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ABSTRACT ,-_

The investigation examined the application of electrorheological (ER) materials in

adaptive or intelligent structural systems. The first phase of this investigation

characterized the linear viscoelastic behavior of ER material 6533-30B obtained from

Lord Corporation. The material behaved linear viscoelastically up to approximately 1%
I

strain within an electric field range from 1.5 to 3.0 kV/mm and a frequency range from 0

to 50 Hz. The yield strain was dependent upon electric field and slightly dependent upon

frequency. A positive correlation existed between electric field and yield strain and a

negative correlation existed between frequency and yield strain. Within the linear

regime, the material behavior, as quantified by the complex shear modulus, was

dependent upon electric field. The modulus increased in a parabolic manner with

increases in electric field. These experimentally determined properties were substituted

into the Ross, Kerwin, and Ungar, and Mead and Markus models that predict dynamic

response of 3 layer composite beam structures. The models predicted the resonance

frequency of the experimentally fabricated structures, but was less effective in predicting

the damping of those structures. In addition to simple beam structures, an experimental

feasibility analysis of a multi-electrode ER based structure was done. The resonance

frequencies of the structure changed dramatically when various electrodes were

activated. The modal shapes changed less dramatically when different panels were

activated.
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CHAPTER 1: INTRODUCTION TO ELECTRORHEOLOGICAL MATERIAL

ADAPTIVE STRUCTURES

1.1 What is an electrorheological (ER) material?

Electrorheological (ER) materials are suspensions of dielectric particles in non

polar liquids that exhibit dramatic reversible changes in rheological response when

exposed to an electric field. A simple physical description of the behavior is that the

material transforms from a liquid without an "applied field to a solid like gel with an

applied field. A mechanism for this transformation is the formation of particle chains

aligned with the applied field as seen in Figure 1.1.1. Several papers have reviewed the

causes of this phenomenon [1-4,50].

Before discussing possible mechanisms for the ER phenomenon, it is important to

comprehend the physical restructuring of the ER material components that occurs when

the material is exposed to an electric field. Winslow's early work demonstrated the

formation of a fibrous mass when particles suspended in low viscosity oils were exposed

to an electric field [5]. He suggested that the mutual attraction of spherical particles in

regions of high electric field intensity leads to the formation of particle chains between

electrodes. In the presence of a shear stress, the equilibrium that is established between

the formation and breaking of the inter electrode chains corresponds to the yield strength

defined in the Bingham plastic model described later in this section [6]. When the

electric field is removed, the particles return to a random distribution allowing fluid flow

to resume. Several microscopy studies have provided evidence for the existence of these

fibrillated structures [5, 7-9].

2
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Figure 1.1.1 ER Phenomenon a)no electric field b)with electric field applied
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The primary criticism of particle fibrillation has been that the amount of time

required for mass migration does not correlate with the millisecond response time

observed for the electrorheological effect. However, the question that needs to be

answered is not so much as to whether particle fibrillation occurs, but rather what

happens to these particle chains under shear? Most of the concern over the formation of

a single fibril structure or the lack of this structure in an ER material is academic from an

application point of view. Utilization of ER materials in any practical device requires

such a high loading of particles that individual chains are not discernible. In this case,

the formation of thick columns or three dimensional particle structuring is evident [9-11].

Although it is generally accepted that the electrorheological phenomenon

originates from particle polarization induced by an electric field, no consensus regarding

the mechanism for the observed effect has been reached. Klass and Martinek were the

first to propose the induced polarization of the double layer surrounding each individual

particle in the fluid as a plausible mechanism for the electrorheological phenomenon [12,

13]. This double-layer can be defined as the asymmetric distribution of charges caused

by the influence of an external potential. The main criticism of this mechanism has been

that the Debye length of the double layers surrounding the particles is too large. In fact,
0,

it can be argued that the extent of an individual double layer is often greater than the

distance actually separating the electrodes. This inconsistency led Stangroom to propose

that water acts as a bridge between particles through an electro-osmosis process [8, 14].

This mechanism assumes that ions trapped within the pores of the particle increase their

mobility by dissolving in the water. In the presence of an electric field these mobile ions

shift the water layer surrounding the particle toward the oppositely charged electrode.

Thus one side of the particle becomes overly saturated with water. Overlap of the water

between the particles is considered to be the bridge or glue that causes the ER effect.

4



Although it is possible that this mechanism is active in systems inherently containing

water, the development of ER materials containing semiconducting particles [15], lithium

hydrazinium sulfate [39], and substantially "anhydrous" alumino-silicates [16] has

eliminated the possibility of the presence of water being a necessary prerequisite for the

observation of the ER effect. A third mechanism that has been proposed to explain the

ER phenomenon is simply particle polarization [1, 5, 17-19]. It has been suggested that

the origin of polarization [1], such as charge migration through the bulk, on the surface

or in the double-layer, does not matter. Once polarization has been established, the

interaction of inter particle coulombic forces leads to the formation of a fibrillated

network. Again, from an design engineering point of view, this is all academic. The

macroscopic, rather than the microscopic, properties of the material are going to define

how the engineer chooses the design. With this in mind, the macroscopic rheological

characteristics of the material when exposed to different excitations - the two most

prevalent being steady-state shear and dynamic excitations - have been investigated.

The electrorheological effect initially was defined as the apparent change in

viscosity observed~ the materials developed by Winslow. Although from a

macroscopic point of view, a change in apparent or effective viscosity does occur, the

actual plastic viscosity (11) of the material defined -as the change in stress per unit change

in shear strain rate remains approximately constant as the applied electric field is varied.

In this situation the parameter that changes is the amount of shear stress needed to initiate

flow. An exall,1ple of the typical shear stress versus shear strain rate behavior observed

for an ER material in the presence of an electric field is shown in Figure 1.1.2. A

Bingham plastic model, as described by equation 1.1.1, can often provide a sufficiently

accurate description of the observed behavior to be used for the designing of ER material

devices;

5.
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't='ty+TlY (1.1.1)

This model recognizes that the property of an ER material generally observed to change

with an increase in electric field is the yield stress ('ty) defining the onset of flow. The
I

electric field induced yield stress, 'ty' and viscosity, 11, are the two most significant

parameters used in designing electroactive devices where flow properties or post-yield

properties are essential [20-22]. The dynamic yield stress ('ty,d) in a Bingham plastic

modeled ER material can be defined as the zero-rate intercept of the linear regression

curve fit. Naturally, the plastic viscosity of the material in the post-yield regime is

accurately reflected by the slope of the linear regression curve fit used in the analysis.

Many scientists have reported observing a higher static yield stress than dynamic

yield stress [1, 23] as shown in Figure 1.1.3. It is suggested that this apparent static yield

stress is related to the transient fracture. of the particle chains which is highly dependent

upon particle size, particle shape, the prior electric field, and flow history of the material.

In designing a device to utilize a particular ER material, it is necessary to consider the
-

possible occurrence of this static yield. Upon returning to the flow regime from the static

situation, the rheology for an ER material is observed to follow the more typical behavior

exemplified by Figure 1.1.2.

The observed static regime is related to the pre-yield behavior observed in Figure

1.1.4. Several studies have investigated the behavior within this regime[23-26]. The

pre-yield regime is defined by a yield strain, 'Yy' and a static yield stress ('ty's)' In reality

there is no such thing as static yield stress, there is always some shear rate, albeit very

small. For primarily elastic materials, the static yield actually is an approximation for the

steady-state dynamic yield characterized by the complex shear modulus G*. The

complex shear modulus can be separated into its real, 0', and imaginary, Oil, parts called

7



the storage modulus and loss modulus, respectively. The loss factor, tan 0, is obtained

through the ratio Gil/G'. For ER materials these properties are dependent upon the

applied electric field. In the design of non-flowing devices, such as flexible or adaptive

structures, control of the pre-yield complex shear modulus is essential.

8

G.



't static y ~

't
dynamic y-..........~

Shear
Stress

Shear Rate

Figure 1.1.3 Observed Post-yield Shear Behavior

Pre-Yield
't static y- -

't dynami~y-

Shear
Stress

y

Post Yield

Increasing
Electric Field

Shear Strain
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1.2 Engineering Applications for ER Materials

The controllable rheological behavior of electrorheological materials is useful in

engineering systems and structures where variable performance is desired. When a

tunable product based on electrorheological behavior is implemented so as to have

sensory and control capabilities, the result is an intelligent material system or an adaptive

structure. In general terms such systems or structures are those that can sense external

stimuli and react appropriately to optimally meet pre-specified performance criteria

There have been many identified applications for ER materials in which there is

research including dampers, clutches, valves, and brakes. Significant advancements

related to these applications have recently been reviewed by Coulter et. al [27,50].

Controllable valves were among the original classes of ER material devices

identified and investigated by Winslow [5]. Provided that th~ial flowing through

the device is an ER suspension, the pressure drop across and flow rate through the device

can be controlled by the application of an electric field. Benefits of ER valves include

fast response time and an absence of mechanical moving parts.

Another class of devices that have been made controllable through the

incorporation of ER material valve technology is machinery and engine mounts. A

sche.~atic diagram of a possible controllable mount configuration is shown in Figure

1.2.1. Traditional fluid filled mounts, which are configured much like that shown in

Figure 1.2.1, are designed to have fluid inertia track characteristics, as well as top and

bottom compliance values, appropriate for specific force transmission applications. The

number, size, and shape of fluid inertia tubes is application specific, and in traditional

mounts is fixed once the mount is fabricated. The introduction of ER valves as inertia

10



Primary Rubber
Spring Element

(Top Compliance)

\

Inertia Track
Containing
Electrodes
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track components brings with it a capability for temporal fluid inertia variation, and as a

result overall mount performance control.

Like ER valves, controllable ER clutches and brakes were originally investigated

by Winslow and reported in his 1949 disclosure [5]. Little was done to further the

d~velopment these devices over the next three decades. Since the early 1980's, however,

ER clutches and brakes have received much attention. ER clutches are based on sliding

plate configurations. They can be set up in either concentric cylinder or parallel disk

configurations as shown in Figure 1.2.2.

Example configurations for the two damper type devices, IChown as fixed plate

and sliding plate dampers, respectively, are shown in Figure 1.2.3. In a fixed plate

damper, the damping force on a piston is realized by the control of the pressure drop

across valve-like channels through which the ER material is forced to flow. In a sliding

plate damper, the damping force originates from the controlled shear resistimce between

.. the moving piston, which acts as one electrode, and adjacent parallel surfaces, which

remain motionless and act as the other electrode. In .both types of damping devices,

accumulators are often required to account for volume variations due to the travel of the

piston rod into and out of the damper cavity.

