
Lehigh University
Lehigh Preserve

Theses and Dissertations

1993

A parallel branch and bound algorithm for the
multi-facility capacity expansion problem using
networked RISC workstations
Margaret King Mayer
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Mayer, Margaret King, "A parallel branch and bound algorithm for the multi-facility capacity expansion problem using networked
RISC workstations" (1993). Theses and Dissertations. Paper 196.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228643574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/196?utm_source=preserve.lehigh.edu%2Fetd%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


AUTHO :

May r, Margaret ing

TITIl1I:l:l:l!II&:lEli'Illl:llI:
L

arallel Branch and

und Ig rithm For The

Multi-Facility Capacity

Expansion Problem Using

Networked RISC Work-
J

Stations

DATE: May 30,1993



A PARALLEL BRANCH AND BOUND ALGORITHM FOR THE

MULTI-FACILITY CAPACITY EXPANSION PROBLEM

'-
USING NETWORKED RIse WORKSTATIONS

by

Margaret King Mayer .

A Thesis

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Industrial Engineering

Lehigh University

May 20, 1993





TABLE OF CONTENTS

Page

LIST OF TABLES IV

LIST OF FIGURES V

ABSTRACT 1

CHAPTER 1 - INTRODUCTION 2

CHAPTER 2 - THE MODEL 4

CHAPTER 3 - NETWORK FLOW REPRESENTATION 7

CHAPTER 4 - SOLUTION APPROACH 10

CHAPTER 5 - BRANCH AND BOUND SEARCH STRATEGIES 17
5.1 Depth First Search 17
5.2 Breadth First Search 18

CHAPTER 6 - IMPLEMENTATION OF BRANCH AND BOUND APPROACH 19
6.1 Sequential Implementation 19
6.2 Parallel Implementation 20

CHAPTER 7 - PERFORMANCE MEASURES 25

CHAPTER 8 - RESULTS 30 .

CHAPTER 9 - FUTURE RESEARCH 40

REFERENCES 43

APPENDIX A 44

VITA 45

iii



LIST OF TABLES

Table Page
7.1 Sequential vs. Parallel DFS 27

7.2 Cycle Variation Performance 27

7.3 Solution Time for No Reinitialization of Processors 29
,"

8.1 Total Solution Time vs. Cycle Length 32

8.2 BFS vs. DFS Reinitialization 32

8.3 Maximum Number of Nodes Solved 39

iv



If.

LIST OF FIGURES

Figure . Page
3.1 . CEP as Network Flow Problem 9

4.1 Concave Cost Function 11
-

4.2 Concave and Linear Cost Functions 11

4.3 Branch and Bound Tree 12

4.4 Concave Cost Function with Linear Underestimator 15

6.1 Branch and Bound Tree in Parallel 21

7.1 Processor Workload 29

8.1 SolutionTime vs Processor, Variation 1 33

8.2 Solution Time vs Processor, Variation 2 33

8.3 Solution Time vs Processor, Variation 3 34

8.4 Solution Time vs Processor, Variation 2, T= 18 37

8.5 Solution Time vs Processor, Variation 2, T=20 37

8.6 Speed Up for EX3, Variation 1, T= 15 38

8.7 Speed Up for EX3, Variation 2, T=5 38

8.8 Speed Up for EX3, Variation 3, T= 15 39

v



ABSTRACT\ .

A parallel branch and bound algorithm for the multi-facility capacity expansion

problem(CEP) is examined as a means of extending real-time feasibility. Tire CEP

addresses the minimum cost expansion of facilities over time. There are two or more

facilities that may require expansion to meet demands over the length of a planning

horizon. Each facility is ranked in order of decreasing quality so that a higher quality

facility may convert excess capacity to a lower/facility. The decision to meet demand

through expansion or conversion must be made at each stage of the planning horizon.

Historically, both exact solution approaches and heuristic approaches have been applied

to this problem. An exact solution is more desirable, but the exact solution approach

quickly becomes real-time infeasible on a sequential machine. Performance of the

algorithm is measured in solution time, and in terms of load balancing. Since the

parallel algorithm is iQ1plemented over a network of IBM RISC workstations, efficient

message passing is critical to good performance. Several strategies are developed and

implemented to reduce message passing and improve performance. The results of the

implementation are discussed.



CHAPTER 1

INTRODUCTION

The purpose of the capacity expansionproblem(CEP) is to determine a minimum

cost expansion plan given inputs of a planning horizon and cost information. The three

centr~ issues of the CEP are: expansion sizes, expansion times, and locations[4]. In a

multi-facility type CEP, there are two or more facilities that may require expansion to

meet demands. Each facility is ranked in order of quality so that a higher quality facility

may convert excess capacity to satisfy a lower quality facility's demands. The- decision

to expand a facility to meet demand or to convert excess from another facility must be

made at each stage in the planning horizon. The multi-type CEP tries to resolve this

issue. A.S. Manne[6] pioneered much of this work in 1967 using data from the Indian

heavy process industries, and his results are still used today as performance benchmarks

for new heuristics.

This thesis reports the performance of a branch and bound programming approach

using a network representation of the problem to solve the CEP in seqllential and parallel

configurations. The solution space for the CEP as a network problem is exponential,

2NT
, where N=number of facilities and T=number of time periods. Since the number

of distinct solutions grows exponentially, the problem quickly becomes real-time

infeasible, i.e., results cannot be determined in time to be useful. Heuristic approaches

to achieve near optimal solutions were developed by Luss[2,4,5] using pseudo-polynomial

algorithms. A near optimal solution is sufficient for..applications where the extra expense

or time required in solving to optimality renders the problem real-time infeasible. In

2



other applications the requirements of exact solution justify the extra cost or time. A

parallel programming approach is examined as a means of extending real-time feasibility·

for an exact solution approach to the problem.

