence are converging to the lower and upper bounds for λ↑
N and ΛN as o increases

for a given N . The symmetry properties can be used to show similar results for λ↓
N .

In summary, the evidence to accept the H1 hypothesis (DPMLR > 1) or the null hy-

pothesis (DPMLR < 1) increases as the number of observers increases because the spread

of possible DPMLRs increases. Furthermore, if y happens to exhibit a perfect monotonic

ordering, then the evidence to support H1 also increases as the spread of the yi’s increases.
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In other words, the chances of measurement errors leading to errors in inferring the wrong

hypothesis decreases as the number of observers increases. The performance of the DPMLRT

in terms of hypothesis errors is evaluated by Monte Carlo simulations in the next section.

3.3 DPMLRT Performance Analysis

In this section, we justify the performance of the proposed DPMLRT. To this end, we

generate Monte Carlo realizations of y, x̃, and p̃. Specifically, the p̃i’s are generated uniformly

over [0, 1). For the monotonic hypothesis, x̃i = (p̃i)
α. For the null hypothesis, the x̃i’s are

i.i.d. from a uniform distribution. For either hypothesis, the yi’s are random realizations of

the binomial distribution (see (3.5)). For a given hypothesis and values of o1, N , and α, we

generated 106 realizations of y, x̃, and p̃, and we computed the associated DPMLR given one

scene, i.e. S = 1. Then, we use the histograms of the DPMLR to generate receiver operating

characteristic (ROC) curves by varying the acceptance threshold and tabulating the number

of acceptances under the monotonic hypothesis, i.e. probability of detection (Pd), and under

the null hypothesis, i.e. probability of false alarms (Pf ). As a means of comparison, we also

compute ROC curves associated with some other correlation tests in a similar fashion over

the same simulations.

Fig. 3.1 includes ROC curves of the DPMLR, the monotonic correlation [20], the Pearson

correlation and the logistic correlation [72,76] tests for various values of α when N = 10 and

o = 5. Interested readers are referred to [20] for a detailed description of the monotonic and

logistic correlations. In Fig. 3.1(a) where α = 1, the Pearson correlation performs better than

the others. This is explained by the fact that the relationship between x̃ and p̃ is actually

linear, and Pearson correlation exploits the actual values of x̃ and not just the ordering. In
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Figure 3.1: ROC curves for DPMLR, monotonic correlation, Pearson correlation and logistic
correlation tests: (a) α = 1, (b) α = 4, and (c) α = 6.

essence, the test for linearity is better in this case than the more general test of monotonicity

because it exploits more information. As the g(x) function becomes more nonlinear (i.e.,

α increases), the performance of the Pearson correlation degrades significantly. Clearly,

the logistic correlation is more robust to the nonlinearity than the Pearson correlation, but

since not all monotonic relations follow a logistic function, the logistic correlation performs

worse than the monotonic correlation. Note that α does not change the ordering of x̃i’s.

Therefore, the performance of the DPMLRT and the monotonic correlation is invariant to

the nonlinearity. The DPMLRT always outperforms the monotonic correlation because for
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Figure 3.2: ROC curves for DPMLR, monotonic correlation, Spearman correlation, Kendall
correlation and logistic correlation tests: (a) o = 10 and (b) o = 30.

the case of the uniform prior on p̃, the DPMLRT is the most powerful test of monotonicity.

We also consider some common rank-order correlations — the Spearman correlation and

the Kendall correlation when N = 10 and α = 6. The ROC curves for different tests are

shown in Fig. 3.2. Fig. 3.2(a) corresponds to a case where o = 30 and Fig. 3.2(b) corresponds

to a case where o = 10. The DPMLRT always outperforms the others as expected given

that the p̃’s are generated by the assumed prior distribution. As the number of observers

increases, the gap between the ROC curves of the DPMLRT and the rank-order correlation

tests becomes larger. When o = 10, the performance of the monotonic correlation is a

little poorer than that of the rank-order correlations. For larger o (o = 30), the monotonic

correlation outperforms the rank-order correlations because it takes advantage of the values of

yi’s while the rank-order correlations only use their rank information. The logistic correlation

exhibits the worst performance because of the limitation of the logistic regression fitting.

Fig. 3.3 provides the ROC curves of the DPMLRT for different o’s and N ’s. The circle

on each curve denotes the operating point when the threshold is set to one. As shown in [79],
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Figure 3.3: ROC curves for DPMLRT for various values of N and o: (a) N = 10, and
o = 5, 10, 20 or 30 and (b) o = 5 and N = 5, 10, 15 or 20.

the slope of the ROC curve for a LRT is equal to the corresponding threshold value. Thus,

when the threshold is one, the slope is one corresponding to the “knee” of the ROC curve

as demonstrated in Fig. 3.3, which uses a linear scale for the Pf -axis. As one increases the

number of observers, the knee of the ROC curve shifts to the top left corner, which means

higher Pd and lower Pf can be achieved for a threshold of one. As expected, as the number of

fused images N or the number of observers o increases, the efficacy of the DMPLR improves.

The next set of simulations consider how the DPMLR performs when the model assump-

tions do not match the data. For these simulations, N = 10, o = 10, and α = 6. The first

case considers uniform random variables p̃i’s with a prespecified correlation matrix Σ, whose

(m,n)-th element denotes the correlation coefficient of p̃m and p̃n (1 � m,n � N). The

method for generating such p̃i’s is from [80]. In this case we denote the nondiagonal elements

of Σ by ρ (the diagonal elements equal 1). The p̃i’s are completely correlated or independent

for ρ = 1 or ρ = 0, respectively. Fig. 3.4 compares the ROC curves of DPMLR with the

other correlations for different ρ’s. Fig. 3.4(a), (b) and (c) correspond to ρ = 0.1, 0.5 and 0.9,
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Figure 3.4: ROC curves for correlated p̃i’s: (a) ρ = 0.1, (b) ρ = 0.5 and (c) ρ = 0.9.

respectively. By comparing these ROC curves to Fig. 3.2, we can see that the gap between

the DPMLRT and the others decreases as ρ increases. But clearly the DPMLRT exhibits

the best performance among these correlations. In the limit, as ρ goes to 1, the monotonic

evaluation is moot as all values of the p̃i’s are equal.

The next case considers the effect when the model of human performance does not match

the binomial distribution. We consider the generalized binomial distribution [81] to incorpo-

rate diversity in the capabilities of humans. Specifically, the nominal human performance p̃i

and associated FIQM x̃i = (p̃i)
α are generated as usual. Then, the realized mean performance

61



3.3. DPMLRT PERFORMANCE ANALYSIS

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
f

P
d

N = 10 o = 10 α = 6 τ = 0.5

 

 

DPMLR
Monotonic Correlation
Spearman Correlation
Kendall Correlation
Logistic Correlation

(a)

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
f

P
d

N=10 o=10 τ = 1

 

 

DPMLR
Monotonic Correlation
Spearman Correlation
Kendall Correlation
Logistic Correlation

(b)

Figure 3.5: ROC curves under generalized binomial distribution: (a) τ = 0.5, and (b) τ = 1.

for the observers p̂i is drawn from the uniform distribution over [p̃i−τ p̃i(1−p̃i), p̃i+τ p̃i(1−p̃i)]

and yi is drawn from a binomial distribution with parameters o and p̂i.
3 Here τ ∈ [0, 1] is

referred to as the spread parameter, which denotes the deviation of yi’s distribution from

the binomial distribution. Note that for τ = 0, yi still follows the binomial distribution with

parameters o and p̃i. Fig. 3.5 shows the ROC curves of the DPMLRT, the monotonic, the

rank-order and the logistic correlation tests for different spread parameters τ . This figure

demonstrates that the DPMLRT is robust to τ and still outperforms the others even when τ

is as large as one.

The final case demonstrates that the DPMLR is not the UMP for any arbitrary prior

distribution. Consider a pathological case in which for odd i, p̃i = p̃i+1 and p̃i is drawn from

a uniform distribution over [0, 1). In practice, this case is unlikely because it means that two

different fusion methods provide images with equivalent performance over multiple scenes.

Nevertheless, Fig. 3.6 compares the DPMLRT with the other correlations. The figure shows

that the DPMLRT outperforms the others when the Pd is high. But the other correlations

3As discussed in [81], any pmf of yi over [0, o] can be generated by choosing a specific pdf to generate p̂i.
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Figure 3.6: An example of the case in which p̃i’s are at the edge of P↑ under H1.

all achieve higher detection probability than the DPMLRT when Pf is less than 0.01.

3.4 FIQM Evaluation via the DPMLRT

This section demonstrates the application of the DPMLRT to score potential FIQMs.

The DPMLRT and some other correlations are used to evaluate the monotonic relationships

between 17 different FIQMs proposed in the literature and the human detection results in a

specific target detection experiment. Details of the experiment and the discussion about the

evaluation results are provided in the following subsections.

3.4.1 Experimental Setup

Long-wave infrared (LWIR) and image intensified (II) imagery were collected in a sim-

ulated military operation in an urban terrain (MOUT) environment. The imagery includes

six interior and exterior locations, where four scenarios were collected for each location. The

four scenarios represent cases where zero, one, two, and three people are within the field of

regard of the camera. Individuals who were in the field of regard were typically obscured
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by objects in the scene, such as doorways, windows, furniture, and tables. For each of the

scenarios, a horizontal pan of 150 images was then used to create a larger mosaic of imagery

in both the LWIR and II bands.

The perceptual goal for the human observers is to detect the target in the scenes by

interrogating the fused imagery. To generate the imagery, the LWIR and II images were reg-

istered, bore-sighted and fused via six different algorithms: 1) Contrast Pyramid A (CONA),

2) Contrast Pyramid B (CONB) [82], 3) Discrete Wavelet Transform (DWTT) [3, 83, 84]

4) Color Discrete Wavelet Transform (CDWT), 5) Color Averaging (CLAV) and 6) Color

Multiscale Transform (CLMT) [85]. The first three algorithms generate grayscale fused im-

ages, and the final three methods generate color fused images. It is worth mentioning that

the distinction between CONA and CONB is which image (LWIR or II) populates the coars-

est coefficients in the pyramid. Also, the color methods generate a grayscale fusion method

for the luminance component, map the differences in the image coefficients in the saturation

component, and encode the source of the largest coefficient (LWIR vs II) in the hue compo-

nent. The CDWT uses this coloring scheme for the DWT coefficients, the CLAV uses simple

averaging for the luminance and the raw pixels for the color components, and the CLMT uses

the coloring scheme for the multiscale fusion method defined in [85]. Finally, it is instructive

to compare the fused imagery against the source imagery. Therefore, we consider eight fused

image displays: 1) II, 2) LWIR, 3) CONA, 4) CONB, 5) DWTT, 6) CDWT, 7) CLAV and

8) CLMT.

Fig. 3.7 shows an example of the resulting eight fused image displays for a typical scenario

in our experiment. In this scenario, there are two target persons which are highlighted by

the boxes in each image. As seen in Fig. 3.7(b), the human targets stand out in the LWIR

imagery because they are usually hotter than the background. For the most part, detection
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.7: Eight fused image displays for one of the 18 scenarios: (a) II, (b) LWIR, (c)
CONA, (d) CONB, (e) DWTT, (f) CDWT, (g) CLAV, and (h) CLMT.

performance is best on the LWIR only band because the search task can often be reduced

to simply finding the white hot object on a grey background. However, the II band has the

potential to add context to the LWIR band as the objects like tables and chairs are easier to

distinguish in the II band (see Figs. 3.7(a) and (b)). Therefore, there can be value in fusing

the two bands.

A perception test was set up whereby observers were asked to try to find the human
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3.8: An example of the eight fused image displays and corresponding silhouette for a
single scene, i.e., a target instance, in Fig. 3.7: (a) II, (b) LWIR, (c) CONA, (d) CONB, (e)
DWTT, (f) CDWT, (g) CLAV, (h) CLMT, and (i) silhouette.

targets in a “field of regard” search. An observer’s display was calibrated to look as though

it were seeing a single field of regard of a given scene, and the observer had to navigate across

the scene and detect human targets. Observers could mark as many as three places on the

display as detections for human targets (as they were told that the images could contain

between zero and three humans hiding in the scene). At any point an observer could push

a button to indicate that they either did not detect any targets in the scene or that there

were no other targets in the scene. In the end, the detection performance of the humans was

recorded over the eight image displays.

Overall, o = 8 observers evaluated 18 scenarios that contained 35 human targets. We

treat each target and its surrounding area as a scene for every scenario. For example, the

inside of each box in Fig. 3.7 represents a scene, as shown in Fig. 3.8(a)–(h). Then, ys

is the number of observers that correctly detected the target located in the s-th scene for

s = 1, . . . , 35.
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3.4.2 The Evaluated FIQMs

We test 17 potential FIQMs over each scene. These FIQMs are listed in Table 3.2 with

corresponding citations. Most measures listed in Table 3.2 were also evaluated in [20] for a

recognition task. All the measures except the first are computed automatically. The first

ten measures are simply complexity features that do not consider the source images (the

no-source comparative class according to the classification in Section 6.1). They represent

the structure, texture, contrast and/or edge intensities in the image in order to characterize

the complexity of the image. Such measures have already been used to evaluate the quality

of image fusion algorithms [20,21,86]. Most of these measures have been inspired by work to

develop clutter complexity measures [22,87]. These works search for features that characterize

the degree to which the background appears target-like [87]. Ideally, the clutter complexity

determines how hard it is to detect or classify a target in the scene due to the complexity of

the background. The last seven measures compare how well the salient features in the two

source imagery are transferred into the fused image (the source comparative class). For the

most part, the distinction between these comparative measures is in the definition of saliency.

Ideally, the FIQM should be computed automatically from the fused and source images.

The contrast measure is considered because it is one of the measures that is averaged in an

objective National Imagery Interpretability Ratings Scale (NIIRS) rating [89]. Furthermore,

it is intuitive that the contrast between the target and the background facilitates ease of

detection. The contrast is computed by manually segmenting human silhouettes for each

scene. Fig. 3.8(i) shows an example of the silhouette that separates the target from the

background. The white part in the silhouette denotes target pixels, and the black part

denotes background pixels. The measure is equivalent to the percent contrast used in [90].
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Category Index Measure Description

Contrast 1
Difference of intensity or color between the target

and the background

Saturation [20] 2 Normalized histogram peak

STD 3 Standard deviation

Schmieder Weathersby [22] 4 Block average local standard deviation

fBm [23] 5 Hurst parameter for fBm model

TIR [24] 6 Block average target interference ratio (contrast)

Energy [24] 7 Block average energy of histogram

Entropy [24] 8 Block average entropy of histogram

Homogeneity [24] 9 Block average pixel variation

Block Outlier [24] 10 Block average number of outliers

Universal Quality Index [72] 11
Average Structure SIMilarity (SSIM) index

between fused and reference images

Information
Measures [14]

12
Average mutual information between fused
and reference images (bin size = 16)

Objective Measure [13] 13
Average objective edge information
between fused and reference images

14
Weighted average salient quality index of edge
intensities between fused and reference images

Salient Quality Index [15] 15
Weighted average salient quality index between
fused and reference images

16
Average salient quality index between
fused and reference images

Harris Response based
quality metric [88]

17
Difference of Harris response between fused
and reference images

Table 3.2: List of the evaluated FIQMs.

For grayscale imagery, it is defined as

contrast =
|It − Ib|

d
, (3.23)

where It and Ib are the mean target and background intensities, respectively, and d denotes the

dynamic range, i.e. the intensity difference between the brightest and darkest pixels in a scene.

For color imagery, the RGB coordinates are converted to the CIE L∗a∗b∗ color space [91] and

the single band contrast is calculated independently over the L∗, a∗, and b∗ bands via (3.23).

Then the root sum square of the three single band contrasts is reported as the overall contrast.

Since the information about the color is given in the a∗ and b∗ bands, these bands exhibit zero

contrast for grayscale imagery, and the color version of contrast is a consistent generalization

of the grayscale definition, i.e., it provides the same answer if the RGB image contains no
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color. Intuitively, the color version of contrast integrates the contrast that exists in all ways

the eye can distinguish the foreground from the background, i.e., lightness and color. It might

be possible to generate an automated contrast measure by incorporating automated image

segmentation techniques. This is a matter of future investigation.

While the generalization of contrast for color imagery is straightforward, it is not clear

how to best extend the definition of the other automatic FIQMs to accommodate color

imagery. To this end, we follow the convention in [87] where for the color images, one

generates four color measures for a given grayscale measure. Namely, the grayscale measure

is computed over each RGB band and summarized by the 1) maximum, 2) minimum and

3) median values over all bands. The fourth measure is computed by converting the RGB

image into a grayscale image before calculating the measure.

3.4.3 Evaluation Results and Discussion

First, we evaluated the consistency of the FIQMs with human detection performance

over the five grayscale fused images displays: 1) II, 2) LWIR, 3) CONA, 4) CONB, and

5) DWTT. Then, we considered scoring the FIQMs generalized for color using all eight fused

image displays.