The inherent advantage of using ER materials in all of these devices is the ability

to alter almost instantaneously their rheological behavior by controlling an applied

electric field giving the device the ability to change it's performance in real time.

One of the latest ER technology applications is in adaptive or smart structures.

Adaptive or smart structures are structures that contain their own sensors, actuation, or

computational and/or control capabilities [28]. There are three classifications of general

structures; passive, semi-active, and active controlled structures. Passively controlled
,.

structures offer no ability to change the already present mechanical system. The design

12
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(a) Concentric Cylinder Configuration (b) Parallel Plate Configuration

!

;.;:

'. ;:::
::::
: : ;:.

: :

{ :;
: :
:','
::

Accumulator I

(0)

v

!

Accumulator

(b)

v

Figure 1.2.3 ER Controllable Damper
(a) Fixed Plate Damper (b) Sliding Plate Damper
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of a passive structure must be predetermined to known operating conditions. There are

two fundamental ways to incorporate variability in a mechanical system. One involves

the addition of mechanical energy to the system (active control), while the other involves

the modification of the mechanical properties of the system (semi-active control). Active

and semi-active sytems comprise the realm of adaptive structures. Piezoelectric,

electrostrictive, magnetostrictive, and shape memory materials are all capable of adding

external mechanical energy to systems, and are useful within the active domain.

Structures comprised of ER material elements have the capability to control their

stiffness and damping; hence are classified as semi-active. A conceptualization of an ER

based adaptive structural system is shown. in Figure 1.2.4. Semi-active systems are

advantageous to passive and active structures in many ways.

ER adaptive structures will potentially be able to replace present methods of

structural damping in which passive polymer damping systems are presently being

employed. In many applications engineers seek to reduce the resonance phenomenon.

Resonance is the most efficient condition for energy transfer and occurs when the forcing
'''...r!

frequency approaches the natural frequency of the structure. To passively dampen the

.resonant response, thin layers of polymer material are sandwiched between the structure

and a constraining layer. This arrangement produces shearing strains within the polymer

layer. When sheared, the polymer material absorbs some of the energy and transforms it

into heat; thereby reducing some of the response. By replacing this polymer layer with

ER material, as shown in Figure 1.2.4, the structure would be able to alter its natural

frequency; avoiding resonance altogether. The result is a much larger reduction in

response versus a totally passive polymer damping system.

14
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Figure 1.2.4 A Conceptualization of an ER Adaptive Structural System
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Another advantage ER based structures have over passive polymer systems is the

frequency and temperature dependence of the polymer material. Systems utilizing

polymers have a optimal effectiveness at only one temperature and frequency. By using

ER systems, again with the ability to alter their damping properties, the goal would be to

develop some type of control system where damping would always be optimal.

ER adaptive structures may also be advantageous when compared with active

structures. Two types of active structures are shape memory and piezoelectric structures.

Shape memory adaptive structures apply very strong forces, but are only responsive in

low frequency range(< 5 Hz). Piezoelectric structures are much more responsive but are

very hard to fabricate, too brittle, and weigh too much to be used in some applications.

Newer piezoelectric polymers which solve the problem of manufacturing, brittleness, and

weight do not have enough force to be effective in some applications. The use of ER

materials in adaptive structures may be able. to solve some of these problems in a semi

active fashion [29].

Several examples of ER adaptive structure configurations that have been

suggested are shown in Figure 1.2.5. A siinpl~ constrained layer design similar to that

which was described above was patented by Carlson et. al [29]. This is shown in Figure

1.2.5a . Suggested along the same lines was the use of stacked constrained layers as

shown in Figure 1.2.5b. This would allow the ER elements to contribute more in the

structural dynamics by increasing the area of the ER layer. A design which

compartmentalizes the ER elements allows the structure to utilize the ER extensional

properties, rather than the shear properties as in a co~strained layer approach is shown in

Figure 1.2.5c. Multi-electrode configurations within the structure, such as in Figure

1.2.5d, allow the possibility for the structure to change or enhance it's modal shapes. In

many circumstances, most possible shapes of the structure can be approximated by a

16



weighted summation of the mode shapes. These mode shapes are based upon the

stiffness of the structure. If a structure is fabricated with different regions of stiffness

these modes could be altered. ER adaptive structures would be able to achieve different

areas of stiffness and therefore have different mode shapes. The significance of the

application has yet to be examined. Possible real world applications for these designs

include helicopter rotor blades, space platforms, airplane skins, robotics, complex

manufacturing, etc [30-34].

17
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Figure 1.2.5 ER Adaptive Structure Designs
a) Single Constrained Layers b) Multiple Stacked Constrained Layers c) Extensional Structure

d) Multi-Electrode Structure
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1.3 Purpose of this investigation

The purpose of this investigation is to examine some of the problems concerning

the eventual physical realization of ER adaptive structures - this includes addressing

some of the rheological, modeling, and feasibility problems. The directions for the

investigation are shown in Figure 1.3.1.

Specifically, an in-depth rheological characterization was performed to increase

the scope of the understanding of the dynamic behavior of ER materials at small strains

characteristic of structural applications. Many of the previous investigations use the

quantity known as the complex modulus G*, 'where G' is the real part and Gil is the

imaginary part, to describe a materials viscoelastic behavior without adequately

commenting on the linearity. This quantity is a measurement of a materials linear

viscoelastic behavior and is virtually meaningless outside the linear range. The present

study provided a quantified definition of linear viscoelastic behavior in terms of yield

strain. The investigation experimentally examined the effects of electric field and

frequency on the transition from linearity. In hopes of developing a model to predict the

materials rheological response, the behavior of the complex modulus of the material was

also observed with respect to frequency and electric field. The repeatability of the

material over an expanded time frame was noted.

Utilizing the experimentally determined ER material properties, the behavior of

some simple ER structures were modeled using both Ross, Kerwin, and Ungar and Mead

and Markus theories. These pre-existent theories model the dynamic behavior of three

layer sandwiched composite structures. Experimental ER Structures were built and

tested to compare theory and experiment. In addition, a more complex plate structure

was experimentally tested to verify a possible application in mode shape control.
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In summary:

o An in-depth rheological characte~ization of an electrqrheological material was

performed.

o The results of the rheological investigation were substituted into the Ross,

Kerwin, and Ungar model and Mead and Markus model to predict dynamic

structural response.

o Experimental adaptive structures were fabricated and tested to verify these

models.
..

o A experimental investigation was performed on a multi-electrode structure to

examine the feasibility of mode shape based adaptiv~ucture control.
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DYNAMIC RHEOLOGICAL
CHARACTERIZATION OF ,

ELECTRORHEOLOGICAL MATERIALS

What is the linear
range of behavior?

PHASE 1

How does the material
,. , behave in the linear

range?

Determine dynamic behavior
of the beams using RKU and Mead "-

and Markus theories ~

MODELING OF ELECTRORHEOLOGICAL
MATERIAL BASED BEAMS

Do theory and
/ experiment match?

Fabricate Experimental
Beams

PHASE 2

INVESTIGATE THE FEASIBILITY OF
MODE SHAPE CONTROL USING

MULTI-ELETRODE PANELS

, 1

Construct experimental
multi-electrode panel structures
and experimentally determine

mode shapes

PHASE 3'

--~,. Feasible?

Figure 1.3.1 Summary of Investigation
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CHAPTER 2: BACKGROUND ON STATE OF THE ART ENGINEERING OF

ER ADAPTIVE STRUCTURES

2.1 EffectiVeness of ER Adaptive Structures

Several studies investigated. the effectiveness of a ER based constrained layer

structures. Coulter et al. [30, 35] examined ER material sandwiched between

constraining layers of aluminum. Latex material, attached along the sides, sealed in the

ER material. At ends and the middle of the beam, silicon rubber completed the seal and

acted as a spacer to keep the electrodes apart. The investigation determined the

resonance and damping of simply supported structures. The investigators characterized

these properties over a frequency range from 0-200 Hz for electric fields up to 2.5

kV/mm. Structural resonant frequency increased linearly with respect to changes in

electric field. The slope of this increase for modes 1, 2, and 3 was 12.1, 13.0, and 18.6

(Hz·mm)/kV, respectively. Structural loss factors ranging from 9.03 to 0.11 also

increased with electric field, but decreased with mode number. There was no clearly

observable relationship between increases in loss factor and electric field.

Choi et al. [36, 37] investigated beams comprised of polystyrene, aluminum, and

70/30 brass constraining layers. Silicon rubber, attacheo around the entire outside edge

of the beam, sealed in the ER material. The investigation calculated the effective

bending modulus and the effective loss factor per equations provided in ASTM standard.
G756-83 [45] for cantilevered beams. The effective bending modulus increased 25

100% and the effective loss factor increased 42-133% with an electric field of 2 kV/mm.

The magnitude of increase depended upon the material used as constraining layers.

Thompson and Gandhi [31-34, 37-39] investigated ER beams with aluminum
. .

constraining layers. Again, silicon rubber, around the entire outside edge, sealed the ER
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material in. Both resonant frequency and damping increased with increases in electric

field. The investigation also examined the effects of temperature on these properties.

Changes in resonant frequencies and damping with respect to increases in electric field,

decreased at higher temperatures.

Though these studies have shown the potential applications and effectiveness of

ER structures, some problems need to be addressed before the systems are physically

realizable.
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2.2 Rheological Problems

One fundamental problem is the rheological understanding of ER material

behavior. Most rheological investigations performed to date utilized constant shear rate

tests. There is a need to do more dynamic type testing at shear strain amplitudes that are

characteristic of structural damping applications. More specifically, there is a need to

model the behavior, standardize the testing, and expand the operational testing

parameters of the materials. Several studies have partially address these rheological

Issues.

Jordan et al. [9] tested a suspension of a mineral in oil, supplied by Lord

Corporation, using both parallel plate and Couette rheometry. The instruments used were

a Rheometries Mechanieal Spectrometer model 7200 and a Rheometries System IV. The

investigation presented a model based on the assembly of particle strings between two

plates. For small strains, they approximated the elastic storage modulus to be

(2.2.1)
.~

where

(2.2.2)

and Eo is the permittivity in a vacuum, E1 is the permittivity of dispersing medium, E2 is

the permittivity of a particulate phase, E is the electric field, $ is the volume fraction of

particulate phase, and "'I is the shear strain. A point dipole model under predieted the

elastic modulus of their materials. A multipolar approximation used for highly
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polarizable particles more accurately predicted the modulus. In addition, they

microscopically observed the fracture of particle chains and reformation within the

material. When the thin fibrils break off, they reformed and joined onto other chains

forming thick columns.