The performance of the sequential and parallel programs is critical in analyzing

real-time feasibility. Performan·ce is measured not only in solution time, but also in the
•

storage requirements necessary to attain that solution. The decrease in total solution time

by converting an algorithm can be calculated by a speed up ratio. The parallel algorithm

approach is a natural path to take, given the repeated calculations necessary in

combinatorial problems to achieve optimization. Although speed-up ratios greater than

1 can be attained by converting sequential programsto parallel programs, communication

overhead between the processors contribute to solution time.

Besides determining optimal expansion of facilities, the CEP model can be applied

to communications networks. Luss[3] describes a cable sizing application in which 2

cable types are available to use. Cable type 1 can meet demands for cable type 2, but

the type 2 cable cannot be substituted for cable type 1. The demands are known for a

horizon of T periods, and an optimal policy can be determined to meet demands and

minimize the cost of the cable. The CEP model can also be applied to inventory and

production problems. An example is a multi-product inventory and production model,

where one product type can be substituted for another product. Since the cost to produce

either product typically involves fixed and variable costs, it may be optimal to perform

substitutions to meet customer demands.

3



CHAPTER 2

THE MODEL

The model for the multi-facility type CEP was formulated by Luss[4] with the

following notation:

. T N
nun

x. y..(L L [cit(xit)+hili,t+l)])
It' !ltt=li=1 .

such that
. i-I N

lit;.] =Iit +xit +L Ykit - L Yilct -Tit
k=1 k=i+1

Iit~O

Iii =IiT;.l =0
Xit~O, Yijt~O

t=l..T i=l..N, j=i+1..N

i,j,k,l,m

f,U, v

=

=

=

=

=

=

=

Indices for facilities. N facilities are available and ordered
from 1 to Nin order of decreasing quality.

Indices for the time line. The time line consists of T
periods.

Demand for facility i in period t. Assumed to be integer.

The expansion size of facility i in period t. Assumed to be
integer.

The amount of capacity converted from facility i to facility
j in period t, where i <"'j. Assumed to be integer.

The excess capacity for facility i at the b~ginning of period
t. Integer assumption and no shortages are allowed.

Capacity expansion cost function.

The holding cost function associated with having excess
capacity at facility i for 1 period, from period t to t+ 1.

/~

4



This model assumes a finite horizon of T periods, and N facility types. All demand

increments, expansions, and conversions occur instantaneously at the beginning of ~ch

period. Luss[5] adopted the policy regarding converted capacity that any converted

capacity in this formulation becomes a physical part for the new facility, and cannot be

changed back to the original facility.

The cost function in any CEP is typically nondecreasing and concave to represent

economies of scale. Generally, the cost functions consist of fixed and variable costs

associated with the expansion of the facility. Luss[3] reasoned that operating costs are

generally not considered since they are assumed to be independent of any chosen

expansion policy. The cost function should consider the time value of money, although

it is difficult to choose an appropriate discount rate(p) for a long horizon. Manne[6]

noted that the value of p is often subjective, and vary as to whether it is private or

government business. Once p has been chosen, the typical cost function has the

following form:

where:

A = the fixed charged cost of expansion for facility i

B = the variable cost per unit of expansion

p = the discount factor.

Although this is the "popular" form for a cost function in a CEP, it is by no means the

only one. Luss[4] points out that a piecewise concave function could be used. An

example for doing so would be when different technologies are used to expand/add

5



facilities.[4] In this case, it is concave in the range of each technology used.

The demands over time, rio are often represented in the form of a function.

Luss[4] defines 3 typical demand functions:

~+ot

~e~t .
RiCt)= p[l-e~t]

where ~, 0, ,~ ~O constant.

The linear function assumes demand has a constant growth rate, while the exponential

function makes, demand growth proportional to the volume. In certain markets, demand

may have a saturation point, which is what the last function captures. If the problem

consists of a short horizon, other functions can also be considered.

6



CHAPTER 3 .......

NETWORK' FLOW REPRESENTATION

The multi-type CEP can be represented as a network flow problem(Fig. 3.1) .

.There is a single source node with supply of R, where R is the sum of all demands.

There will be NT additional nodes, for each facility in each time period. At each of

these nodes, the demand ril exists. In Luss[3], the flows are defined as follows:

- Expansion Flow,' Xill from the source node to every node;

- Excess Capacity Flow, Ii,I+1' from each node (i,t) to node (i,t+ 1);

- Conversion Flow, 'Yijll from each node (i, t) to node G, t) where i> j.

The beginning flows, IiI' and ending flows, Ii,T+I' are defined to equal O. The costs

associated with each flow are:

Yijl has cost 0;

ii 1+1 has holding cost function hil(Ii1+1);, . ,

XiI has the concave cost function Cil(XiJ ..
. ~

A feasible flow and optimal solution in the network is found through an extreme

point solution[3]. Zangwill[8] defines extreme flow in a network as having at most one

positive incoming flow into each node. In addition, the network must have a single

source, which the CEP network does. In Luss[2], he notes that more than one optimal

solution may exist, and it may not be an extreme point solution. Any extreme point

solution for the CEP will satisfy the following properties as defined by Luss[2]:

IitYijl= 0, fori,j = 1,2.. N, i < j ..

7



The above states that no extra capacity can exist if a facility is to be expanded in a period

YijtYkjt = 0 for k = 1,2, ..N, k < j, i = k.

This states that either an expansion or capacity conversion can occur, but not both. It is

not optimal to expand a facility to meet only a part of the demand with that

expansion.

y'

8



t= I

CEP NETWORK

t=2 t=3

i= I

i=2

i=3

r12

r22

r32

Xl3

X33

Figur:e 3.1 - CEP as Network Flow Problem

9



CHAPTER 4

SOLUTION APPROACH

It would appear that the network flow representation of the problem could be

easily solved, but the expansion cost functions are concave(Fig. 4.1) and, in particular,

non-linear. In this case there is no way to transform this cost function to .a purely unit

cost function that network solution methodologies require. It is desirable to use ~

network flow approach since the number of arcs is small compared to the number of·

distinct solutions. Basic network simplex could be used to solve this network if only the

arc costs were purely linear. A transformation of the concave cost into a linear one

would satisfy the unit cost restriction.

