
Lehigh University
Lehigh Preserve

Theses and Dissertations

2011

Acceleration and Stabilization Techniques for
Column Generation Applied to Capacitated
Resource Management Problems
Alper Uygur
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Uygur, Alper, "Acceleration and Stabilization Techniques for Column Generation Applied to Capacitated Resource Management
Problems" (2011). Theses and Dissertations. Paper 1099.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228643259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1099&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1099&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1099&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1099?utm_source=preserve.lehigh.edu%2Fetd%2F1099&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

ACCELERATION AND STABILIZATION TECHNIQUES

FOR COLUMN GENERATION APPLIED TO

CAPACITATED RESOURCE MANAGEMENT PROBLEMS

by

Alper Uygur

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Industrial Engineering

Lehigh University

September 2011

c© Copyright by Alper Uygur 2011

All Rights Reserved

ii

Approved and recommended for acceptance as a dissertation in partial fulfillment of the require-

ments for the degree of Doctor of Philosophy.

Date

Dr. George R. Wilson, Dissertation Advisor

Accepted Date

Committee:

Dr. George R. Wilson, Chairman

Dr. Tamas Terlaky

Dr. Robert Storer

Dr. Oktay Gunluk

Dr. Michael Magent

iii

Acknowledgments

I would like to first express my sincerest gratitute to my dear Ph.D. Advisor, Dr. George Wilson,

primarily for introducing me to this research subject, for his guidance, and patience. Without his

support, collaboration, and brilliant ideas from his vast knowledge, none of this could have mate-

rialized. I am also forever indebted to Dr. Tamas Terlaky, Dr. Robert Storer, Dr. Oktay Gunluk

and Dr. Michael Magent for being on my committee, for their understanding, and suggestions for

research directions. I truly learned a great deal for how to be more professional, careful, and more

organized, thanks to them.

I am also grateful that IBM allowed me to use their business problem as the application area

for my Ph.D. thesis, with some modelling changes and of course with randomized data. I would

like to thank my manager Terry Hammaker, my supervisor Mark Booth, and my colleagues Eugene

Kelton, Derek Jones, Gardner Pomper, and Christina Ma for letting me learn a lot during my time

at IBM. From the BNSF side, my manager Pooja Dewan showed gracious consideration during the

final stages of the thesis; I cannot thank her enough.

Regarding technical and coding related assistance in DIP, Matthew Galati’s help was invaluable.

For introducing me to Column Generation, Pietro Belotti’s efforts will never be forgotten. For

everything they taught me during my Ph.D. education at Lehigh, I appreciate the wisdom of Dr.

Aurelie Thiele, Dr. Ted Ralphs, Dr. Larry Snyder, Dr. Lou Plebani, and Dr. Jeff Linderoth.

In the I&SE department, I owe so much to Rita Frey, Kathy Rambo and Amanda Fabrizio for

being so helpful when needed, at all times. From the College of Engineering, Brie Lisk, I thank you

very much for your deadline reminders, and never showing exhaustion while replying to my endless

emails. I also owe Dr. David Wu and Dr. Joseph Hartman, for granting me several years of I&SE

department funding.

Last but not the least, I owe a debt of gratitude to my loving family, for helping me persevere in

this long journey, which could have become awfully difficult without the support of dear friends, as

well. Having read everything above, I realize I owe so much to so many people. Thank you all. I

promise I will pay.

iv

Contents

Acknowledgments iv

Contents iv

List of Tables viii

List of Figures ix

Abstract 1
0.1 Introduction and Motivation . 2

0.2 Literature Survey . 4

1 An Efficient Heuristic for Workforce Planning Problems with Cross-Training 10
1.1 Necessity for a Heuristic . 10

1.2 Mathematical Model for the Planning Problem . 11

1.3 Likelihood of Assignment Heuristic . 14

1.3.1 Finding an Initial Feasible Solution . 21

1.4 Computational Results . 22

1.5 Discussion . 25

2 An Exact and Stabilized Branch-and-Price Algorithm for Workforce Planning Prob-
lems with Cross-Training 27
2.1 Introduction . 27

2.2 Reformulation for Column Generation . 28

2.2.1 Dual of RMP . 33

2.2.2 Pricing Subproblems . 34

v

2.2.3 A Generic Colgen Algorithm . 37

2.3 Acceleration and Stabilization Proposals for Column Generation 39

2.3.1 Estimating the Initial Dual Vector . 39

2.3.2 Manipulating the Dual Vector . 43

2.3.3 Subproblem Selection . 46

2.3.4 Steps for ColgenLoA . 47

2.3.5 Certificate of Optimality for the ColgenLoA Procedure 49

2.4 Computational Results for the Root Node . 50

2.5 Branch-and-Price Algorithm . 53

2.5.1 Node Generation . 53

2.5.2 Effects of Branching Cuts in the Pricing Problems 56

2.5.3 Complete Algorithmic Steps for B&P . 60

2.5.4 Certificate of Optimality for B&P . 62

2.6 Computational Results for B&P . 63

2.7 Discussion . 64

3 An Accelerated and Stabilized Nested Column Generation Algorithm for Workforce
Shift Scheduling Problems with Stochastic Demand 65
3.1 Introduction . 65

3.2 Problem Definition and Stochastic Demand Scenarios 66

3.2.1 Deterministic Equivalent of the Model . 69

3.3 Likelihood of Assignment for the Stochastic Scheduling Problem 73

3.4 Agent-Based Tabu Search Algorithm . 75

3.4.1 Initializing the Heuristic . 76

3.4.2 Defining the Tabus . 78

3.4.3 Steps for the Agent-based Tabu Algorithm 79

3.5 Accelerated Nested Column Generation Algorithm 81

3.5.1 Set Covering Reformulation . 82

3.5.2 Acceleration and Stabilization . 90

3.6 Computational Results . 97

3.7 Discussion . 101

vi

4 Applications on other Capacitated Resource Management Problems and Guidelines
for Algorithmic Setup 103
4.1 Applicability of LoA on Various Problems . 103

4.1.1 Train Routing Problems . 103

4.1.2 Capacitated Facility Location Problems 107

4.1.3 Aircrew Pairing and Rostering Problems 110

4.1.4 Discussion . 111

4.2 Parameter Tuning Suggestions for ColgenLoA . 112

4.2.1 # of Variables to Eliminate using LoA . 112

4.2.2 Randomization of wR . 114

4.2.3 Number of Columns to Initialize the RMP 115

4.2.4 Modifications to the Problem Integer Yielding LP 117

4.2.5 Varying the Intensity of Intermediate Dual Vector Manipulation 118

4.2.6 Selection of the Subproblem Subset Size and Frequency of Solving All Sub-

problems . 120

4.2.7 Impact of Optimality Tolerance on B&P Performance 121

5 Summary and Future Research 123
5.1 Summary . 123

5.2 Future Research . 124

Bibliography 126

Author Vita 133

vii

List of Tables

1.1 LoA vs CPLEX for Urban Demand Scenarios . 24

1.2 LoA vs CPLEX for Rural Demand Scenarios . 25

1.3 LoA vs CPLEX for Uniform Demand Scenarios 25

2.1 CPLEX vs Default ColGen . 50

2.2 initDualV vs DualManip vs SubSel for the Root Node 51

2.3 (initDualV + DualManip) vs (initDualV + SubSel) vs (DualManip+ SubSel) for the

Root Node . 52

2.4 CPLEX vs Default ColGen vs Colgen with (LoA+ID+DM+SS) 53

2.5 CPLEX vs Default B&P vs B&PLoA . 63

3.1 Impact of Number of Scenarios on the % of Solutions that are Feasible 99

3.2 Agent-based Tabu Heuristic Computational Results 100

3.3 CPLEX vs Default ColGen vs Colgen with (LoA+ID+DM+SS) 101

4.1 LoA Retention Sensitivity for Problem Size (1500x300) 112

4.2 Impact of wR Randomization for Problem Size (1500x300) 114

4.3 Number of Solutions to Initialize the RMP . 116

4.4 Integer Yielding LP vs Reduced Binaries . 118

4.5 Effects of Random Selection vs SS Method for Varying Subset Sizes 120

4.6 Changing the Frequency of Main Iteration Calls 120

4.7 Handling Tailing-off with Different duality gaps 121

viii

List of Figures

1.1 An Example of Non-Optimal Assignments . 16

2.1 SSR Coverages before Dual Manipulation . 45

2.2 SSR Coverages after Dual Manipulation . 45

3.1 3 Dimensional Demand Data Representation by Scenario 69

3.2 3-D Representation of Demand for Machine-Zipcode by Shifts 73

3.3 Nested Column Generation Algo Flowchart . 85

3.4 Tabu Search Algorithm Upper Bound Progress 98

3.5 Objective Function Values changing with Number of Scenarios 100

ix

Abstract

This research presents a very efficient method of solving a broad class of large-scale capacitated

resource management problems by introducing a new formulation and decomposition. A heuristic

called Likelihood of Assignment is utilized not only to find high quality initial integer feasible so-

lutions, but also to guide the Branch-and-Price (B&P) Algorithm towards stabilization. Although

Column Generation (ColGen) is thought to be the ideal approach to attack large-scale linear prob-

lems, it has been found that the textbook variety of ColGen algorithms are rather problematic during

the Heading-in Phase. To alleviate the Heading-In Effect, and to start with good and valid lower-

bounds, strategies for constructing the initial dual vector are provided, which is guaranteed to be

feasible for the first Restricted Master Problem (RMP). Dual vectors obtained from RMP’s at any

iteration are further manipulated in order to prevent parallel and astray columns, which cause degen-

eracy and stalling. A subproblem selection scheme is also proposed to accelerate the convergence.

The proposed techniques are thoroughly covered in the first two chapters of this thesis for the Work-

force Planning with Cross-Training Problem and they provide superior results to CPLEX by being

10 times faster on average and having 20% better solution gap quality in the same amount of time.

In the third chapter of the dissertation, an Agent-Based Tabu Algorithm for the Workforce

Scheduling Problem with Stochastic Demand is introduced to yield quality starting solutions. These

starting solutions then feed a stabilized Nested ColGen Algorithm. The Nested ColGen algorithm

not only provides a valid lower bound, but also, improve the integer feasible solution towards opti-

mality with high quality incoming columns. Likelihood of Assignment’s effectiveness in this par-

ticular problem structure for accelerating and stabilizing the ColGen Algorithm is also showcased.

In the final chapter, we show that, the applicability of Likelihood of Assignment and the afore-

mentioned acceleration and stabilization schemes are indeed viable for very well-known capacitated

resource management problems such as Train (Vehicle) Routing, Capacitated Facility Location, and

Airline Crew Pairing and Rostering Problems. Therefore, the approach presented in this research is

not designed solely for Workforce Planning and Scheduling Problems, but it can be slightly modi-

fied to solve any type of Capacitated Resource Management Problem with block angular structure.

Recommendations for parameter setup and performance tuning are also given for different problem

characteristics and data input.

1

0.1. INTRODUCTION AND MOTIVATION

0.1 Introduction and Motivation

The main purpose of this research is to solve the various stages of Workforce Planning Problem.

The stages can be defined as: The determination of the number of employees, their appropriate

cross-skill training and their customer assignments for a given service territory having a distinct

demand structure, and scheduling of these employees to weekly shifts constrained by work rules,

back-up strategies, and contract types.

The Maintenance and On-Site Technical Support Business for electronic systems is chosen as

the application area of this research. The reason is that, service support is an ever-expanding busi-

ness in the United States (currently over $10 billion in revenue per year) and in the world. For

a healthy business, good maintenance and upkeep of computers, servers, and printers are neces-

sary for any company benefiting from such equipment. Therefore, companies like IBM, HP, Geek

Squad, Sun Systems, Computer Patrol, and many more are competing to seize the greatest share of

this market. Since the repair durations of broken electronics do not vary from company to company,

the only way these firms can attract customers and provide an edge is if they offer quicker response

at the facility where some type of a computer system is broken. This prompts the idea of selling

time-based service warranties; i.e., 4-hour, 8-hour or same day contracts to customers. Of course

the 4-hour contract would be the most expensive, because if the service company cannot fulfill

their obligation of fixing that machine in 4-hours, there is a corresponding penalty. Although, these

service companies are trying to sell as many high-revenue generating 4-hour contracts as possible,

not meeting the demand on time also ruins the reliability of service and endangers future contract

renewals.

For 4-hour contracts to be successfully fulfilled, the service company must have enough service

technicians with the correct skills to fix the machines, and located sufficiently close to the customer

so that the travelling time is within the contract time window. In spite of the fact that 4-hour

contracts are lucrative, they either entail more employees being closer to the demand points, or, if

management chooses to go with fewer employees, the travelling times become a serious issue along

2

0.1. INTRODUCTION AND MOTIVATION

with extra machine training costs and skill upgrade costs for a more diversely skilled labor force.

Considering all these factors, one must carefully choose the employee group size, locate them

carefully and strategically on the service region, prescribe appropriate training based on demand

type requirements, and schedule them to shifts, taking into account the contract types. This prob-

lem as a whole, however, would be extremely hard to solve all at once, owing to the number of

possible workshifts, skills, training requirements, start of the day launching points and assignment

combinations. Therefore, we propose to solve the problem by a divide and conquer strategy. A

strategic/tactical level deterministic planning problem is solved first, and the solution of this first

stage problem provides input to the shift scheduling problem with stochastic demand.

By solving the first stage problem, management would have a concrete idea of the total head-

count they need, where these technicians are to be located at the beginning of every work day,

their skill combinations, and their potential customer assignments and workload at every demand

location. The demand data is given in terms of monthly service call rates; therefore, one of the pri-

mary assumptions of this first stage is that the work assigned to the technicians are to be completed

within the 125 hours of their monthly available capacity. There are no queueing constraints in this

model, as long as the demand is fulfilled in that particular month by a capable SSR, the demand is

considered to be satisfied.

The second stage problem is more on the operational side of decision making. It has more gran-

ular data and details; for instance, the demand data is given with an additional index of what time

of the day that the service call is expected. This finer granularity actually requires us to use and fix

the headcount and skill training combinations found in the planning problem, so that the stochastic

scheduling model stays tractable. The stochastic demand data entails an approximate recourse ac-

tion which is assigning overtime shifts to the SSRs. In this research, the random stochastic demand

is generated in such a way that every scenario is guaranteed to be completely covered by the set of

SSRs that is found in the first stage.

3

0.2. LITERATURE SURVEY

0.2 Literature Survey

An aim of this research is to solve a national workforce determination problem for a large corpora-

tion, starting with the headcount decision and incorporating technician coverage territories, training

and finally scheduling. There have been several attempts using various techniques to solve simi-

lar problems in the literature. Almost all of them assume the solution of a particular stage of the

problem is already known, and inputted as a given for the subsequent stage.

A good survey for staff scheduling and rostering is found in Ernst et al. [23]. Among the

solution approaches, the following are most commongly taken: Fuzzy set theories to aid greedy

heuristics [44], neighborhood search to improve existing solutions [45], Constraint Programming

for highly constrained problems and when any feasible solution would suffice even if nonoptimal

[55]. Constraint Programming is also used as a preprocessing stage to reduce the size of the original

feasible region and then followed with traditional OR techniques in [30] and [10]. Metaheuristics

like Simulated Annealing [8], Genetic Algorithms [9], Tabu Search, Ant Colony Optimization, etc.,

have also been tried. Although they proved to be robust, optimality is rarely obtained and almost

never guaranteed, (refer to [49] and [51]).

A few researchers have attempted to model the staff planning and the scheduling problems

together [1], by introducing hierarchial decomposition. Some have developed their own algorithm

in the implementation of their approach [2]; however, those proposed approaches cannot be applied

to the size of problems we are dealing with.

Although Volume Algorithm [4], Lagrangean Decomposition with Variable Splitting [28], Ben-

ders’ Decomposition [7], and Cross Decomposition [60] are representative of a limited number of

other proven techniques for attacking large-scale problems, our experience with them has been dis-

appointing. Their main shortcoming is the lack of the capability to provide a MIP upperbound;

and requiring the need to find our own external heuristic for feasible solutions. While Lagrangean

Decomposition and Cross Decomposition suffered from non-converging dual multipliers, Volume

4

0.2. LITERATURE SURVEY

Algorithm did not yield quality feasible solutions, mostly because we did not have a heuristic well-

tailored to use the approximate solutions that it yields. Unfortunately, the objective function of

the problem behaves very poor when Rounding Heuristics are used. Benders’ Decomposition, was

tested; but, our problem did not have the proper structure to exploit benefits from it. The so-called

first stage variables became the continuous assignment variables in order for the subproblem de-

composition to be formed for every technician; and the second stage variables turned out to be the

binary variables. Benders decomposition benefits when the first stage variables are integer/binary

and fixed, and the second stage subproblems are simple linear problems. All this has inspired the

development of a stabilized column generation routine.

For the planning phase of our problem, mathematical programming approaches mostly use the

Dantzig set covering or set partitioning formulations [15] with possible variations. Due to the

formidable size of the problems being considered, two different methods have been developed in

order to handle the exponential explosion in number of variables: generating a limited number

of columns and forming a reasonably sized formulation ([24], [29]), and partially generating all

possible columns using column generation approaches ([21], [37]). Since the problem at hand is

mixed-integer linear, Branch-and-Cut [32] or Branch-and-Price ([5], [27]) is followed until either

optimal or a high-quality solution is found.

In the planning stage of the problem, the objective is to find the least costly combination of

number of employees needed, the machine trainings they are required to attain with associated skill

upgrade salary costs incurred, assignment of these employees to customer locations, and allocat-

ing the jobs among the properly skilled SSRs considering travel costs. These problem attributes

clearly distinguish the Workforce Planning Problem from Aircrew Pairing and Rostering Problems

([26], [37], [32], [27], [3]), Vehicle Routing Problems ([21], [17], [34], [20], [46], [19]) and Multi-

Commodity Flow determinations within Capacitated Facility Location Problems (CFLP) ([47], [39],

[56], [35]) as described in the following.

Most Aircrew Pairing and Rostering Problems do not have training possibilities for the pilots

and the crew; they are assumed to be capable of flying any type of aircraft, and the crew size is

5

0.2. LITERATURE SURVEY

already known and fixed. Their subproblems are constrained shortest path problems where very

efficient dynamic programming algorithms are readily available. In spite of the fact that the number

of nodes and arcs may seem to make the subproblems intractable; flight pairing rules, work, rest and

scheduling rules, and pre-assignments, which are dictated by the airline, simplify the subproblems.

Flow conservation constraints for each node allow the elimination of redundant and dominated arcs.

Vehicle Routing Problems are also formulated using a set partitioning scheme, like Aircrew

Pairing and Rostering Problems, where a route is proposed for each vehicle until all demands are

met. They benefit from the network structure of the subproblems, for which efficient algorithms

exist. By contrast, Workforce Planning Problem’s subproblems are knapsack problems with side

constraints, and do not possess a network structure.

The formulation for the Workforce Planning Problem closely resembles the Multi-Commodity

Capacitated Facility Location Problem (CFLP) with side constraints (those regarding machine train-

ing and skill upgrades). The Capacitated Facility Location and the p-median problems have been

attacked with Column Generation very rarely in the literature, and even problem sizes of 250 cus-

tomers to 100 facilities are being reported as very difficult to converge with their standard ap-

proaches ([47], [39], [56], [35]).

Several important distinctions have to be made, though, that in our problem definition, a cus-

tomer can be given service by several employees based in different zipcodes throughout the course

of a month; therefore, the demand points do not have to be assigned to a ’Single Source’. This

condition adds difficulty to the problem in the sense that the LP relaxation of the strong formula-

tion does not necessarily yield integer solutions anymore. Moreover, the LP relaxation’s objective

function is no longer close to the optimal MIP solution. Another reason for the difficulty is that the

capacity of the employees is depleted while travelling to another customer location, which is not the

case in CFLP.

Despite the fact that Dantzig-Wolfe Decomposition [14] is actually straightforward for our prob-

lem (since it is block angular by Service Support Representatives (SSR)), the textbook version col-

umn generation performed very badly in our case. It is clearly observed that the performance of the

6

0.2. LITERATURE SURVEY

algorithm is extremely dependent on the quality and variety of the initial feasible solutions, and also

very much reliant on the incoming columns at every iteration, as stated in [40]. The default D-W

decomposition demonstrated all the bad traits given in the textbooks [18]:

• Heading-in issues: No valid (useful) lowerbounds at the beginning.

• Yo-Yo effect: No monotonic lowerbound improvement.

• Plateau effect and Tailing-off: Stalling in the RMP upperbound and no significant upperbound

improvements towards the end.

Although there have been stabilization methods using boxing techniques ([42], [22], [50]), by

taking convex combination of duals ([62], [31]), using interior point methods [52] and introducing

dual-optimal inequalities ([16], [6]) proposed to overcome issues with the convergence of column

generation, they are shown to be not trivial, problem specific, and entailing too much effort for

parameter tuning. In this research, we are proposing a generic stabilization and acceleration routine

using the Likelihood of Assignment Heuristic as the first step for initializing the RMP, estimating the

initial dual vector, choosing subsets of suproblems to solve and manipulating the intermediary dual

vectors. Substantial performance enhancements in terms of lowerbound quality, global upperbound

improvements, and convergence rates result from methods developed in this research.

The second stage of the problem is called Workforce Scheduling with Stochastic Demand. For

this stage, it is assumed that the correct headcount, along with SSR ids with proper skills and their

start of the day launch locations are known. The objective of the problem is, then, to minimize

the total overtime hours assigned and to find the best weekly shift assignments while providing

coverage to a sample set of equally likely demand scenarios.

There are a number of well-known solution methods for Stochastic Integer Problems: Integer

L-Shaped Method [36] is similar to the Benders’ Decomposition. Dual Decomposition [11] is

a Lagrangean-based decomposition where each subproblem is composed of individual scenarios;

nonetheless, it does not guarantee optimality. Structured Enumeration and Stochastic Branch-and-

Bound [48] is an algorithm where the performance is strictly dependent on the initial partitioning of

7

0.2. LITERATURE SURVEY

the feasible set and the estimates on the upper and lower bounds. Progressive Hedging Algorithm

[38] is a Tabu Search-based heuristic where integer feasible solutions are obtained with variable

fixing.

The reason we are attacking this problem with column generation is that there are very few

publications using ColGen in Stochastic Integer Programs (SIP) ([59], [58], [13], [57], [41]) and

there exists none for Stochastic Workshift Scheduling. The deterministic equivalent of the Stochas-

tic Shift Scheduling Problem is appropriately decomposed into Master and Subproblems for us to

be able to deploy the stabilization and acceleration techniques proposed in this thesis.

The thesis is organized in the following manner: The first chapter describes the planning prob-

lem and the necessity for a heuristic solution. Details of how and why the Likelihood of Assignment

Heuristic works are provided. The second chapter gives details about the reformulation of the prob-

lem, and provides the exact B&P algorithm which is stabilized and accelerated using the findings

from Chapter 1. Chapter 3 is where the Stochastic Mixed Integer Model for the Scheduling Problem

is introduced. An Agent-based Tabu search algorithm which uses Likelihood of Assignment’s find-

ings for taboo lists, and a stabilized ColGen algorithm are developed. Finally in Chapter 4, we show

that our algorithm could be applicable to Train Routing, CFLP, and Aircrew Pairing and Rostering

Problems to demonstrate its flexibility and robustness. The second half of this chapter is devoted to

give parametric setup recommendations and their impact on solution times.

For all computational experiments, CPLEX 12.2 is used as the LP and MIP solver throughout

the thesis. The default solver settings can be found in the User’s Manual [33]. Although CPLEX

selects the Dual Simplex Algorithm by default for solving LPs, Barrier Algorithm was invoked when

the largest test cases were being considered. This is because the Barrier Algorithm has superior

performance to the Primal or Dual Simplex Algorithms as the problem sizes increase.

The contributions achieved by this research are important: A generic Restricted Feasible Do-

main Heuristic is developed, which allows finding high quality feasible solutions in a very short

amount of time, and also stabilizes and accelerates the B&P algorithm for most of the prominent

Capacitated Resource Management Problems. The heuristic is easy to set-up and the stabilization

8

0.2. LITERATURE SURVEY

techniques are already embedded in DIP (Decomposition for Integer Programming framework, an

open source COIN-OR initiative) for other researchers who may want to benefit from the approach.

Once the heuristic finds good quality initial solutions, the stabilization and acceleration routines

steadily approach optimality.

9

Chapter 1

An Efficient Heuristic for Workforce

Planning Problems with Cross-Training

1.1 Necessity for a Heuristic

Experience with various sizes of the Workforce Planning and Scheduling problem showed that

even after the problem is broken into 2 stages, neither stage provides a quality integer solution in

a reasonable amount of time in their monolithic forms. Consideration was given to ”Restricted

Feasible Domain” type heuristics, where the original model’s feasible domain is reduced to a size

which can be solved faster and more efficiently. As will be seen later in this chapter, considering

and/or creating all variables explicitly is not necessary in order to discover a high quality integer

solution in a short amount of time. Moreover, a logic will be devised to eliminate the need to keep

the complicating binary variables in the mathematical model representation, so that a solution from

a LP formulation will yield us an integer solution after some post-processing.

In this heuristic, ”Likelihood of Assignment” (LoA), it is decided which variables may actually

be included in the core solution, and which variables are to be flagged as least likely to be in the

optimal solution. Later on in Chapter 2, column generation will help us detect the variables which

will surely improve the current solution at hand and bring back those variables which might have

10

1.2. MATHEMATICAL MODEL FOR THE PLANNING PROBLEM

been eliminated by LoA.

1.2 Mathematical Model for the Planning Problem

Before the mathematical model is introduced, the notion of ”launch zipcode” has to be defined.

Based on our assumption of problem and solution construction, the launch zipcode will dictate the

SSR to start the workday at this location and he will always return to this place after completing

each repair task at the demand zipcode. That means, in our model, a SSR never travels directly

from one customer site to another, instead, always returns to the launch zipcode before taking on

the next task. Then, the first stage of the problem is the assignment of employees to their launch

and work zipcodes considering demand rates, SSR-machine training and skill upgrade costs, and

distances between SSR launch zipcodes and customer sites. The location index of the input demand

is provided at the zipcode level, because a finer granularity makes the problem intractable. The

objective is to find the least cost solution which has the best balance of salary, training, and travelling

costs while satisfying all demand. The model is further explained through the following definitions:

Decision Variables:

• mui : binary variable if SSRi is activated or not, where i ∈ S, S is the set of all potential

SSRs

• ysi,k : binary variable if SSRi has a job assignment in skill group k or not, where k ∈ Sg,

Sg is the set of all skill groups

• yki,m : binary variable if SSRi requires machine training for machine m or not, where

m ∈M , M is the set of all machines with positive demand

• xm,j,i : continuous variable which denotes the number of calls for service for machine m

at zipcode j allocated to SSRi in a month, where j ∈ Z, Z is the set of all zipcodes with

positive demand

11

1.2. MATHEMATICAL MODEL FOR THE PLANNING PROBLEM

Parameters:

• chi : hourly salary of SSRi

• csk : monthly extra pay for working on skill group k

• ctm : training cost for machine m, scaled for 1 month

• cd : various expenses of operating a service vehicle for 1 hour (gas, tolls, depreciation etc.)