Gamota and Filisko [25, 26] studied ER materials composed of alumina-silicate

particles in paraffin oil. The materials were tested using rotational rheometry at

moderate frequencies; 10-50 Hz, and at high frequencies; 300-400 Hz. The investigation

identified three regions of behavior: pre-yield, yield, and post-yield. "Each region had its

own deformation characteristics; linear viscoelastic in the pre-yield, viscoelastic plastic

in the yield, and plastic in the post-yield. The yield strain was defined as a sharp

deviation of the first derivative of the stress function with respect to time. Yield strain

decreased with increases in electric field, while yield strain increased. with increases in

frequency. A Zener element modeled the pre-yield behavior.

Yen and Achorn [23] experimented with hydrated particulates of lithium salt of

poly(methacrylate) dispersed in chlorinated paraffin oil. The materials were tested with a

Rheometrics RMS-605 parallel plate rheometer. They observed linear elastic behavior at

small strains and plastic behavior at high strains. Yield stress, defined as the stress

transition point from elastic to plastic behavior, increased with increases in particle

concentration and electric field.

Spurk and Huang [40] tested dispersions of silica particles in silicone oil using a

non-conventional. low inertia rheometer system. The investigation observed a

deterioration of the electroviscosity under the application of a d.c. electric field over a

period of time, while a.c. fields were found to be more stable.

Thurston and Gaertner [41] tested corn starch in mineral oil fluid using a

rectangular channel. They observed a rapid change in viscoelastic response with the
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initial application of electric field and a slower change In viscoelasticity with the

continued application. Their conclusions conjectured that though the initial response is

very fast, the formation of a complete and final microstructure was a very slow process.

Coulter et al. [35] tested ER materials using an axial rheometer attached to an

MTS testing system. The investigation found that G' increased with increases in electric

field while the loss factor decreased. Storage modulli as high as 70 kPa were seen. Loss

factors generally remained within the range 0 to 4.

Shulman et al. [18, 42] and Vinagradov et al. [17] tested diatomite particles in

transformer oil using a Couette type rheometer. At high electric fields G' and G"

increased dramatically with increases of particle concentration until about 30%. With

further increased particle concentration G' still increased, though less dramatically, while

G" remained constant. They attribute this phenomenon to the increase in defects in the

skeleton of the structure and the enhancement of the elastic interactions between the

particles. They also observed a frequency dependence of G' and G" related to what they

called the natural frequency of the micro structures. G' and G" were constant at

frequencies below the natural frequency, as the frequency approached the natural

frequency there were abrupt changes in the moduli.

Brooks et al. [43] did investigations using lithium poly methacrylate dispersed in

cholorinated hydrocarbon oil. The materials were tested using shear wave propagation

with the Rank Pulse Shearometer at a frequency of 191 Hz. The storage and loss moduli

increased with applied field to a maximum then decreased. At lower fields, the storage

modulus was higher than the loss modulus, but at higher fields, the moduli are found to

be similar.
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2.1 Modeling of the Dynamic Behavior of ER Based Beam Structures

Another problem that needs to be addressed, is the "intelligence" that will control

the structure. By themselves these ER structures are not different from passive polymer

systems. The "adaptiveness" arises when a control system is added. Some suggested

control systems are classical feedback, state-space, or neural network based

methodologies. One of the first steps in selecting an appropriate control system is to

develop a mathematical model of the system response. The development of a model will

significantly aid in the selection and creation of-a control scheme.

Much work has been done in modeling the vibration of composite beams. These

models are based on constrained layer polymer damping systems, whose shear behavior

of the sandwiched layer accounts for the damping. It is generally accepted that ER

materials will shear before elongating in a bending arrangement as suggested in Figure

1.2.4. Some ofthese theories may be applicable. Two generally accepted theories in the

vibration community are the Ross, Kerwin, and Ungar (RKU) model [44, 45] and the
,I

Mead and Markus model [46]. The RKU model is based on the classical fourth order

Bemoulli-Euler beam, while the Mead and Markus model is based on a sixth order

equation. Section 4.2 examines these theories in detail. Several previous investigations

have attempted to model ER based beams using these theories.

Coulter et al. [30, 35] investigated the applicability of the RKU model in its

original form using a simply supported boundary conditio~. The study substituted

material property data obtained from a rheological investigati,on into the RKU model.

The theory under predicted both the modal frequencies and the damping of the structure.

The author's attribute this to uncertainty in the" rheology and the experimental deviation

from the theories original assumptions. The deviation of the original assumptions in the
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theories were mainly attributed to the use of the silicon rubber to seal and separate the

electrodes surrounding the ER material.

Choi et al. [36] theoretically modeled the behavior of ER material beams using

the ASTM standard number 0756-83. The ASTM standard measures damping

properties of polymers utilizing a cantilevered beam based on the RKU model. The

methodology is to measure material properties of the sandwiched layer by calculating the

resonance and damping of a constrained layer structure containing that material. In this

investigation, ER material replaced the polymer layer. The study compared rheological

data in the form of 0' and Oil obtained from a previous investigation to the rheological

data obtained from the ASTM standard. The results showed that the ASTM standard did

not adequately predict the results obtained from rheological testing. The change in the

stiffness of the ER layer obtained from results on a rheometer was on the order of 105 Pa

while change in effective stiffness of the structure based on the ASTM standarQ was on

the order of 109 Pa.

Mahjoob et al. [47] investigated both the RKU and the Mead and Markus models.
~

The investigation determined rheological data from the results of a structural

investigation examining the resonance and d~mping of ER based beams. Mead and

Markus models better predicted the properties. A linear extrapolation of the behavior of

a beam with no interference from sealant was performed based on the results obtained for

experimental tests using varying amounts of the sealant. The conclusions of the

investigation seem to find that both of these models could be used to predict the response

of structures. The results of this investigation were dubious since G' was observed to be

around 300 kPa; three to four times as strong as any other material available.
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None of these investigations has definitively concluded that the prior theories

were applicable or inapplicable to ER adaptive structures. There are three plausible

explanations why previous investigations faltered.

One, the rheology data was not accurate. Many of the investigations reported

rheology daU! while none adequately comment on the linearity of the materials,

repeatability of the testing, or the uncertainty of the properties.

Two, the experimental structures did not meet the theoretical models specified

criteria. The theories assumed pure sinusoidal mode shapes and unconstrained shear

strain within the sandwiched layer. Some of the experimental investigations used

cantilevered boundary conditions and completely sealed the edges of their structures with

silicon. A cantilevered beam at the first modal frequency does not have a sinusoidal

modal shape. The use of silicon sealant constrained the shear within the sandwiched

layer.

Three, the past theories may not llave been applicable due to some of the

approximations used in the theories. Use of these theories may not have been sensitive

enough for materials in the range of hundreds of kPa.

It would seem practical, before concluding that these theories were completely

inapplicable, to investigate the rheology more thoroughly and modify the experimental

procedure to· simulate the theoretical models more accurately.
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2.4 Feasibility of Mode Shape Control

Many investigations describe the use of a multi-paneled electrode design. The

advantages of using multi paneled electrodes are two fold. These configurations are used
,

to stiffen or weaken different areas of the structure. By changing the stiffness in

different areas, one, the resonance frequency and damping have more variability, and

two, the modal shapes of the structure can be altered. The advantages of varying the

resonance and damping of the structure are discussed in the preceding sections. The use

of mode shape control is a more innovative application. The concept would be for the

structure to be able to choose what shape it vibrates in. For example, if a simply

supported beam is forced· at a frequency that excites the second mode there is no

vibration in the center. This point of zero displacement is known as a node. If the

designer wanted to put a piece of equipment, sensitive to motion, onto the structure the

best place would be to put it in the center. The advantage ER materials have over a

passive system methodology is increased robustness. A passive system could use this

application for only one pre-determined forcing frequency and at only one location. ER

materials make it possible to excite different modes and place nodal points onto different

areas of the stru~ture. The feasibility and effectiveness of this innovative application has

not been researched significantly.
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CHAPTER 3: RHEOLOGICAL INVESTIGATION

3.1 Introduction

The motivation for this phase of the research was to increase the scope and

understanding of ER material dynamic behavior at small strains. The investigation

proposed to define a linear range of behavior for ER materials and quantify this region in

terms of a yield strain. The yield strain's dependence on frequency and electric field was

observed. The investigation then examined the rheological property known as the

complex shear modulus within this linear region.

A annular pumping mechanism described in Section 3.3, was us

properties. The methodology was to induce a shear strain and measur the transmitted

stress across the material. By comparing the induced shear strain and nsmitted stress,
-I

the rheological properties were determined. The following section des ibes the usage of

the complex shear modulus in characterizing linear viscoelastic shear havior.

3.2 Rheology Theory

A quantity known as the complex shear modulus descri s a materials linear

viscoelastic shear behavior. More specifically, the complex shear modulus quantifies the

steady-state dynamic behavior using. -models based on discrete springs and dampers as

shown in Figure 3.2.1. The definition is presupposed upon the materials time dependent

behavior being modeled according to a linear ordinary differential equation. If the

material does not behave in a linear fashion, the complex modulus is virtually

meaningless. The linear dependence can be expressed in the condition that the

transmitted stress must be proportional to the induced strain within the Laplace domain,
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Figure 3.2.1 Modeling of a Linear Viscoelastic Material with Discrete Springs and Dampers
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1:(S) =G(s)y(s) (3.2.1)

where 1: is the transmitted stress, 'Y is the induced strain, and 0 is the shear modulus

defined as some ratio of two polynomials in s.

The complex shear modulus is a steady state property that describes the materials

behavior when ~xposed to a sinusoidal strain input,

./

1:(s)=G(s) 2
Y ill 2

s +ill

By performing a partial fraction expansion of equation 3.2.2,

a a b b b1:(S) = . + . +_1_+_2_+_3_+...
s+ Jill s- Jill S+SI S+S2 s-tS3

(3.2.2)

(3.2.3)

where a, and aare complex conjugates, and Sl ,S2' and S3 are the poles of 0(8). If the

inverse Laplace transform is performed on equation 3.2.3,

(3.2.4)

The exponential terms drop out as time goes to infinity, and are left with,
,.

