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ABSTRACT

In this thesis we investigate the shear flow of two 'superimposed viscoelastic

fluids under steady state conditions.

Several important applications of such flows include lubricated transport of

crude oil through pipelines, co-extrusion of polymeric liquids in foaming composite

materials, and coating of liquid layers to a substrate.

We consider the general case for which each layer has a different density,

viscosity and relaxation time. The layer thickness is an additional parameter. Both

geometries of parallel plates and cylindrical pipe are considered.

The closed form solutions for the case of Newtonian fluids are derived for

completeness. The Upper Convected Maxwell fluid and The Oldroyd -Bmodel are

used to describe the viscoelastic behavior of dilute solutions of polymeric molecules.

Closed form solutions for these fluids are also derived.

Concentrated solutions of polymers which exhibit second normal stress

differences and shear thinning can be described by a more complex viscoelastic model

known as the Giesekus model. Solutions for the Couette flow of two superimposed

fluids described by the Giesekus model are obtained numerically and the effect of the

variation of some of the parameters on the flow is investigated.

As expected, the second normal stress difference increases for increasing

values of the mobility parameter Q. In addition, increased Weissenberg numbers

produce higher second normal stress differences.

In the cases where one of the layers is much thinner than the other, we

conclude that the nondimensional velocity gradient in the thick layer remains very

1



close to 1 for all values of the mobility parameter, provided that its viscosity is less

than that of the thin layer.
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1. INTRODUCTION

Shear flows of immiscible multiple-component systems have attracted the

attention of many researches , in recent years. Such flows have many practical

applications in the processing and transport of materials. Examples include lubricated

transport of crude oil through pipelines; co-extrusion of polymeric liquids in forming

composite materials with unique mechanical and optical properties; and coating of

multiple liquid layers to a substrate.

In this thesis some of the flows are analyzed under steady state conditions.

We concentrate on two layered shear flows. Both geometries of parallel plane and

circular cylinder are being considered. We start our discussion by focusing on the

shear flow of two layers of viscous Newtonian fluids superimposed iil-a parallel plate

geometry. Each layer has its own viscosity and density. The thickne&s ratio is

another parameter of the problem. This problem has a rather simple closed form

solution, in either the Couette or Poiseuille flow case. Similarly the flow of two

concentric cylindrical fluids within a pipe under pressure gradient is studied and

closed form solutions are listed.

We next consider the case when the fluids involved are viscoelastic. Many of

the practical problems mentioned earlier do indeed involve dilute solutions of

polymer molecules. In some cases one may even have to consider concentrated

solutions and melts of flexible polymer molecules. Both dilute solutions and melts

can possess first normal stress differences. This is the difference between the normal

stress in the direction of the flow and the normal stress in the direction of the velocity

gradients. Of course for a Newtonian fluid both normal stresses are equal to the

additive inverse of the pressure. Both dilute solutions and melts may exhibit shear

3



thinning. This is a manifestation of shear rate dependence of the apparent viscosity

due to the nonlinear relation between shear rate and shear stress.

The shear thinning of dilute solutions is usually light, however melts manifest

a strong shear thinning as well as second normal stress differences. Two models are

used for the description of dilute solutions of polymeric molecules. One is the Upper

Convected Maxwell (UCM) fluid ,which has two material parameters: the zero shear

viscosity and the relaxation time. The influence of viscoelasticity on the flow is

characterized by the Weissenberg number which is the product of the relaxation

time and a typical velocity gradient. Since in this thesis we consider steady state

problem, the Deborah number does not enter our discussion.

We generalize tOe (UeM)lTIOdel-equation by considering an -additional

solvent viscosity. This is the Oldroyd-B model which can be derived from a

molecular model is which the polymer molecule is idealized as an infinitely

extensible Hookeen spring connecting two Brownian beads [6]. The model has been

shown to give predictions in simple shear flows that are in qualitative agreement with

laboratory measurements done for Boger fluids.

As we mentioned earlier, polymer melts and concentrated solutions of

polymers exhibit second normal stress differences and shear thinning. There are

several viscoelastic models predicting this type of behavior [1], [7]-[10]. A detailed

summary of these models is given by R.G. Larson [5] .

In this thesis we concentrate on the Giesekus model for melts. For simplicity

we use the single mode form of this model, which is capable to predict the second

normal stress difference as well as shear thinning.
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With two such fluids undergoing shear flow there is a great number of

possible configurations. Several of these are examined and analyzed in the present

thesis. A complete study of the problem would require a stability analysis which

would predict which of these possible configurations would be stable under small

disturbances and hence good candidates for processes of practical importance. This,

more difficult problem, is not treated here but it will be considered later.

The organization of this thesis is as follows. In chapter 2, we describe the

basic equations to be used. We list the continuity and momentum equation together

with the constitutive equation for a Newtonian fluid. For a viscoelastic fluid of UCM

and Oldroyd-B type. The constitutive equation for Giesekus type fluids are also

----presented and nondimensionalized. Stresses are measured relative~to-a--reference-----­

shear stress. In this chapter we also summarize the boundary and interfacial

conditions. In chapter 3 we describe the solution of two superimposed Newtonian

fluids between two parallel plates. Couette flow with zero pressure gradients is

considered. We also study thePoiseuille problem when the two fluids are in the

form of two concentric cylinders within a circular pipe.

In chapter 4 we considered the case of two Superimposed Viscoelastic fluids

of the UCM type between two parallel plates. Again both Couette flow with zero

pressure gradient and Poiseuille flow with non zero pressure gradient are considered.

In chapter 5 we study the same problem for zero pressure gradient when both

of the fluids are represented the a single mode Giesekus type constitutive equation.

The nonlinear character of this last problem requires a numerical approach to obtain

the basic flow characteristic.
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In the geometry studied here in each layer there is only one non zero velocity

component and this is a function of the shear coordinate which is perpendicular to the

plates. The constitutive and momentum equation predict that the velocity gradients in

the layers are constants and they are used to express all stresses in terms of these

velocity gradients. Both velocity gradients are then written in terms of the velocity of

the interface and finally the shear stress interfacial condition is used to determine this

velocity and consequently all other variables. This last equation is nonlinear and an

appropriate method is used to produce accurate solutions.