Table 3.3 provides the composite DPMLR score over the five grayscale displays of the

35 scenes for each of the 17 grayscale measures as well as the corresponding p-values. Note

that for each FIQM, the p-value is evaluated by calculating the probability of obtaining a

result with the DPMLR larger than the composite DPMLR score listed in Table 3.3 when the

H0 hypotheses is true. Furthermore, the table also includes the average values and average

absolute values of the monotonic, logistic, Spearman and Kendall correlations.

The second column of Table 3.3 shows that the composite DPMLR scores for all but
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Index ΛN p-value Mean MC Mean |MC| Mean LC Mean |LC|
1 1.3291 0.1221 0.5835 0.8276 0.5628 0.8069
2 0.0204 0.4284 0.0153 0.6962 0.0105 0.6382
3 0.0301 0.3982 0.1291 0.7958 0.1374 0.7714
4 0.0340 0.3884 0.0192 0.7965 0.0180 0.7911
5 0.5925 0.1741 0.5322 0.8564 0.5330 0.8398
6 0.3637 0.2073 0.1380 0.5493 0.1381 0.5490
7 0.0376 0.3803 0.0546 0.7670 0.0405 0.7248
8 0.0392 0.3768 0.0921 0.7636 0.0883 0.7386
9 0.0382 0.3789 -0.0106 0.8068 -0.0012 0.7851
10 0.0422 0.3709 0.1453 0.7723 0.1385 0.7555
11 0.0316 0.3943 -0.0292 0.7543 -0.0268 0.7339
12 0.0362 0.3833 0.2030 0.7262 0.1667 0.6771
13 0.0479 0.3607 0.1018 0.7863 0.1063 0.7622
14 0.0252 0.4120 0.1454 0.7668 0.1426 0.7581
15 0.0242 0.4150 0.1541 0.7756 0.1402 0.7558
16 0.0387 0.3778 0.3124 0.7694 0.2969 0.7391
17 0.3407 0.2122 0.1973 0.5980 0.1931 0.5910

Index ΛN p-value Mean SC Mean |SC| Mean KC Mean |KC|
1 1.3291 0.1221 0.5210 0.6168 0.4700 0.5602
2 0.0204 0.4284 0.0053 0.4158 0.0190 0.3425
3 0.0301 0.3982 0.0868 0.4981 0.0891 0.4285
4 0.0340 0.3884 0.0720 0.4498 0.0711 0.3807
5 0.5925 0.1741 0.3608 0.5730 0.3094 0.4933
6 0.3637 0.2073 0.1381 0.5490 0.0649 0.4158
7 0.0376 0.3803 0.0748 0.4433 0.0729 0.3780
8 0.0392 0.3768 0.0896 0.4434 0.0745 0.3730
9 0.0382 0.3789 -0.0360 0.5160 -0.0292 0.4384
10 0.0422 0.3709 0.0927 0.5002 0.0807 0.4197
11 0.0316 0.3943 0.0130 0.4066 0.0345 0.3494
12 0.0362 0.3833 0.1363 0.3950 0.1315 0.3457
13 0.0479 0.3607 0.0647 0.4677 0.0651 0.4094
14 0.0252 0.4120 0.0792 0.4340 0.0870 0.3743
15 0.0242 0.4150 0.0873 0.4421 0.0934 0.3807
16 0.0387 0.3778 0.1534 0.4396 0.1430 0.3898
17 0.3407 0.2122 0.1424 0.3792 0.1427 0.3527

Table 3.3: List of DPMLR scores, associated p-values, and average values of some other
correlations for 17 grayscale FIQMs tested over five image displays.

the grayscale contrast measure are significantly less than one. This means that the evidence

points to the fact that these potential FIQMs are viewed as noise with respect to ordering

the detection probabilities of the imagery. The poor performance of the source comparative

measures may be explained by structure in the fused and source images that leads to good

inter-image correlation but that has no (or even negative) effect on human performance.

Examples of the pitfalls of source comparative measures when the ideal image is unknown

are provided in [17].

For the grayscale contrast measure, the composite DPMLR score is still modest at 1.3291

and the p-value is not very low. In fact, the perfect FIQM that consistently ordered the

number of detections y over all 35 scenes would provide a composite DPMLR of 9.632. This

means that while there is evidence to reject the null hypothesis, the evidence to support
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the monotonic hypothesis is not compelling. However, the composite DPMLR score for the

grayscale contrast measure is much greater than the scores for the others. Thus, the contrast

measure may be a key aspect to a proper FIQM.

From Table 3.3, one can see that the orderings of the FIQMs via the DPMLR and

the other correlations differ. Also note that for each FIQM, the differences between the

average correlations and the average absolute correlations indicate a consistency issue for

the nature of monotonicity over the 35 scenes. The contrast measure exhibits by far the

largest DPMLR. However, its average absolute values of the monotonic correlation and the

logistic correlation (Mean |MC| and Mean |LC| in Table 3.3) are less than those of the fBm,

respectively. Furthermore, the other average correlations of the contrast measure are only

slightly larger than those of the fBm. To better compare these two measures, and to show

how differently the DPMLR and the other four correlations evaluate a FIQM based upon

the human perception results, we present the human detection results and the scores of the

DPMLRT, monotonic, logistic, Spearman, and Kendall correlation tests for each scene for

the contrast and the fBm measures.

Fig. 3.9 graphically depicts the relationship between the aforementioned two measures

and the human performance over all 35 scenes. The lines marked by the asterisk correspond

to the contrast measure and the lines marked by the circle correspond to the fBm. Since

only the five gray fused image displays are considered here, for each scene and each FIQM,

we have five detection numbers yi ∈ [0, 8] and five FIQM values x̃i (1 � i � 5). In each

plot of Fig. 3.9, the vertical axis denotes the number of humans that detected the target,

while the horizontal axis stands for the rank of the x̃i’s sorted in ascending order. The shade

of the background of each plot indicates the significance of the monotonic ordering for each

scene. The significance value is obtained by calculating the DPMLR of the given yi’s for an
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Figure 3.9: Scatter plots of the number of detections versus the quality rank order over 35
scenes ( ‘∗’ represents the contrast measure, and ‘◦’ represents the fBm measure).

imaginary FIQM whose values perfectly match the yi’s in the monotonically increasing order.

Tables 3.4 and 3.5 provide the ascending and descending DPMLRs as well as the other

four correlations (monotonic, logistic, Spearman, and Kendall) over each scene for the con-

trast measure and the fBm measure, respectively. Note that in Scenes 34 and 35, the same

number of detections are obtained for five different displays. Because of the fact that the

target is so obvious in Scene 34, all eight observers detected it successfully. Similarly, no one

detected the target in Scene 35 because it is so unclear. Both cases are naturally ignored as

they don’t provide any information on the monotonicity.

One very important property of the DPMLR is that it can capture the significance of a

scene based upon the human detection results, and accordingly adjust its score to provide a

more precise evaluation. The significance, as defined, is determined by the number of unique
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human detection values and the spread of these values over the dynamic range from 0 to 8

detections. Essentially, the significance describes how easy (or difficult) it is for random noise

to affect the order of the human detection results. The more unique values that the human

detection results take in a scene, the less likely that random noise will order the human detec-

tion results. The monotonic and logistic correlations give a value of one whenever a scene’s

scatter plot is perfectly monotonic, as observed from Scenes 3, 6, 8, 9, 14, 16, 17, 18, 24, 26, 29,

and 32 in Fig. 3.9 and the corresponding statistics in Table 3.4. The Spearman and the

Kendall correlations give a value of one whenever a scene’s scatter plot is strictly monotonic,

as observed from the scatter plot of Scene 5 and the corresponding statistics in Table 3.5.

However, the DPMLR gives a score much greater than one in the significant scenes. Specifi-

cally, in Scenes 3, 6, 8, 9 and 14, the likelihoods for noise to order the data are much slimmer

than those in Scenes 24, 26, 29 and 32. As a result, the DPMLR provides significantly higher

scores in the former than in the later as seen in Table 3.4.

One can also observe that the miss-ordering for the more significant scenes causes lower

DPMLR scores than those of the less significant scenes. For instance, we compare the scatter

plots of Scenes 25 and 31 in Fig. 3.9 as well as the corresponding descending DPMLR values

in Table 3.4. The descending DPMLR for Scene 25 is much smaller than that of Scene 31

because the DPMLR treats the miss-ordering in Scene 31 as due to the measurement noise.

On the other hand, the other four correlations are equally unforgiving of the miss-ordering

regardless of the significance of the scene. This is because that the correlations are invariant

to linear scaling of the human detection results, whereas the DPMLR uses the binomial

measurement model to determine whether or not the scale of the miss-ordering is significant.

Once we realize the DPMLR’s ability to incorporate the significance of each scene into

the statistical test, it is easy to see why the DPMLR provides the significantly high score
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for the contrast measure. Comparing the scatter plots of these two measures in the first 20

scenes, we can see that seven of them, i.e., Scenes 3, 6, 8, 9, 14, 16 and 17, exhibit the perfect

monotonicity for the contrast measure and some miss-orderings for the fBm measure. In

fact, the nature of the monotonic relationship for the fBm feature flips for Scene 14, i.e., it

is perfectly decreasing. Both of these factors lead to the significantly higher DPMLR for the

contrast measure. Because the contrast measure is still not nearly monotonically related to

the perception results of many of the significant scenes, the composite DPMLR score is only

slightly greater than one.

Next, we used all N = 8 fused image displays and ran another DPMLRT for color-based

FIQMs when the human detection results were collected over o = 8 observers. The composite

DPMLR scores of the 64 color-based FIQMs derived from the 16 automated grayscale FIQMs

are low and not included here for the sake of brevity. On the other hand, the color-based

contrast measure achieved a composite DPMLR score of 1.4000, which is slightly greater than

that of the contrast computed only over the five grayscale fused image displays. Because

the number of fused images N has increased, the significance of this “greater than one”

score increases and the p-value is 0.041972, which gives stronger support for the monotonic

hypothesis. Certainly, the color-based contrast is able to incorporate the contrast from both

the luminance and color components in an RGB image and serves as a potential FIQM that

is able to explain some of the human performance. Again, the perfect FIQM would provide

a composite DPMLR of 54.5150, and contrast is only one aspect of a good FIQM, which has

yet to be identified.
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3.5 Summary

This chapter proposes the composite DPMLR to quantify how consistent the values of

a FIQM are with measured human performance represented by the probability of detection.

Specifically, the DPMLR can be used to test whether or not a monotonic relationship exists

between the FIQM and the underlying human detection performance that is measured via a

perception experiment. The resulting test is designed to be applicable even when the number

of observers is small so that the measurement errors from the perceptual experiment are not

necessarily Gaussian. The chapter discusses some interesting properties of the DPMLR, and

simulation results demonstrate the advantages of the DPMLR over other monotonic statistics.

Unlike the monotonic correlation in [20], the DPMLR seamlessly accounts for the spread of

the human observations and the number of fused images. It indicates to what degree the

ordering of the human observations by the FIQM is not by random chance. The DPMLRT is

a general test of monotonicity that can be used to evaluate monotonic relationships beyond

the image fusion application. Finally, the DPMLR was used to score a number of potential

FIQMs using real image data with a corresponding perception study.

The DPMLR scores reveal that a proper FIQM for the detection task is not yet available.

The comparative measures may have scored poorly because the salient features exploited by

these measures may not have captured the context in II imagery that humans exploit for

detection. Of note, the contrast measure does demonstrate some utility based on its DPMLR

score, and is clearly one aspect that drives human detection performance. Future work is

needed to identify a more meaningful FIQM. Such a measure may incorporate aspects of the

contrast as well as other quality features of both the luminance and color components of the

image. However, we expect that a measure needs to understand what context is available in
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the image, which makes the search for a good FIQM very challenging.

The chapter revealed many interesting properties of the DPMLR and conjectured many

more properties. Future work is necessary to prove (or disprove) these conjectured properties.

Furthermore, one can further study over what values of p̃ the DPMLRT is the most powerful

test.

The DPMLRT does incorporate some simplifying assumptions that could be relaxed

for a more robust test. For instance, not all human observers are created equal and the

binomial distribution may not be the best model for the perception results. Furthermore,

the values of p̃i are not independent since all fusion algorithms attempt to provide a good

image for human perception. The chapter does demonstrate that the DPMLRT is robust as

these model assumptions are relaxed. In addition, the DPMLRT assumes that the observers’

probability of false alarms are calibrated, and it ignores the impact of contextual information,

which may be known a priori or obtained in the image, on human detection performance.

Future research can also focus on statistical scoring mechanisms that account for increasingly

realistic data models.

3.6 Appendix

3.6.1 Proof of Property 1

Proof: λ↑
N (y,o) and λ↓

N (y,o) can be expressed as:

λ↑
N (y,o) =

N !
∫
P↑

∏N
i=1 p

yi
i (1− pi)

o−yidp∫
P0

∏N
i=1 p

yi
i (1− pi)o−yidp

, and λ↓
N (y,o) =

N !
∫
P↓

∏N
i=1 p

yi
i (1− pi)

o−yidp∫
P0

∏N
i=1 p

yi
i (1− pi)o−yidp

.

(3.24)
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Note that the integrands in the numerator and denominator are the same. This integrand is

strictly positive for all p except for a finite set of points of measure zero, namely {p : pi ∈

{0, 1}}. Any integral of the integrand over P0, P↑, P↓, P0\P↑, and P0\P↓ must be strictly

positive. Thus, the integrals in the numerator of (3.24) are strictly less than the integrals in

the denominator. Furthermore, all the integrals are strictly positive. Thus,

0 <

∫
P↑

∏N
i=1 p

yi
i (1− pi)

o−yidp∫
P0

∏N
i=1 p

yi
i (1− pi)o−yidp

< 1, and 0 <

∫
P↓

∏N
i=1 p

yi
i (1− pi)

o−yidp∫
P0

∏N
i=1 p

yi
i (1− pi)o−yidp

< 1. (3.25)

Multiplication by N ! leads to 0 < λ↑
N (y,o) < N ! and 0 < λ↓

N (y,o) < N !. Because the

ascending and descending DPMLRs are bounded by zero and N ! for each scene, it is clear

by (3.11) that the composite DPMLR is also bounded by 0 and N !.

3.6.2 Proof of Property 3

Proof: Let πk : {1, 2, . . . , N} �−→ {1, 2, . . . , N} be a permutation mapping such that

πk(i) 
= πk(j) when i 
= j. There are N ! such mappings, and let each mapping be identified

with a unique index k where k = 1, 2, . . . , N !. As a matter of convention, k = 1 is the

identity mapping, i.e., π1(i) = i, and k = N ! is the reverse sort, i.e., πN !(i) = N +1− i. Each

permutation function allows one to define an ordering of the coordinates, i.e.,

Rk = {p : 0 � pπk(1) � pπk(2) � . . . � pπk(N) � 1} (3.26)

such that the collection of all N ! orderings defines any possible sequence of coordinate values,

i.e.,

P0 =

N !⋃
k=1

Rk. (3.27)
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Furthermore, P↑ = R1 and P↓ = RN !. As a result,

∫
P0

N∏
i=1

pyii (1− pi)
o−yidp =

N !∑
k=1

∫
Rk

N∏
i=1

pyii (1− pi)
o−yidp. (3.28)

Using the change of variable pπk(i) �→ pi, the right hand side of (3.28) can be rewritten as

∫
P0

N∏
i=1

pyii (1− pi)
o−yidp =

N !∑
k=1

∫
P↑

N∏
i=1

p
yπk(i)

i (1− pi)
o−yπk(i)dp. (3.29)

If y1 = y2 = . . . = yN , then we have yπ1(i) = yπ2(i) = . . . = yπN!(i) = yi for i = 1, 2, . . . , N . It

follows that

∫
P0

N∏
i=1

pyii (1− pi)
o−yidp = N !

∫
P↑

N∏
i=1

pyii (1− pi)
o−yidp. (3.30)

According to (3.24), we have λ↓
N (y, o1) = 1 = λ↑

N (y, o1)

3.6.3 Proof of Properties 4 and 5

Proof: First we want to show that if the yi’s are in ascending order and not constant,

then

N∏
i=1

pyii (1− pi)
o−yi >

N∏
i=1

p
yπk(i)

i (1− pi)
o−yπk(i) , (3.31)

when k 
= 0.