(3.2.5)

which is defined as steady state stress response. The constants a and a can be evaluated

from equation 3.2.2 where,

33



and

a = G(s) 2
ym

2 (s+ jm) 1_ .s +00 S--Jffi

- ym . Ia=G(s) 2 2 (s-jm) _.s +0) S-+Jffi

(3.2.6a)

(3.2.6b)

By performing the substitutions for s, we realize that GUO)) is now a complex

quantity, or what we have been describing as the complex shear modulus. The complex

function can be written in phasor notation,

and

G(- jm) =IG(- jO))le-j~

!,,---,
where <j> is the phase angle of the material. Note that

IGUm)1 = IG(- jO))1

and the Laplace transform of the steady state stress is,

a a
'tss(s) = . + .

s+ jm s- jm

(3.2.7a)

(3.2.7b)

(3.2.8)

(3.2.9)

Substituting equations 3.2.6a, 3.2.6b, 3.2.7a, 3.2.7b, and 3.2.8 into equation 3.2.9, and

taking the inverse transform,
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(3.2.10)

This reduces to

(3.2.11)

In response to a sinusoidal shearing input,. a material that behaves linear

viscoelastically has a stress output with the same frequency, proportional amplitude, and

a phase shift. Typical linear viscoelastic behavior can be seen in Figure 3.2.2.

A definition of linear behavior can now be proposed. There are two simultaneous

criteria for yield. One, the stress amplitude must be proportional to the strain amplitude,

(3.2.12)

Two, the phase angle must only be a function of frequency and not strain. This is

proposed because of phasor notation in equations 3.2.7a and 3.2.7b. The property G(jm)

is only dependent on frequency.

To completely characterize the material's linear viscoelastic behavior, the

magnitude of G(jm) and phase must be measured over a desired frequency range. A
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Figure 3.2.2 Response of a Linear Viscoelastic Material to a Sinusoidal Strain Input
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perfectly elastic material will have no phase angle, while a perfectly viscous material will

have a phase angle of 900
• All materials do not act perfectly and have in phase and out

/

of phase portion. We can express the complex modulus by

G' = IG(jm)lcos$

and

G" = IG(jm)1 sin $

(3.2.13)

(3.2.14)

where G' represents the in phase portion and Gil represents the out of phase portion. In

rheology terminology these are known as the st~rage and loss modulus respectively.

An experiment was designed to quantify the region of linear behavior in terms of

yield strain, and examine the effects of electric field and frequency on the complex shear

modulus. A description of the experimental apparatus utilized follows.
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3.3 Experimental Set up

3.3.1 Experimental Apparatus

An axial rheometric device, as shown in Figure 3.3.1.1, measured the rheological

properties of the ER material. The cup had an inner radius of 22.96 mm and the bob had

an outer radius of 21.96 mm resulting in a 1 mm gap between the two. The material was

placed in a gap between the cup and the bob. An electric field was applied across this

gap. Displacement of the cup induced a strain on the material. By comparing the

transmitted stress across the material and induced strain, the IGUm) I and the phase

between the two were obtained.

MTS machine model number 305-02, controlled by an MTS 442 feedback

controller, provided the strain on the material. The feedback sensor was a Lucas

Schflevitz I" LVDT. An Onosokki CF920 Dynamic Analyzer provided the sinusoidal

signal to the MTS machine. An Interface SM-250 load cell with a stiffness of 7300

leN/m and a corresponding natural frequency of approximately 1000 Hz, measured the

load and/or stress transmitted across the material. A Series 230 Bertan High Voltage

Power Supply applied the electric fields. In addition, for more accurate strain signals, a

Bentley-Nevada Series 7200 proximity sensor measured the actual strain. The

transmitted stress from the load cell and the induced strain from the proximity probe

were compared using the Onosokki Dynamic Analyzer. The analyzers FFT hardware

calculated amplitude and phase of the complex modulus. A diagram of the

instrumentation is shown in Figure 3.3.1.2.
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Figure 3.3.1.1 Concentric cylinder rheometer used in'the investigation.
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Figure 3.3.1.2 Instrumentation of Rheometer
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3.3.2 Instrument Calibration

. Testing of an S-8000 standard viscosity fluid verified the calibration of the load

cell and proximity sensor. The standard kinematic viscosity for this material as rep.orted

by National Bureau of Standards was 41.92 Pa·s at 68 F. Two experimental tests using

the described apparatus yielded 40.27 ± 2.96 Pa·s and 46.91 ± 6.31 Pa·s at room

temperature. The estimated uncertainty of the experimental data was estimated to be 10

20% error.

3.3.3 Material Preparation

The investigation used ER material number 6533-30B obtained from Lord

Corporation. Prior to actual testing of the material, preparation included placing the test

sample on rollers for at least 24 hours, and afterwards, ultrasonically mixing it for 16

seconds. Ultrasonic mixing removed any residual particle flocculation. The ER material
\

was then poured into the cup and evacuated by exposure to a vacuum for 30 minutes

before testing. Vacuum desiccation removed air pockets. Testing began immediately

after desiccation.

3.3.4 Experimental Procedure

The first purpose of the rheological investigation was to determine the range of

linear behavior in terms of yield strain and its dependence on electric field and

frequency. This rheological study exposed the ER material sample to strains from 0.001

to 0.1 at frequencies of 10, 30 and 50 Hz. Testing was performed with applied electric

fields of 1.5, 2, 2.5, and 3 kV/mm.

The material was first tested at 10 Hz and 3.0 kV/mm. Strain was swept from

. 0.001 to 0.01 in increments of 0.001, then from 0.01 to 0.1 in increments of 0.01. The
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experiment measured the stress amplitude and phase angle at each respective strain

amplitude. The applied field was reduced to 2.5 kV/mm, and the procedure was
I

repeated. At each successive electric field this procedure was performed.

After all the electric fields were tested the frequency was increased to 30 Hz. The

strain at all the electric fields was repeated at this new frequency. After which, the

frequency was increased to 50 Hz and the strain sweep repeated. The entire procedure

was repeated two more times for each frequency.

The experiment produced three strain ,sweeps at each given electric field and
J.

frequency. Stress amplitude and phase angle data were measured for each electric field

and frequency.

The second purpose of the investigation was to gam a more III depth

understanding of the behavior within this defined linear region. The stress and strain

amplitudes were measured within the frequency range from 0 to 50 Hz at electric fields

of 1.5, 2, 2.5, and 3 kV/mm. The complex shear modulus was-calculated.
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3.3 Results and Discussion

The first objective was to define the strain amplitudes in which the material

behaved linearly with respect to stress. The material behavior was considered linear only

if the shear stress was a linear function of strain per equation 3.2.12, and the phase angle

was independent with respect to strain by the definition of the complex modulus,

equation 3.2.7a and 3.2.7b. Both of these conditions were met simultaneously.

Figure 3.3.1 shows a typical dynamic stress-strain relationship. An ideal linear

relationship between stress and strain existed at small strain amplitudes. It must be noted

that the strain axis was plotted on the log scale to clarify observation of the stress-strain

relationship. When a certain strain was reached, there was a dramatic decrease in the

transmitted stress that signifies a yielding of this linear behavior. As strain increased

further, pseudo linear relationship as described in equation 1.1.1, between stress and

strain appeared signifying typical Bingham plastic behavior. This behavior was similar

to that seen in Yen and Achorn [23].

The investigation observed significant changes in the stress-strain relationship

when electric field was increased as seen in Figure 3.3.2. The slope of the curve within

the linear region, IGUm) I, increased, and the yield stress increased with increases in

electric field. This behavior was seen by Yen and Achorn [23] and Chrzan and Coulter

[48]. The increase in slope and the yield stress when the field was applied was likely due

to the increase in dipole moment of the particles as discussed in Jordan et al. [9]. The

increased moment increased the strength of the particle chains formed between the

electrodes.

The stress-strain behavior dependence on frequency was not as clearly observable

as was seen in Figure 3.3.3. There was little change in the slope of the curve, the yield

stress or the yield strain. Jordan et al. [9] and Shulman et al.
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Figure 3.3.3 Magnitude of Stress vs. Strain at Frequencies of 10, 30, and 50 Hz at 3 kVjmm
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[42] also reported a relatively flat G' with respect to frequency at low frequencies.

A typical phase-strain relationship is shown in Figure 3.3.4. The phase' angle had

two asymptotic regions. The first region exhibited mostly elastic behavior; phase angles

near zero degrees, while the second region exhibited mostly viscous behavior; phase

angles approaching ninety degrees. T~e region between the two is defined as a transition
'.

region where there is a dramatic change in the slope of the phase-strain curve. This

dramatic change in the phase from a constant near the end of the first asymptotic region

signified a yielding of linear behavior - as phase should have been independent of strain

amplitude. Gamota and Filiskp [25] also obser~ed this type of behavior. At small strains

they observed a linear viscoelastic region, followed by a viscoelastic plastic in the

transition region,and then fmally a totally plastic deformation region.

This, investigation also observed a dependence of electric field on the phase-strain

relationship as seen in Figure 3.3.5. The linear viscoelastic region defined by the phase

strain curves, elongated with increases in electric field. Again, this was most likely due

to the increase in the dipole moment of the particles. The transition from linearity due to
/

breaking of these particle chains was conjectured.

There were also slight increases in the linear viscoelastic region with decreases in

the frequency as was seen in Figure 3.3.6. As frequency was increased the yield strain

decreased. This supports the notion that the material became non-linear "easier" at

higher frequencies. The non-linear behavior could be due to a natural frequency within

the material or some type of non-linear hydrodynamic phenomenon with the liquid

matrix.

In terms of defining a region of linear viscoelastic behavior, both the stress-strain

and phase-strain relationship criteria must be satisfied. It was clearly seen that there was
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a linear stress-strain relationship. The material was not as "linear" considering the

second criteria - independent phase with respect to strain. Experimental trends for these

yields with respect to electric field and frequency existed.

The stress yield was defined as the yield strain where there was a dramatic

decrease in the transmitted stress. The phase yield limit was quantified to the yield strain

where there was a deviation of five degrees from the asymptotic constant. The observed

relationship between the stress-strain yield, and electric field and frequency is presented

in Figure 3.3.7a. The observed relationship between p~ase-strain yield and electric field

and frequency is shown in Figure 3.3.7b. Generally, for both cases, the yield strain

increased with increases in electric field and decreases in frequency. This was

contradictory to what was found in Gamota and Filisko[25].

Though the apparatus was able to observe these experimental trends in transition

from linearity, it is not believed that the instrumentation was sensitive enough to quantify

these small phase angles. As was observed, in many of the instances the phase angle

approached an asymptotic constant, generally .less than 5 degrees, around .1% strain.

The question then became how to define the phase angle, and more specifically what

were G' and G".

Phase yield was defined at the point where the phase strain relationship

approached an asymptotic constant. The instrumentation of this investigation was not

sensitive enough to measure such small phase angles, and apply such small strains

accurately. The investigation was able to safely conclude that at 1.5 kY/mm or greater,

G' was usually greater than 90% of IGUO)) I due to the small phase angles.

With the present instrumentation, the quantification of material behavior within

the linear viscoelastic region was limited to observation of IGUO)) I or in this case G'.