In chapter 6 we present our conclusion, based on this analysis of shear flows

for various combinations of the material and geometric parameters.
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2. BASIC EQUATIONS

In this work, we consider the flow of either a single fluid or that of a system

of two superimposed fluids occupying the region between two rigid plates. In some

cases, we consider the flow of two concentrically situated fluids inside a circular

cylinder.

In the case of the parallel plates geometry, we consider a Cartesian coordinate

system with the x and y axes on the lower plate. The x axis is in the direction of the

flow and the z axis is in the direction perpendicular to the plates, as shown in figure

1.
-~---_.~------------------ .-----_._--

We denote by

i = 1,2 , (2.1)

the velocity components of the flow. The index i=1 corresponds to the lower fluid

and i=2 corresponds to the upper fluid. The densities Pl and P2 of the two fluids

may be different but we make the assumption of incompressible flow and

consequently the continuity equations for each fluid component are

au· avo aw·_t+_t+_t=o
ax ay az (2.2)

The corresponding momentum equations for each component fluid of the

system are given by

7



(2.3)

(2.4)

(2.5)

where (}xx, (}yy, (}zz, Txy , Txz , Tyz are the components of the stress tensor S .

[ ~xx Txy
r

xx
]~---- ... _------_ .. s= Txy (}yy Tyz -.- - ~ (-2-;{))

Txz Tyz (}zz

The stress at a point is specified by the six components where (j has been

used to denote a normal stress and T has been used to denote a shear stress.

Figure 2 illustrates the components of the stress tensor S. In the case of

Newtonian Fluid, the shear stresses are

(aV aU)Txy = f.L ax + ay ,

(aW aU)
Tzx = f.L ax + az '

and normal stress are given by :

8
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au
O"xx = - p + 2J.1. ax '

av
O"yy = - p + 2J.1. ay ,

aw
O"zz = - p + 2J.1. az '

where p is the pressure in the fluid.

(2.10)

(2.11)

(2.12)

Equations (2.7) through (2.12) can be summarized by the tensor equation

(2.13)

where I is the identity tensor and

(2.14)

L_

Here we use the notation

Ul = U, U2 = V, U3 = w. (2.15)

In Chapter 4, we discuss the flow of upper convected Maxwell fluids. Consequently,

we introduce here the constitutive equations describing the behavior of these fluids.

The stress tensor §. is related to the pressure p and to the "extra" stress T by

S = -pI+I,

The "extra" stress I satisfies the differential equation

9

(2.16)

(2.17)



D
where A is the relaxation time and 'fJ is the viscosity and Dt denotes the upper

convected time derivative.

where

DT 8T [. T]-=-8 +(u.V)T- Vu.T+T(V.u) ,Dt t - - - --- ---

(
8 8 8)

( u.V) = u 8x + v 8y + W 8z .

(2.18)

(2.19)

I.e.

If equation (2.16) is modified to include the effect of a Newtonian viscosity

(2.20)

then one has the constitutive equation for the Oldroyd B type fluid which may be

physically interpreted as a mixture of a viscoelastic fluid in a Newtonian solvent.

Another more general fluid to be considered here is the one introduced by

Giesekus [1] which is capable to model second normal stress differences and also

shear thinning behavior.·

A set of constitutive equations for one special case of this fluid is

(2.21)

where TS is the Newtonian solvent contribution

(2.22)

and T is the viscoelastic stress contribution. In equation (2.22) f..£s is the solvent

viscosity.

The tensor T satisfies the equation:

10



DT a),
T + )'-=+-TT=2'1}D- Dt 'I} -.- -

where D is the rate of strain tensor given by

(2.23)

(2.24)

and a,)" 'I} are material parameters.

The time derivative gt which appears in 2.23 is defined earlier by equation 2.18.

We would like to rewrite all of the equations presented in this section in

nondimensional form. This will facilitate discussion in this sections to follow.

We measure all distances relative to do a reference length eIre!, Le.

(x, y, z) = (x, y, z)ldre!

We measure velocities relative to a reference velocity Ure!, l.e.

(Ui, Vi, Wi) = (Ui,Vi,Wi)IUre!

We measure time relative to eIre! lUre!, Le.

(2.25)

(2.26)

t = tUre! Idre!, x= ),Ure! Idre! (2.27)

We measure viscosities and densities relative to a reference viscosity J1re! and

reference density Pre!, i.e.

(2.28)

Finally, we measure stresses relative' to the reference shear stress

(2.29)

11



Using equations (2.25)-(2.29) and dropping the bars from the non dimensional

variables we obtain the non dimensional form of the continuity equation as:

8u 8v 8w _ 0
8x + 8y + 8z - .

and the non dimensional form of the moment~m equations,

(2.30)

/
2) 8(Jxx 8Tyx 8Tzx (8u 8u 8u 8u)

(Reref Frref pgx + 8x + 8y + 8z = Rerefp 8t + u 8x + v 8y + w 8z '

(2.31)

__ ~ ------------c--

(2.32)

(2.33)

Here the reference Froude number is given by

Uref
Frref = r:::r-:.

V gdref
(2.34)

(2.35)

Where 9 is the gravitational acceleration. We point that gx, gy, gz are

nondimensionalized relative to the gravitational acceleration g.

In equations (2.31)-(2.33) the reference Reynold's number Reref is given by

R
PrefUrefdref

eref =
I-lref

12



In addition, the time derivative D/Dt which appears in (2.23) is still defined as

earlier by equation (2.18) . The non dimensional form of the constitutive equation of

the Giesekus fluid (cf. equation 2.23) is

(2.36)

where the Weissenberg number We is the non dimensional relaxation time A

given by equation (2.27).
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3. SHEAR FLOW OF TWO NEWTONIAN FLUIDS

In this section we summarize some known results about the simple shear of

two different Newtonian fluids in contact.