• tj,i : total time it takes to travel from SSRi’s base zipcode to demand zipcode j (round trip)

• dm,j : average number of calls expected associated with machine type m at zipcode j in a

month

• rtm,j : average repair time for a machine of type m at zipcode j

Then the mathematical model is the following:

12

1.2. MATHEMATICAL MODEL FOR THE PLANNING PROBLEM

Problem Monolithic MIP:

minimize total cost :∑
i∈S

(125 chimui)+

∑
i∈S

∑
k∈Sg

(csk ysi,k)+

∑
i∈S

∑
m∈M

(ctm yki,m)+

∑
m∈M

∑
j∈Z

∑
i∈S

(cd tj,i xm,j,i) (1.1)

subject to:∑
i∈S

xm,j,i = dm,j ∀m ∈M, j ∈ Z (1.2)

∑
m∈M

∑
j∈Z

xm,j,i(rtm,j + tj,i) ≤ 125mui ∀i ∈ S (1.3)

xm,j,i ≤ dm,jmui ∀m, j, i (1.4)

xm,j,i ≤ dm,jyki,m ∀m, j, i (1.5)

yki,m ≤ ysi,k ∀i, m, k — m belongs to skill group k (1.6)

xm,j,i >= 0 ∀m, j, i (1.7)

mui, yki,m, ysi,k binary ∀i, (i,m), (i, k) (1.8)

Objective function (1.1) says that if a SSR is activated, there will be a fixed cost of 125 hours

times the hourly wage, skill upgrade payments for each skill group he works in, machine training

costs for each machine he needs training on, and transportation costs will be incurred for each

time he provides service to a customer based on the distance between the launch point and the

demand point. Constraint set (1.2) requires that all demands have to be satisfied, (1.3) prescribe

125 hour capacity per SSR in a month, (1.4) is a strengthening constraint set for SSR activation,

(1.5) is for machine training activation, (1.6) is to impose machine training on skill upgrades, and

13

1.3. LIKELIHOOD OF ASSIGNMENT HEURISTIC

(1.7) and (1.8) are nonnegativity and binary declarations. When the strong constraints are used

instead of their weak counterparts, the number of variables in the problem turns out to be less than

that of the constraints. There are 2 reasons that we decided to use the strong constraints. First of

all, the LP relaxation of this formulation is very weak when strong constraints are abandoned, as

expected. Secondly, when the problem is decomposed, the strong constraints will be placed inside

the subproblems, and the subproblem solution speed turns out to be even better.

1.3 Likelihood of Assignment Heuristic

A typical problem would have 150 zipcodes with positive demand for a variety of machines (m/c).

A feasible solution can locate more than 1 SSR at particular zipcode where demand is very dense,

which means there can be a multiple of 150 potential SSRs in the problem. The maximum number

of potential SSRs to locate at a zipcode can be roughly calculated by adding up the total demand

in a 4 hour radius, and dividing by 62.5 (where 62.5 hours is half of 125, the total available time

per month per SSR, owing to the fact that SSRs never tend to use more than 50% of their available

capacities for driving in the optimal solutions). In actual practice, the field managers of these service

companies add extra SSRs to those zipcodes where they detect total travelling hours to be more than

50% of available time in a given month. The 4-hour radius is an important limit, which permits the

results of this planning model to be usable by the second stage scheduling model. The second stage

model assumes the work shifts are 8 hours, therefore a round-trip should never exceed 8 hours in

total. There are approximately 1000 distinct machines which require special training, and each of

those 1000 machines belong to 1 of 30 skill groups. SSRs are paid extra, based on the skill group

they are assigned to, and they can belong to more than one.

Thus, the expected number of variables can look like the following, as motivated by the indus-

trial (urban) data sets used:

• 150 zipcodes with positive demand points translate to 300 SSRs to be potentially located on

the map, on the average 2 for each zipcode

14

1.3. LIKELIHOOD OF ASSIGNMENT HEURISTIC

- muSSR, binary

• 300 SSRs * 1000 machines = 300K possible m/c training variables

- ykSSR,m/c, binary

• 300 SSRs * 30 skill groups = 9K possible skill upgrade variables

- ysSSR,skill, binary

• Average of 20 demand points at every urban zipcode * 150 zipcodes * 300 potential SSRs =

900K variables

- xm/c,zip,SSR, continuous

• TOTAL = 1,209.3K decision variables

The number of constraints:

• 20 machines * 150 zipcodes

- 3,000 for demand fulfillment: const. (1.2)

• 300 potential SSRs with limited available hours (125 hours/month)

- 300 for SSR capacity: const. (1.3)

• SSR activation constraints (as many as x variables)

- 900K SSR activation and strengthening: const. (1.4)

• Training constraints, (as many as x variables)

- 900K m/c training activation: const. (1.5)

• 300 potential SSRs * 1000 machines

- 300K machine training and skill upgrade associations: const. (1.6)

• TOTAL = 2,103.3K constraints

15

1.3. LIKELIHOOD OF ASSIGNMENT HEURISTIC

This problem is too big to solve with an acceptable mipgap (≤ 5%) in a reasonable amount of

time by CPLEX 12.0, on a computer with 4 GB RAM and Pentium Xeon 3.0 GHz(x2) CPU. After

12 hours, the mipgap is still at 45%. Therefore, to understand how the optimal solutions behave,

we have investigated results on smaller instances e.g. with 20 zipcodes, 40 SSRs, 30 machines, 30

skill groups, 10 demand points per zipcode, hence 8,000 assignment variables on the average. For

similar urban scenario inputs of the same size data instances, the striking observation is that out of

2,400 ys and yk variables, approximately 115 of them appear in the optimal solution, which is less

than 5%. A similar arguement is valid for the x variables, approximately 575 out of 8,000 are active

in the solution on the average, when 20 small instances are solved.

Figure 1.1: An Example of Non-Optimal Assignments

”The Likelihood of Assignment” idea emerged from the fact that we need to start attacking the

problem, knowing that only a small portion of the variables are actually going to be candidates for

the optimal solution. If one takes a look at the Figure 1.1 above, the circles with different color

tones denote the demand points for distinct machines, and different colored triangles represent the

SSRs that are launched at those zipcodes with particular skills. While the solid lines between the

triangles and the circles are potentially good work assignments, the dashed lines would seem to be

the assignments that will possibly not show up in the optimal solution. Since the x variables are the

actual triggering ones for ys and yk, if we can figure out which x’s are potentially good and which

are potentially useless, we can reduce the size and the complexity of the problem substantially. To

16

1.3. LIKELIHOOD OF ASSIGNMENT HEURISTIC

accomplish this, a penalty function will be developed to be used for every assignment variable x.

Assessing the value of Likelihood of Assignment for a SSR and a m/c at a zipcode, depends

on the following factors, of which the ones with (+) sign denote the factors that adversely affect

(hence increase the penalty for assignment), (-) sign denotes the beneficial factors (hence decrease

the penalty):

i. Salary of SSR (+) : if salaries differ based on zipcodes: factor1

ii. Skill upgrade cost required (+): factor2

iii. Machine training cost required (+): factor3

iv. Distance * number of demand calls (+): factor4

v. Sum of same m/c demand in a 1 and a 2-hour radius (-): factor5 and factor6

vi. Sum of same skill demand in a 1 and a 2-hour radius (-): factor7 and factor8

vii. Sum of all closer demands with cheaper m/c training and cheaper skill upgrade (+): factor9

The items with the plus sign denote that they have an adverse effect on the Likelihood processes.

Thus, the Likelihood penalty will be higher, which means an unlikely assignment. For instance, a

SSR would not want to associate himself with a machine that has high skill upgrade and high

machine training cost at a remote zipcode. He would instead want to be assigned to a m/c he is

already trained on. Therefore, if there are more jobs in the nearby area (in 1-hour radius more

preferably, and within at most 2-hour radius) requiring the same training and skills, he would resist

new m/c training and skill upgrade costs. Costs are incurred from the perspective of the system, not

from the SSR’s point of view. The likelihood multipliers are found using the following formula:

wRm,j,i =

∑
f

(
100wf

f valuef,m,j,i
avg f valuef

)
|
∑
f

wf |
(1.9)

17

1.3. LIKELIHOOD OF ASSIGNMENT HEURISTIC

(1.9) basically asserts that the assignments are penalized for the SSR-zipcode-m/c associations

which demonstrate worse deviation (in terms of f valuef,m,j,i) from their respective average factor

(avg f value) for the (+) factors. Moreover, the factors with the minus sign are subject to a decrease

in penalty based on their divergence from their averages; hence, making this assignment more likely.

Factor weights (wf) are found by analyzing the importance of each factor in smaller scale problems’

optimal solutions. When a factor does not show a significant divergence compared to its average

in a favorable or optimal solution, then it has an inconclusive effect on the outcome, a unit weight

(equals to 1) is assigned to it. For all other weights for the factors, first a base value is determined

(for instance, it is 4 in the example below), and then, each factor weight is found by multiplying the

base factor by a multiplier. The multiplier equals the divergence percentage of the factor divided by

the base divergence percentage.

The active x variables in various smaller sized problems’ optimal solutions demonstrated the

following properties, when solved for 20 randomly generated instances with 150 demand points

and 30 SSRs:

i. 90% had smaller factor9 than the average value of factor9 for all possible combinations.

weightf9 = 6

ii. 76% had larger factor8 than their corresponding average.

weightf8 = −5.1

iii. 74% had larger factor7 than their corresponding average.

weightf7 = −4.9

iv. 73% had larger factor6 than their corresponding average.

weightf6 = −4.8

v. 70% had larger factor5 than their corresponding average.

weightf5 = −4.5

18

1.3. LIKELIHOOD OF ASSIGNMENT HEURISTIC

vi. 60% had smaller factor4 than their corresponding average.

weightf4 = 4, the base factor weight.

vii. Factors 1,2 and 3 had inconclusive effects regarding their expected influences; therefore, they

will be kept in the penalty function, with a unit weight of 1.

weightf3 = weightf2 = weightf1 = 1

Based on the analysis above, the most important factor turns out to be ”Sum of all closer demands

with cheaper m/c training and cheaper skill upgrade”. Sums of same m/c and skill demands in 1 and

2-hour radius are the next significant weight factors for calculating the LoA penalties. Nevertheless,

the combination of these factors dictate the Likelihood of Assignment, as laid out in the following

simple numerical example:

Suppose the sum of all closer demands with cheaper m/c training and cheaper skill upgrade,

factor9 for SSR1 calculated for machine m1 at zipcode j1, is 300 hours in a month; i.e.,

f value9,m1,j1,SSR1 = 300. Suppose, also, that the average for this factor among all SSRs and all

machines at all zipcodes is avg f value9 = 200. That means this demand point (m1, j1) ”seems”

bad for this SSR1 compared to the average. On the other hand, let the sum of same m/c demand in

2-hour radius, factor6, is 100 hours in a month; i.e., f value6,m1,j1,SSR1 = 100, and the average

for this statistic is avg f value6 = 50 hours for all SSRs, considering every machine at every

zipcode separately. This factor6 evaluation, pulls the work assignment towards the favorable side

when calculated using the formula in (1.9):

wRm1,j1,SSR1 =
(6 ∗ 100 ∗ 300

200) + (−4.8 ∗ 100 ∗ 100
50)

|6 + (−4.8)|
=

900− 960

1.2
= −50.

A negative wR actually means a reward for such an assignment in our problem setting. The numer-

ator of the formula decides if the assignment is favorable or not, and the denominator only scales

the magnitute; therefore, there is an absolute value sign in the denominator.

Once all wR parameters are calculated, 2 types of lists are creates and stored:

19

1.3. LIKELIHOOD OF ASSIGNMENT HEURISTIC

i. Best potential SSRs for each zipcode-m/c (sorted list of SSRs for each zipcode-m/c, the SSR

with the smallest wRm,j,i is at the top): type1,m,j list

ii. Best potential zipcode-m/c’s for each SSRi (sorted list of zipcode-m/c’s for each SSR, the

zipcode-m/c with the smallest wRm,j,i is at the top): type2,i list

Our target is to find a quality feasible solution which will also be used as a starting solution

for the monolithic problem; therefore, if variables that would unlikely be in the optimal solution

are identified and eliminated, and the ones that are potential candidates to appear in the optimal

solution are kept, the problem can become simpler to solve. In order to achieve this, take a look

at the type1,m,j list introduced above. The first element is the smallest wRm,j,i which corresponds

to the SSRi who will ”most likely” provide service to this machine m at this demand zipcode j.

Towards bottom of the list, comes the worst assignment possibilities, which are to be eliminated.

However, the elimination logic should keep as many x variables as possible in the system so that

feasibility is guaranteed. The formal algorithm is given to decide which demand point (m, j) is to

be possibly serviced by which SSRi, and which associations to be killed at this stage:

• Step 0: Check if there are any unassigned (m, j) demand points. If none exists, algorithm

terminates. Otherwise, continue with Step 1.

• Step 1: Find the type1,m,j list with the smallest wRm,j,i as its first element.

• Step 2: Assign as much of the demand (dm,j) to the SSRi who is at the top of the type1,m,j

list for this demand point.

• Step 3: Update dm,j for the remaining amount. Remove the repair hours and travelling times

from SSRi’s capacity. Remove SSRi from the top of type1,m,j list.

• Step 4: If dm,j is completely fulfilled, and if the last chosen SSRi for this (m, j) was at the

top 10% of updated type1,m,j , add the remaining SSRi’s who are also at the top 10% of the

updated type1,m,j . These additions secure the maintainance of feasibility and let the Problem

20

1.3. LIKELIHOOD OF ASSIGNMENT HEURISTIC

Integer Yielding LP explore more options. All other assignment variables associated with

this demand point are then fixed to 0.

(xm,j,ii = 0, ii /∈ chosen set of SSRi’s).

Go to Step 4b.

• Step 4b: If SSRi’s capacity is fully depleted, remove SSRi from all type1,m,j lists, i.e. his

assignment variables regarding the remaining demand points are set to 0.

(xmm,jj,i = 0, (mm, jj) ∈ unassigned demand points set).

Go to Step 0. If not fully depleted, go to Step 5.

• Step 5: If demandm,j > 0, go to Step 2.

In spite of the fact that assignments are greedily made to SSRs at Step 3, the primary purpose

was only to make sure the model has enough SSRs and assignment variables in the Restricted Feasi-

ble Domain, which is the whittled down version of the original feasible region. Actual assignments

will be made in the next section, where a LP will be used in order to determine the actual rationing

of the jobs among the SSRs. This LP will not be using the real costs in the original model.

By using the heuristic above, the problem reduces to approximately 5-10% of its original size

depending on the input data, which is a little more than a good quality solution’s typical number of

active variables.

1.3.1 Finding an Initial Feasible Solution

Now, assume we were able to represent all the distinct costs of salaries, m/c training, skill upgrades,

and travelling for a particular SSR to a m/c at a demand zipcode in one expression, wRm,j,i, the

Likelihood of Assignment parameter previously discussed. Remember that as the value of wR

increases, the likelihood decreases, just as in a minimization problem where if a cost associated

with a variable gets higher, the possibility of that variable being in the optimal solution becomes

lower.

21

1.4. COMPUTATIONAL RESULTS

Therefore, if the salary, machine training, and skill upgrade costs are approximately represented

in thewR parameter, then the binary variables corresponding to these costs are not needed explicitly

in the model to find a feasible assignment. Furthermore, post-processing the work assignment

variables x will result in which mu, ys and yk binary variables actually get to be activated in the

original model, using constraints (1.4), (1.5) and (1.6).

The resulting model would be the following:

Problem Integer Yielding LP:

minimize LoA penalties:∑
m∈M

∑
j∈Z

∑
i∈S

xm,j,iwRm,j,i (1.10)

subject to :∑
i∈S

xm,j,i = dm,j ∀m, j (1.11)

∑
m∈M

∑
j∈Z

xm,j,i(rtm,j + tj,i) ≤ 125 ∀i (1.12)

xm,j,i >= 0 ∀m, j, i (1.13)

The optimal objective function value of this problem is neither an upper nor a lower bound for

the original problem. After post-processing the flow variables to retrieve the value of the binary

variables, the upperbound will be calculated from a core solution which will be improved upon in

Chapter 2.

1.4 Computational Results

Computational results for problem sizes of 200x20, 300x30, 400x40, 600x60, 1000x100, 1500x300

(demand points x SSRs) in 3 types of demand scenario settings are presented:

i. Assume uniform demand over all zipcodes for all machines (extreme scenario - very unlikely

22

1.4. COMPUTATIONAL RESULTS

to happen in real life)

ii. Assume high volume demand for certain machines at certain zipcodes, very low or no demand

in others (rural scenario)

iii. Assume high volume demand for certain machines at certain zipcodes, normal level demands

for others (urban scenario)

LoA performs quite well with the urban and rural scenario settings. The urban scenario has

higher volume demand located at more zipcodes, which corresponds to more variables and hence

more possibilities to choose from; therefore, both CPLEX and LoA solve the urban scenario more

slowly than the rural scenario problems. LoA’s solutions for urban scenarios are slightly worse than

the rural setting, again due to the size of the problem getting larger.

However, for the extreme scenario, where all demands for all machines are uniformly distributed

throughout the territory, LoA still solves rapidly compared to CPLEX, though, the solution quality

is worse than for the other cases. That is a drawback of our heuristic; which is observed when the

weight factors defined at the beginning of the chapter are not discernably different among competing

assignments. The assignments will be made mostly based on distances; the skill upgrades and

machine trainings will have very insignificant effect on the solution.

The following tables are constructed by solving 20 randomly generated instances for each prob-

lem size for each of these 3 scenarios on a computer with 4 GB RAM and Pentium Xeon 3.0

GHz(x2) CPU. The solution times and best mipgaps are averaged for each problem size. The for-

mula for mipgap is given in the CPLEX User’s Manual [33] as:

mipgap =
|UBbest − LBbest|
|UBbest|+ 1e−10

#vars denotes the number of variables in the original problem. Likewise, #vars LoA denotes the

number of variables in the Problem Integer Yielding LP, which is approximately 10% of the original

size, regardless of scenario type. Cplex T is the CPLEX solution time obtained at 1% mipgap. Best

23

1.4. COMPUTATIONAL RESULTS

mipgaps obtained for LoA (LoA Gap) are calculated from the best lowerbound CPLEX reports.

LoA T is the total time it takes to set up the heuristic (reading data, sorting the lists, file outputs for

fixings and eliminations), solve it to optimality and post-process to attain original variable values.

Cplex T LoA is the time it takes CPLEX to discover a feasible solution with the same mipgap LoA

finds. All solution times are reported in seconds.

A careful inspection of the tables below would help the reader to realize the significance of

the need for a heuristic to solve this problem. CPLEX performance is not at acceptable levels

starting from the (400x40) test case. Our LoA heuristic, on the other hand, solves all test cases in

less than 100 seconds, with an average mipgap of 7.5% for rural and urban scenarios. The same

quality solutions are obtained by CPLEX after more than half an hour for (400x40), after 2 hours

for (600x60), after 5 hours for (1000x100). More than 2 days of run time is required to match the

LoA solution by CPLEX, for (1500x300) size problems.

Table 1.1: LoA vs CPLEX for Urban Demand Scenarios

Size #vars Cplex T #vars LoA LoA Gap LoA T Cplex T LoA

200x20 8,620 65 749 5.4% 12 14

300x30 18,930 369 1,498 6.1% 13 275

400x40 33,240 2,711 2,568 7.5% 30 2,114

600x60 73,860 8,753 5,671 9.9% 46 7,499

1000x100 203,100 24,543 15,408 10.8% 66 19,345

1500x300 1,209,300 224,884 91,699 11.8% 85 187,234

24

1.5. DISCUSSION

Table 1.2: LoA vs CPLEX for Rural Demand Scenarios

Size #vars Cplex T #vars LoA LoA Gap LoA T Cplex T LoA

200x20 8,330 61 1,070 4.9% 11 13

300x30 17,630 346 2,247 5.5% 12 223

400x40 32,640 2,551 3,531 6.8% 28 1,904

600x60 71,960 8,235 6,313 8.5% 42 7,129

1000x100 201,200 22845 15,408 9.1% 60 17,825

1500x300 1,202,150 219,065 76,505 9.5% 80 168,766

Table 1.3: LoA vs CPLEX for Uniform Demand Scenarios

Size #vars Cplex T #vars LoA LoA Gap LoA T Cplex T LoA

200x20 9,520 72 762 13.2% 13 13

300x30 20,130 410 1,651 14.2% 14 320

400x40 35,040 3,013 2,667 16.4% 31 2,544

600x60 74,820 8,502 5,715 19.1% 46 7,677

1000x100 205,760 23,903 15,621 24.2% 69 20,320

1500x300 1,232,800 232,244 93,472 33.2% 91 77,890

1.5 Discussion

Likelihood of Assignment is a greedy algorithm; but, its foundation is very flexible, which allows

for user-specific, problem-specific and data-specific tunings. In Chapter 4, guidance for how to

increase the quality of the solutions will be provided.

As can be seen from the computational results, the heuristic being proposed is finding high

quality solutions very fast for the rural and urban scenarios, for the purpose of initializing the B&P

algorithm to be introduced in the next chapter. The wRm,j,i parameters are randomized with a

25

1.5. DISCUSSION

multiplier from Uniform ∼ [0.90, 1.10] to obtain diverse (and sometimes even better) columns.

These columns are used in the initial basis of the first Restricted Master Problem of the ColGen

procedure. The byproducts of LoA, for instance the type1,m,j lists, will also be used to accelerate

and stabilize the ColGen Algorithm.

To conclude, most real life problems do not possess the extreme scenario demand structure;

therefore, we are confident that the LoA heuristic performs quite well under the predominant urban

and rural scenario cases.

26

Chapter 2

An Exact and Stabilized

Branch-and-Price Algorithm for

Workforce Planning Problems with

Cross-Training

2.1 Introduction

As shown in the previous chapter, although a reasonably good quality solution was obtained very

quickly using the Likelihood of Assignment (LoA) heuristic, the optimal solution was not found in

any of the instances. In this chapter, an exact Branch-and-Price (BP) algorithm will be developed

in order to achieve that goal. Despite the fact that the direct application of the Column Generation

(ColGen) procedure, as defined in the textbooks, failed in terms of convergence speed and lower

bound quality, 3 techniques to make ColGen effective for the Workforce Planning Problems with

Cross-Training will be proposed. The LoA heuristic will play a critical role, not only in initializing

the core solution to the Restricted Master Problem (RMP) of the ColGen, but also, the findings of

27

2.2. REFORMULATION FOR COLUMN GENERATION

LoA will be used in the stabilization and acceleration methods, that will be explained later in this

chapter.

The outline of this chapter follows: Firstly, a reformulation of the Workforce Planning Problem

with Cross-Training will be given. This is going to allow the reader to capture the structure of the

dual perspective of the problem and enable an intuitive understanding of the methods proposed.

Secondly, the RMP and the pricing problems (subproblems) will be introduced. Next, the accelera-

tion and the stabilization methods will be shown with their effects at the root node of the ColGen.

Finally, the complete BP algorithm will be displayed for obtaining optimality.

2.2 Reformulation for Column Generation

Recall the original formulation of the Workforce Planning Problem:

28

2.2. REFORMULATION FOR COLUMN GENERATION

minimize total cost:∑
i∈S

(125mui chi)+

∑
i∈S

∑
k∈Sg

(csk ysi,k)+

∑
i∈S

∑
m∈M

(ctm yki,m)+

∑
m∈M

∑
j∈Z

∑
i∈S

(cd tj,i xm,j,i) (2.1)

subject to:∑
i∈S

xm,j,i = dm,j ∀m ∈M, j ∈ Z (2.2)

∑
m∈M

∑
j∈Z

xm,j,i (rtm,j + tj,i) ≤ 125mui ∀i ∈ S (2.3)

xm,j,i ≤ dm,jmui ∀m, j, i (2.4)

xm,j,i ≤ dm,j yki,m ∀m, j, i (2.5)

yki,m ≤ ysi,k ∀i, m, k, and m belongs to skill group k (2.6)

xm,j,i >= 0 ∀m, j, i (2.7)

mui, yki,m, ysi,k binary ∀i, (i,m), (i, k) (2.8)

When the constraint sets are carefully inspected, it can be seen that the demand constraints (2.2)

are the only ones that bind all SSRs. This block angular property allows the problem to be decom-

posed by SSR, as it is done in Dantzig-Wolfe Decomposition [14] where the demand constraints

(2.2) will be handled inside the Restricted Master Problem, and the remaining constraints (2.3-2.8)

will be put into SSR subproblems. Although we could continue with a direct application of D-W

decomposition scheme, a new formulation will be introduced in order to facilitate the understanding

of what is to happen in the algorithm to be proposed.

29

2.2. REFORMULATION FOR COLUMN GENERATION

The reformulation is based on this new binary variable Y ti,q, representing a SSRi with all the

necessary attributes attached to him found during a ColGen iteration q (or during the initialization

phase by LoA). This method is widely used in the Aircrew Planning [26] and Vehicle Routing Prob-

lems [21] where this variable denotes a pilot’s schedule of flights, and a vehicle’s route, respectively.

In our context, Y t will be representing a SSR’s set of machine trainings, skill upgrades, and the rate

of service he provides at the customer locations. Thus, every solution to the SSR subproblems will

be bundled as a Y t variable and the RMP will decide if the SSR corresponding to this Y t variable

is beneficial enough to be activated or not.

Each Y ti,q has its own cost parameter Cti,q, which is computed in the following formula after

finding which machines and skills and zipcodes SSRi is associated with during iteration q:

Cti,q =125 chimui,q+∑
k∈Sg

(csk ysi,k,q)+

∑
m∈M

(ctm yki,m,q)+

∑
m∈M

∑
j∈Z

(cd tj,i xm,j,i,q) (2.9)

Having defined Cti,q, the objective function transformation is now complete. Since the con-

straints (2.3) through (2.8) are to be moved into the subproblems, only the demand constraints (2.2)

need to be transformed:

∑
i∈S

∑
q∈itrs

xm,j,i,q Y ti,q >= dm,j (πm,j,q) ∀m, j (2.10)

The summation in (2.10) ensures that the demand for every (m, j) is satisfied by either the

columns obtained from LoA initialization or the ones found during column generation iterations.

The set itrs will be used to denote the set of columns that currently exist in the RMP regardless of

where they are found. The ≥ sign is used in (2.10) to obtain more stabilized duals (πm,j,q) for these

30

2.2. REFORMULATION FOR COLUMN GENERATION

constraints, as opposed to these constraints originally being the equality type. This conversion,

however, imposes no change on the optimal solution of the problem due to the fact that it is a

minimization problem after all.

The last set of constraints to be put inside the reformulation are the so-called convexity con-

straints:

∑
q∈itrs

Y ti,q ≤ 1 θi,q ∀i ∈ S (2.11)

(2.11) ensures that no more than 1 bundle of decisions for each SSR is to be chosen when the

RMP is discretized and solved for an integer solution. θi,q are the corresponding dual variables.

Convexity constraints regarding the extreme rays will not be included in the reformulation, because

it will be proved in the next section that the subproblem feasible regions are all bounded. Thus, the

Problem Reformulation of the original monolithic problem is finalized:

Problem RMP integer:

minimize total cost:∑
i∈S

∑
q∈itrs

Cti,q Y ti,q (2.12)

subject to:∑
i∈S

∑
q∈itrs

xm,j,i,q Y ti,q ≥ dm,j (πm,j,q) ∀m, j (2.13)

∑
q∈itrs

Y ti,q ≤ 1 (θi,q) ∀i ∈ S (2.14)

Y ti,q binary ∀i ∈ S, q ∈ itrs (2.15)

When only a subset of all possible q’s are considered, this condensed and small version (in terms

of number of variables) of the problem is tractable and simple to solve, because it is going to be the

Restricted Master Problem that will be solved every time new improving columns are brought in. If

31

2.2. REFORMULATION FOR COLUMN GENERATION

the objective function and the constraints are expanded to cover all possible q’s, then, the restricted

problem becomes the extensive formulation. It is equivalent to the original monolithic formulation,

for which the formal proof will be given after the subproblems are presented, using the well-known

Resolution Theorem [54] and Dantzig-Wolfe Decomposition [14] rules. Within that context, each

Y ti,q then denotes the weight of the solution (extreme point) found in the corresponding subproblem

of SSRi.

There is a slight issue concerning the initialization of the RMP. In order to claim that any feasible

integer solution to Problem RMP integer is also feasible for the original problem, the RMP has to

be initialized with a set of Y ti,q that conforms to all constraints (2.3-2.8) in the subproblems along

with the demand constraints (2.10) and the convexity constraints (2.11). Consequently, a ColGen

user, most of the time, tries to initialize the RMP with the integer solution in mind.