To this end, we transform the permutation πk back to the identity. Let’s define the

permutation function g0(i) = πk(i). For the first step, the value of g0(1) is switched with

the value g0(j) where g0(j) = 1 to form g1. The process repeats itself for N − 1 steps such

that for the n-th step, the value of gn−1(n) is switched with gn−1(j) where gn−1(j) = n to

form gn. Formally, at the n-th step we have gn(n) = n, gn(j) = gn−1(n), and gn(i) = gn−1(i),

where j = g−1
n−1(n), i > n and i 
= j.
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Note that j � n and gn−1(n) � n because gN−1(i) = i for i = 1, 2, . . . , n − 1. After

N − 1 steps, π1 = gn−1. After the n-th step, the ratio of the likelihoods associated with

permutations gn and gn−1, i.e.,

∏N
i=1 p

ygn(i)

i (1− pi)
o−ygn(i)∏N

i=1 p
ygn−1(i)

i (1− pi)
o−ygn−1(i)

=

(
pn(1− pj)

pj(1− pn)

)yn−ygn−1 (n)

(3.32)

is greater than or equal to unity because yn � ygn−1(n) and pn � pj over P↑. By taking the

product of (3.32) for n = 1, 2, . . . , N − 1, we have

∏N
i=1 p

ygN−1(i)

i (1− pi)
o−ygN−1(i)∏N

i=1 p
yg0(i)
i (1− pi)

o−yg0(i)
� 1. (3.33)

The equality occurs only if yn = ygn−1(n) for n = 1, . . . , N , which means yi’s are equal.

Because g0 = πk and gN−1 is the identity map and the yi’s are not constant, (3.31) is proven.

Now, integrating both sides of (3.31) over P↑ leads to

∫
P↑

N∏
i=1

pyii (1− pi)
o−yidp >

∫
P↑

N∏
i=1

p
yπk(i)

i (1− pi)
o−yπk(i)dp (3.34)

when k 
= 1. Similarly, one can show that

∫
P↑

N∏
i=1

p
yπN!(i)

i (1− pi)
o−yπN!(i)dp <

∫
P↑

N∏
i=1

p
yπk(i)

i (1− pi)
o−yπk(i)dp (3.35)

when k 
= N !. The division of (3.34) and (3.35) by
∏N

i=1 β(yi +1, o− yi+1) leads to the first

statement in Property 4. Similar arguments prove the second statement in Property 4.

Summing (3.34) for k = 1, . . . , N ! leads to

∫
P0

N∏
i=1

pyii (1− pi)
o−yidp < N !

∫
P↑

N∏
i=1

pyii (1− pi)
o−yidp. (3.36)

Then λ↑
N (y,o) > 1. Similarly, (3.35) can be reexpressed as

∫
P↓

N∏
i=1

pyii (1− pi)
o−yidp <

∫
P↓

N∏
i=1

p
yπk(i)

i (1− pi)
o−yπk(i)dp, (3.37)
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so that λ↓
N (y,o) < 1. This completes the proof of the first statement in Property 5. The

proof of the second statement can be proven by similar arguments.
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Scene 1

λ
↑
5 = 0.7043

λ
↓
5 = 0.0000

MC = 0.9379
LC = 0.9379
SC = 0.6000
KC = 0.4000

Scene 2

λ
↑
5 = 23.6503

λ
↓
5 = 0.0000

MC = 0.9935
LC = 0.9699
SC = 0.9000
KC = 0.8000

Scene 3

λ
↑
5 = 45.2298

λ
↓
5 = 0.0000

MC = 1.0000
LC = 0.9990
SC = 0.9747
KC = 0.9487

Scene 4

λ
↑
5 = 1.1634

λ
↓
5 = 0.0000

MC = 0.9189
LC = 0.9189
SC = 0.6000
KC = 0.4000

Scene 5

λ
↑
5 = 0.6730

λ
↓
5 = 0.0001

MC = 0.8376
LC = 0.8376
SC = 0.7000
KC = 0.6000

Scene 6

λ
↑
5 = 31.4151

λ
↓
5 = 0.0000

MC = 1.0000
LC = 1.0000
SC = 0.9747
KC = 0.9487

Scene 7

λ
↑
5 = 0.0010

λ
↓
5 = 0.0137

MC = -0.5601
LC = -0.5601
SC = -0.2052
KC = -0.3162

Scene 8

λ
↑
5 = 29.1496

λ
↓
5 = 0.0000

MC = 1.0000
LC = 0.9826
SC = 0.9747
KC = 0.9487

Scene 9

λ
↑
5 = 24.7705

λ
↓
5 = 0.0000

MC = 1.0000
LC = 0.8778
SC = 0.9747
KC = 0.9487

Scene 10

λ
↑
5 = 0.0274

λ
↓
5 = 0.0746

MC = -0.6882
LC = -0.6882
SC = -0.0513
KC = 0.1054

Scene 11

λ
↑
5 = 11.1297

λ
↓
5 = 0.0014

MC = 0.9830
LC = 0.9558
SC = 0.9000
KC = 0.8000

Scene 12

λ
↑
5 = 0.2919

λ
↓
5 = 0.0006

MC = 0.6571
LC = 0.5026
SC = 0.5643
KC = 0.5270

Scene 13

λ
↑
5 = 0.0005

λ
↓
5 = 0.0000

MC = 0.6124
LC = 0.6124
SC = 0.3354
KC = 0.3586

Scene 14

λ
↑
5 = 17.3610

λ
↓
5 = 0.0009

MC = 1.0000
LC = 1.0000
SC = 0.9747
KC = 0.9487

Scene 15

λ
↑
5 = 9.4196

λ
↓
5 = 0.0002

MC = 0.9886
LC = 0.9708
SC = 0.8208
KC = 0.7379

Scene 16

λ
↑
5 = 11.8403

λ
↓
5 = 0.0022

MC = 1.0000
LC = 1.0000
SC = 0.9487
KC = 0.8944

Scene 17

λ
↑
5 = 10.8893

λ
↓
5 = 0.0000

MC = 1.0000
LC = 1.0000
SC = 0.8944
KC = 0.8367

Scene 18

λ
↑
5 = 10.4186

λ
↓
5 = 0.0001

MC = 1.0000
LC = 1.0000
SC = 0.8944
KC = 0.8367

Scene 19

λ
↑
5 = 1.0475

λ
↓
5 = 0.0376

MC = 0.7454
LC = 0.7454
SC = 0.6325
KC = 0.4472

Scene 20

λ
↑
5 = 4.7336

λ
↓
5 = 0.0250

MC = 0.9354
LC = 0.8815
SC = 0.7906
KC = 0.6708

Scene 21

λ
↑
5 = 0.1784

λ
↓
5 = 0.7175

MC = -0.5345
LC = -0.5345
SC = -0.2635
KC = -0.2236

Scene 22

λ
↑
5 = 0.3496

λ
↓
5 = 0.2204

MC = -0.4082
LC = -0.4082
SC = 0.1118
KC = 0.1195

Scene 23

λ
↑
5 = 1.7957

λ
↓
5 = 0.0501

MC = 0.8898
LC = 0.8458
SC = 0.4472
KC = 0.3586

Scene 24

λ
↑
5 = 4.9996

λ
↓
5 = 0.0000

MC = 1.0000
LC = 1.0000
SC = 0.7071
KC = 0.6325

Scene 25

λ
↑
5 = 0.0108

λ
↓
5 = 0.1740

MC = -0.6124
LC = -0.6124
SC = -0.3536
KC = -0.3162

Scene 26

λ
↑
5 = 4.3533

λ
↓
5 = 0.0042

MC = 1.0000
LC = 1.0000
SC = 0.7071
KC = 0.6325

Scene 27

λ
↑
5 = 0.5042

λ
↓
5 = 0.0259

MC = 0.6124
LC = 0.6124
SC = 0.3536
KC = 0.3162

Scene 28

λ
↑
5 = 2.0380

λ
↓
5 = 0.1714

MC = 0.7638
LC = 0.5417
SC = 0.5774
KC = 0.5164

Scene 29

λ
↑
5 = 3.5970

λ
↓
5 = 0.0296

MC = 1.0000
LC = 1.0000
SC = 0.7071
KC = 0.6325

Scene 30

λ
↑
5 = 0.4156

λ
↓
5 = 1.2533

MC = -0.6124
LC = -0.6124
SC = -0.3536
KC = -0.3162

Scene 31

λ
↑
5 = 0.4156

λ
↓
5 = 1.2533

MC = -0.6124
LC = -0.6124
SC = -0.3536
KC = -0.3162

Scene 32

λ
↑
5 = 2.4100

λ
↓
5 = 0.1818

MC = 1.0000
LC = 1.0000
SC = 0.7071
KC = 0.6325

Scene 33

λ
↑
5 = 0.7393

λ
↓
5 = 0.7393

MC = 0.4082
LC = 0.4082
SC = 0.0000
KC = 0.0000

Scene 34

λ
↑
5 = 1.0000

λ
↓
5 = 1.0000

MC = NaN
LC = NaN
SC = NaN
KC = NaN

Scene 35

λ
↑
5 = 1.0000

λ
↓
5 = 1.0000

MC = NaN
LC = NaN
SC = NaN
KC = NaN

Table 3.4: Statistics for the contrast measure where MC, LC, SC and KC are the monotonic,
logistic, Spearman, and Kendall correlations, respectively.
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Scene 1

λ
↑
5 = 0.7043

λ
↓
5 = 0.0000

MC = 0.9379
LC = 0.9379
SC = 0.6000
KC = 0.4000

Scene 2

λ
↑
5 = 0.7043

λ
↓
5 = 0.0000

MC = 0.9379
LC = 0.9379
SC = 0.6000
KC = 0.4000

Scene 3

λ
↑
5 = 0.3819

λ
↓
5 = 0.0000

MC = 0.9396
LC = 0.9396
SC = 0.6669
KC = 0.5270

Scene 4

λ
↑
5 = 1.5343

λ
↓
5 = 0.0000

MC = 0.9189
LC = 0.8385
SC = 0.6000
KC = 0.4000

Scene 5

λ
↑
5 = 35.3484

λ
↓
5 = 0.0000

MC = 1.0000
LC = 0.9766
SC = 1.0000
KC = 1.0000

Scene 6

λ
↑
5 = 6.8845

λ
↓
5 = 0.0000

MC = 0.9766
LC = 0.9686
SC = 0.8208
KC = 0.7379

Scene 7

λ
↑
5 = 0.0001

λ
↓
5 = 1.0015

MC = -0.8402
LC = -0.7796
SC = -0.6156
KC = -0.5270

Scene 8

λ
↑
5 = 0.8749

λ
↓
5 = 0.0001

MC = 0.8402
LC = 0.7956
SC = 0.5643
KC = 0.5270

Scene 9

λ
↑
5 = 0.0708

λ
↓
5 = 0.0000

MC = 0.7605
LC = 0.7605
SC = 0.6669
KC = 0.5270

Scene 10

λ
↑
5 = 0.0011

λ
↓
5 = 2.5692

MC = -0.9081
LC = -0.8147
SC = -0.6669
KC = -0.5270

Scene 11

λ
↑
5 = 0.6460

λ
↓
5 = 0.0064

MC = 0.8137
LC = 0.8137
SC = 0.3000
KC = 0.2000

Scene 12

λ
↑
5 = 19.4999

λ
↓
5 = 0.0001

MC = 1.0000
LC = 0.9939
SC = 0.9747
KC = 0.9487

Scene 13

λ
↑
5 = 0.2934

λ
↓
5 = 0.0000

MC = 0.9186
LC = 0.9186
SC = 0.7826
KC = 0.5976

Scene 14

λ
↑
5 = 0.0009

λ
↓
5 = 17.3610

MC = -1.0000
LC = -0.9801
SC = -0.9747
KC = -0.9487

Scene 15

λ
↑
5 = 0.7544

λ
↓
5 = 0.0007

MC = 0.9535
LC = 0.9535
SC = 0.0513
KC = -0.1054

Scene 16

λ
↑
5 = 0.5725

λ
↓
5 = 0.0099

MC = 0.6757
LC = 0.6233
SC = 0.3162
KC = 0.2236

Scene 17

λ
↑
5 = 5.2378

λ
↓
5 = 0.0000

MC = 0.9949
LC = 0.9897
SC = 0.6708
KC = 0.5976

Scene 18

λ
↑
5 = 10.4186

λ
↓
5 = 0.0001

MC = 1.0000
LC = 1.0000
SC = 0.8944
KC = 0.8367

Scene 19

λ
↑
5 = 9.9553

λ
↓
5 = 0.0071

MC = 1.0000
LC = 0.9576
SC = 0.9487
KC = 0.8944

Scene 20

λ
↑
5 = 0.0779

λ
↓
5 = 0.5866

MC = -0.6124
LC = -0.5001
SC = -0.3162
KC = -0.2236

Scene 21

λ
↑
5 = 0.1318

λ
↓
5 = 0.8082

MC = -0.7638
LC = -0.7638
SC = -0.3689
KC = -0.2236

Scene 22

λ
↑
5 = 0.1434

λ
↓
5 = 1.0109

MC = -0.6124
LC = -0.6124
SC = -0.3354
KC = -0.3586

Scene 23

λ
↑
5 = 0.2252

λ
↓
5 = 0.6329

MC = -0.6124
LC = -0.6124
SC = -0.2236
KC = -0.1195

Scene 24

λ
↑
5 = 4.9996

λ
↓
5 = 0.0000

MC = 1.0000
LC = 1.0000
SC = 0.7071
KC = 0.6325

Scene 25

λ
↑
5 = 0.1740

λ
↓
5 = 0.0108

MC = 0.6124
LC = 0.6124
SC = 0.3536
KC = 0.3162

Scene 26

λ
↑
5 = 4.3533

λ
↓
5 = 0.0042

MC = 1.0000
LC = 1.0000
SC = 0.7071
KC = 0.6325

Scene 27

λ
↑
5 = 4.3533

λ
↓
5 = 0.0042

MC = 1.0000
LC = 1.0000
SC = 0.7071
KC = 0.6325

Scene 28

λ
↑
5 = 0.4822

λ
↓
5 = 0.4822

MC = 0.6124
LC = 0.6124
SC = 0.0000
KC = 0.0000

Scene 29

λ
↑
5 = 3.5970

λ
↓
5 = 0.0296

MC = 1.0000
LC = 1.0000
SC = 0.7071
KC = 0.6325

Scene 30

λ
↑
5 = 2.4100

λ
↓
5 = 0.1818

MC = 1.0000
LC = 1.0000
SC = 0.7071
KC = 0.6325

Scene 31

λ
↑
5 = 0.7393

λ
↓
5 = 0.7393

MC = 0.4082
LC = 0.4082
SC = 0.0000
KC = 0.0000

Scene 32

λ
↑
5 = 2.4100

λ
↓
5 = 0.1818

MC = 1.0000
LC = 1.0000
SC = 0.7071
KC = 0.6325

Scene 33

λ
↑
5 = 1.2533

λ
↓
5 = 0.4156

MC = 0.6124
LC = 0.6124
SC = 0.3536
KC = 0.3162

Scene 34

λ
↑
5 = 1.0000

λ
↓
5 = 1.0000

MC = NaN
LC = NaN
SC = NaN
KC = NaN

Scene 35

λ
↑
5 = 1.0000

λ
↓
5 = 1.0000

MC = NaN
LC = NaN
SC = NaN
KC = NaN

Table 3.5: Statistics for the fBm where MC, LC, SC and KC are the monotonic, logistic,
Spearman, and Kendall correlations, respectively.
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Chapter 4

Cramer-Rao Bound for

Multi-Target Non-Coherent MIMO

Radars

4.1 Introduction

The Cramer-Rao bound (CRB) is a useful tool for evaluating the performance of radar

systems, as it provides the mean square error lower bound for any unbiased estimation.

Recently, there have been various Cramer-Rao bound studies for the performance of MIMO

radar systems in the literature [30–35]. In [35], the joint CRB for the single target location

and velocity estimation in a non-coherent MIMO radar system is calculated and analyzed.

The CRB for the multi-target localization in a coherent MIMO radar system is investigated

in [34].

We consider a multi-target case in a non-coherent MIMO radar system. In this chapter,
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we investigate the joint location and velocity estimation of multiple targets, and the Cramer-

Rao bound for a two-target case is derived and evaluated. This bound gives us theoretically

achievable joint estimation performance. Numerical results show that the spatial advantage

observed previously for single-target cases can also be observed in two-target cases.

4.2 System Model

We consider a MIMO radar system with M transmitters, N receivers and Q targets,

which are placed in a two-dimensional plane. We denote by (xtk, y
t
k) and (xrl , y

r
l ) the locations

of the k-th (1 � k � M) transmitter and the l-th (1 � l � N) receiver, respectively. The

location and velocity of the i-th (1 � i � Q) target are (xi, yi) and (vix, v
i
y), which are

unknown deterministic parameters. The lowpass equivalent waveform transmitted from the

k-th transmitter is denoted by
√

E
M sk(t), where E is the total transmitted energy from all

M transmitters, and the waveform is normalized as
∫
T |sk(t)|2dt = 1, where T is the signal

duration time. The reflection coefficient corresponding to the (l, i, k)-th path is modeled as

a zero-mean complex Gaussian random variable ζ ilk ∼ CN(0, σ2), which is constant over the

observation interval. For different l, k or i, the coefficients ζ ilk (1 � i � Q, 1 � l � N and

1 � k � M) are independent of each other. Assume that the waveforms transmitted from

the M transmitters are approximately orthogonal and maintain approximate orthogonality

for time delays and Doppler shifts of interest, i.e.,

∫
T
sk(t− τm)s∗k′(t− τm′)ej2π(fm−fm′)tdt = 0, if k 
= k′. (4.1)

Thus the signals transmitted from different transmitters can be separated at each re-

ceiver. The clutter-plus-noise received at the l-th receiver and corresponding to the k-th
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transmitter is a temporally white, zero-mean complex Gaussian random process, i.e.,

E {wlk(t)w
∗
l′k′(u)} =

⎧⎪⎨
⎪⎩

σ2
wδ(t− u), if l = l′ and k = k′,

0, otherwise,

(4.2)

where σ2
w is the variance of the clutter-plus-noise and δ(t) is an unit impulse function. The

signal-to-clutter-plus-noise ratio (SCNR) is defined as the average signal power received at

each receiver divided by the power of the clutter-plus-noise. Without loss of generality, we

normalize the noise power and the variance of the reflection coefficient by setting σ2
w = 1 and

σ2 = 1, so that the SCNR is written as 10log( E
M ) in dB.