The fluids are assumed to be immiscible so there is a sharp interface. Couette

flow for parallel plates and the Poiseuille flow for both geometries of parallel plates

and circular cylinder will be discussed.

3a. Parallel Plates

Here we first consider the simple shear flow of two superimposed Newtonian

fluids between two parallel plates separated by a distance do. The lower plate is

stationary while the top plate moves with a velocity U. The only velocity component

present is the one in the x-direction and it depends on z only so that

Ui = Ui(Z) (3.1)

. and

Vi = Wi = 0, i = 1,2 (3.2)

We choose U as Ure! and do as dre!.

The lower fluid occupies the region defined by 0 ~ Z < d1 and the upper

fluid occupies the region defined by d1 ~ Z < d2. The index i = 1 corresponds to

the lower fluid and i = 2 corresponds to the upper fluid.

In nondimensional fonn the boundary conditions are given by

14



(3.3)

(3.4)

and the interface conditions are

(3.5)

(3.6)

In this section we consider two problem, the first one is Couette flow, with

zero pressure gradient. The second problem is Poiseuille flow for which the pressure

gradient dp/ dx is constant and equal to P.

Let us consider the first problem. The continuity equation (2.2) is

automatically satisfied and from (2.7) - (2.12) we have

the momentum equations (2.6),(2.7),(2.8) give;

8Pi = ~(Jli 8ui )
8x 8z 8z

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

Equation (3.11) indicate that the pressure p is the independent of y and z. For

the Couette flow we take p to be independent of x as well. This is the condition of

zero pressure gradient. As a result of this assumption, equation (3.10) simplifies to

15



(3.12)

Integrating (3.12), we obtain

(3.13)

(3.14)

where en, C12 are integration constants to be determined by boundary

conditions.

Using boundary conditions (3.3), (3.4) and (3.6) we obtain

(3.15)

(3.16)

We find the V* by using interface condition (3.5).

(3.17)

We note that in the nondimensional variables used d2 = 1 - d1

If we introduce m ,and d

f..Llm=-,
f..L2

then we have

(3.18)

1
V* = l+md '

16
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z/d1

U1 = 1 +md '

1+ m((z/d1) - 1)u - ---'--'-------'-
2 - 1 +md

(3.20)

(3.21)

In the second problem, we consider the same plate geometry, same boundary

conditions, and same interface conditions, but we consider a non zero pressure

gradient given by

dp =p
dx .

The momentum equation now gives

Integrating we have

P Z2 0 11
U1 = -2 +-z + 0 12

j.L1 j.L1

pz2 0 21
U2 = -2 + -z + 0 22 .

f.L2 f.L2

Using boundary conditions we obtain 0 11 , 0 12 , 0 21 , 0 22 as

(3.22)

(3.23)

(3.24)

(3.25)

0 12 = 0 (3.26)

17
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(3.28)

from interface condition, we calculate the V*;

additionally by substituting Cn , C12 , C21 , C22 we obtain,

Pd1z z z
U1 = --(-c- -1) + -Y: ,

2M1 d1 d1

(3.29)

(3.30)

_ P ( 2 (d 1) d) (Y: - l)z - Y: + d1
U2 - - Z - Z 1 + + 1 + --'-------'-----

2M2 d1 - 1

(3.31)

3b. Circular Cylinder

In this section we study the flow of two axial Newtonian fluids in a circular

cylinder under the influence of a pressure gradient. We start our analysis with

dimensional variables and we will later introduce a nondimensionalization which is

slightly different from the one dimensionalization earlier.

Here we consider the fully developed flow of two superimposed Newtonian

fluids in the circular cylinder by a radius R1 + R2 • A cylindrical coordinate system

(r, (), z) is used to describe the flow. The z axis coincides with the axis of the

cylinder. one of the fluids occupies the inner region defined by

(3.32)

18



and the other fluid occupies the region defined by

(3.33)

The fluids are immiscible, so that there is a sharp interface in the form of a

cylindrical surface at r = R I .

Because of the axial symmetry of the flow we have

Uz = U(r), Ur = Ue = 0

The interface velocity is again denoted by V*, i.e.

The pressure gradient along the axis is constant and given by

8p =p
8z

(3.34)

(3.35)

(3.36)

We have one boundary condition at r = R I + R2 where the velocity must

vanish. The momentum equations in cylindrical coordinate are (neglecting gravity)

8p =0
8r '

~8p = 0
r 8e

8p = p = (~ 8(rTrz ) )

8z r 8r

19
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The continuity equation is automatically satisfied. The normal and shear

stresses are

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

Index i=l denotes the inner flow while i=2 denotes the outer flow. Substituting (3.39)

in to (3.38) and integrating we obtain,

r
2

011 I IUl(r)=-4P+-lnr +012
J.Ll J.Ll

-------------~

r
2

0 21 I IU2(r) = -4P + -In r + 0 22
J.L2 J.L2

Using the condition that U1 must be finite at r = 0, we obtain 0 11 = O. Using

interface condition

we obtain C12 as

Similarly using U2 = 0 at r = R1 + R2 we obtain

(R1
: R2)2 P + C21lniRI + R~I + 0 22 = 0

J.L2 J.L2

20
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We can use equation (3.45) and (3.46) to solve for C 21 and C22. We obtain

G
_ /12v;.+fR2(R2 + 2R1)

21 - R
In(~)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

We nondimensionalize the variables by measuring velocities with respect to the

interface velocity V*, P with respect to (R;~~2)2 ,and length with respect to R1 + R2•

We introduce the parameter R= Rl~R2 ' which implies that for the inner region

o< r < R and for the outer region R ~ r :::; 1. We also introduce m= /11//12 and

we have

(3.51)

(3.52)
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4. SHEAR FLOW OF TWO UPPER CONVECTED

MAXWELL FLillnS

The results summarized in the previous chapter form the basis for discussion

of the stability of stratified shear flows of immiscible multiple-component systems.