This is seen in Figure 3.3.8. As electric field was increased, there was significant
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increase in G', while the dependence on frequency was less notable. Since the elastic

portion of the complex modulus dominated the behavior, an approximation based on the

relationship,

G' (jm) = kE 2 (3.3.1)

where k was a constant and E represents the applied field was adopted as seen in Figure

3.3.9. This squared dependence was also observed by Gamota and Filisko [25] and

Jordan et al. [9]. The dependence on frequency was less notable as was again seen in

Figure 3.3.8. Since G' dominated the behavior of IGUm I, this was not unexpected.

Vinogradov [17] and Jordan et al. [9] also observed constant G' with respect to

frequency.

The material utilized during the present study was found to be rather reliable,. as

IGUm) I was observed to be repeatable during three tests performed at different times.

IGUm)'1 was fo~nd to be 36.9 ± 6.4 kPa, 67.3 ± 9.0 kPa, 96.9 ± 14.2 kPa, and 137.5 ±

15.9 kPa for electric fields of 1.5, 2.0, 2.5, and 3.0 kV/mm respectively. These results

confirm that the material behavior did not change dramatically over the extended

experimental testing time period. The error was estimated to. be about 15%.

There were also other notable characteristics of the material which should be

reported. First, there was significant flocculation of the particles after an electric field

was applied and then removed. After removing the electric field it took time for the

material to return to it's original state. This cause of this delay could have been the

flocculation of the particles. The material's behavior was not completely reversible in

that it took longer for it to return to it's original state then it did to react to an electric

field. Second, the material was not able to hold a high electric field for a period of time
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at strains within the linear viscoelastic region. After yield was reached, high electric

fields were able to be maintained signifying the fracturing of some type of physical

conductive bridge between the electrodes. Third, the magnitude of the complex shear

moduluskept slightly increasing as the electric field was left on for long periods of time.

Thurston and Gaenter [41] also describe a slow response to the formation of final

microstructure.

,;7
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CHAPTER 4: INVESTIGATION ON THE MODELING OF ER BASED

STRUCTURAL BEAMS

4.1 Introduction

None of the previous investigations has definitively concluded whether or not the

Ross, Kerwin, and Ungar (RKU) and Mead and Markus structural theories are applicable

to ER material based adaptive structures. There were three plausible explanations. One,

their rheology data was not accurate. Two, their experimental beams did not meet the

theoretical models specified geometric criteria. Three, the theories are not applicable.

The modeling phase of the present investigation tested the applicability of the

RKU and Mead and Markus theories to ER based beam structures. Theoretical structural

resonance and damping predictions were derived. The investigation then compared these

theoretical results to experimental data from actual ER beam structures.

4.2 Structural Theory

The purpose of this section is to familiarize the reader with the RKU and Mead

and Markus theories. It will be useful for the reader to know that both theories assume
.

simply supported boundary conditions and sinusoidal mode shapes.

An energy method approach, described more thoroughly m Meirovitch's

Analytical Methods in Vibrations [49], provides a methodical and tractable method of

deriving the equations of motion and boundary conditions for systems with more than

one-degree of freedom. The equations of motion and boundary conditions for a simply

supported Bernoulli-Euler beam are derived as an example of this methodology.
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4.2.1 Derivation of a Bernoulli-Euler Beam

The Lagrangian (L) is the basis for the energy approach. The variational equality

where BL is the variation of the Lagrangian, BT is variation of the kinetic energy, and BV

is the variation of the potential energy, is the governing equation for the derivation. This

equality is bCised on variational principles more adequately described in Meirovitch [49].

The Lagrangian for a Bernoulli-Euler beam is,~.

(a )2 (a2 )2'2 '2 1 L W '2 1 L Wf OLdt= f _f m(x)O - dxdt- f _f EIB -2 dxdt
J'l J, 2Jo at J, 2Jo at

(4.2.1.1)

(4.2.1.2)

where the first term represents the kinetic energy, and the second term represents the

potential energy caused by bending of the beam. The rotary inertia and shear

deformation are ignored. A schematic of the motion is shown in Figure 4.2.1.1.

The relationships,

and

!'B(aw)2 = aw(a(BW))
2 at at ·at
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l,W

Figure 4.2.1.1 Schematic of a Bernoulli-Euler Beam
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(4.2.1.4)

can be substituted into the Lagrangian equation 4.2.1.2 yielding, /

(4.2.1.5)

Integrating by parts, equation 4.2.1.5 becomes,

(4.2.1.6)

The first term in equation 4.2.1.6 goes to 0 by definition of the variance; the change in w

from some initial time to some final time is O. By collecting terms on the expression we

find that

(4.2.1. 7)
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Each of the terms in equation 4.2.1.7 is independent and must go to 0 independently. For

the first term in equation 4.2.1.7, 8w=d IS a trivial solution, hence, the term in parenthesis

must go to zero for a non-trivial solution,

(

j

(4.2.1.8)

Equation 4.2.1.8 represents the equation of motion for the beam. The last two terms in

equation 4.2.1.7 represent the boundary conditions,

EI a2

w 8(aW) L = 0
ax 2 ax 0

~(EIa
2

w)8WI
L

= 0ax ax2
0

(4.2.1.9)

(4.2.1.10)

where equation 4.2.1.9 reyresents the moment and slope at 0 and L, and equation

4.2.1.10 represents the shear and deflection at 0 and L. The variational terms in

equations 4.2.1.9 and 4.2.1.10 represent the geometric constraints while the derivative

terms are the moment and shear constraints. For example in the simply supported case,

the slopes at locations 0 and L are arbitrary, therefore

a2 L

EI~ =0ax 2
o
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Since the displacement w at locations 0 and L is 0, the variation is also O. This a

geometric constraint. These four constraints make up the boundary conditions for the

problem.

Using separation of variables a solution to the problem is

w =w(x)T(t) (4.2.1.12)

Substituting equation 4.2.1.12 into the equation of motion equation 4.2.1.8, two

independent ordinary differential equations can be derived,

f(t) +m2T(t) = 0

a4
w(x) ~ m(x) m2w(x) = 0
ax4 EI

(4.2.1.13)

(4.2.1.14)

where m is the radial natural frequency of the structure. The solution to equation

4.2.1.14 is of the form,

w = Asin (Ax) +BCOS(Ax) +Csinh (Ax) +Dcosh(Ax)

where A. is the root of equation 4.2.1.14,

(4.2.1.15)

(4.2.1.16)

By substituting this into the boundary conditi<;ms, three of the coefficients in equation

4.2.1.15 can be eliminated for the simply supported case leaving,
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and

w=Asin (Ax) (4.2.1.17)

A = me (4.2.1.18)
L

where n is the mode number, and L is the length of the beam. From this the natural

freque~y of the structure can be solved,

CJ) = (A)' ~( EI )
m(x)
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4.2.2 Derivation of the Ross, Kerwin, Ungar (RKU) Model

The RKU theory is based on this classical Bernoulli-Euler beam. Their

modification of this theory centers around deriving a new, complex flexural rigidity.

Consider Figure 4.2.2.1. Assume that layers 1 and 3 experience a flexural motion

~ ,while' the middle layer assumes the same flexural motion plus a superimposed shear

strain 'Y. The total bending moment about the neutral plane can be expressed as,

a~ 3 3

M = B- = "" M .. +"" FHaax' flit I I

(4.2.2.1)

where B is the effective flexural rigidity, a~ is the slope of the flexural angle, Mii is the. ax
moment of the ith layer about it's own neutral plane, Fi is the net extensional force on the

ith layer, and HiO is the distan~e from the mid plane of the ith layer to a new neutral plane

create~ by the addition layers 2 and 3. The old neutral plane, defined as the neutral plane

without any additional layers, is the mid plane of the first layer. Therefore,

(4.2.2.2)

where Hi! is the distance between the mid-plane of the ith layer and the mid-plane of

layer 1, and D is the displacement of the old neutral plane.

The moments about each layer can be expressed in terms of the curvature,

''QI.

(4.2.2.3)
\
'.
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M =E I (a~ _ ay)
22 2 2 ax ax (4.2.2.4)

(4.2.2.5)

where I is the moment of inertia per unit depth, E is the elastic modulus of each layer, ~

is the flexural angle, and 'Y is the shear strain.

The net extensional force can be assumed to be the extensional force exerted at

the mid plane of each layer. The force is the product of the extensional stiffness and the

strain of the mid-plane which can be derived by geometry. For small strains the force

can be expressed as,

F = E H (H a~ _H2 ar)
2 2 2 20 ax 2 ax

(4.2.2.6)

(4.2.2.7)

(4.2.2.8)

The effective flexural rigidity can be solved using these relations. First assume

the following relation,

(4.2.2.9)
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Equation 4.2.2.9 represents the ratio of shear strain to flexural angle. Substituting

equations 4.2.2.3-4.2.2.9 into equation 4.2.2.1, and solving for the -effective flexural

rigidity,

(4.2.2.10)

There are two unknown variables: the displacement of the neutral plane D as described

in equation 4.2.2.2, and d'y.
a~

The displacement of the neutral plane can be solved by assuming that the motion

is in pure flexure. In pure flexure the sum of the extensional forces of all three layers

must be equal to zero;

solving for D,

(4.2.2.12)
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The second variable we must solve for is ay. This is where the RKU theory
a~

includes the shear modulus of the middle layer. The effective shear stress is eqltal to the

net force on the top and bottom layer. The shear force is assumed to be. small and

approximately corresponds to the net force on layer 3. The stress-strain relationship can

be expressed as,

t.,,·

(4.2.2.13)

where 02 is the shear modulus of the second layer. Substituting equation 4.2.2.8 into

equation 4.2.2.13,

(4.2.2.14)

If the all the layers experience the same flexure then the shear strain must be proportional

flexural angle. Since we assume simply supported boundary conditions the flexural

angle and the shear strain are both sinusoidal; therefore, the shear strain is proportionally

to it's second derivative,

(4.2.2.15)

where Ais the wave number. For the simply supported case, Ais n1tlL.
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Using equations 4.2.2.14 and 4.2.2.15 the second variable ay is obtained,
a~

where

(4.2.2.16)

(4.2.2.17)

By substituting equation 4.2.2.16 into equati~n 4.2.2.10, we now have an effective

flexural rigidity,

where

B = EJI + E2/2+ E3/3+ EIHIHl~ +E2H2H~ + E3H3H~

_ E2/2 H31 -D _[E2H2 H +E H H ]H31 -D
H2 1+g 2 20 3 3 30 1+g

D = E2H2(H21 -H31 /2)+g(E2H2H21 +E3H3H31 )

E1H1+ E2H2 /2 + g(E1H1+ E2H2+ E3H3)

(4.2.2.18)

(4.2.2.19)

The model includes the affects of damping by using complex notation. The

separated equations of motion for the beam become,

f (t ) + (J)
2 (1 + i11)T (t) =0

a4
w(x) m(x) 2(1 .) () 0---- CO +111 w x =ax4 B' +iB" .~~
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where 11 is the effective structural damping, B' is the real part of the flexural rigidity, B"

is the imaginary part of the flexural rigidity. The flexural rigidity becomes complex due

to the incorporation of the damping in the second layer. This damping is represented by

the complex shear modulus,

G -G '+iG II2 - 2 2 (4.2.2.22)

If equation 4.2.2.21 is separated into it's real and imaginary parts the following equations

are obtained,

m(x) (02 (B' +11B")w(x) = 0
EI' 2 +E/"2 (4.2.2.23)

m(x) (02 (TlB' -B")w(x) = 0
EI' 2 +E/"2 'I

From equation 4.2.2.24 the effective structural damping 11 can be solved,

(4.2.2.24)

(4.2.2.25)

If we assume simply supported boundary conditions, the damped natural frequency of the

structure can be derived from equation 4.2.2.23,

B,2 +B"2

n1t
where A=-.