On the other hand, ColGen at each node of the Branch-and-Price tree actually works toward

optimizing the LP relaxation of the RMP at that iteration. Therefore, even an excellent integer so-

lution as the initial basis is detrimental to solving a linear program by Colgen [61]. Poorly chosen

initial columns lead the algorithm astray when they do not resemble the structure of the possible

optimal solution of the RMP. That is why after the best heuristically found integer solution from

our Likelihood of Assignment is obtained, to enrich the solution pool, more instances of the In-

teger Yielding LP are solved with wR[m, j, l] multipliers which are randomized by Uniform ∼

[0.90, 1.10] distribution. After the randomization, there are instances where new solutions are even

better in terms of the original objective function value. The largest test instance has on the aver-

age of 50 active SSRs in the optimal solution, which is the approximate headcount obtained from

the Problem Integer Yielding LP as well. In Chapter 4, it is shown that solving Problem Inte-

ger Yielding LP 20 times (i.e. initializing the RMP with approximately 1,000 columns) outweighs

the solving fewer times, because too few columns produce non-useful duals (π’s and θ’s) owing to

the fact that the dual feasible region is in that case very relaxed and not tight. On the contrary, too

many columns make it harder and longer to solve the LP of the RMP and RMP integer. Further

guidelines on randomization and number of initial columns are given in Chapter 4 for distinct cases

32

2.2. REFORMULATION FOR COLUMN GENERATION

and data inputs.

For a better comprehension of how the dual vectors obtained from the RMP affect the per-

formance of the ColGen procedure, the next section explains the pertinence in primal versus dual

domain relationships.

2.2.1 Dual of RMP

The dual of the RMP is the following model:

Problem RMP dual:

maximize:∑
m∈M

∑
j∈Z

dm,j πm,j,q +
∑
i∈S

θi,q (2.16)

subject to:∑
m∈M

∑
j∈Z

xm,j,i,q πm,j,q + θi,q ≤ Cti,q (Y ti,q) ∀i ∈ S, q ∈ itrs (2.17)

πm,j,q ≥ 0 ∀m, j (2.18)

θi,q ≤ 0 ∀m, j (2.19)

The dual variable θi,q corresponds to the convexity constraints (2.14) for every SSRi and πm,j,q

is associated with constraints (2.13) for every demand point (m, j). Conversely, Y ti,q variables

correspond to the dual feasibility constraints (2.17), above.

A careful reader would notice that when the dual feasibility constraints (2.17) are rearranged,

33

2.2. REFORMULATION FOR COLUMN GENERATION

the reduced cost function for every Y ti,q is obtained and will be referred to as ¯Y ti,q:

∑
m∈M

∑
j∈Z

xm,j,i,q πm,jq + θi,q ≤ Cti,q ∀i ∈ S, q ∈ itrs (2.20)

is equivalent to:

Cti,q − (
∑
m∈M

∑
j∈Z

xm,j,i,q πm,j,q + θi,q) ≥ 0 ∀i ∈ S, q ∈ itrs (2.21)

then the reduced cost of Y ti,q is equal to:

¯Y ti,q = Cti,q − (
∑
m∈M

∑
j∈Z

xm,j,i,q πm,j,q + θi,q) ∀i ∈ S, q ∈ itrs (2.22)

In a minimization problem, a solution is optimal when all variables have positive reduced costs,

that means expression (2.21) has to hold for every Y ti,q, namely ¯Y ti,q ≥ 0. This is also equivalent

to saying that the dual of the original problem is also feasible (and hence optimal), since all ¯Y ti,q’s

being greater than 0 means all constraints of type (2.17) hold.

In order to check if a variable has a negative or positive reduced cost for a given RMP at some

iteration q, the dual variables in the evaluation of the expression (2.22) must be feasible to the

Problem RMP dual at that ColGen iteration. The importance of this check will be more apparent

when the initial dual vector is estimated in Section 2.3.1. Briefly, an infeasible dual vector can cause

the subproblems either to bring already existing columns (claiming they have negative reduced cost)

or produce no incoming columns which means a false optimality is reached. Moreover, a lower

bound calculated using an infeasible dual vector would not be valid.

2.2.2 Pricing Subproblems

At any given iteration of ColGen, a solution of the LP of the RMP provides the best combination

of Y t variables and dual variables π and θ for their corresponding constraints. The next check that

needs to be done is if this solution is optimal or not. In a default ColGen algorithm, these dual

variables are used in the pricing subproblems to find whether there are any variables that have not

34

2.2. REFORMULATION FOR COLUMN GENERATION

been considered yet and if they have a negative reduced cost or not. Thus, the pricing subproblems

are utilized either to do this optimality check when all available subproblems are used, or to find the

best incoming column from every subproblem chosen to be solved.

Dantzig-Wolfe [14] recommends to bring the column with the most negative reduced cost at

every iteration. That is equivalent to adding a constraint (2.17) which is most violated in the dual

domain. This column also needs to satisfy all the constraints that are not covered in the RMP.

Recall that the original problem can be decomposed by SSRi owing to the nice block angular

structure. Therefore, when the pricing subproblems yield columns with negative reduced cost, the

practical meaning of this is SSRs with the best combination of machine training, skill upgrade, and

work assignments are found, while complying with their capacity constraints. This entails that the

objective function of the pricing subproblems should be the reduced cost expression introduced in

(2.22). The constraints of the pricing subproblems then become (2.3-2.8).

Pricing Subproblem for SSRi at iteration q:

minimize reduced cost:

¯Y ti,q = Cti,q − (
∑
m∈M

∑
j∈Z

xm,j,i,q πm,j,q + θi,q) (2.23)

subject to:∑
m∈M

∑
j∈Z

xm,j,i,q (rtm,j + tj,i) ≤ 125mui,q (2.24)

xm,j,i,q ≤ dm,jmui,q ∀m, j (2.25)

xm,j,i,q ≤ dm,j yki,m,q ∀m, j (2.26)

yki,m,q ≤ ysi,k,q ∀ m, k, and m belongs to skill group k (2.27)

xm,j,i,q >= 0 ∀m, j (2.28)

mui, q, yki,m,q, ysi,k,q binary ∀(i,m), (i, k) (2.29)

where Cti,q is defined in (2.9).

35

2.2. REFORMULATION FOR COLUMN GENERATION

A quick inspection of the pricing subproblem for SSRi reveals that it is almost identical to the

original monolithic MIP model without the demand constraints, and written only for 1 SSR. The

demand constraints are not inside SSR subproblems because they are already taken care of inside

the RMP. The practical explanation of the objective function is that the dual variables of type π

from the RMP will behave as the SSR’s reward to fulfill a job, and Cti,q is composed of all the

pertinent costs for providing these services in (2.9). On the other hand, the dual variable θi,q from

the convexity constraint (2.14) impose a barrier for this SSR’s activation. The 125 hour availability

is the capacity constraint. Machine training and skill upgrade constraints are maintained in order to

keep track of necessary binary associations.

The pricing subproblem either concludes with a negative reduced cost yielding column, or a

0 value for the objective function. The latter means, this subproblem SSRi cannot find the dual

constraint which violates dual feasibility. An industrial explanation is that the rewards provided to

SSRi are not large enough considering the π vector; therefore, SSRi chooses not to work in this

iteration.

This subproblem, therefore, can be classified as a knapsack type problem, where a SSRi is

expected to fill his 125 hour capacity with the most rewarding and least costly jobs. Even for the

largest test case, this subproblem has at most 2,500 variables and 4,000 constraints, which can easily

be solved to optimality in less than 0.01 seconds on a computer with 4 GB RAM and Pentium Xeon

3.0 GHz(x2) CPU.

Before the formal steps of a generic ColGen algorithm are provided, a brief description of such

an algorithm is provided: At every iteration of a ColGen algorithm, a RMP is solved in order to

obtain the best values of the primal variables. To check if this is the optimal solution, pricing prob-

lems are solved to detect if there are any other primal columns with negative reduced cost. This

has the same meaning as to find if there are any constraints that are violated in the dual domain

of the original problem. Once such primal variables are found, they are added to the primal RMP

(therefore, the corresponding constraints are automatically added to the Problem RMP dual). This

procedure guarantees that a new dual variable is obtained at every new RMP, and the dual vector

36

2.2. REFORMULATION FOR COLUMN GENERATION

causing the dual infeasibility is removed. However, the objective function is not guaranteed to im-

prove on the primal side, because the problem may be highly degenerate. The algorithm terminates

when no implicit column has a negative reduced cost. Nevertheless, it is a very common experience

among ColGen users that the issue known as ”tailing-off” is encountered as the iterations progress.

Tailing-off is detected when the incoming columns either do not improve the upperbound for the

RMP for over a certain number of iterations, or the improvements become numerically insignificant.

2.2.3 A Generic Colgen Algorithm

Certain statistics need to be defined in order to construct a ColGen Algorithm:

• Y t∗i,qq is the primal solution to the RMP, ∀(i, qq).

• ˆY ti,qq is the integer feasible solution to the RMP integer.

• UBq
n is the upper bound for the RMP at iteration q, i.e. the objective function value (2.12) of

the optimal solution to the RMP at iteration q provides this number. This number is expected

to monotonically decrease as the ColGen iterations progress.

• LBq
n is the lower bound for the RMP at iteration q, and monotonic increase is not guaranteed.

It is calculated with the following expression:

LBq
n =UBq

n +
∑
i∈S

¯Y ti,q

=
∑
i∈S

∑
qq∈itrs

Cti,qq Y t
∗
i,qq +

∑
i∈S

¯Y ti,q (2.30)

• UBn is the best upper bound found; i.e., UBn = min{UBq
n|q ∈ itrs}, and guaranteed to

monotonically decrease.

• LBn is the best lower bound found; i.e., LBn = max{LBq
n|q ∈ itrs}, and guaranteed to

monotonically increase.

37

2.2. REFORMULATION FOR COLUMN GENERATION

• UBmip is the objective function value corresponding to the best integer feasible solution

found by solving Problem RMP integer.

Then, the steps of the algorithm are the following:

• Step 0: Initialize RMP, with a heuristic solution or any feasible solution out of phase1 of the

Simplex Algorithm. Initial columns form the set:

{Y ti,q | all (i, q) couples are enumerated from q = 0 and distinct}. Set node n = 0, UBn =

∞, LBn = −∞.

• Step 1: Solve RMP. Obtain UBq
n, Y t∗i,qq, π

∗
m,j,qq and θ∗i,qq.

• Step 2: Update UBn = min{UBq
n|q ∈ itrs}.

• Step 3: Solve Pricing Subproblem SSRi, ∀i ∈ S. Obtain ¯Y ti,q, and xm,j,i,q, mui,q, yki,m,q

and ysi,k,q, which are then used to calculate Cti,q.

• Step 4: Calculate LBq
n.

• Step 5: Update LBn = max{LBq
n|q ∈ itrs}.

• Step 6: Optimality check:

if UBn = LBn + ε, where ε = 0.001 terminate. Go to Step 7.

Else update set {Y ti,q} with (i, q) having ¯Y ti,q < 0. Update q = q + 1. Go to Step 1.

• Step 7: Solve RMP integer. Obtain UBmip and ˆY ti,qq. Extract the values for ˆxm,j,i,q, ˆmui,qq,

ˆyki,m,qq and ˆysi,k,qq from the construction of ˆY ti,qq.

Our experience shows very problematic run times even for small sized problems using this

generic setting. The numerical results are provided for convenience in Section 2.4. These unaccept-

able run times are the primary reason why the following Acceleration and Stabilization Techniques

are proposed in the next section. The reasons for the bad convergence will also be explained.

38

2.3. ACCELERATION AND STABILIZATION PROPOSALS FOR COLUMN GENERATION

2.3 Acceleration and Stabilization Proposals for Column Generation

2.3.1 Estimating the Initial Dual Vector

One of the most common critisms that ColGen receives is that the generic algorithm fails to pro-

vide a valid (non-negative) lower bound at the beginning of the process. This workforce planning

model’s objective function must have a positive value as long as all the demand constraints are

met. That implies even the best solution will have a positive cost with loose lower bound of 0. A

generic ColGen algorithm, unfortunately, starts with a negative lower bound, and then takes 50-100

iterations to bring the lower bound into the positive territory. We claim that if we can estimate a

”balanced” initial feasible dual vector, this so-called heading-in issue could be avoided. Most of the

entries in a balanced dual vector are in the same order of magnitude, and very few of them are 0.

A lower bound can be calculated at any iteration q of ColGen, if and only if, all pricing subprob-

lems for i ∈ S are solved after the RMP. An upper bound can be calculated from both the primal

objective function and dual objective function (by strong duality):

UBq
n =

∑
i∈S

∑
qq∈itrs

Cti,qq Y t
∗
i,qq

=
∑
m∈M

∑
j∈Z

dm,j π
∗
m,j,q +

∑
i∈S

θ∗i,q (2.31)

39

2.3. ACCELERATION AND STABILIZATION PROPOSALS FOR COLUMN GENERATION

LBq
n =UBq

n +
∑
i∈S

¯Y ti,q

=
∑
i∈S

∑
qq∈itrs

Cti,qq Y t
∗
i,qq +

∑
i∈S

¯Y ti,q (2.32)

=
∑
m∈M

∑
j∈Z

dm,j π
∗
m,j,q +

∑
i∈S

θ∗i,q +
∑
i∈S

¯Y ti,q (2.33)

=
∑
m∈M

∑
j∈Z

dm,j π
∗
m,j,q +

∑
i∈S

θ∗i,q +
∑
i∈S

Cti,q − (
∑
m∈M

∑
j∈Z

xm,j,i,q π
∗
m,j,q + θ∗i,q)


=
∑
m∈M

∑
j∈Z

dm,j π
∗
m,j,q +

∑
i∈S

Cti,q − (
∑
m∈M

∑
j∈Z

xm,j,i,q π
∗
m,j,q)

 (2.34)

Equation (2.32) shows the formula from the primal side, equation (2.33) from the dual perspec-

tive, and equation (2.34) is the expanded dual view. A careful examination of the expanded dual

view gives hints about why the first solution to the dual vector from the first RMP might cause

negative lowerbounds.

When some of the π∗m,j,q, which are obtained by the solution of the RMP have very large values

(rewards) in terms of absolute magnitude, these cause the pricing subproblems to propose more

than the necessary number of SSRs working on the same (m, j) demands with xm,j,i,q variables

over and over again. Whereas, in practice and in optimal solutions, only those SSRs, who have

the best combination of skills and distance relationships should be assigned to these (m, j) demand

points. When π∗m,j,q have extremely large values for reward, the expression with the minus sign

in front in the equation (2.34) grows too fast. Since the amount of supplied service exceeds the

demand too much, the first part of the equation (
∑
m∈M

∑
j∈Z

dm,j π
∗
m,j,q) cannot balance that negative

sum.

It is also known that Cti,q grows with the increasing values of xm,j,i,q (see the formula (2.9)

for reference). However, the rewards already have to be larger than the cost factors inside Cti,q to

propose activated SSRs. That means, since the reason for negative lower bounds is known, a remedy

40

2.3. ACCELERATION AND STABILIZATION PROPOSALS FOR COLUMN GENERATION

can be proposed.

The remedy is simply estimating a balanced dual vector; balanced in the sense that the oc-

currence in which some of the π∗m,j,q being extremely large, and most of them being 0 should be

avoided. This estimation has to comply with Problem RMP dual’s constraints:

∑
m∈M

∑
j∈Z

xm,j,i,q πm,j,q + θi,q ≤ Cti,q (Y ti,q) ∀i ∈ S, q ∈ itrs (2.35)

πm,j,q ≥ 0 ∀m, j (2.36)

θi,q ≤ 0 ∀m, j (2.37)

Knowing xm,j,i,q and Cti,q values from the pricing subproblems and rearranging (2.35), the

feasibility condition is obtained for each estimate in the dual vector :

0 ≤ Cti,q −
∑
m∈M

∑
j∈Z

xm,j,i,q πm,j,q − θi,q ∀i ∈ S (2.38)

xm,j,i,q π
∗
m,j,q ≤ Cti,q −

∑
mm∈M

∑
jj∈Z

xmm,jj,i,qq πmm,jj,qq − θ∗i,q ∀i ∈ S (2.39)

π∗m,j,q ≤

Cti,q − ∑
mm∈M

∑
jj∈Z

xmm,jj,i,qq πmm,jj,qq − θ∗i,q

 /xm,j,i,q ∀i ∈ S (2.40)

Equation (2.40) asserts that the value for the new estimate for π∗m,j,q depends on the other πmm,jj,q

values that are either previously set or estimated. Those π∗m,j,q which are found to be extremely

large from the solution of the RMP will be reduced to a smaller value, and will become the πmm,jj,q

in the above equation. Then, we will only try to estimate positive values for the duals which are

found to be 0 originally. In order to accomplish that the following algorithm is proposed:

• Step 1: Obtain π∗m,j,q and θ∗i,q from the first RMP solution. All constraints initially to be

marked as in set SNP , those with set of duals not positive.

41

2.3. ACCELERATION AND STABILIZATION PROPOSALS FOR COLUMN GENERATION

• Step 2: Calculate the average dual entry value: ¯πm,j,q =

∑
m∈M

∑
j∈Z

πm,j,qdm,j∑
m∈M

∑
j∈Z

dm,j
. If π∗m,j,q >

¯πm,j,q, set π∗m,j,q = ¯πm,j,q.

• Step 3: Mark the constraints whose dual variables are set to a positive value and remove from

set SNP . If set SNP = ∅, Stop.

• Step 4: Sort the demand dm,j values for all (m, j) in descending order in set SNP .

• Step 5: For (m, j) at the top of the list, use the following formula to obtain the estimate for

πm,j,q:

πm,j,q =

min

Cti,q −

∑
mm∈M

∑
jj∈Z

xmm,jj,i,qq πmm,jj,qq − θ∗i,q

xm,j,i,q
|∀i, q;xm,j,i,q > 0


 1

|SNP |

(2.41)

• Step 6: Go to Step 3.

Step 5 simply makes sure that, knowing that the same πm,j,q is to be used in the calculation of dual

feasibility constraints (2.35) for all SSRs, the estimate for πm,j,q must satisfy the most restrictive

one. Moreover, it is scaled by the number of unassigned dual entries |SNP | in the vector, so that a

large estimate does not limit the value of other upcoming dual estimates, owing to the fact that this

is an iterative scheme, following the sorted order for the constraints.

This algorithm ensures that there are no ”0” entries in the initial dual vector π and the values

are prevented from being too distant from each other. Thus, the negative lower bounds are avoided

while θi,q is kept the same. There can be many other versions of this algorithm, some of which will

be explained in Chapter 4.

42

2.3. ACCELERATION AND STABILIZATION PROPOSALS FOR COLUMN GENERATION

2.3.2 Manipulating the Dual Vector

Although column generation provides a monotonic improvement in the upper bound of the RMP,

the lower bound progress is, unfortunately, non-monotonic. That is largely due to the fact that

duals obtained from RMP in the early iterations of the procedure do not resemble the optimal dual

structure, and also, they tend to jump from one extreme solution of the dual domain to another

distant one. To stabilize the dual movement, Wentges [62] suggested that a convex combination of

the most recent dual vector and the one which provided the best lower bound should be used instead.

Then, the dual vector to be used in the pricing subproblems at iteration q is:

πnewm,j,q = απm,j,qbest + (1− α)πm,j,q ∀m, j (2.42)

θnewi,q = α θi,qbest + (1− α) θi,q ∀i (2.43)

α is chosen to be equal to 0.5, which appeared to behave very well in our experiments compared

to others. Chapter 4 elaborates on selecting the value of α. This smoothing will basically let us

explore new dual vectors, but not drift too far away from the last good dual vector.

By applying Wentges’ smoothing, the yo-yo appearance of the lower bound obtained at every

iteration of ColGen is alleviated and stabilized. However, during the very first iterations, the RMP

is rather short-sighted and the dual vectors it proposes are not balanced; i.e., most of the duals

corresponding to the demand constraints are 0 and the nonzero ones are extremely large. When

such dual vectors are used in the pricing problems, they would unfortunately cause astray columns

to be proposed. Astray columns have no beneficial effects in either finding better feasible integer

solutions nor or optimizing the RMP in the long run. A simple example is given:

Suppose at iteration q, for machine m1 at zipcode j1, the dual value is found to be πm1,j1,q =

20,000. Also suppose, the first entry in type1,m1,j1 list is SSR1 and SSR2 is the 50th best choice

to assign this demand to. Assume there is also a machine m2 at zipcode j2 with dual value πm2,j2,q

= 16,000 and type1,m2,j2 list shows the SSR2 to be at the top. When the pricing subproblem

for SSR1 is solved, all assignments look fine; however, the pricing subproblem SSR2 produces

43

2.3. ACCELERATION AND STABILIZATION PROPOSALS FOR COLUMN GENERATION

unwanted results. Since the same dual vector is loaded as a whole in each subproblem, rather than

assigning SSR2 to (m2, j2), the subproblem assigns him to (m1, j1). This proposal for SSR2 is

what is called an astray column (because he is the 50th best choice for this (m2, j2) demand point),

and has a very low possibility of being useful. To avoid this occurrence from happening, we propose

the following modification in the dual vector:

For each subproblem SSRi:

πm,j,qi = πm,j,q
number of SSRs− ranking in the type1,m,jlist

number of SSRs
(2.44)

Simply put, this manipulation would be reducing the magnitude of the reward for unwanted as-

sociations. This in turn results in fewer unnecessary columns to be brought into the RMP, cuts down

the solution time, and allows the Problem RMP Integer to discover high quality integer solutions

right from the beginning of the algorithm.

Figures 2.1 and 2.2 show the SSR coverage areas and customer assignments obtained from a

particular set of subproblems. Figure 2.1 depicts the outcome when no dual manipulation is in place.

Figure 2.2, on the other hand, shows what happens after the dual manipulation, described above, is

applied. The undesirable assignments are avoided as it can be clearly seen in the map for SSR 14,

12 and 9.

Wentges’ smoothing is applied after a separate dual vector (πm,j,qi) is created for every sub-

problem. As stated in Wentges’ paper [62], when the pricing subproblems do not yield any columns

with negative reduced cost although UBn 6= LBn, there are 2 options while designing the algorithm

at hand: We can either choose to smooth the πm,j,qi once again with less weight on the best lower

bound yielding dual:

πnewm,j,qi = β πm,j,qbest + (1− β)πm,j,qi ∀m, jwhere β < α

and this is proven in his paper to break the cycle. Otherwise, the dual vector πm,j found from solving

44

2.3. ACCELERATION AND STABILIZATION PROPOSALS FOR COLUMN GENERATION

Figure 2.1: SSR Coverages before Dual Manipulation

Figure 2.2: SSR Coverages after Dual Manipulation

45

2.3. ACCELERATION AND STABILIZATION PROPOSALS FOR COLUMN GENERATION

the RMP is used without any smoothing or manipulation. In our algorithm design, we chose to use

the default πm,j (from RMP) in the very rare occasions that no columns with negative reduced cost

were found.

Wentges’ smoothing and Dual Manipulation are not utilized when all subproblems are solved

to calculate LBq
n, where the original dual vector needs to be used.

2.3.3 Subproblem Selection

In theory, for ColGen to work, only 1 incoming column with a negative reduced cost is sufficient.

However, 1 column at a time does not justify solving the RMP which is an ever-growing LP. Al-

though solving 1 pricing subproblem takes around 0.01 seconds, for the largest test case where there

are 300 SSRs, it is unnecessary to bring that many columns into the RMP. It hampers the solve time

of the RMP, significantly, if all 300 columns are brought in every iteration. Therefore, a subproblem

selection logic at any iteration q is proposed to mitigate this event. It is proposed to solve at most

10% of all subproblems; but, performance measures are also provided when other percentages are

used, in Chapter 4.

The primary objective of this section is to try to choose the subproblems that will most likely

yield the most negative reduced cost. Recall the expression for the reduced cost:

¯Y ti,q = Cti,q − (
∑
m∈M

∑
j∈Z

xm,j,i,q πm,j,q + θi,q) (2.45)

Equation (2.45) asserts that large values of πm,j,q and xm,j,i,q are necessary to attain negative re-

duced costs. Therefore, using type1,m,j lists, the selection logic will try to pick the best SSR

subproblem to solve, based on the dual value (πm,j,q) and demand (dm,j) of some (m, j):

i. Obtain πm,j,q ∀(m, j).

ii. Calculate πm,j,q ∗ dm,j and sort in descending order.

iii. Starting from the top of the list, pick the first and 75th percentile SSR in the type1,m,j list

46

2.3. ACCELERATION AND STABILIZATION PROPOSALS FOR COLUMN GENERATION

until the number of subproblems chosen reach 10% of the total number of subproblems. Do

not repeat SSRs for distinct (m, j); rather, continue with rank 2, 3 etc. until an uncalled SSR

is found.

The reason for calling the 75th percentile SSR along with the best SSR for that particular de-

mand (m, j) is to bring diverse set of columns back into the RMP, and avoid all columns being

biased by LoA findings. Many combinations have been tested to detect the best percentile for the

second SSR subproblem. The subproblems for SSRs below the 66th percentile provided negative

reduced costs with very low absolute values. On the contrary, the subproblems corresponding to

the SSRs above the 90th percentile caused incoming columns to be very similar due to being too

heavily biased by LoA manipulations. Similar (parallel) incoming columns cause degeneracy in the

dual domain. The subproblems for the 75th percentile SSR in the type1,m,j list seemed to balance

out the impact from both sides.

The Subproblem Selection (SS) routine cannot be used when the algorithm needs to compute

LBq
n. Therefore, once in a while (for instance every 50 iterations) ALL subproblems are solved

to calculate the lower bound. Moreover, at an iteration where the algorithm needs to check for

optimality, SS cannot be used either, because all subproblems need to be checked for any potentially

incoming columns. Towards the end of ColGen algorithms, the number of subproblems that yield

a negative reduced cost lessens significantly. When subproblems chosen by SS do not provide

incoming columns despite the RMP status being non-optimal, the iteration is re-invoked with all

subproblems.

2.3.4 Steps for ColgenLoA

Now that all enhancements are introduced, the following are the steps for implementing ColgenLoA

to solve the root node:

• Step 1: Initialize the RMP by solving Problem Integer Yielding LP as 20 times (with ran-

domized wR penalty vector) to start with at least 1,000 columns. Form the set {Y ti,q} and

47

2.3. ACCELERATION AND STABILIZATION PROPOSALS FOR COLUMN GENERATION

record all xm,j,i,q associated with the corresponding Y ti,q.

• Step 2: Set node n = 0, iteration counter q = 1. Set UBn =∞, LBn = −∞.

• Step 3: if q 6= 1: Deploy reduced cost fixing: [12]. Remove Y ti,q for ¯Y ti,q > UBmip−LBn.

• Step 4: Solve RMP. Obtain UBq
n, Y t∗i,qq, π

∗
m,j,q and θ∗i,q. Update UBn = min{UBq

n|q ∈

itrs}

• Step 5: if q = 1, Call initDualVector() function to initialize the dual vector.

• Step 6: if q 6= 1 or q mod 50 6= 0: Call dualManip() function to manipulate the dual vector.

• Step 7: Use Wentges’ smoothing as a final touch on the duals.

• Step 8: if q = 1 or q mod 50 = 0:

Solve all pricing subproblems for SSRi, ∀i ∈ S. Obtain ¯Y ti,q and xm,j,i,q.

Else:

Call solveRelaxedWhich() function to select a subset of subproblems to solve. The size of the

subset not to exceed 10% of all subproblems.

• Step 9: Postprocess to obtain mui,q, yki,m,q and ysi,k,q. Using those, calculate Cti,q.

• Step 10: if q = 1 or q mod 50 = 0: Calculate LBq
n using (2.34).

Update LBn = max{LBq
n | q ∈ itrs}. If LBn is updated, set πm,j,qbest = π∗m,j,q and

θi,qbest = θ∗i,q.

• Step 11: Termination criteria check: if (|UBn−LBn|)/(|LBn|+ 1) < 1.0%, Go to Step 13.