The first investigation on the interfacial stability of two Newtonian viscous fluids in

shearing motion was carried for plane Poiseuille/Couette flow by Yih[2]. Yih found

that for these flows, viscosity stratification can cause an instability that persist even at

vanishingly small Reynolds numbers. This low Reynolds-number instability is due to
~~~~

the presence of the fluid-fluid interface which introduces an "interfacial mode" of

instability. Following Yih's work, similar linear-stability analyses have been

performed for shear flows in different geometries for both Newtonian and viscoelastic

fluids. A most comprehensive review on the subject is given in a monograph of

Joseph and Renardy[3]. In this section we consider the zeroth order solution of plane

Poiseuille/Couette flow of two superimposed viscoelastic fluids. The two fluids are

assumed to obey the constitutive equation of the "Upper Convected Maxwell" (UCM)

fluid. This analysis is partly based on the work of Renardy [4] who studied the

stability of the interface in two-layer Couette flow of UCM liquids. The two fluids

have different viscosities J-Li" densities Pi, and relaxation times Ai. Surface tension

is assumed to exist at the interface.

The fluids are assumed to be immiscible. We consider the parallel plate

geometry as discussed in chapter 3.
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The lower fluid occupies the region defined by 0 ~ z < d1 and the upper fluid

occupies the region defined by d1 ~ Z < d2 . The index i = 1 corresponds to the

lower fluid and i = 2 corresponds to the upper fluid.

The extra stress T is given by equation (2.17) and since the problem is two

dimensional with only x and z involved, we can simplify the stress matrix to

T = [TXX TXZ]
Txz Tzz

(4.1)

In this geometry the only non zero velocity u(z) is in the x direction and depends on z,

hence

(
0 8u \

___ \l y:. = O-~-)-

Considering that the flow is time independent and using (2.18) we have

DT = _ (2Txz8~ Tzz ~~)
Dt Tzz 8z 0

Substituting this expression into (2.17) we obtain

(4.2)

(4.3)

or

[
Txx TXZ ] +>. [-2Txz8~
Txz Tzz -Tzz 8z

-Tzz ~~] _ [0o - 7J 8u
8z

8U]8z

o (4.4)

au
Txx - 2 >. Txz az = 0 ,

Tzz = O.

In view of (4.7) we can write (4.5) and (4.6) as

23

(4.5)

(4.6)

(4.7)



using equation (2.16) we have

s. = [ - P+Txx TXZ] ,
Txx 0

(4.8)

(4.9)

(4.10)

where the pressure p is a function of x only. From the momentum equation in the x-

direction we obtain

For the Couette flow between two parallel plates ~ = 0, hence we have

8Txz = 0
8z .

If we substitute Txz from (4.9) we have

Integrating the equation we obtain

(4.11)

(4.12)

(4.13)

i = 1,2 (4.14)

and we write for each i index,
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(4.15)

(4.16)

Here al, a2, bl , b2 are constants to be determined by applying boundary conditions..

Boundary Conditions are

Ul(O) = 0,

and interface conditions are

-Crxzh =-(T xzh,

ul(dd = u2(dd=V*

where V* is the velocity at the interface.

We consequently obtain,

to find V* we apply the interface condition, then we have

1
v;. = 1+ nd

where the quantities n, and d are defined as

n = T/l ,d = d2 .
T/2 dl
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(4.19)

(4.20)

(4.21 )

(4.22)



We now consider the more general problem where the upper plate moves with a

constant velocity, the lower plate is stationary and there is a pressure gradient P in

the x-direction. For this case the momentum equation gives (4.11) gives

8Txz = p
8z

Substituting (4.9) into (4.23) we have

Here, first we substitute c2into (4.18)

for eacli onnelayers~

Integrating we obtain,

P Z 2 Cn
Ul = -2- + -z + C12

fJl fJl

(4.23)

(4.24)

(4.25)

(4.26)

We apply the boundary conditions (4.17) and (4.18) to obtain Cn, C12, C21, C22.

These are given by

, C12 = 0, (4.27)
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1
Pdl v: ,- 1

C22= +----
2'T]2 d1 - 1

by using interface condition V* is obtained.

and by substituting Cn, C12, C21, C22

(4.29)

(4.30)

(4.31)

pz2 (v: - 1 P ) Pd1 v: - 1
U2 = - + - --(d1 + 1) z +1+- -

2'T]2 d1 - 1 2'T]2 2'T]2 d1 - 1

(4.32)
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5. FLOW OF TWO GIESEKUS TYPE VISCOELASTIC FLUIDS

The problem that we discuss in this chapter is a Couette flow of two

incompressible viscoelastic liquids obeying the Giesekus one-mode "linear" model.

We have in view primarily flows of dilute polymer solutions or concentrated polymer

solutions and melts of flexible polymer molecules which are the two important classes

of viscoelastic fluids.

Both dilute solutions and melts have first normal stress differences of

significant magnitude. However the shear viscosity of concentrated solutions and

melts de~reases~by1hree-orders-of-magnitude-as-shear-rate-iner-e-ases.-But-simi1ar-ease~--~­

dilute solutions have little shear thinning. In concentrated solutions and melts the

first normal stress coefficient, 'l/Jl = NIlx2can decrease by several orders of

magnitude as X increases. This decrease in 'l/Jl is another manifestation of shear

thinning. In addition concentrated solutions have a significant negative second

normal stress coefficient 'l/J2 = NdX2• In dilute solutions this quantity. is almost

zero. Both shear thinning and a non zero second normal stress differences are

predicted to play major roles in controlling stability in viscoelastic flows. The stability

characteristics of dilute solutions are completely different from those of melts. [5]

The behavior of these fluids can be modeled by the Giesekus type viscoelastic

fluid. The constitutive equation for this fluid was introduced in chapter 2 (cf. equation

(2.21)-(2.24)). We consider again the two parallel plates geometry with a planner

interface separate two immiscible fluids. The distance between the plates is taken
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equal to 1, the lower fluid occupies the region 0 ~ z ~ d1 while the upper fluid

occupies the region defined by d1 ~ Z ~ d2 .

The extra viscoelastic stress contribution T which is introduced by equation (2.21) has

the form.

o

[

TXX
T= 0

Txz

TOXZ]
Tyy

o Tzz

(5.1)

This form of the stress tensor is implied by the fact that there is no velocity in the y

direction and the non zero velocity u(z) is in the x direction and depends only on z.