It is straightforward to convert the function when an arc does not produce. If arc

XiI does not produce, a linear function(Fig 4.2) which is parallel to the concave cost but

passes through the origin is equivalent to the concave cost function since zero flow costs

nothing. If an arc were to produce, the true concave cost function should be used. In.

this case, the unit portion, Bj , is passed to the network flow problem, and the fixed cost

is added to the solution cost afterward. The decision to produce or not becomes the

central issue to solve the CEP as a network since a unit cost can be found for either case.

Once a decision to expand has been made, the appropriate unit cost is then assigned to

the arcs and a minimum cost network flow (MCNFS) problem is solved. A branch and

bound algorithm can be utilized to determine the optimal arc expansion plan.

Branch and bound is a powerful tool that allows a difficult combinatorial problem

to be solved without enumerating the solution space. At each node in the branch and

10



Concave Cost Function
Y = A+BtX

40

35
30

25

>020

15

10

5

0
3 4 50 1 2

X
6 7

Figure 4.1 - Concave Cost Function

Concave Cost and
lin~ Function

35-.-------..:..---:--------,

30

25

765432o

".'.'.".'"","
"".',"

",,~-.'.".'.'.',".'.'.',"
"o ......

5

10

20

(>0 15

-l..J

x

Figure 4.2 - Concave and Linear Cost Function

11



BRANCH AND BOUND TREE

x={xl,x2} x={xl~x2} x={Xl,x2} x={xl,x2}

Figure 4.3 - Branch and Bound Tree

12



bound tree(Fig 4.3), a certain concave flow, Xi\) is picked or "branched on" to be fixed

to O(closed) or allowed to be greater than O(open) and placed into the set X. Any

variable not yet branched on is unassigned. By systematically branching on each concave

arc, the solution space will eventually be enumerated. However, branch and bound has

the ability to implicitly enumerate the tree by fathoming(eliminating) sub-optimal

branches. To do this, a bound, ZB, whichis the best solution found to the problem so

far, is compared to the bound at a particular node, ZA' If ZA > = ZB' continuation on

that branch will only provide a sub-optimal solution, so that node is fathomed.

To return ZA for each node, the MCNFS is solved by separating the objective

function as follows:

TNt N
Z=minL Lpt-lAi(Xit)+L Lpt-lBi(x)

t=li=l t=li=l

The variable portion of the cost function, BiO, is the only cost passed to the MCNFS.

To enforce the "fixing" of variables'; the actual variable cost on the concave arcs changes

according to its status in the branch and bound node:

The M cost(analogous to Charnes' Big M) is an infinite cost assigned to closed arcs. If

a feasible solution exists only with this arc included it will be reflected in the value of

The function, e'l(xiJ, is calculated using the capacity, Kil , associated with the arc

13



xit• Although this is an uncapacitated problem, the minimization of the objective function

will drive each facility i in each time period u to at most meet demand for period u to

T, for itself and facilities j to N, j > i. This value is calculated as follows:

N T

Kjt=E E rjt
j=it=u

The underestimate cost function, eit , for unassigned variables is defined as:

This approximation(Fig. 4.4) provides a linear estimator for the unassigned arcs within

the branch and bound scheme. Since this function incorporates the implicit capacity and

the fixed cost into the estimate, it will provide the MCNFS with a better picture of

choosing this arc to expand. MCNFS will return an approximate solution, ZA since only

the variable portion of the objective function is passed to it. The MCNFS is solved at

each node in this branch and bound approach.

Once a ZA is returned by MCNFS, it is compared against Zn, and the branch and

bound proceeds as follows:

1. If ZA < ZB, a new value ZF is calculated which adjusts ZA by incorporating
true variable and fixed information:

ZF=ZA;
for each unassigned xit with xi,>O:

ZF=ZF+Aj+(Bj-e) *\t;

If ZF < ZB, replace ZB with ZF'
Branch on the next unassigned variable.

2. If ZA > = ZB, fathom the node.

14



Concave Cost Function
with linear Underestimate

35r---------------~

7654
x

32o

.'.'.. '
""".. '

""".....'
"",".'

".',".'
"","

""o "

5

25

10

30

20
><

15

Figure 4.4 - Concave Cost Function with Linear Underestimator

15



Notice that a node can only be fathomed for strp 2's condition. The adjusted Zp cannot

fathom the node since the costs on the arcs change as the branch and bound tree expands..

Zp is a valid solution as all costs are adjusted for the unassigned variables based on the

flow returned by MCNFS, so it can replace Zn. However, further branching from this

node may yield different flows on previously unassigned arcs due to cost variability.

16



CHAPTER 5

BRANCH AND BOUND SEARCH STRATEGIES

When a branch and bound procedure is implemented on a computer, it can be

quite memory intensive, since the number of distinct solutions for any problem that exist

is 2M
, wher M=number of variables. For the CEP, there are N*T such variables, which

are all the concave arcs. The number of total branch and bound nodes(BBNODES) that

could be solved during the procedure is:

To generate the BBNODES, there are two rules typically used: depth first search(DFS)

and breadth first search(BFS).

5.1 Depth First Search

A DFS generates both sides of the branch nodes BBNODEI {xO=O} and

BBNODE2 {xO= I}. It picks one side, BBNODE2, solves the problem, and generates 2

new nodes with an additional arc fixed. For example, suppose arc xl is picked, the 2. !1I "
new nodes are: BBNODE3{xO=O,xl =O} and BBNODE4 {xO=O,xl = I}. In DFS, th(e---tJ

last node created, BBNODE4, is evaluated and then 2 new nodes may be generated, etc.