Else update set {Y ti,q} with (i, q) having ¯Y ti,q < 0. Update q = q + 1.

• Step 12: if q = 1 or q mod 50 = 0: Go to Step 13.

Else: Go to Step 3.

• Step 13: Solve RMP integer. Obtain UBmip and ˆY ti,qq.

48

2.3. ACCELERATION AND STABILIZATION PROPOSALS FOR COLUMN GENERATION

• Step 14: Postprocess to obtain ˆmui,qq, ˆyki,m,qq and ˆysi,k,qq. If Termination criteria is ful-

filled, Stop.

Else: Go to Step 3.

2.3.5 Certificate of Optimality for the ColgenLoA Procedure

Proposition 1: The Column Generation procedure using LoA enhancements finds a stronger lower

bound than the LP of the original monolithic problem. It also solves RMP to optimality (when not

stopped at 1% duality gap) in a finite number of steps.

Proof: The convergence of a generic ColGen algorithm at some node n is proven in [14]. Then, it is

sufficient to show that none of the enhancements proposed in this thesis is breaking the underlying

logic of ColGen. In essence, ColGen converges to an optimal solution for a RMP, provided that

the columns are brought back from a pool of finite size and the pricing subproblems continuously

recommend new incoming variables. Since only the objective function is changing from iteration

to iteration due to new dual vectors every iteration, those subproblem polyhedrons stay unchanged

throughout the ColGen iterations. It is also known that those polyhedrons are composed of finitely

many linear inequalities and all variables are bounded from above; hence, they have finite number

of extreme points.

LoA basis initialization and estimation of the initial dual vector have no adverse effect in the pro-

cedure; on the other hand, dual manipulation and subproblem selection might end up in iterations

with no columns with negative reduced cost found. However, since our reaction to such an event

is a direct reinvoking of the full subproblem set to be solved, the algorithm surely terminates in

finite number of steps. Even in the worst case where the reinvoking of all subproblems recur at

all iterations in which DM and SS are both used, then it becomes a generic ColGen algorithm that

terminates when no new columns are proposed from the finite size column pool. Thus, cycling can

never happen if a feasible dual vector to the last RMP is used.

Lubbecke [40] shows that for a generic Colgen algorithm, the optimal objective function of the

RMP will be at least as large as the LP relaxation of the original MIP. Equality only happens, if this

49

2.4. COMPUTATIONAL RESULTS FOR THE ROOT NODE

problem had the ”Integrality property”, which it does not.

2.4 Computational Results for the Root Node

In this section computational results for problem sizes of 200x20, 300x30, 400x40, 600x60, 1000x100,

1500x300 (demand points x SSRs) will be presented for the urban scenario setting. All the entries

in the following tables are averaged for 20 randomly generated instances for each problem size.

This section is organized in the following way: First, results from CPLEX vs Default ColGen

with no LoA enhancements are compared. Table 2.1 provides a convincing numerical analysis

that neither CPLEX nor default ColGen algorithms are doing a good job while trying to solve

the root node of this problem. Then, one by one, the effects of the enhancements are tested in

the order of ”estimation of the initial dual vector (ID)”, ”intermediate dual vector manipulation

(DM)” and ”Subproblem Selection (SS)”. Next, paired combinations of those constructs are tested

separately (ID+DM, ID+SS, DM+SS). Finally, the results for ColGen with all LoA enhancements

(ID+DM+SS) are presented.

Table 2.1: CPLEX vs Default ColGen

CPLEX Default ColGen

Size #vars Time 1% Time rt Gap Gap Time its

200x20 8,620 65 21 18.4% 35.4% 120 350

300x30 18,930 369 95 23.2% 38.3% 301 1,113

400x40 33,240 2,711 211 27.6% 41.1% 554 1,989

600x60 73,860 8,753 363 34.2% 46.7% 1,409 3,602

1000x100 203,100 24,543 890 43.5% 59.3% 5,502 16,250

1500x300 1,209,300 224,884 2,777 n/a 64.2% 44,251 49,313

In Table 2.1, #vars denotes the number of variables in the monolithic problem and Time 1% is

the time it takes CPLEX to discover a solution within 1% of the best lower bound found. Time rt,

on the other hand, is the statistic that our algorithm is racing against, which is the time it takes

50

2.4. COMPUTATIONAL RESULTS FOR THE ROOT NODE

CPLEX to solve the root node of the monolithic problem while using Branch-and-Bound with de-

fault CPLEX settings. Cplex Gap is the quality of the integer feasible solution obtained by CPLEX

when the root node is solved.

To obtain performance measurements for a Default ColGen algorithm which has no special

initial feasible solution finding scheme (e.g LoA), and has no acceleration and stabilization schemes

(ID/DM/SS), we turned off all enhancements that are proposed in this thesis in DIP. DIP is the

Decomposition for Integer Programming framework designed for Column Generation [25].

Starting from size 400x40, both CPLEX and Default ColGen have a hard time finding good

quality, integer, feasible solutions in a reasonable amount of time. Default Colgen Gap shows the

mipgap for the best feasible solution found with respect to the best lower bound found at the end of

the root node solve. There are 2 possible explanations for those rather bad numbers: Explanation 1 is

trivial in that Default ColGen uses phase1 simplex algorithm to initialize the first RMP, not a special

heuristic. Explanation 2 is that every iteration of the Default ColGen is aimed towards optimization

of the RMP (which is a LP), and not aimed at discovering new integer feasible solutions on the side.

Even though Default ColGen can solve the largest test cases for (1500x300), the mipgap obtained is

almost useless. The solution times reported for Default Colgen are a lot worse than CPLEX Time rt.

The quantity, its, is the number of ColGen iterations to solve the root node, and it will be used as a

benchmark for comparison against the proposed enhancements.

Table 2.2: initDualV vs DualManip vs SubSel for the Root Node

ID DM SS

Size Gap Time its Gap Time its Gap Time its

200x20 4.9% 91 305 2.2% 74 191 5.2 65 420

300x30 5.5% 211 1,021 3.6% 183 678 5.8 160 1,333

400x40 6.8% 376 1,703 4.8% 331 1,302 7.2 276 2,593

600x60 9.1% 1,042 2,765 5.1% 856 2,113 9.5 520 6,078

1000x100 9.9% 4,078 12,078 6.2% 3,204 9,885 10.4 1,819 19,222

1500x300 10.8% 32,015 37,554 10.3% 30,430 36,884 11.6 18,879 61,883

51

2.4. COMPUTATIONAL RESULTS FOR THE ROOT NODE

With a little help from the enhancements, Colgen begins to become favorable, but the results are

not good enough to declare victory when they are deployed one by one. Each of the 3 enhancements

is applied on top of LoA initialization. Inspecting Table 2.2, estimating the initial dual vector (ID)

reduces the solution time by approximately 25%, intermediate dual manipulations (DM) causes

40% reduction on solution time and almost 50% better mipgaps except in the largest test cases.

Subproblem selection, on the other hand, cuts down the solution time by around 33%, but, increases

the number of iterations.

Table 2.3: (initDualV + DualManip) vs (initDualV + SubSel) vs (DualManip+ SubSel) for the
Root Node

ID+DM ID+SS DM+SS

Size Gap Time its Gap Time its Gap Time its

200x20 2.1% 55 156 5.1% 45 320 2.4% 61 221

300x30 3.5% 120 366 5.6% 120 1,030 3.9% 162 774

400x40 4.7% 247 1,228 7.0% 191 1,776 5.2% 290 1,633

600x60 5.0% 607 2,011 9.2% 400 4,213 5.4% 724 2,588

1000x100 6.0% 2,509 8,886 10.1% 1,473 14,041 6.6% 2,843 10,113

1500x300 10.1% 23,443 27,432 11.2% 16,559 44,365 10.7% 22,112 40,984

When the enhancements are tested in pairs, the improvements are even better. ID+DM solution

times are around 50% smaller compared to Default Colgen, ID+SS is almost 66% faster. Dm+SS

is both 50% faster and mipgap is reduced by 50%. Each pair providing better solution times has

encouraged us to test them all at once. The results are shown in the next table.

Table 2.4 shows that, when ColGen is accompanied with LoA+ID+DM+SS, both the solution

times and solution qualities are far superior than Default Colgen and CPLEX. The Default ColGen

is accelerated 8 times, and the root node is solved faster than CPLEX (except for the smallest test

cases and the largest test cases), with excellent quality integer feasible solutions. The dramatic jump

in the solution time from problem 1000x100 to 1500x300 is explained by the exponential increase

in the number of variables: in the former problem, there are approximately 200K variables, whereas

52

2.5. BRANCH-AND-PRICE ALGORITHM

the latter has 1.2M variables on the average.

Table 2.4: CPLEX vs Default ColGen vs Colgen with (LoA+ID+DM+SS)

CPLEX Default ColGen LoA+ID+DM+SS

Size Time rt Gap Gap Time its Gap Time its

200x20 21 18.4% 35.4% 120 350 1.9% 35 310

300x30 95 23.2% 38.3% 301 1,113 3.4% 85 790

400x40 211 27.6% 41.1% 554 1,989 4.5% 95 1,123

600x60 363 34.2% 46.7% 4,213 3,602 4.9% 270 2,611

1000x100 890 43.5% 59.3% 14,041 16,250 5.6% 775 9,233

1500x300 2,777 n/a 64.2% 44,365 49,313 9.7% 8,994 31,313

In the next section, after the specialized B&P algorithm is introduced, computational results will

be provided for the full B&P tree. Having shown that our enhancements are valid and numerically

sound, Colgen with LoA+ID+DM+SS will be used at each node of the B&P tree for the exact

solution of the monolithic problem.

2.5 Branch-and-Price Algorithm

When ColGen terminates at the root node, there is no guarantee that Y t∗i,q’s are integer. Actually,

for this problem, it never turned out to be the case that the optimal root node solution was integer

feasible. Since the original problem is of type MIP which requires integer solutions for the binary

variables, a problem specific Branch-and-Price algorithm is proposed.

2.5.1 Node Generation

The solution of RMP is, unfortunately, non-integer. Therefore, similar to solving MIP problems

using Branch-and-Bound, valid cuts that avoid the current non-integer solution are needed. As laid

out in Barnhart, et. al. [5], these cuts should divide the feasible region in a balanced manner for

the efficiency of node generation. Depth-first strategy will be adopted in our B&P implementation,

53

2.5. BRANCH-AND-PRICE ALGORITHM

which raises the importance of cut selection and the order of addition in the RMP even more. This

is due to the fact that futile effort might be spent if the initial cuts are not effective, for instance,

selecting the most fractional Y ti,q to branch on (closest to 0.5), which is the case for most of the

B&P frameworks, instead of choosing a critical Y t that might have cascading effects in the model.

The following are the cuts to be generated along the way for the Branch-and-Price tree in our design:

∑
i∈S

∑
q∈itrs

Y ti,q ≤ bαc (2.46)

∑
i∈S

∑
q∈itrs

Y ti,q ≥ dαe (2.47)

∑
i∈S

∑
q∈itrs

(Y ti,q
∑
k∈Sg

ysi,k,q) ≤ bβc (2.48)

∑
i∈S

∑
q∈itrs

(Y ti,q
∑
k∈Sg

ysi,k,q) ≥ dβe (2.49)

∑
i∈S

∑
q∈itrs

(Y ti,q
∑
m∈M

yki,m,q) ≤ bγc (2.50)

∑
i∈S

∑
q∈itrs

(Y ti,q
∑
m∈M

yki,m,q) ≥ dγe (2.51)

• α in (2.46) and (2.47) is the sum of activated SSRs found in the root node of the RMP. Say α

turned out to be 200.5, the optimal MIP solution will either have ’less than or equal to’ 200

or ’more than or equal to’ 201 ssrs. Inequality (2.47) will be the first cut to be introduced

to the RMP, because it is more likely that more SSRs will be needed than the fractional sum

α. Inequalities of type (2.46) will be used when backtracking from the node with inequality

(2.47).

• β in (2.48) and (2.49) is the sum of all skill upgrades attained by all SSRs in the root node of

the RMP. ysi,k,q is the skill upgrades found in the pricing subproblem for SSRi; therefore, it

is used as a parameter in the RMP. Since it is not a variable, the linearity of the RMP is still

preserved. If using (2.46) and (2.47) does not provide an integer feasible solution, (2.48) and

54

2.5. BRANCH-AND-PRICE ALGORITHM

(2.49) will be introduced to the RMP, the greater than or equal to constraint being first.

• γ in (2.50) and (2.51) is the sum of machine trainings by all SSRs in the root node of the

RMP. yki,m,q is the machine trainings found in the pricing subproblem for the corresponding

SSRi . If (2.48) and (2.49) do not enforce in integer feasible solution, (2.50) and (2.51) will

be introduced, the greater than or equal to constraint being first.

Experience has shown that high quality integer feasible solutions with mipgap≤ 1% are quickly

achieved, after adding (2.46), (2.47), (2.48) , (2.49), (2.50) and (2.51); however, for the case of

completeness, the following cuts have to be incorporated if MIP optimality or 1% mipgap have not

been achieved in a reasonable amount of time:

∑
i∈S

∑
q∈itrs

Y ti,qysi,k,q ≤ bβkc for a specific skill k (2.52)

∑
i∈S

∑
q∈itrs

Y ti,qysi,k,q ≥ dβke for a specific skill k (2.53)

∑
i∈S

∑
q∈itrs

Y ti,qyki,m,q ≤ bγmc for a specific machine m (2.54)

∑
i∈S

∑
q∈itrs

Y ti,qyki,m,q ≥ dγme for a specific machine m (2.55)

For (2.52) and (2.53), βk denotes the sum of upgrades by all SSRs for a particular skill k, which

is a decimal; whereas, for (2.54) and (2.55), γm is the sum of trainings by all SSRs for a particular

machinem, again, γm is a decimal. There is a decision that needs to be made about which particular

skill or machine to branch on. One simple way is to start from the skill group which has the largest

total demand value. Once there are no more (2.52)and (2.53) inequalities to deploy (i.e. all βk’s are

integer), the algorithm continues with (2.54) and (2.55), where the first cut starts with the machine

with the largest total demand value.

The cuts above were sufficient in the data sets to examine and allow stopping iterations either

because MIP optimality was proven (small problems) or discovered an integer feasible solution with

a high-quality mipgap (≤ 1%). To claim we have an exact Branch-and-Price algorithm, the default

55

2.5. BRANCH-AND-PRICE ALGORITHM

inequalities are necessary:

Y ti,q ≤ 0 for a particular (i, q) (2.56)

Y ti,q ≥ 1 for a particular (i, q) (2.57)

These 2 cuts above ensure that all Y ti,q variables end up being 0 or 1. A good rule of thumb for

selecting which decimal Y ti,q to branch upon is using the type1,m,j list of a machine m with the

largest demand at a zipcode j. Recall that type1,m,j list provides the sorted likelihood of SSRs to

fulfill the demand of machine m at zipcode j. The algorithm checks if Y ti,q is decimal or not, with

SSRi from the top of the type1,m,j list with the most recent q value. The node generation proceeds

with the next q, and with SSRi’s in order.

Once one of these constraints are added, an artificial Y tdummy, whose Ctdummy equals to a

BigM , is introduced to the RMP. This dummy column covers all demands with a cost that is

representative of a Super SSR with the salary of all SSRs in the problem along with all necessary

skills and trainings, and with maximum travel costs. This ensures that RMP is still feasible, and

ColGen is expected to remove Y tdummy from the basis as soon as necessary columns for feasibility

and improvement are found in the pricing subproblems. If ColGen cannot find an incoming column

with a negative reduced cost while Y tdummy is still in the basis, that means, this node became

infeasible after the addition of the most recent cut.

This completes the Cut Generation for removing fractional solutions. In the next section, how

these cuts alter the pricing subproblems will be analyzed.

2.5.2 Effects of Branching Cuts in the Pricing Problems

As inequalities (2.46) through (2.57) are added to the RMP at any given node in the B&P tree,

the reduced cost definitions change. Since the objective of the pricing subproblems is to find the

most negative reduced cost among the implicit variables, the effects of the added inequalities are

56

2.5. BRANCH-AND-PRICE ALGORITHM

explained in this section. The feasible region for the Pricing Subproblem for SSRi, on the other

hand, is not affected by this change at all.

Assume the root node solution is not integer feasible. According to the algorithm design, in-

equality (2.47) will be first introduced to the RMP with associated dual variable η ≥ 0:

∑
i∈S

∑
q∈itrs

Y ti,q ≥ dαe : η

As it can be seen in (2.47), the coefficient of each Y t is 1, and it is not a parameterized version

of the decision variables (mu, ys, yk or x) found in the pricing subproblems. Recall that nonneg-

ative duals are interpreted be rewards for activation, whereas nonpositive duals mean penalties for

the activation of SSRi. Therefore, η will be introduced as a fixed reward in the pricing problem re-

gardless of SSRi’s originating zipcode, as the constraint in the primal domain also tries to increase

the number of SSRs in the system. The objective function becomes:

¯Y ti,q = Cti,q − (
∑
m∈M

∑
j∈Z

xm,j,i,q πm,j,q + θi,q + η) (2.58)

The dual variable for Cut (2.46), however, will be used in the opposite way. Cut (2.46) and its

dual variable κ ≤ 0 are:

∑
i∈S

∑
q∈itrs

Y ti,q ≤ bαc : κ

which will cause the pricing problem’s objective function to become:

¯Y ti,q = Cti,q − (
∑
m∈M

∑
j∈Z

xm,j,i,q πm,j,q + θi,q + κ) (2.59)

Dual variable κ can be interpreted as a barrier to a SSR becoming activated, since Cut (2.46)

also dictates to limit the sum of the activated SSRs to be less than the current solution of the RMP.

57

2.5. BRANCH-AND-PRICE ALGORITHM

For the other 4 primary cuts, the duals and their appearances in the pricing problem are given

below.

For (2.48):

∑
i∈S

∑
q∈itrs

(Y ti,q
∑
k∈Sg

ysi,k,q) ≤ bβc : (ζ ≤ 0) (2.60)

This constraint restricts skill upgrades; therefore, ζ will provide a penalty for new skill upgrades

and will be incorporated into the pricing subproblem as:

¯Y ti,q = Cti,q − (
∑
m∈M

∑
j∈Z

xm,j,i,q πm,j,q + θi,q +
∑
k∈Sg

ζ ysi,k,q) (2.61)

For (2.49) :

∑
i∈S

∑
q∈itrs

(Y ti,q
∑
k∈Sg

ysi,k,q) ≥ dβe : (ν ≥ 0) (2.62)

This constraint imposes more skill upgrades; therefore, ν will provide a reward for new skill

upgrades and be incorporated into the pricing problem as:

¯Y ti,q = Cti,q − (
∑
m∈M

∑
j∈Z

xm,j,i,q πm,j,q + θi,q +
∑
k∈Sg

ν ysi,k,q) (2.63)

An analogous arguement is valid for machine training, and the relationships are given below

directly:

For (2.50) :

∑
i∈S

∑
q∈itrs

(Y ti,q
∑
m∈M

yki,m,q) ≤ bγc : ($ ≤ 0) (2.64)

58

2.5. BRANCH-AND-PRICE ALGORITHM

and the modification in the parantheses in the reduced cost expression (penalty):

+
∑
m∈M

$yki,m,q (2.65)

For (2.51):

∑
i∈S

∑
q∈itrs

(Y ti,q
∑
m∈M

yki,m,q) ≥ dγe : (ϑ ≥ 0) (2.66)

and the modification is a reward:

+
∑
m∈M

ϑ yki,m,q (2.67)

The second stage cuts, which are specific to individual skills and individual machines, are im-

posed starting from the skill or machine with the largest demand and have very similar impact on

the reduced cost expressions.

For a particular skill k, using Cut (2.52), the pricing problem owing to the dual variable ζk ≤ 0 is

modified with a penalty:

+ ζk ysi,k,q (2.68)

For a particular skill k, using Cut (2.53), the pricing subproblem owing to the dual variable νk ≥ 0

is modified with a reward:

+ νk ysi,k,q (2.69)

For a particular machine m, using Cut (2.54), the pricing subproblem owing to the dual variable

59

2.5. BRANCH-AND-PRICE ALGORITHM

$m ≤ 0 is modified with a penalty:

+$m yki,m,q (2.70)

For a particular machine m, using Cut (2.55), the pricing subproblem owing to the dual variable

ϑm ≥ 0 is modified with a reward:

+ ϑm yki,m,q (2.71)

Last but not least, the default cuts regarding individual Y ti,q have impact only in the corresponding

pricing subproblem for SSRi.

Y ti,q ≤ 0 for a particular (i, q) : (ψ ≤ 0), impact as +ψ (penalty) (2.72)

Y ti,q ≥ 1 for a particular (i, q) : (ξ ≥ 0), impact as +ξ (reward) (2.73)

Even though (2.72) translates to a penalty in the corresponding pricing subproblem for SSRi,

this subproblem can propose the same Y ti,q pattern as the best SSR package in some iteration

q + n. In order to claim that the algorithm terminates in finite number of iterations, this cycling

has to be prevented. A simple approach is to ignore when such a proposal is made and use the

next best solution with the most negative reduced cost, as suggested in [5]. A more complicated

approach would be making sure that such subproblems will never suggest those proposals by adding

constraints. We chose the former approach as a practical solution.

2.5.3 Complete Algorithmic Steps for B&P

This B&P Algorithm is designed to progress in the B&P tree by using a depth-first search strategy.

A node n is considered for branching or fathomed depending on which of the following 5 conditions

it fits:

60

2.5. BRANCH-AND-PRICE ALGORITHM

i. When tailing-off (no UBn improvement in the last 50 iterations) is detected: branch.

ii. |UBn−LBn|
(|UBn|+1e−10)

≤ 1.0% : branch.

iii. All Y t variables obtained from the optimal solution of the RMP at node n is integer feasible;

therefore, branching further has no benefit: fathom.

iv. Node n became infeasible after the addition of some cut : fathom.

v. The lower bound of node n (LBn) is greater than the best integer feasible solution’s objective

value (UBmip) :fathom

After fathoming a node, backtracking is applied to choose the next node, which is where the most

recent branching happened prior to the fathoming. The same type of cut with the opposite sign (the

one imposing disjoint feasible region) is introduced.

61

2.5. BRANCH-AND-PRICE ALGORITHM

The Proposed B&P Algorithm:

• Step 1: Set n = 0. Solve root node with ColGenLoA. Obtain LBn, UBn and UBn
mip.

Update LBmip = LBn and UBmip = UBn
mip

• Step 2: Check optimality: if UBmip = LBmip + ε, where ε = 0.001, terminate.

• Step 3: Check branching/fathoming conditions. Backtrack if necessary.

• Step 4: Set n = n + 1 .Add a new cut from the ordered list in Section 2.5.1. Choose the ≥

version first.

• Step 5: Add an artificial variable Y tdummy and Ctdummy in the RMP to ensure feasibility

after addition of the cut. Apply ColGenLoA.

• Step 6: Obtain LBn, UBn and UBn
mip. Update UBmip = min{UBn

mip|∀n} and LBmip =

min{LBn|∀n}. Go to step 2.

2.5.4 Certificate of Optimality for B&P

Proposition 2: The Accelerated Branch-and-Price Algorithm, defined above, solves the Workforce

Planning Problem with Cross-Training to integer optimality in a finite number of iterations, when

every node is solved to optimality.

Proof: Proposition 1 proves that each node of the Branch-and-Price tree can be solved in a finite

number of iterations by ColGen Enhanced with LoA. Provided that the input data has finite num-

ber of SSRs, zipcodes, machines and skills; the number of Y t variables which corresponds to the

extreme points of the subproblems will be countable and finite, since there are a finite number of

mixed integer pricing subproblems whose feasible regions are bounded. In the worst case, if there

are still integer infeasibilities for a solution of RMP at a node n after adding all possible Cuts (2.46)

through (2.55), Cuts (2.72) and (2.73) can be applied as many times as the remaining number of Y t

variables with fractional values. Thus, at least a RMP in one of the nodes of the B&P tree will have

to yield the integer optimal solution.

62

2.6. COMPUTATIONAL RESULTS FOR B&P

2.6 Computational Results for B&P

In this section, computational results for problem sizes of 200x20, 300x30, 400x40, 600x60, 1000x100,

1500x300 (demand points x SSRs) will be presented for the urban scenario setting. These test cases

are the same ones used for experimenting with the ColgenLoA on the root node. The table below

compares the solution times among CPLEX, Default B&P, and B&PLoA. All solution times are

recorded as soon as an integer feasible solution with 1% mipgap is achieved. Default B&P does not

use any of the enhancements proposed for ColGen in this thesis, nor does it use a special branching

strategy. It branches on the most fractional integer variable. On the other hand, B&PLoA utilizes

LoA heuristic for initialization of the first RMP, and ID+DM+SS for acceleration and stabilization.

Moreover, B&PLoA uses the special inequalities that are introduced in Section 2.5.1 for branching.

Table 2.5: CPLEX vs Default B&P vs B&PLoA

CPLEX Default B&P B&PLoA

Size #vars Time 1% Time 1% Nodes Time 1% Nodes

200x20 8,620 65 944 45 79 22

300x30 18,930 369 2,487 124 182 55

400x40 33,240 2,711 3,452 226 296 94

600x60 73,860 8,753 10,433 432 943 196

1000x100 203,100 24,543 34,945 1,040 3,123 423

1500x300 1,209,300 224,884 301,450 3,037 25,902 1,132

According to our experiments, it is shown that the Default B&P is performing very poorly in

practice. Although Default B&P can solve the largest test data (1500x300), as opposed to CPLEX

not being able to discover a feasible integer solution in 12 hours, more than 300,000 seconds (ap-

proximately 84 hours) of run time is required. For the smaller test cases, CPLEX is much faster

than Default B&P.

B&PLoA, on the other hand, with its branching logic and enhanced ColGen algorithm, finds 1%

mipgap quality solutions 12 times faster than Default B&P and approximately 10 times faster than

63

2.7. DISCUSSION

CPLEX on the average. The number of nodes explored in the B&P tree is approximately 55% less

for B&PLoA.

2.7 Discussion

In this chapter, 3 propositions have been made in order to accelerate and stabilize the ColGen Algo-

rithm for Workforce Planning with Cross-Training Problem. For the exact solution of the problem,

a branching strategy is also provided. Numerical results are very promising in terms of convergence

speed and the quality of the integer feasible solutions found. These three enhancements, estimating

the initial dual vector (virtual void initDualVector(vector<double> & dualVector);), intermediate

dual manipulation (virtual void dualManip(map<int, vector<double> > & newDuals);), and sub-

problem selection (virtual void solveRelaxedWhich(vector<int> & blocksToSolve);) have been

added to DIP framework [25] for other ColGen users’ benefit.

The workforce planning problem is for strategic/tactical level decision making. The next chapter

in this thesis deals with the more detailed shift allocation problem. Since having the shift detail in

this problem structure would turn out to be intractable, we will use part of the optimal/high quality

solution found here, in setting up the problem in Chapter 3. The Shift Scheduling Problem to be

introduced in the next chapter will also be solved by using ColGen with LoA enhancements.

To show the robustness of the enhancements proposed, we will show their applicability, in

3 other capacitated resource management problems. We believe that the concept could also be

expanded to other ColGen applications, but, that would be a subject for future research.

64

Chapter 3

An Accelerated and Stabilized Nested

Column Generation Algorithm for

Workforce Shift Scheduling Problems

with Stochastic Demand

3.1 Introduction

Determining the number of employees with appropriate skill sets in a service company is a strategic

decision, and it is a nontrivial problem. Finding the most cost effective shift schedule is even more

difficult when the problem at hand deals with a stochastic demand input. The first stage problem

introduced in this thesis was Manpower Planning with Cross-Training for a technical service support

company. The plan was constructed by using monthly forecast (deterministic) demand data. The

output of the first stage reveals the headcount, the necessary skill combinations and the start of the

day launch points for the Service Support Representatives (SSRs). The launch point is defined as the

zipcode where a SSR starts his day and returns back to this zipcode after every task completion. The

65

3.2. PROBLEM DEFINITION AND STOCHASTIC DEMAND SCENARIOS

second stage problem is then finding the most cost effective weekly shift assignment while abiding

by the work rules, given that the first stage output is used as an input here. Since the demand

is not known with certainty but can be predicted for every scenario, a deterministic equivalent of

the Stochastic Integer Model will be developed. The objective, hence, becomes finding the shift

assignment which covers a sample of all possible demand scenarios in the least costly way.