We consequently have

(

0 0

V~= ~ ~
au)az
o
o

(5.2)

Considering that the problem is time independent we use equation (2.18) to obtain

~I. We have

DT
Dt

o ~~TZZ]
o 0 .
o 0

(5.3)

We substitute (5.3) into (2.36) and we obtain
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o TXZ] [2~~TXZ 0 ~~TZZ]
Tyy 0 - We 0 0 0

o Tzz ~~TZZ 0 0

au]az

~ .(5.4)

We have four scalar equations from the above matrix equation. These are

8u aWe 2 2
Txx - 2We-

8
Txz + --((Txx ) + (Txz ) ) = 0,

Z 1]
(5.5)

aWb )2Tyy + --(Tyy = 0,
1]

aWe ( 2 2Tzz +-- Txz + Tzz ) = 0 ,
1]

(5.6)
--- ---- ----~

(5.7)

> (5.8)

(5.9)

If we introduce the Weissenberg number We which appears in these equation is the

nondimensional relaxation time A is given by (2.27). We introduce (3, and X by

f3 = We
1]

We can write

8ux= 1]­
8z

Tyy + af3(Tyy )2 = 0,
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From equation (5.13)

7 yy = O.

We introduce the first normal stress difference

and the second normal stress difference

(5.14)

(5.15)

(5.16)

(5.17)

We use 7 to denote the shear stress t xz and we note that the Newtonian shear stress

is given by

(5.18)

where X is the shear rate given by (5.10).

From (5.15) and (5.17) we have,

(5.19)

(5.20)

Substituting (5.19) and (5.20) into equations (5.11), (5.12), (5.14),

N1 - N2 - 2{37X + a{3[(N1 - N2 )2 +7
2

] = 0 , (5.21)

- N2 +a{3(7
2 +N?) = 0 . (5.23)

Subtracting (5.23) from (5.21) we write
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(5.24)

Equation (5.22) can be written as

(5.25)

and from (5.23)

From (5.24) and (5.25) we write

2 _ N (1 - (3N2)
T - I 2(3 .

Using (5.27) in (5.26)

N
I

= 2N2(1- a!3Ni.r--
(1 - (3N2) •

(5.26)

(5.27)

(5.28)

Equations (5.28), (5.27), (5.25) provide the expressions required in the evaluation of

NI , T, Xin terms of a given value of N2. In order to allow the calculation of the

stresses NI, N2, and T in terms of the deformation gradient X we need to introduce a

variable A by the equation

I-A·
(3N2 = -1-+--:-(1---2a--:-')-A

In terms of A we can solve (5.28) to obtain

l-A2
Nl = ---...,.....-----,--...,....

a(3A(1 + (1 - 2a)A)

Using (5.28) and (5.29) into (5.25) we obtain

2(1- a)A2
T = 1+ (1 _ 2a)AX .
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From (5.25) and (5.27) we can obtain

2 N1{I + a,8(N1 - 2N2)}

X = 2,8(1 - ,8N2 ) ,

we can then use (5.29) and (5.30) to obtain

2 1- A2
X = 4a,82A4(1 - a)

(5.32)

(5.33)

We can now see the advantage of the transformation (5.29). Equation (5.32) provides

a quadratic relations for the solution of A2 in terms of X. We can explicitly calculate

T from (5.31) Nl from (5.30) and N2 from (5.29).

This general formulation is valid for non zero values of the parameters a, ,8, 1].

Now, we will consider some special cases.

a-),8 = 1] = 0

from (5.10) and (5.21)- (5.23)

This is the Newtonian case that we studied in chapter three.

b-) a = 0 ; ( ,8 ~ 0 )

in this case we have N2 = 0 and T = X (5.34)

This is the Oldroyd B type fluid. Notice that if the solvent term in the Oldroyd B

equation is set to zero that is /l=0 the equation reduces the UCM equations.

Here both the upper-convected Maxwell and the Oldroyd B models show a

zero second normal difference N2and no shear thinning. These might be acceptable

approximations for dilute solutions but are poor approximations for melts. Also

there are some important limitations of the Oldroyd B equations for describing dilute

solutions are :
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The model contains only a single relaxation time, while the fluid actually

displays a spectrum of time constants ,and extensional viscosities grows limitless, in

extensional flows when the extensional strain rate exceeds a critical value.

From the momentum equation in the x-direction we obtain

where the stress tensor ~ is defined by equation (2.21).

For the Couette flow between two parallel plates ~ = 0, hence we have

(5.35)

8Sxz

8z

From the equation (2.21) we have

where T denotes the extra shear stress Txz.

o.

(5.37)

Ssubstituting (5.18) and (5.31) into (5.37) we obtain

(
J.L 2(1 - a)A2 )

Txz = 'TI + 1+ (1 - 2a)A X· (5.38)

Equation (5.36) implies that Sxz must be constant. In view of (5.38) and (5.33) we

conclude that X must be a constant. Consequently we can integrate equation (5.10)

for the upper and lower fluid to obtain

Xl
UI = -z+cn,

'TIl
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(5.40)

(5.41)

From the boundary condition at ul = 0 at z = 0, we obtain en = O. From the

boundary condition U2 = 1 for z = 1 we obtain

X2
Cl2 = 1--.

'T]2

We denote by V* the velocity at the interface z = dl . From (5.39) and (5.40) we see

that

v* = Xldl = X2
d

l + 1 _ X2

'T]l 'T]2 'T]2

The interface stress condition can be written as,

(5.42)

Using (5.42) we can write

Xl ~ X2

'T]l dl ' 'T]2
(5.44)

If we replace Xl, and X2 in (5.43) by their expression (5.44) we obtain an equation for

V* of the form,

Here AI. A2 are given, in view of equation (5.33) , by
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v;.2 1 - Ai
dr - 4ad3iTJrAi(l - ad '

(1 - v;.)2 1 - A~

d2
2

- 4a2,B~TJ~Ai(1 - a2)

(5.46)

(5.47)

Equation (5.41) and (5.42) can be solved analytically for Al , A2 in terms of V* . For

this we call

(5.48)

and (5.46) becomes

(5.49)

Solving for

we obtain

Ai = - 1+ J1 +4Av;.2
2Av;.2

Similarly, for equation (5.47) we define B as

B = 4a2,B~TJ~ ~1 - a2)
d2

and we obtain A~ as ,

- 1+ J(l +4B(1- v;.)2)
A~ = __......:...--=----_----.:...._--'-'--c-

2B(1 - v;.)2
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We can now establish an iterative procedure for solving equation (5.45) for

~. We start with the choice V* = dl (which corresponds to the single fluid flow)

and use (5.51) and (5.53) to calculate Al and A2 we can then proceed evaluating the

residual of equation (5.45). A root finding technique can then be utilized to improve

the estimate of V*. Having obtained V* we can use (5.42) to calculate Xl ,and X2

and (5.51) and (5.53) to calculate Al and A2 . We can then obtain the normal stress

difference Nl, N2 and the shearing stress T using equations (5.29)- (5.31).

The procedure described above has been used to produce the data illustrated in