L

(0 = ,,}
m(x)(B' +11B")
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4.2.3 Derivation of the Mead and Markus Model

. The derivation of the Mead and Markus model is examined using the

methodology in Section 4.2.1; an energy approach. The kinetic energy of the beam is

considered only in the w direction as seen in Figure 4.2.3.1,

(4.2.3.1)

The potential energy of the beam is a summation of the energy stored due to bending,

energy stored due to elongation of the constraining layers, and the energy stored within

the shear layer. The deformation can be seen in the free body diagram in Figure 4.2.3.1.

The variation in potential energy can be represented by,

where the first term represents the contribution due to bending, the second and third term

represent the contribution due to elongation of the constraining layers, the fourth term

represents the contribution due to the shear layer, and the last term represents the

potential due to loading.
. -

The shear within the middle layer is coupled to the elongation of the constraining

layers and the flexural angle due to bending geometrically. The shear 'strain of an

element is defined as
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aw au
y=-+ax az (4.2.3.3)

which can be seen geometrically in Figure 4.2.3.2. au in equation 4.2.3.3 can beaz
represented as a summation of the shear due to rotation and elongation,

au = Aura/a/ion + !1uelonga/ion
az H2 H2

This can be observed geometrically from Figure 4.2.3.1. From this geometry,

(4.2.3.4)

(4.2.3.5)

The shear strain can now be calculated from equations 4.2.3.3 and 4.2.3.5 to be related to

the elongation of the first and third layers, and the rotation of the entire beam,

(4.2.3.6)

where

The problem now has 3 degrees of freedom - w, ul' and u3• Substituting equation 4.2.3.6

bac~ into equation 4.2.3.2 the variation in the potential becomes,
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where E1 = EJI +E212 + E3/ 3 • Using the same methods in Section 4.2.1 the equations

of motion are derived.

The first equation of motion represents the motion in the w direction,
- .

(4.2.3.8)

where q(x,t) is a forcing function.

The second two equations of motion represent the elongational forces of the

second and third layers,

(4.2.3.9)

(4.2.3.10)

Notice there are no inertial terms in equations 4:2.3.9 and 4.2.3.10. By combining

equations 4.2.3.9 and 4.2.3.10 we see that the net longitudinal force on the first and third

layers is zero,
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E A aUl = _ E A aU3
1 1 ax 3 3 ax

and similarly,

Substituting equation 4.2.3.12 back into equation 4.2.3.8,

where

G(1 1)
g = H

2
ElHl + E

3
H

3

(4.2.3.11)

(4.2.3.12)

(4.2.3.13)

It would be desirable for the equation of motion to only be in terms of the

w-direction which means finding aU3 in terms of w or its derivatives. Equatio~ns 4.2.3.9
ax

and 4.2.3.10 can be combined to solve for aU 3 •

ax

(4.2.3.14)
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By differentiating equation 4.2.3.14, and solving equation 4.4.3.13 for aU3 and a2

u3 , a
ax ax 2

single equation of motion for forced vibratory motion in the w direction is derived,

This equation can be solved using separation of variables methodology per

equation 4.2.1.12. In addition, the model assumes a harmonic loading proportional to the

displacement and the mass per unit length,

q(X,t) = P1mV(x)e iOlf (4.2.3.16)

Substituting equations 4.2.3.12 and 4.2.3.16 into equation 4.2.3.15 we find that the

equation of motion can be written in a familiar, separable form,

(4.2.3.17)

(4.2.3.18)

The quantity g is a complex quantity by virtue of the complex shear modulus,

(4.2.3.19)

where ~ is the loss factor of the ER material and defined as,
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Since this is the case, equation 4.2.3.18 can be separated into its real and imaginary parts

respectively,

_g' A(l +Y) a4
W(X) 2(m(x»)( a2W(X) I ( A) ( ») - 0

p aX4 co EI 11 aX2 - g 11 + tJ W X -
(4.2.3.21)

A solution for w must satisfy both of the real and imaginary equations of motion. For

equation 4.2.3.20 there are six possible solutions, but four of these solutions must also

satisfy equation 4.2.3.21. In that case a possible solution for w is of the form,

W = A sin (Ax) +Bcos(Ax) +C sinh (Ax) +Dcosh(Ax) (4.2.3.22)

There are only four possible solutions to the equation of motion but there are six

bovndary conditions. Those six boundary conditions are,

(4.2.3.23)

(4.2.3.24)

(4.2.3.25)
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The only possible real solution is that

w =A sin (Ax)

nn
where 'A=-.

L

(4.2.3.26)

The forced natural frequency and damping for the structure can now be

determined. By substituting equation 4.2.3.26 into equations 4.2.3.20 and 4.2.3.21 we

see that there are two unknowns, ffi and 11 ,and two equations. We find that,

(j):=':K EJ g2~2+'A4+2Kg+A?gY+g2+g2y

m /..4 + 2'A2g+ g2~2 + g2

and

(4.2.3.27)

(4.2.3.28)

These represent the natural frequency and the damping of the structure respectively.
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4.3 Experimental Set up

4.3.1 Fabrication of ER Adaptive Beam Structures

The ER beam structures built utilized a constrained layer design: ER material

sandwiched between two elastic constraining layers. There were three concerns that

were addressed in designing these structures,

1. What type of constraining layer and electrodes to use.

2. How to keep a constant gap between the electrodes without restricting
the shear.

3. How to seal in the ER material without restricting the shear.

Figure 4.3.1.1 shows the general procedure utilized during structure fabrication.

The first design concern was the selection of the constraining structure and the

electrodes. Aluminum was chosen due to it's low damping properties which reduced the

complexity of the theoretical modeling (No datpping in either of the constraining layers

was assumed). Wire leads were spot welded onto the aluminum layers. These spot

welds proved to be weak; sometimes breaking due to constant handling of the structure.

The preferred method which was later lltilized was to attach a copper terminal to the

aluminum electrode .and paint, with a conductive coating, a connection between the

terminal and the structure.

The second concern was to keep a uniform gap distribution without restricting the

shear of the sandwiched layer. Previous investigations rl'Sed a restrictive layer of silicon

to separate the electrodes. Instead of silicone rubber, this investigation tried a polyester

fabric mesh. The mesh was attached to only one of the electrodes keeping the electrode

gap constant and reducing the restriction to the sandwiched layer. The problem with this

design was that it was hard to remove the air from within the mesh. These structures
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tended to arc at electric fields close to where air would begin to arc. The preferred

design utilized polycarbonate spacers. The spacers were 5mm x 5mm and attached only

to one of the constraining layers. The polycarbonate spacers kept a uniform gap while
.

the reducing the restrictions placed on the middle layer and did not create electric

problems. The polycarbonate was also more elastic and had less damping than silicon

sealant.

The third design concern was to seal the ER material into the structure. The first

ER structures had silicone sealant around outside edges of the beams. These structures

were not responsive to changes in ER material behavior and their behavior deviated

significantly from theoretical models. The silicon impaired the shear strain within the

sandwiched layer reducing net effect of the ER phenomenon. The structural dynamic

models did not include the addition of the restraining silicone.

One purpose of this phase of the investigation was to fabricate structures that

were consistent with the geometric assumptions made in the theories. Coulter et al. [30,

35] attempted to minimize the use of silicone sealant by attaching a thin latex material

loosely around the edge of the structure. This investigation used the same concept. Two

different wraps were investigated, a plastic film and rubber latex. The plastic film was

found to be too conductive at higher electric fields. The tested structures had the loosely

wrapped latex seal.

The latex wrap, .5mm thick, was attached using two materials; a rubber based 3M

tape, and epoxy. ER material tended to-leak through the tape seal so a small amount of

acrylic sealant was used to completely seal the material in around the edges of the wrap.

The leakage was caused by degradation of the rubber based tape in the presence of ER

material. The additional sealant changed the structural stiffness. The use a epoxy not

affected by petroleum based products solved the problem. Finally, in both the tape and

78



epoxy sealed beams, a liquid sealant was put around the corners due to the gaps between

the latex wrap. Care was taken to avoid placing this final sealant onto the structure but to

adhere it only to the wrap, so as to reduce interference of the shear. It was noted that the

corners still leaked. A nitrile sheet was wrapped around both corners of the beam and the

leakage stopped. A summary of the different procedures and materials investigated in

fabrication of the ER material structure beams was shown in Table 4.3.1.1.
.

Once the beam was sealed a small hole at one end of the beam was made with a

hypodermic needle. Another hypodermic needle injected ER material into the structure.

SEALANT PERFORMANCE· }>} •••• .\.}

Latex Held high electric fields but was degraded when
exposed to ER material

Window insulation film Sealed well but the electrical properties were not sufficient ~ .
to hold high electric fields

ADHESIVE "'b-ll'" \i} .i .}} ··...<i} .\(.... )

3M Tape (Rubber base Easy to handle but did effectively seal in the ER material
Epoxy (Seal-All) Sealed in ER material effectively

LlQUAOSEALANT PERFORMANCE··< ..... .....>() .. .....

Acrylic Caulking Sealed the best but was brittle and sometimes cracked
RTV Silicon Gel Over an extended time ER material leaked throuQh

Table 4.3.1.1 Summary of materials to make ER sttuctures
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The beams that were constructed for this investigation were classified S5, S8 and

S9. The dimensions, as shown in Figure 4.3.1.2, for the beams were the same.