Under the previously stated assumptions, the signal received at receiver l due to the

waveform transmitted from transmitter k and the reflection of the Q targets is written as

rlk(t) =

√
E

M

Q∑
i=1

ζ ilksk(t− τ ilk)e
j2πf i

lkt + wlk(t), (4.3)

where τ ilk and f i
lk denote the time delay and the Doppler shift corresponding to the (l, i, k)-

th path, respectively. The time delays and Doppler shifts are functions of the unknown

parameters (xi, yi) and (vix, v
i
y), i.e.,

τ ilk =

√
(xtk − xi)2 + (ytk − yi)2 +

√
(xrl − xi)2 + (yrl − yi)2

c
, (4.4)

and

f i
lk =

vix(x
t
k − xi) + viy(y

t
k − yi)

λ
√

(xtk − xi)2 + (ytk − yi)2
+

vix(x
r
l − xi) + viy(y

r
l − yi)

λ
√

(xrl − xi)2 + (yrl − yi)2
, (4.5)

where c is the speed of light and λ is the wavelength of the carrier.
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4.3. CRAMER-RAO BOUND

4.3 Cramer-Rao Bound

We are interested in the accuracy of joint location and velocity estimation for multiple

targets in this MIMO radar system. To simplify the notation, we define the following vectors

r = [r11(t), r12(t), . . . , rNM (t)]T , (4.6)

θ = [x1, y1, v1x, v
1
y , . . . , x

Q, yQ, vQx , v
Q
y ]

T , (4.7)

and

φ = [τ111, τ
1
12, . . . , τ

1
NM , f1

11, . . . , f
1
NM , . . . , τQ11, . . . , f

Q
NM ]T . (4.8)

The MN -dimensional vector r contains the observed signals at the receivers. The 4Q-

dimensional vector θ contains the unknown location and velocity parameters. The 2MNQ-

dimensional vector φ contains the unknown time delays and Doppler shifts. As we know,

the CRB provides a bound on the smallest mean-square error which can be achieved by any

unbiased estimator. The 4Q× 4Q Cramer-Rao bound matrix CCRB is expressed as:

CCRB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1x C1,2 C1,3 C1,4 · · · · · · · · · · · · C1,4Q

C2,1 c1y C2,3 C2,4 · · · · · · · · · · · · C2,4Q

C3,1 C3,2 c1vx C3,4 · · · · · · · · · · · · C3,4Q

C4,1 C4,2 C4,3 c1vy · · · · · · · · · · · · C4,4Q

C5,1 C5,2 C5,3 C5,4 c2x · · · · · · · · · C5,4Q

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

C8,1 C8,2 C8,3 C8,4 · · · c2vy · · · · · · C8,4Q

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

C4Q,1 C4Q,2 C4Q,3 C4Q,4 · · · · · · · · · · · · cQvy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.9)

86



4.3. CRAMER-RAO BOUND

where cqx, c
q
y, c

q
vx and cqvy (1 � q � Q), the diagonal elements of CCRB , give bounds of the

variances for the estimates of parameters xq, yq, vqx and vqy, respectively. To obtain CCRB , we

need the Fisher Information Matrix (FIM) defined by:

J(θ) = Er

{
∂logp(r|θ)

∂θ

(
∂logp(r|θ)

∂θ

)H
}
, (4.10)

where p(r|θ) is the joint pdf of vector r conditioned on θ. We have:

CCRB = J(θ)−1. (4.11)

According to equation (4.3), r can be written as a function of φ. Therefore, considering

φ as an intermediate variable and applying the chain rule, J(θ) can be expressed as:

J(θ) =
∂φ

∂θ
J(φ)

(
∂φ

∂θ

)T

, (4.12)

where J(φ) is the FIM for the unknown vector φ. To calculate J(φ), we need to know p(r|φ),

the joint pdf of r conditioned on the unknown parameter φ. From equation (4.3), it is easy

to see that for different l’s or k’s, the received signals rlk(t)’s are independent of each other,

because ζ ilk’s are independent of each other, and so are the wlk(t)’s. Therefore, we have

logp(r|φ) =
N∑
l=1

M∑
k=1

logp(rlk(t)|φ). (4.13)

For given ζ ilk’s, we have

p(rlk(t)|φ, ζlk) = C1 exp
(
−
∫
T

∣∣rlk(t)−
√

E

M

Q∑
i=1

ζ ilksk(t− τ ilk)e
j2πf i

lkt
∣∣2dt), (4.14)

where ζlk = [ζ1lk, ζ
2
lk, . . . , ζ

Q
lk ]

T and C1 is independent of θ and ζlk. Since ζlk is a complex

Gaussian random vector, we can obtain p(r|φ) by taking the expectation of equation (4.14)

with respect to the distribution of the vector ζlk. Note that similar derivations can be found

87



4.3. CRAMER-RAO BOUND

in [92]. It turns out equation (4.13) can be expressed as:

logp(r|φ) = C2 +

N∑
l=1

M∑
k=1

(
log|Ψlk|+

Q∑
i=1

Q∑
h=1

Ψlk(i, h)
E

M∫
T
r∗lk(t)sk(t− τ ilk)e

j2πf i
lktdt

∫
T
rlk(t)s

∗
k(t− τhlk)e

−j2πfh
lktdt
)
, (4.15)

where C2 is independent of θ, Ψlk(i, h) is the (i, h)-th element of a Q×Q matrix Ψlk, |Ψlk|

represents the determinate of Ψlk and Ψlk is defined as

Ψlk = Ω−1
lk , (4.16)

where Ωlk is also a Q×Q matrix and its (i, h)-th element is defined as

Ωlk(i, h) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E
M

∫
T s∗k(t− τ ilk)sk(t− τhlk)

ej2πt(f
h
lk−f i

lk)dt, if i 
= h,

1 + E
M , otherwise.

(4.17)

As shown in equation (4.15), logp(r|φ) is a function of φ. Therefore, we can obtain J(φ)

by first taking second order partial derivatives of logp(r|φ) with respect to φ, then calculating

the expectation of its Hessian matrix with respect to the distribution of r:

J(φ) = Er

{
∂logp(r|φ)

∂φ

(
∂logp(r|φ)

∂φ

)H
}
, (4.18)

which can be further expressed as:

J(φ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B11 B12 · · · B1Q

B21 B22 · · · B2Q

· · · · · · · · · · · ·

BQ1 BQ2 · · · BQQ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.19)
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where for 1 � i � Q and 1 � h � Q,

Bih =

⎡
⎢⎣ Cih Dih

Dih Eih

⎤
⎥⎦ , (4.20)

Cih = diag

(
Er

{
−
[
∂2logp(r|φ)
∂τ i11∂τ

h
11

,
∂2logp(r|φ)
∂τ i12∂τ

h
12

, . . . ,
∂2logp(r|φ)
∂τ iNM∂τhNM

]})
, (4.21)

Dih = diag

(
Er

{
−
[
∂2logp(r|φ)
∂τ i11∂f

h
11

,
∂2logp(r|φ)
∂τ i12∂f

h
12

, . . . ,
∂2logp(r|φ)
∂τ iNM∂fh

NM

]})
, (4.22)

Eih = diag

(
Er

{
−
[
∂2logp(r|φ)
∂f i

11∂f
h
11

,
∂2logp(r|φ)
∂f i

12∂f
h
12

, . . . ,
∂2logp(r|φ)
∂f i

NM∂fh
NM

]})
. (4.23)

Note that the detailed expressions of equations (4.21)–(4.23) are given in the appendix of

this chapter. ∂φ
∂θ from equation (4.12) is given by

∂φ

∂θ
= diag [A1, A2, . . . , AQ] , (4.24)

where Ai is given as follows:

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂τ i11
∂xi

∂τ i12
∂xi · · · ∂τ iNM

∂xi

∂f i
11

∂xi

∂f i
12

∂xi · · · ∂f i
NM

∂xi

∂τ i11
∂yi

∂τ i12
∂yi

· · · ∂τ iNM

∂yi
∂f i

11

∂yi
∂f i

12

∂yi
· · · ∂f i

NM

∂yi

0 0 · · · 0
∂f i

11

∂vix

∂f i
12

∂vix
· · · ∂f i

NM

∂vix

0 0 · · · 0
∂f i

11

∂viy

∂f i
12

∂viy
· · · ∂f i

NM

∂viy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.25)

where for 1 � i � Q, 1 � l � N and 1 � k � M ,

∂τ ilk
∂xi

=
1

c

(
xi − xtk√

(xtk − xi)2 + (ytk − yi)2
+

xi − xrl√
(xrl − xi)2 + (yrl − yi)2

)
, (4.26)

∂τ ilk
∂yi

=
1

c

(
yi − ytk√

(xtk − xi)2 + (ytk − yi)2
+

yi − yrl√
(xrl − xi)2 + (yrl − yi)2

)
, (4.27)
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∂f i
lk
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(xtk − xi)2 + (ytk − yi)2

) 3
2
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√
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λ
(
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) 3
2

− vix
λ
√

(xrl − xi)2 + (yrl − yi)2
, (4.28)

∂f i
lk

∂yi
= (ytk − yi)

vix(x
t
k − xi) + viy(y

t
k − yi)

λ
(
(xtk − xi)2 + (ytk − yi)2

) 3
2

− viy

λ
√

(xtk − xi)2 + (ytk − yi)2

+(yrl − yi)
vix(x

r
l − xi) + viy(y

r
l − yi)

λ
(
(xrl − xi)2 + (yrl − yi)2

) 3
2

− viy

λ
√

(xrl − xi)2 + (yrl − yi)2
, (4.29)

∂f i
lk

∂vix
=

xtk − xi

λ
√

(xtk − xi)2 + (ytk − yi)2
+

xrl − xi

λ
√

(xrl − xi)2 + (yrl − yi)2
, (4.30)

∂f i
lk

∂viy
=

ytk − yi

λ
√

(xtk − xi)2 + (ytk − yi)2
+

yrl − yi

λ
√

(xrl − xi)2 + (yrl − yi)2
. (4.31)

Substituting equations (4.19)–(4.31) into equation (4.10), we obtain the closed-form

expression of the Cramer-Rao bound for joint location and velocity estimation in a multi-

target MIMO Radar system. In the rest of this chapter, we only consider the two-target case,

i.e., Q = 2.

4.4 Numerical Analysis

In this section, we calculate the Cramer-Rao bounds derived in this chapter and use them

to study the behavior of a non-coherent MIMO radar with two targets. The following system

parameters are used in the whole section. The carrier frequency is 1GHz. The transmitted

lowpass equivalent waveform is sk(t) = ( 2
T 2 )

1
4 exp (−πt2

T 2 j2πkΔft), where T is proportional to

the pulse width and Δf = fk+1 − fk is the frequency increment between sk+1(t) and sk(t).

Theorem 4 Consider a MIMO radar system with M transmitters, N receivers and Q tar-
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Figure 4.1: Comparison between multi-target CRBs and single-target CRBs for a 2×4 MIMO
radar system: (a) system layout, (b) CRBs.

gets. cqx, c
q
y, c

q
vx and cqvy (1 � q � Q) represent the Cramer-Rao bounds for the estimates

of parameters xq, yq, vqx and vqy, respectively. They are called the multi-target Cramer-Rao

bounds and can be calculated by using equation (4.11). Then we keep only one target in the

system and remove the others, respectively. cqx
′
, cqy

′
, cqvx

′
and cqvy

′
(1 � q � Q) indicate the

Cramer-Rao bounds for target q when only this target is left in the system. They are called the

single-target Cramer-Rao bounds and can be calculated by using results from [35]. If in the

multi-target case, all targets are far away from each other so that the time delay differences

between any two targets are large enough, i.e., for 1 � i, j � Q and (i 
= j), |τ ilk− τ jlk| � 0 for

any 1 � l � N and 1 � k � M , then we have: cqx ≈ cqx
′
, cqy ≈ cqy

′
, cqvx ≈ cqvx

′
and cqvy ≈ cqvy

′

(1 � q � Q).

Theorem 4 says, if the distances between the targets are large enough, then the interac-

tions between the multiple targets can be ignored. Thus each target can be treated separately

as it is treated in a single-target joint estimation problem. The proof of Theorem 4 is in the

appendix of this chapter. We use this property to validate, at least in this one case, the two
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Figure 4.2: Comparison between multi-target CRBs and single-target CRBs for a 4×8 MIMO
radar system: (a) system layout, (b) CRBs.

target joint location and velocity estimation Cramer-Rao bound derived in this chapter.

Consider a 2 × 4 MIMO radar system with two targets moving at the velocity of

(50, 30)(m/s). The transmitters and receivers are uniformly spaced along a circle of ra-

dius 5000(m). The locations of each antenna and target are shown in Fig.4.1 (a). Note that

the distance between the two targets are chosen specifically to make the interactions between

them small, which are determined by
∫
T s∗k(t − τ ilk)sk(t − τ jlk)e

j2πt(fj
lk−f i

lk)dt from equation

(4.17). Here a special parameter ρ is defined as:

ρ = max
l,k,i �=j

∫
T
s∗k(t− τ ilk)sk(t− τ jlk)e

j2πt(fj
lk−f i

lk)dt. (4.32)

The smaller the value of ρ is, the little influence each target has on the estimation performance

of the other. In this case, ρ = 6.2407 × 10−5.

Fig.4.1 (b) provides a set of Cramer-Rao bound versus SCNR curves. The curves using

circles and polygons as their markers represent the multi-target Cramer-Rao bounds. Those

curves with other markers denote the single-target Cramer-Rao bounds with one target still

at its location and the other one being removed, which are calculated using results from [35].
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Figure 4.3: CRB versus SCNR curves for close targets.

The solid lines denotes the bounds for the first target and the dotted lines the second.

Note that there are four bounds for each target because we are estimating the location and

velocity in both x and y coordinates. As seen in Fig.4.1 (b), the multi-target bounds and

the corresponding single-target bounds for each target are so close that they seem to overlap

each other, which is exactly what Theorem 4 predicts.

We also perform the comparison for a 4 × 8 system, whose layout is shown in Fig.4.2

(a). Velocities of the targets are still (50, 30)(m/s). The multi-target and corresponding

single-target Cramer-Rao bounds are drawn in Fig.4.2 (b). In this case, ρ = 2.3831 × 10−14.

Without any surprise, the multi-target bounds still match the single-target bounds very well.

When the targets are close to each other, often the estimation performance for each

target is worse than that in the single-target case. We analyze such a situation and present

the results in Fig.4.3. First, a 2× 4 MIMO radar system is considered. The transmitter and

receiver settings are the same as in Fig.4.1 (a), but the locations of the targets are changed.

In this case, the first target is at (800, 800)(m) and the second target is at (1000, 1000)(m).

Their velocities are (50, 30)(m/s). ρ = 0.7636 in this case. In Fig.4.3, the solid curves with

circles and polygons represent the multi-target Cramer-Rao bounds for the first target (Here
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Figure 4.4: CRB versus the number of receivers for a MIMO radar system with four trans-
mitters.

we only analyze the first target because results for the second target are very similar). The

solid curves with other markers provide the single-target bounds for the first target. Clearly,

the single-target bounds are a lot better than the multi-target ones. Then we add four more

receivers to the system (the total eight receivers are uniformly distributed in the original

circle) and study how the estimation performance will change in the multi-target case. The

dotted curves in Fig.4.3 represent the multi-target Cramer-Rao bounds for the first target in

this 2×8 MIMO radar system. We can see that they are below the solid curves, which means

in this case, the performance degradation introduced by the multiple targets is compensated

by using more antennas at the receiver.

Now let us take a deeper look into the how the number of receivers improves the es-

timation accuracy. Consider a MIMO radar with transmitters and receivers still uniformly

distributed in a circle of radius 5000(m). The four transmitter are located as shown in

Fig.4.2 (a). Two targets are located at (150, 150)(m) and (−800,−100)(m), respectively.

Their velocities are (50, 50)(m/s) and (70,−70)(m/s), respectively. We fix the number of

transmitters at four and the SCNR at 30(dB), and observe how the performance changes as
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we increase the number of receivers. The performance of MIMO radar systems with different

numbers of receivers are compared and the Cramer-Rao bounds for each target are provided

in Fig.4.4. In Fig.4.4, the solid curves are for the the first target and the dotted curves are

for the second. As we see, increasing the number of receivers gives rise to lower Cramer-Rao

bounds. This indicates that the spatial advantage of MIMO radars can also be observed in

this two-target case.