figures 4-39. The various cases considered are summarized in table 1. In all cases

the Newtonian viscosities Ill, 112 are chosen to be equal zero. This is done in order to

emphasize the viscoelastic character of the fluid. We note that several stability

studies have shown an important stabilizing effect of the Newtonian viscosities. The

strategy used here to illustrate the results of these calculations is the following: The

network viscosity 771 of the fluid in the lower layer is kept equal to 1 (Le. viscosities

are normalized with respect to the network viscosity of the lower layer). Similarly

the Weissenberg number WeI of the fluid in lower layer is kept equal to 1 (this

implies that the relaxation time of the fluid in the lower layer is equal to drejlUrej.

Here drej is the distance between the plates Urej is the velocity of the upper plate).

The velocity gradients in both the lower and upper layer and the corresponding shear

and normal stress differences are plotted as functions of the network viscosity of the

upper layer. This is done for values of the mobility parameters Qi varying between

0.1 and 0.5. We only consider cases for which the mobility parameters of the upper

and lower fluids are equal.
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We consider three different values (1, 0.2, 2) for the Weissenberg number of

the fluid in the upper layer. For each one of these cases we consider three different

layer configurations. In the first configuration the layers are equal of depth. Then we

consider a this layer in the bottom (near the stationary plate ) at ratio 1:9 and

consequently consider a this layer near the top plate (which moves) again at ratio 1:9.

The letters A,B,...! are used to name the nine cases described above (see table 1).

Figures 4a and 4b depict the velocity gradient Xl,X2 which are related to the actual

velocity gradients ~~ by relation (5.10). Consequently Xl is indeed the velocity

gradient, but X2is equal to the product of 'T/2 with the velocity gradient of the fluid is

the upper layer.

We observe that all curves of figure 4a as well as all curves of figure 4b pass

through the point 'T/2 = I, Xl = X2 = 1. This ,of course , is an expected result since

for this case A and for 'T/2 = 1 we have a configuration consisting of a single fluid.

For a single fluid the velocity gradient is equal to 1 due to the normalization utilized

in this thesis. Figures 4a, 4b also show that increasing values of the mobility

parameters ai in the case of a less viscous top layer result in a decrease in the

velocity gradient Xl with a corresponding increase in X2. The fact that a decrease in

Xl must be accompanied by an increase in X2 can be explained by the consideration of

the velocity V* at the interface (see figure 3). A decrease in 11;. results in a decrease in

Xl and an increase in X2 while the reverse happens for an increase of V*.

Figure 5 illustrates the variation of the shearing stress T with the viscosity of

the top layer, for various values of the mobility parameter. In all of the cases studied

here the shearing stress T is the total shearing stress in the fluid, since the Newtonian

viscosities are taken equal to zero. In the Couette flow considered here the shearing
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stress remains constant throughout the layer. Consequently the continuity of the

shearing stress condition at the interface implies that 71 = 72. We also note that for

7]2=1 (case of a single fluid with velocity gradient 1), 71 i- 1. this is , of course, due

to the nonlinear character of the fluid due to the non zero values of the mobility

parameter.

Figures 6a and 6b depict the first normal stress differences N11 and N12 as

function of the upper layer viscosity 7]2. We note the maximum reached by the first

normal stress differences in the upper layer. Similar results for the second normal

stress differences are depicted in figures 7a and 7b. In view of equation (5.34) we

note that when TJ2 = 1 ,and a ~ the first normal stress differences should tend to 2
---------------------------

while the second normal stress differences should tend to zero. Figures 6 and 7

clearly indicate these tendencies.

Figures 8 to 11 illustrate the variation of the velocity gradients Xl, X2 the

shearing stress differences N1 and N2 with the viscosity of the upper layer 7]2, for the

case B of table 1. Case B differs from case A because of the Weissenberg number of

the upper fluid is much lower. The differences observed between cases A and Bare;

a) Velocity gradient in the lower layer increases for increasing values of the

mobility parameter. Those is opposite of what is observed in the case of equal

Weissenberg numbers when the lower layer is more viscous than the upper layer.

b) The first normal stress differences in the upper layer tend to 0.4 as a ...O

and TJ2 = 1. The first normal stress differences in the lower layer still tend to 2 for a

...0 and 7]2 = 1. This is explained by equation (5.33) which predicts that in this limit

N1 tv 2{3
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c) The second normal stress differences should tend to zero as a ...O however

in the upper layer they are significantly lower than the common stress of case A.

Figures 12- 15 depict the corresponding graphs for case C of table 1. Here the

Weissenberg number for the upper layer is taken to be equal to 2. The graphs for this

case are similar to the ones obtain for case A with the exemption that there is no

common point of the velocity gradient curves for "12 = 1 as is the case in A. The fact

~~ that case C differs from A less than B does from A is of course explained by the fact

that We2 in C is twice as large while in B is 1/5 of its value in case A.

Figures 16- 19 depict the velocity gradients, shear stress, and normal stress

differences for the case D of table 1. Here we consider a thin layer of fluid near the

Dottom stationaryplare:-TneWeiKsl~nberg-numbersof both fluids are equal to 1.

When the viscosity of the upper layer is less than the viscosity of the lower layer then

X
2

remains very close to 1 for all values of the mobility parameters~. The behavior

of the shearing and normal stress differences for this case is similar to the case A.

Figures 20-23 depict the corresponding for case E of the table 1. The difference