This continues until a BBNODE is fathomed and the procedure backs up a level. If DFS

picked BBNODE4 to evaluate and it was fathomed, we would next solve BBNODE3. It

may branch to include more variables, and thus create more BBNODES. If BBNODE3

was fathomed also, the only node left to evaluate is BBNODEI. Once evaluated, it may

generate BBNODE5 {xO=O,xI = I} and BBNODE6 {xO=O,xI =O}. BBNODES that

17



have been created but not evaulated(active nodes) may be fathomed if the associated ZA

exceeds Zn at some point. Although a BBNODE has not been evaluated, it inherits its

parent ZA value as a lower bound to its eventual solution. When no more nodes are left

to be evaluated a solution has been found.

5.2 Breadth First Search

BFS works the same way but before branching down a level both BBNODEI and

BBNODE2 are evaluated to pick a winner with the "best" Zp. Two new problems,

BBNODE3 and BBNODE4, are generated from the winner, say BBNODEl, and now

BBNODE2, BBNODE3, and BBNODE4 are compared to decide a new winner. ZA is

continually evaluated against Zn in case it can be fathomed, and excluded from the

comparison. The difference between DFS and BFS is the status of the active

BBNODES. Active BBNODES in BFS have already been solved and are used to

determine which node to branch on. DFS active nodes have not been solved and

branching is done with the most recently solved node unless fathomed. If fathomed, the

next BBNODE is chosen according to a LIFO rule. BFS strategy will tend to generate

more BBNODES on the active list, since it continually searches the active list to

determine which problem to solve next. Both rules have their merits, and many

researchers use a combination of the two to achieve fast results.

18



CHAPTER 6

IMPLEMENTATION OF BRANCH AND BOUND APPROACH

6.1 Sequential Implementation.

The sequential implementation of branch and bound is solved using three different

-'Co approaches: DFS only, BFS only, and a combination of BFS and DFS. Each node

contains the complete information to solve the MCNFS. It is necessary to keep some

redundant information since costs change relative to the status of Xit (unassigned, open,

closed). By retaining all the information at each node, the whole branch and bound tree

does not need to be saved. Each time two new nodes are created, the parent node is

destroyed, since the children inherit complete information.

The DFS and BFS only approaches uses the strategies as described in Chapter 5.

At worst, N*T nodes will be on the active list for DFS, where the worst case is going

to the bottom of the tree before fathoming branches. Since the amount of information

retained for each node is not trivial, the DFS approach allows large problems to be

solved without exhausting computer memory. The BFS approach will generate more

nodes and larger problems cannot be solved sequentially.

To utilize the features of BFS and extend the size of the problem solved, a hybrid

of the two strategies was developed. The algorithm solves DFS until the size of its list

is twice the number equal to N*T. It then switches to BFS until the list size is strictly

less than that. This hybrid method helps DFS to stop branching and producing n-ew

problems on what may be a sub-optimal part of the tree. By turning to BFS, a better

bound may be found, and consequently fathom out nodes on the active list.

19



The sequential branch and bound approaches were implemented on an IBM RISC
\
workstation using a combination of C and C++. The MCNF algorithm used in the

sequential and parallel implementations is proprietary software written by Dr. Louis J.

Plebani of Lehigh University. The location of all source code is given in Appendix A.

6.2 Parallel Implementation.

The branch and bound procedure in parallel operates asynchronously using an

multiple instruction multiple datastream(MIMD) approach. This approach allows each

processor to oper~te on different data sets and to perform a different set of instructions.

Although each processor will solve a branch and bound problem, each one operates

asynchronously, so that each processor could be at different stages in the solution. There

was a fixed number of processors, MPROC, available to solve the problem, and the

branch and bound tree was parsed accordingly. Each processor is initialized with some

concave arcs assigned to open or closed, which is dependent on the number of

processors. For a problem with 4 processors, each machine would be initialized as

shown in Figure 6.1. Using the properties of CEP, an additional concave are, XlI' the

expansion of facility I in period I, is fixed to open only, as no other facility can meet

its demand through a conversion. All feasible solutions must include Xli =1 due to this

property.

A process manager exists to control MPROC processes and provide

communication among them. Ideally, each processor solves one BBNODE on its active

list and reports its results. MPROC processes asynchronously report results such as

20



PARALLEL BRANCH AND BOUND TREE

X={ }

X={xl,x2} X={xl,x2} X=(xl,x2} X={xl,x2}

Figure 6.1 - Branch and Bound Tree in Parallel

21



BUSY, IDLE, and NEWLB to the manager and receives instructions such as

CONTINUE, NEWLB, and NEWBBNODE. A BUSY process is one that has active

BBNODES to solve, whereas an IDLE process has an empty BBNODE list. A process

may also return a new lower bound, NEWLB, in addition to the process status. If the

manager receives NEWLB, it then broadcasts the NEWLB to each process. Each

process will then manage its active BBNODE list to see if any node exceeds NEWLB.

If a manager receives an IDLE message, it will attempt to find a BBNODE from

a BUSY process to pass to the IDLE process. The manager will query the BBNODE

that reported the last NEWLB on the assumption that that part of the tree may yield the

global solution. This effectively transfers part of a branch and bound tree from one

processor to another. The queried BBNODE will take a problem off its active list to

give to the idle processor. It will fail if the queried BBNODE does not have more than

two nodes left to solve. This condition exists because empirical results show the time

to solve one branch and bound node is quite small, approximately 0.007 seconds for

problems sampled in this research. Transfer of a new problem and reinitialization of the

idle processor will take considerably more time than the above. It is more efficient to

leave the processor idle than force a transfer. If unable to find a BBNODE, the process

remains IDLE until a BBNODE can be found for it to solve. When all nodes are IDLE,

the optimal solution has been found.

To implement the parallel strategy described above, the software LINDA from

Computer Science Associates was used. The branch and bound code and process

manager was written in ANSI C and C+ +. LINDA provides the TCP/IP protocols

22



needed to remotely execute processes across a network of IBM RISC workstations.