This chapter is organized in the following way. First, necessary definitions are given to introduce

the Workforce Shift Scheduling Problem with Stochastic Demand to the reader. Secondly, scenario

generation logic is explained for the creation of rule-based random demand data. Third, the mathe-

matical formulation of the deterministic equivalent of the Workforce Shift Scheduling Problem with

Stochastic Demand is provided. Then, the size of the problem is shown to be growing exponentially

with the number of scenarios. A custom Likelihood of Assignment (LoA) approach is developed

to find the first greedy solution, initialize the Agent-based Tabu Algorithm, and finally stabilize

and accelerate the ColGen Algorithm which is to be introduced last in the chapter. Computational

results show that the quality of the solutions obtained at the end of the root node does not entail a

Branch-and-Price (B&P) algorithm to be invoked. The accomplishment is that the 3-step algorithm

(LoA + Tabu + ColGen) finds high quality solutions 25 times faster than CPLEX 12.2 with 30%

better mipgaps on average.

3.2 Problem Definition and Stochastic Demand Scenarios

In this problem context, a shift is defined as an 8-hour block. In any given week, since there are 7

days, total number of shifts amount to 21. Every regular employee (SSR) needs to be assigned to

at least 5 shifts in a week (40 hours total), or more, depending on the necessity for coverage. Every

shift assigned to a SSR on top of his 5 regular shifts is considered as an overtime shift and SSRs get

paid 1.5 times their base salary during overtime. Another cost factor arises when a SSR is assigned

to 2 shifts consecutively (16 hours straight), which is an undesirable operational outcome, but, at

times, it is absolutely required. In such a situation, there is an extra cost, which is 0.5 times the

66

3.2. PROBLEM DEFINITION AND STOCHASTIC DEMAND SCENARIOS

original pay to further penalize consecutive shift assignment. This penalty expression, in fact, is in

place to balance the work life of employees, and to avoid unfair shift assignments.

The rules for shift assignment are as follows. SSRs can at most work total of 3 shifts in any 6

consecutive shift block. This puts an implicit bound on the number of overtime shifts automatically.

Moreover, no SSR can work 3 shifts consecutively; but, 2 shifts (16 hours straight) in any 24 hour

period is allowed. One last rule is that if a SSR begins to commit himself to a job towards the end

of shift sh, but runs out of available time in shift sh, the following shift sh + 1 is also assigned to

him. The model may then assign new repair jobs during this new shift sh+ 1 if it is cost effective to

do so for the remaining available time. SSRs are restrained in the mathematical model so that they

are prevented from beginning a task which would cause them to stay over 2 consecutive shifts.

The target demand forecast for every machine m, at zipcode j in shift sh is given as an input

before setting up this problem. This value is actually found from scaling the monthly demand total

to the shift level based on day of the week and then time of day. Suppose the number of service

calls (dm,j) for machine m at zipcode j is 4.33 per month (which was used in the planning stage).

The weekly call rate (dwm,j) is calculated by dwm,j = dm,j ∗ 12/52. For each of the 21 shifts (set

SH), the probability (Pr{m, j, sh}) of receiving a call for this (m, j) is also known. Therefore, the

following call rates per shift is expected as a target for (m, j):

dm,j,sh = Pr{m, j, sh} dwm,j (3.1)

where∑
sh∈SH

Pr{m, j, sh} = 1 ∀m ∈M, j ∈ Z (3.2)

The creation of demand scenarios depends directly on these dwm,j and dm,j,sh values for each

(m, j) pair. Since the planning stage used the monthly rate of dwm,j ∗ 52/12, in order to maintain

feasibility or claim the scheduling problem has sufficient number of SSRs, the following rule is

strictly enforced while generating the demand points dm,j,sh,sc for every machine m, at zipcode j,

67

3.2. PROBLEM DEFINITION AND STOCHASTIC DEMAND SCENARIOS

during shift sh in scenario sc, where sc ∈ SC:

∑
sh∈SH

dm,j,sh,sc ≤ dwm,j ∀m ∈M, j ∈ Z, sc ∈ SC (3.3)

The pseudocode to generate random scenarios is:

Random Scenario Generation Algorithm:

forall m ∈M , j ∈ J , sh ∈ SH , sc ∈ SC, initialize dm,j,sh,sc = 0.

forall sc ∈ SC.

forall m chosen randomly from set M .

forall j chosen randomly from set J , where dwm,j > 0.

forall sh chosen randomly from set SH , where Pr{m, j, sh} > 0.

if
∑

sh∈SH
dm,j,sh,sc +max(dm,j,sh,sc) ≤ dwm,j :

Generate random ζ ∼ U [0.0, 1.0].

if dm,j,sh ≤ 1.0:

if ζ ≤ Pr{m, j, sh}:

dm,j,sh,sc = 1

else: dm,j,sh,sc = 0

else: dm,j,sh,sc = dζ ∗ dm,j,she

Figure 3.1, below, shows what the data looks like for a small example in 3 dimensions (4 machines,

4 zipcodes, 4 shifts) for 4 scenarios.

The algorithm for random demand scenario generation, basically, tries to stay faithful to the

total weekly target demand (dwm,j) and the expectations (Pr{m, j, sh}) for every (m, j) at shift

sh of a weekly scenario sc. Each one of these tables under their corresponding cubes is a projection

of the cube on the (m, j) plane, by summing the demand amounts that are predicted for all shifts.

Every entry in the table belongs to a corresponding (m, j), and as stated before, it is always less

than or equal to dwm,j for every scenario generated. The entries, also, behave as an indicator for a

68

3.2. PROBLEM DEFINITION AND STOCHASTIC DEMAND SCENARIOS

Figure 3.1: 3 Dimensional Demand Data Representation by Scenario

specific (m, j)’s density in a randomly generated scenario over all shifts.

In our problem setting, every dm,j,sh,sc in every scenario must be either fulfilled in shift sh, or

it is ensured that the SSR with appropriate skills starts his trip toward the demand zipcode while the

shift sh is still underway. Thus, a particular demand, dm,j,sh,sc, is still taken into account in shift

sh; however, it is completed in shift sh + 1, when the assigned SSR returns to the launch zipcode.

This event, on the other hand, entails the consecutive shift (sh + 1) to be activated for this SSR,

which is an undesirable assignment.

3.2.1 Deterministic Equivalent of the Model

The Workforce Shift Scheduling Problem with Stochastic Demand can be represented as Mixed

Integer Linear Problem, when only a sample from the vast space of possible demand scenarios

is considered. The determination of the necessary number of scenarios to be generated will be

discussed in the computational results section.

The necessary variables and parameters required in order to mathematically display the problem

follow:

69

3.2. PROBLEM DEFINITION AND STOCHASTIC DEMAND SCENARIOS

Variables:

• xi,sh: binary variable, denoting if SSRi ∈ S is assigned to shift sh or not.

• OTi,sh: binary variable, denoting if shift sh is an overtime shift for SSRi.

• csi,sh: binary variable, denoting if both shifts sh and sh+ 1 are assigned to SSRi or not.

• ym,j,i,sh,sc: binary variable, denoting if demand for machine m at zipcode j in shift sh in

scenario sc is fulfilled by SSRi or not.

• oti,sh,sc: continuous variable, denoting the extra number of hours necessary to finish the tasks

that are started in shift sh, but finished in shift sh+ 1 in scenario sc.

Parameters:

• chi: shift salary for SSRi, whose specific extra skill upgrades are included in this rate, as

determined in the strategic planning stage.

• cd : various expenses of operating a service vehicle for 1 hour (gas, tolls, depreciation etc.)

• tj,i : total time to travel from SSRi’s launch zipcode to demand zipcode j (round trip)

• rtm,j : repair time for a machine of type m at zipcode j

• ξsc: probability of scenario sc happening(it is by default equal to 1/|SC|)

The set SH , which has 21 entries in a week, is an ordered and circular set. Namely, if sh = 21 and

a calculation is necessary for shift sh + 1, the corresponding shift is 1, not 22. The mathematical

formulation is as follows.

70

3.2. PROBLEM DEFINITION AND STOCHASTIC DEMAND SCENARIOS

Deterministic Equivalent of the Shift Scheduling Problem with Stochastic Demand:

minimize overtime and expected scenario costs:∑
i∈S

∑
sh∈SH

(1.5 chi OTi,sh) +
∑
i∈S

∑
sh∈SH

(0.5 chi csi,sh)+

∑
m∈M

∑
j∈Z

∑
i∈S

∑
sh∈SH

∑
sc∈SC

ξsc(cd tj,i ym,j,i,sh,sc) (3.4)

subject to:∑
i∈S

ym,j,i,sh,sc = dm,j,sh,sc ∀m, j, sh, sc (3.5)

∑
m∈M

∑
j∈Z

ym,j,i,sh,sc (rtm,j + tj,i) ≤ 8 xi,sh − oti,sh−1,sc + oti,sh,sc ∀i, sh, sc (3.6)

oti,sh,sc ≤ 8 xi,sh+1 ∀i, sh, sc (3.7)

sh+1∑
psh=sh

xi,psh ≤ csi,sh + 1 ∀i, sh (3.8)

∑
sh∈SH

xi,sh ≥ 5 ∀i (3.9)

∑
sh∈SH

8 xi,sh ≤ 40 +
∑

sh∈SH
8 OTi,sh ∀i (3.10)

OTi,sh ≤ xi,sh ∀i, sh (3.11)

sh+2∑
psh=sh

xi,psh ≤ 2 ∀i, sh (3.12)

sh+5∑
psh=sh

xi,psh ≤ 3 ∀i, sh (3.13)

oti,sh,sc ≥ 0 ∀i, sh, sc (3.14)

OTi,sh, xi,sh, csi,sh, ym,j,i,sh,sc binary; ∀(i, sh), (m, j, i, sh, sc) (3.15)

The objective function (3.4) minimizes the total overtime hour payments to SSRs, consecutive

71

3.2. PROBLEM DEFINITION AND STOCHASTIC DEMAND SCENARIOS

shift assignment penalties and the weighted travelling cost for every scenario in the problem. De-

mand constraints (3.5) ensure that the demand is fulfilled in every scenario for every shift for every

demand point (m, j). Constraint set (3.6) is for asserting that all activities that take place in a par-

ticular shift have to be completed in 8 hours; however, if a SSR departs for a job before the shift

is over, and cannot complete the job in this shift, he reserves at least oti,sh hours in the next shift.

Thus, shift sh’s 8 hour capacity can also be reduced by oti,sh−1 from the previous shift. Both oti,sh

and oti,sh−1 can never be positive together due to constraint set (3.12), which asserts a SSR can

work for at most 2 shifts in any given 3 consecutive shifts. Constraints (3.7) indicate that there is an

8 hour limit for the overtime in shift (sh + 1) caused by not being able to complete all jobs started

in shift sh. (3.7) also activates the assignment to shift (sh + 1). Constraint (3.8) is in the model

to capture the penalty for assigning consecutive shifts to a SSR. Since this problem assumes the

number of SSRs and their skills are fixed by the planning stage, they are required to be assigned to

at least 5 shifts in a week by (3.9). Any more hours assigned to a SSR count towards overtime, as

indicated by (3.10). However, the overtime shifts cannot be arbitrary,; they have to be one of the

active shifts, which is ensured by (3.11). Constraint set (3.13) imposes a restriction on the number

of total shifts (3 at most) assigned to a SSR in 6 consecutive shifts (48 hours). Constraints (3.14)

and (3.15) are for nonnegativity and binary declarations.

Although the planning stage provided the most cost effective number of SSRs with particular

skills, the shift scheduling problem is still very difficult to solve in a reasonable amount of time due

the number of variables and constraints in the system, even when there are not too many scenarios

considered. The largest test case from the planning problem has 1500 (m, j) demand points, and 50

activated SSRs in the optimal solution out of 300 potential SSRs. That means every SSR handles,

roughly, 30 of those 1500 calls within a week, and conversely, each (m, j) can be serviced by

approximately 20 different SSRs (1000 machine types, 50 SSRs, 4 hour driving distance limit).

Later in this chapter, there is an explanation of what happens when the total number of SSRs who

can address a repair call for some of the machines at certain zipcodes are very few. The averages are

only used in the analysis to estimate a typical problem size, with 100 randomly generated demand

72

3.3. LIKELIHOOD OF ASSIGNMENT FOR THE STOCHASTIC SCHEDULING PROBLEM

scenarios.

When this same problem setting (1500(m, j) x 50SSRs) is used for the shift scheduling stage,

the shift layer is added in the demand data for each of the 100 scenarios. Based on the input data

from a real setting given for Pr{m, j, sh}, for every (m, j), Pr{m, j, sh} is non-zero for only 1

sh out of every 7 shifts (i.e., 3 out of 21) on the average. This results in a problem with more than 9

million ym,j,i,sh,sc variables and approximately 664,300 constraints. AMPL + CPLEX runs out of

memory even while loading the problem.

The enormous size of the problem motivated us to develop a Likelihood of Assignment (LoA)

approach to be used for reducing the search space for better solutions.

3.3 Likelihood of Assignment for the Stochastic Scheduling Problem

There are too many associations among SSRs and shifts and scenarios, and most have very low

potential to appear in the optimal solution of this problem. LoA could help make the decision

whether such an association is a beneficial one or a poor one.

Figure 3.2: 3-D Representation of Demand for Machine-Zipcode by Shifts

When Figure 3.2 is carefully inspected, it is a little different from Figure 3.1. The z-axis is the

73

3.3. LIKELIHOOD OF ASSIGNMENT FOR THE STOCHASTIC SCHEDULING PROBLEM

scenarios instead of shifts. The corresponding tables under each cube shows the demand density

for every (m, j) over all scenarios. As the magnitude of a particular entry increases in the table

for a particular shift sh, more of this (m, j) demand is expected to be seen in this shift sh over all

scenarios. LoA will use this observation to assign the best SSR to this shift sh for this demand point

(m, j).

As was done similarly in the planning stage, a likelihood penalty can be assigned between every

SSR and demand point (m, j). The penalty will be very low for beneficial associations, e.g., for a

SSR and (m, j) that are very close to each other (factor1). The less time is spent during driving,

the smaller are the travelling costs. Another beneficial association will be made between some

particular (m, j) points and some specific SSRs who actually have the unique skills to complete

the repair task (factor2). The intuitive reason is that if there are only 2 SSRs who can fix a very

specific skill-requiring machine, the optimal solution will never use these 2 technicians for other

tasks during the same time period that the calls arrive. Otherwise, the problem becomes infeasible,

as this model does not have the luxury to add new people in the workforce, and it has to make the

best of the available input skill set.

Thus, one can obtain 2 sorted lists based on the Likelihood penalties; i.e., list of best SSRs for

every (m, j) (recall the type1m,j list) and list of best (m, j)’s for every SSRi (type2i list). Next,

the shift associations need to be figured out. The tables in Figure 3.2 help in that regard. For each

SSRi, the list of best shifts (type3i list) are found by adding the entries for the top 10 (m, j)’s in

the type2i list.

To see the impact of factor1 versus factor2 in the optimal solutions, 20 instances of problem

size (200(m,j)x20SSRx10scenarios) are solved to optimality with CPLEX. The assignments that

appeared in the optimal solutions showed that if the machines required rare skills among the SSRs,

the distance between the SSR launchzip and the demand zipcode (factor1) is the secondary factor

compared to factor2. The ratio of assignments that are made to the closest SSR versus the SSR

with the unique skill is 1 to 2. Therefore, in the likelihood penalty calculations wf for factor2 is

74

3.4. AGENT-BASED TABU SEARCH ALGORITHM

chosen as 2, and wf for factor1 is 1. Hence, the formula is given:

wRm,j,i =

∑
f

(100wf f valuef,m,j,i)

|
∑
f

wf |
, ∀m, j, i (3.16)

where f value for factor2 is the number of SSRs who have the skill to fix this machine and

are within 4-hour driving distance. f value for factor1 is the distance from between the SSR

launchzip and the demand zipcode.

To obtain the penalties for associations among the SSRs, (m, j)’s and the shifts, this last ma-

nipulation is made:

wRm,j,i,sh = wRm,j,i ∗ (1-percentile of sh in type3i list), ∀m, j, i, sh (3.17)

After all wRm,j,i,sh’s are calculated, a sorted SSR list (type1m,j,sh,sc) in increasing wRm,j,i,sh

values is constructed for each demand point (m, j) in shift sh for every scenario sc; i.e., (dm,j,sh,sc).

The SSRs at the top of these lists are the best candidates for task assignments by LoA.

3.4 Agent-Based Tabu Search Algorithm

An Agent-Based Tabu Search Algorithm is most convenient when there is a relatively good solution

already available and when the neighborhood search for adjacent feasible solutions is not expensive

[51]. The algorithm looks for the best improving feasible solution in the local neighborhood of

the current solution. Since this is a local search approach, the algorithm can easily get stuck at a

local optimal point. Therefore, defining the size of the local neighborhood is critical for continuous

improvement. The algorithm to be proposed is able to evade local optimal solutions by moving

towards directions which may seem to be poor at first; however, better quality solutions can be

obtained after jumping to these seemingly bad search spaces. Aside from its computational ease,

the Tabu Search Algorithm does not require the problem specific parameters to be heavily tuned as

75

3.4. AGENT-BASED TABU SEARCH ALGORITHM

in other metaheuristics such as Genetic Algorithm and Simulated Annealing.

Our algorithm is similar to Sabar et. al.’s approach [53]. The algorithm is based on the ”swap”

of shift assignments among agents (SSRs in this context). Every agent in the system, regardless of

considering others, tries to minimize his cost as given in (3.4). His cost to the system is comprised

of overtime shift payments, consecutive shift penalties, and the weighted (by scenario probabilities)

sum of all travelling costs in all scenarios. An agent would first want to eliminate consecutive shift

penalties, and then overtime shift payments, and finally, he would try to minimize travelling costs

by exchanging job assignments within the same shift with another agent. The System Coordinator

confirms the swaps or proposes to move towards tabu directions.

The benefits of this algorithm are two-fold. First, the feasible solutions found throughout will be

used to initialize the Restricted Master Problems to be introduced for the Nested Column Generation

Algorithm later in this chapter. Secondly, this heuristic can quickly respond to disruptions in the

system, e.g., a SSR calling in sick for the week or taking a vacation, or when a critical contract from

a client is lost, etc.

3.4.1 Initializing the Heuristic

The Agent-based Tabu Heuristic requires an initial solution (not necessarily feasible) to begin to

look for improving solutions in the local neighborhood of this solution. A greedy initial solution

can be constructed using the wRm,j,i,sh penalties found by the LoA approach. UsedCapi,sh,sc is

the total time spent (repair or travel) by SSRi during shift sh in scenario sc. The pseudocode for

initialization is given as follows:

The Initialization Algorithm:

forall i ∈ S, sh ∈ SH , sc ∈ SC, initialize UsedCapi,sh,sc = 0.

forall sc ∈ SC.

forall sh ∈ SH

forall (m,j), find and iterate over (m, j)’s with m ∈M , j ∈ J , dm,j,sh,sc > 0, whose

76

3.4. AGENT-BASED TABU SEARCH ALGORITHM

type1m,j,sh,sc has the least number of SSRs. Select the SSRi at the top of the list.

If UsedCapi,sh,sc + (rtm,j + tj,i) ≤ 8 and (3.12) and (3.13) hold:

Set ym,j,i,sh,sc = 1. Set dm,j,sh,sc = dm,j,sh,sc − 1. Set xi,sh = 1.

Remove SSRi from type1m,j,sh,sc.

If
∑

sh xi,sh > 5: set OTi,sh = 1.

If xi,sh−1 = 1: set csi,sh−1 = 1.

If UsedCapi,sh,sc + (rtm,j + tj,i) > 8 and (3.12) and (3.13) hold:

Set oti,sh,sc = UsedCapi,sh,sc + ym,j,i,sh,sc (rtm,j + tj,i)− 8.

Set UsedCapi,sh+1,sc = UsedCapi,sh+1,sc + oti,sh,sc.

If UsedCapi,sh+1,sc ≤ 8:

Set UsedCapi,sh,sc = 8.

Set ym,j,i,sh,sc = 1. Set dm,j,sh,sc = dm,j,sh,sc − 1. Set xi,sh = 1.

Remove SSRi from type1m,j,sh,sc.

If
∑

sh xi,sh > 5: set OTi,sh = 1.

Set xi,sh+1 = 1.

If
∑

sh xi,sh > 5: set OTi,sh+1 = 1.

Set csi,sh = 1.

Else:

Revert UsedCapi,sh+1,sc and oti,sh,sc to their previous values.

Continue selecting SSRs from type1m,j,sh,sc list until dm,j,sh,sc = 0.

According to our experiments, this greedy assignment algorithm ends up with a feasible solution

96% of the time when tested on 50 instances of (1500x300x100) problem. When it is not feasible,

there are still some demands (dm,j,sh,sc) not assigned to any SSRs. This situation is easily overcome

by using a BigM value, assuming a dummy SSR is assigned to it. The system coordinator proposes

these unassigned demands to be taken care of even if it adds a consecutive shift or overtime shift to

an already existing agent’s shift schedule.

77

3.4. AGENT-BASED TABU SEARCH ALGORITHM

3.4.2 Defining the Tabus

A Tabu Swap is defined as a legal, but prohibited shift or assignment swap between agents. Tabu

swap rules are vital for the algorithm’s performance. If the tabus are too strict, the search space in

the local neighborhood becomes too small. When the tabus are too relaxed, the algorithm might

navigate in the wrong direction as opposed to the best direction. Tabu swap lists are also updated as

the algorithm proceeds to avoid cycles.

Before introducing the tabu swaps in our algorithm, the following definitions need to be made:

• Ci,q: cost of Agent i to the system at iteration q, and equals to:

Ci,q =
∑

sh∈SH
(1.5 chi OTi,sh,q) +

∑
sh∈SH

(0.5 chi csi,sh,q)+

∑
m∈M

∑
j∈Z

∑
sh∈SH

∑
sc∈SC

ξsc(cd tj,i ym,j,i,sh,sc,q) (3.18)

• STq =
∑

i∈S Ci,q: Total system operating cost in iteration q:

STq =
∑
i∈S

∑
sh∈SH

(1.5 chi OTi,sh,q) +
∑
i∈S

∑
sh∈SH

(0.5 chi csi,sh,q)+

∑
i∈S

∑
m∈M

∑
j∈Z

∑
sh∈SH

∑
sc∈SC

ξsc(cd tj,i ym,j,i,sh,sc,q) (3.19)

• ∆+
i,sh: the added cost in Ci,q, if Agent i accepts this new shift assignment sh and all jobs in

this shift that his capacity can allow.

• ∆−i,sh: the cost removed from Ci,q, if some other Agent agrees to take on all responsibility for

all the tasks in this shift sh.

• ∆+
i,sh,m,j,sc: the added cost in Ci,q, if Agent i agrees to fulfill a specific (m, j) demand in

shift sh in which he is already active and has capacity for, in scenario sc.

• csw(i, sh1, k, sh2) =

78

3.4. AGENT-BASED TABU SEARCH ALGORITHM

∆+
i,sh2

+∆−k,sh1−∆−i,sh1−∆−k,sh2 +
∑

v,m,j,sc

∆+
v,sh1,m,j,sc

+
∑

v,m,j,sc

∆+
v,sh2,m,j,sc

: the marginal

benefit/cost of swapping that takes place between Agent i’s shift sh1 and Agent k’s shift sh2

and the cost of fulfilling the unmet demands caused by this swap, by other agents.

• cNosw(i, sh1, k) = ∆+
k,sh1

− ∆−i,sh1 +
∑

v,m,j,sc

∆+
v,sh1,m,j,sc

: the marginal benefit/cost of

Agent k being assigned to shift sh1 along with other agents, forcibly by the System Coordi-

nator (shift transfer). This happens when cNosw(i, sh1, k) < 0, or the heuristic initializes

with a Dummy demand, or when the System Coordinator calls for a tabu step.

There are 3 types of tabu swaps in our algorithm:

• Considering csw(i, sh1, k, sh2), when sh1 is not in the top 33% of type3k list or when sh2

is not in the top 33% of type3i or both. The percentile is given in order to limit the search

space for feasible swaps and avoid the algorithm to discover another local optimal.

• A shift transfer occasion where cNosw(i, sh1, k) > 0.

• After a swap takes place, e.g., (i, sh1, k, sh2), the reverse swap (i, sh2, k, sh1) is put in the

tabu list for the next 50 iterations.

Tabu swaps are invoked by the System Coordinator when there are no csw(i, sh1, k, sh2) swaps

with negative value in iteration q, to jump to a new neighborhood with a worse STq+1 with the

intention of discovering a STq+n < STq after n more iterations.

3.4.3 Steps for the Agent-based Tabu Algorithm

The Agent-based Tabu Algorithm is a heuristic which monotonically improves the objective func-

tion value until a tabu swap is invoked. However, the drawback of the algorithm is that, at any

moment in the algorithm, there is no known lower bound. Therefore, the quality of the solution

cannot be compared against a benchmark. Due to the huge number of possible tabu swaps that the

System Coordinator can invoke, the algorithm has a 30 minute time limit. However, for relatively

79

3.4. AGENT-BASED TABU SEARCH ALGORITHM

small problems such as (200x20x10), the algorithm happens to stumble upon the integer optimal

solution much faster than CPLEX (usually under 30 minutes). The algorithmic steps are given in

the following:

Agent-based Tabu Algorithm:

• Step 1: Set q = 0. Start with the greedy heuristic guided by LoA. If the initial solution is

infeasible, add dummy agents with Cdummy,q = BigM .

• Step 2: Calculate Ci,q for all other agents, STq for the whole system, including dummy

agents. Set q = q + 1.

• Step 3: If there are dummy agents who are fulfilling demand (m, j, sh, sc), search for the best

agents using the type1m,j,sh,sc lists to fulfill those demands. Find Agents with the highest

swap benefit cNosw(dummy, sh1, k). If there is no feasible and improving swap, generate

a tabu swap to evade this region in the feasible domain. Go to Step 2.

ElseIf: No active dummy agents: Go to Step 4.

• Step 4: Search for the SSR with the most OTi,sh shifts active. Break ties by comparing Ci,q

with the agent with higher Ci,q chosen.

If csi,sh is also active, xi,sh+1 is active. Let sh2 = sh + 1. To avoid the consecutive shift

penalty, Agent i offers to swap shift sh2.

Else: find the shift with the greatest ∆−i,sh1 . Agent i offers to swap shift sh1.

• Step 5: Based on the shift shi proposed by Agent i, search for an Agent k whose type3k list

has shift shi in the top 33%. If no Agent k is found, Go to Step 8.

• Step 6: Enumerate all possible swap offers from Agent k. shk must be in the top 33% of

type3i list as well. Check for feasibility (fulfilling all demands with shift capacity) as it is

done in the initialization heuristic. If there is any unmet demand, search for the best SSR

using the type1m,j,sh,sc lists, enumerate from the top of the list for SSRs who are already

active and have capacity in the shift in which that unmet demand occurs in that particular

80

3.5. ACCELERATED NESTED COLUMN GENERATION ALGORITHM

scenario. Calculate ∆+
i,shk

, ∆−i,shi , ∆+
k,shi

, ∆−k,shk ,
∑

v,m,j,sc

∆+
v,shk,m,j,sc

,
∑

v,m,j,sc

∆+
v,shi,m,j,sc

and hence, csw(i, shi, k, shk) for all swaps.

• Step 7: If there is at least one swap, not in the tabu list, with csw(i, shi, k, shk) < 0, execute

the swap that is the most beneficial.

Else: Go to Step 8.