between E and D is essentially the reduction of the second normal stress difference in

the upper layer due to the lesser value os We2. In addition we note that the influence

of the mobility parameter on the velocity gradient, shearing stress and first normal

stress difference of the upper layer is reduced.

The corresponding result for the case F of table 1 are given in figures 24-27.

Figures 28-31 depict again the velocity gradients, shear stress, and normal

stress differences as function of the network viscosity of the upper layer for the case G

of table 1. Figure 29-32 depict similar graph for the case H for which the

Weissenberg number of the upper fluid is 115 of the We number of the lower fluid.
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A common characteristic of all these curves appears to occur for TJ2 / TJl > 1.

This is the case of a thin highly viscous layer between the lower fluid and the moving

upper plate. For this configurations the velocity gradients, the shear stress and the

normal stress differences seem to depend weakly on the network viscosity. Their

values are strongly influenced by the values of the mobility parameter a.

Case I of table 1 is depicted in figures 36-39.

--------------------
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6. CONCLUSIONS

The steady state solution of shear flows associated with multiple-layered

fluids can easily be obtained in a variety of fluid configurations. For the geometry of

two parallel plates and a circular cylinder, closed form analytic solutions are available

when we have two superimposed newtonian fluids or two viscoelastic fluids

characterized by the UCM model.

For the Giesekus model used in this thesis which is capable of predicting

second normal stress differences and shear thinning, we use an accurate and simple

numerical solution approach. As expected, the second normal stress difference

increases for increasing values of the mobility parameter a. In addition, increased

Weissenberg numbers produce higher second normal stress differences.

In the cases where one of the layers is much thinner than the other, we

conclude that the nondimensional velocity gradient in the thick layer remains very

close to 1 for all values of the mobility parameter, provided that its viscosity is less

than that of the thin layer. This result is more pronounced when the Weissenberg

numbers of both fluids are nearly equal.

Again, in the cases where the layer next to the moving plate is much thinner

than the other, we conclude that the velocity gradient and the normal stress

differences exhibit a pronounced maximum for a specific ratio of the network

viscosities. The amplitude of the maximum increases for larger values of the mobility

parameters .
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we
d WeI = 1, We2 = 1 WeI = 1, We2 = 0.2 WeI = 1, We2 = 2

dl=d2=0.5 A B C

dl = 0.1 D E F
d2 = 0.9

dl = 0.9 G H I
d2 = 0.1

TABLE l.Summary of flow characteristics of the examples studied

J.Ll=J.L2 = 0, TIl = 1 X(i), Nl(i), N2(i), T, versus Tl2

for al = a2 = 0.1, 0.2, 0.3, 0.4, 0.5.
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F lGURE 4. The velocity gradients Xi III the two layers as functions of the

network viscosity TJ of the upper layer for values of the network mobility parameter a

between 0.1 and 0.5. Case A where Wel = We2 = 1, dl = d2 = 0.5. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1. a)

Xl vs. TJ2 b) X2 vs. TJ2
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F lGURE 5. The shear stress Ti in the two layers as functions of the network

viscosity 'TJ of the upper layer for values of the network mobility parameter a between

0.1 and 0.5. Case A where Wel = We2 = 1, dl = d2 = 0.5. The Newtonian

viscosity are zero, the network viscosity of the lower layer is fixed at 1.
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F IGURE 6. The first normal stress n1i in the two layers as functions of the network

viscosity "I of the upper layer for values of the network mobility parameter a between

0.1 and 0.5. Case A where WeI = We2 = 1, dl = d2 = 0.5. The Newtonian

viscosity are zero, the network viscosity of the lower layer is fixed at 1.

a)n11 VS. "12 b) n12 vs. "12
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FI GURE 7. The second normal stress n2i in the two layers as functions of the

network viscosity 'TJ of the upper layer for values of the network mobility parameter a

between 0.1 and 0.5. Case A where Wei = We2 = 1, di = d2 = 0.5. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1.
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F I GURE 8. The velocity gradients Xi m the two layers as functions of the

network viscosity 1] of the upper layer for values of the network mobility parameter a

between 0.1 and 0.5. Case B where WeI = 1 We2 = 0.2, dl = d2 = 0.5. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1.

a) Xl vs. 1]2 b) X2 vs. 1]2
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F IGURE 9. The shear stress 7i in the two layers as functions of the network

viscosity 1] of the upper layer for values of the network mobility parameter a between

0.1 and 0.5. Case B where Wel = 1 We2 = 0.2, dl = d2 = 0.5. The Newtonian

viscosity are zero, the network viscosity of the lower layer is fixed at 1.
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F IGURE 10. The first normal stress nli In the two layers as functions of the
"..

network viscosity 1] of the upper layer for values of the network mobility parameter a

between 0.1 and 0.5. Case B where Wel = 1 We2 = 0.2, dl =d2 = 0.5. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1.
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F I GURE 11. The second normal stress n2i in the two layers as functions of the

network viscosity 1] of the upper layer for values of the network mobility parameter a

between 0.1 and 0.5. Case B where WeI = 1 We2 = 0.2, dl = d2 = 0.5. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1.
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FI GURE 12. The velocity gradients Xi in the two layers as functions of the

network viscosity 'T/ of the upper layer for values of the network mobility parameter a