Since the processors are distributed across this network, there is considerable overhead
I

in communication such as reporting processor status. A processor only reports NEWLB

and IDLE to the manager which is dedicated to process management. The processors

only read NEWLB once every few cycles instead of every cycle, where a cycle is a

branch and bound node. When trying to write a new NEWLB, the processor will read

in the latest NEWLB so that it will only report a true NEWLB. There exists a tradeoff

between communication overhead and knowing perfect information, but the time to solve

a node is so small that checking every few cycles provides a performance improvement.

This is discussed more in Chapter 7.

As with the sequential implementation, three variations of the branch and bound

strategy at each node were used: DFS only, BFS only, and DFS-BFS and compared

against the sequential implementation. In addition to that, re-initialization of processors

can also use BFS or DFS to determine which problem to give to the idle processor. Re-

initialization strategy was also varied along with the problem selection.

Using only a DFS search strategy effectively implements a hybrid of DFS and

BFS. Each processor gets the NEWLB from the manager on a timely basis and can

fathom its own active list from it. Since MPROC nodes are being solved at one

iteration, the process manager is employing a BFS-like strategy by passing the best

known ZB to all processes. If the number of cycles is lengthened before reading the

NEWLB, the greater the chance that it would be solving many sub-optimal nodes and

lose all advantages of parallel processing.
/'

23



With the BFS only strategy for the parallel implementation, the same limitations

apply as with the sequential approach. The Linda software uses shared memory

distributed across all processors so that less memory is available to each processor than

normal. Due to this, some problems may be able to be solved sequentially with BFS,

but not in parallel. However, since parts of the tree are distributed on different

processors which do communicate NEWLB, the active list size may be small enough to

compensate for the loss in memory. Since the size of the list is still critical in terms of

memory, the hybrid approach was also implemented in parallel. Due to communication

overhead and a cycle length > I, each processor may not have the latest NEWLB, and

could be generating and solving sub-optimal problems. The same rules for switching

from DFS to BFS and back still apply.

24



CHAPTER 7

PERFORMANCE MEASURES

To judge the performance of the branch and bound algorithm in sequential and

parallel configurations, several statistics were necessasry besides total time to solution.

Measures such as load balancing of each processor are considered important to identify

areas of performance gain and loss. In a distributed parallel environment, knowledge of

the frequency of communication among processors is also necessary to judge and tune

performance. Preliminary results from sample problems can be used to determine the

configuration of the branch and bound parallel algorithm to yield good results over a

larger set of problems.

Time to solution was measured for both configurations and a speed-up S, was'

computed to determine the increase in performance from sequential to parallel:

S=l-!.e.
t,

ts is the time to solution sequentially, and 1p time to solution in parallel. It is possible for

S to be negative if the parallel implementation is not efficient.

In both configurations, the number of total nodes and bottom nodes solved was

kept. Bottom nodes solved is the number of times the algorithm completely fixed all arcs

to open or closed before fathoming the branch. In a DFS strategy, it is expected that this

number will be greater than with BFS. As the number of processors increases, a BFS-

like strategy is implemented, and will fathom a branch before reaching a bottom node

25



so that less bottom nodes will be solved. Table 7.1 shows a sample problem where each

processor uses a DFS strategy to select nodes to solve. Parallel-I uses DFS also to

reinitialize, and Parallel-II uses a BFS reinitialization strategy. The number of total

nodes solved increases due not only to the BFS-like strategy, but also to other factors

such as communication delay and unbalanced loads.

In the parallel configuration, the frequency with which a processor reads the new

lower bound and checks messages affects performance tremendously. When processors

read messages after each branch and bound node solved, the performance gains are

completely obscured. In effect, the processors are continually competing to gain access

to the NEWLB and spending more time checking messages than solving nodes. To fix

this problem, each processor will read messages after a number of cycles C, where a

cycle is 1 node that has been solved. Total solution time was used to measure the

difference in performance for different cycles, and was used to determine the "optimal"

cycle length for a problem. If any strategies were varied, the "optimal" cycle length was

re-investigated before running a suite of problems. Table 7.2 exhibits the difference in

performance for a sample problem of 224
, where BPS reinitialization was used. Although

the total time does not strictly decrease as the number of cycles is increased beyond 15,

this can be attributed to network noise. Using the results of Table 7.2, a cycle length

of 20 would be used.

Another factor that affects the speedup of the solution is the load balance of each

processor. Each processor is randomly assigned a node in the tree to begin the

alogrithm, where the number of variables fixed is dependent upon the number of

26



Sequential VS. Parallel DFS
MPROC Total Nodes Bottom Nodes Max Nodes

1 560 19 560
2 -PI 914 0 648

3 862 0 366
4 614 0 260

5 784 0 354

6 751 0 329

7 674 0 303

8 808 0 328

9 693 0 216

2-PII 1008 0 510

3 877 0 332
4 809 '-./l 0 237
5 760 0 178
6 729 0 200

7 645 0 205

8 666 ~, 0 207
9 783 0 186

Table 7.1 - Sequential vs. Parallel DFS

Total Solution Time(sec) for Cycle Variation
Cycle

MPRO 1 5 10 15 20 25 30
2 8.01 4.69 3.94 4.35 3.84 4.14 4.36

3 5.32 3.10 2.92 2.35 2.56 2.69 2.48

4 4.06 1.82 1.38 1.87 1.86 2.36 1.69

5 4.07 2.50 2.00 2.03 1.52 1.36 1.47
6 3.03 1.88 1.16 1.15 1.25 1.15 1.98

7 2.56 1.34 1.91 1.10 1.50 0.73 0.83

8 2.94 1.64 1.75 1.51 1.38 1.66 0.53

9 2.11 1.84 1.44 1.55 1.09 0.81 1.06

Table 7.2 - Cycle Variation Performance

27



processors available. Although the processors are randomly assigned, the variables that

are fixed are in order Xl first, then X2, X3, etc. If the problems do not keep the processor

busy, processors become idle while other processors are busy. To correct this

unbalanced load, idle processors can request a NEWPROB. This extra communication

overhead of passing problems to idle processors affects the total solution time as shown

in Table 7.3. For small problems < 220, it is better to leave the load unbalanced since

average node solution time is 0.007 seconds, and the number of total nodes solved will

be small. In large problems, as shown for a 236
, not reinitializing an idle processor

takes away any performance gains.