SS - Aluminum beam electr2des and constraining layers. Separated by polycarbonate

spacers. Latex was used around the edges to seal the ER material in. 3M double sided

microscopy (#17840) tape was used attach the latex sealant. Acrylic caulking was used

near the edges. and the corners to complete the seal. Significant leaking over the entire

beam was observed.

S.H - Aluminum beam electrodes and constraining layers. Separated by polycarbonate

spacers (The spacing was doubled for this structure). Latex was used around the edges to

seal the ER material in. Epoxy was used to adhere the latex to the structure. Silicone

was used near the edges and the corners to. complete the seal. The seal around the edges

held, but leakage near the corners was observed.

S2 - Aluminum beam electrodes and constraining layers. Separated by polycarbonate

spacers. Latex was used around the edges to seal the ER material in. Epoxy was used to

adhere the latex to the structure. This structure used nitrile wraps at the ends of the beam

to prevent leakage. i'-
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Figure 4.3.1.2 Structures S5 and S8: Composite beams
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4.3.2 .Instrumentation

The purpose of experimentation was to measure dynamic characteristics of ER

based beam structures at different electric fields. Specifically, the investigation

accomplished this by measuring the frequency response at various applied electric fields.

The actuating force on the beam was a swept sine wave. This excitation consisted

of a constant amplitude force with an incrementing frequency as shown in Figure 4.3.2.1.

For example, the input force first actuated the beam at some amplitude at 1 Hz, then

would increase the' frequency to 2 Hz, 3 Hz, 4 Hz, and so on while still keeping the

amplitude of this force constant. A proximity sensor measured the displacement at one

location on the beam. FFT (Fast Fourier Transform) algorithms analyzed this response.

A Bently Nevada 3040 HTB electromagnetic probe provided the actuating force.

A Bently Nevada 7200 Probe measured the vertical response, in terms of displacement,

of a point on the beam. The Onosokki Dynamic analyzer created the swept sine signal

which was fed to the actuating probe. The Onosokki analyzer, utilizing it's FFT

Hardware, analyzed the response of the displacement probe. A Bertan High Voltage

power supply applied the electric fields. The. experimental set up is shown in Figure

4.3.2.2.
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4.3.3 .Experimental Procedure

Three beams were fabricated as described in Section 4.3.1. The beams were

tested with simply supported boundary conditions as shown in Figure 4.3.2.2. Swept

sine waves ranging from 0-250 Hz at 1.25 Hz increments were the forcing functions.

The resonant frequencies of the structures were found by determining the corresponding

frequencies of the peaks of the frequency response curves shown in Figure 4.4.1.

Damping\was measured using the 3dB power loss approximation. The approximation is

taken by determining the location of the frequencies corresoponding to a 3db reduction in

response in front of and behind the natural frequency,

(4.3.3.1)

where (0+ and 00_ are the frequencies corresoponding to the 3db losses, and (On is the

natural frequency. The experiment determined resonance and damping for electric fields

varied from 0-4.41 kV/mrn in .631 kV/mrn increments.

During testing flexural vibration was induced by sweeping the 0-250 Hz force

excitation range while the displacement at a single location was simaltaneously

measured. The electric field was increased in .631 kV/mrn intervals and the sweep

repeated until the field reached 4.41 kV/mm. Each structure was tested three times. In

between each of the tests, the beam was moved and stretched. The purpose for this was

to determine a range of deviation caused by the boundary conditions and remove any

possible agglomerations within the ER material layer.
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4.4 Results and Discussion

The previous rheological investigation, discussed in Chapter 3, measured the

complex modulus of ER material number 6533-30B obtained from Lord Corporation at

various electric fieJds and frequencies. This structural investigation substituted these

rheological results into two models that predict the dynamic response of three-layer

composite structures - the RKU and Mead and Markus theories. A procedure described

in Section 4.3.3 examined the experimental frequency response of three structures: S5,

S8, and S9. The experimental and theoretical results were then compared.

The experimentally observed frequency responses, as seen in Figure 4.4.1,

display the dependence of the ER structural system on electric field. The peaks of the

curves represent the resonant frequencies. As electric field increased, the curves shifted

to the right while the amplitudes simultaneously reduced.

The experiment examined the frequency response of three different structures at

various electric fields. Figures 4.4.2-4.4.5 show the resonance relationship between

electric field for structures S5, S8, S9, and the theoretical predictions for modes 1

through 4. The experimental resonant frequencies obtained for structures S5 and S8

were similar. This was expected since the only difference between the two structures

was the adhesive used to attach the latex sealant. Structure S9, on the other hand, was

found to be different than the other structures. This was reasonable since the

construction of the structure was considerably different resulting in different dynamic

properties.

It was found that the theoretical models generally under predicted the observed

natural frequencies for modes 1 through-j and over predicted the results at the fourth

mode. The theoretical predictions were quantitatively in the area of the experimental

results, but the qualitative behavipr with respect to electric field was visibly different.
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The experimental results showed a linear increase in resonance frequency of the structure

with respect to increases in the electric field. Thi~ was also seen in Coulter et al. [35].

The theoretical results displayed a more parabolic relationship.

The average damping of all three structures is shown in Figures 4.4.6-4.4.9 using

the 3dB approximation for linearly damped systems." Figures 4.4.6-4.4.9 show the

relationship between damping of the structures and electric field for the four different

modes. As was seen the damping of the structure was much less predictable than natural

frequency'. This was understandable since the damping of the experimental structures

was more sensitive to experimental deviations. This included the damping of the seal

technique and constraining layers. The frequency resolution of the experimentation was

1.25 Hz. The actual resonance was accurate, but the measurement of the frequencies

corresponding to a -3dB change were less predictable due to the resolution. Therefore,

the determination of experimental damping was generally less precise than the

determination of the resonant frequencies.

It is believed that most of the differences between theory and experiment were

associated with the fabrication of the experimental E~ structures. First, the beams were

overfilled with ER material. Overfilling the beam contributed to the deviation in the

predicted behavior due to the increase in mass and decrease in effective electric field.

The decrease in effective electric field was due to the increase in the spacing of the

sandwiched layer.

Second, after the structure sat for some extended time period the liquid matrix of

the ER material began to seep through the corners of the beam and in between the

adhesive layer attaching the latex material. From previous rheological investigations the

complex modulus was found to very dependent upon particle concentration. Losing the

liquid matrix was the same as increasing the particle concentration and thereby changing
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the rheological behavior of the ER material used in the beam. This meant the properties

measured in Chapter 3, substituted into the theoretical models, and the properties of the

actual materials used in the beams were different.

Lastly, though the experimental structures design attempted to reduce the effects

of the sealant on the dynamic behavior, its contribution was most likely included. This

was due to the relatively low bending stiffness. of the first~and third layers and the low

elastic shear modulus of the ER material compared to the material properties of the

sealant materials.

The fabrication and filling of struct).lI'e S9 reduced the overfilling and leaKage

problems. The amount of ER material placed in the structure was more closely

monitored than in structures S5 and- S8 to ensure an even distribution within the

sandwiched layer. In addition, a leak-proof structure was fabricated by attaching the

nitrile flaps on both ends of the beam. In the first test on structure S9, at electric fields

greater than 2 kVfrom, the structures began to arc. A conductive pathway developed and

more ER material was injected to destroy this path. This solved the arcing problem but

created an overfilling of the structure. The results of the first test on S9 were interesting

because they emphasize the effects of overfilling the structure.

These results before the arcing of structure S9 are shown in Figures 4.4.10

4.4.13. The theoretical models under predicted the results greater than in the previous

structures. What was interesting was that the resonance..:electric field relationship was

more "parabolic" than the theoretical predictions. This was contrary to results reported

earlier. By ensuring the uniformity of the ER layer, the theoretical predictions were

more qualitatively similar to experiments. Structure S9 showed that resonance-electric

field relationship was not linear but parabolic. The observed linear increase was related

to the overfilling and construction of the ER beams.
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CHAPTER 5: INVESTIGATION OF MODE SHAPE CONTROL USING A
MULTI-ELECTRODE STRUCTURE

5.1 Introduction

The purpose of this phase of the study was to measure dynamic characteristics of

- an ER structure with multi-electrode panels. Specifically, the resonance characteristics

and the mode shapes were determined with resp.ect to each panel condition. By changing

the stiffness in different areas the change in resonance frequency has potentially more

variability. In addition, the modal shapes of the structure can be altered. The degree to

which a multi-electrode ER based structure could accomplish these goals was evaluated.

5.2 Experimental Set up

5.2.1 Fabrication of a Multi-electrode Panel

Johns Hopkins Applied Physics laboratory fabricated the multi-electrode structure

used in the experimentation. Copper film etched onto kapton, frequently used in building

circuit boards, acted as the electrodes and constraining layers. The investigation chose

etched kapton because it was easy to create multi-electrode panels. The structure had

four independent electrodes. Holes drilled through the kapton attached the 'Yire leads to

the electrodes. Latex wrap adhered to the edges of the structure and acrylic caulking

sealed the ER material in. The dimensions for the structure are shown @Figure 5.2.1.1.

5.2.2 Instrumentation

The actuating force on the beam was a swept sine wave. This excitation consisted

of a constant amplitude. force with an incrementing frequency. A reference proximity

sensor measured the displacement at a fixed location, while another proximity sensor
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measured the displacement at various locations on the plate as shown in Figure 5.2.2.1.

.;FFT (Fast Fourier Transform) algorithms analyzed the responses.

A Bently Nevada 3040 HTB Probe provided the actuating force. Two Bently

Nevada 7200 Probes measured the displacements. An Onosokki Dynamic analyzer

created the swept sine signal which controlled the actuating probe. The Onosokki

analyzer, utilizing it's FFT Hardware, analyzed the response of the displacement probes.

The analysis produced phase differences between the tw-o probes. A Bertan High

Voltage power supply applied the electric fields
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Figure 5.2.2.1 Ex .penmental Setup for Plate Structure
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5.2.3 Experimental Procedure

Resonance characteristics were, determined using the same procedure as in

Section 4. Mode shapes were determined by comparing the amplitude of vibration at a

given modal frequency at 16 different locations on the structure as shown in Figure

5.2.2.1. The procedure was to excite the ~~ucture with a swept sine force.

Simultaneously the displacement of 2 locations on the structure· were measured using 2

proximity sensors. One sensor was used as a reference point, while the other measured

the amplitude of displacement. By measuring the amplitude at which the system was in

resonance, the shape of that mode was determined at that specific point.

Though the amplitude of the shape at a specific point can be measured, the

direction each point is moving with respect to each other cannot - a reference must be

used. The displacement of a location on the structure was either moving in the same

direction as the reference or moving in the opposite direction from it. This was

determined by comparing the phase between the two sensors. If it was moving with the

reference then it was 0 degrees phase, while if it was moving against it was 180 degrees.