4.5 Summary

In this chapter, we investigate the joint location and velocity estimation of multiple

targets in a non-coherent MIMO radar system. The Cramer-Rao bound for a two-target

case is derived and evaluated. This bound gives us theoretically achievable joint estimation

performance of a multi-target non-coherent MIMO radar. Numerical simulations show that

the spatial advantage proposed by previous research can also be observed in a two-target

example.

4.6 Appendix

4.6.1 Detailed expressions of equations (4.21)–(4.23)

Let us define

L = logp(r|φ). (4.33)
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{
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∫
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∫
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j2πt(fn
lk−fh

lk)dt−
∫
T
sk(t− τmlk )s

∗
k
′(t− τhlk)e

j2πt(fm
lk−fh

lk)dt

If m = i and h = i,

E

{
∂alk(m,h)

∂τ ilk

}
= −2�

{ E

M

Q∑
n=1

∫
T
s∗k(t− τnlk)s

′
k(t− τmlk )e

j2πt(fm
lk−fn

lk)dt (4.54)

∫
T
sk(t− τnlk)s

∗
k(t− τhlk)e

j2πt(fn
lk−fh

lk)dt+

∫
T
s′k(t− τmlk )s

∗
k(t− τhlk)e

j2πt(fm
lk−fh

lk)dt
}

If m = i and h 
= i,

E

{
∂2alk(m,h)

∂τ ilk
2

}
=

E

M

Q∑
n=1

∫
T
s∗k(t− τnlk)s

′′
k(t− τmlk )e

j2πt(fm
lk−fn

lk)dt (4.55)

∫
T
sk(t− τnlk)s

∗
k(t− τhlk)e

j2πt(fn
lk−fh

lk)dt+

∫
T
s′′k(t− τmlk )s

∗
k(t− τhlk)e

j2πt(fm
lk−fh

lk)dt

If m 
= i and h = i,

E

{
∂2alk(m,h)

∂τ ilk
2

}
=

E

M

Q∑
n=1

∫
T
s∗k(t− τnlk)sk(t− τmlk )e

j2πt(fm
lk−fn

lk)dt (4.56)

∫
T
sk(t− τnlk)s

∗
k
′′(t− τhlk)e

j2πt(fn
lk−fh

lk)dt+

∫
T
sk(t− τmlk )s

∗
k
′′(t− τhlk)e

j2πt(fm
lk−fh

lk)dt
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If m = i and h = i,

E

{
∂2alk(m,h)

∂τ ilk
2

}
= −2�

{ E

M

Q∑
n=1

∫
T
s∗k(t− τnlk)s

′′
k(t− τmlk )e

j2πt(fm
lk−fn

lk)dt (4.57)

∫
T
sk(t− τnlk)s

∗
k(t− τhlk)e

j2πt(fn
lk−fh

lk)dt+
E

M

Q∑
n=1

∫
T
s∗k(t− τnlk)s

′
k(t− τmlk )e

j2πt(fm
lk−fn

lk)dt

∫
T
sk(t− τnlk)s

∗
k
′(t− τhlk)e

j2πt(fn
lk−fh

lk)dt+

∫
T
s′′k(t− τmlk )s

∗
k(t− τhlk)dt

+

∫
T
s′k(t− τmlk )s

∗
k
′(t− τhlk)dt

}

4.6.2 Proof of Theorem 4

Proof: For any 1 � l � N, 1 � k � M and 1 � i, j � Q (i 
= j), if |τ ilk − τ jlk| is large

enough, we have
∫
T s∗k(t − τ ilk)sk(t − τ jlk)e

j2πt(fj
lk−f i

lk)dt ≈ 0. According to equation (4.17),

Ψlk = Ω−1
lk = (1+ E

M )IQ×Q, where IQ×Q is the Q dimensional identity matrix. Then equation

(4.15) can be written as:

logp(r|φ) = C3 +

Q∑
q=1

Lq, (4.58)

where C3 = C2 −MNQlog
(
1 + E

M

)
is another constant and

Lq =
E

E +M

N∑
l=1

M∑
k=1

∣∣∣ ∫
T
r∗lk(t)sk(t− τ qlk)e

j2πfq
lktdt
∣∣∣2. (4.59)

According to [35], Lq is the likelihood of the received signal in a non-coherent MIMO radar

system with only one target q.

φ can be rewritten as;

φ = [φT
1 ,φ

T
2 , . . . ,φ

T
Q]

T , (4.60)

where φq = [τ q11, τ
q
12, . . . , τ

q
NM , f q

11, . . . , f
q
NM ]T , (1 � q � Q). Because ∂φ

∂θ is a block diagonal

matrix (equation (4.24)), according to equations (4.12) and (4.19), only the diagonal blocks
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Bqq’s in equation (4.19) contribute to the FIM matrix J(θ). We need the partial derivatives

of logp(r|φ) with respect to φq to calculate Bqq (equations (4.20)–(4.23)). Since logp(r|φ) is

written as the sum of Lq’s (1 � q � Q), and Lq is a function of φq, we have

Bqq = Er

{
∂Lq

∂φq

(
∂Lq

∂φq

)H
}
, (4.61)

and

J(θ) = diag
[
A1B11A

T
1 , A2B22A

T
2 , . . . , AQBQQA

T
Q

]
, (4.62)

where the q-th diagonal block of J(θ) is the single-target FIM matrix for target q [35].

The inverse of J(θ) is the multi-target Cramer-Rao bound matrix CCRB , each of whose

diagonal blocks is the single-target Cramer-Rao bound matrix for the corresponding target.

Therefore, to obtain CCRB , we can treat the targets independently, as if every one of them is

the only target in a non-coherent MIMO radar system, and calculate each target’s Cramer-

Rao bound matrix using results in [35].
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Chapter 5

Distributed Change Detection in

Gaussian Graphical Models

5.1 Introduction

Change detection is a classical and fundamental problem in statistical signal process-

ing. Detection is usually performed by testing the null hypothesis that the observed samples

originate from a known nominal distribution. In the Gaussian case this reduces to testing

whether the sample mean or the sample covariance deviates from some given nominal pa-

rameters. Such tests are well known and can easily detect a change when the number of

samples n is sufficiently large in comparison to the dimension p, and there are no practical

complexity or communication constraints. Unfortunately, these assumptions are impractical

when monitoring modern large scale networks, which involve high dimensional parametric

models (large p) and dynamic behavior in short stationary periods (small n). Centralized

processing is difficult and sensitive to attacks in large networks. This leads to an ongoing
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search for efficient distributed change detection techniques. We propose to address both of

these problems through the use of Gaussian graphical models (GGM) which allow accurate

and robust statistical analysis in the “large p small n” regime via message passing algorithms.

A graphical model characterizes conditional dependencies within a multivariate distribu-

tion using undirected graphs [45,46]. When the graph is sparse and the variables are jointly

Gaussian, the graphical model imposes sparsity on the inverse covariance, variously called

the information, concentration or precision matrix. Graphical models are attractive in two

complementary manners. First, they allow the modeling of a large scale distribution using a

smaller number of parameters which may be easier to handle. Second, inference methods can

be performed as local decentralized computations with message passing between neighbors

of the graph. For this purpose, it is common to assume that the topology of the statistical

models matches the topology of the internode communications. Based on this framework,

GGMs have been successfully applied to different statistical problems such as inference [47],

parameter estimation [48, 49], and dimensionality reduction [50]. Applications range from

wireless sensor networks [51, 52], internet backbone networks [50] and recently the smart

power grid [53].

The time-tested approach to change detection is via composite hypothesis testing, and

in particular the generalized likelihood ratio test (GLRT) [54]. This method has been suc-

cessfully applied to change detection in the Gaussian multivariate distribution, and is known

as the Bartlett’s test [55, 56]. Classical centralized results on testing in GGM are available

in [45]. In contrast, our focus is on distributed solutions for change detection. We begin

by deriving the global centralized GLRT, and then propose two distributed approximations

based on aggregating multiple tests performed at each of the nodes in the graph. The ag-

gregation can then be efficiently implemented using modern consensus methods [57]. The
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first distributed test is a natural approach which simply applies the Bartlett’s test to smaller

size local clusters in the graph. The second method employs the pseudo-likelihood [58] as

a surrogate function for the global likelihood. The advantages of our proposed tests are

demonstrated using numerical experiments, including one in the context of failure detection

in smart power grids [53].

For completeness, two comments are in order. First, composite hypothesis testing via

GLRT relies on a first phase of parameter estimation, usually based on ML techniques. This

chapter only focuses on the detection phase. Distributed implementations of ML estimation

in GGM and their approximations are provided in [49]. Second, we emphasize that we

consider the problem of change detection with a known graphical model, i.e., the conditional

independence graph topology is known a priori and does not change even when a change

occurs.

5.2 Problem Formulation

In this section, we provide a brief introduction to GGM [45], and then formulate the

distributed change detection problem in GGM.

Graphical models are intuitive characterizations of conditional independence structures

exhibited by variables with a joint probability distribution function (pdf) f(x1, · · · ,xp).

Specifically, define an undirected graph G = (V,E) with a set of nodes V = {1, · · · , p}

connected by undirected edges E = {(i1, j1) , · · ·
(
i|E|, j|E|

)}, where we use the convention

that each node is connected to itself, i.e., (i, i) ∈ E for all i ∈ V . We define Ni as the set of

neighbors of the i’th node, i = 1, · · · , p, i.e., Ni = {j| (i, j) ∈ E, j 
= i}.

Let x be a length p random vector, called the vector of node states, whose elements are
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indexed by the nodes in V . The vector x satisfies the Markov property with respect to G, if

for any pair of non-adjacent nodes the corresponding pair of elements in x are conditionally

independent given the remaining elements:

f
(
xi,xj |xV \i,j

)
=f
(
xi|xV \i,j

)
f
(
xj |xV \i,j

) ∀{i, j} /∈ E. (5.1)

The class of GGMs are graphical models over the multivariate Gaussian distribution.

This distribution is appealing due to the fact that it is completely characterized by the mean

μ and covariance Σ � 0 parameters:

1

(2π)
p
2 |Σ| 12

e−
1
2
(x−μ)TΣ−1(x−μ), (5.2)

In the sequel, it will be more natural to use the canonical parameters, h = Σ−1μ and

J = Σ−1 � 0. These lead to the following representation

N (x;h,J) =
e−

1
2
hT J−1h

(2π)
p
2 |J|− 1

2

e−
1
2
xTJx+xTh, (5.3)

in which the exponent exhibits a linear dependency on both h and J. This formulation is

attractive since the graph G is directly related to the sparsity of J. Indeed, simple algebraic

manipulations reveal that specializing the factorization property (5.1) to the jointly Gaussian

case yields

[J]i,j = 0 ∀{i, j} /∈ E. (5.4)

The change detection problem in GGM is formulated as follows. Let x be a Gaussian

random vector with parameters h = 0 and J � 0. Given n independent and identically

distributed (i.i.d.) realizations of x, denoted by {x[l]}nl=1, and knowledge of the conditional
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independence structure through the topology of G = (V,E), the goal is to test whether or not

the inverse covariance is different from some nominal value, denoted by J0. Mathematically,

we would like to test which of the following hypotheses holds⎧⎪⎨
⎪⎩

H0 : J = J0

H1 : J 
= J0

. (5.5)

Specifically, we address this change detection problem in a practical and distributed

setting. We assume that the topology of communication links between these nodes matches

the topology of G, which means each node can only communicate with its neighbors, i.e.,

node i can only access {x[i Ni][l]}nl=1 and exchange messages with nodes in Ni. Under these

restrictions, we would like all the nodes in the system to reach a consensus on test (5.5).

For later use, we define the Kullback-Leibler (KL) divergence between two k-dimensional

multivariate normal distributions parameterized by {h1,J1} and {h2,J2} as

DKL (h1,J1;h2,J2) =
1

2

(
Tr
{
J2J

−1
1

}− log|J2J
−1
1 |

+(J−1
2 h2 − J−1

1 h1)
TJ2(J

−1
2 h2 − J−1

1 h1)− k
)
. (5.6)

5.3 Change Detection Methods

5.3.1 Global GLRT

The classical centralized solution to composite hypothesis testing is the GLRT method-

ology [54]. Specifically, the GLRT for (5.5), which we call the global GLRT (G-GLRT), is

defined as

tG = log
maxJ∈J

∏n
l=1N (x[l];0,J)∏n

l=1N (x[l];0,J0)
(5.7)
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where

J =
{
J 
= J0,J � 0 and [J]i,j = 0 ∀{i, j} /∈ E

}
. (5.8)

Note that the optimal solution to the maximization in the numerator of (5.7) is exactly the

global ML estimator of J, which we denote by Ĵ. This estimate satisfies [45]

Tr {SJ0} = Tr
{
Ĵ−1J0

}
and Tr

{
SĴ
}
= p, (5.9)

where S is the sample covariance defined as

S =
1

n

n∑
l=1

x[l]x[l]T . (5.10)

Using (5.9), the G-GLRT can be simplified to

tG =
n

2

(
Tr
{
Ĵ−1J0

}
− log|Ĵ−1J0| − p

)
(5.11)

= nDKL

(
0, Ĵ;0,J0

)
. (5.12)

Intuitively, the decision is made based on the KL distance between the estimated Ĵ and the

nominal J0. As a classical GLRT, this test enjoys all of its well known attractive properties

[54]. Its main drawback is that it requires centralized processing and is difficult to implement

in a distributed setting.

5.3.2 Local GLRT

Our first distributed test is based on aggregating multiple local GLRTs in each of the

nodes. Specifically, the i’th local network consists of nodes given by {i,Ni}. The GLRT for

testing a change in this small network is defined as

tL,i = log
maxJi�0

∏n
l=1 N

(
x[i Ni][l];0,J

i
)

∏n
l=1 N

(
x[i Ni][l];0,J

i
0

) , (5.13)
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where

Ji
0 = ([Σ0][i Ni],[i Ni]

)−1. (5.14)

The solution to the numerator of (5.13) is the unconstrained ML estimate

Ĵi =
(
S[i Ni],[i Ni]

)−1
. (5.15)

Plugging it into (5.13) leads to

tL,i =
n

2

(
log|Ĵi| − log

∣∣Ji
0

∣∣+Tr
{
S[i Ni],[i Ni]

(
Ji
0 − Ĵi

)})
=

n

2

(
Tr
{
(Ĵi)−1Ji

0

}
− log

∣∣∣(Ĵi)−1Ji
0

∣∣∣− 1− |Ni|
)

= nDKL

(
0, Ĵi;0,Ji

0

)
, (5.16)

which is independently performed at the i’th node of the network. The overall decision is

then obtained by aggregating these results via standard consensus methods [57]

tL =

p∑
i=1

tL,i = n

p∑
i=1

DKL

(
0, Ĵi;0,Ji

0

)
. (5.17)

5.3.3 Pseudo GLRT

Recently, it was shown that the local aggregation approach can be formulated using a

similar approach known as pseudo-likelihood [49]. In brief, the idea is to approximate the

global likelihood function with a product of conditional likelihoods [58,93]

n∏
l=1

N (x[l];0,J) ≈
n∏

l=1

p∏
i=1

N (xi[l];h
i[l],Ji,i

)
(5.18)

where

hi[l] = −Ji,NixNi [l] (5.19)
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and Ji,i are the canonical parameters of the conditional pdf of xi[l] given xV \i[l]. Note that

the hi[l] parameter depends on the values of Ji,Ni . Maximizing this pseudo-likelihood instead

of the likelihood has shown promising complexity, communication and accuracy tradeoffs in

the context of estimation. Thus, a natural candidate for distributed hypothesis testing is

to replace the local tests with tests using conditional likelihoods. Specifically, the i’th node

computes

tP,i = log
maxJi,[i Ni]

∏n
l=1N

(
x[i Ni][l];h

i[l],Ji,i

)
∏n

l=1 N
(
x[i Ni][l];h

i
0[l], [J0]i,i

)
=

n∑
l=1

DKL

(
ĥi[l], Ĵi,i;h

i
0[l], [J0]i,i

)
, (5.20)

where

ĥi[l] = −Ĵi,NixNi [l], (5.21)

hi0[l] = −[J0]i,NixNi [l], (5.22)

and Ĵi,[i Ni] is the first row of Ĵi (5.15). As before, the overall P-GLRT is obtained by

aggregating these local decisions via consensus methods [57]

tP =

p∑
i=1

tP,i. (5.23)

5.3.4 Choice of estimators

The above tests have been derived as appropriate GLRTs. Each of them uses different

optimizations in its numerator, and has different definitions for Ĵ. That is, G-GLRT assumes

that Ĵ is the global constrained ML estimate in the GGM. L-GLRT and P-GLRT assume that

Ĵi (1 � i � p) are simply the inverses of the local sample covariances. However, the resulting

tests are sums of KL distances between Ĵ and J0. In practice, these tests can all be used,
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with other estimates, by plugging in any estimator Ĵ as long as these can be implemented in

a distributed manner. A few promising choices are detailed in [49].