• Step 8: Evaluate the tabu options. To avoid cycling do not consider a swap that took place

within 50 iterations of q. Execute the tabu swap which causes the largest increase in the

STq−1.

• Step 9: Update the tabu list with the most recent swap.

Terminate after 30 minutes and report the best solution found so far.

Else: go to Step 2.

The numerical results for this algorithm are provided in the Computational Results section of

this chapter. The quality of the solutions are assessed with the best lower bounds found by the

Nested ColGen Algorithm. There is an article by Mason et. al. [43], which describes a Nested Col-

umn Generator for solving deterministic rostering problems. Their master and subproblem struc-

tures are much simpler than what is presented in this research; however, it may provide additional

insight to the reader.

3.5 Accelerated Nested Column Generation Algorithm

Although the Agent-based Tabu algorithm discovers significantly better solutions very fast, there

is no information about the mipgap of the solution. AMPL + CPLEX, on the other hand cannot

even load problems larger than (400(m,j) x 40SSRs x 100Scenarios). ColGen, however, is a very

convenient approach when handled with care, to find valid lower bounds for large scale problems.

The shift scheduling problem with stochastic demand, unfortunately, does not have a simple

structure to use a ColGen algorithm with 1 RMP and a set of subproblems. A 3-layer decomposition

81

3.5. ACCELERATED NESTED COLUMN GENERATION ALGORITHM

is necessary to be able to utilize ColGen efficiently. A Set Covering formulation will be introduced

first, where SSRs proposed in the lower layers will try to cover the demand in the top layer Restricted

Master Problem. At every level, all of the subproblems’ feasible domains are strictly bounded;

therefore, there will be no mention of extreme rays throughout this chapter.

3.5.1 Set Covering Reformulation

Let binary variable µi,r represent the proposal for SSRi found in iteration r of main ColGen or the

rth feasible solution that is used to initialize the procedure. Then, one can obtain the cost of this

SSR to the problem by:

Ctµi,r =
∑

sh∈SH
(1.5 chi OTi,sh,r) +

∑
sh∈SH

(0.5 chi csi,sh,r)+

∑
m∈M

∑
j∈Z

∑
sh∈SH

∑
sc∈SC

ξsc(cd tj,i y
r
m,j,i,sh,sc) (3.20)

Assume we have sufficient number of SSRs to fulfill all demands that are to happen during all

shifts in all scenarios, and further assume the proposed SSRs are already meeting the constraints for

business rules, capacity, and overtime restrictions. The following model is equivalent to the Deter-

ministic Equivalent of the Shift Scheduling Problem with Stochastic Demand using the Resolution

Theorem [54] and Dantzig-Wolfe Decomposition [14]:

82

3.5. ACCELERATED NESTED COLUMN GENERATION ALGORITHM

Problem RMP equivalent:

minimize the total cost for employing SSRs:∑
i∈S

∑
r∈itrs1

Ctµi,rµi,r (3.21)

subject to:∑
i∈S

∑
r∈itrs1

µi,r y
r
m,j,i,sh,sc ≥ dm,j,sh,sc ∀m, j, sh, sc (3.22)

∑
r∈itrs1

µi,r ≤ 1 ∀i (3.23)

µi,r binary ∀i, r (3.24)

where r ∈ itrs1 is the set of all columns found, and yrm,j,i,sh,sc is the task assignment givens for the

rth proposal of SSRi. The only issue with this reformulation is that there are too many constraints

(approximately 450K for 1500x300x100 case) which prevents this from becoming an efficient SSR

proposal evaluator and dual vector generator.

However, when the contents of Ctµi,r are carefully examined, that expression (3.20) can be

decomposable by shifts. The demand constraints can also be written for every shift sh without

depending on other shifts. Unfortunately, the convexity constraints (3.23) are not decomposable

by shifts, but can be relaxed. The following is the relaxation proposed for (3.23) when Problem

RMP equivalent is decomposed by shifts:

∑
r∈itrs1

µi,r,sh ≤ 1 ∀i, sh (3.25)

This constraint set allows the same SSR to be active on one shift and chosen to be not active on

another, despite the fact that at the time of the column generation, he might have been actually

scheduled to work in both. If (3.23) was retained, only 1 proposal for every SSR could have been

activated. Thus, we obtain relaxed, but, solvable RMP subproblems by shift (see Figure 3.3 for

83

3.5. ACCELERATED NESTED COLUMN GENERATION ALGORITHM

better understanding):

Problem RMP Level1 by shift sh in iteration q:

minimize the total cost for employing SSRs in shift sh:∑
i∈S

∑
r∈itrs1

Ctµi,r,shµi,r,sh (3.26)

subject to:∑
i∈S

∑
r∈itrs1

µi,r,sh y
r
m,j,i,sh,sc ≥ dm,j,sh,sc (πL1,m,j,sh,sc,q) ∀m, j, sc (3.27)

∑
r∈itrs1

µi,r,sh ≤ 1 (θL1,i,sh,q) ∀i (3.28)

µi,r,sh binary ∀i, r (3.29)

where πL1,m,j,sh,sc,q is the dual vector for the demand constraints, which is going to be used through-

out the algorithm as a reward for meeting demand. Dual vector θL1,i,sh,q on the other hand can be

considered as an extra cost in front of a SSR-shift assignment.

Not being able to obtain guaranteed feasible solutions, hence MIP upper bounds, by directly

solving RMP Level1 by shifts, seems like a drawback, but with some post-processing one can still

find quality integer solutions. This will be explained while introducing the formal algorithm steps.

The LP relaxation of Problem RMP Level1 by shift requires initial SSR proposals to start pro-

viding dual vectors for the Pricing Subproblem Level1. The duty of the Pricing Subproblem Level1

is to provide best shift assignment for a given set of job assignments in various scenarios. Fortu-

nately, Pricing Subproblem Level1 can be decomposed by SSRs, but they are still very difficult to

solve when there are more than 100 scenarios in the problem. Therefore, even the Pricing Subprob-

lem Level1 decomposed by SSRs will have to be solved by column generation. The structure of

the Pricing Subproblem Level2 allows the problem to be decomposed by scenarios; thus, this huge

problem with 9 Million variables can be attacked by solving a series of very small subproblems.

Pricing Subproblem Level1 should then find the minimum reduced cost for µi,q in order to bring

84

3.5. ACCELERATED NESTED COLUMN GENERATION ALGORITHM

… …

Best

Combination of

SSRs

Shift 1 Shift i Shift N
Decompose

RMP Level1 by

Shift

Pricing Subproblem Level1

Duals Duals
Duals

RMP Level1
Columns

Monolithic Problem

Best Shift

Assignment

SSR 1 SSR i SSR N……

RMP Level2

Decompose

RMP Level2 by

SSRs

Pricing Subproblem Level2
Duals Duals Duals

Decompose SP

Level 2 by

Scenarios

Best Job

Assignment

Columns

Sc1 Sc3

Figure 3.3: Nested Column Generation Algo Flowchart

in the most beneficial proposal for a SSR as a whole package. The reduced cost for µi,q is given in

the following formula using the duals from iteration q of RMP Level1:

µ̄i,q = Ctµi,q − (
∑
m∈M

∑
j∈Z

∑
sh∈SH

∑
sc∈SC

πL1,m,j,sh,sc,q y
q
m,j,i,sh,sc +

∑
sh∈SH

θL1,i,sh,q) ∀i (3.30)

(3.31)

85

3.5. ACCELERATED NESTED COLUMN GENERATION ALGORITHM

where

Ctµi,q =
∑

sh∈SH
(1.5 chi OTi,sh) +

∑
sh∈SH

(0.5 chi csi,sh)+

∑
m∈M

∑
j∈Z

∑
sh∈SH

∑
sc∈SC

ξsc(cd tj,i y
q
m,j,i,sh,sc) ∀i (3.32)

As mentioned before, Pricing Subproblem Level1 decomposed by SSRs, is designed to produce

shift assignment proposals for each SSR considering all scenario proposals. The layer below, Pric-

ing Subproblem Level2 decomposed by scenarios, produces scenario based proposals λi,sc,p, for

every SSR, separately. But, it is Pricing Subproblem Level1’s job to accept or reject scenario pro-

posals (by finding the best values for λi,sc,p; therefore, Pricing Subproblem Level1 has to be written

accordingly and renamed as RMP Level2:

86

3.5. ACCELERATED NESTED COLUMN GENERATION ALGORITHM

Problem RMP Level2 by SSRi in iteration q of Level1 and p of Level2:

min µ̄i,q

= Ctµi,q − (
∑
m∈M

∑
j∈Z

∑
sh∈SH

∑
sc∈SC

∑
p∈itrs2

πL1,m,j,sh,sc,q λi,sc,p y
q
m,j,i,sh,sc,p+

∑
sh∈SH

θL1,i,sh,q)

=
∑

sh∈SH
(1.5 chi OTi,sh) +

∑
sh∈SH

(0.5 chi csi,sh)+

∑
m∈M

∑
j∈Z

∑
sh∈SH

∑
sc∈SC

∑
p∈itrs2

ξsc(cd tj,iλi,sc,p y
q
m,j,i,sh,sc,p)−

(
∑
m∈M

∑
j∈Z

∑
sh∈SH

∑
sc∈SC

∑
p∈itrs2

πL1,m,j,sh,sc,q λi,sc,p y
q
m,j,i,sh,sc,p+

∑
sh∈SH

θL1,i,sh,q) (3.33)

subject to:

∑
m∈M

∑
j∈Z

∑
p∈itrs2

λi,sc,p y
q
m,j,i,sh,sc,p (rtm,j + tj,i) ≤

8 xi,sh −
∑

p∈itrs2
λi,sc,poti,sh−1,sc,p +

∑
p∈itrs2

λi,sc,poti,sh,sc,p (βL2,i,sc,p) ∀sh, sc (3.34)

∑
p∈itrs2

λi,sc,poti,sh,sc,p ≤ 8 xi,sh+1 (γL2,i,sc,p) ∀sh, sc (3.35)

∑
p∈itrs2

λi,sc,p ≤ 1 (θL2,i,sc,p) ∀i (3.36)

OTi,sh, xi,sh, csi,sh, λi,sc,p binary ∀sh, sc, p (3.37)

3.8, 3.9, 3.10, 3.11, 3.12, 3.13 for this i (3.38)

In the model above, only the dual variables corresponding to the constraints that are directly

relevant to λi,sc,p are given. βL2 ≤ 0, γL2 ≤ 0 and θL2 ≤ 0 will be used in the reduced cost

calculation of λi,sc,p.

87

3.5. ACCELERATED NESTED COLUMN GENERATION ALGORITHM

Assuming there are sufficiently many scenario proposals, i.e., valid and feasible inputs for

yqm,j,i,sh,sc,p, oti,sh−1,sc,p and oti,sh,sc,p, when this model is solved to integer optimality, the solution

to each Problem RMP Level2 by SSR yields improving columns to the Problem RMP Level1.

However, since the LP relaxations of RMPs are needed to be solved in order to obtain valid dual

vectors, the integer problem is solved with classic Branch-and-Bound using the columns found up

until the time Pricing Subproblem Level2 stops offering new columns.

Variables λi,sc,p are the proposals to be obtained from Pricing Subproblem Level2, decomposed

by scenarios, which is the best feasible task assignments that a SSRi can have in a given scenario.

To find the best proposal for a scenario, the reduced cost for λi,sc,p in iteration p of RMP Level2

and iteration q of RMP Level1 is used as the objective function value.

88

3.5. ACCELERATED NESTED COLUMN GENERATION ALGORITHM

Pricing Subproblem Level2 by sc in iteration q of Level1 and p of Level2:

min ¯λi,sc,p = (
∑
m∈M

∑
j∈Z

∑
sh∈SH

ξsc(cd tj,i y
q
m,j,i,sh,sc,p)−

∑
m∈M

∑
j∈Z

∑
sh∈SH

πL1,m,j,sh,sc,q y
q
m,j,i,sh,sc,p)−

(βL2,i,sc,p

∑
m∈M

∑
j∈Z

∑
sh∈SH

yqm,j,i,sh,sc,p(rtm,j + tj,i) +
∑

sh∈SH
oti,sh−1,sc,p −

∑
sh∈SH

oti,sh,sc,p

+

∑
sh∈SH

γL2,i,sc,p oti,sh,sc,p + θL2,i,sc,p)

(3.39)

subject to:

∑
m∈M

∑
j∈Z

yqm,j,i,sh,sc,p (rtm,j + tj,i) ≤ 8 xi,sh − oti,sh−1,sc,p + oti,sh,sc,p ∀sh (3.40)

oti,sh,sc,p ≤ 8 xi,sh+1 ∀sh (3.41)

yqm,j,i,sh,sc,p, OTi,sh, xi,sh, csi,sh binary; oti,sh,sc,p ≥ 0 ∀sh (3.42)

3.8, 3.9, 3.10, 3.11, 3.12, 3.13 for this i (3.43)

The SSR-Scenario proposals conform to every constraint in the original monolithic problem

except the demand constraints. Having introduced all the RMPs and Pricing Subproblems, another

look at Figure 3.3 will help to see the big picture. Going from the bottom of the figure to the top

might be more provide a more intuitive understanding. While every green box needs to yield an

integer solution to be acceptable for the next stage, the red boxes decompose into brown boxes

which evaluate those offerings from green boxes by using a LP. The brown boxes also provide the

direction for the incoming columns by supplying them with dual vectors. The dark green boxes are

the scenario subproblems for each SSR.

89

3.5. ACCELERATED NESTED COLUMN GENERATION ALGORITHM

As mentioned earlier, ColGen is designed for this problem to have a benchmark (a valid lower

bound) for the obtained MIP upper bounds, and as an extra, the incoming columns may improve the

integer feasible solution along the way. However, our tests showed that without the acceleration and

stabilization techniques introduced in Chapter 2, the performance is very poor, even for problems

of size (200x20x100).

3.5.2 Acceleration and Stabilization

Computational experiments have shown that attempts at solving this huge problem using classical

ColGen steps fail. A generic ColGen algorithm with no customization fails in providing a valid

(positive) lower bound for a very long time. Progress in improving the lower bound is also unac-

ceptably slow. Including the initialization of the RMP, 4 proposals are made for acceleration and

stabilization of this Nested ColGen Algorithm.

Initializing the RMP

Every RMP in the algorithm decomposition structure is initialized by the relavant piece of infor-

mation in the feasible solutions proposed by the Agent-based Tabu Heuristic. Including the best

solution found at the termination of the heuristic, a total of 20 solutions will be fed to the RMP

Level1 and RMP Level2. To reduce the possible impact of degeneracy, not the most recent 20 feasi-

ble solutions upon termination, but the best solutions that have been found after the most recent 20

tabu swaps will be used. Recall that the tabu swaps change the previous solutions drastically. Thus,

the yqm,j,i,sh,sc variables in RMP Level1, and yqm,j,i,sh,sc,p, and oti,sh−1,sc,p and oti,sh,sc,p variables

in RMP Level2 are initialized by these solutions.

For the largest test case, 20 solutions translate to 20 ∗ 50 = 1000 SSR columns. Our com-

putational results suggest that starting less than 20 solutions cause the dual of the RMP Level1 to

be too relaxed; therefore, the dual vectors obtained would be misleading. More than 20 solutions

to begin with, on the other hand, makes the solution of the RMP harder and hinders algorithmic

performance.

90

3.5. ACCELERATED NESTED COLUMN GENERATION ALGORITHM

Initial Dual Vector Estimation

Initial dual vector estimation is critical in order to obtain a good lower bound, even in the first

iteration. The lower bound (LBq) will be computed during the main iteration calls, where all sub-

problems for all levels are solved. The lower bound is calculated in any main iteration q of the

algorithm and is given in the following formula. Let zq be the sum of the objective functions for the

primal feasible solutions to the LP of RMP Level1 over all shifts. Let zqi be the objective function

for the RMP Level2 for every SSRi.

LBq = zq −
∑
i∈S

zqi (3.44)

In order to ensure that all reduced costs for all the columns that are used in the initialization of

RMP Level1 are nonnegative (thus, the dual vector to be estimated is dual feasible for the first RMP

Level1), the following algorithm shows the necessary steps to achieve this objective. Recall, dual

feasibility has to hold for all the corresponding columns that are used to initialize the system:

∑
sh∈SH

(1.5 chi OTi,sh) +
∑

sh∈SH
(0.5 chi csi,sh)+

∑
m∈M

∑
j∈Z

∑
sh∈SH

∑
sc∈SC

∑
p∈itrs2

ξsc(cd tj,iλi,sc,p y
q
m,j,i,sh,sc,p)−

(
∑
m∈M

∑
j∈Z

∑
sh∈SH

∑
sc∈SC

∑
p∈itrs2

πL1,m,j,sh,sc,q λi,sc,p y
q
m,j,i,sh,sc,p+

∑
sh∈SH

θL1,i,sh,q) ≥ 0 (3.45)

πL1 ≥ 0 (3.46)

θL1 ≤ 0 (3.47)

If θL1, which is the vector for all dual entries of θL1,i,sh,q, is set to 0, the only unknown becomes

πL1, the dual vector for all πL1,m,j,sh,sc,q in the expression, above. Remember that λi,sc,p is also

given for the initialization stage. Let q∗ = 1, for the rest of this section. Then, the upper bound for

91

3.5. ACCELERATED NESTED COLUMN GENERATION ALGORITHM

every πL1 can be calculated by using the assignments for every SSRi:

πL1,m∗,j∗,sh∗,sc∗,q∗ ≤ (
∑

sh∈SH
(1.5 chi OTi,sh) +

∑
sh∈SH

(0.5 chi csi,sh)+

∑
m∈M

∑
j∈Z

∑
sh∈SH

∑
sc∈SC

∑
p∈itrs2

ξsc(cd tj,iλi,sc,p y
q
m,j,i,sh,sc,p)−

(
∑
m∈M2

∑
j∈Z2

∑
sh∈SH2

∑
sc∈SC2

∑
p∈itrs2b

πL1,m,j,sh,sc,q λi,sc,p y
q
m,j,i,sh,sc,p))/(λi,sc∗,p y

q
m∗,j∗,i,sh∗,sc∗,p∗)

(3.48)

where

λi,sc∗,p y
q
m∗,j∗,i,sh∗,sc∗,p∗ > 0 (3.49)

where m∗, j∗, sh∗, sc∗, p∗ are excluded from sets M2, Z2, SH2, SC2, and itrs2b, respectively.

Let πL1,avg be the average of all positive πL1 after the solution of RMP Level1.

i. Set all θL1 = 0.

ii. Set all πL1,m,j,sh,sc,q > πL1,avg to πL1,avg. Remove these m, j, sh, sc from sets M2, Z2,

SH2, SC2, and the relevant p∗s from itrs2b. Set all entries in πL1 for sets M2, Z2, SH2,

SC2 to 0.

iii. Iterate over all m,j,sh,sc,p in Sets M2, Z2, SH2, SC2: Set the πL1,m∗,j∗,sh∗,sc∗,q∗ to the

minimum upper bound found in (3.48).

iv. Remove m∗, j∗, sh∗, sc∗, p∗ from Sets M2, Z2, SH2, SC2, and itrs2b, respectively.

The initial dual vector πL1 thus becomes balanced in the sense that the dual entries have similar

magnitudes, and zero value duals are eliminated, as much as possible.

92

3.5. ACCELERATED NESTED COLUMN GENERATION ALGORITHM

Dual Manipulation

As explained in Chapter 2, using the same dual vector for all subproblems in a ColGen procedure

has detrimental effects. It causes unwanted columns to be brought into the RMP and those astray

columns help neither RMP optimality nor integer optimality. Furthermore, if the duals are not

stabilized, rapid jumps in the lower bound calculations are observed, and the progress in lower

bounds is very erratic. To mitigate the hindering effects of this phenomena, intermediary Dual

Manipulation is proposed.

The dual vector πL1,m,j,sh,sc,q obtained from RMP Level1 is used both in Pricing Subproblems

Level1 and Level2. While the Pricing Subproblems Level1 choose the best shift assignments for

every SSR by the reward provided by πL1,m,j,sh,sc,q, Pricing Subproblems Level2 determine the

activities that take place in every scenario. Unwanted assignments at Pricing Subproblems Level2

have cascading effects in RMP Level2, and then in RMP Level1. Moreover, βL2,i,sc,p found in RMP

Level2 could be further manipulated to guide the SSRs to concentrate on critical scenarios.

The manipulation procedure proceeds in 2 steps. For every RMP Level2 belonging to each SSR,

πL1,m,j,sh,sc,q is manipulated in the following way in iteration q:

πnewL1,m,j,sh,sc,q = πL1,m,j,sh,sc,q ∗
of SSRs in type1m,j,sh,sc - ranking of SSRi

of SSRs in type1m,j,sh,sc list
(3.50)

This is going to ensure that not the same reward is given for the same demand to every SSR.

For βL2,i,sc,p, the manipulation is done in the following way, in iteration p of RMP Level2. Let

dpi,sc be the total quantity of d(m, j, sh, sc) summed over all shifts in a scenario, for the (m, j)

which are in the top 20% of the type2i list (the preferred demand points list for every SSR). Then,

the preferred order of scenarios for every SSR can be obtained in a list called type4i. Recall that

βL2,i,sc,p behaves like a penalty between SSRi and scenario sc. The objective, here, is to reduce

the penalties for preferred scenarios:

βnewL2,i,sc,p = βL2,i,sc,p ∗
ranking of scenario sc in type4i

of scenarios
(3.51)

93

3.5. ACCELERATED NESTED COLUMN GENERATION ALGORITHM

The final touch on the duals is applied by Wentges’ smoothing. Let Ωnew
q,p represent all dual

vectors (π and β) in consideration in iteration q of RMP Level1 and iteration p of RMP Level2. Also,

let Ω∗qq,pp be the best lower bound yielding representative dual vector found in the corresponding

iteration for qq and pp. Then, the smoothing is done with a chosen 0 < α < 1:

Ωsm
q,p = αΩ∗qq,pp + (1− α)Ωnew

q,p (3.52)

α is chosen to be 0.5, in order to not wander too far away from the best lower bound yielding

dual vector, but also, to stay open for new directions. According to our computational experiments,

α values less than 0.33 slows down the lower bound progress by staying close to the last best dual

vector, and α values greater than 0.66 reduce the desired stability in the dual domain.

Subproblem Selection

Subproblem Selection is vital for the fast convergence of the algorithm. RMP Level1’s pricing sub-

problems are decomposed by SSRs. Therefore, if the SSR pricing subproblem that would bring the

best incoming column for RMP Level1 can be estimated, the algorithm does not have to solve for all

SSRs. Similarly, the Pricing Subproblem Level 2 is decomposed by scenarios for every SSR. There

are particular scenarios that every SSR can make changes in, and therefore, it would impact the

shift assignment in RMP Level2 significantly. Therefore, if the best set of pricing subproblems for

scenarios are chosen, then, the algorithm avoids wasting time on solving potentially non-beneficial

ones.

When the dual vector πL1,m,j,sh,sc,q is obtained from RMP Level1, the entries of the vector are

sorted in decreasing order (ˇπL1,sorted). At the top of the list lies the most rewarding demand point

(m, j, sh, sc).

i. Starting from the top of this list, find the best and the 75th percentile SSR using the

type1m,j,sh,sc lists.

ii. Continue with the next demand point in the sorted list for duals.

94

3.5. ACCELERATED NESTED COLUMN GENERATION ALGORITHM

iii. Form the subset of subproblems to be solved with at least 10% of the total number of SSRs

in the problem.

The scenario subproblem selection for SSRs is conducted likewise. The dual vector βL2,i,sc,p

acts as a penalty for activities that take place in scenario sc by SSRi (see objective function for

Pricing Subproblem Level2 (3.39)).

i. Sort the entries in βL2,i,sc,p in increasing order. At the top of the list is the scenario with the

least penalty for SSRi.

ii. Pick the scenarios in the top 10 percentile for every SSR.

Steps of the Nested ColGen Algorithm

Although the Nested ColGen starts with a very good quality initial feasible solution, incoming

columns can still improve the MIP upper bound. Recall that the Nested ColGen is now applied to

a relaxation of the original problem. Therefore, solving RMP Level1 to integer optimality with the

columns found so far may not result in an integer feasible solution for the monolithic problem. The

issue is that, SSRi,p who is proposed in RMP Level2 in iteration p could be activated along with

SSRi,p2, which may be assigned to completely different shifts. The reason is that RMP Level1

problems are decomposed by shifts; therefore, feasibility checks do not go beyond that particular

shift in that subproblem.

To be able to use the incoming columns for improving MIP upper bounds, a simple heuristic is

designed. When there are more than 1 proposals offered for the same SSRi, the heuristic removes

the columns which have worse Cti,q than the smallest one, leaving only 1 proposal for this SSR and

fix µi,r,sh = 1, ∀sh in all RMP Level1 shift subproblems. After the removals, if the whole problem

becomes infeasible, no update in MIP upper bound is made.

The steps of the ColGen algorithm is given below. To avoid tailing-off, a 1% duality gap is

adopted to claim that the LP relaxation for that RMP is successfully solved.

95

3.5. ACCELERATED NESTED COLUMN GENERATION ALGORITHM

• Step 0: Initialize the system with 20 solutions as suggested in the Initializing the RMPs

section. RMP Level1 iteration q = 0 and RMP Level2 iteration p = 0.

• Step 1: Solve the initial RMP Level1. Obtain the first dual vector to estimate the duals to be

used in the pricing subproblems below and for computing LBq.

• Step 2: Set RMP Level1 iteration q = q + 1.

• Step 3: If q mod 50 = 0 or q = 1: Solve RMP Level1 to integer optimality. Apply the fea-

sible integer solution heuristic described above. Update MIP upper bound if a better solution

is found.

Solve all RMP Level1s. Obtain UBq, which is the sum of all objective functions of RMP

Level1s. If q 6= 1: Obtain duals.

If q mod 50 6= 0: Manipulate Duals and select which SSRs will be used for RMP Level2.

• Step 4: Set RMP Level2 iteration p = p+ 1.

• Step 5: If q mod 50 6= 0 or q 6= 1: Solve the chosen RMP Level2 Problems. Obtain duals.

Manipulate Duals. Select which scenarios will be used for Pricing Subproblem Level2. Go

to Step 6.

Else: Solve all RMP Level2 Problems for all SSRs. Obtain UBL2,i. Calculate LBq. Update

LBq = max{LBqq, ∀qq}. Obtain duals. Solve all RMP Level2 Problems to integer opti-

mality with the existing columns.

Check for optimality: UBq ≤ LBq + ε, where epsilon = 0.001. Terminate if optimal or

close to optimal (≤ 1% duality gap for Level1) Go to Step 2.

• Step 6: If p mod 50 6= 0 or p 6= 1: Solve the chosen Pricing Subproblem Level2s to integer

optimality. Go to Step 4.

Else: Solve all Pricing Subproblem Level2s for all scenarios. Obtain LBp
L2,i.

Update LBL2,i = max{LBpp
L2,i, ∀pp}

Check for optimality: UBp
L2,i ≤ LBL2,i + ε, where epsilon = 0.001. Terminate if optimal

96

3.6. COMPUTATIONAL RESULTS

or close to optimal (≤ 1% duality gap for Level2 for SSRi)

Go to Step 4.

Certificate of Valid Lower Bounds

Proposition1:The Nested Column Generation Algorithm defined above, provides valid lower bounds

to the original monolithic problem for the Deterministic Equivalent of the Workforce Shift Schedul-

ing Problem with Stochastic Demand.

Proof: The Nested Column Generation Algorithm with LoA enhancements terminates in finite

number of steps, because the main iteration call is made with a known frequency. Repetition of

columns cannot happen during the main iterations owing to the dual vector being feasible to the

most recent RMP Level1’s dual counterpart.

Then, let LB∗mono be the integer optimal solution to the monolithic problem, LB∗rlx be the inte-

ger optimal solution to the problem when constraint set (3.23) is relaxed and converted to (3.28).