between 0.1 and 0.5. Case C where Wei = 1 We2 = 2, dl = d2 = 0.5. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1.

a) Xl vs. 'T/2 b) X2 vs. 'T/2
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FIGURE 13. The shear stress Ti in the two layers as functions of the network

viscosity 'fJ of the upper layer for values of the network mobility parameter a between

0.1 and 0.5. Case C where Wel = 1 we2 = 2, dl = d2 = 0.5. The Newtonian

viscosity are zero, the network viscosity of the lower layer is fixed at 1.
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F IGU RE 14. The first normal stress nli in the two layers as functions of the

network viscosity '17 of the upper layer for values of the network mobility parameter a

between 0.1 and 0.5. Case C where WeI = 1 We2 = 2, dl = d2 = 0.5. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1.

a)nn vs. '172 b) n12 vs. '172
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F lGURE 15. The second normal stress n2i in the two layers as functions of the

network viscosity 7J of the upper layer for values of the network mobility parameter Q

between 0.1 and 0.5. Case C where WeI = 1 We2 = 2, dl = d2 = 0.5. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1.
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FIGURE 16. The velocity gradients Xi in the two layers as functions of the

network viscosity 7] of the upper layer for values of the network mobility parameter a

between 0.1 and 0.5. Case D where WeI = We2 = 1, dl = 0.1 d2 = 0.9. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1.

a) Xl vs. 7]2 b)X2 vs.7]2.
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FI GURE 17. The shear stress Ti in the two layers as functions of the network

viscosity 'T/ of the upper layer for values of the network mobility parameter a between

0.1 and 0.5. Case D where Wel = We2 = 1, dl = 0.1 d2 = 0.9. The Newtonian

viscosity are zero, the network viscosity of the lower layer is fixed at 1.
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F lGURE 18. The first normal stress nli in the two layers as functions of the

network viscosity 'T/ of the upper layer for values of the network mobility parameter a

between 0.1 and 0.5. Case D where Wel = We2 = 1, dl = 0.1 d2 = 0.9. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1.
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F IGURE 19. The second normal stress nZi in the two layers as functions of the

network viscosity 'T/ of the upper layer for values of the network mobility parameter a

between 0.1 and 0.5. Case D where WeI = We2 = 1, dl = 0.1 d2 = 0.9. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1.
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FIGU RE 20. The velocity gradients Xi in the two layers as functions of the
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F IGU RE 21. The shear stress Ti in the two layers as functions of the network

viscosity 'fJ of the upper layer for values of the network mobility parameter a between

0.1 and 0.5. Case E where Wel = 1 We2 = 0.2, dl = 0.1 d2 = 0.9. The Newtonian

viscosity are zero, the network viscosity of the lower layer is fixed at 1.
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F IGURE 22~ The first normal stress nli ill the two layers as functions of the

network viscosity TJ of the upper layer for values of the network mobility parameter a

between 0.1 and 0.5. Case E where Wel = 1 We2 = 0.2, dl = 0.1 d2 = 0.9. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1.

a)nll vs. TJ2 b) n12 vs. TJ2
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F IGURE 23. The second normal stress n2i in the two layers as functions of the

network viscosity TJ of the upper layer for values of the network mobility parameter a

between 0.1 and 0.5. Case E where Wel = 1 We2 = 0.2, dl = 0.1 d2 = 0.9. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1.
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FIGURE 24. The velocity gradients Xi in the two layers as functions of the

network viscosity TJ of the upper layer for values of the network mobility parameter Q

between 0.1 and 0.5. Case F where WeI = 1 We2 = 2, d l = 0.1 d2 = 0.9. The
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FI GURE 27. The second normal stress n2i in the two layers as functions of the

network viscosity 1] of the upper layer for values of the network mobility parameter a

between 0.1 and 0.5. Case F where WeI = 1 We2 = 2, d1 = 0.1 d2 = 0.9. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1.
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network viscosity 1] of the upper layer for values of the network mobility parameter a

between 0.1 and 0.5. Case G where Wel = We2 = 1, dl = 0.9 d2 = 0.1. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1.
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viscosity TJ of the upper layer for values of the network mobility parameter a between

0.1 and 0.5. Case G where Wel = We2 = 1, d1 = 0.9 d2 = 0.1. The Newtonian

viscosity are zero, the network viscosity of the lower layer is fixed at 1.
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FIGURE 31. The second normal stress n2i in the two layers as functions of the

network viscosity TJ of the upper layer for values of the network mobility parameter a

between 0.1 and 0.5. Case G where Wel = We2 = 1, dl = 0.9 d2 = 0.1. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1.
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between 0.1 and 0.5. Case H where WeI = 1 We2 = 0.2, dl = 0.9 d2 = 0.1. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1.

a) Xl vs. 1]2 b) X2 vs. 1]2
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network viscosity TJ of the upper layer for values of the network mobility parameter a

between 0.1 and 0.5. Case H where We! = 1 We2 = 0.2, d1 = 0.9 d2 = 0.1. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1.
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network viscosity 1] of the upper layer for values of the network mobility parameter a

between 0.1 and 0.5. Case H where WeI = 1 We2 = 0.2, dl = 0.9 d2 = 0.1. The

Newtonian viscosity are zero, the network viscosity of the lower layer is fixed at 1.
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between 0.1 and 0.5. Case I where Wel = 1 We2 = 2, dl = 0.9 d2 = 0.1 .The
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