5.4 Numerical Results

In this section, simulation results of two experiments are provided to demonstrate the

performance of the proposed tests.

As a promising application, we first consider a practical fault detection problem in smart

power grids. We follow the formulation in [53], which shows that the bus susceptance matrix

of an electrical power system is directly related to the covariance matrix of a GGM. Therefore,

the proposed tests in this chapter can be used to detect any susceptance change that affects

the covariance matrix of the network. The graph and parameters used in this simulation are

based on the IEEE 30-bus test system [94], whose diagram is given by Fig. 5.1. We consider

a case where the transmission line between bus 2 and bus 5 breaks so that the susceptance

between these two buses changes from 0.1983 siemens to 0 siemens. The sample number is

20 (n = 20), which is smaller than the dimension (p = 30). The results are summarized in

Fig. 5.2. As these ROC curves show, G-GLRT, P-GLRT and L-GLRT all successfully detect

this fault.

Next, we create a GGM by building a network with 100 nodes (p = 100), whose loca-

tions are uniformly distributed within the unit square. Then every node in this network is

connected to the nodes within a certain distance to it. Fig.5.3 illustrates the topology of this

GGM. In this case on average every node has 3 neighbors and the maximal degree k = 5.

Under H0 the nominal inverse covariance matrix J0 is obtained using the Matlab function

“sprandsym”, which randomly generates a positive definite matrix whose sparsity matches
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Figure 5.1: IEEE 30-bus test system.

the topology of Fig.5.3. Under H1 every non-diagonal element (the non-zero ones) of J0 is

increased by 0.1.

We choose different sample numbers (n = 8, 15 and 25) and the corresponding ROC

curves are provided in Fig. 6.3. Notice that all of the sample numbers we used here are

larger than k but much smaller than p. As we can see, the ROC curves of G-GLRT, P-GLRT

and L-GLRT in Fig. 6.3 are very close. In this case, the performance of G-GLRT is always

better than L-GLRT. The performance of P-GLRT is close to L-GLRT and is slightly worse

than G-GLRT when n = 8. But as n increases, P-GLRT becomes better (when n = 15) and

even outperforms G-GLRT (when n = 25).

5.5 Summary

This chapter studies the distributed change detection problem in GGMs. Statistical

analysis in GGM leads to several advantages, including a smaller number of parameters to

model a large scale distribution, less samples required for the detection, faster detection and
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Figure 5.2: Comparison of tests for the Smart Grids example.
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Figure 5.3: Topology of the 100-node GGM.
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Figure 5.4: Comparison of tests for the 100-node GGM example.

less communication costs. We formulate the hypothesis testing problem for change detection

in GGMs and propose a global and centralized solution using the GLRT. We then provide

two distributed approximations to this global test based on aggregation of multiple local

or conditional tests. We compare the performance of these tests in the context of failure

detection in smart grids.
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Chapter 6

Change Detection in Smart Grids

Using Errors In Variables Models

6.1 Introduction

The deployment of large scale smart grid systems taking place today is accompanied with

growing vulnerability and security concerns, which makes it desirable to recognize abrupt

system failures and intrusions rapidly. Various work on anomaly detection in smart grids has

been proposed recently. Fault detection and localization in power lines under steady state

models has been studied in [37, 95, 96]. Detection techniques have been derived based on

voltage and current measurements from one bus [95,97], both buses of the faulted transmission

line [38], and even measurements from other buses [96]. Recently, identification of the outaged

lines using the LASSO method has been considered in [98]. In a different line of work,

the problem is expressed as change detection in Gaussian graphical models [53, 99]. These

work did not cope with the noise characteristics of practical smart grid systems. Thus,
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in this chapter, we will consider change detection in the bus susceptance based on noisy

measurements of both the voltages and the power flows.

This chapter focuses on detecting a change in the susceptance parameters of the smart

grid system. The direct current (DC) power flow model assumes a simple linear relation

between the active power flow on a transmission line and the difference of the voltage angles

on the two corresponding buses [100]

power flow = susceptance × voltage angle difference. (6.1)

In practical systems, noisy measurements of the flows and voltages are obtained via Phasor

Measurement Units (PMUs). Given these observations, we seek to detect changes in the

susceptance parameters. Specifically, we need to decide whether the susceptances are equal

to some nominal known values, or have changed.

From a statistical perspective, the noisy smart grid system can be considered as a special

case of linear errors-in-variables (EIV) models [59]. The standard approach to parameter

estimation in such problems is known as total least squares (TLS), and generalizes classical

least squares by allowing noise in both sides of the linear model. Hypothesis testing in EIV

models has also been addressed. Generalized likelihood ratio tests (GLRT) have been derived

in the context of process monitoring [36] as well as array processing [44]. Following these

works, we derive the TLS-GLRT which is specifically tailored for the smart grid structure

and examine its detection performance.

Parameter estimation in EIV models is known to be difficult. TLS and its extensions

are often unstable and may be improved. Recently, a competing approach known as total

maximum likelihood (TML) was proposed in [60–62] and was shown to provide promising

performance gains in various estimation problems. In particular, it was shown that TML can
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be interpreted as a regularized version of TLS and is therefore more stable. As a continuation

of the work of [60–62], we consider hypothesis testing within the TML framework and derive

the TML-GLRT for detecting changes in such models.

The main contributions of this chapter are twofold. First, we express the smart grids

fault detection as a hypothesis testing problem employing a linear EIV model. Then we

derive the corresponding TLS-GLRT. Second, we propose a novel approach for testing in

EIV models based on the TML methodology. Specifically, we consider this approach in the

context of the smart grid, but the technique may be applied to other EIV models. Initial

numerical results show the promising detection advantages the TML-GLRT has in some cases

with no increase in computational complexity. We also provide a distributed version of the

TLS-GLRT.

The remainder of this chapter is organized as follows. Section 6.2 describes the rigorous

formulation of the hypothesis testing problem. In Section 6.3 we derive the TLS-GLRT and

the TML-GLRT. The distributed implementation of TLS-GLRT is provided in Section 6.4.
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Figure 6.1: IEEE 14-bus test system.

6.2 Problem Formulation

We model a power system with N buses and M transmission lines using an undirected

graph G = (V,E) with the node set V = {1, · · · , N} representing the buses, and the edge set

E = {(i1, j1) , · · · , (iM , jM )} representing the transmission lines. We assume that no node is

connected to itself. An example consisting of 14 buses and 21 transmission lines is shown in

Fig. 6.1. The length N vector x[t] (t = 1, · · · , T ) models the voltage angles at time slot t.

The N×N skew-symmetric matrix Y[t] (t = 1, · · · , T ) models the active power flow between

the buses at time slot t. The N ×N matrix B is the susceptance matrix on the transmission

lines, i.e., Bi,j = Bj,i is the susceptance between buses i and j if (i, j) ∈ E and Bi,j is zero

otherwise. The DC power flow model states

Yi,j[t] = Bi,j(xi[t]− xj [t]), t = 1, · · · , T. (6.2)
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To simplify the notation, we define b as a lengthM vector with the elements Bi,j for (i, j) ∈ E

and i > j. Similarly, a length M vector z[t] collects Yi,j[t] for (i, j) ∈ E and i > j. Thus,

(6.2) can be expressed as

z[t] = diag {b}Dx[t] (6.3)

where the M ×N mapping matrix D is defined as follows. For the k’th line (ik, jk) ∈ E and

ik > jk, we have Dk,ik = 1 and Dk,jk = −1. The other elements in the k’th row of D are

zero.

Future power grids will allow real time monitoring of the power via noisy measurements

of the power flows

z̃[t] = z[t] +wz[t] (6.4)

and noisy measurements of the voltage angles

x̃[t] = x[t] +wx[t] (6.5)

where {wz[t]}Tt=1 and {wx[t]}Tt=1 are independent Gaussian noise processes:

wz[t] ∼ N (0, σ2
zI) (6.6)

wx[t] ∼ N (0, σ2
xI). (6.7)

Using matrix notations, we construct M × T matrices Z and Wz, and N × T matrices

X and Wx by stacking the T samples of z[t], wz[t], x[t] and wx[t] (1 � t � T ) together,
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respectively. The matrix power flow EIV model can then be expressed as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Z = diag {b}DX

Z̃ = Z+Wz

X̃ = X+Wx

. (6.8)

In this chapter, we consider the problem of detecting changes in the susceptance vector

b based on the noisy observations X̃ and Z̃. Specifically, we assume the knowledge of a vector

b0 corresponding to the nominal behavior of the grid and test the following hypotheses⎧⎪⎨
⎪⎩

H0 : b = b0

H1 : b 
= b0

. (6.9)

We emphasize that under both hypotheses Z and X are unknown and have to be estimated

as well.

6.3 Centralized Solutions

In this section, we propose two possible solutions to the hypothesis test in (6.9). Both

solutions are based on the GLRT methodology but differ in their statistical model for the

unknown parameters Z and X.

6.3.1 Total least squares

In the classical statistical literature, the EIV model (6.8) assumes X, and therefore also

Z, are deterministic unknown vectors. ML estimation of b, X and Z in this model is known as

TLS [59]. Following this terminology, we now derive the TLS-GLRT. The joint distribution
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of the observations is

p(z̃[t], x̃[t];b,x[t]) = p(z̃[t];b,x[t])p(x̃[t];x[t]). (6.10)

where

p(z̃[t];b,x[t]) = N (diag {b}Dx[t], σ2
zI) (6.11)

p(x̃[t];x[t]) = N (x[t], σ2
xI). (6.12)

Thus, the TLS-GLRT is

tTLS = log
maxb,X

∏T
t=1 p(z̃[t], x̃[t];b,x[t])

maxX
∏T

t=1 p(z̃[t], x̃[t];b0,x[t])

H0

≶

H1

ρ, (6.13)

where ρ is a fixed threshold.

We now simplify the expression of (6.13). The denominator of (6.13) is a simple weighted

LS problem

max
X

T∑
t=1

log p(z̃[t], x̃[t];b0,x[t]) = C −min
X

1

2σ2
z

||Z̃− diag {b0}DX||2F +
1

2σ2
x

||X̃−X||2F ,

(6.14)

where

C =
(M +N)T

2
log(2π) −MT logσz −NT logσx. (6.15)

The closed-form solution to (6.14) is

X̂ =
(
σ2
zI+ σ2

xD
Tdiag {b0} diag {b0}D

)−1
(
σ2
xD

Tdiag {b0} Z̃+ σ2
zX̃
)
. (6.16)
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We define

H(b) = σ2
zI+ σ2

xdiag {b}DDTdiag {b} (6.17)

and

A (b) = Z̃− diag {b}DX̃. (6.18)

Plugging (6.16) into (6.14) and applying the following matrix inverse lemma

(
σ2
zI+ σ2

xD
Tdiag {b0} diag {b0}D

)−1
=

1

σ2
z

I− σ2
x

σ2
z

DTdiag {b0}H−1(b0)diag {b0}D,

(6.19)

we reduce the denominator of (6.13) to

C − 1

2
Tr
{
AT (b0)H

−1(b0)A(b0)
}
. (6.20)

The numerator of (6.13) is a structured TLS problem. It can be simplified by expressing

it as a double optimization problem and solving the inner problem in closed form. Following

the same steps as we did in the denominator, we obtain

max
b,X

T∑
t=1

log p(z̃[t], x̃[t];b,x[t])

=C −min
b

min
X

1

2σ2
z

||Z̃− diag {b}DX||2F +
1

2σ2
x

||X̃−X||2F

=C − 1

2
min
b

Tr
{
AT (b)H−1(b)A(b)

}
. (6.21)
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Altogether, the TLS-GLRT is defined as

tTLS =
1

2
Tr
{
AT (b0)H

−1(b0)A(b0)
}− 1

2
min
b

Tr
{
AT (b)H−1(b)A(b)

} H0

≶

H1

ρ. (6.22)

6.3.2 Total maximum likelihood

Recently, an alternative statistical model for (6.8) was proposed in [60–62] by assuming

that x[t] are random variables centered around x̃[t]. ML estimation in this formulation was

denoted by TML and was shown to outperform TLS under various settings. In particular,

it was shown that TML can be interpreted as a regularized version of TLS which is more

stable. Following these works, we now consider TML in the context of detection and derive

the TML-GLRT.

In the TML model, the observed x̃[t] are deterministic parameters whereas x[t] are

random:

p(x[t]; x̃[t]) = N (x̃[t], σ2
xI). (6.23)

Conditioned on x[t], we have

p(z̃[t]|x[t];b) = N (diag {b}Dx[t], σ2
zI). (6.24)

The marginal distribution of z̃[t] is therefore

p(z̃[t];b, x̃[t]) = N (diag {b}Dx̃[t],H (b)). (6.25)
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where H (b) is defined in (6.17) above. Thus, TML-GLRT is defined as

tTML = log
maxb

∏T
t=1 p(z̃[t];b, x̃[t])∏T

t=1 p(z̃[t];b0, x̃[t])

H0

≶

H1

ρ. (6.26)

Plugging in the distributions yields

tTML = max
b

T∑
t=1

log p(z̃[t];b, x̃[t])−
T∑
t=1

log p(z̃[t];b0, x̃[t])

=
1

2
Tr
{
AT (b0)H

−1(b0)A(b0)
}
+

T

2
log|H(b0)|−

min
b

{1
2
Tr
{
AT (b)H−1(b)A(b)

}
+

T

2
log|H(b)|

} H0

≶

H1

ρ. (6.27)

Interestingly, test (6.27) can be interpreted as a regularized version of test (6.22) with

additional logarithmic penalties. Previous work in the context of estimation suggested that

this structure is more stable than the classical TLS approach [60–62]. Simulation results in

the end of this chapter will show similar results in the context of detection.

6.3.3 Threshold setting

The proposed tests (6.22) and (6.27) compare their statistics to a threshold ρ. We choose

H0 if the statistic is smaller than ρ, and H1 otherwise. Given enough samples, the asymptotic

performance of both TLS-GLRT and TML-GLRT under H0 is given by [101]

2tTLS/TML ∼ X 2
M , (6.28)
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where X 2
M is a Chi Squared random variable with M degrees of freedom, and M is the

dimension of b. Note that this result is independent of the specific value of the unknown X.

Thus, a reasonable approach to choosing the threshold for a given false alarm rate α is

ρα =
1

2
F−1
X 2

M
(α). (6.29)

where F−1
X 2

M
(·) is the inverse cumulative distribution function of the Chi Squared distribution

with M degrees of freedom.

6.3.4 Simulations

In this section, simulation results in a typical power system are provided to demonstrate

the performance of the proposed tests. The susceptance matrix used in the simulation is

defined by the IEEE 14-bus test system, whose diagram is shown in Fig. 6.1. The other

parameters are N = 14, M = 21, T = 20, σ2
x = 0.01 and σ2

z = 0.01. Numerical solutions1

to the minimizations in (6.22) and (6.27) are obtained using the Maltab function ‘fminunc’.

The following results are based on 104 Monte Carlo simulations. At each realization, the

elements of X are generated independently as standard normal random variables.

In the first experiment, we verify the accuracy of the threshold setting. Under H0, b0

uses the susceptance values provided in the IEEE 14-bus test system profile. We choose 50

different false alarm rates equally spaced within [0, 0.2], which we call the theoretical false

alarm rates. For each false alarm rate, the corresponding threshold is calculated using (6.29).

Then we apply these thresholds to the proposed tests and count the simulated false alarm

rates. The solid line in Fig. 6.2 represents the theoretical false alarm rates. The circles and

the stars denote the simulated false alarm rates for TLS-GLRT and TML-GLRT, respectively.

1Note that the optimizations are non-convex and there is no guarantee that these solutions will be globally
optimal.
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Figure 6.2: Theoretical vs. simulated false alarm rates.

As Fig. 6.2 indicates, the approximation in (6.29) is quite accurate.

In the second experiment, we consider the ROC curves of the proposed tests. Under H0,

we use the susceptance parameters given by the test profile. Under H1, we apply a change of

−2% to every element of b. The other parameters are the same as in the previous simulation.

The ROC curves as shown in Fig. 6.3 are generated for both tests by varying the acceptance

threshold and tabulating the detection rate under H1 and the false alarm rate under H0. We

can see that both tests succeed in detecting the change, and that TML-GLRT is significantly

better than TLS-GLRT for all false alarm rates. Note that these results do not imply that

TML-GLRT is always better than TLS-GLRT. In some other cases, the results show that

TLS-GLRT performs better. In future work, we will try to provide a more thorough analysis

and comparison of these tests.
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Figure 6.3: The ROC curves of the proposed tests.

6.4 Distributed TLS-GLRT

In this section we provide a distributed implementation of the centralized TLS-GLRT

proposed in Section 6.3. The distributed setting is similar to that in Chapter 5. Specifically,

we assume there is a communication link between any two nodes that are connected by

a power transmission line, i.e., the topology of communication links between these nodes

matches the topology of G. If we look at a real power system, these connected nodes will

also be in close physical proximity since a physical line or device must be used to connect

these two nodes. In this case, it would be easy to run a communication line between these

nodes using either power line communications or some other wireless or wired technology.