Also, let LBrlx LP be the optimal solution to the LP relaxation of the relaxed problem and let LB∗q

be the lower bound obtained at iteration q of RMP Level1 where no more columns with negative

reduced cost are found. It is proved in [40] that for any integer problem with block-angular struc-

ture, LB∗q ≥ LBrlx LP due to the integer solutions coming from the subproblems. The algorithm

described above calculates LB∗q only during the main iterations where all subproblems are solved.

Thus, the following statement is true when RMP Level1 concludes with a main iteration and no

incoming columns are detected:

LBrlx LP ≤ LB∗q ≤ LB∗rlx ≤ LB∗mono (3.53)

3.6 Computational Results

We were only able to compare our solutions with CPLEX for problems with fewer than 50 scenarios

and 400(m, j)x40SSRs combinations or less. However, results for larger size problems will also be

97

3.6. COMPUTATIONAL RESULTS

displayed. Both the Tabu and the Nested ColGen algorithm are coded in Python programming

language. ColGen uses AMPL as the mathematical modelling language and CPLEX 12.2 is the IP

and LP solver. The solution times are obtained on a computer with the following properties: 4 GB

RAM and Pentium Xeon 3.0 GHz(x2) CPU.

The pleasing outcome is that the Agent-based Tabu Algorithm reported very high quality solu-

tions when allowed to operate for 30 minutes. They were so good that the improvement gained from

the Nested ColGen is very minor compared to the initial solutions. Figure 3.4 shows the progress of

the MIP upper bound versus time, for a (400x40x100) size problem during the heuristic phase. The

spikes in the figure for the heuristic performance are due to the tabu swaps accepted, which worsen

the current best solution.

180000

190000

200000

210000

220000

230000

240000

250000

260000

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Tabu Search UB Progress

Figure 3.4: Tabu Search Algorithm Upper Bound Progress

The number of scenarios to generate for each problem was another decision to make while

conducting the computational experiments. Throughout this chapter, the number ”100” was alluded

to, as if it was the default choice. However, if this solution is to be presented to the field manager at

a service company, we would choose to run our experiments with 125 iterations. Table 3.1 shows

98

3.6. COMPUTATIONAL RESULTS

the percentage of solutions that are feasible among 1,000 randomly generated scenarios, while the

solutions were found by using 25 through 150 scenarios. In assuming feasibility in every scenario,

it is meant that in the solution found, there is a sufficient number of SSRs with specific skills

assigned to every shift with positive demand. The (1500x300) size problems do not benefit much

from increasing the number of scenarios; the last significant step is from 100 to 125. Therefore, all

results for (1500x300) size problems are run with 125 scenarios. For all other problem sizes, 100

scenarios are used for computational testing.

Table 3.1: Impact of Number of Scenarios on the % of Solutions that are Feasible

#scenarios 25 50 75 100 125 150

200x20 90.1% 95.2% 98.2% 99.2% 99.5% 99.9%

400x40 75.2% 83.5% 92.9% 96.2% 97.3% 98.1%

1000x100 69.4% 81.9% 88.9% 94.9% 96.9% 97.2%

1500x300 49.2% 65.7% 80.4% 90.9% 94.6% 95.1%

Figure 3.5 provides evidence that the chosen range of 125 to 150 scenarios is appropriate for

(1500x300) size problems. While the number of scenarios increase from 25, the number of overtime

and consecutive shift assignments increase as well. However, the selected shift assignments begin

to become sufficient to cover the distinct scenario demands after 125 scenarios. Thus, the objective

function value of the problem levels out after 125 scenarios.

Table 3.2 presents the average solution times and tabu swaps taken for 10 instances of each

problem size. The quality of the solutions are also calculated by the best lower bound found after

Nested ColGen concluded. The quality of the solutions are good enough that designing a Branch-

and-Price approach could be considered unnecessary. The number of tabu swaps is much larger

for the smaller problems, due to intermediate solutions quickly finding local optimal points. As

the problem size grows, there are more opportunities for valid swaps, therefore, the number of tabu

calls is lower. For all instances of 200x20 to 600x60, the heuristic terminates before the 30 minute

time limit, due to not being able to find a valid swap at that particular local optimal point.

99

3.6. COMPUTATIONAL RESULTS

200000

250000

Objective function value vs Number of scenarios

0

50000

100000

150000

25 50 75 100 125 150 175 200

Figure 3.5: Objective Function Values changing with Number of Scenarios

Table 3.2: Agent-based Tabu Heuristic Computational Results

Size #vars Time Gap Tabu Swaps

200x20 1.2M 1,002 2.4% 1,308

300x30 1.9M 1,211 2.1% 1,121

400x40 2.5M 1,238 4.3% 804

600x60 3.7M 1,459 3.9% 503

1000x100 6.1M 1,719 5.1% 450

1500x300 11.3M 1,800 7.6% 312

The next table shows the solution time comparisons among CPLEX (when it can load the prob-

lem), ColGen, and LoA+Tabu enhanced ColGen for 10 instances of each problem size. LoA+Tabu

enhanced ColGen solution time includes the time spent during the Agent-based Tabu Algorithm.

The number of RMP Level2 iterations is its. CPLEX was given a 12 hour time limit with default

solver options. Unfortunately, CPLEX could not provide an integer feasible solution after 12 hours

100

3.7. DISCUSSION

(43,200 seconds) for 300x30, and problems greater than 300x30, they were not even loadable. The

Default Colgen did not perform up to its expectations from the textbooks. The LoA+Tabu enhanced

ColGen, on the other hand, starts with already high quality integer feasible solutions and with good

lower bounds; therefore, it quickly converges to the root node optimality. Thanks to the Subproblem

Selection logic, more column proposals (SSR-Scenario) are made to RMP Level2, compared to the

Default ColGen.

Table 3.3: CPLEX vs Default ColGen vs Colgen with (LoA+ID+DM+SS)

CPLEX Default ColGen Tabu+LoA+ID+DM+SS

Size Time Gap Gap Time its Gap Time its

200x20 43,200 97.4% 25.4% 20,211 4,634 1.9% 3,592 14,210

300x30 43,200 n/a 48.3% 29,004 6,217 2.0% 4,240 17,790

400x40 n/a n/a 111.1% 38,743 6,912 4.1% 5,892 20,123

600x60 n/a n/a 86.7% 43,200 9,034 3.1% 8,089 30,631

1000x100 n/a n/a 89.3% 43,200 12,256 4.2% 11,430 36,555

1500x300 n/a n/a 169.8% 43,200 11,413 6.5% 16,354 48,215

3.7 Discussion

Shift scheduling is a complex operational level decision making problem, which should be carefully

done in a small amount of time to react to the dynamic nature of service businesses. In this chapter,

a mixture of heuristics and a formal ColGen algorithm are utilized to successfully solve such a

problem with intractable number of variables, in a reasonable amount of time.

The heuristic proposed can respond to perturbations in the system very fast due to the cheap

computational effort for swap benefit calculations; however, the actual optimal solution is very

difficult to attain. The Nested ColGen Algorithm is not only utilized to find high quality lower

bounds, but also, it produces columns that improve the solution. The issue is, since RMP Level1

101

3.7. DISCUSSION

is not 1-to-1 equivalent of the original monolithic problem (recall that it is a relaxation), Branch-

and-Price is not pursued. Thus, the optimal solution, if ever obtained, during the root node solve of

RMP Level1, would be purely coincidental.

102

Chapter 4

Applications on other Capacitated

Resource Management Problems and

Guidelines for Algorithmic Setup

4.1 Applicability of LoA on Various Problems

This chapter is dedicated to the demonstration of possible uses of LoA on Large Scale Capacitated

Resource Management Problems. While Chapter 2 and 3 showed the actual implementation of the

algorithm and provided numerical results, this chapter will focus on how LoA could be applied to

several well-known research problems in the literature. An interested reader is invited to follow the

instructions and guidance to successfully implement Column Generation for the particular problem

type under consideration.

4.1.1 Train Routing Problems

A very challenging problem in the Railway Business is to make the most cost effective decisions

regarding the routing of trains, utilization of their capacities, and managing the places of pick-up

103

4.1. APPLICABILITY OF LOA ON VARIOUS PROBLEMS

and set-out events. A pick-up event occurs when additional cars are attached to an existing train (for

supply purposes) and a set-out event happens when the train arrives at the customer destination to

unload the commodity it is carrying. This problem is most commonly realized with trains assigned

to move agricultural products. The reason for the complexity arises from the fact that there are

numerous places on the railway network where a train can pick-up cars and there are more demand

destinations to set-out. Since starting a new train requires crew and locomotive and has a fixed cost,

an efficient railway system cannot run a separate train for every distinct origin-destination (supply-

demand) pair. Therefore, a good plan is necessary to dictate where the trains will originate and stop

at which customer destination terminals to set-out its cars.

Assumptions made before building the mathematical model are:

• The railroad network G = (N, e) has finite number of nodes in set N and every node is

accessible from another node using the edges e.

• The shortest path is already known for every origin-destination node pair using the edges.

• Single commodity (for instance grains) is carried.

• Sum of all the demands along the route of the train is loaded at the origin of the train.

• The total demand (number of cars) at every node is known: Unloadj , where j ∈ D

• Trains in set T can only be generated at the nodes with infinite positive supply (e.g. huge

grain depots): i ∈ S

• Total demand can always be fulfilled from the supply nodes.

• The terminals have sufficient outbound and inbound capacities for departing and incoming

trains, respectively.

• The railway network has sufficient parallel tracks and sidings to accommodate the number of

trains necessary in any given day.

104

4.1. APPLICABILITY OF LOA ON VARIOUS PROBLEMS

• The final node of every feasible route is a temporary gathering and distribution terminal on

the network N .

The objective of the study is, then, to minimize the costs regarding the operation of the activated

trains while conforming to the flow preservation constraints and train capacities. A train with more

than 140 cars is considered to be too large owing to the fact that it requires more locomotives for

power, and consumes more fuel.

Thus, the mathematical model resembles that of a Vehicle Routing Problem as stated in [34]:

Problem Train Routing:

minimize operational costs:∑
t∈T

ft yt +
∑
t∈T

∑
i∈N

∑
j∈N

ci,j,t xi,j,t (4.1)

subject to :∑
t∈T

∑
i∈N

xi,j,t ≥ 1 ∀j ∈ D (4.2)

∑
t∈T

∑
j∈N

xi,j,t ≥ 1 ∀i ∈ S (4.3)

∑
i∈N

∑
j∈D

Unloadj xi,j,t ≤ capt yt ∀t ∈ T (4.4)

∑
i∈N

xi,h,t −
∑
j∈N

xh,j,t = 0 ∀t ∈ T, h ∈ D (4.5)

xi,j,t binary ∀t ∈ T, i ∈ N, j ∈ N (4.6)

yt binary ∀t ∈ T (4.7)

The objective function (4.1) penalizes every train creation yt by a fixed cost ft and considers the

costs ci,j,t for traversing on the arc (i, j) by train t, denoted by xi,j,t. Constraint (4.2) ensures that

at least 1 train stops at every demand node j, similarly (4.3) guarantees that there is at least 1 train

departure from supply node i. Constraint (4.4) restrains the number of cars that can be picked up by

105

4.1. APPLICABILITY OF LOA ON VARIOUS PROBLEMS

train t, based on the demand along its route. Flow conservation constraints (4.5) indicate that trains

will have to leave for another node after stopping for a set-out at the customer terminal. (4.6) and

(4.7) are binary declarations for the arc assignments and train activations, respectively.

The transshipment model introduced above has an intractable number of variables because of

the number of routes a train can take even in a modest size network. A Column Generation based

approach, therefore, is an appropriate method to attack this problem. We claim, however, that

utilizing LoA can make the ColGen algorithm even more attractive.

The decomposition of the problem into the master and the pricing subproblems is carried out by

keeping the coupling constraints (4.2 and 4.3) in the master problem, and putting the train specific

capacity (4.4), flow conservation (4.5), and binary declarations (4.6 and 4.7) in the subproblems for

each train. Very similar to the Workforce Planning Model introduced in Chapter 1, the subproblems

are expected to propose trains with distinct and feasible routes for supply and demand nodes, while

abiding by the capacity constraints. The issue is that with an unbalanced initial dual vector, and

with the lack of smoothing of the duals based on the likelihood of a particular train attached to a

route, the subproblems will try to offer useless incoming trains to the Restricted Master Problem.

Recall that the RMP decides which of the proposed trains from the incoming columns are to appear

in the optimal network. Therefore, it is critical that only trains with beneficial routing assignments

are brought in.

To alleviate this matter, the LoA approach could be adopted. LoA can leverage the fact that

there is a distinct cost associated with starting a train on every unique node. That is owing to the

track grade which causes different numbers of locomotives and fuel requirements. Based on the

distance between the origination node of the train and the demand nodes j on the network, LoA

could penalize arcs (i, j) and routes which are clearly not in the shortest path of this particular train.

The size of the demand will also be a factor in the LoA calculation. The nodes closer to the origin

with larger demand quantities will be more preferable in the optimal solution.

Thus, using a similar logic as in Chapter 1, a penalty vector wRi,j,t for every arc (i, j) and train

t, can be calculated based on the factors denoted above. Right after the creation of the wR vector,

106

4.1. APPLICABILITY OF LOA ON VARIOUS PROBLEMS

the likelihood of assignment (preferred train) list for each arc (i, j) can be obtained. A greedy

heuristic scheme can easily assign every arc to its best train until the capacity constraint is violated.

The route can then be constructed, when which demand nodes (j) are serviced by this train t are

known. The first pass provides the initial feasible solution to the RMP, but, randomizing wR with

Uniform ∼ [0.90, 1.10] and applying the greedy scheme, repeatedly, would provide diverse a set

of diverse bases for the RMP, so that the dual of the RMP is not degenerate. Degeneracy mitigation

is critical for rapid lower bound and upper bound progress.

The initial dual vector obtained from the RMP is then utilized for estimating the first dual vector

to be used in the pricing subproblems as shown in Section 2.3.1. The Dual Manipulation will be

necessary for better incoming columns using the train preference list created for each arc (i, j). The

Subproblem Selection would also be similarly performed, by sorting the dual values retrieved for

every demand constraint, and then selecting the best train subproblem in the hopes for finding a

good incoming column with a high negative reduced cost value.

4.1.2 Capacitated Facility Location Problems

Although Capacitated Facility Location Problems (CFLP) are very difficult problems by their na-

ture, there are numerous heuristics and algorithms developed in order to solve them. The articles

published which use column generation as the basis for an algorithmic solution show that for even

modest size problems, they encounter convergence and performance issues; see ([47], [39], [56],

[35]).

A generic CFLP is modeled in the following way:

107

4.1. APPLICABILITY OF LOA ON VARIOUS PROBLEMS

Problem CFLP:

minimize Facility Opening and Distribution Costs:∑
j∈J

fj yj +
∑
k∈K

∑
j∈J

ck,j xk,j (4.8)

subject to :∑
j∈J

xk,j = 1 ∀k ∈ K (4.9)

∑
k∈K

dk xk,j ≥ sj yj ∀j ∈ J (4.10)

∑
j∈J

sj yj ≥ d(K) (4.11)

xk,j − yj ≤ 0 ∀k ∈ K, j ∈ J (4.12)

0 ≤ xk,j ≤ 1 ∀k ∈ K, j ∈ J (4.13)

yj binary ∀j ∈ J (4.14)

In the formulation above, J is the potential facility locations, K is the set of customers, ck,j

is the distribution cost of all the demand dk by customer k from facility j, which has capacity sj .

fj is the facility opening cost which is activated when the binary variable yj is; i.e., it is decided

to be open the facility. d(K) is the sum of all demands. Finally, xk,j indicates the fraction of the

demand customer k is asking from facility j. The objective function tries to minimize the cost

of facilities being opened along with the total distribution costs. Constraint (4.9) ensures that all

demands are fulfilled, while constraint (4.10) guarantees that the capacity is not exceeded for any of

the facilities. The aggregate capacity constraint (4.11) and activation constraints (4.12) are in place

for strengthening the formulation.

A ColGen Algorithm would only keep the demand and aggregate capacity constraints (4.9 and

4.11) in the Master Problem in order to decompose the problem by every facility. The individ-

ual capacity constraint (4.10), and the activation constraints would then be placed in the pricing

108

4.1. APPLICABILITY OF LOA ON VARIOUS PROBLEMS

subproblems, along with the fractional xk,j and binary yj declarations.

The solutions of the subproblems are specific facilities with customer assignments and supply

fractions for those particular customer demands. The pricing subproblems, by their design, try to

find the best combination of customers and supply amounts, while looking for the most negative

reduced cost. The reduced cost is calculated similar to the formula given in (2.22), where the

greatest impact is due to the dual variables from the demand constraint (4.9), aggregate capacity

constraint (4.11) and the convexity constraint for each subproblem.

LoA methodology can again be shown to prove useful in this problem setting. When the Col-

Gen is not properly initialized, the subproblems will most likely propose facilities with rather bad

customer assignments and supply amounts. The primary decision behind opening a facility is the

fixed cost of actually opening the facility. This is going to be factor number 1 while constructing the

penalty vector wRk,j for each assignment xk,j . The next important factor is the cost of distributing

goods from supplier j to customer k. The size of the demand is also vital in establishing cheap

distribution assignments.

Once penalty vector wR is found using the factors above, the preferred facilities list for every

customer can be constructed. While abiding by the capacity constraint for each facility and ensuring

all demand is met, the assignments which are unlikely to exist in the optimal solution are eliminated.

Then, Problem Integer Yielding LP cflp could be used to initialize the RMP, by randomizing the

wR vector.

109

4.1. APPLICABILITY OF LOA ON VARIOUS PROBLEMS

Problem Integer Yielding LP cflp:

minimize overall penalties:∑
k∈K

∑
j∈J

wRk,j xk,j (4.15)

subject to :∑
j∈J

xk,j = 1 ∀k ∈ K (4.16)

∑
k∈K

dk xk,j ≥ sj ∀j ∈ J (4.17)

0 ≤ xk,j ≤ 1 ∀k ∈ K, j ∈ J (4.18)

The solution out of Problem Integer Yielding LP cflp is post-processed to obtain actual yj ac-

tivations. After the RMP is initialized with the solutions fed from this simple LP, the estimation

of the initial dual vector is carried out for balancing the first dual vector to be used in the pricing

subproblems. In order to avoid useless incoming columns, Dual Manipulation is invoked to smooth

the reward for unwanted assignments. The Subproblem Selection is again called to accelerate the

ColGen process by choosing the facilities which, potentially, would yield the most negative column.

This is achieved by sorting the dual values obtained for (4.9) and choosing the best facility in the

preferred list for that customer.

The flexibility and robustness of the procedure arises from the fact that, LoA is readily applica-

ble to any specialized version of CFLP, even the multi-commodity case without loss of generality,

where only certain facilities can provide service to specific customers.

4.1.3 Aircrew Pairing and Rostering Problems

In spite of the fact that providing detailed model description for the Aircrew Pairing and Rostering

Problems is beyond the scope of this thesis, the reader is encouraged to consider using LoA while at-

tacking these type of problems. It is recommended to use a 2-stage decomposition approach, which

110

4.1. APPLICABILITY OF LOA ON VARIOUS PROBLEMS

is utilized to solve the Manpower Planning and Scheduling Problem. While the first stage problem

finds the best headcount for pilots and crew along with their appropriate aircraft assignments for a

given schedule, the second stage problem finalizes the shift scheduling and flight assignments, as

we also propose for SSRs. Of course, the restrictions from the Federal Aviation Administration are

far more strict and complicated than for manpower scheduling in a technical service support com-

pany. These being pilot/crew specific restrictions, however, cause the subproblems to have more

restrictive feasible domain, but still solvable with efficient network algorithms.

LoA becomes valuable when there are millions of different pairings between crew and air-

crafts, and millions of possible shift assignments. Based on the factors such as crew’s seniori-

ty/skills, crew’s preference, crew’s current rest amount, idle/rest hours between consecutive flights,

and length of the total route, a penalty value can practically be assigned to every crew to aircraft to

shift assignment. After initializing the RMP (by a greedy heuristic using the penalties for assign-

ments) for ColGen, preference lists created by this penalty vector can be used to manipulate the

duals for incoming columns, and help to select the next batch of (crew) subproblems to solve.

4.1.4 Discussion

Applicability of LoA has only been shown on a few of the most prominent research problems in

this section. However, we believe that instead of finding Likelihood of Assignment of a capacitated

resource to a task, the variables in any block-angular problem that is suitable for column generation

could be assessed for their potential to appear in the actual optimal solution. That in turn would

provide the sorted lists that are utilized to activate the stabilization and acceleration methods intro-

duced earlier. The effectiveness of LoA on other problem structures has only been speculated upon

and its real utility in the proposed concepts is a subject for future research.

111

4.2. PARAMETER TUNING SUGGESTIONS FOR COLGENLOA

4.2 Parameter Tuning Suggestions for ColgenLoA

This section of the thesis is prepared to showcase the flexibility and robustness of the Likelihood

of Assignment Heuristic. Although the best combination of parameters were used while providing

the numerical results for Workforce Planning with Cross Training Problem in Chapter 2, and for the

Stochastic Scheduling Problem in Chapter 3, by changing various algorithmic parameters, users of

the heuristic can work towards their particular objectives. The different settings can let them achieve

a higher quality solution or a better lower bound at first. Another user may only be interested in

generating different integer feasible solutions to see their potential action alternatives.

4.2.1 # of Variables to Eliminate using LoA

Recall that in Chapter 1, approximately only 10% of all SSRs are retained in the problem for each

demand point (m, j). As this percentage increases, it is guaranteed that the solution obtained will be

at least as good as the solution from the 10% setting. On the other hand, decreasing the number of

eliminated variables causes the size of Problem Integer Yielding LP to grow proportionately. The

following table shows the solve times for different percentage settings for variable retention, and

the quality of the solution obtained against the best known lower bound provided by BPLoA:

Table 4.1: LoA Retention Sensitivity for Problem Size (1500x300)

% #vars LoA LoA Gap LoA T

10% 91,699 11.8% 75

20% 183,399 9.2% 224

25% 229,277 8.3% 311

33% 302,727 6.4% 454

50% 458,780 6.0% 657

100% 917,560 5.9% 1,528

Table 4.1 is a good display of the value of effective variable elimination by LoA. There are

112

4.2. PARAMETER TUNING SUGGESTIONS FOR COLGENLOA

1,209,300 total variables in the original problem. When only half of the (xm,j,i) variables are re-

tained, the solutions obtained from the test cases are not bad at all, with the average mipgap being

6.0%. When Problem Integer Yielding LP is solved without any xm,j,i variables getting eliminated,

solution quality does not get more than 0.1% better than the solutions obtained from 50% retention

rate. This is a strong indication that the LoA sorting and elimination logic is doing its job, and

almost all of the critical variables are kept in the top 33% of the sorted lists of beneficial Likeli-

hoods of Assignments. The reason why the actual optimal solution cannot be obtained even though

all xm,j,i variables are retained is that, Problem Integer Yielding LP is only trying to estimate the

effects of the binary associations from the original model.

The mipgap of 6%, however, can only be known when there is a valid lower bound provided,

meaning, it is an ”after the fact” value. If BPLoA or CPLEX had not provided a lower bound for the

mipgap calculation, the algorithm would have been in its 12th minute, with an integer feasible solu-

tion, but, against no value to compare to. Repeating the Problem Integer Yielding LP with this slow

setting is not desirable. Despite the fact that only one initial feasible solution is sufficient to invoke

ColGen, the corresponding dual vector obtained would be useless since this dual vector would be

nowhere close to the optimal RMP dual solution. This would also cause a very problematic lower

bound calculation as explained in Section 2.3.1.

The trade-off here is to choose between a setting that yields higher quality solutions versus the

one which solves fast enough to be repeated during the initialization of ColGen. We recommend

using the smallest useful number of variables (e.g. 10%, since it is very difficult to have a feasible

solution with less than 10% retention). With the help of the lower bound acceleration and new

integer feasible solution finding techniques introduced in this research, it is preferred to initialize

the ColGen algorithm as quick as possible and then expect to obtain better quality integer feasible

solutions as the algorithm progresses.

113

4.2. PARAMETER TUNING SUGGESTIONS FOR COLGENLOA

4.2.2 Randomization of wR

In order to initialize the feasible basis for the first RMP of ColGen, Problem Integer Yielding LP

is solved repeatedly with randomized values of the wR penalty vector. This subsection shows the

impact on the quality of the first integer solution obtained when randomization is tightened from

10%, which is the value recommended in Chapter 2, and also displays the outcome in the opposite

case where randomization boundaries are loosened.

Table 4.2: Impact of wR Randomization for Problem Size (1500x300)

U ∼ ±1% ±2.5% ±5% ±10% ±25% ±33% ±50%

avg mipgap 11.9% 13.5% 14.3% 16.1% 24.3% 28.4% 43.4%

#root itrs 62,244 57,498 45,889 31,313 28,229 38,904 59,982

#root itrs is the average number of iterations it took ColGen to solve the root node for 20 in-

stances of (1500x300). avg mipgap in Table 4.2 refers to the average mipgap that is calculated after

solving the recommended number of (20) instances of Problem Integer Yielding LP, using Uniform

distribution with the specified bounds. The lower bound used in the mipgap calculation is the best

known lower bound (or the optimal solution). ±1% means every entry in the originalwR vector will

either be reduced at most by 1% or increased by 1%, depending on the random number generated by

the computer. Although the best integer feasible solution from Problem Integer Yielding LP might

have a much better mipgap than the avg mipgap, there are also rather bad quality integer solutions

obtained from these randomized cases. Recall that the best solution we presented in Chapter 2 by

using LoA has 11.8% mipgap for the 1500x300 problem, but the avg mipgap is computed to be

16.1%, as can be seen under the ±10% column.

Inspection of the avg mipgap values for smaller range randomization reveal that the new solu-

tions do not vary a lot from the original wR vector’s solution. Despite the fact that this statement

sounds good, it actually adversely affects the ColGen performance. Remember that ColGen’s pri-

mary objective is to solve the RMP, not the integer optimization problem. Therefore, when too many

114

4.2. PARAMETER TUNING SUGGESTIONS FOR COLGENLOA

similar/parallel columns in the primal domain coexist, they also cause a very degenerate dual do-

main. This causes iterations with no lower or upper bound improvements recorded. That is why the

number of ColGen iterations at the root node is almost twice as much when very similar columns

are used to initialize the first RMP. On the opposite side, when the randomization is larger than

±10%, the diversity of incoming columns is pleasing. In fact, the number of iterations for the root

node is even less when randomization is at ±25%. The issue is, even if ColGen converges for the

root node, the integer feasible solution is poorer than when ±10% is used.

More computational experiments may be conducted with distinct demand input data in order to

find the best range for randomization. However, the poor quality integer solutions retrieved when

any value of randomization larger than ±10% is used, supports our claim that the wR calculation

initially proposed in Chapter 1 is a quality result.

4.2.3 Number of Columns to Initialize the RMP

Another critical decision is to determine the number of columns to initialize the first RMP of the

ColGen procedure. RMP, in theory, can be initialized with only 1 feasible solution, which is com-

posed of some number of columns. For the largest test instance (1500x300), the optimal solution to

Problem Integer Yielding LP provides 1 feasible solution (approximately 50 SSRs, hence columns)

every time it is invoked. The rationale behind initializing the RMP with more than one feasible

solution is to make sure the dual of the RMP has sufficiently many constraints and therefore is tight.

When the feasible region for the dual of the RMP is not tight at all, the dual vectors obtained from

such a RMP are both unbalanced and too distant from the actual optimal dual vector. Conversely,

when the RMP is initialized with too many feasible solutions from Problem Integer Yielding LP,

there is a greater risk for degeneracy in the dual domain, because similar columns in the primal

domain would transform to parallel constraints in the dual problem. Moreover, as the number

of columns increase in the RMP, it gets harder and takes longer to solve the RMP, and solving

RMP integer becomes much more difficult. Therefore, column management needs to be carefully

designed from the beginning of the algorithm.