To help identify unevenly loaded processors, the total number of nodes solved on

each processor can be used. A set of problems can be run without reinitialization of

processors to show how the tree was initially distributed with respect to work load.

Figure 7.1 shows the workload of 7 processors solving a 236 problem. The

reinitialization strategies can then be varied to compare improvement in workload. The

maximum number of nodes solved by one processor out of MPROC processors for 1

problem can be used to judge the improvement.

28



vVorkload of Processors
without Reinitialization

140000~----------------

120000
'0
~
'0 100000
Ul
to

~ 80000
~
'\:l 60000
l-t
(IJ

S 40000

i
20000

o

/

Pro.cessor

Figure 7.1 - Processor Workload

Total Solution Time(sec),
No Reinitialization

MPRO NT=2 NT=3
Seq 0.68 258.1

2 0.39 495.7
3 0.4 332.4

4 0.33 397.1

5 0.4 443.5

6 0.28 454.1

7 0.14 457.3
8 0.24 443.5

9 0.31 431.2

Table 7.3 - Solution Time for No Reinitialization of Processors

29



CHAPTER 8'

RESULTS

To test the various strategies proposed, a two facility problem was used where the

planning period was varied from T=5 to T=20. Luss[2] developed a set of test problems

for a heuristic and his parameters for the concave cost function and demands were used

here. Fixed costs for both facilities equaled 4000, and the respective variable costs were

33 and 24. Three variations on demand were used:

1. 'It='2t=50;
2. 'It=50, '2t=30;
3. 'It=50, , 2t=75.

MPROC processors were varied from 2 to 9, and included a dedicated system manager.

Five experiments were set up which varied the strategies in choosing what

problem to solve and reinitializing idle processors:

EX1: DFS to select a problem; No reinitialization of idle processors.
EX2: DFS to select and reinitialize.
EX3: DFS to select; BFS to reinitialize.
EX4: BFS to select and reinitialize.
EX5: Hybrid BFS/DFS to select; BFS to reinitialize.

Since the sequential implementation does not need a reinitialization strategy, only

experiments of DFS, BFS, and BFS/DFS selection strategy were necessary.

As discussed in Chapter 7, a test set of N=2,T= 12 for demand variation 1, was

run on each experiment to determine optimal cycle length. By lengthening the cycle, the

number of sub-optimal nodes solved increases since a processor does not read a NEWLB

after each BBNODE solved. The number of bottom nodes solved increased for the DFS

30



strategy-based experiments. Table 8.1 exhibits the total solution time and nodes solved

"
for MPROC =5 versus a cycle length of 1 and the optimal cycle length chosen for each

experiment.

Reinitializing the idle processor with a new problem involves some overhead

which is not specifically quantifiable as the LINDA software does not provide this

capability. However, results from total solution time show the decrease in performance

as processors are reinitialized which is consistent for all problems. It is necessary to

reinitialize the processor with a problem which will keep the processor busy for a long

period of time. Unfortunately, this involves more work than simply popping the first

problem of a busy processor's list as in the DFS approach of LIFO as done in EX2. To

improve performance, the BFS reinitialization was implemented in EX3. When a

processor is queried for a problem, it will employ a BFS problem selection strategy in

picking out a problem for the processor. In this way, a processor has a better chance of

staying busy longer, although there is no guarantee of that. Table 7. I also demonstrates

the maximum number of nodes solved by 1 processors for the 224
. with a BFS

reinitialization..BFS reinitialization redistributes the load better and tends to minimizes

the maximum number of nodes solved on 1 processor. Table 8.2 summarizes the results

of this switch for MPROC =4. With these results, the DFS approach of re-initialization

was abandoned. Although DFS reinitialization can provide a positive speed up for some

values of MPROC, BFS consistently provides a better ratio for all values.

The remaining experiments, EX3-5, vary the selection strategy in choosing the

next problem to solve within each processor. Figures 8.1-3 depict the total solution time

31



EX5EX4

Cycle Length

EX2 EX3EX1

I I 1 Opt=15 1 Opt=20 1 Opt=30 1 Opl=20 1 Opt=25olal Time 6.23 3.72 3.46 2.32 4.07 1.47 4.71 1.62 I 4.79 0.95olal Nodes 779 991 580 941 760 1011 460 549 I 503 609
~ottom Solved 0 9 0 9 0 14 0 1 0 0

Table 8.1 - Total Solution Time vs. Cycle Length

BFS vs DFS Reinitialization
NT=20 NT=36

T S T S
Seq 0.68 - 258.05 -
No Reinit 0.33 0.51 397.12 -0.53
DFS 0.7 -0.02 298.28 -0.15
BFS 0.41 0.39 122.12 0.52

T=total solution tlme(sec)
S=speed up ratio

Table 8.2 - BFS vs DFS Reinitialization

32



Total Solution Time vs. Processors
Demand Variation 1, 1'=15

9

,,,,,

8

,,,,,,,,,,,,
" ,

'",

456 7
Number of Processors

3

14

12
1o+-------r----.-----r----,r---~--_.___-_J

2

30,-----------------------,

28

26
] 24

{J]

'-" 22
,§ 20
Eo<

aI 18
() 16
Eo<

Figure 8.1 - Solution Time vs Processor, Variation 1

Total Solution Time vs. Processors
Demand Variation 2, 1'=15

10..,---------+---------------,

98456 7
Number of Processors

3

(j' 9
~
{J]

] 8
Eo< 7
Q
.9 6
+l

.8 5a
aI 4...--
+l

E3 3

2+-------r----.-----r----,r---~--_.___----j

2

\.......- EX3 ..+-, EX5 - EX4 I

Figure 8.2 - Solution Time vs Processor, Variation 2

33



Total Solution Time vs Processors
Demand Variation 3, 1=15

9

...........
+............ 1IIl .... " ..... "'+•• __ •••• -+ .... ............