As before, the objective is to compute (6.22) using only local communications and let every

node in the system reach the consensus.

To make the distributed computation easier, first we use a diagonal matrix as an ap-

126



6.4. DISTRIBUTED TLS-GLRT

proximation to DDT . According to the definition of the mapping matrix D, we can tell

that DDT is a sparse matrix. Fig. 6.4 shows the values of the elements of DDT for the

IEEE 14-bus, IEEE 30-bus and IEEE 57-bus test systems, respectively. In each subfigure,

the x and y axes denote the column and row indices of DDT . The colors represent different

values of each element of the matrix. Brown represents value 2. Light blue represents value

0. Dark blue and yellow denote values 1 and −1, respectively. Notice that not only are the

non-zero off diagonal elements of DDT smaller than the diagonal elements, the matrix DDT

also becomes sparser as we consider larger sized networks.

Replacing DDT in (6.17) with a matrix consisting of only its diagonal elements, i.e., 2I,

we obtain a diagonal approximation to H(b). Plugging this approximation into (6.22), we

have

tTLS ≈
M∑
k=1

T∑
t=1

(z̃k(t)− [b0]k(x̃jk(t)− x̃ik(t)))
2

σ2
z + 2[b0]2kσ

2
x

+
M∑
k=1

min
bk

T∑
t=1

(z̃k(t)− bk(x̃jk(t)− x̃ik(t)))
2

σ2
z + 2b2

kσ
2
x

,

(6.30)

which can be written as the summation of M components

tTLS ≈
M∑
k=1

tTLS,k, (6.31)

where

tTLS,k =
T∑
t=1

(z̃k(t)− [b0]k(x̃jk(t)− x̃ik(t)))
2

σ2
z + 2[b0]

2
kσ

2
x

+min
bk

T∑
t=1

(z̃k(t)− bk(x̃jk(t)− x̃ik(t)))
2

σ2
z + 2b2

kσ
2
x

.

(6.32)

We can obtain the second term of tTLS,k by solving a quadratic equation in bk, which has a

closed form solution. It is easy to see that the computation of tTLS,k only involves observations

from nodes ik and jk, which are connected by transmission line k, thus it can be performed at
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either node ik or node jk using local communications. In the end, the test (6.30) is obtained

by aggregating the local components via a consensus algorithm.
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Figure 6.4: DDT for three test systems: (a) IEEE 14-bus (b) IEEE 30-bus and (c) IEEE
57-bus.

Using the relatively small IEEE 14-bus model, the diagonal approximation provided

performance indistinguishable from that of the centralized GLR test to the accuracies of our

calculations in a number of particular cases we studied. We show some of these results in

Fig. 6.5. Under H0, we use the susceptance parameters given by the test profile. Under
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Figure 6.5: Comparison of distributed TLS-GLRT and centralized TLS-GLRT.

H1, we apply various changes to b. The other parameters are the same as in Section 6.3.4

unless otherwise noted. In case 1, σ2
x = σ2

z = 0.01; b5 is decreased by 1%. In case 2,

σ2
x = 0.0001, σ2

z = 0.01; b5 is decreased by 1%. In case 3, σ2
x = 0.00001, σ2

z = 0.01; b5 is

decreased by 1%. In case 4, σ2
x = σ2

z = 0.01; every element of b is decreased by 1%. In case

5, σ2
x = σ2

z = 0.01; every element of b is decreased by 2%. In all cases, the estimates for both

the distributed and centralized test are very close to the true values.

6.5 Summary

We investigated the problem of detecting an unknown change in the susceptance param-

eters of the smart grid power system. The change detection problem was formulated as a

GLRT defined in the structured linear EIV model. Inspired by the standard TLS formulation

and the recently proposed TML approach, we derived two competing tests, the TLS-GLRT
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and the TML-GLRT. Numerical results illustrated the significantly better performance of the

TML-GLRT in some cases. We also discussed the distributed implementation of TLS-GLRT.
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Chapter 7

Conclusions

This dissertation presents our research on several selected issues concerning multi-sensor

data fusion systems. In particular, we focus on the novel signal processing design and per-

formance evaluation techniques for the following three multi-sensor data fusion systems: the

multi-sensor image fusion system, the MIMO radar system and the distributed sensor net-

work.

Quantitatively measuring the performance of a multi-sensor image fusion system is a

complicated but important task. Chapter 2 generalizes the work in [11] which shows bad

behavior for an information-based quality measure when the input images are more distorted.

The generalization holds for a class of correlation-based quality measures. We focus on the

properties of three popular correlation-based quality measures when used to judge the quality

of weighted averaging image fusion algorithms. By employing a model for the input images,

closed-form expressions for these quality measure are derived. Further, these quality measures

are shown to indicate higher quality in some cases where lower quality is evident. Sufficient

conditions for these cases are provided, along with intuitive explanations on why this bad

131



behavior occurs. Quality calculations with real images, using the procedures recommended

by their inventors, also document the predicted bad behavior of the correlation-based image

fusion quality measures, which demonstrates the utility of our theoretical analysis.

In Chapter 3, we develop a novel statistic to score the effectiveness of FIQMs for the

detection task in light of practical measurements from human perception experiments. The

performance of the proposed monotonic test is demonstrated via Monte Carlo simulations.

We also show the application of the proposed method to evaluate potential FIQMs in a spe-

cific target detection experiment. This chapter proposes the composite DPMLR to quantify

how consistent the values of a FIQM are with measured human performance represented

by the probability of detection. Specifically, the DPMLR can be used to test whether or

not a monotonic relationship exists between the FIQM and the underlying human detection

performance that is measured via a perception experiment. The resulting test is designed to

be applicable even when the number of observers is small so that the measurement errors

from the perceptual experiment are not necessarily Gaussian. The chapter discusses some

interesting properties of the DPMLR, and simulation results demonstrate the advantages of

the DPMLR over other monotonic statistics. Unlike the monotonic correlation in [20], the

DPMLR seamlessly accounts for the spread of the human observations and the number of

fused images. It indicates to what degree the ordering of the human observations by the

FIQM is not by random chance. The DPMLRT is a general test of monotonicity that can

be used to evaluate monotonic relationships beyond the image fusion application. Finally,

the DPMLR was used to score a number of potential FIQMs using real image data with a

corresponding perception study.

In Chapter 4, we investigate the joint location and velocity estimation of multiple tar-

gets in a non-coherent MIMO radar system. The Cramer-Rao bound for a two-target case
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is derived and evaluated. This bound gives us theoretically achievable joint estimation per-

formance of a multi-target non-coherent MIMO radar with a sufficient number of antennas.

Numerical simulations show that the spatial advantage proposed by previous research can

also be observed in a two-target example.

The rest of this dissertation considers the design of change detection methods using dis-

tributed sensor networks, where each node is only allowed to communicate with its neighbors.

Using our algorithms, all the nodes in the system will ultimately reach a consensus on the

test. For this purpose, we have relied on probabilistic graphical models and EIV models.

In Chapter 5, we study the distributed change detection problem for distributions that can

be represented as GGMs. The time-tested approach to change detection is via composite

hypothesis testing, and in particular the GLRT [54]. This method has been successfully

applied to change detection in the Gaussian multivariate distribution, and is known as the

Bartlett’s test [55, 56]. Classical centralized results on testing in GGM are available in [45].

In contrast, our focus is on distributed solutions for change detection. We begin by deriving

the global centralized GLRT, and then propose two distributed approximations based on

aggregating multiple tests performed at each of the nodes in the graph. The aggregation can

then be efficiently implemented using consensus methods [57]. The first distributed test is a

natural approach which simply applies the Bartlett’s test to smaller size local clusters in the

graph. The second method employs the pseudo-likelihood [58] as a surrogate function for the

global likelihood. The advantages of our proposed tests are demonstrated using numerical

experiments, including one in the context of failure detection in smart power grids [53].

Chapter 6 considers the fault detection problem for measurements following the EIV

model. From a statistical perspective, the noisy measurements of voltages and currents in a

smart grid system follow a special case of linear EIV models [59]. The standard approach

133



to parameter estimation in such problems is known as TLS, and generalizes classical least

squares by allowing noise in both sides of the linear model. Hypothesis testing in EIV

models has also been addressed. The GLRTs have been derived in the context of process

monitoring [36] as well as array processing [44]. Following these works, we derive the TLS-

GLRT which is specifically tailored for the smart grid structure and examine its detection

performance. Parameter estimation in EIV models is known to be difficult. TLS and its

extensions are often unstable and may be improved. Recently, a competing approach known

as TML was proposed in [60–62] and was shown to provide promising performance gains

in various estimation problems. In particular, it was shown that TML can be interpreted

as a regularized version of TLS with improved properties. As a continuation of the work

of [60–62], we consider hypothesis testing within the TML framework and derive the TML-

GLRT for detecting changes in such models. Numerical results show the promising detection

advantages the TML-GLRT has in some cases with no increase in computational complexity.

We also discussed the distributed implementation of TLS-GLRT.

134



Bibliography

[1] D. L. Hall and J. Llinas, Handbook of multisensor data fusion. CRC Press, 2001.

[2] R. S. Blum and Z. Liu, Multi-sensor Image Fusion and Its Applications. CRC Press,

2006.

[3] Z. Zhang and R. S. Blum, “A region-based image fusion scheme for concealed weapon

detection,” in In Proc. of the 31st Annual Conf. on Inf. Sci. and Syst., 1997, pp.

168–173.

[4] G. Simone, A. Farina, F. C. Morabito, S. B. Serpico, and L. Bruzzone, “Image fusion

techniques for remote sensing applications.” Inf. Fusion, vol. 3, pp. 3–15, 2002.

[5] J. A. Castellanos, J. Neira, and J. D. Tardos, “Multisensor fusion for simultaneous

localization and map building,” IEEE Trans. Robot. Autom., vol. 17, no. 6, pp. 908–

914, 2001.

[6] S. P. Constantinos, M. S. Pattichis, and E. Mitheli-Tzanakou, “Medical imaging fusion

applications: An overview,” in Proc. of the 35th Asilomar Conf.on Signals, Syst. and

Computers, vol. 2, 2001, pp. 1263–1267.

135



BIBLIOGRAPHY

[7] R. R. Murphy, “Sensor and information fusion improved vision-based vehicleguidance,”

IEEE Intell. Syst., vol. 13, no. 6, pp. 49–56, 1998.

[8] J. Yang and R. S. Blum, “A statistical signal processing approach to image fusion for

concealed weapon detection,” in IEEE International Conference on Image Processing,

Rochester, NY, 2002, pp. 513–516.

[9] Z. Xue and R. S. Blum, “Concealed weapon detection using color image fusion,” in The

Sixth International Conference on Image Fusion, 2003.

[10] R. S. Blum, “On multisensor image fusion performance limits from an estimation theory

perspective,” Inf. Fusion, vol. 7, no. 3, pp. 250–263, 2006.

[11] Y. Chen, Z. Xue, and R. S. Blum, “Theoretical analysis of an information-based quality

measure for image fusion,” Inf. Fusion, vol. 9, no. 2, pp. 161–175, 2008.

[12] N. Cvejic, A. Loza, D. Bull, and N. Canagarajah, “A similarity metric for assessment

of image fusion algorithms,” Int. Journal of Signal Process., vol. 2, no. 3, pp. 178–182,

2005.

[13] V. Petrovic and C. Xydeas, “Objective image fusion performance measure,” Electronics

Lett., vol. 36, no. 4, pp. 308–309, 2000.

[14] G. Qu, D. Zhang, and P. Yan, “Information measure for performance of image fusion,”

Electronics Lett., vol. 38, no. 7, pp. 313–315, Mar. 2002.

[15] G. Piella and H. Heijmans, “A new quality metric for image fusion,” in Proc. Int. Conf.

on Image Process., 2003, pp. III–173–176.

136



BIBLIOGRAPHY

[16] A. Toet, N. Schoumans, and J. K. Uspeert, “Perceptual evaluation of different nighttime

imaging modalities,” in Proc. of the 3rd Int. Conf. on Inf. Fusion, vol. 1, 2000, pp.

TUD3/17–TUD3/23.

[17] C. Wei and R. S. Blum, “Theoretical analysis of correlation-based quality measures for

weighted averaging image fusion,” Inf. Fusion, to be published.

[18] J. Puzicha, J. M. Buhmann, Y. Rubner, and C. Tomasi, “Empirical evaluation of

dissimilarity measures for color and texture,” in Proc. of the 7th IEEE Intl. Conf. on

Computer Vision, vol. 2, 1999, pp. 1165–1173.

[19] Y. Chen and R. S. Blum, “A new automated quality assessment algorithm for image

fusion,” Image and vision computing, vol. 27, no. 10, pp. 1421–1432, Sep. 2009.

[20] L. M. Kaplan, R. S. Blum, and S. D. Burks, “Analysis of image quality for image

fusion via monotonic correlation,” IEEE J. Sel. Topics Signal Process., vol. 3, no. 2,

pp. 222–235, Apr. 2009.

[21] F. Sadjadi, “Comparative image fusion analysis,” in Proc. of the IEEE Conf. on Com-

puter Vision and Pattern Recognition, vol. 3, San Diego, CA, Jun. 2005.

[22] D. Schmieder and M. Weathersby, “Detection performance in clutter with variable

resolution,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-19, no. 4, pp. 622–630,

1983.

[23] L. M. Kaplan, “Extended fractal analysis for texture classification and segmentation,”

IEEE Trans. Image Process., vol. 8, no. 11, pp. 1572–1585, 1999.

137



BIBLIOGRAPHY

[24] M. J. T. Smith and A. Docef, A study guide for Digital Image Processing. GA Scientific

Publishers, 1997.

[25] C. Howell, R. Moore, S. Burks, and C. Halford, “An evaluation of fusion algorithms

using image fusion metrics and human identification performance,” in Infrared Imaging

Syst.: Design, Analysis, Modeling, and Testing XVIII. Edited by Holst, Gerald C. Proc.

of the SPIE, vol. 6543, 2007, p. 65430V.

[26] R. K. Sharma, T. K. Leen, and M. Pavel, “Probabilistic image sensor fusion,” in Proc.

of the 1998 conf. on Advances in neural inf. Process. syst. II. Cambridge, MA, USA:

MIT Press, 1999, pp. 824–830.

[27] A. M. Haimovich, R. S. Blum, and L. Cimini, “Mimo radar with widely separated

antennas,” IEEE Signal Processing Magazine, 2008.

[28] J. Li and P. Stoica, “Mimo radar with colocated antennas,” IEEE Signal Proc. Maga-

zine, pp. 106–114, Sep 2007.

[29] D. R. Fuhrmann and G. S. Antonio, “Transmit beamforming for mimo radar systmes

using partial signal correlations,” in Proc. of 38th Asilomar Conf. on Signals, Systems

and Computers, Nov 2004, pp. 295–299.

[30] N. Lehman, A. M. Haimovich, R. S. Blum, and L. Cimini, “High resolution capabilities

of mimo radar,” in Proc. 40th Asilomar Conf. Singal, System and Computers, Nov

2006, pp. 25–30.

[31] H. Godrich, A. M. Haimovich, and R. S. Blum, Concepts and applications of a MIMO

radar sysem with widely separated antennas. Book Chapter, in preparation, 2007.

138



BIBLIOGRAPHY

[32] E. Fishler, A. M. Haimovich, R. S. Blum, D. Chizhik, L. Cimini, and R. Valenzuela,

“Mimo radar: an idea whose time has come,” in Proc. IEEE Radar Conf., Apr 2004,

pp. 71–78.

[33] N. Lehman, E. Fishler, A. M. Haimovich, R. S. Blum, L. Cimini, and R. Valenzuela,

“Evaluation of transmit diversity in mimo-radar direction finding,” IEEE Trans. on

Signal Processing, vol. 55, no. 5, pp. 2215–2225, May 2007.

[34] H. Godrich, A. Haimovich, and R. Blum, “Target localization accuracy and multiple

target localization: Tradeoff in mimo radars,” in Proc. Asilomar Conf. Signals, Systems,

and Computers, Oct 2008.

[35] Q. He, R. S. Blum, and A. M. Haimovich, “Non-coherent mimo radar for target estima-

tion: More antennas means better performance,” IEEE Trans. on Signal Processing,

2010.

[36] B. Huang, “Detection of abrupt changes of total least squares models and application

in fault detection,” IEEE Transactions on Control Systems Technology, vol. 9, no. 2,

pp. 357 – 367, 2001.

[37] S. Lotfifard, M. Kezunovic, and M. J. Mousavi, “Voltage sag data utilization for distri-

bution fault location,” IEEE Transactions on Power Delivery, vol. 26, no. 2, pp. 1239

–1246, 2011.