The amplitude and direction were determined at each of the 16 points by holding

the reference sensor in one position and moving the other proximity sensor to the 16

different locations. Since there were only 2 sensors, the swept sine input had to be

applied every time the sensor was moved. From this data the mode shapes were

determined.

This procedure was repeated for each of the following panel conditions as shown

in Figure 5.2.3.1.
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5.3 Results and Discussion

The observed variability of resonance frequency caused by the variation of

stiffness in different areas of the structure is shown in Figure 5.3.1. The resonant

frequency is found as a function of the different panel conditions. The resonant

frequency clearly increased as the number of panels was turned on. For mode 11 the

resonant frequency changed from 10 to 30 Hz. Mode 22 changed from 20 to 50 Hz.

The variation in modal shape was not as dramatic. Figures 5.3.2a-f show the

relative magnitudes of displacement of the structure as it vibrates at the fIrst modal

frequency for the different panel conditions. There were not significant observable

changes in mode shape 11. Throughout -the experiment the structure maintained the

modal shape of panel condition 1. The modal shapes of the separate panel conditions are

presented in different scales, and should be only qualatatively compared. This was done

to observe the possible changes in modal shape.

The second modal frequency, mode 22, observed more variation in mode shape as

seen in Figures 5.3.3 a-f. Panel conditions 3 and 4, Figures 5.3.3c and 5.3.3d, observed

the greatest changes. These panels activated two electrode panels diagonally across from

each other, and next to each other, respectively. The relative displacement at the

locations near the activated panels were reduced significantly resulting in a visible

alteration of mode shape 2 without any panels activated.

The results of the experiment showed that the use of multi-paneled electrodes did

change the resonant frequency significantly. The change in mode shape was less·

conclusive. One reason for this was the experimental error in the methodology used in '

measuring the mode shapes. The instrumentation did not adequately measure the relative

displacements since the proximity sensor had to be moved during each of the tests.
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Fabrication of the actual structure was another possible error. A larger, 2mrn, gap may

have caused decoupling of the two plates.
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MOde Shape 2

d) Pan~1 Condition 4

e) Panel Condition 5
",

f) Panel Condition 6

107

I

I
I

I

I
I

I

I
I

I

I
I

I

I
I

I
I
I

I

I

I
I

I
I

I

I

I

I

I
I

I

I
I

I

I
I

I
I
I

I

I
I

I

I
I

I

I

I

I

I

I
I

I
I
I

I

I
I

I

I
I

I

I

I

I
I



CHAPTER 6: CONCLUSIONS

6.1 Rheological Behavior of ER Materials
q

An investigation of the linear viscoelastic behavior of an ER material was

performed. It clearly appeared that the ER material behaved linear viscoelastically in the

stress-strain curves, but it was just as obvious that the behavior was not so clearly linear

in the phase-strain curves. The phase appeared to drastically change at strains below the

stress-strain yield definition especially at lower electric fields. An attempt was made to

qualify the trends in transition from linearity in terms of stress and phase yield strain with

respect to electric field and frequency. Increases in electric field resulting in increases in

yield strain were observed for both the stress and phase yield strain. Increases in

frequency resulted in decreases in the stress and phase yield strain. A quantifiable phase

shift within the linear region was not able to be done due to the insensitivity of the

instrumentation. Although it was concluded that since the phase was so close to 0

degrees, that G' dominated the behavior at electric fields of 1.5 kV/mm or more if the

excitation was to be considered in the linear regime. Within this linear regime the

instrumentation was accurate enough to measure the "real component" of the magnitude

of the complex modulus. It was observed that the quantitiy showed a squared

dependence with electric field. In addition, it was observed that the complex shear

modulus showed little dependence upon frequency. The repeatability of these results

over an expanded time frame showed that the material was behaving reliably.

Many of the previous investigations that were done measure G' and G" not taking

into account the non-linearity of the material at all. In addition, the definition of linear

behavior for many of the investigations was based on the deviation of sinusoidal stress as

a function of time. This definition did not take into account the phase criteria. At some
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electric fields it appeared that material behaved extremely non-linear with respect to

phase. If either of these was the case, then the G' and Gil results were flawed.

The results of this investigation warrant a more accurate study of the linear

behavior of ER materials at small strains. The fqrther efforts of this continuing

investigation will focus on measuring the phase more accurately at smaller strains using

more sensitive instrumentation. The purpose of the continuing effort will be to define a

range of linear behavior for ER materials and examine the behavior in this range with

respect to electric field, frequency, and eventually temperature.

6.2 Modeling of ER based Structural Beams

Both RKU and the Mead and Markus models were valid theories in predicting the

resonance response of ER structures. The prediction of structural damping was not

accurate due to the inaccuracies in both determining rheological properties of the

materials, and the inherent experimental errors.

The accuracy of the models significantly depended upon the construction of the

experimental structures. The most dependent variables to the accuracy were found to be

the effects of the sealant, the accurate determination of material properties in both
-

experiment and theory, and the uniformity of the sandwich layer. Previous investigations

showed linear resonant-electric field relationships but it has been shown that the

relationship was more parabolic as predicted by theory. The author attributes this to

fabricated structures that were more consistent with the theoretical assumptions.

From an applications standpoint the use of ER adaptive structures for vibrational

damping was not dependent upon the actual damping of ER materials, but rather the

ability for the structure to change stiffness. The most dramatic reduction in amplitude

observed in Figure 4.4.1 was the result of a change -in resonant frequency.
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The resonant frequency was modeled using both the RKU and Mead and Markus

models. The models were able to predict the resonant frequencies. In those models it

was observed that the resonance depended very little on the damping effects of the ER

material as was seen in equations 4.2.26 and 4.2.3.27. Hence, for practical applications,

it may be necessary only to consider the effects of G' when the material has a loss factor

of less than 0.1. Control schemes could be developed based on this information.

6.3 Mode Shape ControlUsing Multi-electrode Panels

The' use' of a multi-electrode panel for vibration control was investigated in the

final phase of the study. It was found that the resonance of the plate structure was

significantly altered by varying the different panel conditions. The resonance increased

as the number of panels was turned on as seen in Figure 5.3.1.

The effect of moo~ shape based control using and multi-electrode ER based

structures was less conclusive. The first modal shape did not visibly change for the six

different panel conditions. The second modal shape did visibly change for panel

conditions 3 and 4. Panel conditions 3 and 4 had two activated electrodes; diagonally

across from each other, and next to each other respectively. The displacement of the

various locations on the activated panels was much less than the displacement on the

non-activated panels as shown in Figures 5.3.3c and 5.3.3d. This reduction in amplitude

of the activated panels caused the alteration of the modal shape.

The results of these experiments warrants further investigation into mode shape

based control using ER based adaptive structures. The procedure and instrumentation

used in measuring the mode shapes was not sensitive enough to accurately observe the

variations in modal shape caused by the activation of the different electrode panels. The
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application shows promise to increase the roQustness of. ER based adaptive structure

applications in vibration damping.

6.4 Future Investigations

The results of this study show that ER based adaptive beam structures are

potentially applicable for semi-active vibration control. The results also show that

further investigation for the eventual physical realization of this application must be

accomplished apriori. The further investigation, as pointed out in the preceding sections,

are related to the understanding of the ER materials rheology, modeling and control, and

the effectiveness of multi-electrode structures

The development of a better rheological testing apparatus for ER materials must

be developed. The device must be able to increase the frequency range to at least 1000

Hz., arid provide a controlled temperature environment similar to many of the real world

applications. The sensitivity of a device specifically for measuring materials with small

phase angle must be improved. More investigations on the reliability, and material

behavior should be done to push this application from a pure R&D environment to

commercialization.

A control scheme for ER based adaptive structures needs to be developed. This

investigation has shown that two prior theories used in modeling the dynamic response of

3 layer c,?mposite structures are useful. The next step is to investigate possible sensors

used in the structure, and a control algorithm. The current research being done at Lehigh

involves the use of fiber optic embedded sensors and neural networks for control. Fiber

optic sensors are being used because of their ability to function in environments with

high electric fields unlike resistance based strain gages. Neural networks are being
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utilized due to the non-linearities of the structural response and intrinsic robustness of the

methodology.

The first control algorithm for a single location-single frequency system has been

devised. The control scheme developed will minimize the vibration at one location on a

beam structure in simply supported boundary conditions for a single excitation

frequency. Figure 6.4.1 shows what the" electric field should be for optimal response in

the presence of a given forcing frequency between 0 to 250 Hz. The flat part of the

optimal electric field curve on Figure 6.3.1 is the limit of the power supply rather than

the actual optimal electric field. A neural network has been created to simulate these

results and the actual creation of a ER based adaptive structure is in progress.

The research intends to devise control algorithms for multiple location-single

frequency, and multiple location-multiple frequency systems. The complexity of these

algorithms is related to the dynamics of the ER based structures. If a single location

single frequency control scheme is incorporated it is possible that the response of other

locations and at other frequencies will dramatically increase. For example, if a strUCture

exhibits simply supported mode 1 behavior and the amplitude at the midpoint is
/'

minimized by pushing the frequency response to simply supported mode 2, then the

quarter point locations will dramatically increase. The structure has minimized the

midpoint while maximized the quarter points. Another example is that if the response at

one frequency is minimized by shifting the frequency response to the right via an electric

field, the response at other frequencies could be enhanced. This is more clearly observed

in Figure 4.4.1.

The investigation also intends to devise algorithms for the application of multi

electrode ER based structures. The use of mult-electrode structures in increasing the

112

-,



50 100 150 200 250 300
Frequency (Hz)

5---------------,
.........
E 4.5
E:> 4
~

:;;'3.5
.~ 3u..

, .~ 2.5
L.....
~ 2
w 1.5
co
E 1.....
8- 0.5

O-+--,-"""""-,---.---.---.---.-""'""r-'I-r--f---r-""""",

o

Figures 6.4.1 Optimal Electric Field to Minimize Vibration at One Location on a Structure

113



robustness of semi-active vibration control has been proven in the present study. There

needs to be more investigation into the applicability of these structures; specifically,
i

research in the use of different electrode configurations and geometrys and how they

affect the frequency response and modal shapes. A experimental system that is more

sensitive in measuring mode shapes needs to be developed. Control schemes for multi

electrode structures will follow after a more thorough feasibility analysis.

ER based adaptive structures have been shown to be an potential solution to many

vibration problems. Significant research has been done in the present studyrelated to the

rheology, modeling and control, and feasibility. From this investigation the directions of

further efforts to create real structures have been clearly defined.
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