5 6 7 8
Number of Processors

43

120-,---------------------,

110
100

0' 90

i ~~
Eo< 60
~ 50
+oJ

~ 40
30
20
10+-----,----.-----.-----,-----,-------,-----1

2

\- EX3 --+0"' EX5 - EX4 I

Figure 8.3 - Solution Time vs Processor, Variation 3

34



of the 3 strategies versus the number of processors for each demand variation when the'

planning horizon equals 15. EX3 outperforms the other 2 strategies for demand

variations 2 and 3. For variation 1, EX4 does better overall. When the horizon is

increased to 18 and 20 as in Figures 8.4-5, EX3 performs considerably better for

MPROC > 5. In reviewing all figures, EX3 provides a solution quicker than EX4 or

EX5 when the number of processors is not small. By looking at the maximum number

of nodes solved by a processor for each demand variation, it can be shown why EX3

does not perform well sometimes. Table 8.3 shows that EX3 solves 3 times as many

nodes than EX4 or EX5 when MPROC=2. As the number of processors working on

a problem increases, the maximum nodes solved decreases for EX3. EX4 and EX5 do

not decrease due to cycle lengths and the initialization of the processors.

Speed up ratios were calculated for EX3 versus the sequential time to solution.

Figure 8.6-8.8 exhibit the ratio versus the number of processors assigned to the problem.

When there are two processors to solve the problem, the communication overhead causes

the parallel process to take longer which results in a negative speed up. Given the

communication overhead involved in adding another processor and the problem with

which it is initialized, it may not contribute positively to speed up. This can be seen in

Figure 8.6 where adding a sixth processor decreases the speed up ratio. The speed-up

then increases for additional processors from that point, and eventuallysurpasses the ratio

when MPROC=5. In general, network noise can also contribute to decrease in

performance, but cannot be measured by the Linda software.

The speed up curves are not expected to be strictly increasing. At some point,

35



adding more processors to a specific problem may not yield any performance

improvement. Since each processor must communicate it will decrease speed up. Since

there were only 10 processors available for experimentation, a saturation point was not

reached. The speed up curves cannot determine the optimal number of processors to

assign to a problem. To do this, the network load must be monitored closely. It would

not necessarily be correct to factor out the load from the speed up if these problems were

to be run when the network has other traffic. The speed up ratio should reflect the

conditions of the network when the problem is run.

36



Total Solution Time vs. Processors
Demand Variation 2, 1=18

98456 7
Number of Processors

3

60...,.----------------------,

055v
00

""" 50
.§ 45
Eo<

~ 40

~ 35
.E
Vl 30 ,.................... ... ~al 25 .- +•••••••••+•••••
~ .'
~ 20 ", 'J:7·-_--~
t'""" ............ ,.

'+- •••••••. of'15+---,------r------r----,----.,-------,------j
2

Figure 8.4 - Solution Time vs Processor, Variation 2, T= 18

Total Solution Time vs. Processors
Demand Variation 2, 1=20

9

"'+ -+..
~~,-~ + ...•....•

5 678
Number of Processors

43

240..----------------------.

0220
~

] 200

Eo< 180
~

.S 160 ~c-c----'r-..
~

.E 140
Vl
al 120
~

~ 100

80+----,-----.---.-----,-------.-----...--~

2

1- EX3 --+ .. EX5 - EX4 1

Figure 8.5 - Solution Time vs Processor, Variation 2, T=20

37



Speed Up for EX3
Demand Vanation 1, 1'=15

0.6.----------------------,

0.5

0.4

0.3
A
~ 0.2
'd
q;

li 0.1
UJ

9875 6
Processor

43

o .

-0.1

-0.2

-0.3+---,---.------.----.-----.-----,-------l
2

Figure 8.6 - Speed Up for EX3, Variation 1, T=15

Speed Up for EX3
Demand Vanation 2, 1'=15

0.8...,-----------------~

0.6

0.4

A
~ 0.2
'd
q;li 0 .

UJ

-0.2

-0.4

-0.6-1----,---...,.-------r---.------,----.-~---1

2 3 4 5 6 7 8 9
Processor

Figure 8.7- Speed Up for EX3, Variation 2, T= 15

38



Speed Up for EX3
Demand Vanation 3, 1'=15

0.8-.-------------------,

0.7

0.6

0.5

A 0.4
::J 0.3
"d
~ 0.2
A

UJ 0.1
o ..

-0.1

-0.2

~32 3 4 5 6 7 8 9
Processor

Figure 8.8 - Speed Up for EX3, Variation 3, T= 15

Maximum Nodes Solved
MPRO EX3 EX4 EX4

2 6197 2116 2053
3 4051 1982 2196
4 2574 2029 2132
5 2283 2118 2141
6 2417 2153 2140
7 1569 2153 2113
8 1580 2153 2141
9 1422 2153 2110

Table 8.3 - Maximum Number of Nodes Solved

39



CHAPTER 9

FUTURE RESEARCH

The results of this research using networked workstations are very promising.

Future research will include writing network code tailored specifically for the problem

of interest. Since the Linda software is generic as to the application, an unknown

amount of unnecessary overhead may exist for a specific problem. Network code which

is specific to a problem should improve performance over the Linda software. Solution

times vary widely for a problem due to other traffic on the network, and it is difficult

to judge the true application overhead with other traffic without a measure of network

traffic. Specific code will gather statistics on network load at run time and the amount

of time spent passing messages.