[38] J.-A. Jiang, J.-Z. Yang, Y.-H. Lin, C.-W. Liu, and J.-C. Ma, “An adaptive pmu based

fault detection/location technique for transmission lines. i. theory and algorithms,”

IEEE Transactions on Power Delivery, vol. 15, no. 2, pp. 486–493, 2000.

139



BIBLIOGRAPHY

[39] J. Zhu and A. Abur, “Identification of network parameter errors,” IEEE Transactions

on Power Systems, vol. 21, no. 2, pp. 586 – 592, 2006.

[40] O. Kosut, L. Jia, R. J. Thomas, and L. Tong, “On malicious data attacks on power

system state estimation,” in Universities Power Engineering Conference (UPEC), 2010

45th International, 2010, pp. 1–6.

[41] ——, “Limiting false data attacks on power system state estimation,” in Information

Sciences and Systems (CISS), 2010 44th Annual Conference on, 2010, pp. 1–6.

[42] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory and Applica-

tion. previously published by Prentice-Hall, Inc., 1993.

[43] J. J. Fuchs, “Matched detector and estimator with signature uncertainty,” in the Forty-

First Asilomar Conference on Signals, Systems and Computers, 2007, pp. 2177–2181.

[44] ——, “A robust matched detector,” IEEE Transactions on Signal Processing, vol. 55,

no. 11, pp. 5133–5142, 2007.

[45] S. L. Lauritzen, Graphical models. New York: Oxford Statistical Science Series, 1996,

vol. 17.

[46] A. P. Dempster, “Covariance selection,” Biometrics, vol. 28, pp. 157–175, 1972.

[47] Y. Weiss and W. Freeman, “Correctness of belief propagation in Gaussian graphical

models of arbitrary topology,” Neural Computation, vol. 13, no. 10, pp. 2173–2200,

2001.

140



BIBLIOGRAPHY

[48] A. Wiesel, Y. C. Eldar, and A. O. Hero, “Covariance estimation in decomposable

Gaussian graphical models,” IEEE Transactions on Signal Processing, vol. 58, no. 3,

pp. 1482 –1492, march 2010.

[49] A. Wiesel and A. O. Hero, “Distributed covariance estimation in gaussian graphical

models,” Signal Processing, IEEE Transactions on, vol. 60, no. 1, pp. 211 –220, jan.

2012.

[50] ——, “Decomposable principal component analysis,” IEEE Transactions on Signal Pro-

cessing, vol. 57, no. 11, pp. 4369 –4377, nov. 2009.

[51] M. Cetin, L. Chen, J. W. Fisher, A. T. Ihler, R. L. Moses, M. J. Wainwright, and A. S.

Willsky, “Distributed fusion in sensor networks: A graphical models perspective,” IEEE

Signal Processing Magazine, vol. 23, no. 4, pp. 42– 55, July 2006.

[52] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden, “Distributed regression:

an efficient framework for modeling sensor network data,” in Proceedings of the 3rd

international symposium on Information processing in sensor networks. ACM, 2004,

pp. 1–10.

[53] M. He and J. Zhang, “A dependency graph approach for fault detection and localization

towards secure smart grid,” IEEE Transactions on Smart Grid, vol. 2, no. 2, pp. 342–

351, 2010.

[54] P. J. Bickel and K. A. Doksum, Mathematical Statistics: Basic Ideas and Selected

Topics. Holden-Day, CA, 1977.

[55] M. S. Bartlett, “Properties of sufficiency and statistical tests,” in Proceedings of the

Royal Society of London, vol. 160, no. 901, May 1937, pp. 268–282.

141



BIBLIOGRAPHY

[56] T. W. Anderson, An Introduction to Multivariate Statistical Analysis 3rd Edition.

Wiley-Interscience, 2003.

[57] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with least-mean-square

deviation,” Journal of Parallel and Distributed Computing, vol. 67, no. 1, pp. 33–46,

2007.

[58] J. Besag, “Statistical analysis of non-lattice data,” Journal of the Royal Statistical

Society. Series D (The Statistician), vol. 24, no. 3, pp. 179–195, 1975.

[59] S. V. Huffel and J. Vandewalle, The Total Least Squares Problem: Computational As-

pects and Analysis. Frontier in Applied Mathematics, SIAM, 1991.

[60] A. Wiesel, Y. C. Eldar, and A. Beck, “Maximum likelihood estimation in linear models

with a gaussian model matrix,” IEEE Signal Processing Letters, vol. 13, no. 5, pp.

292–295, 2006.

[61] A. Wiesel, Y. C. Eldar, and A. Yeredor, “Linear regression with gaussian model un-

certainty: Algorithms and bounds,” IEEE Transactions on Signal Processing, vol. 56,

no. 6, pp. 2194–2205, June 2008.

[62] A. Beck and Y. C. Eldar, “Structured total maximum likelihood: An alternative to

structured total least squares,” SIAM J. on Matrix Analysis and Applications, vol. 31,

no. 5, pp. 2623–2649, 2010.

[63] Z. Xue, R. S. Blum, and Y. Li, “Fusion of visual and ir images for concealed weapon de-

tection,” in The fifth International Conference on Image Fusion, Annapolis, Maryland,

2002, pp. 1198–1205.

142



BIBLIOGRAPHY

[64] V. Petrovic, “Multilevel image fusion,” B.V. Dasarathy (Ed.), Multisensor, Multisource

Information Fusion: Architectures, Algorithms, and Applications, SPIE-5099, The In-

ternational Society for Optical Engineering, pp. 87–96, 2003.

[65] V. Petrovic and C. S. Xydeas, “Optimizing multiresolution pixel-level image fusion,”

B.V. Dasarathy (Ed.), Sensor Fusion: Architectures, Algorithms, and Applications,

SPIE-4385, The International Society for Optical Engineering, pp. 96–107, 2001.

[66] ——, “Sensor noise effects on signal-level image fusion performance,” Information Fu-

sion, vol. 4, no. 3, pp. 167–183, 2003.

[67] A. Toet and M. A. Hogervorst, “Performance comparison of different gray-level image

fusion schemes through a universal image quality index,” Ivan Kadar (Ed.), Signal

Processing, Sensor Fusion, and Target Recognition XII, SPIE-5096, The International

Society for Optical Engineering, pp. 552–561, 2003.

[68] L. M. Kaplan, R. S. Blum, and S. D. Burks, “Analysis of image quality for image fusion

via monotonic correlation,” accepted by IEEE Journal of Selected Topics in Signal

Processing special issue on Visual Media Quality Assessment (April 2009) and 26th

Army Science Conference, 2008.

[69] T. M. Cover and J. A. Thomas, Elements of information theory. New York, NY, USA:

Wiley-Interscience, 1991.

[70] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process.

Lett., vol. 9, no. 3, pp. 81–84, 2002.

[71] Y. Chen and R. S. Blum, “Experimental tests of image fusion for night vision,” in The

Eighth International Conference on Information Fusion, 2005.

143



BIBLIOGRAPHY

[72] Z. Wang, A. C. Bovik, H. R. Sheikh, S. Member, and E. P. Simoncelli, “Image qual-

ity assessment: from error measurement to structural similarity,” IEEE Trans. Image

Process., vol. 13, pp. 600–612, 2004.

[73] V. Laparra, J. Munoz-Mari, and J. Malo, “Divisive normalization image quality metric

revisited,” Journal of the Optical Society of America A, vol. 27, no. 4, pp. 852–864,

2010.

[74] W. Mendenhall, R. L. Scheaffer, and D. D. Wackerly, Mathematical Statistics with

Applications, 3rd ed. Boston: Duxbury Press, 1986.

[75] M. G. Kendall and A. Stuart, The Advanced Theory of Statistics. New York: Halner

Press, 1961.

[76] VQEG, “Final report from the video quality experts group on validation of objective

models of video quality assessment,” in [online] Available: http://www.vqeg.org/, Mar.

2000.

[77] R. Barlow, D. Barholomew, J. Bremner, and H. Brunk, Statistical Infernece under

Order Restrictions. New York: Wiley, 1972.

[78] M. Best and N. Chakravarti, “Active set algorithms for isotonic regression: A unifying

approach,” Mathematical Programming, vol. 47, pp. 425–439, May 1990.

[79] T. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal Process-

ing. Upper Saddle River, NJ: Prentice Hall, Inc., 2000.

[80] E. Schumann, “Generating correlated uniform variates,” in

http://comisef.wikidot.com/tutorial:correlateduniformvariates, 2009.

144



BIBLIOGRAPHY

[81] K. L. Kowalskia, “Generalized binomial distributions,” Journal of Mathematical

Physics, vol. 41, no. 4, pp. 2375–2382, 2000.

[82] A. Toet, “Image fusion by a ratio of low-pass pyramid,” Pattern Recognition Lett.,

vol. 9, no. 4, pp. 245–253, 1989.

[83] T. Huntsberger and B. Jawerth, “Wavelet based sensor fusion,” in Proc. SPIE, vol.

2059, 1993, pp. 488–498.

[84] C. Lejeune, “Wavelet transform for infrared application,” in Proc. SPIE, vol. 2552,

1995, pp. 313–324.

[85] L. Jiang, F. Tian, L. E. Shen, S. Wu, S. Yao, Z. Lu, and L. Xu, “Perceptual-based

fusion of ir and visual images for human detection,” in Proc. of Int. Symposium on

Intelligent Multimedia, Video and Speech Process., 2004.

[86] H. Chen and P. K. Varshney, “A human perception inspired quality metric for image

fusion based on regional information,” Image Fusion, vol. 8, no. 2, pp. 193–207, Apr.

2007.

[87] O. O. Fadiran, P. Molnar, and L. M. Kaplan, “A statistical approach to quantifying

clutter in hyperspectral infrared images,” in Proc. of the IEEE Aerospace Conf., Big

Sky, MT, Mar. 2006.

[88] D.-O. Kim and R.-H. Park, “New image quality metric using the Harris response,”

IEEE Signal Process. Lett., vol. 16, no. 7, pp. 616–619, Jul. 2009.

[89] J. C. Leachtenauer, W. Malila, J. Irvine, L. Colburn, and N. Salvaggio, “General image-

quality equation: GIQE,” Applied Optics, vol. 36, no. 32, pp. 8322–8328, 1997.

145



BIBLIOGRAPHY

[90] J. P. Estrera, “Localized signal-to-noise ratio of man and vehicle size targets,” in In-

frared Technol. and Appl. XXXV, Proc. of the SPIE, vol. 7298, Orlando, FL, Apr. 2009,

pp. 72 983M–72 983M–14.

[91] J. Schanda, Ed., Colorimetry: Understanding the CIE System. Hoboken, NJ: John

Wiley & Sons, Inc., 2007.

[92] E. Fishler, A. M. Haimovich, R. S. Blum, L. Cimini, D. Chizhik, and R. Valenzuela,

“Spatial diversity in radars - models and detection performance,” IEEE Trans. on

Signal Processing, vol. 54, no. 3, pp. 823–838, 2006.

[93] P. Liang and M. I. Jordan, “An asymptotic analysis of generative, discriminative, and

pseudolikelihood estimators,” in Proceedings of the 25th international conference on

Machine learning. ACM, 2008, pp. 584–591.

[94] U. of Washington, “Power systems test case archive,” at webpage

http://www.ee.washington.edu/research/pstca/.

[95] N. C. Woolley, M. Avenda-Mora, J. V. Milanovic, and A. P. Woolley, “Probabilistic

fault location using erroneous measurement devices,” in IEEE International Conference

on Smart Measurements for Future Grids, 2011, pp. 101 – 106.

[96] Y. Liao, “Fault location for single-circuit line based on bus-impedance matrix utilizing

voltage measurements,” IEEE Transactions on Power Delivery, vol. 23, no. 2, pp. 609–

617, 2008.

[97] M. Djuric, Z. Radojevic, and V. Terzija, “Distance protection and fault location utiliz-

ing only phase current phasors,” IEEE Transactions on Power Delivery, vol. 13, no. 4,

pp. 1020 – 1026, 1998.

146



BIBLIOGRAPHY

[98] H. Zhu and G. B. Giannakis, “Lassoing line outages in the smart power grid,” in IEEE

International Conference on Smart Grid Communications, 2011, pp. 570–575.

[99] C. Wei, A. Wiesel, and R. Blum, “Distributed change detection in gaussian graphical

models,” in 46th Annual Conference on Information Sciences and Systems, 2012.

[100] B. W. R. Christie and I. Wangensteen, “Transmission management in the deregulated

environment,” in Proceedings of the IEEE, vol. 88, Feb. 2000, pp. 170–195.

[101] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory.

Prentice Hall, 1998.

147



Vita

Chuanming Wei was born in 1984 in Shandong Province, China. He received the B.Eng.

and M.Eng. degrees in Electrical Engineering from University of Science and Technology

of China (USTC), Hefei, China, in 2003 and 2006, respectively. Since 2007, he has been

working towards the Ph.D. degree in Electrical Engineering at Lehigh University, Bethlehem,

PA. From 2003 to 2007, he worked as an intern engineer at UT Starcom, Inc. During summer

2010, he was an intern at Lister Hill National Center for Biomedical Communications, NIH,

Bethesda MD. His research interests include signal and image processing, multisensor data

fusion, pattern recognition, radar and sensor networking.

List of Publications

Journal Papers

1. Chuanming Wei, Lance M. Kaplan, Stephen D. Burks and Rick S. Blum, “Diffuse Prior

Monotonic Likelihood Ratio Test for Evaluation of Fused Image Quality Measures,”

IEEE Transactions on Image Processing, vol. 20, no. 2, pp. 327 C 344, Feb. 2011.

2. Chuanming Wei and Rick S. Blum, “Theoretical analysis of correlation-based quality

measures for weighted averaging image fusion,” Information Fusion, vol. 11, no. 4, pp.

301 C 310, Oct. 2010.

3. Jinzhong Yang, Chuanming Wei, Lifei Zhang, Yongbin Zhang, Rick S. Blum and Lei

Dong, “A statistical modeling approach for evaluating auto-segmentation methods for

image-guided radiotherapy,” Comp. Med. Imag. and Graph. 36(6): 492-500, 2012.

148



4. Chuanming Wei, Ling Qiu, and Jinkang Zhu, “Margin Adaptive Optimization in Multi-

User MISO-OFDM Systems under Rate Constraint,” Journal of Communications and

Networks (JCN), vol. 9, no. 2, pp. 112 C 117, Jun. 2007.

5. Chuanming Wei, Ling Qiu, and Jinkang Zhu, “A Power Control Method Based on

Post-Detection SINR Balancing in Cellular V-BLAST Systems,” Journal of Applied

Sciences, vol. 25, no. 1, 2007.

Conference Papers

1. Chuanming Wei, Ami Wiesel and Rick S. Blum, “Distributed Change Detection in

Gaussian Graphical Models,” the Conference on Information Sciences and Systems

(CISS), Princeton, NJ, March 2012.

2. Chuanming Wei, Ami Wiesel and Rick S. Blum, “Change Detection in Smart Grids

Using Errors In Variables Models,” SAM 2012 Conference.

3. Qian He, Chuanming Wei and Rick S. Blum, “Effects of Unsuccessful Transmissions of

Measurements on Uncertainty in Power Flow Calculations,” SAM 2012 Conference.

4. Jiangfan Zhang, Chuanming Wei and Rick S. Blum, “Ordering for Shift-in-Mean of

Gaussian Markov Random Fields with Dependent Observations,” SAM 2012 Confer-

ence.

5. Chuanming Wei, Qian He and Rick S. Blum, “Cramer-Rao bound for joint location and

velocity estimation in multi-target non-coherent MIMO radars,” in proceeding of the

Conference on Information Sciences and Systems (CISS), Princeton, NJ, March 2010.

149



6. Chuanming Wei and Rick S. Blum, “Theoretical analysis of correlation-based quality

measures for weighted averaging image fusion,” in proceeding of the Conference on

Information Sciences and Systems (CISS), Baltimore, MD, March 2009.

7. Chuanming Wei, Lance M. Kaplan, Stephen D. Burks and Rick S. Blum, “Diffuse

prior monotonic likelihood ratio test for evaluation of fused image quality metrics,” in

proceeding of the 12th International Conference on Information Fusion, Seattle, WA,

Jul. 6-9, 2009, pp. 1076-1083.

8. Chuanming Wei, Ling Qiu, and Jinkang Zhu, “User Selection and Resource Alloca-

tion for Multi-User MIMO-OFDM Systems with Downlink Beamforming,” Proceeding

of the First International Conference on Communications and Networking in China,

ChinaCom 2006, Beijing, China, October 2006.

9. Chuanming Wei, Ling Qiu, and Jinkang Zhu, “A Power Control Method Based on Post-

Detection SINR Balancing in Cellular V-BLAST Systems,” Proceeding of IEEE 9th

International Symposium on Spread Spectrum Techniques and Applications, ISSSTA

2006, Manaus, Brazil, August 2006.

150


	Lehigh University
	Lehigh Preserve
	2013

	Signal Processing and Performance Evaluation Issues in Multi-Sensor Data Fusion
	Chuanming Wei
	Recommended Citation


	thesis_conf.dvi