115

4.2. PARAMETER TUNING SUGGESTIONS FOR COLGENLOA

Many experiments have been carried out to find the ”magical” number of times to solve the

Problem Integer Yielding LP. The following table summarizes the findings and helps to deduce a

rule:

Table 4.3: Number of Solutions to Initialize the RMP

Size/Sols 10 15 20 33 66 100

200x20 49 41 35 33 29 36

300x30 98 92 85 75 78 84

400x40 108 99 95 94 111 124

600x60 294 288 270 273 301 338

1000x100 1,021 820 775 780 824 893

1500x300 9,582 9,356 8,994 9,274 9,890 11,217

Table 4.3 displays the average time required for 20 instances of the root node of the specified

size problems when Problem Integer Yielding LP is invoked 10, 15, 20, 33, 66, 100 times with

randomized (±10%) wR for initializing the first RMP. For (1500x300) size problem, 100 solu-

tions corresponds to approximately 100 ∗ 50 = 5, 000 columns for the initial RMP. The number of

columns can be obtained for other problem sizes similarly. The numerical experiments suggest that

when the original problem size is small (i.e. less than 35,000 variables or smaller than 400x40 prob-

lem setting), increasing the number of calls to the LoA heuristic is favorable (up to 66 calls), and it

improves the solution times. However, as the problem size grows, starting with too many columns

hurts the performance of the algorithm, due to the fact that RMP and RMP integer becoming more

difficult to solve rather early in the procedure. Starting with fewer solutions less than 20 turned out

to be never favorable.

In the algorithm declaration of ColgenLoA, 20 is proposed as the appropriate number of solu-

tions to initialize the RMP for this problem structure, regardless of the problem size. The reason

why 20 is the recommended number for even smaller problem sizes is that Table 4.3 shows the

averages for each problem size as a group. However, every instance is recorded separately. After

116

4.2. PARAMETER TUNING SUGGESTIONS FOR COLGENLOA

checking the maximum solution times for each problem size group, the solution time for the most

difficult instance is found to be longer when the initialization is done with more than 20 solutions.

4.2.4 Modifications to the Problem Integer Yielding LP

The main benefit of using Problem Integer Yielding LP is that it is an LP and it solves fast. More-

over, the assignment variables can easily be post-processed to get the values for the original binary

variables. However, the model in which the variable eliminations are to be activated does not have to

be a LP. When only SSR activation binary variables (mui, ∀i ∈ S) are kept in the model as opposed

to the skill upgrade variables ysi,k and machine training variables yki,m, the model still solves in

a reasonable amount of time for a heuristic and provides much better mipgaps than Problem Inte-

ger Yielding LP. The reduced model then becomes:

Problem Reduced Binaries:

minimize LoA penalties + SSR base salary:∑
i∈S

(125 chimui) +
∑
m∈M

∑
j∈Z

∑
i∈S

xm,j,iwRm,j,i (4.19)

subject to :∑
i∈S

xm,j,i = dm,j ∀m, j (4.20)

∑
m∈M

∑
j∈Z

xm,j,i(rtm,j + tj,i) ≤ 125mui ∀i (4.21)

xm,j,i >= 0 ∀m, j, i (4.22)

mui binary ∀i (4.23)

Problem Reduced Binaries produce very encouraging results in terms of solution quality as can

be seen in Table 4.4. However, solution speed is not fast enough to be used in ColGen, beyond

problem sizes of (600x60). This model could be used by practitioners to visualize a possible good

solution for a problem where finding a good feasible solution is not trivial.

117

4.2. PARAMETER TUNING SUGGESTIONS FOR COLGENLOA

Table 4.4: Integer Yielding LP vs Reduced Binaries

CPLEX Integer Yielding LP Reduced Binaries

Size #vars Time 1% #vars Gap Time #vars Gap Time

200x20 8,620 65 749 5.4% 12 769 2.2% 19

300x30 18,930 369 1498 6.1% 13 1,528 3.8% 28

400x40 33,240 2,711 2,568 7.5% 30 2,608 6.6% 65

600x60 73,860 8,753 5,671 9.9% 46 5,731 6.9% 88

1000x100 203,100 24,543 15,408 10.8% 66 15,508 7.1% 352

1500x300 1,209,300 224,844 91,699 11.8% 85 91,999 7.4% 9,445

4.2.5 Varying the Intensity of Intermediate Dual Vector Manipulation

At every iteration of the ColGenLoA, the dual vector obtained from the solution of RMP is manipu-

lated in 2 ways. First, the dual vector entries for the demand constraints, πm,j , are altered depending

on which pricing problem they will be used in. This ensures that astray columns, which would be

beneficial neither in solving the RMP or the actual integer optimization problem, are avoided. A

second manipulation is applied in addition to the first one, where a convex combination of the dual

vector that yielded the best lower bound so far and the manipulated most recent dual vector is con-

structed. The second manipulation is called Wentges’ Smoothing and used to control the lower

bound’s zigzag behavior.

Recall that after which subproblems to be solved at iteration q are determined the first stage dual

manipulation takes place using the following formula:

πm,j,qi = πm,j,q
number of SSRs− ranking in the type1,m,j list

number of SSRs
(4.24)

What equation (4.24) asserts is that the new values of the duals for each SSRi will be based on their

percentile in the type1,m,j list for the demand point (m, j). Even though, Dual Manipulation (DM)

118

4.2. PARAMETER TUNING SUGGESTIONS FOR COLGENLOA

with Wentges’ Smoothing has a significant performance impact with the above setting, practitioners

may adopt a more aggressive approach if they would like to discover better integer feasible solutions

in the early iterations by only keeping the dual entries positive for the top 33% of the type1,m,j list,

and set all other entries to 0. In Section 4.2.1, it is shown that very few critical variables remain

outside the top 33% of such lists. The drawback, here, is that the incoming columns will be primarily

helping the problem RMP integer, but not the RMP itself. This is because too many columns with

similar properties will be introduced, which causes severe dual degeneracies. It is the practitioner’s

preference to obtain different quality integer solutions earlier versus improving the lower bound as

fast as possible. It is recommended that keeping the DM formula as it is, is the good choice for

general optimization audience, where achieving high quality lower bounds rapidly is also vital.

Selecting the smoothing parameter for Wentges’ method is also critical for algorithmic perfor-

mance. Recall the formula:

πnewm,j,qi = απm,j,qbest + (1− α)πm,j,qi ∀m, j (4.25)

θnewi,q = α θi,qbest + (1− α) θi,q ∀i (4.26)

If a large α is used (e.g. ≥ 0.66), then it becomes very difficult to move away from the initial

lower bound found. On the contrary, when α is less than 0.33, the stabilization begins to lose power.

That is why in this thesis, the default value is chosen as 0.5. However, a good recommendation

to a practitioner who already knows his lower bound is not good at the beginning, would be the

following: He should use α ≤ 0.33 to explore non-parallel incoming columns and try to move

away from the current lower bound with fresh dual vectors. Conversely, if he knows from previous

knowledge that his lower bound is already good enough, he should choose α ≥ 0.66 in order

not to waste iterations on discovering incoming columns which would transform to non-beneficial

corresponding constraints in the dual domain.

119

4.2. PARAMETER TUNING SUGGESTIONS FOR COLGENLOA

4.2.6 Selection of the Subproblem Subset Size and Frequency of Solving All Sub-

problems

In order to accelerate ColGenLoA, picking which subproblems to be solved at every iteration is

a very critical decision. To be able to claim that a good subset is chosen using the method given

in Section 2.3.3 versus a subset chosen arbitrarily (e.g randomly picked from the set of all sub-

problems), the next table will present the solution times obtained for the root node solution of size

1500x300 problem, while the subset size is varying:

Table 4.5: Effects of Random Selection vs SS Method for Varying Subset Sizes

SS 5% r 5% 10% r 10% 25% r 25% 33% r 33% 50% r 50%

Time 18,998 46,042 8,994 36,490 14,223 28,473 23,994 27,338 37,453 39,443

The experiments illustrate why 10% of the subproblems are to be chosen by SS. Using 5% turns

out to be too few in order to bring in columns which need to improve both the lower bound and the

upper bound. Subsets greater than 10% on the other hand results in rapidly growing RMP, which

becomes harder to solve at every iteration. Also, arbitrary selection of subproblems is not a good

idea, as can be observed in Table 4.5. While 10% subset size chosen by SS quickly converges to the

optimal solution (or 1% duality gap for that matter) for the root node, randomly picked 10% subset

performs very poorly due to the fact that there is no guarantee whether the randomly picked SSR

Subproblems are for SSRs who actually appear in the optimal solution or not.

Table 4.6 presents the impact of changing the frequency of solving all subproblems and Problem

RMP integer (which is referred to as a main iteration) during the solution of root node to 1% mipgap.

Table 4.6: Changing the Frequency of Main Iteration Calls

Freq 1 25 33 50 75 100

Time 23,443 15,887 11,231 8,994 14,459 22,245

Recall from Table 2.3 that if SS is never used, that means only initDualVector and DualManip

120

4.2. PARAMETER TUNING SUGGESTIONS FOR COLGENLOA

functions are activated in ColGenLoA. This corresponds to calling the main iteration at every

iteration (see Table 4.6, entry for the column corresponding to interval ”1”). As the interval for

calling the main iteration increases, the solution time dramatically reduces until interval is every

50 iterations. The reason is the less frequent computation of RMP integer and fewer columns that

are brought into the RMP by solving all subproblems less frequently. The solution time begins to

worsen beyond the interval of 50 iterations, and the explanation is that the πm,j,qbest becomes very

stale when the interval is too large; therefore, the lower bound does not improve, as desired.

4.2.7 Impact of Optimality Tolerance on B&P Performance

The absolute value of the reduced costs obtained from the pricing subproblems at the beginning of

ColGen algorithms are much larger than the ones obtained later on. In particular, when the duality

gap between UBq
n and LBq

n is smaller than 2%, the phenomenon called ”Tailing-off” recurs, where

the improvements in the upper bound UBq
n become numerically insignificant. It is a very common

practice among ColGen practitioners that if the mipgap for the integer solution is not already at the

desired level, further ColGen iterations are stopped for this node and branching is activated. This is

to ensure that no more valuable time is wasted on bringing columns into the RMP which will yield

numerically insignificant improvement, but, rather tighter lower bounds and better integer solutions

are searched for in new branches.

Throughout this thesis, as a default value, 1% duality gap is used for branching on a node. The

following table shows the solution times for the whole BPLoA algorithm when different duality gap

values are tested:

Table 4.7: Handling Tailing-off with Different duality gaps

DualityGap 5% 2.5% 2% 1% 0.5%

Time 38,240 31,042 28,445 25,902 55,676

Nodes 9,321 6,304 3,355 1,132 903

Although, the duality gap at the large end (5%) causes the algorithm to converge more slowly,

121

4.2. PARAMETER TUNING SUGGESTIONS FOR COLGENLOA

this setting enables traversing through more nodes more quickly. This also means that without

solving RMP integer, the RMPs with added branching constraints begin to yield integer feasible

solutions naturally. At the lower end (0.5%), ColGen spends too much time finding columns that

have significant improvement.

122

Chapter 5

Summary and Future Research

5.1 Summary

The results obtained in this thesis are significant in the sense that the Operations Research commu-

nity can once again tap into the considerable power of the Column Generation Algorithm using the

techniques introduced in this research. The shortcomings of the default textbook version Column

Generation algorithms are avoided altogether for a broad class of problems. The proposed accel-

eration and stabilization techniques are robust, and do not depend on the input data. Namely, the

approach does not entail too much parameter tweaking for performance improvements. Initial Dual

Estimation provides a guaranteed valid lower bound; whereas, there was none available at the be-

ginning. Dual Manipulation brings higher quality and diverse set of columns to reduce degeneracy

in the dual domain. It also causes columns to be generated with MIP objective in mind, rather than

only with intentions of solving the RMP. Subproblem selection step reduces the time spent dur-

ing periods of non-beneficial subproblems and continuously growing RMP. Guidance for a general

algorithm setup is also given for interested readers who are willing to utilize the approach.

Chapter 3 is also the first implementation of Nested Column Generation in Stochastic Workforce

Shift Scheduling Problems. The Likelihood of Assignment’s applicability and impact is shown here,

once again.

123

5.2. FUTURE RESEARCH

Another contribution is the general framework used to attack the monolithic problem and how it

is decomposed into 2 stages. Many real life problems have a similar problem structure like the one

in this research; therefore, the way we defined the hierarchical decomposition and the relationship

between the stages can be helpful while analyzing a host of related problems.

5.2 Future Research

In this thesis, it has been shown how to make Column Generation effective for solving large-scale

capacitated resource management problems with block angular structure. In addition to that, be-

ing able to demonstrate that the Likelihood of Assignment initialization, estimating the initial dual

vector, intermediate dual manipulation, and LoA based subproblem selection are useful for vari-

ous classes of additional large-scale problems would be another significant achievement. We be-

lieve that the techniques, above, should improve the Column Generation performance in general

after the necessary adjustments are made, depending on the problem structure. Meet-Pass Planning

and Block-Route-Train Assignment Problems are two specific problem types under consideration,

which are very challenging in the railway business context. The analysis of these problems would

require significant amount of time for robust algorithm design and computational studies. We are

hoping to release our findings as we attack these special problem structures in the near future.

In the approach proposed for solving the Workforce Planning and Scheduling Problem, the prob-

lem is decomposed into 2 primary stages; however, there is only 1 way information flow allowed. In

the future, 2 way communication may increase the approach’s flexibility and robustness. Thus, the

planning stage can in fact have some information on what is happening in the shift scheduling stage.

Designing the interaction between the shift scheduling and planning as a feedback loop is beyond

the scope of this thesis. However, we believe an automated system can be devised to trigger to rerun

the planning model, based on some observed events in the shift scheduling stage. This could include

not being able to meet the demand on a specific shift anymore (headcount and machine training), or

failing to provide on time service for specific zipcodes (launchzip).

124

5.2. FUTURE RESEARCH

We have proposed a very efficient heuristic for the shift scheduling stage, but an exact algorithm

is not provided for finding the optimal solution. A Branch-and-Price approach on top of what

we currently have proposed, could increase the chances of coming closer to the optimal solution;

however, more research is required to start the ColGen with an exact equivalent of the original

problem which, in turn, must be suitable for decomposition.

125

Bibliography

[1] Abernathy, W., Baloff, N., Hershey, J., Wandel, S. (1973) A Three-stage Manpower Planning

and Scheduling Model: A Service Sector Example. Operations Research, Vol. 22, pp. 693-

711.

[2] Agnihothri, S., Mishra, A. K. (2004) Cross-training Decisions in Field Services with Three

Job Types and Server-Job Mismatch. Decision Sciences, Vol. 35, pp. 239-257.

[3] Anbil, R., Forrest, J. J., Pulleybank, W. R. (1998) Column Generation and Airline Crew Pairing

Problem. Documenta Mathematica, Vol. Extra, pp. 677-686.

[4] Barahona, F., Chudak, F. (2005) Near-optimal Solutions to Large Scale Facility Location Prob-

lems. Discrete Optimization, Vol. 2, pp. 35-50.

[5] Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., Vance, P. (1998) Branch-and-

Price: Column Generation for Solving Huge Integer Programs. Operations Research, Vol. 46,

pp. 316-329.

[6] Ben Amor, H., Desrosiers, J., de Carvalho, J. M. V. (2006) Dual-Optimal Inequalities for

Stabilized Column Generation. Operations Research, Vol. 54, pp. 454-463.

[7] Benders, J. F. (1962) Partitioning Procedures for Solving Mixed-variables Programming Prob-

lems. Numerische Mathematik, Vol. 4, pp. 238-252.

126

BIBLIOGRAPHY

[8] Brusco, M. J., Jacobs, L. W., Bongiorno, R. J., Lyons, D. V. (1995) Improving Personnel

Scheduling at Airline Stations. Operations Research, Vol. 43, pp. 741-751.

[9] Cai, X., Li, K. N. (2000) A Genetic Algorithm for Scheduling Staff of Mixed Skills under

Multi-criteria. European Journal of Operational Research, Vol. 125, pp. 359-369.

[10] Caprara, A., Focacci, F., Lamma, E., Mello, P., Milano, M., Toth, P., Vigo, D. (1998) In-

tegrating Constraint Logic Programming and Operations Research Techniques for the Crew

Rostering Problem. Software Practice and Experience, Vol. 28, pp. 49-76.

[11] Caroe, C. C., Schults, R. (1999) Dual Decomposition in Stochastic Integer Programming.

Operations Research Letters, Vol. 24, pp. 37-45.

[12] Crowder, H., Johnson, E. L., and Padberg, M. W. (1983) Solving Large-scale Zero-one Linear

Programming Problems. Operations Research, Vol. 31, pp. 803-834.

[13] Damodaran, P., Wilhelm, W. (2004) Branch-and-Price Methods for Prescribing Profitable Up-

grades of High-technology Products with Stochastic Demands. Decision Sciences, Vol. 35, pp.

55-81.

[14] Dantzig, G. B., Wolfe, P. (1960) Decomposition Principle for Linear Programs. Operations

Research, Vol. 8, pp. 101-111.

[15] Dantzig, G. (1954) A Comment on Edie’s Traffic Delay at Toll booths. Operations Research,

Vol. 2, pp. 339-341.

[16] de Carvalho, J. M. V. (2005) Using Extra Dual Cuts to Accelerate Column Generation. Informs

Journal on Computing, Vol. 17, pp. 175-182.

[17] Dell Amico, M., Righini, G. Salani, M. (2006) A Branch-and-Price Approach to the Vehicle

Routing Problem with Simultaneous Distribution and Collection. Transportation Science, Vol.

40, pp. 235-247.

127

BIBLIOGRAPHY

[18] Desaulniers, G., Desrosiers, J., Solomon, M. M. (2005). Column Generation. Springer, New

York, USA.

[19] Desaulniers, G. (2007) Managing Large Fixed Costs in Vehicle Routing and Crew Scheduling

Problems Solved by Column Generation. Computers & Operations Research, Vol. 34, pp.

1221-1239.

[20] Desrochers, M., Desrosiers, J., Solomon, M. (1992) A New Optimization Algorithm for the

Vehicle Routing Problem with Time Windows. Operations Research, Vol. 40, pp. 342-354.

[21] Desrosiers, J., Dumas, Y., Solomon, M., Soumis, F. (1995) Time Constrained Routing and

Scheduling, in: Networks and Distribution, Handbooks in Operations Research and Manage-

ment Science, Vol. 8, pp. 35-139.

[22] du Merle, O., Villeneuve, D. , Desrosiers, J., Hansen, P. (1999) Stabilized Column Generation.

Discrete Mathematics, Vol. 194, pp. 229-237.

[23] Ernst, A. T., Jiang, H., Krishnamoorthy, M., Sier, D. (2004) Staff Scheduling and Rostering:

A Review of Applications, Methods and Models. European Journal of Operational Research,

Vol. 153, pp. 3-27.

[24] Falkner, J., Ryan, D. (1987) A Bus Crew Scheduling System Using a Set Partitioning Model.

Asia-Pacific Journal of Operational Research, Vol. 4, pp. 39-56.

[25] Galati, M. V., Ralphs, T. K. (2009) DIP - Decomposition for Integer Programming.

https://projects.coin-or.org/Dip.

[26] Gamache, M., Soumis, F., Marquis, G., Desrosiers, J. (1999) A Column Generation Approach

for Large-scale Aircrew Rostering Problems. Operations Research, Vol. 47, pp. 247-263.

[27] Gamache, M., Soumis, F. (1998) A Method for Optimally Solving the Rostering Problem, in:

G. Yu (Ed.), OR in Airline Industry, Kluwer Academic Publishers, Boston, USA. pp. 124-157.

128

BIBLIOGRAPHY

[28] Geoffrion, A., Me Bride, R. (1978) Lagrangean Relaxation Applied to Capacitated Facility

Location Problems. IIE Transactions, Vol. 10, pp. 40-47.

[29] Graves, G., McBride, R., Gershkoff, I., Anderson, D., Mahidhara, D. (1993) Flight Crew

Scheduling. Management Science,Vol. 39, pp. 736-745.

[30] Guerinik, N., van Caneghem, M. (1995) Solving Crew Scheduling Problems by Constraint

Programming, in: Lecture Notes in Computer Science, Proceedings of the 1st International

Conference on Principles and Practice of Constraint Programming, pp. 481-498.

[31] Gustafsson, T. (1999) A Heuristic Approach to Column Generation for Airline Crew Schedul-

ing. Ph.D Thesis, Chalmers University of Technology.

[32] Hoffman, K., Padberg, M. (1993) Solving Airline Crew Scheduling Problems by Branch-and-

Cut. Management Science, Vol. 39, pp. 657-682.

[33] IBM ILOG CPLEX Division. (2010) User’s Manual v12.2.

[34] Kallehauge, B., Larsen J., Madsen O. B. G., Solomon M. M. (2005) Vehicle Routing Problem

with Time Windows. In: Desaulniers G., Desrosiers J., Solomon M. M., editors. Column

generation, GERAD 25th Anniversary Series. Springer, New York, USA. pp. 67-98.

[35] Klose, A., Gortz, S. (2007) A Branch-and-Price Algorithm for the Capacitated Facility Loca-

tion Problem. European Journal of Operational Research, Vol. 179, pp. 1109-1125.

[36] Laporte, G., Louveaux, F. V. (1993) The Integer L-shaped Method for Stochastic Integer Pro-

grams with Complete Recourse. Operations Research Letters, Vol. 13, pp. 133-142.

[37] Lavoie, S., Minoux, M., Odier, E. (1988) A New Approach for Crew Pairing Problems by Col-

umn Generation with an Application to Air Transportation. European Journal of Operational

Research, Vol. 35, pp. 45-58.

129

BIBLIOGRAPHY

[38] Lokketangen, A., Woodruff, D. L. (1996) Progressive Hedging and Tabu Search Applied to

Mixed Integer (0,1) Multistage Stochastic Programming. Journal of Heuristics, Vol. 2, pp.

111-128.

[39] Lorena, L., Senne, E. (2004) A Column Generation Approach to the Capacitated p-median

Problems. Computers & Operations Research, Vol. 31, pp. 863-876.

[40] Lubbecke, M. E., Desrosiers, J. (2005) Selected Topics in Column Generation. Operations

Research, Vol. 53, pp. 1007-1023.

[41] Lulli, G., Sen, S. (2004) A Branch-and-Price Algorithm for Multistage Stochastic Integer Pro-

gramming with Application to Stochastic Batchsizing Problems. Management Science, Vol.

50, pp. 786-796.

[42] Marsten, R. E., Hogan, W. W., Blankenship, J. W. (1975) The Boxstep Method for Large-scale

Optimization. Operations Research, Vol. 23, pp. 389-405.

[43] Mason, A. J., Smith, M. C. (1998). A Nested Column Generator for Solving Rostering Prob-

lems with Integer Programming. In Caccetta, L., Teo, K. L., Siew, P. F., Leung, Y. H., Jennings,

L. S., Rehbock V., (Ed.), International Conference on Optimisation: Techniques and Applica-

tions, pp. 827-834.

[44] Morgado, E., Martins, J. (1992) Scheduling and Managing Crew in the Portuguese Railways.

Expert Systems with Applications, Vol. 5, pp. 301-321.

[45] Morgado, E., Martins, J. (1993) An AI-based Approach to Crew Scheduling, in: Proceedings

of the Ninth Conference on Artificial Intelligence for Applications, IEEE Computer Society

Press, California, pp. 71-77.

[46] Mourgaya, M., Vanderbeck, F. (2007) Column Generation Based Heuristic for Tactical Plan-

ning in Multi-period Vehicle Routing. European Journal of Operational Research, Vol. 183,

pp. 1028-1041.

130

BIBLIOGRAPHY

[47] Neebe, A. W., Rao, M. R. (1983) An Algorithm for the Fixed-Charge Assigning Users to

Sources Problem. Journal of Operational Research Society, Vol. 34, pp. 1107-1113.

[48] Norkin, V. I., Pflug, G. C., Ruszczynski, A. (1998) A Branch and Bound Method for Stochastic

Global Optimization. Mathematical Programming, Vol. 83, pp. 425-450.

[49] Osman, I., Laporte, G. (1996) Metaheuristics: A Bibliography. Annals of Operations Re-

search, Vol. 63, pp. 513-623.

[50] Oukila, A., Ben Amor, H., Desrosiers, J., El Gueddaria, H. (2007) Stabilized Column Gen-

eration for Highly Degenerate Multiple-depot Vehicle Scheduling Problems. Computers &

Operations Research, Vol. 34, pp. 817-834.

[51] Rayward-Smith, V., Osman, I., Reeves, C., Smith, G. (1996) Modern Heuristic Search Meth-

ods, John Wiley and Sons, Chichester, UK.

[52] Rousseau, L. M., Gendreau, M., Feillet, D. (2003) Interior Point Stabilization for Column

Generation. Technical Report, LIA - Universite d’Avignon.

[53] Sabar, M., Montreuil, B., Frayret, J. M. (2009) A Multi-agent-based Approach for Personnel

Scheduling in Assembly Centers. Engineering Applications of Artificial Intelligence, Vol. 22,

pp. 1080-1088.

[54] Schrijver, A. (1986) Theory of Linear and Integer Programming. John Wiley and Sons, Chich-

ester, UK.

[55] Seitman, D. (1994) In-house Medical Personnel Scheduler – A Computerized On-call Schedul-

ing Program. International Journal of Clinical Monitoring and Computing, Vol. 11, pp. 7-10.

[56] Senne, E. L. F., Lorena, L. A. N., Pereira, M. A. (2005) A branch-and-Price Approach to

p-median Location Problems. Computers & Operations Research, Vol. 32, pp. 1655-1664.

131

BIBLIOGRAPHY

[57] Shiina, T., Birge, J. R. (2004) Stochastic Unit Commitment Problem. International Transac-

tions in Operational Research, Vol. 11, pp. 19-32.

[58] Silva, E. F., Wood, R. K. (2006) Solving a Class of Stochastic Mixed Integer Programs with

Branch and Price. Mathematical Programming, Vol. 108, pp. 395-418.

[59] Singh, K. J., Philpott, A. B., Wood, R. K. (2009) Dantzig-Wolfe Decomposition for Solving

Multistage Stochastic Capacity-Planning Problems. Operations Research, Vol. 57, pp. 1271-

1286.

[60] Van Roy, T. (1986) A Cross Decomposition Algorithm for Capacitated Facility Location. Op-

erations Research, Vol. 34, pp. 145-163.

[61] Vanderbeck, F. (1994) Decomposition and Column Generation for Integer Programs. Ph.D.

Thesis, Universit Catholique de Louvain, Louvainla-Neuve, Belgium.

[62] Wentges, P. (1997) Weighted Dantzig-Wolfe Decomposition for Linear Mixed-Integer Pro-

gramming. International Transactions in Operational Research, Vol. 4, pp. 151-162.

132

Author Vita

Alper Uygur has a B.S. degree in Industrial Engineering from Middle East Technical University,

Ankara, Turkey. He received his Master of Science degree in Management Science from the I&SE

Department at Lehigh University.

He recently began working at BNSF Railway as a Sr. Operations Research Specialist. He is

currently designing decision making tools for large-scale optimization problems regarding Train

Scheduling and Timetabling Problems to support the Service Design Department. From 2005 to

2011, he was working as a Sr. Development Engineer at IBM, Maintenance and Technical Support

Subdivision, Service Delivery Planning Department. Throughout his career at IBM, he supported

the Business Process Reengineering Team for cost effective management of Maintenance and Tech-

nical Support Subdivision, by providing exact and heuristic approaches for strategic, tactical and

operational level decisions.

His research interests emphasize on decomposition methods for large-scale mixed integer prob-

lems and developing efficient solution strategies for such.

You can email him at Alper.Uygur@BNSF.com if you have any questions or comments regard-

ing his thesis or research interests.

133

	Lehigh University
	Lehigh Preserve
	2011

	Acceleration and Stabilization Techniques for Column Generation Applied to Capacitated Resource Management Problems
	Alper Uygur
	Recommended Citation

	tmp.1363264564.pdf.j81eD