To improve performance at the processor level for the CEP, a better branching

strategy should be investigated. Currently, the algorithm picks the next variable off the

list to fix, but a more thorough analysis of the problem parameters could yield a more

efficient strategy. For example, a sample problem where demand for facility 1 is less

than for facility 2 requires more nodes to be solved than a problem where the opposite

is true. Changing the branching strategy for this case based on demand may present

better results.

Problems larger than 240 should be run to better determine the speed up in a

networked environment. In this research, sequential problem solution time for this size

of problem over different strategies took no more than one hour, and small problems

were solved in a matter of seconds. Nine processors assigned to a problem only

40



provided the power of three processors due to communication overhead and network

traffic. Since communication overhead clearly affects speed up, problems which take

hours to solve sequentially may have a better speed up ratio, even for a small number

of processors.

The load balancing of the processors should be examined as a way to make the

algorithm more efficient. Load balancing can be looked at in two different places: the

initialization of the processors, and the re-initialization of idle processors. The current

algorithm simply fixes the variables in order based on the number of processors. The

same research done for branching could be used here to determine which variables should

be fixed first to minimize the number of nodes solved. If this is possible, the load may

be better balanced. Initialization strategies should be varied against search and

reinitialization strategies(EXI-EX5) to optimize the algorithm. Reiniti~ization of

processors could be more efficient if it was passed a number of problems to be solved.

This would increase the communication overhead, but if that number of problems could

be varied as to the length of the list on the queried processor then the overall system

would benefit. This is a fairly straightforward investigation, and once the overhead

statistics are in place, performance could be measured accurately.

It is also possible that a problem may benefit from redundant processors.

Redundant processors are initialized with the same part of the tree, at the same time.

They should employ different branching and/or search strategies so that they are not

solving the same nodes at the same time. Although the tree is parsed into smaller

sections due to redundancy, it may fathom the tree quicker due to variations in strategies.

41



For example, one processor could perform DFS to get a good solution quickly while the

other redundant one performs BFS to help fathol1:t out sub-optimal solutions. By

communicating frequently, these processors may find a good solution quickly and limit

the number of sub-optimal nodes solved. A good tandem strategy should yield less

overall nodes solved than by using BFS only, and limit the number of times it goes to

the bottom of the tree as in a DFS strategy.

42



REFERENCES

[1] Lee, S-B., and Luss, H., "Multifacility-type Capacity Expansion Planning:
Algorithms and Complexities", Operations Research, 35, 249-253(1987).

[2] Luss, H., "A Capacity Expansion Model for Two Facility Types", Naval
Research Logistics Quarterly, 26, 291-303(1979).

[3] Luss, H., "Operations Research and Capacity Expansion Problems: A Survey",
Operations Research, 30, 907-947(1982).

[4] Luss, H., "A Multifacility Capacity Expansion Model with Joint Expansion Set
Up Costs", Naval Research Logistics Quarterly, 30, 97-111(1983).

[5] Luss, H., "A Heuristic for Capacity Expansion Planning With Multiple Facility
Types", Naval Research Logistics Quarterly, 33, 685-701 (1986).

[6] Manne, A., Investments for Capacity Expansion: Size, Location and Time
Phasing, George Allen and Unwin, London.

[7] Verter, V., and Dincer, M.C., "An integrated evaluation of facility location,
capacity acquisition, and technology selection for designing global
manufacturing strategies", European Journal ofOperational Research, 60, 1-18
(1992).

[8] Zangwill, W., "Minimum Concave Cost Flows In Certain Networks",
Management Science, 14, 429-50 (1968).

43



APPENDIX A

The source code for the parallel and sequential branch and bound algorithms is

on file with:

Dr. Louis J. Plebani
Lehigh University
Dept of Industrial Engineering
200 W. Packer Ave.
Bethlehem, PA 18015
215-758-4038

To obtain a copy of the source code, contact Dr. Plebani.

44



VITA

Margaret K. Mayer
8 Sixth Street

Frenchtown, NJ 08825
908-996-4912

DOB: 7/6/66
Place of Birth: New Haven, CT

EDUCATION
DOCTOR OF PHILOSOPHY CANDIDATE
MASTERS OF SCIENCE DEGREE
Department of Industrial Engineering
Lehigh University, Bethlehem, Pennsylvania

Expected December 1994
Expected May 1993

BACHELOR OF SCIENCE DEGREE May 1988
School of Operations Research and Industrial Engineering
Cornell University, Ithaca, New York

WORK EXPERIENCE
Instructor
Lehigh University January 1992 to May 1992
Taught a Software Tools course which presented the basics of Quattro Pro and
C language. Responsibilites included preparation of lectures and creation of
homework assignments and projects.

Grader
Lehigh University September 1991 to December 1991
Created and graded homework assignments for Engineering Economy and
Inventory Control. Assisted professor in creation of exams.

Assistant Database Administrator
Greenwich Capital Markets, Greenwich, CT December 1988 to July 1991
Provided technical and analytical support to mortgage backed sales and trading
efforts. Preparation for analysis included converting raw data to summary reports~

using Sybase database, C language, and Unix operating system. Maintained'
system integrity of existing databases and designed new databases.

PUBLICATIONS
STANDARD HANDBOOK OF PLANT ENGINEERING Summer 1992
Edited Chapter 8, Materials Handling, as an independent consultant to K. W.
Tunnell Co. Responsible for updating the text and graphics.

45




	Lehigh University
	Lehigh Preserve
	1993

	A parallel branch and bound algorithm for the multi-facility capacity expansion problem using networked RISC workstations
	Margaret King Mayer
	Recommended Citation


	00080
	00081
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113
	00114
	00115
	00116
	00117
	00118
	00119
	00120
	00121
	00122
	00123
	00124
	00125
	00126
	00127
	00128
	00129
	00130
	00131

